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Introduction : Why Distributions ?

The notion of distribution emerged during the twentieth century, as a powerful tool in the study of
partial differential equations (PDEs). The need to generalize the concept of a “function” also emerged
from different parts of theoretical physics, in particular electromagnetism and quantum mechanics.
On the mathematical side, major contributors to the formal definition of distributions are Jean Leray,
Serguei Sobolev and Laurent Schwartz.

In this introduction, we present four simple motivations for the emergence of distributions.

Differentiating non differentiable functions

Taking the derivative of non-differentiable functions

In differential calculus, one immediately encounters the unpleasant fact that not every function is
differentiable. The purpose of distribution theory is to remedy this flaw. Recall that, given a function
f on an open interval I ⊂ R, the derivative function f ′ is defined as

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

,

provided this limit exists at every point x ∈ I. Let us mention a classical elementary application of
this notion. If f ′ exists, f is a nondecreasing function on I if and only if1 its derivative f ′(x) ≥ 0 at
every point x ∈ I. However, there are many examples of nondecreasing functions such that f ′ cannot
be defined on the whole of I: a typical example is the Heaviside function,

H(x) =

{
1 if x ≥ 0

0 if x < 0

Of course, H admits a derivative at every point x ̸= 0, and this derivative is 0. But this is not suf-
ficient to conclude that H is nondecreasing, since the derivative of −H enjoys the same property !
It is therefore necessary to extend to x = 0 the derivative of H, in a way which takes into account
the discontinuity of H at x = 0. In fact, to every locally integrable function f , we shall associate a
mathematical object — a distribution — called the derivative of f , with the property that f is nonde-
creasing iff its derivative is nonnegative (the nonnegativity of a distribution will need to be properly
defined).

1. in the sequel, the expression “if and only if” will be abbreviated by iff
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Fourier series

In his famous memoir Théorie analytique de la chaleur (1822), Joseph Fourier introduced, for every
“reasonable” 2π-periodic function f , the coefficients

cn(f) =
1

2π

∫ 2π

0

f(x) e−inx dx , n ∈ Z

and he stated that

f(x) =
+∞∑

n=−∞

cn(f) einx .

Throughout the nineteenth and the early twentieth century, many mathematicians have tried to give
sense to the above equality for the largest possible class of functions f . Dirichlet proved it for any C1

function, yet Kolmogorov made the striking observation that there exist locally integrable functions
f such that the above Fourier series is divergent for every x ∈ R ! We shall see below that, even
in such an unfavorable situation, the above series is convergent, but in a different sense, namely
in the sense of distributions. In fact, for any element u in the class of 2π-periodic distribution (this
class includes, in particular, the locally integrable functions), we shall define a sequence (cn(u))n∈Z
of Fourier coefficients such that the corresponding series is convergent in the sense of distributions,
and its sum equals u. Furthermore, the derivative of the distribution u (which is also a 2π-periodic
distribution) can be obtained by summing the series of derivatives, namely the series with coefficients
(incn(u)). This interplay between Fourier series and differentiation was a major reason for their
introduction by Fourier back in 1822; the theory of distributions manages to extend the applicability
of this connection to a much larger class of objects.

Electrostatics

If f is a function on R3 which represents an electric charge distribution, the electric potential u gen-
erated by this charge distribution satisfies the Poisson equation

(0.0.1) −∆u = f.

If f is smooth enough — say C1 — and small enough at infinity (for instance it vanishes outside of
some ball), one can prove that there exists a unique C2 solution u of this equation which goes to 0 at
infinity: this solution is given by the integral

(0.0.2) u(x) =
1

4π

∫
R3

f(y)

|x− y|
dy .

This formula still has a meaning if f is bounded and has compact support, but is not necessarily
continuous (we will note f ∈ L∞comp(R3)). In that case u is no more C2 in general, yet it is tempting
to try to interpret the Poisson equation (0.0.1) in this more general situation as well.

Actually, in Physics charge distributions are often modelized as being supported on surfaces, curves,
points, or forming microscopic dipoles... Such charge distributions cannot be described by L∞comp

Distributions and PDEs, Fall 2022 Stéphane Nonnenmacher
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functions. Yet, in all these cases, the formula (0.0.2) still makes sense, provided one integrates on
the appropriate subset of R3; what is then the status of the Poisson equation (0.0.1)? We will show
that, in all these cases, it is possible to interpret this equation in the sense of distributions.

Let us remark that the word distribution actually takes its origin in this application to electrostatics, a
(mathematical) distribution primarily represented a distribution of electric charge.

Quantum mechanics

Quantum mechanics is a theory based on the Hilbert space L2(R3.C): the state of a quantum particle2

is represented by a wavefunction, which is a square integrable function u ∈ L2(R3,C), with L2 norm
equal to unity. Nevertheless, the founding fathers of the theory (in particular Paul Dirac) felt the need
to extend the notion of quantum state to objects which are not in L2. In particular, Dirac introduced
his famous “delta function”, namely a “function” δ(x) which vanishes at each point x ̸= 0, but such
that, formally ∫

R3

δ(x) dx = 1.

If one had to give a value to δ(0), this value should be +∞ for the above identity to hold. So this δ
cannot be a function: it is not an element of L2. Mathematically, this “delta function” will appear as
one of the simplest nontrivial distributions, the delta distribution at the origin, often denoted by δ0, .

Dirac also invented the “bracket” notation ⟨u|v⟩ for the scalar bracket onL2, and extended the notation
to his singular objects: his notation ⟨x0|v⟩ will represent the distributional bracket between the delta
distribution δx0 and the “test function” v; we will denote it instead by the brackets ⟨δx0 , u⟩D ′,D .

2. Here I only consider scalar particles, that is particles without spin.

Distributions and PDEs, Fall 2022 Stéphane Nonnenmacher



Chapter 1

Distributions in one space dimension

We have chosen to start our presentation of the theory of distributions by the one dimensional setting.
This will give simpler expressions, yet will already convey most of the ideas and methods of the theory.
Note that this one dimensional theory is already useful in practice, for instance in signal analysis, or
in 1-dimensional models in quantum or wave mechanics.

Distributions will appear below as “duals” of smooth functions (more precisely, linear forms acting on
spaces of smooth functions), a distribution will be described by the way it acts on all smooth functions.
For this reason, these smooth functions will be called test functions, since their rôle will be to test the
distributions.

We will start our presentation by describing in some detail these classes of test functions.

1.1 Background on differential calculus on R

In this section, we recall elementary facts about smooth functions of one real variable. The functions
will be defined on some open (nonempty) interval I ⊂ R. This interval may be bounded (I =]a, b[),
semibounded (I =] −∞, b[ or I =]a,∞[), or simply I = R. The theory will essentially be identical
in all cases. For the reader’s ease, at first read it can be convenient to take I = R.

1.1.1 Basic properties of smooth functions on I

A smooth function on an open interval I ⊂ R is a function φ : I → C whose derivatives of any
order φ′, φ′′, . . . , φ(k), . . . exist and are continuous on I. A linear combination of smooth functions is
a smooth function, and we denote C∞(I) the vector space formed by all smooth functions on I.

If φ ∈ C∞(I) and J is an open subset of I, the function defined on J by x 7→ φ(x) is a smooth
function on J , that we denote by φ|J . This function is called the restriction of φ on J .

The product of two smooth functions is smooth, and the derivatives of the product are computed by
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the Leibniz formula1:

(φ1φ2)
(k) =

k∑
j=0

(
k

j

)
φ
(j)
1 φ

(k−j)
2 .

A smooth function φ : I → C satisfies the Taylor formula with integral remainder, for any base point
x0 ∈ I and any order m ∈ N:

∀x ∈ I , φ(x) =
m∑
k=0

(x− x0)k

k!
φ(k)(x0) +

(x− x0)m+1

m!

∫ 1

0

(1− s)mφ(m+1)(x0 + s(x− x0))ds.

This formula can be proved by integrating by parts the last term on the right hand side. We will use
it several times in those notes.

Exercise 1.1.1 Prove Hadamard’s lemma: if φ ∈ C∞(I) satisfies φ(x0) = 0, there exists a function
ψ ∈ C∞(I) such that φ(x) = (x− x0)ψ(x) for any x ∈ I.
In other words, we can factorize from φ the monomial (x− x0), and the quotient is still a smooth
function.

1.1.2 Support of a continuous function

If f is continuous on I and J is an open subset of I, we say that f vanishes on J if it vanishes at
every point of J , or, equivalently, if f|J is the null function.

Definition 1.1.2 [Support of a function] Let f : I → C be a continuous function. The support
of f is the complement of the union of all the open sets in I where f vanishes. This set is
denoted by supp f .

Note that the support of f is a closed set. It is also the closure of the set of x ∈ I such that f(x) ̸= 0.
The following characterization is often useful:

x0 /∈ supp f ⇐⇒ ∃V neighborhood of x0 such that f|V = 0.

Exercise 1.1.3 Show that
supp(f1f2) ⊂ supp f1 ∩ supp f2.

Are these two sets equal?

Of course, if φ ∈ C∞(I) vanishes on an open set J ⊂ I, all its derivatives vanish as well on J , and,
therefore, for any integer k,

suppφ(k) ⊂ suppφ.

1. Here
(
k
j

)
= k!

j!(k−j)! are the binomial coefficiens.

Distributions and PDEs, Fall 2022 Stéphane Nonnenmacher
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1.2 Test functions

In this section we introduce and manipulate test functions on some open interval I ⊂ R.

1.2.1 The space of test functions

Definition 1.2.1 We denote by D(I) = C∞0 (I) (also C∞comp(I)) the vector space of functions
which are C∞ on I, and whose support is a compact subset of I. Equivalently, a smooth function
belongs to D(I) if it vanishes outside some closed segment [a, b] ⊂ I.

If J is an open subinterval of I, one may identify a function φ ∈ D(J) with its extension φ̃ ∈ D(I),
that is the function defined as

φ̃(x) = φ(x) for x ∈ J, φ̃(x) = 0 for x ∈ I \ J.

Indeed, φ̃ is automatically smooth and with compact support on I for φ ∈ D(J). On the other hand,
a function φ ∈ C∞0 (R) can be identified with its restriction φ|I ∈ D(I) for any open interval I that
contains supp f .

x

x

I

J

ϕ

ϕ
∼

Figure 1.1: A test function on J and its extension to I.

Exercise 1.2.2 Let f and φ be two functions in ∈ L1(R). Show that the convolution f ∗ φ of f
and φ, given by

f ∗ φ(x) =
∫
f(x− y)φ(y)dy,

is defined almost everywhere, and is an L1 function.
Suppose moreover that φ ∈ C∞0 (R), and show that f ∗ φ is then smooth. At last, if f is also
continuous, show that

supp f ∗ φ ⊂ supp f + suppφ.

Distributions and PDEs, Fall 2022 Stéphane Nonnenmacher
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Proofs: (see TD1, Ex. 5,6,7).

It is not immediately clear that D(I) is not reduced to the null function. One knows for example that
the only compactly supported real analytic function on R is the null function, due to the principle of
isolated zeroes. Yet, one has the following

Proposition 1.2.3 The space D(I) is nontrivial. More precisely, for every x0 ∈ I and r > 0 such
that [x0−r, x0+r] ⊂ I, there exists a function φx0,r ∈ C∞(I) such that suppφx0,r = [x0−r, x0+r].

Proof.— Here we give a “standard” construction, which uses the function φ : R→ R given by:

φ(t) =

{
e−1/t , t > 0,
0 , t ≤ 0.

Let us check that φ is smooth on R. Indeed, it is obviously smooth on R∗, with φ(k)(t) = 0 for all
t < 0. On the other hand, for t > 0, one can prove by induction that

∀k ∈ N, φ(k)(t) = Pk

(
1

t

)
e−1/t

where Pk is a polynomial of degree 2k. Therefore, for any k ≥ 0, φ(k)(t) → 0 as t → 0+. Hence
φ(k)(t) admits the same limit when t → 0 on both sides. This shows that φ(k)(0) = 0, and that this
function is continuous on R.

Now let x0 ∈ I, and r > 0 such that [x0− r, x0+ r] ⊂ I. We then define the function φx0,r : I → R+

by
φx0,r(x) = φ(r2 − |x− x0|2), ∀x ∈ R.

This function is smooth, with suppφx0,r = [x0 − r, x0 + r]. In particular it belongs to D(I).

(A different construction of a function in D(R) is given in TD1, Ex. 11).

We will often use a particular type of test function, equal to unity on some interval.

Proposition 1.2.4 (Cutoff functions) Let I ⊂ R an open set, and a segment [a, b] ⊂ I. There
exists a function ψ ∈ D(I) such that

i) ψ = 1 on [a, b],

ii) ∀x ∈ I, ψ(x) ∈ [0, 1].

In French, such a function is called “fonction plateau”, while in English it is rather referred to as a
“cut-off function”.

Proof.— First of all, we prove that, for every α < β, there exists χα,β ∈ C∞(R) such that

Distributions and PDEs, Fall 2022 Stéphane Nonnenmacher
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i) χα,β = 0 on ]−∞, α],

ii) ∀x ∈ R , χα,β(x) ∈ [0, 1],

iii) χα,β = 1 on [β,+∞[.

(such a χα,β is called a “smooth step function”).

Let φx0,r ∈ C∞(R) be the function defined in Prop. 1.2.3, with the parameters

x0 =
α + β

2
, r =

β − α
2

.

Then it is easy to check that

χα,β(x)
def
=

∫ x
−∞ φx0,r(t) dt∫ +∞
−∞ φx0,r(t) dt

satisfies the required properties.
Coming back to [a, b] ⊂ I, select a′, b′ ∈ I such that a′ < a < b < b′. Then we may just take the
product

ψ(x) = χa′,a(x)(1− χb,b′(x))

1.2.2 Smooth partitions of unity

An important use of these cutoff functions lies in the construction of smooth partitions of unity. We
start by defining the notion of open cover of a compact set.

Definition 1.2.5 (Open cover) Fix I an open interval, and let K ⊂ I be a compact (bounded
and closed) subset of I. A finite open cover ofK inside I is a family of open intervals I1, . . . , In ⊂
I, such that

K ⊂
n∪
j=1

Ij .

To any open cover we may associate a smooth partition of unity.

Proposition 1.2.6 (Smooth partitions of unity) Let K ⊂ I be a compact subset of the open
interval I, and let I1, . . . , In ⊂ I be a finite open cover of K.
Then, there exist functions χ1 ∈ C∞0 (I1, [0, 1]), . . . , χn ∈ C∞0 (In, [0, 1]), such that their sum

χ =
n∑
i=1

χi is equal to unity on a neighbouhood of K,

and χ ∈ C∞0 (I, [0, 1]).
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As a consequence of this smooth partition of unity, we easily draw the following

Corollary 1.2.7 Let φ ∈ C∞0 (I), and assume I1, . . . , In ⊂ I form a finite open cover of suppφ
inside I:

suppφ ⊂ I1 ∪ · · · ∪ In .

Then there exist φ1 ∈ C∞0 (I1), . . . , φn ∈ C∞0 (In), such that

φ = φ1 + · · ·+ φn .

Indeed, once we have at our disposal a partition of unity χi, . . . , χn associated with the cover of
suppφ, it suffices to take φj = χjφ for j = 1, . . . , n.

Remark 1.2.8 In the whole chapter, our distributions are based on an open interval I. It is actually
possible to generalize the construction of smooth partitions of unity to the case where the compact
set K and its open cover

∪n
i=1 Ii ⊃ K are contained in some general open set Ω ⊂ R, instead of

an interval I. We leave to the reader the proofs of this generalization.

Proof.— Let us now prove Proposition 1.2.6. We start with an elementary

Lemma 1.2.9 (“Shrinking lemma”) Take I1, . . . , In a family of open subintervals of I. Then,
for every compact subset K such that

K ⊂ I1 ∪ · · · ∪ In ,

there exist segments2 [a1, b1] ⊂ I1, . . . , [an, bn] ⊂ In such that

K ⊂]a1, b1[∪ · · · ∪]an, bn[ .

To prove this Lemma we proceed by induction on n. For n = 1, K is a compact subset of the open
interval I1, hence there exists a segment [α1, β1] ⊂ I1 such that K ⊂ [α1, β1]. For instance, one may
choose α1 = minK , β1 = maxK. Then we just choose a1, b1 ∈ I such that a1 < α1 < β1 < b1.
Assume now that for some n ≥ 2, the result is true at the level n− 1; let us and prove that it holds
at the level n. The set

K ′ = K \ In
is closed and contained in K, hence it is a compact subset of I, and

K ′ ⊂ I1 ∪ · · · ∪ In−1 .

Applying the induction assumption, there exist [a1, b1] ⊂ I1, . . . , [an−1, bn−1] ⊂ In−1 such that

K ′ ⊂]a1, b1[∪ · · · ∪]an−1, bn−1[ .
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1
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1
I
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K’

K

K’’

1

Figure 1.2: Intervals ]ai, bi[ constructed in the “Shrinking Lemma” (here n = 2).

Now consider the compact subset

K ′′ = K \
(
]a1, b1[∪ · · · ∪]an−1, bn−1[

)
⊂ In .

Applying the assumption at the level 1, there exists a segment [an, bn] ⊂ In such that

K ′′ ⊂]an, bn[ .
As a consequence, we obtain

K ⊂]a1, b1[∪ · · · ∪]an, bn[ ,
as announced.

K

I1
I

1
a 1

ba
2 b

2

1
χ χ

22
ψ

x

χ

2

Figure 1.3: Partition of unity associated with the open cover K ⊂ I1 ∪ I2, as constructed in Proposi-
tion 1.2.6.

Let us use this Lemma to prove Proposition 1.2.6. Let [a1, b1], . . . , [an, bn] be the segments provided
by the Lemma. From Proposition 1.2.4 we may construct cutoff functions ψ1 ∈ C∞0 (I1, [0, 1]),…,ψn ∈
C∞0 (In, [0, 1]) such that ψ1 = 1 on [a1, b1],…,ψn = 1 on [an, bn]. We define

χ1 = ψ1 ,

χ2 = ψ2(1− ψ1) ,

. . .

χn = ψn(1− ψn−1) . . . (1− ψ1) .
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Then χ1 ∈ D(I1, [0, 1]), . . . , χn ∈ D(In, [0, 1]),, and the difference

1− (χ1 + · · ·+ χn) = 1− ψ1 − ψ2(1− ψ1)− · · · − ψn(1− ψn−1) . . . (1− ψ1))

= (1− ψ1)(1− ψ2 − · · · − ψn(1− ψn−1) . . . (1− ψ2))

= (1− ψ1) . . . (1− ψn).

By construction, the function (1−ψ1) . . . (1−ψn) vanishes identically on [a1, b1]∪· · ·∪ [an, bn], which
is a neighbourhood of K, so χ = 1 on a neighbourhood of K as stated in the Proposition.

1.2.3 Convergence in the space of test functions

Once we have defined the space of test functions D(I), it is important to define a proper notion
of convergence on this space, or equivalently a topology on D(I). Test functions are smooth and
compactly supported, it is natural that the topology on D(I) takes into account all these properties.

The natural notion of convergence for continuous functions is that of uniform convergence, since it
is the simplest one for which the limit of a sequence of continuous functions is continuous. For test
functions, the notion of convergence is provided by the next definition.

Definition 1.2.10 Let (φj)j∈N be a sequence of functions in D(I), and φ ∈ D(I). We say that
(φj) converges to φ in D(I) (or in the D(I)-sense), if:

i) Uniform support There exists a segment [a, b] ⊂ I such that suppφj ⊂ [a, b] for all j ∈ N
(we will sometimes denote this property by φj ∈ D[a,b](I)).

ii) Uniform convergence of all derivatives For any k ∈ N,

∥φ(k)
j − φ(k)∥∞ := sup

x∈I
|φ(k)
j (x)− φ(k)(x)| j→∞−−−→ 0.

We denote this convergence by
φ = D − lim

j→+∞
φj .

Obviously, when it exists, the limit function φ of a sequence (φj)j∈N is unique, and is also
supported in [a, b].

Remark 1.2.11 Under the conditions of the above definition, the limit function necessarily satisfies
suppφ ⊂ [a, b].

Exercise 1.2.12 Assuming the uniform convergence ∥φj−φ∥∞ → 0 alone does not imply, a priori,
the uniform convergence of derivatives.
Construct a counterexample with “fast small oscillations”.
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Exercise 1.2.13 Let φ ∈ D(R), and, for t ̸= 1, denote by ψt ∈ D(R) the function given by

ψt(x) =
φ(tx)− φ(x)

t− 1
·

Show that the family (ψt) converges in D(R) as t tends to 1.
Remark 1.2.14 (Strict inductive topology on D(I)) The definition 1.2.10 of the convergence of sequences
in D(I) corresponds to a slighty subtle topology on D(I), called the strict inductive topology. Why “in-
ductive”? Because one first defines a topology on the space of smooth functions supported on a given
segment K ⊂ I (which we denote by DK(I)). This topology is defined through the family of seminorms

NK,k(φ) = max
0≤j≤k

∥φ(j)∥∞, φ ∈ DK(I),

namely a local base of open neighbourhoods in DK(I) of the zero function can be defined by
UK,k = {φ ∈ DK(I) , NK,k(φ) < 1/k}, k ≥ 1 .

With this base, one recovers the fact that a sequence (φj) ⊂ DK(I) converges to zero in DK(I) iff all
seminorms NK,k(φj) converge to zero when j →∞.

To induce a topology on D(I), one considers a growing sequence of segments K1 ⊂ · · ·Ki ⊂ Ki+1 ⊂ · · · ,
such that

I =
∪
i≥1

Ki.

It is obvious that for any i and any function φ ∈ DKi(I), that function is also an element of DKi+1(I),
and the seminorms NKi+1,k(φ) = NKi,k(φ). As a result, the intersection between the open set UKi+1,k ⊂
DKi+1(I) and DKi(I) is just the set UKi,k, which is open in DKi(I); one says that the topology on DKi(I)
is induced by the topology on DKi+1(I).

Now, there exists a single topology on D(I), called the strict inductive topology, such that for each open
set U ⊂ D(I) of this topology and any index i, the set U ∩DKi(I) is open for the topology of DKi(I). A
family of neighbourhood of the zero function in D(I) is given by the sets

Uk =
∪
i≥1

UKi,k , k ≥ 1.

Let us quote a few properties of this inductive topology:

1. each DKi(I) is a closed subspace of D(I).
2. each space DKi(I) is separated and complete w.r.to its topology, as a consequence D(I) is separated
and complete in the inductive topology.
3. although the topology on each DKi(I) is metrizable, the strict inductive topology on D(I) is not
metrizable.
4. a sequence (φj) ⊂ D(I) converges to some φ0 ∈ D(I) iff the two properties of Definition 1.2.10 are
satisfied.

1.3 Definition of distributions on I

Equipped with our test functions, we are now able to formally define the notion of distribution on an
open interval I. As mentioned in the Introduction, distributions correspond to a certain class of linear
forms acting on test functions.
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1.3.1 Definitions

Definition 1.3.1 Let I ⊂ R an open subset, and T a complex valued linear form on D(I). One
says that T is a distribution on I if, for every segment [a, b] ⊂ I,

(1.3.1) ∃C > 0, ∃m ∈ N, ∀φ ∈ D[a,b](I) , |T (φ)| ≤ C
m∑
k=0

∥φ(k)∥∞ .

We denote by D ′(I) the set of distributions on I, and for T ∈ D ′(I), φ ∈ D(I), we use the
bracket notation

⟨T, φ⟩ = ⟨T, φ⟩D ′(I),D(I)
def
= T (φ) .

From the bound (1.3.1), we say that the distributional bracket ⟨T, φ⟩ is controlled bym derivatives of
φ. As we will see later, this number of derivatives necessary to control T may depend on the interval
[a, b] on which the test function is controlled.

Definition 1.3.2 [Distribution of finite order] Assume T is a distribution on I. If the integer
m ∈ N in (1.3.1) can be chosen independently of the interval [a, b], then the distribution T is
said to be of order ≤ m; if m0 is the smallest such integer m, then T is said to be of order m0.
Notice that the constant C in (1.3.1) may depend on [a, b], though.

The above definition may appear a bit artificial. The following Proposition provides a more natural
characterization, in terms of the topology of the space of test functions.

Proposition 1.3.3 (Continuity) A linear form T on D(I) is a distribution on I if and only if,
for any sequence (φj) of functions in D(I) that converges to φ in the D(I)-sense, one has
T (φj)→ T (φ).
In other words, the linear form T : D(I)→ C is a distribution iff it is continuous with respect to
the topology of D(I).

Strictly speaking, we prove the sequential continuity of T . On a general topological vector space, sequential
continuity of a linear form T may not be equivalent with its continuity. Fortunately, because each of the
subspaces DK(I) is metrizable, sequential continuity is equivalent with continuity in this inductive topology.
Proof.— Let T be a distribution on I, and (φj) a sequence in D(I) which converges to φ in D(I).
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There is a segment [a, b] ⊂ I such that suppφj ⊂ [a, b] for all j ∈ N, and suppφ ⊂ [a, b]. There
exist C > 0 and m ∈ N such that

∀ψ ∈ D(I) with suppψ ⊂ [a, b], |T (ψ)| ≤ C
∑
k≤m

∥ψ(k)∥∞ .

In particular, for any j ∈ N,

|T (φj)− T (φ)| = |T (φj − φ)| ≤ C
∑
k≤m

∥φ(k)
j − φ(k)∥∞ .

Therefore T (φj)→ T (φ) as j → +∞, and we have proved the only if part of the proposition.

We now want to prove the if part. Suppose that for any sequence (φj) of functions which converges
in D(I), we have T (φj)→ T (φ), where φ = D − limφj. We will reason ab absurdo: let us assume
that the linear form T is not a distribution: the converse of (1.3.1) gives the long statement:

(1.3.2) ∃[a, b] ⊂ I, ∀C > 0, ∀m ∈ N, ∃φ ∈ D[a,b](Ω), such that |T (φ)| > C
∑
k≤m

∥φ(k)∥∞ .

(Notice that φ cannot be the null function). In particular, for any j ∈ N, choosing C = m = j, there
is a test function φj ∈ D[a,b](I) such that

|T (φj)| > j
∑
k≤j

∥φ(k)
j ∥∞ .

Let ψj ∈ D[a,b](I) be defined by ψj := φj/|T (φj)|. One obviously has |T (ψj)| = 1, with suppψj ⊂
[a, b]. On the other hand, for any given k ∈ N and any j ≥ k, one has the bound

∥ψ(k)
j ∥∞ ≤

∑
β≤j

∥ψ(β)
j ∥∞ <

1

j
,

therefore limj→∞ ∥ψ(k)
j ∥∞ = 0; this proves the limit

D − lim
j→∞

ψj = 0.

The continuity of T then imposes T (ψj) → 0, which contradicts the normalization |T (ψj)| = 1. We
obtain a contradiction, hence the if part of the Proposition is proved.

Remark 1.3.4 As a set of continuous linear forms, D ′(I) forms a vector space on C: if T1, T2 ∈
D ′(I) and λ1, λ2 ∈ C, then λ1T1 + λ2T2 is the linear form given by

⟨λ1T1 + λ2T2, φ⟩ := λ1⟨T1, φ⟩+ λ2⟨T2, φ⟩ ,

and this form is obviously continuous since T1, T2 are so.
For T ∈ D ′(I), we may also denote by T̄ or T ∗ the distribution given by

⟨T̄ , φ⟩ = ⟨T, φ⟩.

Then, any distribution T can be written as T = T1 + iT2 where T1 and T2 are real distributions,
that is such that ⟨T, φ⟩ ∈ R for any real valued function φ. Indeed, this relation holds with

T1 =
1

2
(T + T̄ ) = Re(T ) and  T2 =

1

2i
(T − T̄ ) = Im(T ).

Equipped with this general definition, we will now provide some examples of distributions.
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1.3.2 Distributions defined by locally integrable functions

The first distributions we meet are well-known objects, namely locally integrable functions, that is
measurable functions f on R, such that for any bounded interval [a, b],

∫
[a,b]
|f(x)| dx <∞. We write

f ∈ L1
loc(I).

For such a function f and any φ ∈ D(I), the function fφ is integrable. More precisely,

Tf : φ→
∫
I

f(x)φ(x) dx

is a linear form on D(I). Moreover, for a segment [a, b] ⊂ I, for any φ ∈ D[a,b](I), one easily checks
that

|Tf (φ)| ≤ ∥f∥L1([a,b]) sup |φ| .
This bound shows that Tf is a distribution on I, and that Tf (φ) is controlled by 0 derivative of φ:
according to the Definition 1.3.2, it is a distribution of order 0.

