T.D. numéro 6 Algèbre

Exercice 1 Soient \mathbb{K} un sous-corps de \mathbb{C} , P(X) un polynôme irréductible à coefficients dans \mathbb{K} , et $\alpha \in \mathbb{C}$ une racine de P. Notons $L = \mathbb{K}(\alpha)$ le sous-corps de \mathbb{C} engendré par \mathbb{K} et α , et soit \mathbb{K}' un sous-corps de \mathbb{C} qui contient \mathbb{K} . Démontrer que $L \otimes_{\mathbb{K}} \mathbb{K}'$ est isomorphe à $\mathbb{K}'[X]/(P)$. En déduire que le produit tensoriel de deux corps (sur un sous-corps commun) n'est pas toujours un corps.

Exercice 2 Soient n et m deux entiers strictement positifs.

- 1. Que vaut $(\mathbb{Z}/n\mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Q}$?
- 2. Démontrer que si n et m sont premiers entre eux alors $(\mathbb{Z}/n\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/m\mathbb{Z}) = \{0\}.$
- 3. On suppose que n=m. Démontrer que $(\mathbb{Z}/n\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/m\mathbb{Z})$ est isomorphe à $\mathbb{Z}/n\mathbb{Z}$.
- 4. Dans le cas général, à quoi $(\mathbb{Z}/n\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/m\mathbb{Z})$ est-il isomorphe?
- 5. Notons i le morphisme injectif de $\mathbb{Z}/2\mathbb{Z}$ dans $\mathbb{Z}/4\mathbb{Z}$. Quel est le morphisme $i \otimes 1$ induit par i de $(\mathbb{Z}/2\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z})$ dans $(\mathbb{Z}/4\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z})$?

Exercice 3 Exhiber un anneau A, deux A-modules M et N, et un élément de $M \otimes N$ qui ne peut pas s'écrire sous la forme $x \otimes y$ avec $x \in M$ et $y \in N$.

Exercice 4 Soient A un anneau, M et N deux A-modules. Trouver un morphisme surjectif de A-modules de $M \otimes_{\mathbb{Z}} N$ dans $M \otimes_A N$, qui soit l'identité quand $A = \mathbb{Z}$ et un isomorphisme quand $A = \mathbb{Q}$. Exhiber un anneau A pour lequel ce n'est pas un isomorphisme.

Exercice 5 Cet exercice a pour but d'étudier le *complexifié* d'un \mathbb{R} -espace vectoriel E, qui est par définition le \mathbb{C} -espace vectoriel $E_{\mathbb{C}} = E \otimes_{\mathbb{R}} \mathbb{C}$.

- 1. Démontrer que l'application $j: x \mapsto x \otimes 1$ est \mathbb{R} -linéaire et injective de E dans $E_{\mathbb{C}}$. Dans la suite, on identifie donc E à un sous- \mathbb{R} -espace vectoriel de $E_{\mathbb{C}}$.
- 2. Que vaut $E_{\mathbb{C}}$ quand $E = \mathbb{R}^n$, respectivement l'espace des matrices carrées de taille n à coefficients réels ?
- 3. Démontrer que $E_{\mathbb{C}}$ est la somme directe des sous- \mathbb{R} -espaces vectoriels E et iE.
- 4. Soit F un sous- \mathbb{R} -espace vectoriel de E. Démontrer que $F \otimes_{\mathbb{R}} \mathbb{C}$ s'identifie à un sous- \mathbb{C} -espace vectoriel de $E_{\mathbb{C}}$, noté $F_{\mathbb{C}}$, et qu'on a $F = F_{\mathbb{C}} \cap E$.
- 5. Avec les notations de la question précédente, démontrer que si F est de dimension finie alors $F_{\mathbb{C}}$ aussi et $\dim_{\mathbb{C}} F_{\mathbb{C}} = \dim_{\mathbb{R}} F$.

Soit V un sous- \mathbb{C} -espace vectoriel de $E_{\mathbb{C}}$, de dimension finie p.

- 6. Démontrer que $V\cap E$ et $V\cap iE$ sont des sous- $\mathbb R$ -espaces vectoriels de $E_{\mathbb C}$ de même dimension, finie, majorée par p.
- 7. On suppose que E est de dimension finie. Notons σ la conjugaison complexe, et σ_E l'endomorphisme $\mathrm{Id} \otimes \sigma$ de $E_{\mathbb{C}}$ (qui est \mathbb{R} -linéaire, mais pas \mathbb{C} -linéaire sauf si E est nul). Démontrer que les conditions suivantes sont équivalentes :
 - (i) $\dim_{\mathbb{R}}(V \cap E) = p$,
 - (ii) $\sigma_E(V) = V$,
 - (iii) il existe un sous- \mathbb{R} -espace vectoriel F de E tel que $V=F_{\mathbb{C}}$.
 - (iv) V est engendré, comme \mathbb{C} -espace vectoriel, par une famille d'éléments de E.
 - (v) Il existe des formes linéaires $\varphi_1, \ldots, \varphi_{\dim E-p}$ sur E telles que V soit l'intersection des noyaux des formes linéaires $\varphi_j \otimes 1$ sur $E_{\mathbb{C}}$.