As a matter of fact, one can identify L1
loc(I) with a subspace of D ′(I), that is identify the function f

with the distribution Tf . This is the content of the next

Proposition 1.3.5 The linear map

f ∈ L1
loc(I) 7−→ Tf ∈ D ′(I)

is injective.

Remark 1.3.6 The injectivity refers to elements of L1
loc, which are not functions, but classes of

functions, for the equivalence relation that f ∼ g if f(x) = g(x) almost everywhere w.r.to the
Lebesgue measure on I. In other words, if f is a locally integrable function, we want to show
that Tf = 0 if and only if f = 0 almost everywhere. In the special case where we also assume
that f is continuous, this is equivalent to f = 0 everywhere (indeed, f−1(R∗) is then open and
Lebesgue-negligible, it is thus the empty set).

Proof.— Assume Tf = 0. It is enough to prove that f = 0 a.e. on every segment of I, or equivalently
that for any ψ ∈ D(I) we must have ψf = 0 a.e.

Our first task is to approximate the function f by a smooth function. For this aim, we will use a family
of convolution kernels [see TD1, Ex.8].

Let ρ ∈ D(R), non negative, supported in [−1, 1], and such that∫
R
ρ(x) dx = 1 .

We then rescale ρ by a factor3 ε > 0, into the function

(1.3.3) ρε(x) =
1

ε
ρ
(x
ε

)
.

3. In general, in analysis the letter ε is used for a “small” parameter.
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We notice that the integral of ρε remains equal to unity, while ρε ∈ D(R) is supported in [−ε, ε].

Lemma 1.3.7 (Smoothing by convolution) Let g ∈ L1(R). Then the convolution product

gε = g ∗ ρε

converges in L1(R) to g when ε→ 0.

The proof of this Lemma is the goal of Ex.8 in TD1.

Let us use this Lemma to prove the Proposition 1.3.5. We have the following expression for the
regularization of ψf :

∀x ∈ R, (ψf) ∗ ρε(x) =
∫
f(y)ψ(y)ρε(x− y) dy = ⟨Tf , ψρε(x− .)⟩ = 0,

where we used the fact that the function y 7→ ψ(y)ρε(x − y) belongs to D(I). Applying the lemma
to g = ψf ∈ L1, we conclude ψf = 0 in L1, which completes the proof.

1.3.3 The Dirac mass

The next example of distribution is a genuinely new object, in the sense that it is not a function (nor
an equivalence class of functions). It admits various names: Dirac distribution, Dirac mass, Dirac
measure, Dirac delta function,…, all associated with the physicist Paul Dirac, which introduced it in
quantum mechanics, and called it “δ”.

For a point x0 ∈ I, we denote by δx0 : D(I)→ C the linear form defined by

δx0(φ) = ⟨δx0 , φ⟩ := φ(x0) .

For any function φ ∈ D(I), one obviously has

|δx0(φ)| ≤ ∥φ∥∞,

so that δx0 is a distribution on I. Let us call it the Dirac mass at x0, or the Diract distribution at x0.

We notice that δx0(φ) is controlled by 0 derivative of φ, like in the case of distributions Tf associated
with an L1

loc function f . It is thus also a distribution of order 0.

Yet, we claim that

Lemma 1.3.8 The Dirac mass at x0 cannot be defined by a locally integrable function f .

Proof.—Let us assume the opposite, namely that δx0 = Tf for some f ∈ L1
loc. Then, for any function

φ ∈ D(I) such that x0 /∈ suppφ,

φ(x0) = 0 =

∫
f(x)φ(x)dx .
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Let us split the interval I at the point x0, to obtain the disjoint union

I = I1 ⊔ {x0} ⊔ I2 .

Then for any φ1 ∈ D(I1) we will have∫
I

f(x)φ1(x) dx =

∫
I1

f|I1(x)φ1(x) dx = 0.

The second integral is the distributional bracket associated with the function f↾I1 ∈ L1
loc(I1). The

Proposition 1.3.5 applied to f|I11, implies that f|I1 = 0 a.e. on I1. The same reasoning applies to the
restriction f|I2, which hence vanishes a.e. on I2. Finally, the full function f = 0 a.e. on I.

Now, if we select a plateau function ψ such that ψ(x0) = 1, we would have

1 = ψ(x0) = ⟨Tf , ψ⟩ =
∫
I

fψ = 0,

which is a contradiction.

The Dirac mass is relevant in many contexts. Among the 4 motivations we presented in the introduc-
tion, 3 were involving the Dirac mass (on R, or its generalization on R3):

i) the derivative of the Heaviside function is the Dirac distribution at the origin (see below section
(1.4)).

ii) in electrostatics, a point charge at the origin can be modelized by a “density” given by the Dirac
mass at x0 ∈ R3.

iii) in quantum mechanics, we already explained that the quantum state localized at a point x0 is
modelized by the Dirac mass at x0.

1.3.4 A distribution involving an infinite number of derivatives

In this section we want to explain why, in the bound (1.3.1) in the definition of a distribution, the
number m of derivatives needed to control T (φ) may depend on the support of φ (hence on the
segment [a, b] containing this support). Indeed, we construct below a distribution such that m =
m([a, b]) converges to infinity when [a, b] is made larger and larger, up to exhausting all of I.

We take I =]0, 1[, and consider a sequence (xn)n∈N of points in ]0, 1[ converging to 0 as n tends to
infinity. Let (an)n∈N an arbitrary sequence of complex numbers. For every φ ∈ D(I), we claim that

(1.3.4) ⟨T, φ⟩ =
∞∑
n=0

anφ
(n)(xn)

defines a distribution on I. Indeed, let a < b be points in ]0, 1[ such that supp(φ) ⊂ [a, b]. Then there
exists an integer N such that, for every n > N , xn < a, so that

∞∑
n=0

anφ
(n)(xn) =

N∑
n=0

anφ
(n)(xn)
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is well defined, and controlled by N derivatives of φ. For the same reason, if a sequence (φk)k∈N
converges to φ in D(I), then there exists a segment [a, b] ⊂ I containing the supports of all the φk
and of φ, so there will exist some N such that

⟨T, φk⟩ =
N∑
n=0

anφ
(n)
k (xn)

k→∞−−−→
N∑
n=0

anφ
(n)(xn) = ⟨T, φ⟩ .

If an infinite set of parameters (an) are nonzero, we claim that the distribution T is not of finite order,
meaning that one cannot control T with a fixed number of derivatives of φ, independent of the support
of φ. This is due to the fact that derivatives φ(n)(xn) cannot be controlled by norms (∥φ(k)∥∞)k<n
involving less derivatives. Following the Definition 1.3.2, we say that T is a distribution of infinite
order.

Remark 1.3.9 In this example it is crucial that the sequence (xn)n∈N does not admit an accumu-
lation point in I. Indeed, if there were such an accumulation point xa ∈ I, then for a given choice
of parameters (an) (assuming infinitely many of these parameters are nonzero), one can construct
a test function φ ∈ D(I) such that the derivatives φ(n)(xa) grow arbitrarily fast when n → ∞, in
particular such as to make the sum (1.3.4) divergent. Hence the linear form T would not be defined
on this function φ, it would not be a distribution.

1.3.5 Cauchy’s principal value of 1/x

We now introduce a distribution which looks similar to the distributions Tf associated with L1
loc func-

tions. However, in the present case the function is 1/x, which is not locally integrable at the origin.
For this reason, one has to be a bit clever and proceed by a limiting argument, removing smaller and
smaller neighbourhoods of the origin. We will see that the resulting distribution is more singular than
distributions associated with L1

loc functions.

Precisely, we consider the linear form T : D(R)→ C given by

T (φ) = lim
ε→0+

∫
|x|>ε

φ(x)

x
dx.

Let us show that this limit exists for any φ ∈ D(R). Indeed, for such a function, we have∫
|x|>ε

φ(x)

x
dx =

∫ +∞

ε

φ(x)

x
dx+

∫ −ε
−∞

φ(x)

x
dx

=

∫ +∞

ε

φ(x)− φ(−x)
x

dx −→
ε→0

∫ +∞

0

φ(x)− φ(−x)
x

dx .

Here we have used the fact that the function

x ∈ R 7→ φ(x)− φ(−x)
x

is C∞ and compactly supported (cf Ex. 1.1.1). In fact, both integrals on R+ and R− diverge, but with
opposite asymptotics, such that their sum remains bounded.
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Now let us show that the well-defined linear form T is a distribution on R. For any φ ∈ D(R), we
have the bound ∣∣∣∣φ(x)− φ(−x)x

∣∣∣∣ ≤ 2∥φ′∥∞

hence, if suppφ ⊂ [−A,A], ∣∣∣∣∫ +∞

0

φ(x)− φ(−x)
x

dx

∣∣∣∣ ≤ 2A∥φ′∥∞ .

This shows that T satisfies the estimate in Definition 1.3.1. Notice that the constant in the estimate
is here 2A, it does indeed depend on the support of φ. Another striking fact is that this distribution
is controlled by the first derivative of φ. In this sense, it is more singular than the distributions Tf
associated with locally integrable functions. One can show that this distribution is indeed of order 1.

This distribution is called the Cauchy principal value4 of 1/x, and we denote it by

⟨pv

(
1

x

)
, φ⟩ = lim

ε→0+

∫
|x|>ε

φ(x)

x
dx =

∫ +∞

0

φ(x)− φ(−x)
x

dx .

There are other examples of extensions of functions near a singular point (Hadamard finite parts,…),
which can often be seen as a renormalization procedure of a divergent expression: one substracts
the “simple” divergent behaviour, to identify a bounded remainder, which is called the “renormalized”
expression.

1.4 Differentiating distributions

This section introduces one of the most important operation on distributions, namely the derivative.
In order to understand the definition below, let us notice that, if f ∈ C1(I), a simple integration by
parts yields

∀φ ∈ C∞0 (I), ⟨Tf ′ , φ⟩ =
∫
I

f ′(x)φ(x)dx = −
∫
I

f(x)φ′(x)dx = −⟨Tf , φ′⟩ .

This suggest the following definition.

Proposition 1.4.1 Let T ∈ D ′(I). The linear form on D(I) defined by

φ 7→ −⟨T, φ′⟩

is a distribution, that we call the derivative of T , and that we denote by T ′.

Proof.— Let [a, b] ⊂ I be a segment, and C > 0, m ∈ N the constants controlling the distribution
T ∈ D ′(I) for test functions supported on [a, b] (see Def. 1.3.1). For φ ∈ D(I), supported in [a, b],

4. In French, it is called “valeur principale de 1/x”, hence denoted as vp
(
1
x

)
.
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we have
|⟨T ′, φ⟩| = |⟨T, φ′⟩| ≤ C

∑
k≤m

sup |φ(1+k)| ≤ C
∑

k≤m+1

sup |φ(k)|,

which shows that T ′ is a distribution, a little more singular that T : if T is of finite order m, then T ′ is
of order m+ 1.

Of course the above calculation is compatible with the case of functions:

Proposition 1.4.2 If T = Tf with f ∈ C1(I), then T ′ = Tf ′ .

The next examples are much more interesting.

Example 1.4.3 Let H : R → C denote the Heaviside function, namely H(x) = 1lR+(x). This
function belongs to L1

loc(R), so we can consider T = TH the associated distribution. For any
φ ∈ D(R),

⟨T ′, φ⟩ = −⟨T, φ′⟩ = −
∫ +∞

0

φ′(x)dx = φ(0),

so that T ′H = δ0, as we stated in the introduction of these notes: in the sense of distributions, the
derivative of the Heaviside function (which is not a differentiable function) is the delta mass at the
origin. The non-differentiability (actually, the discontinuity) of H at the origin leads to a singular
distribution at 0.

Example 1.4.4 (Primitives of L1
loc functions) Let f ∈ L1

loc(I) and a ∈ I. Consider the primitive

F (x) =

∫ x

a

f(t) dt .

A classical application of the dominated convergence theorem shows that F is continuous on I. In
particular, F is locally integrable. But in general, F will not be differentiable everywhere. We claim
that

Proposition 1.4.5
T ′F = Tf .

Proof.— Introduce, for every t ∈ I,

I<t = {x ∈ I : x < t} , I>t = {x ∈ I : x > t} .

Let us compute, for every φ ∈ C∞0 (I),

⟨T ′F , φ⟩ = −⟨TF , φ′⟩ = −
∫
I

(∫ x

a

f(t) dt

)
φ′(x) dx

=

∫
I<a

(∫
I

1l]x,a[(t) f(t) dt

)
φ′(x) dx−

∫
I>a

(∫
I

1l]a,x[(t) f(t) dt

)
φ′(x) dx .(1.4.5)
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Let us apply the Fubini theorem to both integrals in the right hand side. Notice that, if the support
of φ is included in [α, β] with a ∈ [α, β], the integrand of both integrals is supported by [α, β]×[α, β]
and is bounded by

|f(t)||φ′(x)|

which is integrable on [α, β]× [α, β]. Hence the Fubini theorem allows us to interchange the orders
of integration. This yields

⟨T ′F , φ⟩ =

∫
I<a

f(t)

(∫
I<t

φ′(x) dx

)
dt−

∫
I>a

f(t)

(∫
I>t

φ′(x) dx

)
dt

=

∫
I<a

f(t)φ(t) dt+

∫
I>a

f(t)φ(t) dt

=

∫
I

f(t)φ(t) dt = ⟨Tf , φ⟩ .

a

t

a

x0

Figure 1.4: Applying Fubini’s theorem on the two integrals of (1.4.5); the two domains of integration
are drawn in pink, resp. light blue.

In this proof we notice a “meta-strategy” which will be used at many points in this course: transfer
the computations (differentiation, product with a smooth function) from the distribution side to the
test function side.

Remark 1.4.6 [Going further than Lebesgue !] The statement of Prop. 1.4.5 looks very similar with
the one of Prop. 1.4.2. However the extension from f ∈ C1 to f ∈ L1

loc contains some subtleties.
1. The derivative f is not defined everywhere, yet the corresponding distribution is unique, as
explained in Prop. 1.3.5. On the other hand, the function F is continuous, hence unambiguously
defined.
2.Lebesgue proved that the function F (x) =

∫ x
f is almost everywhere differentiable, with a deriva-

tive a.e. equal to f ; in particular F can be recovered from its derivative. This is not a general
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property of continuous functions5. Indeed, there exists continuous functions G, differentiable almost
everywhere, but such that their (a.e. defined) derivative G′ does not allow to reconstruct G. For
instance, the “devil’s staircase” function G is continuous on [0, 1], almost everywhere differentiable
with G′(x) = 0 a.e., yet G is not a constant function (see fig. 1.5). This uncomfortable phenomenon
does not happen with distributional derivatives, as we shall see below in Proposition 1.4.8: for such
a function G the distributional derivative T ′G is not associated with an L1

loc function, but is more
singular; yet it vanishes on a union of intervals of full measure on ]0, 1[.

-3 -2,5 -2 -1,5 -1 -0,5 0 0,5 1 1,5 2 2,5 3

-3

-2

-1

1

2

3

f(x)=log(|x|)

f’(x)=1/x

Figure 1.5: Left: the “devil staircase” functionG, which satisfiesG′(x) = 0 a.e. Right: f(x) = ln(|x|)
and its derivative.

Example 1.4.7 The function f(x) = ln(|x|) belongs to L1
loc(R), thus defines a distribution T =

Tf ∈ D ′(R). We want to compute T ′; it seems reasonable that T ′ is related to the function
x 7→ 1/x, but this function is not in L1

loc(R). However, let φ ∈ C∞0 ([−A,A]). We compute

⟨T ′, φ⟩ = −
∫
R

ln |x| φ′(x) dx = − lim
ε→0

∫
|x|>ε

φ′(x) ln(|x|) dx

= lim
ε→0

∫
|x|>ε

φ(x)

x
dx+ lim

ε→0
(φ(ε)− φ(−ε)) ln(ε)

and the second limit in the right hand side vanishes, since φ is smooth. We conclude that

T ′ = pv(1/x),

the distribution introduced in the previous paragraph.

The only functions with an identically null derivative on a full interval are constant functions. The next
proposition shows that distributions satisfy the same property.

5. This property actually characterizes absolute continuity of the function F , which is a stronger property than continuity
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Proposition 1.4.8 If T ∈ D ′(I) satisfies T ′ = 0, then T is associated with a constant function.

The second point of Remark 1.4.6 shows that this statement is not obvious. Notice that this is the first
differential equation we are solving in the space of distributions; it does not yield any “new” solution.

Proof.— We start the proof by a remark that may be useful in other contexts. A function φ ∈ D(I)
is the derivative of a function ψ ∈ D(I) if and only if

∫
I
φ = 0 (we say that φ “has zero mass”, or “is

massless”). Indeed, if φ = ψ′ for ψ supported in [a, b] ⊂ I, then∫
I

φ(x)dx =

∫ b

a

ψ′(x)dx = [ψ(x)]ba = 0 .

Conversely, if
∫
I
φ = 0, the function ψ : x 7→

∫
I∩]−∞,x[ φ(t)dt is compactly supported, with support

included in any compact interval containing suppφ, and satisfies ψ′ = φ.

The constraint T ′ = 0 shows that for any function φ of zero mass, one has

⟨T, φ⟩ = ⟨T, ψ′⟩ = −⟨T ′, ψ⟩ = 0.

Therefore, we already know the value of T on all massless functions. We now wish to compute the
value of T on arbitrary functions φ ∈ D(I), including “massive” functions. For this aim, the idea is
to split φ into a massless part (which will be killed by T ) and a simple massive part.

To operate this splitting, we choose a “reference function” χ ∈ D(I) such that
∫
I
χ = 1. Using this

function, any φ ∈ D(I) splits into the sum

φ = φ0 + φm  with φ0 = φ−
(∫

I

φ

)
χ, and φm =

(∫
I

φ

)
χ,

that is a “massless” part and a “massive” one. Since
∫
I
φ0 = 0, there exists a unique ψ ∈ D(I) such

that φ0 = ψ′. Hence, by linearity we may write

⟨T, φ⟩ = ⟨T, ψ′⟩+
(∫

I

φ

)
⟨T, χ⟩

= −⟨T ′, ψ⟩+
(∫

I

φ

)
⟨T, χ⟩ .

The hypothesis T ′ = 0 yields

⟨T, φ⟩ = C

∫
I

φ = ⟨TC , φ⟩,

where C = ⟨T, χ⟩ is a constant independent of φ, and TC is the distribution associated with the
constant function equal to C. We notice that C is independent of the choice of reference function:
indeed, had we chosen a different reference function χ̃ of mass unity, since χ − χ̃ is massless, we
would have ⟨T, χ− χ̃⟩ = 0.

Proposition 1.4.2 implies that the derivative of a distribution associated with a constant function is
null. Therefore, the above statement is actually an equivalence.

This result can be easily extended to a differential equation with a nonhomogeneous term.
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Corollary 1.4.9 Let f ∈ L1
loc(I). The distributions T ∈ D ′(I) solving the equation

T ′ = Tf

are all of the form T = TF , where

F (x) =

∫ x

a

f(t) dt+ c , a ∈ I , c ∈ C .

Proof.— Let a ∈ I and define

F1(x) =

∫ x

a

f(t) dt .

By Proposition 1.4.5, T ′F1
= Tf = T ′. Then just apply Proposition 1.4.9 to T − TF1.

Using arguments from the proof of Proposition 1.4.8, we can actually establish the surjectivity of the
mapping T 7→ T ′ on the whole of D ′(I).

Proposition 1.4.10 (Primitive of a distribution) If S ∈ D ′(I), there exists T ∈ D ′(I) such
that T ′ = S.

The previous proposition shows that, once we have found a particular solution T to the above equation,
all the solutions are of the form T + Tc for some constant c ∈ C}.

Proof.— As is becoming usual, the strategy will be to push the computations to the test functions.
The identity T ′ = S is equivalent to

(1.4.6) ∀φ ∈ D(I) , ⟨T, φ′⟩ = −⟨S, φ⟩ .

In view of the proof of Proposition 1.4.8, the above equation already imposes the value of T on all
test functions of the form φ′, namely on all massless test functions.

Following the same strategy of proof to compute the value of T on a general test function, we split
the latter it into a massless and a massive part. So we choose a fixed “reference function” χ ∈ D(I)
such that

∫
I
χdx = 1, and for any test function φ ∈ D(I) we define its massive part φm = χ

∫
I
φ,

and is massless part φ0(x) = φ(x)− χ(x)
∫
I
φ. This massless part admits a primitive

P (φ)(x) :=

∫ x

−∞
φ0(t) dt ,

which belongs to D(I). Note that the map φ 7→ P (φ) is linear. We may then define the value of T
on φ by:

(1.4.7) ⟨T, φ⟩ := −⟨S, P (φ)⟩ .
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Let us check that this definition satisfies the required property (1.4.6). If we take φ = ψ′ in the above
formula, we note that this function is massless, so that φ0 = φ, and P (φ) is the unique primitive of
φ which is a test function, namely P (φ) = P (ψ′) = ψ; we then find (1.4.6) (with φ replaced by ψ).

There remains to check that the linear form (1.4.7) is a distribution, namely is continuous w.r.t. the
topology on D(I). To show this, it suffices to show that the map P : D(I) → D(I) is continuous.
The first property to check is the control on the support of P (φ). Let us assume that the reference
function χ is supported in an interval [α, β] ⊂ I. If φ is supported in the interval [a, b], then the
function φ0 is supported in [min(a, α),max(b, β)], and it will be the case for its primitive P (φ) too.
Hence, controlling supp(φ) allows to control suppP (φ).

Then, the expression of φ0 shows that for any k ∈ N, the norm

∥φ(k)
0 ∥∞ ≤ ∥φ(k)∥∞ + ∥χ(k)∥∞∥φ∥∞

Cχ,k

k∑
j=0

∥φ(j)∥∞ ,

where the constant Cχ,k takes into account the norms on the derivatives of the reference function χ.
Taking the primitive of φ0, we find the same type of estimates:

∥P (φ)∥∞ ≤ C̃χ,0∥φ∥∞,

∥P (φ)(k)∥∞ = ∥φ(k−1)
0 ∥∞ ≤ Cχ,k−1

k−1∑
j=0

∥φ(j)∥∞, k ≥ 1.

These estimates show that the map φ 7→ P (φ) is (sequentially) continuous: if a sequence (φn)
converges to φ in D(I), then P (φn) converges to P (φ) in D(I). Therefore the linear form T =
−S ◦ P : D(I)→ C is itself continuous, hence it is a distribution.

1.4.1 Higher derivatives*

Since T ′ is itself a distribution, it can be differentiated. Iterating this process, one can define the
successive derivatives T (k) of T for all k ∈ N. This means that any distribution can be differentiated
at any order, and we obtain the formula

∀φ ∈ D(I), ⟨T (k), φ⟩ = (−1)k⟨T, φ(k)⟩.

For instance, the k-th derivative of the Dirac mass at the origin is defined as

⟨δ(k)x0
, φ⟩ = (−1)kφ(k)(x0) .

For instance, the distribution described in subsection 1.3.4 can be expressed as the infinite sum

T =
∑
n≥1

(−1)n an δ(n)xn .
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1.5 Product of a distribution with a smooth function

One important property of continuous (or Ck) functions is that they form an algebra: one can multiply
functions with one another, staying the same class of continuous (or Ck) functions. This is already
not the case for two L1 functions, yet the product of an L1 function with a bounded (L∞) function
remains in L1.

Two distributions can in general NOT be multiplied with one another. However, we may multiply a
distribution with smooth functions, as shown in the following

Proposition 1.5.1 Let T ∈ D ′(I), and f ∈ C∞(I). The linear form

φ 7→ ⟨T, fφ⟩

is a distribution in D ′(I). We denote it by fT .

Proof.— Suppose (φj) is a sequence of functions in D(I), that converges to 0 in the D(I)-sense.
There is a segment [a, b] ⊂ I such that suppφj ⊂ [a, b] for all j, which implies supp fφj ⊂ [a, b] for
all j. Moreover, for any α ∈ N,

(fφ)(α) =
∑
β≤α

(
α

β

)
f (β) φ(α−β).

so that if we denote
M = max

β≤α
sup
x∈[a,b]

|f (β)(x)| := ∥f∥Cα([a,b]) ,

we see that

∥(fφj)(α)∥∞ ≤M
∑
β≤α

(
α

β

)
∥φ(α−β)

j ∥∞.

Since each of the terms in the sum converges to 0 as j → +∞, the right hand side does so too, so
that (fφj) → 0 in D(I). Finally, since T is a distribution, ⟨T, fφj⟩ → 0. This proves that fT is
continuous on D(I), hence is a distribution on I.

Exercise 1.5.2 For f ∈ C∞(R), show that fδ0 = f(0)δ0.

Exercise 1.5.3 For f ∈ C∞(R) and g ∈ L1
loc(R), show that fTg = Tfg.

Exercise 1.5.4 Show that x pv(1/x) = T1, the distribution associated with the constant function
on R (see TD 2, ex.3)

Exercise 1.5.5 For f, g ∈ C∞(R), show that f(gT ) = (fg)T .

We have seen that distributions can be differentiated arbitrarily many times; so can smooth functions.
In view of the above proposition, it makes sense to differentiate the product fT . Like for the product
of two smooth functions, the derivatives of this product satisfy a Leibniz formula (we leave the proof
of the following result to the reader).
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Proposition 1.5.6 (Leibniz formula) For f ∈ C∞(I), and T ∈ D ′(I), we have

∀k ∈ N, (fT )(k) =
k∑
j=0

(
k

j

)
f (j) T (k−j).

Proof.— Let us check the property for k = 1. By definition, for any φ ∈ D(I),

⟨(fT )′, φ⟩ = −⟨fT, φ′⟩ = −⟨T, fφ′⟩

On the other hand,

⟨f ′T + fT ′, φ⟩ = ⟨T, f ′φ⟩+ ⟨T ′, fφ⟩ = ⟨T, f ′φ⟩ − ⟨T, (fφ)′⟩ = −⟨T, fφ′⟩.

Since the two expressions coincide for any φ, we get (fT )′ = fT ′ + f ′T . Since this algebra of
derivatives is identical to the one for the product of two functions, it can be iterated to any order k,
leading to the same Leibniz rule as for the product of functions.

Product with a polynomial

Let us now focus on the case where the function f is a polynomial, or even a monomial. The Exer-
cise 1.5.2 implies the identity

(x− x0)δx0 = 0 ,

Our next statement shows that the delta mass at x0 is essentially the only distribution satisfying this
identity.

Proposition 1.5.7 Let x0 ∈ I, and let T ∈ D ′(I) satisfy

(x− x0)T = 0 ,

Then there exists a constant c ∈ C such that T = cδx0 .

Proof.— Hadamard’s Lemma (see Ex. 1.1.1) shows that, for any test function φ vanishing at x0, the
function ψ = φ

(x−x0) ∈ D(I). In that case, if T satisfies (x− x0)T = 0, we have

⟨T, φ⟩ = ⟨T, (x− x0)ψ⟩ = ⟨(x− x0)T, ψ⟩ = 0 .

Hence, we already know that such a distribution T kills all functions φ vanishing at x0.

Like in Prop. 1.4.8, to compute T for a general test function φ, we split the latter in a part vanishing
at x0, and a “simple” remaining part. We will also use a reference function χ ∈ D(I), which we now
require to satisfy χ(x0) = 1.
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The generic test function φ ∈ D(I) splits into a multiple of this reference function, and a term
vanishing at x0:

φ(x) = φ(x0)χ(x) + (x− x0)θ(x) ,

where θ(x) = φ(x)−φ(x0)χ(x)
x−x0 is smooth (from Hadamard’s Lemma), and is compactly supported since

the numerator is so. We then infer

⟨T, φ⟩ = ⟨T, χ⟩φ(x0) + ⟨(x− x0)T, θ⟩ = ⟨T, χ⟩φ(x0) ,

whence T = cδx0 with c := ⟨T, χ⟩. Here as before, changing the reference function will not change
the constant c.

Example 1.5.8 We are now in measure to solve another first order differential equation on the
space of distributions, more complicated than the equation T ′ = S of the previous section. Let us
look for solutions T ∈ D ′(R) of the equation

(1.5.8) xT ′ + T = 0 .

By the Leibniz formula, this equation is equivalent to

(xT )′ = 0 .

Using Proposition 1.4.8, this is equivalent to

xT = Tc1 for some c1 ∈ C .

Exercise 1.5.4 shows that c1 pv(1/x) is a solution of this equation, so we now have to solve

x
(
T − c1 pv

(1
x

))
= 0 .

Finally, using Proposition 1.5.7, we obtain the general solution of the differential equation xT ′+T =
0:

T = c1 pv
(1
x

)
+ c2δ0 , (c1, c2) ∈ C2 .

We have proved that the only global nontrivial solutions to (1.5.8) are genuine distributions which
present singularies at the point x = 0; this singularity is due to the fact that the coefficient of the
highest derivative (here T ′) vanishes at that point.
We also notice that the space of solutions has dimension 2, eventhough the ODE is of order 1.

Finally, we use elements of the proof of Prop. 1.4.10 to show the surjectivity of the mapping T 7→
(x− x0)T on D ′(I).

Proposition 1.5.9 Given S ∈ D ′(I) and x0 ∈ I, there exists T ∈ D ′(I) such that

(x− x0)T = S .
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Of course, if x0 ̸∈ I, the statement trivially holds, since the function (x− x0)−1 is smooth on I, and
(x− x0)−1S is well-defined.

Proof.— We proceed similarly to the proof of Proposition 1.4.10. Indeed, (x− x0)T = S reads

(1.5.9) ∀φ ∈ D(I) , ⟨T, (x− x0)φ⟩ = ⟨S, φ⟩ ,

which, in view of Hadamard’s lemma, imposes the value of T on test functions vanishing at x0. As in
the proof of Proposition 1.5.7, we fix a reference function χ ∈ D(I) such that χ(x0) = 1. For every
ψ ∈ D(I), we split ψ into ψ = ψ(x0)χ + (x − x0)θ(x), but we now want to remember that the
function θ depends on φ, so we denote this function by Q(ψ):

Q(ψ)(x) =
ψ(x)− ψ(x0)χ(x)

x− x0
=

∫ 1

0

[
ψ′
(
tx+ (1− t)x0

)
− ψ(x0)χ′

(
(tx+ (1− t)x0

)
)
]
dt .

Q : D(I)→ D(I) defines a linear mapping. Like in Prop. 1.4.10, we need to check that this mapping
is continuous on D(I). Firstly, the inclusion

suppQ(ψ) ⊂ supp(ψ) ∪ supp(χ)

shows that controlling the support of φ allows to control the support ofQ(φ). Secondly, any derivative
Q(φ)(k) is controlled by a certain number of derivatives of φ. Indeed, the integral representation of
Q(φ) shows that

∥Q(ψ)∥∞ ≤ ∥ψ′∥∞ + ∥χ′∥∞∥φ∥∞,
and similarly for higher derivatives of Q(ψ). These properties show that Q is a continuous mapping.

Now, let us define the linear form T by

∀ψ ∈ D(I) , ⟨T, ψ⟩ = ⟨S,Q(ψ)⟩ .

The continuity of Q and the fact that S is a distribution imply that T = S ◦Q is a distribution as well.
Finally, For every φ ∈ D(I), one checks that

Q((x− x0)φ) = φ ,

hence the distribution T satisfies (1.5.9).

Similarly, the differential equation of Example 1.5.8 can also be made nonhomogeneous.

Exercise 1.5.10 For a given S ∈ D ′(R), describe the solutions T ∈ D ′(R) of the equation

xT ′ + T = S .

To generalize Proposition 1.5.9, we may as well multiply T ′ by higher order monomials.

Corollary 1.5.11 If x0 ∈ I and m is a positive integer, the mapping T ∈ D ′(I) 7→ (x−x0)mT ∈
D ′(I) is surjective, and its kernel is the m-dimensional vector space generated by {δ(j)x0 , j =
0, 1, . . . ,m− 1}.
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Proof.— We proceed by induction on m. The case m = 1 has been solved in Propositions 1.5.7 and
1.5.9. Assume m ≥ 2 and that the statement is true for m − 1. The surjectivity of the mapping
T ∈ D ′(I) 7→ (x− x0)mT ∈ D ′(I) follows immediately from the similar property at the level m− 1
and from Proposition 1.5.9.

Concerning the kernel, the identity

(x− x0)mT = (x− x0)m−1
(
(x− x0)T

)
is solved by the induction hypothesis by

(x− x0)T =
m−2∑
j=0

cjδ
(j)
x0
, with arbitrary coefficients cj ∈ C .

Prop. 1.5.9 claims that this has a solution. We can actually find an explicit solution to this equation.
For this, we will use the following lemma, which generalizes Prop. 1.5.7:

Lemma 1.5.12 For any point x0 ∈ I and any integer k ≥ 1,

(x− x0)δ(k)x0
= −kδ(k−1)x0

.

Indeed, for every test function φ, we have

⟨(x− x0)δ(k)x0
, φ⟩ = (−1)k

(
(x− x0)φ

)(k)
(x0) = (−1)kkφ(k−1)(x0) = −k⟨δ(k−1)x0

, φ⟩ .‘

Coming back to the proof of Prop. 1.5.11, we may rewrite

(x− x0)T = −(x− x0)
m−2∑
j=0

cj
j + 1

δ(j+1)
x0

], .

Finally, applying Prop. 1.5.7 to the distribution

T +
m−2∑
j=0

cj
j + 1

δ(j+1)
x0

adds a possible term cδx0, which completes the proof.

After multiplying T by monomials, we may generalize to products with polynomials (we leave the proof
to the reader).

Corollary 1.5.13 Let P be a non identically zero polynomial function. Then the mapping

T ∈ D ′(I) 7→ PT ∈ D ′(I)

is surjective, and its kernel is the vector space generated by the distributions δ(j)a , where a ranges
over the zeroes of P inside I, and j = 0, 1, . . . ,m(a)− 1, where m(a) denotes the multiplicity of
a as a zero of P .
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Finally, let us solve another (very simple) differential equation on D ′(R).

Proposition 1.5.14 Let I ⊂ R be an open interval, and a ∈ C∞(I). The distributions in D ′(I)
that satisfy the differential equation

T ′ + aT = 0

are exactly the C∞ solutions, that is the regular distributions Tf with f : x 7→ Ce−A(x), for some
constant C ∈ C, where A is a primitive of a in I.

In other words, the distribution solutions of this differential equation coincide with the classical solu-
tions. Notice that this is not always the case if the coefficient of the highest derivative vanishes at
some poines — see example 1.5.8 above.

Proof.— Let A be a primitive of a on I. For T ∈ D ′(I), we have, using Leibniz formula,

(eAT )′ = aeAT + eAT ′ = eA(T ′ + aT ).

Thus
T ′ + aT = 0 ⇐⇒ (eAT )′ = 0⇐⇒ eAT = TC ⇐⇒ T = e−ATC = TCe−A .

Exercise 1.5.15 Solve in D ′(I) the inhomogeneous equation T ′ + aT = f , for f ∈ L1
loc(I). Fur-

thermore, prove that, if S ∈ D ′(I), there exists T ∈ D ′(I) such that T ′ + aT = S.

1.6 Restriction and support

We have defined the support of a continuous function. For locally integrable functions, there exists a
similar notion, called essential support, which needs a bit more care to define. Restrictions of functions
are easy to define. Below we will define the support of an arbitrary distribution, as well as its restriction
on an subinterval. These notions allow to “localize” the action of a distribution on a small interval;
more importantly, they allow to construct a global distribution piece by piece, by gluing together locally
defined pieces.

1.6.1 Restricting a distribution on a subinterval

Definition 1.6.1 Let T ∈ D ′(I), and J ⊂ I an open subinterval of I. The restriction of T to
J is the distribution T|J ∈ D ′(J) defined as

∀φ ∈ D(J) , ⟨T|J , φ⟩ = ⟨T, φ⟩ ,

where φ denotes the extension of φ by 0 on I \ J .
If T|J = 0 we say that T vanishes in J .
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Let us state without proof the following elementary properties of restriction with respect to derivation
and multiplication by a smooth function.

(T|J)
′ = T ′|J , (fT )|J = f|JT|J .

1.6.2 Nested construction of a distribution

As a first application of this important notion of support, let us state a very useful result, namely the
possibility to construct a distribution piece by piece, on larger and larger intervals.

Proposition 1.6.2 [Nested distributions] Let (In)n∈N be a growing sequence of bounded intervals
in I, such that In =]an, bn[, [an, bn] ⊂ In+1 for every n, and∪

n∈N

In = I .

Suppose we are given, for every n ∈ N, a distribution Tn on In, such that Tn+1 extends Tn:

∀n ∈ N , Tn+1|In = Tn .

Then there exists a unique distribution T on I which extends all the Tn, that is such that

∀n ∈ N , T|In = Tn .

Proof.— The key of the proof is the following elementary fact. For every segment [a, b] ⊂ I, there
exists n such that [a, b] ⊂ In. Indeed, from the assumptions, the sequence (an) is decreasing,
converging to the left boundary of I, while the sequence (bn) is increasing, converging to the right
boundary of I. This fact is also a consequence of the Borel–Lebesgue property for the compact set
[a, b]. The bounded intervals (In) are said to form a nested (or growing) sequence, and their union
cover all of I.

If such a distribution T exists, for every φ ∈ D(I), there exists n such that supp(φ) ⊂ In, and
therefore we should have

⟨T, φ⟩ = ⟨Tn, φ⟩ .
This proves the uniqueness of T , and suggests a way of constructing it. Indeed, given φ ∈ D(I), we
may take n0 to be the smallest n such that supp(φ) ⊂ In. The assumption Tn+1|In = Tn then implies
that

⟨Tn, φ⟩ = ⟨Tn0 , φ⟩ for all n ≥ n0 .

For this function φ, we can therefore define

⟨T, φ⟩ def
= ⟨Tn0 , φ⟩ .

This procedure clearly defines a linear form on D(I). Is it continuous on D(I)? If φj converges to φ
in D(I), then there exist n0 such that,

∀j , supp(φj) ⊂ In0 .
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Therefore, for all the functions φj we take

⟨T, φj⟩ = ⟨Tn0 , φj⟩,

and since Tn0 is a distribution on In0, ⟨T, φj⟩ converges to ⟨T, φ⟩, showing that T is a distribution as
well.

Let us state a first consequence of this nested construction.

Corollary 1.6.3 Let f ∈ C∞(I) admitting only finite order zeroes in I, namely, if f(a) = 0, there
exists m ≥ 1 such that f (m)(a) ̸= 0. Then the mapping T ∈ D ′(I) 7→ fT ∈ D ′(I) is surjective.

This result generalizes the product with polynomials of Corollary 1.5.13, to the case of a smooth
function f with possibly infinitely many zeros on I; yet, a crucial point is the fact that on any segment
[a, b] ⊂ I, the number of zeros of f is at most finite.

Proof.— If f(a) = 0 and m is the smallest integer such that f (m)(a) ̸= 0, the Taylor formula yields

f(x) =
(x− a)m

(m− 1)!

∫ 1

0

(1− t)m−1f (m)(a+ t(x− a)) dt .

From the continuity of f (m), we infer that there exists an open interval Ja ⊂ I containing a, such that
f(x) ̸= 0 for every x ∈ Ja \ {a}. For any segment [α, β] ⊂ I, the (compact) set of zeroes of f in
[α, β] is covered by the family of open intervals Ja’s, hence — from the Borel-Lebesque property —
by a finite subfamily of Ja’s, showing that this set of zeroes is finite. Consequently, in ]α, β[ we can
write

f = Pg ,

where P is a polynomial vanishing on the zeroes of f (with the same multiplicities), and g is a smooth
function which does not vanish in ]α, β[. Consequently, the Corollary 1.5.13 shows that the mapping

T ∈ D ′(]α, β[) 7→ fT = PgT ∈ D ′(]α, β[)

is surjective, and its kernel consists of finite linear combinations of Dirac masses and their derivatives
on the zeroes of f in ]α, β[. In particular, any distribution U]α,β[ in this kernel is the restriction to
]α, β[ of some distribution U on I, satisfying fU = 0 on I.

Let S ∈ D ′(I). In order to solve the equation fT = S, we will now apply the above local construction
to a nested cover (In)n≥0 for the interval I, using Proposition 1.6.2.

We start with the two first intervals I0 ⋐ I1 ⋐ I. In view of the above local construction, there exists
T0 ∈ D ′(I0) such that f|I0T0 = S|I0; similarly, there exists T̃1 ∈ D ′(I1) such that f|I1T̃1 = S|I1. A
priori, the restriction T̃1|I0 is not necessarily equal to T0, we must apply some correction to make them
“match”.

Denote by T̃1,0 = T̃1|I0 the restriction of T̃1 to I0. Of course,

f|I0(T̃1,0 − T0) = 0 ,
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From the above observation on the kernel of T 7→ fT , there exists U1 ∈ D ′(I1) such that U1|I0 =

T̃1,0 − T0 and f|I1U1 = 0. If we modify T̃1 into

T1
def
= T̃1 − U1 ∈ D ′(I1) ,

we observe that we have restored the “matching” between T1 and T0:

T1|I0 = T0 , and f|I1T1 = S|I1 .

By induction, we can therefore construct, for every n ∈ N, a distribution Tn on In such that

Tn+1|In = Tn , and f|InTn = S|In .

Applying Proposition 1.6.2, there exists T ∈ D ′(I) such that, for every n, T|In = Tn. Consequently,

∀n ∈ N , (fT )|In = f|InTn = S|In .

By the uniqueness part of Proposition 1.6.2, we have constructed this way a unique distribution T ,
which globally satisfies

fT = S .

Notice that, as opposed to the case of polynomials, the function f may have infinitely (but
countably) many zeroes on I.

1.6.3 Support of a distribution

In Definition 1.1.2 we had introduced the support of a continuous function as the complement of the
open set where the function vanishes. We can now adapt this notion to a distribution.

Definition 1.6.4 The support of a distribution T ∈ D ′(I) is the complement of the union of
all the open subintervals on which the restriction of T is 0. We denote this set by suppT .

Like in the case of continuous functions, suppT is closed, and the following characterizations are
convenient.

• x0 /∈ suppT if and only if there is an open neighborhood J of x0 such that T|J = 0.

• x0 ∈ suppT if and only if, for any open neighborhood Jx0 of x0, one can find φ ∈ C∞0 (Jx0)
such that ⟨T, φ⟩ ̸= 0.

Example 1.6.5 i) Let T = δ0. If J is an open interval that does not contain {0}, then ⟨T, φ⟩ =
φ(0) = 0 for any φ ∈ D(R) such that suppφ ⊂ J . Thus suppT ⊂ {0}. On the other hand,
if J is an open subinterval that contains 0, we can find a function ψD(J) sucht that ψ(0) = 1;
for this function we have ⟨T, ψ⟩ = ψ(0) = 1. Therefore, 0 ∈ suppT , and finally suppT = {0}.
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ii) If T = Tf for some f ∈ C0(I), with I an open interval of R, we have

suppT = supp f = {x ∈ I, f(x) ̸= 0} .

Indeed, suppose that x0 /∈ supp f . There is an open neighborhood J of x0 such that f|J = 0.
For any φ ∈ D(J), we have thus ⟨Tf , φ⟩ = 0, so that Tf vanishes on J , and x0 /∈ suppTf .
Conversely, if x0 /∈ suppTf , there is a neighborhood J of x0 such that, for all φ ∈ C∞0 (J), we
have

∫
fφdx = ⟨Tf , φ⟩ = 0. We have seen in Proposition 1.3.5 that this implies f = 0 in J ,

thus x0 /∈ supp f .

iii) If T = Tf for some f ∈ L1
loc(I), the same argument leads to the characterization

supp(Tf ) = ess− supp(f) = {x0 ∈ I, ∀r > 0,meas{x ∈ [x0 − r, x0 + r], f(x) ̸= 0} > 0} .

1.6.4 Some properties of the support

Let us consider how the support behaves w.r.t. the two operations on distributions, namely differen-
tiation and multiplication by a smooth function.

Lemma 1.6.6 For any T ∈ D ′(I):

i) for any k ∈ N, suppT (k) ⊂ suppT .

ii) for any f ∈ C∞(I), supp fT ⊂ supp f ∩ suppT .

Proof.— Let x0 /∈ suppT . There exists a neighborhood V of x0 such that for all ψ ∈ C∞0 (V ),
⟨T, ψ⟩ = 0. But if φ ∈ C∞0 (V ), ψ := φ(k) belongs to C∞0 (V ) as well, thus

⟨T (k), φ⟩ = (−1)k⟨T, φ(k)⟩ = 0.

This proves that T (k)
|V = 0, hence x0 /∈ suppT (k), which proves i).

Let us prove the second point. If x0 /∈ supp f ∩ suppT , x0 either belongs to ∁ supp f or to ∁ suppT .
In the first case, there exists a neighborhood V of x0 such that f|V = 0. For φ ∈ C∞0 (V ), we have
⟨fT, φ⟩ = ⟨T, fφ⟩ = 0, thus x0 /∈ supp(fT ). In the second case, there exists a neighborhood V
of x0 such that, for all ψ ∈ C∞0 (V ), ⟨T, ψ⟩ = 0. For φ ∈ C∞0 (V ), fφ also belongs to C∞0 (V ), thus
⟨fT, φ⟩ = ⟨T, fφ⟩ = 0. In both cases, we have shown that x0 /∈ supp fT , which proves the point
ii).

The following result is now easy to show, yet it is fundamental.

Proposition 1.6.7 Let φ ∈ D(I) and T ∈ D ′(I). If suppφ ∩ suppT = ∅, then ⟨T, φ⟩ = 0.
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Proof.— Let x ∈ suppφ. We have, by assumption, x /∈ suppT , thus there is an open subinterval Jx
containing x, on which T vanishes: TJx = 0. Covering the compact subset supp(φ) with the open
intervals Jx and applying the Borel-Lebesgue theorem, one can extract a finite covering

suppφ ⊂
n∪
j=1

Jxj .

By Corollary 1.2.7, one can find a smooth partition of φ, namely functions φj ∈ D(Jxj) for j =
1, . . . , n, such that

φ = φ1 + · · ·+ φn .

By linearity

⟨T, φ⟩ =
n∑
j=1

⟨T, φj⟩ =
n∑
j=1

⟨T|Jxj , φj⟩ = 0 .

A word of caution: one may have φ = 0 on suppT and ⟨T, φ⟩ ̸= 0. For example, this is the case
for T = δ′0 and φ ∈ D(R) such that φ(0) = 0, φ′(0) = 1.

An immediate consequence of Proposition 1.6.7 is the following important

Corollary 1.6.8 The only distribution with empty support is the null distribution T = 0.

We conclude this section by the important characterisation of distributions T ∈ D ′(I) supported on a
single point.

Proposition 1.6.9 Let T ∈ D ′(I), with T ̸= 0, and x0 ∈ I. If suppT ⊂ {x0}, there exists
m ∈ N and m+ 1 complex numbers ak for 0 ≤ k ≤ m such that

T =
m∑
k=0

akδ
(k)
x0
.

Proof.— We write the proof in the case x0 = 0. Let a < a′ < 0 < b′ < b such that the segment
[a, b] ⊂ I, and χ ∈ D(]a, b[) a cutoff function equal to unity on [a′, b′]. Since T is a distribution, there
exist C > 0, m ∈ N such that

∀ψ ∈ D(I), suppψ ⊂ [a, b] =⇒ |⟨T, ψ⟩| ≤ C

m∑
k=0

sup |ψ(k)|,

and from now on we denote by m the smallest integer for which this property holds6.

6. This value m is therefore the order of the distribution T|]a,b[
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For any function φ ∈ D(I), since supp(φ− χφ) ∩ suppT = ∅, we have

⟨T, φ⟩ = ⟨T, χφ⟩+ ⟨T, φ− χφ⟩ = ⟨T, χφ⟩.

Since supp(χφ) ⊂ [a, b], we have

|⟨T, φ⟩| = |⟨T, χφ⟩| ≤ C

m∑
k=0

sup |(χφ)(k)|.

The Leibniz formula gives

sup |(χφ)(k)| = sup
[a,b]
|(χφ)(k)| ≤ C

k∑
ℓ=0

sup
[a,b]
|φ(ℓ)|,

We first consider a test function φ ∈ D(I) satisfying φ(k)(0) = 0 for every k ≤ m, then ⟨T, φ⟩ = 0.

Indeed, let χ be a cutoff function on
[
−1

2
, 1
2

]
, with supp(χ) ⊂ [−1, 1]. For ε > 0 small enough, we

define a rescaled cutoff function
χε(x) = χ

(x
ε

)
.

The function φ− χεφ vanishes in [−ε/2, ε/2], a neighborhood of 0, so

⟨T, φ⟩ = ⟨T, χεφ⟩ .

The assumption on φ and a generalization of the Hadamard Lemma shows that φ factorizes into

φ(x) = xm+1ψ(x)

for some ψ ∈ D(I). Hence

χεφ(x) = χ
(x
ε

)
xm+1ψ(x) = εm+1ρ

(x
ε

)
ψ(x) ,

where we introduced the function ρ(y) = ym+1χ(y). By the Leibniz formula, one easily shows the
existence of some B > 0 such that, uniformly in ε:

sup
k≤m

sup
x

∣∣∣∣(ρ(xε )ψ(x))(k)
∣∣∣∣ ≤ B

εm
.

As a consequence
|⟨T, φ⟩| = |⟨T, χεφ⟩| ≤ C sup

k≤m
sup |(χεφ)(k)| ≤ CBε .

Since ε can be chosen arbitrary small, while C,B do not depend on ε, we obtain the claimed result

⟨T, φ⟩ = 0 .

Let us now consider a general test function φ ∈ D(I). The Taylor formula at order m reads

φ(x) =
∑
k≤m

xk

k!
φ(k)(0) + r̃(x),
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where the remainder r̃ ∈ C∞(I) satisfies

r̃(k)(0) = 0 , for all k ≤ m .

However, we would like the various terms on the right-hand side to be in D(I), so we choose ε0 > 0
is small enough so that [−ε0, ε0] ⊂ I, and use the rescaled cutoff χε0 to modify the above formula
into:

φ(x) =
∑
k≤m

xk

k!
φ(k)(0)χε0(x) + r̃(x).

All terms, including the remainder r, are now in D(I). Besides, r(x) = r̃(x) in [−ε/2, ε/2], so in
particular

r(k)(0) = 0 , for all k ≤ m .

The previous statement hence applies to the function r: ⟨T, r⟩ = 0, so by linearity we get

⟨T, φ⟩ =
∑
k≤m

φ(k)(0)⟨T, x
k

k!
χε0(x)⟩.

This is precisely what we have claimed, if we set ak = ⟨T, xk
k!
χε0⟩ (these numbers do not depend on

the choice of cutoff function χ, nor on ε0).

1.7 Converging sequences of distributions

1.7.1 Convergence in D ′

We have defined the notion of convergence in D(I), and showed that a distribution is (sequentially)
continuous w.r.t. this notion. We now define a dual notion of convergence in D ′(I).

Definition 1.7.1 Let (Tj) be a sequence of distributions in D ′(I). We say that (Tj) converges
to T ∈ D ′(I) when, for any function φ ∈ C∞0 (I), the sequence of complex numbers (⟨Tj, φ⟩)
converges to ⟨T, φ⟩. In this case, we write Tj → T in D ′(I).

If we view Tj and T as functions D(I) → C, this definition amounts to the simple convergence of
these functions.

Example 1.7.2 If (fj) is a sequence of locally integrable functions on I such that, for some f ∈
L1

loc(I),

∀[a, b] ⊂ I ,

∫ b

a

|fj(x)− f(x)| dx→ 0 ,
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(we say that fj converge to f in L1
loc), then

Tfj → Tf in D ′(I).

Indeed, for every test function φ on I with suppφ ⊂ [a, b],

⟨Tfj , φ⟩ − ⟨Tf , φ⟩ =
∫
I

fj(x)φ(x) dx−
∫
I

f(x)φ(x) dx

so that ∣∣⟨Tfj , φ⟩ − ⟨Tf , φ⟩∣∣ ≤ sup |φ|
∫ b

a

|fj(x)− f(x)| dx

which tends to 0 as j tends to the infinity.
Notice that a special case of this is the following situation. The sequence fj converges to f almost
everywhere on I, and there exists a locally integrable function h on I such that supj |fj| ≤ h almost
everywhere on I. Indeed, the connection to the above condition of L1 convergence is provided by
the dominated convergence theorem in L1([a, b]).

Example 1.7.3 Let ρ ∈ L1(R) such that
∫
R ρ(x) dx = 1, and (ρε) the sequence of rescaled functions

defined by
ρε(x) = ε−1ρ(

x

ε
).

We also denote (Tε) = (Tρε) the associated family of distributions. For φ ∈ C∞0 (R), we have

⟨Tε, φ⟩ =
∫
R
ρε(x)φ(x)dx =

∫
R
ρ(y)φ(εy) dy.

By the dominated convergence theorem, ⟨Tε, φ⟩ → φ(0) as ε → 0. Therefore the sequence (Tρε)
converges to δ0 in D ′(R).

The following Exercise generalizes the type of sequences (fj) which converge towards a Dirac delta
mass.

Exercise 1.7.4 Let (fj) be a sequence of L1 functions on I such that

sup
j

∫
I

|fj| dx <∞ ,

∫
I

fjdx→ c , supp(Tfj) ⊂ [x0 − εj, x0 + εj] , εj → 0 .

Prove that
Tfj → cδx0 .

One may also approximate distributions of strictly positive order, as shown in the following

Exercise 1.7.5 Let

fε(x) =


1
ε2

if x ∈]0, ε[
−1
ε2

if x ∈]− ε, 0[
0 if |x| > ε

Prove that
Tfε −→

ε→0
−δ′0 .

Distributions and PDEs, Fall 2022 Stéphane Nonnenmacher



CHAPTER 1. DISTRIBUTIONS IN ONE SPACE DIMENSION 44

Exercise 1.7.6 Let
fε(x) =

x

x2 + ε
, ε > 0 .

Prove that
Tfε −→

ε→0
pv

(
1

x

)
in D ′(R).

An important property is that the operations that we have defined on distributions are all continuous
with respect to the notion of convergence in D ′(I). More precisely,

Proposition 1.7.7 If (Tj) converges to T in D ′(I), then

i) For any k ∈ N, (T (k)
j ) converges to T (k).

ii) For any f ∈ C∞(I), (fTj) converges to fT .

iii) For any open subinterval J ⊂ I, the sequence (Tj)|J converges to T|J in D ′(J).

Proof.— Let φ ∈ C∞0 (I). We have clearly

∀k ∈ N, ⟨(Tj)(k), φ⟩ = (−1)k⟨Tj, φ(k)⟩ → (−1)k⟨T, φ(k)⟩ = ⟨T (k), φ⟩,

and
⟨fTj, φ⟩ = ⟨Tj, fφ⟩ → ⟨T, fφ⟩ = ⟨fT, φ⟩.

The statement iii) is obvious.

Exercise 1.7.8 Show that if (fj) converges to f in C∞(I), in the sense of the uniform convergence
of all derivatives on every compact subset, then (fjT ) converges to fT in D ′(I).

1.7.2 The Uniform Boundedness Principle

Let us motivate the main statement of this paragraph by the following questions.

i) Assume that, for a sequence (Tj) of distributions, and for every φ ∈ D(I), the sequence
(⟨Tj, φ⟩) has a limit L(φ). This clearly defines a linear form L on D(I). Is it true that L is a
distribution ?

ii) Assume Tj → T in D ′(I) and fj → f in C∞(I) in the sense of the uniform convergence of all
derivatives on every compact subset, does it imply that fjTj → fT ? In order to to prove such
a result, we write

⟨fjTj, φ⟩ − ⟨fT, φ⟩ = ⟨Tj, (fj − f)φ⟩+
(
⟨Tj, fφ⟩ − ⟨T, fφ⟩

)
.

The second term in the right hand side converges to 0 in view of the assumption. In the first
term, we notice that ψj = (fj−f)φ converges to 0 in D(I), but it is seems difficult to conclude
that ⟨Tj, ψj⟩ → 0 without a bound on the action of Tj which is uniform with respect to ψj.
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We state below, without proof, an important theoretical result, which is a “distributional version” of
the Banach-Steinhaus theorem7, which provides such a uniform bound.

Proposition 1.7.9 [Uniform boundedness] Let (Tj) be a sequence in D ′(I), and [a, b] ⊂ I a
segment. If, for any function φ ∈ C∞0 (I) with support in [a, b],

sup
j
|⟨Tj, φ⟩| < +∞ ,

then there exists C > 0 and m ∈ N, independent of j, such that

∀φ ∈ D(I), ∀j ∈ N, suppφ ⊂ [a, b] =⇒ |⟨Tj, φ⟩| ≤ C

m∑
k=0

sup |φ(k)|.

In other words, the distributions (Tj)j∈N are uniformly controlled on the interval [a, b].

As a consequence, we obtain the following somewhat surprising result.

Corollary 1.7.10 Let (Tj) be a sequence of distributions on I. If, for all functions φ ∈ D(I),
the sequence (⟨Tj, φ⟩)j∈N converges in C, then the resulting linear form is actually a distribution
T ∈ D ′(I), and Tj → T in D ′(I).

Proof.— Let T : D(I)→ C be the linear form given by

T (φ) = lim
j→+∞

⟨Tj, φ⟩.

We need to check that T is a distribution. So pick a segment [a, b] ⊂ I . Proposition 1.7.9 ensures
that there is a constant C > 0 and an integer m such that, for any φ ∈ D(I) with suppφ ⊂ [a, b],
we have

|⟨Tj, φ⟩| ≤ C

m∑
k=0

sup |φ(k)|.

Then we can pass to the limit j → +∞, and we get the same estimate for |⟨T, φ⟩|.

The second question above can also be addressed successfully (the proof is left as an exercise).

Corollary 1.7.11 Let (Tj)j∈N be a sequence of distributions on I which converges to T in D ′(I).
Then, for every sequence (ψj) which converges to ψ in D(I), we have ⟨Tj, ψj⟩ → ⟨T, ψ⟩. In
particular, if fj → f in C∞(I) in the sense of the uniform convergence of all derivatives on every
compact subset, then fjTj → fT .

7. Let E,F be two Banach spaces, and (Aj : E → F )j be a sequence of bounded operators, such that for any u ∈ E,
supj ∥Aju∥F <∞. Then the operators Aj are uniformly bounded: sup ∥Aj∥L(E,F ) <∞.
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A proof of the uniform boundedness principle, as well as other applications, will be given in the next
chapter.

1.8 An introduction to Sobolev spaces

In this section, we give a short overview of a family of functional spaces, introduced by the Russian
mathematician Sergei Sobolev (1908-1989), which allowed to solve differential equations in a wide
context. Here we concentrate on a very special case in one variable. A more general presentation will
be provided in the next chapters.

1.8.1 Generalised derivatives

Definition 1.8.1 Let I be an open interval of R, and let u ∈ L1
loc(I). We shall say that u

admits a generalised derivative if there exists f ∈ L1
loc(I) such that, in the sense of distributions

in I,
T ′u = Tf .

The element f ∈ L1
loc(I) is then unique, it is called the generalised derivative of u, and is denoted

by f = u′.

Those elements u are said to belong to the space W 1,1
loc (R), the (local) first Sobolev space based on

L1.

The uniqueness of f immediately follows from Proposition 1.3.5. The notation f = u′ is precisely fitted
to satisfy a generalised integration by parts formula, which is nothing but a reformulation of T ′u = Tf ,

∀φ ∈ C∞0 (I) ,

∫
I

u(x)φ′(x) dx = –

∫
I

u′(x)φ(x) dx .

From Corollary 1.4.9, we infer the following useful statement.

Proposition 1.8.2 Assume u ∈ L1
loc(I) admits a generalised derivative u′ ∈ L1

loc(I). Let x0 ∈ I.
Then there exists c ∈ C such that

u(x) =

∫ x

x0

u′(t) dt+ c a.e.

In particular, u admits as reprensentative a continuous function.

Notice that, as a consequence of the Proposition 1.8.2, if the generalised derivative u′ of u turns out
to be a continuous function, then u is a C1 function, and u′ is merely its derivative in the usual sense.

Distributions and PDEs, Fall 2022 Stéphane Nonnenmacher



CHAPTER 1. DISTRIBUTIONS IN ONE SPACE DIMENSION 47

1.8.2 The Sobolev space H1(I).

We now introduce the more useful Sobolev space based on L2, which one simply calls “Sobolev space”.

Definition 1.8.3 Let I be an open interval of R. We denote by H1(I) the subspace formed by
the u ∈ L2(I) which admit a generalised derivative u′ ∈ L2(I).

Notice that, since L2(I) ⊂ L1
loc(I) by Cauchy-Schwarz, we also have H1(I) ⊂ W 1,1

loc (I).

One huge advantage of the Sobolev spaceH1(I) is that we can naturally equip it with an inner product:

(1.8.10) (u, v)H1
def
=

∫
I

u′(x)v′(x) dx+

∫
I

u(x)v(x) dx , u ∈ H1(I) , v ∈ H1(I) ,

and the derived norm:

(1.8.11) ∥u∥H1 =
(
∥u′∥2L2 + ∥u′∥2L2

)1/2
.

The following proposition shows how the notion of convergence in D′(I) is useful in this context.

Proposition 1.8.4 Endowed with the inner product (1.8.10), the space H1(I) is a Hilbert space.

Proof.— Let (uj) be a Cauchy sequence in H1(I) for the norm (1.8.11). This precisely means that
(uj) and (u′j) are Cauchy sequences in L2(I). Since L2(I) is a Hilbert space, there exist u, v in L2(I)
such that

uj → u , u′j → v in L2(I) .

Since the convergence in L2(I) implies the convergence on L1(]a, b[) for every segment [a, b] ⊂ I,
we infer that

Tuj → Tu and Tu′j → Tv in D ′(I) .

But, by definition of a generalised derivative, and using the continuity of derivation for the convergence
in D ′(I),

Tu′j = T ′uj → T ′u .

This implies the identity T ′u = Tv, in other words u admits v as a generalised derivative, u′ = v ∈
L2(I), which means that u ∈ H1(I) and

uj → u , u′j → u′ in L2(I) .

This precisely means that uj tends to u in H1(I). Hence H1(I) is a complete normed vector space.
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1.8.3 First Sobolev space on a bounded interval

In this section, I =]a, b[, for a, b ∈ R. In this case, we get more informations from Proposition 1.8.2 .

Proposition 1.8.5 [Sobolev inequality] If u ∈ H1(]a, b[), then u admits as representative a
continuous function on [a, b], and we have the Sobolev inequality,

∥u∥L∞(]a,b[) ≤ C∥u∥H1(]a,b[) ,

where C is a constant depending only on the length (b− a) of the interval.

This Sobolev inequality achieves an unexpected goal: a pointwise control of the function u, in terms
of “averaged” norms for u and u′. We will often replace the equivalence class u ∈ L2 by the specific
continuous representative u ∈ C0. Proof.— We start from the identity in Proposition 1.8.2: fixing
some x0 ∈]a, b[, there exists c ∈ C such that

∀x ∈ [a, b], u(x) =

∫ x

x0

u′(t) dt+ c (a.e.)

Since L2(]a, b[) ⊂ L1(]a, b[), we infer that the right hand side has a limit when x tends to a and when
x tends to b. Hence u is almost everywhere equal to a continuous function on [a, b]. Furthermore, by
the Cauchy-Schwarz inequality, for any x, y ∈ [a, b],

∀x, y ∈ [a, b],

∣∣∣∣∫ x

y

u′(t) dt

∣∣∣∣ ≤ √b− a∥u′∥L2(]a,b[) .

Consider the average of u,

mu =
1

b− a

∫ b

a

u(y) dy .

By the Cauchy–Schwarz inequality,

|mu| ≤
1√
b− a

∥u∥L2(]a,b[) .

On the other hand,

u(x)−mu =
1

b− a

∫ b

a

(u(x)− u(y)) dy =
1

b− a

∫ b

a

(∫ x

y

u′(t) dt

)
dy .

Therefore

|u(x)−mu| ≤
1

b− a

∫ b

a

∣∣∣∣∫ x

y

u′(t) dt

∣∣∣∣ dy ≤ √b− a∥u′∥L2(]a,b[) .

Summing up, we obtain

∥u∥L∞ ≤ ∥u−mu∥L∞ + |mu| ≤ (b− a)−1/2∥u∥L2 + (b− a)1/2∥u′∥L2 ≤ C∥u∥H1 .
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Corollary 1.8.6 For any point x0 ∈ [a, b], the linear form u ∈ H1(]a, b[) 7→ u(x0) ∈ C is
continuous (here u is implicitly the distinguished continuous representative).

Our next step is the introduction of an important closed subspace of H1(]a, b[).

Definition 1.8.7 We denote by H1
0 (]a, b[) the closure of C∞0 (]a, b[) in H1(I).

Corollary 1.8.6 shows that u 7→ u(a) and u 7→ u(b) are continuous linear forms on H1(]a, b[). A
remarkable fact is that H1

0 (]a, b[) can be characterised by these linear forms.

Proposition 1.8.8 Given u ∈ H1(]a, b[), u belongs to H1
0 (]a, b[) if and only if u(a) = u(b) = 0.

Proof.— Since the elements ofH1(]a, b[) are continuous functions on [a, b], and the H1 norm controls
the L∞ norm on [a, b] from Proposition 1.8.5, for any u ∈ H1

0 (]a, b[) and any sequence (φn) in
D(]a, b[) such that ∥φn − u∥H1 → 0, we also have

∥φn − u∥L∞ → 0 ,

namely the test functions converge uniformly towards u. As a result, since all the φn vanish on the
boundaries of ]a, b[, so does their uniform limit u: u(a) = u(b) = 0.

b−2εεa+

ε
χ u

χ
ε

a

x

b

u

ε εb−a+2

Figure 1.6: Truncation of u ∈ H1
0 (]a, b[) near the boundaries of the interval.

Conversely, consider u ∈ H1(]a, b[) such that u(a) = u(b) = 0. Our first task will be to approximate
it by functions uε ∈ H1 which vanish near the boundaries of the interval. For this, take ε > 0 small
enough, and consider a cutoff function function χε ∈ C∞0 (I, [0, 1]), supported in [a + ε, b − ε], and
such that χε = 1 on [a+ 2ε, b− 2ε], with its derivative satisfying the estimate

∥χ′ε∥L∞ = O
(
1

ε

)
when ε→ 0 .
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An example of such a family of functions is

χε(x) = χ

(
x− a
ε

)
χ

(
b− x
ε

)
,

where χ ∈ C∞(R) is a “smooth step function”, which satisfies

χ(t) =

{
0 if t ≤ 1

1 if t ≥ 2.

We then claim that uε
def
= χεu→ u in H1(]a, b[) as ε→ 0.

Indeed, by dominated convergence χεu→ u in L2(]a, b[). Besides, by Leibniz we have

(χεu)
′ = χεu

′ + χ′εu .

Since the first term converges to u′ in L2, we are therefore reduced to proving that χ′εu → 0 in
L2(]a, b[). This is not completely obvious, since χ′ε can take large values; however, it only takes
nonzero values in small intervals near a and b. We have

∥χ′εu∥L2 ≤ O
(
1

ε

)(∫ a+2ε

a

|u(x)|2 dx+
∫ b

b−2ε
|u(x)|2 dx

) 1
2

.

Let us estimate the values of u(x) in the small intervals near a and b. For each a ≤ x ≤ a+ 2ε, the
explicit expression of u(x) gives the bound

|u(x)| =
∣∣∣∣u(a) + ∫ x

a

u′(t) dt

∣∣∣∣ = ∣∣∣∣∫ x

a

u′(t) dt

∣∣∣∣
C−S
≤
√
2ε

(∫ a+2ε

a

|u′(x)|2 dx
) 1

2

=
√
ε o(1)ε→0 ,

and the same estimate holds for x ∈ [b − 2ε, b]. Here we used the fact that ∥u′∥L2 is finite, so the
integrals of |u′|2 in smaller and smaller intervals decreases to zero. Integrating |u(x)|2 over these
intervals, we get: ∫ a+2ε

a

|u(x)|2 dx = o(ε2) when ε→ 0,

and the same estimate for the integral on [b− 2ε, b]. Putting all those estimates together, we find:

∥χ′εu∥L2 ≤ O(1/ε) (o(ε2)
)1/2

= o(1) when ε→ 0 .

We have proved that u can be approximated in H1 by functions uε = χεu ∈ H1(]a, b[) supported in
[a+2ε, b− 2ε]. Applying the following Lemma, each of these uε can be approached, in the H1 norm,
by test functions uε,η. Playing with the two limits ε, η → 0, we therefore approach u by test functions.
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Lemma 1.8.9 Any compactly supported element of H1(]a, b[) can be approximated (w.r.t. the
H1 norm) by a sequence in D(]a, b[).

Proof.— The statement relies on an explicit regularisation argument. Let v ∈ H1(]a, b[) such that
supp(v) ⊂ [α, β] ⊂]a, b[. We extend v by 0, obtaining an element of H1(R) supported in [α, β]. Let
ρ ∈ C∞0 (R) of integral 1, and rescale it on a small scale η > 0:

ρη(x) =
1

η
ρ

(
x

η

)
.

Then ρη ∗ v ∈ C∞0 (R), is compactly supported in ]a, b[ if η is small enough, and ρη ∗ v → v in L2 as
η → 0. Furthermore, by the Leibniz rule,

(ρη ∗ v)′(x) =
∫
R
ρ′η(x− y) v(y) dy =

∫
R
− d

dy
[ρη(x− y)] v(y) dy =

∫
R
ρη(x− y) v′(y) dy ,

by definition of the generalised derivative. In other words,

(ρη ∗ v)′ = ρη ∗ v′

and therefore (ρη ∗ v)′ → v′ in L2 as η → 0. Summing up, we have proved that ρη ∗ v → v in H1.

Proposition 1.8.8 implies an important inequality for elements of H1
0 (]a, b[).

Proposition 1.8.10 (The Poincaré inequality) For every u ∈ H1(]a, b[) such that u(a) = 0 or
u(b) = 0, we have

(1.8.12) ∥u∥L2 ≤ (b− a)∥u′∥L2 .

In particular,

(u, v)H1
0
=

∫ b

a

u′(x) v′(x) dx

defines an inner product on H1
0 (]a, b[), which is equivalent to the H1 inner product.

Proof.— Again we refer to Proposition 1.8.2,

u(x) =

∫ x

x0

u′(t) dt+ c .

Assume for instance u(a) = 0. Then making x tend to a, we infer c =
∫ x0
a
u′(t) dt, and consequently

u(x) =

∫ x

a

u′(t) dt .
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The inequality (1.8.12) then follows from the Cauchy-Schwarz inequality:

|u(x)|2 ≤
∫ x

a

(x− a) |u′(t)|2 dt =⇒
∫
∥u∥2L2 ≤

(b− a)2

2
∥u′∥2L2 .

In view of Proposition 1.8.8, the inequality (1.8.12) applies in particular to elements of H1
0 (]a, b[), so

that

∥u∥2L2 ≤
(b− a)2

2
(u, u)H1

0
.

Since (u, u)H1 = (u, u)H1
0
+ ∥u∥2L2, we conclude that the scalar products (u, v)H1 and (u, v)H1

0
on

H1
0 are equivalent.

1.8.4 Application: solving the Dirichlet problem in dimension 1

The Hilbert structure onH1
0 leads to a very efficient strategy for solving second order linear differential

equations with homogeneous boundary conditions.

Theorem 1.8.11 Let q ∈ L1(]a, b[) such that q ≥ 0, and let f ∈ L1(]a, b[). There exists a
unique u ∈ H1(]a, b[) such that u′ admits a generalised derivative u′′ satisfying

−u′′ + qu = f , u(a) = u(b) = 0 .

Proof.— Notice that qu is well defined in L1 since q ∈ L1 and u ∈ L∞. Decomposing f into its real
and imaginary parts, we may assume f is real valued, so that u is to be real valued as well. So we
shall work in the real Hilbert space made of real valued elements of H1. This simple reduction allows
to avoid the complex conjugation in the inner product, so that the connection with the distribution
bracket is clearer.

In view of Proposition 1.8.8, the above problem is equivalent to

−T ′u′ + Tqu = Tf , u ∈ H1
0 (]a, b[) ,

or, for every φ ∈ C∞0 (]a, b[),∫ b

a

u′φ′ dx+

∫ b

a

quφ dx =

∫ b

a

fφ dx , u ∈ H1
0 (]a, b[) .

Since the left hand side and the right hand side of the above identity are continuous linear forms of φ
for the H1 norm, and since H1

0 is the closure of C∞0 for this norm, those two linear forms on D(]a, b[)
can be continuously extended to test functions v ∈ H1

0 (]a, b[). Our problem is thus equivalent to
finding u ∈ H1

0 (]a, b[) such that

∀v ∈ H1
0 (]a, b[) ,

∫ b

a

u′v′ dx+

∫ b

a

quv dx =

∫ b

a

fv dx .
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Now observe that the left hand side is an inner product on the real space H1
0 , which is controlled by

the H1 inner product: Indeed,

(u, u)H1
0
≤
∫ b

a

(u′)2 dx+

∫ b

a

qu2 dx ≤
∫ b

a

(u′)2 dx+

(∫ b

a

q dx

)
∥u∥2L∞

Prop.1.8.5

≤ max

(
1, C2

(∫ b

a

q dx

))
(u, u)H1

and Prop. 1.8.12 shows that the H1 inner product is controlled by the H1
0 product. Hence, the norm

induced on H1
0 by the inner product

(u, v)q =

∫ b

a

u′v′ dx+

∫ b

a

quv dx

is equivalent with the standard H1
0 norm on that Hilbert space. Since, in view of Proposition 1.8.5,

the linear form

Lf : v 7→
∫ b

a

fv dx

is continuous on this Hilbert space, the Riesz representation theorem allows to solve the equation
(u, ·)q = Lf by a unique u ∈ H1

0 .

Remark 1.8.12 Since u′′ belongs to L1(]a, b[), we infer that u′ extends as a continuous function on
[a, b]. Furthermore, if q, f are continuous functions on [a, b], then u′′ is continuous on [a, b], which
means that u is C2 on [a, b], so that the differential equation is satisfied in the usual sense.

1.9 Further properties of distributions and generalized deriva-
tives

1.9.1 Characterisation of Lipschitz functions

Definition 1.9.1 Let k be a positive number and I be an open interval. A function u : I → C
is k–Lipschitz if, for every x, y ∈ I,

|u(x)− u(y)| ≤ k|x− y| .

A typical example of a k–Lipschitz function is a C1 function u such ∥u′∥∞ ≤ k. Of course, there are
Lipschitz functions which are not differentiable everywhere, like function x 7→ |x|. However, a theorem
by Rademacher states that a Lipschitz function on R is differentiable Lebesgue-almost everywhere.

The following result give a complete description of k–Lipschitz functions.
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Theorem 1.9.2 A function u : R → C is k–Lipschitz if and only if there exists f ∈ L∞(R),
with ∥f∥L∞ ≤ k, such that

(1.9.13) ∀x ∈ R , u(x) = u(0) +

∫ x

0

f(t) dt .

Remark 1.9.3 A similar result holds on any open interval I, from an adaptation of the proof below
on R.

Proof.— If ∀x ∈ R, u(x) = u(0) +
∫ x
0
f(t) dt , we have

|u(x)− u(y)| =
∣∣∣∣∫ x

y

f(t) dt

∣∣∣∣ ≤ ∥f∥∞|x− y| .
Conversely, let u be a k–Lipschitz function. We are going to prove that u admits a generalised deriva-
tive f with ∥f∥∞ ≤ k. According to Proposition 1.8.2, this will imply property (1.9.13).
As a first step, we are going to prove the following inequality,

(1.9.14) ∀φ ∈ D(I) , |⟨T ′u, φ⟩| ≤ k∥φ∥L1 .

Indeed, we have,

⟨T ′u, φ⟩ = −
∫
R
u(x)φ′(x) dx = −

∫
R
u(x) lim

h→0

φ(x+ h)− φ(x)
h

dx

= − lim
h→0

∫
R
u(x)

φ(x+ h)− φ(x)
h

dx ,

by using either dominated convergence or uniform convergence. Next we decompose the integral as
follows, ∫

R
u(x)

φ(x+ h)− φ(x)
h

dx =
1

h

(∫
R
u(x)φ(x+ h) dx−

∫
R
u(x)φ(x) dx

)
=

1

h

(∫
R
u(y − h)φ(y) dy −

∫
R
u(x)φ(x) dx

)
=

∫
R

u(y − h)− u(y)
h

φ(y) dy ,

and, by the Lipschitz property of u, the modulus of the latter expression is bounded by k∥φ∥L1.
This leads to inequality (1.9.14). At this stage we appeal to the following useful lemma of functional
analysis.
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Lemma 1.9.4 (Continuous extension of a linear form) Let E be a normed vector space, and
let D be a dense vector subspace of E . Let L : D → C be a linear form, which is continuous for
the norm on E . Then L admits a unique continuation L̃ as a continuous linear form on E , and
∥L̃∥ = ∥L∥ .

Applying Lemma 1.9.4 to E = L1(R), D = D(R) and L = T ′u, we infer that T ′u extends to a contin-
uous linear form on L1(R), of norm at most k. Since the dual of L1(R) is identified (isometrically) to
L∞(R), there exists f ∈ L∞(R) such that ∥f∥L∞ ≤ k and L = Tf . As a result,

∀φ ∈ D(I) , ⟨T ′u, φ⟩ =
∫
R
f(x)φ(x) dx .

This precisely means that f is the generalised derivative of u, whence (1.9.13).

1.9.2 Differentiation and integration under the bracket

This paragraph provides two very useful rules of computation, namely the differentiation and the
integration under the bracket, when our test functions smoothly depend on an auxiliary parameter
z. These properties will be crucial when dealing with convolution of distributions — see the next
paragraph.

Proposition 1.9.5 (Differentiation under the bracket) Let I, J be open intervals, ψ : I×J →
C be a C∞ function such that there exists a segment [a, b] ⊂ I for which

∀z ∈ J , suppψ(·, z) ⊂ [a, b] ,

where we have set ψ(·, z) : x ∈ I → ψ(x, z) ∈ C . Consider a distribution T ∈ D ′(I), and define

g(z)
def
= ⟨T, ψ(·, z)⟩ , z ∈ J .

Then g ∈ C∞(J), and
∀z ∈ J , g′(z) =

⟨
T,
∂ψ

∂z
(·, z)

⟩
.

It is important to realize that the distribution T only acts on the variable x ∈ I, not on the z variable;
the latter just parametrizes a family of test functions {ψ(·, z) ; z ∈ J}.

Proof.— Let us first prove that g is differentiable on J . We calculate, for z ∈ J and h ̸= 0 small
enough,

g(z + h)− g(z)
h

=

⟨
T,
ψ(., z + h)− ψ(., z)

h

⟩
.
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Since ψ ∈ C∞(I × J), we observe the pointwise convergence

∀x ∈ I , ψ(x, z + h)− ψ(x, z)
h

−→
h→0

∂ψ

∂z
(x, z) .

We claim that the convergence actually holds in the sense of D(I). Indeed, we already know that
the left hand side is a smooth function of x which is supported in [a, b]. We claim that it converges
uniformly on I to the right hand side. Indeed,

ψ(x, z + h)− ψ(x, z)
h

=

∫ 1

0

∂ψ

∂z
(x, z + th) dt .

Fix ε0 > 0 such that |h| ≤ ε0. Then the continuous function ∂ψ
∂z

is uniformly continuous on the compact
subset [a, b]× [z − ε0, z + ε0]. Consequently,

sup
x∈[a,b]

∣∣∣∣∫ 1

0

∂ψ

∂z
(x, z + th) dt− ∂ψ

∂z
(x, z)

∣∣∣∣ −→h→0
0 .

The same argument holds for higher derivative in x:

∂kxψ(x, z + h)− ∂kxψ(x, z)
h

−→
h→0

∂z∂
k
xψ(x, z) ,

uniformly for x ∈ I. We have thus proved that ψ(·,z+h)−ψ(·,z)
h

converges in D(I) towards ∂zψ(·, z).

Using the continuity of T on D(I), we infer

g(z + h)− g(z)
h

=

⟨
T,
ψ(·, z + h)− ψ(·, z)

h

⟩
−→
h→0

⟨
T,
∂ψ

∂z
(·, z)

⟩
.

This shows that g is differentiable, with the claimed formula for g′(z). Finally, by applying this result
iteratively, one easily proves by induction on n that g is n times derivable, with

g(n)(z) =

⟨
T,
∂nψ

∂zn
(·, z)

⟩
.

Let us now turn to the integration over an auxiliary parameter.

Proposition 1.9.6 (Integration under the bracket) Let I, J be open intervals, ψ : I × J → C
be a C∞ function such that there exists segments [a, b] ⊂ I and [c, d] ⊂ J such that

suppψ ⊂ [a, b]× [c, d] .

Then ∫
J

⟨T, ψ(·, z)⟩ dz =
⟨
T,

∫
J

ψ(·, z) dz
⟩
.
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Figure 1.7: Supports of the parameter dependent test function ψ(·, x) for differentiation and integra-
tion under the bracket.

Proof.— Consider the function

ψ̃(x, z) =

∫
t∈J,t<z

ψ(x, t) dt .

Then ψ̃ satisfies the assumptions of Proposition 1.9.5, and

∂ψ̃

∂z
(x, z) = ψ(x, z) .

Applying this proposition leads to

d

dz
⟨T, ψ̃(·, z)⟩ = ⟨T, ψ(·, z)⟩ .

We integrate both sides on J . This gives

⟨T, ψ̃(·, d)⟩ − ⟨T, ψ̃(·, c)⟩ =
∫
J

⟨T, ψ(·, z)⟩ dz .

In view of the assumptions on the support of ψ, we have ψ̃(·, d) =
∫
J
ψ(·, z) dz, ψ̃(·, c) = 0, so that

⟨T, ψ̃(·, d)⟩ =
⟨
T,

∫
J

ψ(·, z) dz
⟩
, ⟨T, ψ̃(·, c)⟩ = 0 .

1.9.3 Convolution and regularisation

In this section, where we always take I = R, we generalise the convolution of an L1 function in with
a test function, described for instance in Lemma 2.3.18, to the case of an arbitrary distribution. These
convolutions will allow us to regularize arbitrary distributions.
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We recall the case of a function f ∈ L1
loc(R) and a test function φ ∈ D(R). Their convolution is

defined by the following smooth function:

∀x ∈ I, f ∗ φ(x) =
∫
R
f(y)φ(x− y) dy .

Now, the right hand side can be written as the distributional bracket f ∗φ(x) = ⟨Tf , φ(x−·)⟩, where
φ(x− ·) denotes the test function y 7→ φ(x− y).

This expression of f ∗ φ calls for a generalization to other types of distributions.

Definition 1.9.7 Let T ∈ D ′(R) and φ ∈ D(R). For every x ∈ R. Using the above notation,
we define the convolution of T with φ by the following function:

∀x ∈ R, T ∗ φ(x) = ⟨T, φ(x− ·)⟩ .

Let us study some properties of this convolution. What is the regularity of T ∗ φ?

Proposition 1.9.8 For every (T, φ) ∈ D ′(R)×D(R), T ∗ φ ∈ C∞(R), and

(T ∗ φ)′ = T ∗ φ′ = T ′ ∗ φ .

supp

α−b −b

−a

β

β−a

x

y

ψ

α

Figure 1.8: The function ψ(y, x) used in the proof of Prop. 1.9.8.

Proof.— It is enough to prove that T∗φ is smooth on every finite open interval ]α, β[. If suppφ ⊂ [a, b]
and x ∈]α, β[, we have suppφ(x− ·) ⊂ [α− b, β − a], so that the assumptions of Proposition 1.9.5
are fulfilled with I = R ,J =]α, β[ and ψ(y, x) = φ(x − y) (notice that, here, x is the auxiliary
parameter, while y is the variable on which T is acting).

Applying Proposition 1.9.5, we find that T ∗ φ ∈ C∞(R), and

d

dx
(T ∗ φ)(x) = ⟨T, ∂xφ(x− ·)⟩ = ⟨T, φ′(x− ·)⟩ = T ∗ φ′(x) .
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Furthermore, we have
φ′(x− y) = −∂yφ(x− y) ,

so that
(T ∗ φ)′(x) = ⟨T,−∂yφ(x− ·)⟩ = ⟨T ′, φ(x− ·)⟩ = T ′ ∗ φ(x) .

The convolution by a test function thus transforms T into a smooth function T ∗ φ ∈ C∞(R). By
playing with the test function, it gives us a simple way to approximate the original distribution by a
sequence of smooth functions, in other words, to regularise this distribution.

This regularisation works in the same way as in the case of L1 functions (Lemma 2.3.18). Let ρ ∈
C∞0 (R) with ∫

R
ρ(x) dx = 1 .

For every ε > 0, we set the rescaled function

ρε(x) =
1

ε
ρ
(x
ε

)
.

It is well known that, if φ ∈ C∞0 (R),

ρε ∗ φ −→
ε→0

φ in D(R).

Considering our distribution T ∈ D ′(R), we set the function fε = T ∗ ρε ∈ C∞(R).

Proposition 1.9.9 For every T ∈ D ′(R),

Tfε −→
ε→0

T .

Proof.— We have to prove that

(1.9.15) ∀φ ∈ D(R) ,
∫
R
fε(x)φ(x) dx −→

ε→0
⟨T, φ⟩ .

As usual, the strategy is to “transfer the computations to the test function side”. We notice that∫
R
fε(x)φ(x) dx =

∫
R
⟨T, ρε(x− .)⟩φ(x) dx =

∫
R
⟨T, ρε(x− .)φ(x)⟩ dx .

We write the test function on the right as a parameter-dependent function

ψ(y, x)
def
= ρε(x− y)φ(x) ,

where y is the variable on which T is acting, while x is the auxiliary parameter. This function ψ
satisfies the assumption of Proposition 1.9.6 on R×R. Indeed, if supp ρ ⊂ [−C,C], suppφ ⊂ [a, b],
then

suppψ ⊂ [a− εC, b+ εC]× [a, b] , ψ(y, x) = 0 .
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Applying Proposition 1.9.6, we obtain∫
R
⟨T, ρε(x− .)φ(x)⟩ dx =

⟨
T,

∫
R
ρε(x− .)φ(x) dx

⟩
= ⟨T, ρ̃ε ∗ φ⟩ ,

where ρ̃(z) = ρ(−z). We have thus managed to transfer the convolution from the distribution side,
to the test function side. Since ρ̃ satisfies the same assumptions as ρ, we have ρ̃ε ∗φ −→

ε→0
φ in D(R),

and consequently ∫
R
fε(x)φ(x) dx −→

ε→0
⟨T, φ⟩ .

1.9.4 Positive distributions and increasing functions

In this section we define, and study the interesting case of positive distributions. Quite unexpectedly,
the positivity assumption constrains quite much the structure and singularities of those distributions.

Definition 1.9.10 A distribution T on I is said positive (we note T ≥ 0) if, for every φ ∈ D(I)
valued in R+, we have ⟨T, φ⟩ ∈ R+.

For instance, it is easy to check that, if f ∈ L1
loc(I), Tf ≥ 0 if and only f ≥ 0 a.e. Another example

is T = cδx0 with x0 ∈ I and c ≥ 0. On the other hand, whatever the value of c ̸= 0 is, it is clear that
cδ′x0 cannot be positive. In fact, we have the following general result.

Proposition 1.9.11 If T is a positive distribution, then T has order 0, namely

∀[a, b] ⊂ I , ∃C > 0 , ∀φ ∈ D(I), suppφ ⊂ [a, b]⇒ |⟨T, φ⟩| ≤ C∥φ∥∞ .

Proof.— Let [a, b] ⊂ I and χ ∈ D(I) be a plateau function on [a, b]. Let φ ∈ D(I) be real valued
and such that suppφ ⊂ [a, b]. Then φ is bounded on both sides by the following functions:

−χ∥φ∥∞ ≤ φ ≤ χ∥φ∥∞ .

The positivity of T implies that its action on real valued functions gives a real value, and preserves
the ordering between different test functions. In our case, ⟨T, φ⟩ ∈ R and

−⟨T, χ⟩∥φ∥∞ ≤ ⟨T, φ⟩ ≤ ⟨T, χ⟩∥φ∥∞ ,

which implies
|⟨T, φ⟩| ≤ ⟨T, χ⟩∥φ∥∞ .
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If φ is complex valued with suppφ ⊂ [a, b], we decompose

φ = Re(φ) + iIm(φ) ,

and we conclude that
|⟨T, φ⟩| ≤ 2⟨T, χ⟩∥φ∥∞ .

The distribution T is thus of order 0.

Remark 1.9.12 Since any compactly supported (positive) continuous function on I can be ap-
proximated uniformly by a sequence of (positive) test functions supported in a fixed segment of I,
the above proposition implies that any positive distribution T can be continuously extended into a
positive linear form on compactly supported continuous functions. Hence, according to the Riesz
representation theorem, there exists a positive Borel measure µ on I, finite on segments (i.e., locally
finite), such that

∀φ ∈ D(I) , ⟨T, φ⟩ =
∫
I

φ(x) dµ(x) .

Let us come to the main result of this paragraph, which characterises increasing functions. For sim-
plicity, we state and prove this result on R, but a similar result holds on any open interval. Recall that
an increasing function on R is a function f : R→ R such that

∀x ≥ y , f(x) ≥ f(y) .

(sometimes such functions are called nondecreasing functions).

Theorem 1.9.13 If f : R→ R is an increasing function, then T ′f ≥ 0 . Conversely, if T ∈ D ′(R)
is such that T ′ ≥ 0 and ⟨T, φ⟩ ∈ R for every real valued test function φ, then there exists an
increasing function f on R such that T = Tf .

Proof.— Let f : R→ R be an increasing function. Note that f is bounded on every segment, hence it
is locally integrable, and it makes sense to consider Tf . Let φ ∈ D(R), valued in R+. Let us calculate

⟨T ′f , φ⟩ = −
∫
R
f(x)φ′(x) dx = −

∫
R
f(x) lim

h→0

φ(x+ h)− φ(x)
h

dx

= − lim
h→0

∫
R
f(x)

φ(x+ h)− φ(x)
h

dx

= − lim
h→0

∫
R

f(y − h)− f(y)
h

φ(y) dy ,

by the same arguments as in subsection 1.9.1. The monotonicity of f implies ⟨T ′f , φ⟩ ≥ 0, hence T ′f
is a positive distribution.
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Conversely, let T ∈ D ′(R) such that T ′ ≥ 0. Choose ρ ∈ D(R), supported in R+, satisfying

ρ ≥ 0 ,

∫
R
ρ(x) dx = 1.

For ε ∈]0, 1[ we rescale ρ into ρε like in (1.3.3) and recall that, from Proposition 1.9.9, the smooth
function fε = T ∗ρε satisfies Tfε → T in D ′(R) when ε→ 0. Notice moreover that, since T takes real
values on real valued test functions, fε is real valued. Our strategy is to prove that, for an appropriate
choice of ρ, fε is an increasing function and pointwise converges to a function f , with local dominated
convergence. This will imply that fe → f in L1

loc, hence Tfε → Tf , and finally T = Tf .

So let us first prove that fε is increasing. We know that

f ′ε = T ′ ∗ ρε

which is ≥ 0 because T ′ ≥ 0 and ρε ≥ 0. Therefore fε is an increasing function on R.
We then claim that for each x, fε(x) is decreasing w.r.t. ε, equivalently, that fε(x) increases as
ε ↘ 0. In fact, applying Proposition 1.9.5 of derivation under the bracket, and considering fε as
depending of the parameter ε ∈]0, 1[, we see that fε(x) is a C∞ function of ε, and that

d

dε
fε(x) = ⟨T,

∂

∂ε
ρε(x− ·)⟩ .

Observe that

∂

∂ε
ρε(x− y) =

∂

∂ε

[
1

ε
ρ

(
x− y
ε

)]
= − 1

ε2

[
ρ

(
x− y
ε

)
+
x− y
ε

ρ′
(
x− y
ε

)]
=

1

ε2
∂

∂y

[
(x− y)ρ

(
x− y
ε

)]
Consequently,

d

dε
fε(x) = −

1

ε

⟨
T ′,

(x− ·)
ε

ρ

(
x− ·
ε

)⟩
≤ 0 ,

because T ′ ≥ 0 and zρ(z) ≥ 0 in view of the support of ρ.
Now we claim that, as ε ↘ 0, for every x ∈ R, fε(x) is bounded from above. Indeed, consider
ψ ∈ D(I), valued in R+, supported in [x,+∞[, and such that

∫
R ψ(y) dy = 1. Then, because fε(y)

is an increasing function of y,

fε(x) = fε(x)

∫
R
ψ(y) dy ≤

∫
R
fε(y)ψ(y) dy −→

ε→0
⟨T, ψ⟩

because of Proposition 1.9.9. Since fε(x) is increasing as ε decreases to 0, we conclude that

fε(x) −→
ε→0

f(x)

where f is a function on R. Furthermore, if x ∈ [a, b] ⊂ R, we have

f(x) ≥ fε(x) ≥ fε(a) −→
ε→0

f(a) ,
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so the function f is increasing on R, and thus automatically in L1
loc. From this pointwise convergence,

we can apply the dominated convergence theorem and conclude that, for every φ ∈ D(R),∫
R
fε(x)φ(x) dx −→

ε→0

∫
R
f(x)φ(x) dx .

Summing up, applying again Proposition 1.9.9, we have proved that

⟨T, φ⟩ =
∫
R
f(x)φ(x) dx ,

hence T = Tf .

Remark 1.9.14 The first point of Theorem 1.9.13 says that, if f is increasing, T ′f is a positive
distribution, hence is given by a positive Borel measure, locally finite. This measure is called
the Stieltjes measure associated to f , and the formula for the integral of a compactly supported
continuous function with respect to this measure is an extension of the definition of the usual integral
of a continuous function by using Riemann sums. More precisely, if suppφ ⊂ [a, b],

⟨T ′f , φ⟩ = lim
N→∞

N−1∑
j=0

φ

(
a+ j

b− a
N

)[
f

(
a+ (j + 1)

b− a
N

)
− f

(
a+ j

b− a
N

)]
.

For instance, if f : R→ R is the cumulative distribution function of a random variable on R, then
T ′f is nothing but the law of this random variable.

1.9.5 The structure of distributions

In this section we show that distributions of finite order on R can be represented as the derivatives of
functions.

Recall that, by Proposition 1.4.10, every distribution T admits a primitive distribution S. Furthermore,
as can be observed from the proof of 1.4.10, if T is real, then one can choose S to be real as well.
Now, if T is positive, then S satisfies the assumption of Theorem 1.9.13, so there exists an increasing
function f such that Tf = S, hence T = T ′f . In other words, any positive distribution is the derivative
of Tf , where f is an increasing (hence L∞loc) function. The next theorem shows that this property
extends to any distribution of order 0.

Theorem 1.9.15 Any distribution T of order 0 on R is of the form T = T ′f , where f ∈ L∞loc(R).

Proof.— Let us recall the proof of Proposition 1.4.10, namely the construction of a primitive to a
distribution S. Fix a function χ ∈ D(R) supported in ]− 1, 1[ and satisfying

∫
R χ(y) dy = 1. We use
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this auxiliary function to “substract the mass” of test functions, as in the proof of Prop. 1.4.10. For
every ψ ∈ D(R), we set

P (ψ)(x) =

∫ x

−∞

[
ψ(t)− χ(t)

∫
R
ψ(y) dy

]
dt .

Since ψ − χ
∫
ψ is massless, P (ψ) ∈ D(R) and, if supp(ψ) ⊂] − n, n[ for some n ≥ 1, then

supp(P (ψ)) ⊂]− n, n[ as well. Since P (φ′) = φ, we infer that the distribution S defined by

⟨S, ψ⟩ = −⟨T, P (ψ)⟩

satisfies S ′ = T .

Now, let us use the assumptioin that our distribution T is of order 0: for every n ≥ 1, there exists
Cn > 0 such that

∀φ ∈ D(]− n, n[) , |⟨T, φ⟩| ≤ Cn∥φ∥∞ .

Consequently, if ψ ∈ D(]− n, n[),

|⟨S, ψ⟩| = |⟨T, P (ψ)⟩| ≤ Cn∥P (ψ)∥∞ ≤ CnB∥ψ∥L1 .

Arguing as in proof of Theorem 1.9.2, we infer that the linear form S|]−n,n[ acting on D(]− n, n[) can
be continuously extended to functions φ ∈ L1(]− n, n[); since the dual of L1 is L∞, this linear form
is represented by a function fn ∈ L∞(]− n, n[):

S|]−n,n[ = Tfn .

Therefore we have constructed a sequence (fn)n≥1 of functions fn ∈ L∞(]− n, n[) such that

Tfn+1 |]−n,n[ = (S|]−n−1,n+1[)|]−n,n[ = S|]−n,n[ = Tfn .

This implies that fn+1|]−n,n[ = fn. As a result, there exists f ∈ L∞loc(R) such that

∀n ≥ 1 , f|]−n,n[ = fn .

Since
S|]−n,n[ = Tf |]−n,n[ for every n ≥ 1 ,

we conclude that S = Tf , and T = S ′ = T ′f .

Let us now consider the case of distributions of finite order. We recall (see Def. 1.3.2) that for m ∈ N,
T ∈ D ′(I) is of order ≤ m if

∀[a, b] ⊂ I , ∃C > 0 , ∀φ ∈ D(I) , supp(φ) ⊂ [a, b] =⇒ |⟨T, φ⟩| ≤ C

m∑
k=0

∥φ(k)∥∞ .
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Theorem 1.9.16 (Structure of distributions on R) i) If T ∈ D ′(R) is of order≤ m, there
exists f ∈ L∞loc(R) such that T = T

(m+1)
f .

ii) If T ∈ D ′(R) is arbitrary, there exists a sequence (fn)n≥1 in L∞(R), such that on every
segment of R, fn vanishes for n large enough, and

T =
∞∑
n=1

T
(n)
fn

.

Proof.— The statement i) follows from an induction argument on m, based on Theorem 1.9.15 and
on the following

Lemma 1.9.17 If T ∈ D ′(R) is of order ≤ m with m ≥ 1, there exists S ∈ D ′(R) of order
≤ m− 1 such that S ′ = T . In other words, taking the primitive of a distribution reduces its order
by one.

The proof of this lemma is straightforward, taking into account the formula ⟨S, ψ⟩ = −⟨T, P (ψ)⟩ and
the fact that, for every m ≥ 1 and ψ ∈ D(]− n, n[),

sup
0≤k≤m

∥P (ψ)(k)∥∞ ≤ B∥ψ∥L1 + sup
0≤k≤m−1

∥ψ(k)∥∞ ≤ Bn sup
0≤k≤m−1

∥ψ(k)∥∞ .

Let us prove the statement ii). For every integer j ≥ 1, there exists an integer mj such that
T|]−j−1/2,j+1/2[ is of order ≤ mj. Furthermore, we may impose without loss of generality that mj+1 >
mj.

We are going to construct a sequence (gj)j≥1 of L∞ functions on R such that, for every j ≥ 1,
supp(Tgj) ⊂ [−j,−j + 1] ∪ [j − 1, j], and(

T −
j∑
ℓ=1

T (mℓ+1)
gℓ

)
|]−j,j[

= 0 .

Let us first construct g1. Since T is of order ≤ m1 on ]− 3/2, 3/2[, the statement i) (adapted to an
interval) implies that there exists h1 ∈ L∞loc(]− 3/2, 3/2[) such that

T|]−3/2,3/2[ = T
(m1+1)
h1

.

Then take g1
def
= 1l]−1,1[ h1 ∈ L∞(R); the corresponding distribution satisfies(

T − T (m1+1)
g1

)
|]−1,1[ = 0 , supp(Tg1) ⊂ [−1, 1] , (T − T (m1+1)

g1
)|]−3/2,3/2[ is of order ≤ m1 .
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Assuming g1, . . . , gj are constructed, let us construct gj+1. Since the sequence mj is increasing, the
distribution

T̃j+1
def
=
(
T −

j∑
ℓ=1

T (mℓ+1)
gℓ

)
|]−j−3/2,j+3/2[

is of order≤ mj+1+1, like T|]−j−3/2,j+3/2[, the terms in the sum being of smaller orders. Furthermore,
the restriction of T̃j+1 to ] − j, j[ vanishes. Therefore, using again property i), there exists hj+1 ∈
L∞loc(]− j − 3/2, j + 3/2[) such that

T̃j+1 = T
(mj+1+1)
hj+1

.

Furthermore, the restriction of T
(mj+1+1)
hj+1

to ] − j, j[ is 0: this implies from Corollary 1.4.9 that hj+1

coincides with a polynomial pj+1 on ]− j, j[. We may “correct” hj+1 into

gj+1
def
= 1l|]−j−1,j+1[ (hj+1 − pj+1) .

Then gj+1 ∈ L∞(R), Tgj+1
is supported in [−j − 1,−j] ∪ [j, j + 1], and(

T̃j+1 − T (mj+1+1)
gj+1

)
|]−j−1,j+1[

= 0 .

Coming back to the expression of T̃j+1, we have checked the induction assumption at rank j + 1, so
that the sequence (gj)j≥1 is constructed by induction on j. In view of the properties of the supports
of Tgj , for every j, only the terms of rank ℓ ≤ j of the series

∞∑
ℓ=1

T (mℓ+1)
gℓ

have a nonzero restriction to ]−j, j[. This proves that this series is convergent in D ′(R). Furthermore,
by the construction of the gj, the sum of this series coincides with T on every interval ]−j, j[, therefore

T =
∞∑
ℓ=1

T (mℓ+1)
gℓ

.

For the moment, the sequence of the order of derivatives (mℓ+1)ℓ≥1 is a strictly increasing sequence
of N. To obtain the statement of the theorem, we reindex the sum to take all orders of derivation into
account. Namely, if there exists ℓ ≥ 1 such that n = mℓ + 1, we set fn

def
= gℓ, while otherwise we set

fn
def
= 0. We then end up with the sum

T =
∞∑
n=1

T
(n)
fn

.
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Chapter 2

Distributions in several variables

In this chapter we extend the notion of distribution to the Euclidean space Rd, or more generally to an
open subset Ω ⊂ Rd. While most definitions and properties will mimic those in one dimension, we will
exhibit new examples of interesting distributions (like distributions supported on submanifolds, e.g.
surface measures in R3), and our results will carry a certain geometric flavour. The applications to
partial differential equations will be more “impressive” than in 1D.

We start this chapter by reviewing differential calculus on Rd, which will set our notations.

2.1 A brief review differential calculus in several variables

2.1.1 Scalar product, norm, distance, topology

From now on we shall work on the vector space Rd, made of points

x =

x1...
xd


with x1, . . . , xd ∈ R. We denote by (e1, . . . , ed) the canonical basis, so that

x =
d∑
j=1

xjej .

This canonical basis is an orthonormal basis for the canonical scalar product on Rd,

x · y =
d∑
j=1

xjyj ,

defining the Euclidean norm

|x| =
√
x · x =

(
d∑
j=1

x2j

) 1
2

.
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This norm classically defines the distance

d(x, y) = |x− y| ,

and induces a topology, for which a set Ω is open if and only if for every a ∈ Ω, there exists r > 0 such
that the ball B(a, r) ⊂ Ω. Here, B(a, r) denotes the open ball {x ∈ Rd ; d(x, a) < r}. As in every
metric space, a compact subset K ⊂ Rd can be equivalently defined by the Borel–Lebesgue covering
property, or by the Bolzano–Weierstrass extraction property for every sequence in K. Since we are
on a finite dimensional vector space, compact subsets of Rd coincide with closed bounded subsets.

If F is a nonempty closed subset of Rd, we shall often use the distance function to F ,

d(x, F )
def
= inf

z∈F
d(x, z) .

Notice that d(x, F ) = 0 if and only if x ∈ F , and that, by the Bolzano–Weierstrass property for
closed bounded subsets, this infimum is attained at some z ∈ F . Furthermore, the function d(·, F ) is
continuous on Rd. In fact, by the triangle inequality, it is 1-Lipschitz continuous,

|d(x, F )− d(y, F )| ≤ d(x, y) .

If K is a compact subset of Rd and δ > 0, the set

Kδ
def
= {x ∈ Rd; d(x,K) ≤ δ}

is a compact subset containing K in its interior. The following lemma will be very useful.

δ
δ

δ
0

Ωx

K y

K

Lemma 2.1.1 If K is a compact subset of an open subset Ω ⊂ Rd, then

inf
x∈K

d(x,Ωc) = δ0 > 0 .

For every δ ∈]0, δ0[, Kδ is contained in Ω.
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Proof.— The first statement follow from the continuity of d(·,Ωc), which consequently attains its
minimum on K, and from the assumption K ∩ Ωc = ∅. The second statement is an elementary
consequence of the triangle inequality, since, for every z ∈ Ωc, y ∈ K,

d(x, z) ≥ |d(y, z)− d(x, y)| .

Hence, if x ∈ Kδ, choosing y ∈ K such that d(x, y) = d(x,K), d(x,Ωc) ≥ δ0 − δ > 0 . The
boundary of Ω is denoted by ∂Ω = Ω \ Ω.

2.1.2 Partial derivatives, C1 functions, differential, gradient

We denote by C0(Ω) the space of continuous functions f : Ω→ C (note that f(x) may explode when
x→ ∂Ω).

Definition 2.1.2 Given f : Ω → C and a ∈ Ω, j ∈ {1, . . . , d}, we say that f admits a j-th
partial derivative at a if the function t 7→ f(a+ tej), locally defined for t in a neighbourhood of
0 in R, has a derivative at t = 0. We set

d

dt
f(a+ tej)|t=0 =

∂f

∂xj
(a) = ∂jf(a) .

We say that f is a C1 function on Ω if it admits a j–th partial derivative for every j ∈ {1, . . . , d}
at every point a ∈ Ω, and if the functions ∂jf are continuous on Ω. We denote by C1(Ω) the
space of C1 functions on Ω.

If f ∈ C1(Ω), one can prove that f is differentiable at every point a ; using the mean value theorem,

f(a+ h) = f(a) + La(h) + o(|h|) as h→ 0

where the increment in the direction h reads:

La(h) =
d∑
j=1

∂jf(a)hj .

The linear map La : Rd → C is called the differential of f at the point a, and usually denoted by

La = daf .

If f is real valued, daf is a linear form on the Euclidean space Rd, hence it can be represented by the
scalar product with a vector, called the gradient of f at a, and denoted by ∇f(a):

daf(h) = ∇f(a) · h , ∇f(a) =

∂1f(a)...
∂df(a)

 .

Notice that the application ∇f : Ω→ Rd is continuous (since f ∈ C1).
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2.1.3 The chain rule

The chain rule allows to compute the differential of the composition of two C1 functions. Its expression
is a bit more complicated than in 1 dimension.

Proposition 2.1.3 Let Ω ⊂ Rd, Ω′ ⊂ Rp be open sets, and ψ : Ω→ Ω′, ψ = (ψ1, ψ2, . . . , ψp), a
function of class C1.Let f : Ω′ → C be a C1 function.
Then f ◦ ψ is C1 on Ω. Moreover, the differential of the composed function reads:

dx(f ◦ ψ) = dψ(x)f︸ ︷︷ ︸
C←Rp

◦ dxψ︸︷︷︸
Rp←Rd

= ∇ψ(x)︸ ︷︷ ︸
Rd×Rp

·∇f(ψ(x))︸ ︷︷ ︸
Rp×C

,

or, for any component j ∈ {1, . . . , n},

∂f ◦ ψ
∂xj

(x) =

p∑
k=1

∂f

∂ψk
(ψ(x))

∂ψk
∂xj

(x) .

2.1.4 Higher order partial derivatives

More generally, for m ≥ 2, we denote by Cm(Ω) the vector space of functions f ∈ C1(Ω) whose
partial derivatives ∂1f, ∂2f, . . . , ∂df belong to Cm−1(Ω). Moreover, C∞(Ω) is the intersection of all
Cm(Ω).

For a general function, the order in which one computes repeated partial derivatives may matter; but
this is not the case if we compute two derivatives of a C2 function:

Proposition 2.1.4 (Schwarz Lemma) If f ∈ C2(Ω), then, for any j, k ∈ {1, . . . , d},

∂j(∂kf) = ∂k(∂jf)

In particular for C∞ functions, one can compute partial derivatives of f in any order. It is therefore very
convenient to use multi-indices, which only record how many times we differentiate in each direction,
independently of the order in which we proceed.

2.1.5 Multiindices

Let f ∈ C∞(Ω), and α = (α1, α2, . . . , αd) ∈ Nd a multiindex. We denote ∂αf the function

∂αf = ∂α1
1 ∂α2

2 · · · ∂
αd
d f =

∂|α|

∂xα1
1 ∂x

α2
2 · · · ∂x

αd
d

f ,
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where the number
|α| def

= α1 + α2 + · · ·+ αd,

is the order of the partial derivative, and it is called the length of α. The context usually avoids any
confusion with the Euclidean norm ! We also set the factorial notation

α! = α1!α2! . . . αd!

and, for β ∈ Nd such that βj ≤ αj for all j, which we will write β ≤ α, the multinomial coefficient(
α

β

)
=

α!

β! (α− β)!
=

(
α1

β1

)(
α2

β2

)
. . .

(
αd
βd

)
.

With these notations, the Leibniz formula for the derivatives of a product of two functions easily extends
to the case of functions of several variables. Its proof is exactly the same.

Proposition 2.1.5 (Multidimensional Leibniz formula) Let f and g be functions in C∞(Ω),
and α ∈ Nd a multiindex. We have

∂α(fg) =
∑

β∈Nd, β≤α

(
α

β

)
∂βf ∂α−βg .

Proof.— We prove the result by induction over |α|. If |α| = 1, ∂α = ∂j for some j ∈ {1, . . . , d}, and

∂j(fg) = (∂jf)g + f(∂jg),

which is the above formula. Suppose then that the formula is true for all multiindices of length ≤ m.
Let α ∈ Nd such that |α| = m+ 1. There exists j ∈ {1, . . . , d} and β ∈ Nd of length m such that

α = β + 1j,

where 1j = (0, . . . , 0, 1, 0, . . . , 0) with a 1 as j-th coordinate. With these notations

∂α(fg) = ∂β+1j(fg) = ∂β(∂j(fg)) = ∂β((∂jf)g) + ∂β(f(∂jg)).

Since β is of length m, the induction assumption gives

∂α(fg) =
∑
γ≤β

(
β

γ

)
∂γ(∂jf) ∂

β−γg +
∑
γ≤β

(
β

γ

)
∂γf ∂β−γ(∂jg)

=
∑
γ≤β

(
β

γ

)
∂γ+1jf ∂β−γg +

∑
γ≤β

(
β

γ

)
∂γf ∂β+1j−γg

=
∑
γ≤β

(
β

γ

)
∂γ+1jf ∂α−(γ+1j)g +

∑
γ≤β

(
β

γ

)
∂γf ∂α−γg
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We change the multiindex in the first sum: γ ← γ + 1j, and we get

∂α(fg) =
∑

1j≤γ≤α

(
β

γ − 1j

)
∂γf ∂α−γg +

∑
γ≤β

(
β

γ

)
∂γf ∂α−γg

=
∑

γ≤β, γj=0

(
β

γ

)
∂γf ∂α−γg +

∑
1j≤γ≤β

(( β

γ − 1j

)
+

(
β

γ

))
∂γf ∂α−γg + f∂αg

=
∑

γ≤β, γj=0

(
β

γ

)
∂γf ∂α−γg +

∑
1j≤γ≤β

(
β + 1j
γ

)
∂γf ∂α−γg + f∂αg ,

where in the last line we used the generalization of Pascal’s formula for multinomial coefficients. This
last line is exactly the stated formula at the order α.

We can continue the analogy with the 1 variable case: if x = (x1, x2, . . . , xd) ∈ Rd, we denote by xα

the monomial
xα = xα1

1 x
α2
2 · · · x

αd
d .

Then we can show, the same way as for the Leibniz formula, that for x, y ∈ Rd and α ∈ Nd, the
following generalization of Newton’s binomial formula holds:

(x+ y)α =
∑
β≤α

(
α

β

)
xβyα−β.

With these notations, Taylor-Lagrange’s formula can be written as concisely as in 1D.

Proposition 2.1.6 (Multidimensional Taylor formula) Let f : Ω ⊂ Rd → C a function of class
Cm+1. Let a, b ∈ Ω, such that the segment [a, b] is included in Ω. We have

f(b) =
∑
|α|≤m

(b− a)α

α!
∂αf(a) + (m+ 1)

∑
|α|=m+1

(b− a)α

α!

∫ 1

0

(1− t)m∂αf(a+ t(b− a))dt .

This is called the Taylor expansion of f at the point a, at the order m.

Proof.— We have already seen that if φ : R→ C is smooth, the Taylor formula gives

φ(1) =
m∑
k=0

1

k!
φ(k)(0) +

1

m!

∫ 1

0

(1− s)mφ(m+1)(s)ds.

We shall use this result for the function φ : t 7→ f
(
a+ t(b− a)

)
. Notice that

φ′(t) =
d∑
j=1

(b− a)j ∂jf
(
a+ t(b− a)

)
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and more generally that

φ(k)(t) =
d∑

j1,j2,...,jk=1

(b− a)j1 . . . (b− a)jk(∂j1 . . . ∂jkf)
(
a+ t(b− a)

)
.

This sum only contains terms of the form (b− a)α∂αf
(
a+ t(b− a)

)
with α ∈ Nd of length |α| = k.

Therefore we can write, for some coefficients cα ∈ R,

d∑
j1,j2,...,jk=1

(b− a)j1 . . . (b− a)jk ∂j1 . . . ∂jkf
(
a+ t(b− a)

)
=
∑
|α|=k

cα(b− a)α ∂αf
(
a+ t(b− a)

)
.

Denoting x = b− a, this equality between two polynomials in x implies that the cα are combinatorial
factors:

cα = #{(j1, j2, . . . , jk) ∈ {1, . . . , d}k, xα1
1 x

α2
2 . . . xαd

d = xj1 . . . xjk}.

in words, cα counts the ways to distribute α1 indices j = 1, α2 indices j = 2, etc, among k = |α|
indices. It is a simple combinatorial problem, with solution:

cα =

(
k

α1

)(
k − α1

α2

)
. . .

(
k − α1 − · · · − αn−1

αn

)
=
k!

α!
·

Indeed, one has to first place α1 indices j = 1 among among k spots, then α2 indices j = 2 among
the k − α1 remaining spots, etc.

Since a+ t(b− a)|t=0 = a, and a+ t(b− a)|t=1 = b, we obtain the stated formula.

Exercise 2.1.7 Show that, for k ∈ N and (x1, x2, . . . , xd) ∈ Rd, we have

(x1 + x2 + · · ·+ xd)
k =

∑
|α|=k

k!

α!
xα .

Applying the Taylor formula at order 0, we immediately obtain an extension of Hadamard’s lemma in
dimension d.

Corollary 2.1.8 (Hadamard’s formula in dimension d) Let f ∈ Cm+1(Ω), where Ω is a convex
open subset of Rd. If a ∈ Ω and f(a) = 0, there exist d functions g1, g2,…gd of class Cm(Ω) such
that

f(x) =
d∑
j=1

(xj − aj) gj(x) .

Notice that the convexity assumption of Ω is necessary, because we need that the segment [a, x] ⊂ Ω
for any a, x ∈ Ω. In practice, we shall use this lemma when Ω is a ball.
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2.2 Test functions

2.2.1 Definitions. Examples

If f ∈ C0(Ω), the support of f is the closure of {x ∈ Ω, f(x) ̸= 0} for the topology induced on Ω.
This is a closed subset of Ω, denoted by supp(f). If m ∈ N ∪ {∞}, we denote by Cm0 (Ω) the space
of functions in Cm(Ω) with a compact support. Notice that a compact set for the induced topology in
Ω is also a compact subset of Rd contained in Ω. In particular, elements of

D(Ω)
def
= C∞0 (Ω)

are called test functions on Ω. As in one space dimension, if V ⊂ Ω is an open subset, every element
φ ∈ D(V ) can be extended as an element φ of D(Ω) by setting φ = 0 in Ω \ V . This allows to
identify D(V ) as the subspace of D(Ω) defined by supp(φ) ⊂ V . We shall often make this implicit
identification.

Proposition 2.2.1 (Cutoff functions) i) For every a ∈ Rd, for every r > 0, there exists
φ ∈ D(Rd) such that φ(x) ≥ 0 for every x ∈ Rd and supp(φ) = B(a, r).

ii) For every compact subset K of Ω, there exists χ ∈ D(Ω), valued in [0, 1], such that χ = 1
on K. We call such χ a cutoff function (“fonction plateau”) on K in Ω.

Proof.— The proof of the first statement is similar to its one dimensional analogue; it uses the radial
symmetry of the ball. Recall that the function f defined by

f(t) =

{
e−

1
t if t > 0

0 if t ≤ 0

is C∞. Then the function φ defined by

φ(x) = f(r2 − |x− a|2)

satisfies the requirements.

The second statement requires a little more work. Let φ be as in the first statement with a = 0 and
r = 1. Since φ ≥ 0 and is not identically 0, its integral on Rd is > 0. Up to dividing φ by this number,
we may assume that ∫

Rd

φ(x) dx = 1 ,

namely φ has a unit mass; it is smooth convolution kernel. For any δ ∈]0, 1], we rescale this kernel to

φδ(x) =
1

δd
φ
(x
δ

)
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Then, by Lemma 2.1.1, we may choose δ > 0 such that K2δ ⊂ Ω. Set

χ(x) = φδ ∗ 1lKδ
(x) =

∫
Kδ

φ

(
x− y
δ

)
dy

δd
.

By the rule of derivation under the integral, χ ∈ C∞(Rd). Since φ ≥ 0 and 1lK ≥ 0, we have χ ≥ 0
and

∀x ∈ Rd, χ(x) ≤
∫
Rd

φδ(x− y) dy = 1 , .

Hence χ is valued in [0, 1]. If x ∈ K and y ∈ (Kδ)
c, then |x− y| > δ, hence (x− y) ̸∈ supp(φδ), so

the integrand vanishes at y. Consequently,

∀x ∈ K , χ(x) =

∫
Rd

φδ(x− y) dy = 1 .

Finally, if x ̸∈ K2δ, y ∈ Kδ, |x − y| > δ, and the integrand identically vanishes, so that χ(x) = 0.
Hence the support of χ is included in K2δ, which is contained in the open set Ω, so that χ ∈ C∞0 (Ω).

Kδ

K2δ

K

Figure 2.1: The cutoff function χ on a compact set K, obtained by convoluting 1lKδ
with a kernel φδ.

Depending on the position x (black dot), the kernel is fully supported in Kδ, partially supported, or
supported outside Kδ; accordingly, χ(x) smoothly drops from 1 to 0.

Remark 2.2.2 It may happen that we need cutoff functions on a compact neighborhood of K in
Ω, for instance Kε for ε > 0 small enough, according to Lemma 2.1.1. We shall call these functions
plateau functions on a neighbourhood of K in Ω.

We now come to the contruction of partitions of unity, which turns out to be particularly useful in
several variables, through the so–called gluing principle.

2.2.2 Partitions of unity
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Proposition 2.2.3 (Partition of unity in Ω) Let K ⊂ Ω be a compact set covered by a finite
collection Ω1, . . . ,Ωn of open subsets of Ω. There exist χ1 ∈ C∞0 (Ω1), . . . , χn ∈ C∞0 (Ωn), valued
in [0, 1], such that

χ1 + · · ·+ χn = 1 on K .

As a result, if φ ∈ C∞0 (Ω) is supported in Ω1 ∪ · · · ∪ Ωn, then one can find functions
φ1 ∈ C∞0 (Ω1), . . . , φn ∈ C∞0 (Ωn), such that

φ1 + . . . φn = φ .

Proof.— It is very similar to the one dimensional analogue. First, one proves the

Lemma 2.2.4 (Shrinking Lemma) If K ⊂ Ω1 ∪ · · · ∪ Ωn, there exists open subsets U1, . . . , Un
such that, for every j ∈ {1, . . . , n}, U j ⊂ Ωj is compact, and

K ⊂ U1 ∪ · · · ∪ Un .

As in the one dimensional case, the proof proceeds by induction on n ≥ 1. The case n = 1 follows
from Lemma 2.1.1.

Once the shrinking lemma is proved, set

χ1 = ψ1, χ2 = ψ2(1− ψ1) , . . . , χn = ψn(1− ψn−1) . . . (1− ψ1) ,

where, for every j ∈ {1, . . . , n}, ψj is a cutoff function on U j in Ωj.
Finally, the last assertion follows by writing φj = χjφ, where the smooth partition (χj)j=1,...,n is
associated wih the covering of supp(φ) by Ω1, . . . ,Ωn.

2.3 Distributions on an open subset Ω ⊂ Rd

2.3.1 Definitions and examples

Definition 2.3.1 Let (φj)j≥1 be a sequence of test functions in D(Ω), and φ ∈ D(Ω). We say
that (φj) converges to φ in D(Ω) (or in the D(Ω)-sense), when

i) There exits a compact subset K ⊂ Ω such that suppφj ⊂ K for all j.

ii) For all α ∈ Nd, ∥∂αφj − ∂αφ∥∞ → 0 as j →∞.

In that case we may write
φ = D − lim

j→+∞
φj.
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Remark 2.3.2 Notice that, under the conditions of the above definition, we have supp(φ) ⊂ K.

Definition 2.3.3 (Distributions on Ω) Let Ω ⊂ Rd be an open subset, and T a complex valued
linear form on D(Ω). One says that T is a distribution on Ω if, for every compact set K ⊂ Ω,

∃C > 0, ∃m ∈ N,∀φ ∈ C∞0 (Ω)with suppφ ⊂ K , |T (φ)| ≤ C
∑
|α|≤m

sup |∂αφ| = C∥φ∥Cm .

We denote by D ′(Ω) the set of distributions on Ω, and for T ∈ D ′(Ω), φ ∈ D(Ω), we write
⟨T, φ⟩ def

= T (φ).

We have the same characterization of distributions in 1 dimension, in terms of continuity w.r.t. con-
verging sequences of test functions.

Proposition 2.3.4 A linear form T on D(Ω) is a distribution on Ω if and only if T (φj)→ T (φ)
for any sequence (φj) of functions in D(Ω) that converges to φ in the D(Ω)-sense.

The proof is similar to the one dimensional case, as well as the following examples.

Locally integrable functions.

Given f ∈ L1
loc(Ω), the formula

⟨Tf , φ⟩ =
∫
Ω

f(x)φ(x) dx

defines a distribution on Ω. Furthermore, the linear mapping

f ∈ L1
loc(Ω) 7→ Tf ∈ D ′(Ω)

is one to one. In the sequel, we shall identify f to Tf .

Dirac masses.

Given a ∈ Ω, the formula
⟨δa, φ⟩ = φ(a)

defines a distribution δa on Ω, called the Dirac mass at a. It is not defined by any f ∈ L1
loc(Ω).

Like in the previous chapter, one can define the notion of finite order distributions, and the corre-
sponding notion of order. In particular, distributions of order ≤ m can be extended to continuous
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linear forms on Cm0 (Ω), non-negative distributions are of order 0 — hence are positive measures, and
distributions of order 0 are finite linear combinations of nonnegative distributions.

We now come to the important notion of support, for which we shall be a little more specific than we
were in Chapter 1.

2.3.2 Restriction and support

Definition 2.3.5 Let T ∈ D ′(Ω), and V ⊂ Ω an open subset. The restriction of T to V is the
distribution T|V ∈ D ′(V ) defined as

∀φ ∈ D(V ) , ⟨T|V , φ⟩ = ⟨T, φ⟩ ,

where φ denotes the extension of φ by 0 on Ω \ V .
We say that T vanishes in V if T|V = 0.

Definition 2.3.6 The support of a distribution T ∈ D ′(Ω) is the complement of the union of
all the open subsets where T vanishes. We denote it by suppT .

Notice that suppT is closed, and the following characterizations are convenient.

• x0 /∈ suppT if and only if there is an open neighborhood V of x0 such that T|V = 0.

• x0 ∈ suppT if and only if for any open neighborhood V of x0, one can find φ ∈ C∞0 (V ) such
that ⟨T, φ⟩ ̸= 0.

As in the one dimensional case, one can characterize distributions supported in one point a, as given
by

⟨T, φ⟩ =
∑
|α|≤m

cα∂
αφ(a) ,

where (cα)|α|≤m is a family of complex numbers, and m ∈ N.

Proposition 2.3.7 Let φ ∈ C∞0 (Ω) and T ∈ D ′(Ω). If suppφ ∩ suppT = ∅, then ⟨T, φ⟩ = 0. In
particular, if supp(T ) = ∅, then T = 0.
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The proof is similar to the one dimensional case. We now emphasize the following corollary, which is
very useful.

Corollary 2.3.8 (The gluing principle in D ′(Ω)) Assume

Ω =
∪
j∈J

Ωj

for some (possibly infinite, even uncountable) collection (Ωj)j∈J of open subsets. Suppose we are
given, for every j ∈ J , a distribution Tj on Ωj, so that the family (Tj)j∈J satisfies the following
compatibility property : for every j, k ∈ J such that Ωj ∩ Ωk ̸= ∅, then

(2.3.1) (Tj)|Ωj∩Ωk
= (Tk)|Ωj∩Ωk

.

Then there exists a unique T ∈ D ′(Ω) such that, for every j ∈ J , T|Ωj
= Tj.

Remark 2.3.9 This construction of a distribution by gluing small pieces satisfying a compatibility
condition (2.3.1) gives to the space of distributions D ′(Ω) the structure of a sheaf over Ω.

Proof.— The uniqueness of T follows from Proposition 2.3.7: if two distributions T, T̃ satisfy T|Ωj
=

T̃|Ωj
for any j, it means that (T − T̃ )|Ωj

= 0 for all j, hence supp(T − T̃ ) = 0, and thus T − T̃ = 0.

Let us prove the existence of T . Given φ ∈ D(Ω), we want to define ⟨T, φ⟩. From Borel-Lebesgue,
suppφ can be covered by a finite subcollection suppφ ⊂

∪
j∈Jφ Ωj. Proposition 2.2.3 shows that one

can decompose
φ =

∑
j∈Jφ

φj

where φj ∈ D(Ωj). In such a situation, if T exists, one must have

⟨T, φ⟩ =
∑
j∈Jφ

⟨T, φj⟩ =
∑
j∈Jφ

⟨Tj, φj⟩ .

This equality seems to defined ⟨T, φ⟩. However, we observe that the splitting φ =
∑
φj is not unique;

the choice of subfamily Jφ itself may not be unique.

Therefore, we need to check that the above right hand side does not depend on these choices. This is
the content of the following

Lemma 2.3.10 For every decomposition
φ =

∑
j∈J

φj

where each φj ∈ D(Ωj) and φj = 0 except for a finite set of indices j, the value of the sum∑
j∈J

⟨Tj, φj⟩

only depends on φ, not on the decomposition.
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Let us prove the lemma. Once we are given a decomposition, we consider the set

K =
∪
j∈J

supp(φj) .

Since supp(φj) is compact and is empty except for a finite set J1 of indices j, K is a compact subset
of Ω. Apply Proposition 2.2.3 to a finite covering

K ⊂
∪
r∈R

Ωr

extracted from the covering of K by the (Ωj)j∈J ’s. The family (χr)r∈R satisfies

supp(χr) ⊂ Ωr ,
∑
r∈R

χr = 1 on K .

In particular, for every j ∈ J1, φj =
∑

r∈R χrφj, therefore

⟨Tj, φj⟩ =
∑
r∈R

⟨Tj, χrφj⟩ .

For any r ∈ R, we claim that ⟨Tj, χrφj⟩ = ⟨Tr, χrφj⟩. Indeed,
– either Ωj ∩ Ωr = ∅, and χrφj = 0, so both sides of this equality cancel;
– or Ωj ∩ Ωr ̸= ∅, and, since supp(χrφj) ⊂ Ωj ∩ Ωr, the assumption merely says that

⟨Tj, χrφj⟩ = ⟨Tr, χrφj⟩.

Consequently, ∑
j∈J1

⟨Tj, φj⟩ =
∑
j∈J1

∑
r∈R

⟨Tr, χrφj⟩ =
∑
r∈R

⟨Tr, χr(
∑
j∈J1

φj)⟩

=
∑
r∈R

⟨Tr, χrφ⟩ .

This proves the lemma. Indeed, given any other decomposition φ =
∑

j∈J2 φ̃j, just apply the above
construction with

K =
∪
j∈J2

supp(φj) ∪
∪
j∈J

supp(φ̃j) ,

and we see that ∑
j∈J1

⟨Tj, φj⟩ =
∑
r∈R

⟨Tr, χrφ⟩ =
∑
j∈J2

⟨Tj, φ̃j⟩.

Let us complete the proof of Corollary 2.3.8. Choosing any decomposition φ =
∑

j∈J φj as in the
Lemma, we can then consistently define

⟨T, φ⟩ def
=
∑
j∈J

⟨Tj, φj⟩ .
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Figure 2.2: The supports of the functions φj and χj inside Ωj, for j = 1, 2.

It is clear that T is a linear form on D(Ω). To check it is a distribution, let K be a compact subset of
Ω and (χr)r∈R be a partition of unity associated to a finite covering K ⊂ ∪r∈RΩr. Then, for every
test function φ supported in K, we have, from the lemma,

⟨T, φ⟩ =
∑
r∈R

⟨Tr, χrφ⟩ .

Since Tr ∈ D ′(Ωr), we have

|⟨Tr, χrφ⟩| ≤ Cr∥χrφ∥Cmr ≤ C ′r∥φ∥Cmr .

Then, with m = maxr∈Rmr, we obtain

|⟨T, φ⟩| ≤

(∑
r∈R

C ′r

)
∥φ∥Cm ,

so that T ∈ D ′(Ω). Finally, if φ ∈ D(Ωj0) for some j0 ∈ J , we can write the decomposition
φ =

∑
j∈J φj with φj0 = φ and φj = 0 if j ̸= j0. Using the lemma, we infer ⟨T, φ⟩ = ⟨Tj0 , φ⟩. In

other words, T|Ωj0
= Tj0.

Let us close this paragraph by a few remarks concerning Corollary 2.3.8.

i) If every Tj is a nonnegative distribution, then so is T . Indeed, the elements χr of the partitions
of unity can be chosen to be nonnegative.

ii) If every Tj is a Cm function, then so is T .

2.3.3 Multiplication by a smooth function
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Definition 2.3.11 Given q ∈ C∞(Ω) and T ∈ D ′(Ω), we define qT ∈ D ′(Ω) by

∀φ ∈ D(Ω) , ⟨qT, φ⟩ = ⟨T, qφ⟩ .

If T ∈ L1
loc(Ω), the definition coincides with the usual product. Let us just mention the following

generalization of Proposition 1.5.7 in Chapter 1.

Proposition 2.3.12 Let T ∈ D ′(Ω) and a ∈ Ω such that

∀j ∈ {1 . . . , d} , (xj − aj)T = 0 .

Then there exists c ∈ C such that T = cδa .

Proof.— In view of what we did in Chapter 1, the proof reduces to the following

Lemma 2.3.13 (Hadamard lemma on an arbitrary open set Ω) If φ ∈ C∞0 (Ω) satisfies
φ(a) = 0, there exists ψ1, . . . , ψd in C∞0 (Ω) such that

φ(x) =
d∑
j=1

(xj − aj)ψj(x) .

Let us prove the lemma. Let r > 0 such that B(a, r) ⊂ Ω, and let χ be a plateau function on
B(a, r/2), supported in B(a, r). From Corollary 2.1.8 — Hadamard’s formula on a convex subset —
we can write, for any x ∈ B(a, r),

φ(x) =
d∑
j=1

(xj − aj)fj(x) ,

with each fj ∈ C∞(B(a, r). This implies that

χφ =
d∑
j=1

(xj − aj)χfj .

This settles the part of φ supported near a. On the other hand, since (1−χ) vanishes near a, we can
factorize (1− χ)φ as:

(1− χ(x))φ(x) =
d∑
j=1

(xj − aj)
(xj − aj)(1− χ(x))

|x− a|2
φ(x) .
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Summing both the above identities, the lemma follows with the functions

ψj(x) = χ(x)fj(x) +
(xj − aj)(1− χ(x))

|x− a|2
φ(x) .

2.3.4 Differentiation

As in one space dimension, we first consider the case of a C1 function. In this case, we have the
following elementary

Lemma 2.3.14 Let f ∈ C1(Ω), φ ∈ C10(Ω). Then, for any index j ∈ {1, . . . , d},∫
Ω

∂jf(x)φ(x) dx = −
∫
Ω

f(x) ∂jφ(x) dx .

Proof.— Let χ be a plateau function on a neighborhood of the support of φ. It is easy to check that

∂j(χf)φ = ∂jf φ , χf∂jφ = f∂jφ .

Furthermore, χf can be extended as a C1 function on Rd, vanishing outside of Ω. Therefore we are
reduced to proving the lemma with Ω = Rd. This is an immediate consequence of the Fubini theorem
and of integration by parts in the xj variable.

On the basis of Lemma 2.3.14, we introduce the following definition for the partial derivatives of a
distribution.

Definition 2.3.15 Let T ∈ D ′(Ω) and j ∈ {1, . . . , d}. We define ∂jT ∈ D ′(Ω) by

⟨∂jT, φ⟩ = −⟨T, ∂jφ⟩ , φ ∈ D(Ω) .

Similarly, for every α ∈ Nd, we define ∂αT ∈ D ′(Ω) by

⟨∂αT, φ⟩ = (−1)|α|⟨T, ∂αφ⟩ , φ ∈ D(Ω) .

At this stage, it is natural to ask for the multidimensional analogue of the identity H ′ = δ0 proved in
Chapter 1, with H = 1lR+ the Heaviside function. A natural statement would be a formula for ∂j(1lU),
where U is an open subset of Ω. However, open subsets in Rd can be complicated enough, so that
no such formula exists without additional assumptions on U . A relatively general formula of this kind
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will be the purpose of the next section, devoted to superficial measures and to the jump formula. At
this stage, let us just consider a very simple examples in R2, that of the half-plane on R2.

For some a ∈ R, consider the half-space Ha = {(x1, x2) ∈ R2 : x1 > a} ⊂ R2. Then an elementary
calculation gives, for any φ ∈ D(R2):

⟨∂1(1lHa), φ⟩ =
∫
R
φ(a, x2) dx2 , ⟨∂2(1lHa), φ⟩ = 0 ,

so ∂1(1lHa) is the superficial measure on the x2-axis, while ∂2(1lHa) = 0.

2

x
1

a

H

x

a

Figure 2.3: Derivatives of 1lU for the half-plane.

Notice that ∂j(1lHa) is a distribution of order 0, supported by the boundary of Ha. This fact will be
generalized to more general open sets U in the next section.

2.3.5 Convergence

The convergence of a sequence of distributions is defined like in one dimension.

Definition 2.3.16 A sequence (Tn)n∈N of distributions in D ′(Ω) converges to T ∈ D ′(Ω) if

∀φ ∈ D(Ω) , ⟨Tn, φ⟩ → ⟨T, φ⟩ .

If f ∈ L1(Rd) satisfies
∫
Rd f(x) dx = 1, then we can easily show (see Example 1.7.3 in 1 dimension)

that
1

εd
f
(x
ε

)
−→
ε→0

δ0 in D ′(Rd) .

This observation leads to the following strategy of regularization. Fix ρ ∈ D(Rd), supported in the
unit ball, such that

∫
Rd ρ(x) dx = 1, and consider

ρε(x) =
1

εd
ρ
(x
ε

)
.
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Given an open subset Ω in Rd, set the ε-rectract of Ω,

Ωε := {x ∈ Ω, d(x,Ωc) > ε} .

If x ∈ Ωε, the function
ρε(x− .) : y 7→ ρε(x− y)

is supported in the closed ball of radius ε centered at x, which is included in Ω. Hence this function
belongs to D(Ω), and we may define the function

F ε(x) = ⟨T, ρε(x− ·)⟩ , , x ∈ Ωε ,

which looks like the convolution of T by ρε. In some sense, F ε(x) represents an “average” of T on
the ball B(x, ε).

Remark 2.3.17 The convolution we had described in Definition 1.9.7 in Chapter 1 was defined on
R, so there was no necessity of restricting it on some ε-retract.

Ω

ε
Ω

Figure 2.4: Regularization F ε in the retract Ωε. Each red circle represents the support of the test
function ρε(x− ·).

Proposition 2.3.18 The function F ε is smooth on Ωε, with

∂αF ε(x) = ⟨T, ∂αρε(x− ·)⟩ , α ∈ Nd ,

and, for every φ ∈ D(Ω), ∫
Ωε

F ε(x)φ(x) dx −→
ε→0
⟨T, φ⟩ .

Notice that, given a compact subset K in Ω, the integral
∫
Ω
F ε(x)φ(x) dx is well defined for ε small

enough and every φ supported in K. The proof of Proposition 2.3.18 is a consequence of the following
two results, which will be frequently used throughout the course, and are generalisations to several
variables of Propositions 1.9.5 and 1.9.6 from Chapter 1.
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Proposition 2.3.19 (Differentiation under the bracket) Let Ω ⊂ Rd, Z ⊂ Rp be open sets,
and T ∈ D ′(Ω). For some compact set K ⊂ Ω,let φ ∈ C∞(Ω× Z) be supported in K × Z.
Then the function

G : z ∈ Z 7→ ⟨T, φ(·, z)⟩

is C∞, and, for any α ∈ Np,
∂αG(z) = ⟨T, ∂αz φ(·, z)⟩ .

Remark 2.3.20 If T = f ∈ L1
loc(Ω), we have G(z) =

∫
Ω
f(x)φ(x, z)dx, so that, under the above

assumptions, we get G ∈ C∞(Z) and we recover the Leibniz rule of derivation under the integral
sign,

∂αG(z) =

∫
Ω

f(x) ∂αz φ(x, z) dx.

Proof.— Let z0 ∈ Z and x ∈ Ω. For h ∈ Rq, Taylor’s formula at order 1 gives

φ(x, z0 + h) = φ(x, z0) +

p∑
j=1

∂zjφ(x, z0)hj + r(x, z0, h),

with r(x, z0, h) = 2
∑
|α|=2

hα

α!

∫ 1

0

(1− t)∂αz φ(x, z0 + th)dt.

Since x 7→ r(x, z0, h)) is C∞ with support in K, there exist a constant C > 0 and an integer m ∈ N
(independent of z0 or h) such that

|⟨T, r(·, z0, h)⟩| ≤ C
∑
|β|≤m

sup |∂βxr(x, z0, h)|

But for |h| ≤ 1,

|∂βxr(x, z0, h)| ≤ 2
∑
|α|=2

|hα|
α!

∫ 1

0

(1− t) |∂βx∂αz φ(x, z0 + th)| dt ≤ C|h|2
∑
|α|=2

sup
K×B(z0,1)

|∂βx∂αz φ(x, z)|,

Since |hα| ≤ |h|2 for all |α| = 2, we get

|⟨T, r(·, z0, h)⟩| = O(|h|2) ,

so that

G(z0 + h) = G(z0) +

q∑
j=1

⟨T, ∂zjφ(·, z0)⟩hj +O(|h|2).

This equality shows that G is differentiable at z0 (in particular G is continuous), with derivatives

∂jG(z) = ⟨T, ∂zjφ(·, z)⟩,
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which proves the formula for the first derivatives.

If we now replace φ(x, z) by ∂zjφ(x, z) in the above discussion, we see that for all j, ∂jφ is differen-
tiable, thus in particular continuous. So G is C1, and the statement of the proposition is true for any
|α| = 1. One easily shows the general case by induction.

Let us now prove that the inverse operation, namely integration w.r.t. the auxiliary parameter z, can
also be shifted inside the bracket.

Proposition 2.3.21 (Integration under the bracket) Let Ω ⊂ Rd be an open set, and T ∈
D ′(Ω). Let also φ ∈ C∞0 (Ω× Rp). Then∫

Rp

⟨T, φ(·, z)⟩dz =
⟨
T,

∫
Rp

φ(·, z)dz
⟩

Proof.— We start with the case p = 1, for which the proof is similar to the one in Prop. 1.9.6. Let
φ ∈ C∞0 (Ω×R). We choose A > 0 and a compact set K ⊂ Ω such that suppφ ⊂ K × [−A,A]. We
denote by ψ : Ω× R→ C the function given by

ψ(x, z) =

∫
t<z

φ(x, t) dt ,

namely a primitive of φ w.r.t. z. The function ψ belongs to C∞(Ω×R), and for any z, supp(ψ(·, z))
is included in K. Therefore Proposition 2.3.19 applies. The function

G(z) = ⟨T, ψ(·, z)⟩ =
⟨
T,

∫
t<z

φ(·, t)dt
⟩

is smooth and vanishes for z ≤ −A. Its derivative reads

G′(z) = ⟨T, ∂yψ(·, z)⟩ = ⟨T, φ(·, z)⟩.

Integrating over the parameter z, we get⟨
T,

∫
t<z

φ(·, t)dt
⟩

= G(z) =

∫
t<z

G′(t)dt =

∫
t<z

⟨T, φ(·, t)⟩dt .

Taking z = A, we obtain the required statement in the case p = 1.

For p > 1, we proceed by induction on p. Let φ ∈ C∞0 (Ω×Rp). We split the variable z = (z′, t) with
z′ ∈ Rp−1. Using the result in the case p = 1, we get, for every fixed z′ ∈ Rp−1:⟨

T,

∫
R
φ(·, z′, t) dt

⟩
=

∫
R
⟨T, φ(·, z′, t)⟩ dt .

It remains to apply the induction assumption to φ̃ ∈ C∞0 (Ω× Rp−1) defined by

φ̃(x, z′) =

∫
R
φ(x, z′, t) dt .
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Indeed, using Fubini’s theorem we get∫
Rp

⟨T, φ(·, z′, t)⟩dz′ dt =
∫
Rp−1

⟨T, φ̃(·, z′)⟩dz′ =
⟨
T,

∫
Rp−1

φ̃(·, z′) dz′
⟩

=

⟨
T,

∫
Rp

φ(·, z′, t) dz′ dt
⟩
.

Let us now finally come back to the proof of Proposition 2.3.18 on the regularization by convolution.
Fix φ ∈ C∞0 (Ω), and choose ε > 0 small enough such that suppφ ⊂ Ωε. Applying Proposition 2.3.19
— derivation under the bracket— to the function

φ(x)F ε(x) = ⟨T, φ(x)ρε(x− ·)⟩

(which is well-defined for the above values of ε), we infer φF ε ∈ C∞0 (Ω) and

∀α ∈ Nd , ∂α(φF ε)(x) = ⟨T, ∂αx (φ(x)ρε(x− ·))⟩ .

Take x0 ∈ Ωε, and choose φ a plateau function near x0 ∈ Ω. We then obtain the first statement of
the proposition:

∀α ∈ Nd , ∂αF ε(x0) = ⟨T, ∂αρε(x0 − ·)⟩ .
As for the second statement, we apply Proposition 2.3.21 — integration under the bracket — to obtain∫

Ω

φ(x)F ε(x) dx = ⟨T, φε⟩ , φε(y) :=

∫
Rd

φ(x)ρε(x− y) dx = ϕ ∗ ρ̃ε(x) ,

where ρ̃(x) := ρ(−x). Notice that a simple change of variables x = y + εz provides

φε(y) =

∫
Rd

φ(y + εz)ρ(z) dz .

Since ρ is supported in the unit ball, we observe that φε is supported in a fixed compact subset of Ω
if ε is small enough. Furthermore, the standard derivation under the integral yields φε ∈ C∞0 (Ω) and

∀α ∈ Nd , ∂αφε(y) =

∫
Rd

∂αφ(y + εz)ρ(z) dz .

Passing to the limit as ε tends, to 0, ∂αφε converges uniformly to ∂αφ. We conclude that φε converges
to φ in D(Ω). Consequently,

⟨T, φε⟩ −→
ε→0
⟨T, φ⟩ .

The proof of Proposition 2.3.18 is complete.

Corollary 2.3.22 Every distribution on Ω is the limit (in D ′(Ω)) of a sequence of test functions.

Proof.— For every j ≥ 1, define

Kj =

{
x ∈ Ω : d(x, ∁Ω) ≥ 1

j
, |x| ≤ j

}
= Ω1/j ∩B(0, j) .

Distributions and PDEs, Fall 2022 Stéphane Nonnenmacher



CHAPTER 2. DISTRIBUTIONS IN SEVERAL VARIABLES 89

Then Kj is a compact subset of Ω, Kj ⊂ K̊j+1 and
∪
j≥1Kj = Ω.

Choose χj ∈ D(K̊j+1) a plateau function near Kj and consider a sequence (εj) converging to 0 such
that

Kj+1 ⊂ Ωεj .

Then the function
Fj(x) = χj(x)⟨T, ρεj(x− .)⟩

is well-defined since suppχj ⊂ K̊j+1, while the second factor (average of T in the ball B(x, εj)) is
well-defined for x ∈ Kj+1 ⊂ Ωεj . By Proposition 2.3.18 and by the above support information, we
know that Fj ∈ C∞0 (Ω). Furthermore, if φ ∈ D(Ω), the support of φ is covered by a finite union of
the open subsets K̊j ’s, hence is contained into some Kj0. Then, for j ≥ j0, we have φ = χjφ, hence∫

Ω

φ(x)Fj(x) dx =

∫
Ω

φ(x)⟨T, ρεj(x− .)⟩ dx ,

which converges to ⟨T, φ⟩ by Proposition 2.3.18. Therefore Fj → T . We are now ready to

ε
jΩ

Kj+1

jK
1/j

j
ε

j+1

j

0

Ω

Figure 2.5: Construction of the function Fj approximating T .

characterize a C1 distribution as if it were a function.

Corollary 2.3.23 Let T ∈ D ′(Ω) such that, for every j ∈ {1, . . . , d}, ∂jT ∈ C0(Ω). Then
T ∈ C1(Ω).

Remark 2.3.24 The proof below is significantly more intricate than its dimension 1 analogue.
Indeed, the analogue of the integral formula used in Corollary 1.4.9 in Chapter 1 is much more
complicated in several space dimensions, so we prefer to proceed differently. Moreover, let us mention
that, as opposed to the one dimensional case, the assumptions ∂jT ∈ L1

loc(Ω), j = 1, . . . , d, do not
lead to T ∈ C0(Ω), but only to T ∈ Lploc(Ω) for p = d

d−1 (Sobolev estimates).

Let us now prove Corollary 2.3.23. By the gluing principle, it is enough to prove it locally, so we may
assume that Ω is a ball B. For every j, denote by fj ∈ C0(B) the continuous function defined by
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∂jT . As above, we define, on the smaller ball Bε, the smooth function F ε(x) = ⟨T, ρε(x − .)⟩. Our
goal is to show that F ε converges to a C1 function when ε→ 0.

Notice that, using the derivation under the bracket,

∂jF
ε(x) = ⟨T, ∂xjρε(x− .)⟩ = −⟨T, ∂yj(ρε(x− .))⟩ = ⟨∂jT, ρε(x− .)⟩ =

∫
Ω

fj(y)ρε(x− y) dy .

To integrate this expression, we fix any ball B′ ⊂⊂ B and ε0 > 0 such that B′ ⊂ Bε0. Then the
family (∂jF

ε)ε<ε0 converges uniformly to fj on B′ as ε tends to 0. Furthermore, picking χ ∈ D(B′)
of integral 1, we have, using the Taylor formula:

F ε(x)−
∫
B

χ(y)F ε(y) dy =

∫
B

χ(y)(F ε(x)−F ε(y)) dy =
d∑
j=1

∫ 1

0

∫
B

χ(y)(xj−yj)∂jF ε(y+t(x−y)) dy dt.

The right hand side converges uniformly on B′ to

d∑
j=1

∫ 1

0

∫
B

χ(y) (xj − yj) fj(y + t(x− y)) dy dt,

which is obviously a continuous function onB′. On the other hand, by Proposition 2.3.18, the constant
term on the left hand side converges to∫

B

χ(y)F ε(y) dy −→
ε→0
⟨T, χ⟩ ,

Hence, the remaining term F ε converges uniformly on B′ to some continuous function F . Since each
∂jF

ε is uniformly convergent on B′, we conclude that each ∂jF = fj, and hence that F ∈ C1(B′).
But we also know by Proposition 2.3.18 that T|B′ = F . Since B′ is arbitrary, this completes the proof.

A very useful property of the convergence of distributions is the following Lemma, which is a conse-
quence of the principle of uniform boundedness proved at the end of this chapter.

Lemma 2.3.25 (Bicontinuity of the bracket) Let (Tn) be sequence in D ′(Ω) and (φn) be a
sequence in D(Ω). We assume that Tn → T in D ′(Ω) and φn → φ in D(Ω). Then

⟨Tn, φn⟩ → ⟨T, φ⟩ .

We close this subsection by a useful remark on the gluing principle for convergence of sequences of
distributions.

Proposition 2.3.26 Let (Tn) be a sequence of distributions on Ω. Assume

Ω =
∪
j∈J

Ωj

for some collection (Ωj)j∈J of open subsets, and that, for every j ∈ J , (Tn)|Ωj
converges to some

T (j) ∈ D ′(Ωj). Then Tn is convergent in D ′(Ω).
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Proof.— Let K be a compact subset of Ω. From Proposition 2.2.3 let (χj)j∈J be a family of test
functions, which are identically 0 except for a finite set of indices j, and such that

supp(χj) ⊂ Ωj ,
∑
j∈J

χj = 1 on K .

Then, for every test function φ supported in K, we have

⟨Tn, φ⟩ =
∑
j∈J

⟨Tn, χjφ⟩ −→
n→∞

∑
j∈J

⟨T (j), χjφ⟩ .

Since each T (j) is a distribution, the right hand side is estimated by C∥φ∥Cm for some C > 0 and
m ∈ N only depending on the compact K. Hence Tn is convergent in D ′(Ω).

2.4 Superficial measures and the jump formula

2.4.1 Motivation

In this section, we come back to the problem of identifying the partial derivatives of the characteristic
function of an open set U ⊂ Ω. It is easy to check that these derivatives are distributions supported
by the boundary ∂U of U . Under suitable assumptions on U , we shall show that these distributions
are of order 0, and can be expressed in terms of a positive measure supported by ∂U , called the
superficial measure on the hypersurface ∂U .

We first need to define the superficial measure on a hypersurface, which is the purpose of the next
subsection. An intuitive way to define a superficial measure of a subset of an hypersurface is to thicken
this subset into a slab of thickness ε, and to to take the limit, as ε tends to 0, of the ratio to ε of the
Lebesgue measure of this slab. The next construction makes rigorous this intuitive definition.

2.4.2 Reminder on smooth hypersurfaces in Rd

I thank Thomas Letendre for adding this subsection to the notes. The material in this subsection can
be found for instance in the textbook Introduction aux variétés différentielles by Jacques Lafontaine,
EDP Sciences, 2010 (Chap. 1, sections C and D).

Let Ω ⊂ Rd be an open set, and consider a subset Σ ⊂ Ω. Our goal is to characterize whether Σ is a
Ck-smooth hypersurface of Ω.

Theorem 2.4.1 Consider a ∈ Σ, and k ∈ N∗. Then the following statements are equivalent to
one another:
i) (local straightening) There exists U a neighbourhood of a in Ω, V a neighbourhood of 0 ∈ Rd,
Φ : U → V a Ck diffeomorphism, such that

Φ(Σ ∩ U) = ({0} × Rd−1) ∩ V .
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ii) (zero set of a submersion) There exists U a neighbourhood of a in Ω, f ∈ Ck(U,R) such
that ∇f nowhere vanishes, and such that Σ ∩ U = f−1({0}).
iii) (local graph) Up to a permutation of the coordinates on Rd, there exists U a neighbourhood
of a = (a1, . . . , ad) in Ω, W a neighbourhood of (a2, . . . , ad) in Rd−1, and q ∈ Ck(W,R) such
that

Σ ∩ U = Gr(q) = {(x1, y) ∈ Rd ; x1 = q(y), y ∈ W}.

Proof.— i) ⇒ ii) Let Φ : U → V be as indicated. Let us note π : Rd → R the first coordinate map
given by π(x) = x1, and define f = π ◦ Φ : U → R. Then the differential form df(x) = dπ ◦ dΦ(x)
is surjective at each point x ∈ U , since the matrix dΦ(x) is invertible and dπ is surjective. As a result
f is a submersion, and Σ = f−1(0).

ii) ⇒ iii) We know that ∇f(x) ̸= 0 at each point x ∈ U . Up to a permutation of the coordinates,
we may assume that near some a ∈ Σ, ∂x1f(x) ̸= 0. By the implicit function theorem, there exists a
neighbourhood V of a in U , and aCk function q defined in a neighbourhoodW of (a2, . . . , ad) ∈ Rd−1,
such that, in the neighbourhood V ,

f(x) = 0 iff x1 = q(x2, . . . , xd) .

iii)⇒ i) Assume that Σ ∩ U = Gr(q). Up to translation of the coordinates, we may assume that the
base point a = 0. Then, let us define

Φ : (x1, . . . , xd) 7→
(
x1 − q(x2, . . . , xd), x2, . . . , xd

)
.

It is easy to check that Φ : U 7→ Φ(U) ⊂ Rd is a Ck diffeomorphism, which maps Σ to the local
hyperplane {x1 = 0}.

Definition 2.4.2 If there exists k ∈ N∗ such that the above equivalent statements hold for all
a ∈ Σ, we say that Σ is a (boundaryless) hypersurface of Ω, of regularity Ck.

According to statement i), a hypersurface (equivalently, a submanifold of dimension d − 1) locally
resembles a piece of hyperplane (up to a Ck diffeomorphism).

The easiest characterization to check is usually ii), eventhough it is the least intuitive one.

Definition 2.4.3 We say that a function f ∈ Ck(Ω,R) vanishes transversally if,

∀x ∈ Ω, f(x) = 0 =⇒ ∇f(x) ̸= 0 .
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Lemma 2.4.4 If f ∈ Ck(Ω,R) vanishes transversally, then its zero locus Σ := f−1(0) is a Ck

hypersurface.

Proof.— When we restrict such a function f to the open set Ωf := {x ∈ Ω, ∇f(x) ̸= 0} ⊃ Σ, it
defines a submersion. The submersion theorem states that the zero locus of f , Σ := f−1(0) ⊂ Ωf is
a Ck hypersurface.

2.4.3 Examples of hypersurfaces

• if U ⊂ Rd−1 is open, then U × {0} is a hypersurface in Rd.

• for U ⊂ Rd−1 open, the graph of any function q ∈ Ck(U,R) is a hypersurface in Rd.

• The affine hyperplanes in Rd are hypersurfaces.

• If one takes the function f : x ∈ Rd 7→ |x|2 − 1, then its zero locus f−1(0) = Sd−1 is the
d− 1-dimensional unit sphere, which is a hypersurface in Rd.

• the intersection of a hypersurface Σ ⊂ Ω with an open subset U ⊂ Ω is a hypersurface.

• in dimension d = 1, the hypersurfaces of Ω ⊂ R are the discrete sets of points in Ω, that is the
sets without accumulation points in Ω.

• in dimension d = 2, each connected component of a hypersurface Σ is a Ck curve without
multiple points. The definition allows curves with boundaries.

OK
OK

NO

NO

NO

Figure 2.6: Smooth curves in R2 (the blue points are not part of the curves), and curves with singu-
larities which are not hypersurfaces.

• in d = 3, hypersurfaces are the usual surfaces embedded in R3, with no singularity (edge,
corner, conical point,...), but possible boundaries.
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NON

OK
OK

OK

OK

OK

NON

Figure 2.7: Surfaces in R3 (the blue boundaries are not part of the surface), and surfaces with singu-
larities (edges, corners, conical point). The last one is a Möbius strip.

In the previous examples, we notice that some hypersurfacesΣ admit nonempty boundary ∂Σ = Σ\Σ,
where the closure is taken in the ambient open set Ω. This is the case, for instance, of open curves in
d = 1 (left on fig. 2.6), of open surfaces in d = 2 (see the “open handle” or the Möbius strip in fig. 2.7),
if the ambient open set Ω = Rd. For the hypersurfaces to satisfy the conditions of Theorem 2.4.1, it
is important that the boundary ∂Σ is not contained in Σ: if we zoom onto a point on the boundary,
we do not see a hyperplane, but rather a half-hyperplane.

In the following, we will be most often concerned with closed hypersurfaces, where we add the condition
that Σ is closed in Ω. This condition will forbid the above situations with boundary.

2.4.4 Preliminaries on non–negative distributions

After this geometric interlude, let us come back to distributions. In this section we show that the
nature of positive distributions in d dimensions is similar to the 1-dimensional case.

Definition 2.4.5 We say that T ∈ D ′(Ω) is a nonnegative distribution if ⟨T, φ⟩ ∈ R+ for any
function φ ∈ D(Ω) with values in R+.

Proposition 2.4.6 If T ∈ D ′(Ω) is non-negative, then it is a distribution of order 0.

Distributions and PDEs, Fall 2022 Stéphane Nonnenmacher



CHAPTER 2. DISTRIBUTIONS IN SEVERAL VARIABLES 95

Proof.— Take T ∈ D ′(Ω) a nonnegative distribution. Let K ⊂ Ω be a compact subset, and χD(Ω)
a plateau function above K. For φ ∈ DK(Ω) real valued, one has

∀x ∈ Ω, −χ sup |φ| ≤ φ(x) ≤ χ sup |φ|,

hence, using the nonnegativity of T , we get:

⟨T, φ+ χ sup |φ|⟩ ≥ 0 and ⟨T, χ sup |φ| − φ⟩ ≥ 0.

These two inequalities can be summarized as:

|⟨T, φ⟩| ≤ ⟨T, χ⟩ sup |φ|.

Now, if φ ∈ DK(Ω) is complex valued, we decompose it as φ = φ1 + iφ2 with φ1, φ2 real valued.
Applying the above reasoning to φ1, φ2, we get:

|⟨T, φ⟩| = |⟨T, φ1 + iφ2⟩| ≤ |⟨T, φ1⟩|+ |⟨T, φ2⟩| ≤ C sup |φ1|+ C sup |φ2| ≤ C sup |φ|,

which concludes the proof of the proposition.

From Proposition 2.4.6 — and the fact that adapted regularisation procedures preserve the nonnega-
tivity property —, nonnegative distributions therefore extend to nonnegative linear forms on C00(Ω).
By the Riesz representation theorem, nonnegative linear forms on C00(I) are in 1-to-1 correspondence
with positive Borel measures on Ω which are finite on compact subsets, which are also called Radon
measures.

Theorem 2.4.7 For every nonnegative distribution T on Ω, there exists a unique Radon measure
µ such that

∀φ ∈ C00(Ω) , ⟨T, φ⟩ =
∫
Ω

φdµ .

2.4.5 The measure δ(f) and the superficial measure associated to {f = 0}.

Let Ω be open subset of Rd, and let f : Ω→ R be a C1 function which vanishes transversally:

(2.4.2) ∀x ∈ Ω , f(x) = 0⇒ ∇f(x) ̸= 0 .

We denote by Σ = {x ∈ Ω, f(x) = 0}. According to the Lemma 2.4.4, Σ is a C2 hypersurface in Rd.
The following theorem constructs positive measures supported on Σ.
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Theorem 2.4.8 There exists a positive distribution δ(f) ∈ D ′(Ω), supported by Σ, such that,
for every function ρ ∈ C00(R) such that ∫

R
ρ(t) dt = 1 ,

the family of distributions associated with the L1
loc functions µε : Ω→ R defined by

µε(x) := ρ
1

ε
ρ
(f(x)

ε

)
= ρε ◦ f, ϵ ∈]0, 1],

converges in D ′(Ω) to δ(f) when ε↘ 0.
Furthermore, if g : Ω→ R is another C1 function which satisfies (2.4.2) and Σ = {x ∈ Ω, g(x) =
0}, then

(2.4.3) |∇g| δ(g) = |∇f | δ(f) .

Proof.— 1) By the gluing principle for convergence of distributions — Proposition 2.3.26 —, it is enough
to prove that every point a of Ω admits an open neighborhood Va on which µε converges in the sense
of distributions. Moreover, the gluing principle shows that the positivity of this limit near each point a
implies that the limit is a positive distribution on Ω — see the remark after Proposition 2.3.8.

2) Let a ∈ Ω. If f(a) ̸= 0, then the continuity of f implies that |f | ≥ c > 0 on some neighborhood
of a, so that, since ρ is compactly supported in R, µε is identically zero on this neighborhood if ε is
small enough. Hence µε tends to 0 in a neighborhood of a. This shows that the support of the limiting
distribution must be contained in Σ.

3) Now assume that a ∈ Σ, in other words that f(a) = 0. By the assumption (2.4.2), ∇f(a) ̸= 0,
so there exists j ∈ {1, . . . , d} such that ∂jf(a) ≠ 0. Let us assume for instance that j = 1, and
∂1f(a) > 0.

Let us write points in Rd as x = (x1, y), with x1 ∈ R and y ∈ Rd−1. As used in Theorem 2.4.1, by the
implicit function theorem there exists an open interval I ⊂ R and an open subset W ⊂ Rd−1 such
that a = (a1, b) ∈ I ×W ⊂ Ω, and a C1 function q : W → I such that

∀(x1, y) ∈ I ×W , f(x1, y) = 0 ⇐⇒ x1 = q(y) .

We then use the Taylor-Lagrange expansion in the x1 variable, to write

∀(x1, y) ∈ I ×W, f(x1, y) = f(q(y), y)︸ ︷︷ ︸ 0 + (x1 − q(y))
∫ 1

0

∂1f
(
q(y) + t

(
x1 − q(y)

)
, y
)
dt︸ ︷︷ ︸m(x1, y)

= m(x1, y)
(
x1 − q(y)

)
,

where we used the fact that f(q(y), y) = 0 for all y ∈ W . We observe thatm
(
q(y), y

)
= ∂1f

(
q(y), y

)
>

0. By the continuity of ∂1f , if W, I are chosen small enough, ∂1f(x1, y) > 0 for (x1, y) ∈ I ×W ; as
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a result, there exists 0 < c < C such that

∀(x1, y) ∈ I ×W, c ≤ m(x1, y) ≤ C .

Let us now choose a test function φ ∈ D(I ×W ), and compute

⟨µϵ, φ⟩ =
∫
I×W

φ(x)µε(x) dx =

∫
W

∫
I

φ(x1, y) ρε

(
m(x1, y)

(
x1 − q(y)

))
dx1 dy .

Extending φ by 0 to (R \ I)×W , we can write the inner integral as∫
R
φ(x1, y)

1

ε
ρ

(
m(x1, y)

(
x1 − q(y)

)
ε

)
dx1 =

∫
R
φ
(
q(y) + εz, y

)
ρ
(
m
(
q(y) + εz, y

)
z
)
dz ,

where we used the change of variables x1 = q(y) + εz (here y is fixed). Since m ≥ c on I ×W and
supp ρ ⊂ [−A,A] for some A > 0, the argument in the integral is supported in {|z| ≤ A/c}.

Let us restore the integration over y ∈ W . Since the integrand is dominated by ∥ρ∥∞∥φ∥∞ on the
bounded set [−A/c, A/c]×W , we get by dominated convergence:∫
W

∫ A/c

−A/c
φ
(
q(y) + εz, y

)
ρ
(
m
(
q(y) + εz, y

)
z
)
dz dy

→
ϵ→ 0

∫
W

∫ A/c

−A/c
φ
(
q(y), y

)
ρ
(
m
(
q(y), y

)
z
)
dz dy

=

∫
W

φ
(
q(y), y

)
m
(
q(y), y

) dy
=

∫
W

φ(q(y), y)

∂1f
(
q(y), y

) dy .
In the second equality we have used the change of variables t = m

(
q(y), y

)
z, and the normalization∫

ρ(t) dt = 1.

Relaxing the assumption f
(
q(y), y

)
> 0 to f

(
q(y), y

)
̸= 0, we prove more generally that:

(2.4.4) lim
ϵ→0

∫
I×W

φ(x)µε(x) dx =

∫
W

φ(q(y), y)

|∂1f
(
q(y), y

)
|
dy .

This shows that, on the neighbourhood I×W , the distributions µε have a limit when ε↘ 0. The above
formula shows that the limit distribution, which we denote by δ(f)|W×I| is supported on {(q(y), y); y ∈
W} = Σ ∩ (I ×W ), and is nonnegative. This limit distribution does not depend on the choice of ρ,
but it depends on the function f used to define Σ.

4) In order to let appear |∇f | in the above expression, we rewrite the limiting distribution in a different
way. The identity f

(
q(y), y

)
= 0 for all y ∈ W can be differentiated w.r.t. y ∈ W : from the chain

rule one gets
∀j = 2, . . . , d, ∂yjq(y) ∂x1f

(
q(y), y

)
+ ∂yjf

(
q(y), y

)
= 0 .

Putting these equations together, we obtain the vector identity:

∇f
(
q(y), y

)
= ∂x1f

(
q(y), y

)


1
−∂y2q(y)

...
−∂ydq(y)

 .
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Taking the norms of these vectors, we find

|∇f
(
q(y), y

)
| = |∂x1f

(
q(y), y

)
|
(
1 + |∇q(y)|2

)1/2
Substituting this identity in (2.4.4) we find

lim
ϵ→0

∫
I×W

φ(x)µε(x) dx =

∫
W

φ(q(y), y)

(
1 + |∇q(y)|2

)1/2
||∇f

(
q(y), y

)
|
dy := ⟨δ(f)|I×W , φ⟩ .

The distribution δ(f)|I×W is nonnegative, hence it defines a Radon measure supported on Σ∩(I×W ).

5) It makes sense to multiply this measure by the continuous function |∇f | ∈ C0(I ×W,R∗+): one
obtains another Radon measure, which we denote |∇f | δ(f):

∀φ ∈ C00(I ×W ), ⟨|∇f | δ(f), φ⟩ =
∫
W

φ(q(y), y)
(
1 + |∇q(y)|2

) 1
2 dy .

We notice that the integral on the right hand side does not depend on the function f any longer, but
only on the function q defining Σ through its graph.

If g is another C1 transversally vanishing function such that and Σ = {x ∈ Ω, g(x) = 0}, the same
computation as with f yields — possibly taking a different open neighbourhood of a, I ′ ×W ′:

∀φ ∈ C00(I ′ ×W ′), ⟨|∇g| δ(g), φ⟩ =
∫
W ′
φ(q(y), y)

(
1 + |∇q(y)|2

) 1
2 dy .

As a result, the distributions |∇g| δ(g) and |∇f | δ(f) are equal in (I ∩ I ′)× (W ∩W ′).

By the gluing principle, these distributions are equal in the whole of Ω:

|∇g| δ(g) = |∇f | δ(f) .

From this proposition, we infer that the positive distribution |∇f | δ(f) does not depend on the choice
of the transversally vanishing function f used to define Σ. This positive distribution is intrinsically
associated to Σ.

Definition 2.4.9 The superficial measure of Σ is the positive distribution

σ = |∇f | δ(f) ,

where f is any C1 transversally vanishing function such that Σ = {f = 0}.

Let us retain from the above definition and from the proof of Theorem 2.4.8 the following two important
facts about the superficial measure on Σ:
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i) if Σ = {f = 0} with f transversally vanishing, then, for every φ ∈ C00(Ω),∫
Ω

1

ε
ρ

(
f(x)

ε

)
φ(x) dx

→
ε→ 0

∫
Ω

φ(x)
dσ(x)

|∇f(x)|
.

ii) if Σ ∩ (I × W ) = {(q(y), y), y ∈ W}, where q : W → I is a C1 function, then, for every
continuous function φ supported into I ×W ,

(2.4.5)

∫
I×W

φ(x) dσ(x) =

∫
W

φ(q(y), y)
(
1 + |∇q(y)|2

) 1
2 dy .

This last expression admits a geometric interpretation: if we call |dy| the area of an infinites-
imal element of Rd−1 near the point y, then (1 + |∇q(y)|2) 1

2 |dy| is the area of the lift of this
infinitesimal element to Σ; the extra factor is due to the slope of this lifted element.

Example 2.4.10 (The superficial measure on a sphere) Let R > 0. Then the function

fR : Rd \ {0} → R
x 7→ |x| −R

is in C1(Rd \ {0}), and {fR = 0} defines the sphere SR of radius R centered at the origin. Notice
that

∇fR(x) =
x

|x|
,

which nowhere vanishes. The intersection of SR with the “upper half-space” ]0,+∞[×Rd−1 can be
described by the equation {x1 = q(y), |y| < R}, where

q(y) =
√
R2 − |y|2 |y| < R .

Notice that
∇q(y) = −y√

R2 − |y|2
, 1 + |∇q(y)|2 = r2

r2 − |y|2
,

so the superficial measure σR on SR is given by σR = δ(fr). For any φ ∈ C0
0(R∗+ × Rd−1),∫

R∗
+×Rd−1

φ(x) dσR(x) =

∫
|y|<R

φ
(√

R2 − |y|2, y
) Rdy√

R2 − |y|2
.

Let us prove the following simple relation between the measures σR and σ1:

(2.4.6) ∀φ ∈ C00(Rd)

∫
Rd

φ(x) dσR(x) = Rd−1
∫
Rd

φ(Ry) dσ1(y) .

Indeed, using the original definition of σR from the function fR, we find∫
Rd

φ(x) dσR(x) = lim
ε→0

1

ε

∫
Rd

ρ

(
|x| −R

ε

)
φ(x) dx

x=Ry
= lim

ε→0

R

ε
Rd−1

∫
Rd

ρ

(
R(|y| − 1)

ε

)
φ(Ry) dy

= Rd−1
∫
Rd

φ(Ry) dσ1(y) ,
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using the rescaled small parameter ε′ = ε
r
.

Using this identity, in dimension d = 2 we may parametrize the measures σR by the angular coordi-
nate θ ∈ [0, 2π[, and obtain∫

R2

φ(x) dσR(x) =

∫ 2π

0

φ(R cos θ,R sin θ)Rdθ .

2.4.6 Integration on level sets : the smooth coarea formula

The above definition of the superficial measure easily leads to an important formula of integral calculus,
which can be viewed as a “nonlinear Fubini theorem”.

Let f = Ω→ R be a C1 function such that

(2.4.7) ∀x ∈ Ω , ∇f(x) ̸= 0 .

It is easy to prove that the set f(Ω) := {f(x), x ∈ Ω} is an open subset of R — hence is an open
interval if Ω is connected. Indeed, if t0 = f(a) with a ∈ Ω, and if, say, ∂1f(a) ̸= 0, then, on a small
neighborhood I × W of a = (a1, b), we have ∂1f ̸= 0, hence the function x1 ∈ I 7→ f(x1, b) is
strictly monotone, and consequently its range is an open interval of R containing t0.

For every t ∈ f(Ω), denote by Σt the level set {x ∈ Ω ; f(x) = t}, and by σt the superficial measure
on Σt, constructed in the previous section. The hypersurfaces (Σt)t∈f(Ω) form a smooth foliation of
Ω.

The smooth coarea formula takes the following form. It can be viewed as a Fubini theorem, with
respect to the foliation Ω =

⊔
t∈f(Ω)Σt.

Proposition 2.4.11 (Smooth coarea formula) For every φ ∈ C00(Ω),∫
Ω

φ(x) dx =

∫
f(Ω)

(∫
Σt

φ(x)
dσt(x)

|∇f(x)|

)
dt .

Proof.— We will go back to the construction of σt as in Theorem 2.4.8. We thus use a convolution
kernel ρ ∈ C00(R) of integral 1. For every x ∈ Ω, we observe that, for every ε > 0,

1 =
1

ε

∫
R
ρ

(
f(x)− t

ε

)
dt .

We plug this identity in the x integral and apply the Fubini theorem (the integrand is continuous and
compactly supported in (x, t)):∫

Ω

φ(x) dx =

∫
R

(∫
Ω

1

ε
ρ

(
f(x)− t

ε

)
φ(x) dx

)
dt .
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a

t

f(a)

Ω
Σ

Figure 2.8: Foliation of Ω by the hypersurfaces Σt = f−1(t).

Let us call the inner integral

Iε(t) :=

∫
Ω

1

ε
ρ

(
f(x)− t

ε

)
φ(x) dx .

This is a continuous function of t ∈ R. For t ∈ R fixed, the Theorem 2.4.8 shows that, when ε→ 0,

Iε(t)→ I0(t) :=

{
0 if t ̸∈ f(Ω)∫
Σt
φ(x) dσt(x)

|∇f(x)| if t ∈ f(Ω) .

Since Iε are continuous functions, their pointwise limit I0 is necessarily measurable.

To show the requested formula, we need to show that
∫
R Iε(t) dt →

∫
R I0(t) dt as ε → 0. This will

be done by invoking the Dominated Convergence Theorem. First we notice that, because φ and ρ
are compactly supported, Iε(t) is supported inside a compact subset K ⋐ R, which can be chosen
uniform when ε ∈]0, 1]. So we just need to prove that the family (Iε)ε∈]0,1] is dominated by an
integrable function.

By the gluing principle, it is enough to assume that the test function φ is supported inside a small open
subset V of Ω. We may then apply the methods of Theorem 2.4.8, but simultaneously for a family of
hypersurfaces (Σt)t∈J .

Assuming that ∂1f ̸= 0 on a small open set V = I ×W . The equation {(x1, y) ∈ V, f(x1, y) = t}
defines the set Σt ∩ V , which is nonempty only for t in some short interval J ⊂ R. Then, the implicit
function theorem shows that, if V is small enough, Σt ∩ V can be described by the graph of a C1
function q(·, t). Actually, q is C1 in both variables (y, t).
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We can reproduce the proof of Theorem 2.4.8 with the additional parameter t. For any φ ∈ D(I×W ),

Iε(t) =

∫
W

∫
I

1

ε
ρ

(
m(x1, y, t)

(
x1 − q(y, t)

)
ε

)
φ(x1, y) dx1 dy

=

∫
W

∫
R
ρ
(
m
(
q(y, t) + εz, y

)
z
)
φ
(
q(y, t) + εz, y

)
dz dy .

The support integral is uniformly bounded, since φ is compactly supported and, as we showed Like
in the proof of Theorem 2.4.8, we have a uniform lower bound |m(x1, y, t)| ≥ c > 0 for (x1, y, t) ∈
I ×W × J , which implies that the above integrand is supported in some bounded set [−A,A]×W .
The functions (Iε)ε∈]0,1] are then dominated by ∥φ∥∞∥ρ∥∞1l[−A,A]×W . This completes the proof of the
dominated convergence theorem, hence of the coarea formula.

Corollary 2.4.12 (Integration on spherical level sets) For every φ ∈ C00(Rd \ {0}), we have∫
Rd\{0}

φ(x) dx =

∫ ∞
0

∫
S1

φ(rω) dσ1(ω) r
d−1dr .

Proof.— Apply Proposition 2.4.11 to the function f : x ∈ Rd \ {0} 7→ |x|, which defines the foliation
into spheres (St)t>0, and apply the connection (2.4.6) between measure on St and on S1.

2.4.7 Superficial measure on a closed hypersurface, and the jump formula
for a regular open subset

In the previous section, we defined a hypersurface Σ as the zero locus of a single, transversally
vanishing function f ∈ C1(Ω,R), and used this definition to cook up the superficial measure σ on
Σ = Σf .

In the present section, we will proceed differently, namely by starting from a hypersurface Σ ⊂ Ω,
as described in Section 2.4.2, without assuming that it can be defined as the zero locus of a global
function f .

We start from a definition of a hypersurface which is more general than the one used in the previous
section, but slightly more restrictive than the one used in Theorem 2.4.1.

Definition 2.4.13 Let Ω be an open subset of Rd. A closed C1 hypersurface of Ω is a closed
subset Σ ⊂ Ω with the following property: every a ∈ Σ admits an open neighborhood V in Ω,
such that there exists a transversally vanishing function f ∈ C1(V,R) with

Σ ∩ V = {x ∈ V, f(x) = 0} .
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As opposed to the situation of the previous section, we do not impose the existence of a global function
f whose zero locus equals Σ. We are then close to the definition of Theorem 2.4.1.

Compared with that theorem, we add the condition of closedness of Σ; this condition forbids the hy-
persurfaces with boundaries appearing in section 2.4.3 (see the discussion at the end of that section).

Proposition 2.4.14 Let Σ be a closed C1 hypersurface of Ω.
Then there exists a unique positive distribution σ supported in Σ, such that, for every open subset
V ⊂ Ω and transversally vanishing function f ∈ C1(V,R) defining Σ∩V , we have as distributions
in V :

|∇f | δ(f) = σ|V .

Furthermore, suppσ = Σ.

Proof.— Let us show that the existence and uniqueness of σ follow from Theorem 2.4.8 and the gluing
principle.

Indeed, given a ∈ Σ, consider Va ⊂ Ω and fa : Va → R as in the definition above. Applying
Theorem 2.4.8, we define the measure σa ∈ D ′(Va) by

σa = |∇fa| δ(fa) .

In the open set Ω \ Σ, we consider the trivial distribution σ̃ = 0 in D ′(Ω \ Σ). We have an open
covering of Ω:

Ω = (Ω \ Σ) ∪
∪
a∈Σ

Va .

Let us try to apply the gluing principle to this situation. The last part of Theorem 2.4.8 shows that, if
Va ∩ Vb ̸= ∅, then the measures σa and σb, restricted on Va ∩ Vb, will coincide. Besides, since σa are
all supported on Σ, σa and σ̃ coincide on Va \ Σ. The local measures (σa) and σ̃ are thus compatible
with one another, and define a single measure σ on Ω, supported on Σ. The uniqueness of each σa
implies the uniqueness of σ.

Notice that the closedness of Σ is crucial in this proof: we use it when defining σ̃ on the open set
Ω \ Σ.

Definition 2.4.15 The measure σ constructed in the previous proposition is called the superficial
measure on the closed hypersurface Σ.

The above definition Σ allowed interesting topologies, for which there is no possible way to define
an “interior” and an “exterior” to our hypersurface. The following definition will lead us to examples
where the closed curve Σ automatically splits Ω \Σ into an “interior region” and an “exterior region”.
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Definition 2.4.16 Let U be an open subset of Ω. We say that U is a regular open subset of Ω
of class C1 if every point a ∈ ∂U admits an open neighborhood V in Ω, such that there exists
a transversally vanishing function f ∈ C1(V,R) with

U ∩ V = {x ∈ V, f(x) > 0} .

In such a situation, it easy to check that ∂U is a closed C1 hypersurface of Ω. Indeed, with the notation
of the above definition, one verifies that

∂U ∩ V = {x ∈ V, f(x) = 0} ,

and the transversal vanishing of f implies that ∇f(x) ̸= 0 for x ∈ ∂U ∩ V .

Yet, a regular open set is not only an open set whose boundary is a closed hypersurface. The above
definition also imposes that the open subset U is locally on one side (say, the “interior”) of this
hypersurface ! As a counterexample, U = Rd \ {x1 = 0} is not a regular subset of Rd, though its
boundary is the closed hypersurface {x1 = 0}.

This distinction between regular hypersurfaces Σ admitting an “interior side”, and regular hypersur-
faces Σ not admitting one, is of topological nature. Locally, these hypersurfaces are not distinguish-
able.

The existence of an “interior side” allows to introduce the following objects.

Definition 2.4.17 Let Ω be an open subset of Rd.

• If Σ is a closed C1 hypersurface of Ω and a ∈ Σ, the normal line to Σ at a is the affine line
a+ R∇f(a), where f is any function defining Σ locally near a as in Definition 2.4.13.

• If U is a regular open subset of Ω of class C1, the inward unit normal vector to U at
a ∈ ∂U is the unit vector

N int(a) =
∇f(a)
|∇f(a)|

,

where f is any function defining ∂U locally as in Definition 2.4.16.
The outward unit normal vector to U at a ∈ ∂U is

N ext(a) = −N int(a) .

These definitions make sense because of the independence of the objects with respect to the specific
function f . In the case of a closed hypersurface, we already checked, in the proof of Theorem 2.4.8,
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that the vectors ∇f(a) are all proportional to one another, so they define the same line. There exist
only two unit vectors on the normal line to ∂U at a ∈ ∂U . In the general case, there is no canonical
way to distinguish them. On the opposite, in the case of a regular open subset U , we can define
an “inward”, resp. an “outward” vector. These two vectors can be characterized by the following
property: for ε > 0 small enough, a+ εN int(a) ∈ U , while a+ εN ext(a) ∈ Ω \ U .

Finally, notice that the mapping N int : ∂U → Rd is continuous. We call it the inward unit normal
vector field to U . A similar definition holds for the outward unit normal vector field to U .

These stuctures attached to a regular open subset U will allow us to compute explicitly the first
derivative of the characteristic function 1lU .

Theorem 2.4.18 (The jump formula) Let U be a regular open subset of Ω of class C1. Denote
by σ the superficial measure on the closed hypersurface ∂U , and by N int : ∂U → Rd the inward
unit normal vector field to U . Then, in D ′(Ω),

∀j ∈ {1, . . . , d} , ∂j(1U) = N int
j σ ,

or in condensed form: ∇1U = N intσ .

Proof.— By the gluing principle, it is enough to prove this identity near every point a ∈ Ω.

1) If a ̸∈ ∂U , then 1U is a constant function in a neighborhood of a, so that ∂j(1U) = 0 in this
neighborhood, which is also the case of σ.

2) Assume a ∈ ∂U , and let f : V → R be a function near a as in Definition 2.4.16. Denote by
χ : R→ R a smooth “step function”, that is a C1 function such that

χ(z) =

{
0 if z < 0

1 if z ≥ 1 .

Then it is easy to check that

∀x ∈ V , 1U(x) = lim
ε→0

χ

(
f(x)

ε

)
.

Since the right hand side is uniformly bounded, the dominated convergence theorem implies that this
convergence also holds in D ′(V ). By the continuity of the derivative map in D ′(V ), we have

∂j(1U) = lim
ε→0

∂j

(
χ

(
f(x)

ε

))
= lim

ε→0

∂jf

ε
χ′
(
f(x)

ε

)
.

The function ρ = χ′ belongs to C00(R) and satisfies∫
R
ρ(z) dz =

∫ ∞
0

χ′(z) dz = 1 .
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Consequently, for every φ ∈ C00(V ),∫
Ω

φ(x)
1

ε
χ′
(
f(x)

ε

)
dx→ ⟨δ(f), φ⟩ ,

so that

∂j(1U) = ∂jf δ(f) =
∂jf

|∇f |
σ = N int

j σ .

As a corollary of this jump formula, we obtain a well-known formula of integral calculus,
dating back to the 19th century. It expresses the integral of a derivative over a regular open set U ,
in terms of boundary data.

Corollary 2.4.19 (The Gauss–Green formula, 1) Let U be a regular open subset of class C1 in
Ω (U may be unbounded). For every φ ∈ C10(Ω) and any j = 1, . . . , d:∫

U

∂jφ(x) dx =

∫
∂U

N ext
j (x)φ(x) dσ(x) .

Proof.— First assume φ ∈ D(Ω), and write the integral on the left as a distributional bracket:∫
U

∂jφ(x) dx = ⟨1lU , ∂jφ⟩ = −⟨∂j(1U), φ⟩ = −⟨N int
j σ, φ⟩ =

∫
∂U

N ext
j (x)φ(x) dσ(x) ,

where we used the jump formula in the third equality.

The general case φ ∈ C10(Ω) follows by a density argument. Namely, one can construct a sequence
(ϕn ∈ D(Ω))n such that the φn are supported in a common compact set, and ∥φn − ϕ∥C1 → 0 as
n→∞. The Gauss-Green formula holds for all the φn, and the C1 convergence shows that each side
of the equality converge to

∫
U
∂ϕ dx, resp.

∫
∂U
N ext
j φdσ. This shows that these two limits are equal.

Let us focus on the special case where U is a bounded regular open subset in Rd.

Definition 2.4.20 Let U be a bounded regular open subset of class C1 in Rd. We denote by
C1(U) the space of restrictions to U of C1 functions on Rd.

This definition allows us to formulate a Gauss-Grenn formula, by specifying a function φ only in Ū .

Corollary 2.4.21 (The Gauss–Green formula, compact set) Let U be a regular open subset of
class C1 in Rd, such that U is compact. For every φ ∈ C1(U) and every j = 1, . . . , d,∫

U

∂jφ(x) dx =

∫
∂U

N ext
j (x)φ(x) dσ(x) .
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Proof.— If φ ∈ C1(U), let φ̃ ∈ C1(Ũ) be an extension of φ to an open neighborhood Ũ of U . Let χ be
a cutoff function on U , compactly supported in Ũ (here we use the fact that U is compact). Applying
the Gauss–Green formula of Corollary 2.4.19 to χφ̃ ∈ C10(Rd), we directly obtain the formula stated
in the present corollary.

Remark 2.4.22 Applying either Gauss-Green formula to a product φψ of two functions, and using
the Leibniz formula, we obtain a multidimensional integration by parts formula, for integrals over
U . For instance, in the case U ⋐ Rd is compact and φ, ψ ∈ C1(U), we get for each j = 1, . . . , d:∫

U

∂jφ(x)ψ(x) dx = −
∫
U

φ(x)∂jψ(x) dx+

∫
∂U

N ext
j (x)φ(x)ψ(x) dσ(x) .

The last integral over ∂U is the boundary term of this integration by parts.

2.5 Sobolev spaces in an open set

In this section we define, as we had done in Chapter 1, subspaces of L2 functions admitting generalized
derivatives, which are called Sobolev spaces. We then use these space to solve some elliptic PDEs on
Ω.

We recall that, we identify a locally integrable function f with the associated distribution Tf .

2.5.1 Definition and general facts

Definition 2.5.1 Let Ω ⊂ Rd be an open set, and N ∈ N. A distribution u ∈ D ′(Ω) belongs to
HN(Ω) if, for all α ∈ Nd such that |α| ≤ N , it holds that ∂αu ∈ L2(Ω). We denote by (·|·)HN

the sesquilinear form defined on HN(Ω)×HN(Ω) by

(u|v)HN =
∑
|α|≤N

(∂αu|∂αv)L2 .

We also introduce the associated HN norm

∥u∥HN = (u|u)
1
2

HN =

∑
|α|≤N

∥∂αu∥2L2

 1
2

,

so that convergence of un to u in HN is equivalent to the convergence of ∂αun to ∂αu in L2 for every
|α| ≤ N .

Notice that H0(Ω) = L2(Ω). The structure of Hilbert space of L2(Ω) is transferred to HN(Ω), as
shown by the next proposition.
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Proposition 2.5.2 The sesquilinear form (·, ·)HN is a Hermitian scalar product, which makes
HN(Ω) a Hilbert space.

Proof.— The only nontrivial fact to show is the completeness of HN(Ω) with respect to the HN norm.
Let (uj) be a Cauchy sequence in HN(Ω). For all |α| ≤ N , the sequence (∂αuj) is Cauchy in L2, thus

converges in L2 to some vα ∈ L2. The convergence implies that uj
L2

→ v0 implies the convergence

uj
D ′
→ v0, so by continuity of the derivative on D ′, that ∂αuj

D ′
→ ∂αv0. We thus identify the distributions

∂αv0 = vα, and get the stronger convergence ∂αuj
L2

→ ∂αv0. This shows that v0 ∈ HN , and that
uj → v0 in HN(Ω).

Notice that, for N ≥ 1, u ∈ HN(Ω) if and only if u ∈ H1(Ω) and, for every j = 1, . . . , d − 1,
∂ju ∈ HN−1(Ω). By induction on N , this reduces many properties of HN(Ω) to the special case
N = 1, on which we are going to focus in what follows.

2.5.2 Variational formulation of some elliptic problems

Definition 2.5.3 Given an arbitrary open subset Ω of Rd, we denote by H1
0 (Ω) the closure of

D(Ω) in H1(Ω).

Note that H1
0 (Ω) is a closed subspace of the Hilbert space H1(Ω), hence it is a Hilbert space with the

inner product (·|·)H1 defined in the previous section.

In what follows, we are going to use the Laplacian differential operator, acting on T ∈ D ′(Ω) by

∆T =
d∑
j=1

∂2jT .

Our goal will be to solve a well-known PDE involving the Laplacian. It is known in phyiscs as the
screened Poisson equation arising in plasma physics, or the (inhomogeneous) time-independent Klein-
Gordon equation in relativistic wave mechanics.

Theorem 2.5.4 Let Ω be an arbitrary open subset of Rd. For each f ∈ L2(Ω) (which is called
the “source term”, or “inhomogeneous term”), there exists a unique u ∈ H1

0 (Ω) such that

(2.5.8) −∆u+ u = f in D ′(Ω).
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Proof.— The equation (2.5.8) in D ′(Ω) exactly means:

∀φ ∈ D(Ω) , ⟨−∆u+ u, φ⟩ =
∫
Ω

fφ dx .

Since we are looking for u ∈ H1
0 (Ω), we know in particular that u ∈ L2(Ω) and ∂ju ∈ L2(Ω) for

j = 1, . . . , d. Therefore, applying integration by parts in each of the variables xj, the left hand side
becomes

⟨−∆u+ u, φ⟩ =
d∑
j=1

∫
Ω

∂ju∂jφdx+

∫
Ω

uφdx = (φ|u)H1 .

Notice the absence of boundary terms, due to the vanishing of φ near ∂Ω.

Summing up, we are looking for some u ∈ H1
0 (Ω) such that,

∀φ ∈ D(Ω) , (φ|u)H1 =

∫
Ω

fφ dx .

Let us now extend the above identity to a larger class of test functions φ. Since both sides of the
above equation are linear forms of φ which are continuous for the H1 norm, this equality continuously
extends to test functions in H1

0 (Ω), the closure of D(Ω) in the H1 topology.

Our problem is thus equivalent to finding u ∈ H1
0 (Ω) such that

∀v ∈ H1
0 (Ω) , (v|u)H1 =

∫
Ω

fv dx .

We have transformed our PDE problem into a Hilbert space problem. Indeed, the linear form

v ∈ H1
0 (Ω) 7→ L(v) =

∫
Ω

fv dx

is obviously continuous w.r.to the H1 topology. As a result, by the Riesz representation theorem, this
continuous linear form L can be represented by the inner product with a unique element wL ∈ H1

0 (Ω):
L(v) = (v|wL)H1, for any v ∈ H1

0 . Hence this element wL solves our problem by setting u = w —
notice that the conjugate of a function in H1

0 (Ω) is still in H1
0 (Ω).

Let us complete this subsection by some remarks about the possible extensions of the above Theorem.

Remark 2.5.5 i) The L2 function f on the right hand side can be replaced more generally by
any distribution which extends into a continuous linear form on H1

0 (Ω). The space of such
distributions is denoted by H−1(Ω). Hence for T ∈ H−1(Ω), we can solve the equation
−∆u+ u = T by a unique u ∈ H1

0 (Ω).

ii) If q ∈ L∞(Ω) and there exists M ≥ m > 0 such that M ≥ q(x) ≥ m almost everywhere on
Ω, the sesquilinear form

(2.5.9) (u|v)q :=
d∑
j=1

(∂ju|∂jv)L2 +

∫
Ω

quv dx
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is an inner product on H1(Ω), inducing a norm which is equivalent to the H1 norm. Indeed,
for any u ∈ H1(Ω),

m∥u∥2L2 ≤
∫
q|u|2 dx ≤M∥u∥2L2 ,

so that
min(m, 1)∥u∥2H1 ≤ (u|u)q ≤ max(1,M)∥u∥2H1

Therefore H1(Ω) and H1
0 (Ω) are also Hilbert spaces for this new inner product. The equation

(2.5.10) −∆u+ qu = T in D ′(Ω) ,

for T ∈ H−1(Ω), can thus be solved by the same method as above, producing a unique
solution u ∈ H1

0 (Ω).

iii) The assumption M ≥ q ≥ m > 0 can be relaxed to M ≥ q ≥ 0 for special cases of open sets
Ω, in particular if Ω is bounded. This comes from the following inequality, valid on bounded
Ω.

Lemma 2.5.6 (Poincaré inequality) Let Ω be a bounded open subset of Rd. For every
j ∈ {1, . . . , d}, there exists C > 0 such that, for every φ ∈ H1

0 (Ω),

∥φ∥L2 ≤ C∥∂jφ∥L2 .

By density, it is enough to prove this inequality for φ ∈ D(Ω); by density of D in H1
0 , since

both terms are controlled by the H1 norm, the inequality will extend to all φ ∈ H1
0 .

Let us thus prove Lemma 2.5.6 for φ ∈ D(Ω), say with j = 1. We split the variable
x = (x1, y) ∈ R× Rd−1, and write for any (x1, y) ∈ Rd:

|φ(x1, y)|2 = −
∫ ∞
x1

∂t(|φ(t, y)|2) dt = −2
∫ ∞
x1

Re(∂tφ(t, y)φ(t, y)) dt .

Using the Cauchy-Schwarz inequality, we infer:

|φ(x1, y)|2 ≤ 2

(∫
R
|∂tφ(t, y)|2 dt

) 1
2
(∫

R
|φ(t, y)|2 dt

) 1
2

.

We then integrate the above expressions over y ∈ Rd−1, and apply the Cauchy-Schwarz
inequality on the RHS:∫
Rd−1

|φ(x1, y)|2 dy ≤ 2

(∫
R×Rd−1

|∂tφ(t, y)|2 dt dy
∫
R×Rd−1

|φ(t, y)|2 dt dy
) 1

2

= 2 ∥patφ∥L2 ∥φ∥L2 .

We see that the RHS is independent of x1. Assuming Ω ⊂]a, a+L[×Rd−1, we may integrate
over x1 ∈]a, a+ L[, and get the bound

∥φ∥2L2 =

∫
R×Rd−1

|φ(x1, y)|2 dx1 dy ≤ 2L ∥∂tφ∥L2 ∥φ∥L2 .
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This completes the proof of the lemma, with constant C = 2L.

If Ω is bounded, in view of Lemma 2.5.6, the sesquilinear form ( .| .)q defined in (2.5.9) is still
an inner product on H1

0 (Ω), with a norm equivalent to the H1 norm, provided q ∈ L∞(Ω) is
just nonnegative — including q identically 0. Hence, under this more general assumption, it
still possible to solve equation (2.5.10) on Ω bounded.
In particular, if Ω is bounded, for every f ∈ H−1(Ω), there exists a unique solution u ∈ H1

0 (Ω)
of the Poisson equation:

−∆u = f in D ′(Ω) .

We will come back to this equation at the end of this paragraph, in the particular case where
Ω is regular. We will see that, in this case, the subspace H1

0 (Ω) of H1Ω) can be described
more explicitly.

2.5.3 Approximation by smooth functions

In this section, we will approximate functions u ∈ H1(Ω) by smooth functions φ ∈ Cinfty(Ω),
provided Ω is a regular open subset of Rd.

Let us start with the special case Ω = Rd.

Proposition 2.5.7 The space of test functions D(Rd) is dense in H1(Rd). In other words,
H1

0 (Rd) = H1(Rd).

Proof.— Starting from some u ∈ H1(Rd), we proceed in two steps: cutoff on a compact supports,
then regularisation.

1) Let χ ∈ D(Rd) a cutoff function on the unit ball. For n ≥ 1, set

χn(x) = χ
(x
n

)
.

Given v ∈ L2(Rd), we already know that χnv tends to v in L2 as n → ∞. Let us take our function
u ∈ H1(Rd), and prove that χnu→ u in H1 as n→∞. That is, we want to establish that χnu→ u
in L2, which is already known, and that for every j = 1, . . . , d, ∂j(χnu) → ∂ju. From the Leibniz
formula for distributions,

∂j(χnu) = χn∂ju+ (∂jχn)u ,

and we know that χn∂ju
L2

→ ∂ju, so we just need to prove that (∂jχn)u→ 0 in L2, This follows from
the fact that u ∈ L2 and the bound ∥∂jχn∥∞ = O(n−1). We have thus approximated u in H1 by
compactly supported functions in H1.

2) We now want to prove that, if u ∈ H1(Rd) is compactly supported, then u can be approximated in
H1 by a sequence of test functions. We will proceed by regularizing u using convolution by a smooth
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kernel. Let ρ ∈ D(Rd), supported in the unit ball B, and such that
∫
Rd ρ(z) dz = 1. Consider, for

ε ∈]0, 1], the convolution

uε(x) := ρε ∗ u(x) :=
∫
Rd

1

εd
ρ

(
x− y
ε

)
u(y) dy .

Then uε ∈ D(Rd), with supp(uε) ⊂ supp(u) + εB. We have shown in TD1 that uε
L2

→ u as ε → 0.
Furthermore, for j = 1, . . . , d,

∂juε(x) =

∫
Rd

∂jρε(x− y)u(y) dy = −
∫
Rd

∂yj [ρε(x− y)]u(y) dy = ρε ∗ ∂ju(x) .

Therefore ∂juε
L2

→ ∂ju as ε→ 0. Summing up, uε → u in H1 as ε→ 0.

To summarize, starting from u ∈ H1(Rd), we can approach u by uχn, and approach the latter by
(uχn) ∗ ρε. By the triangle inequality, the latter function approaches u.

Notice that the second step of the above proof implies the following useful result.

Proposition 2.5.8 Every compactly supported element u of H1(Ω) is the limit of a sequence in
D(Ω) supported in an arbitrarily small neighbourhood of supp(u).

We now come to the main result of this subsection, which concerns the special case of a bounded
regular open subset of Rd.

Proposition 2.5.9 Let Ω be a bounded regular open subset of Rd with a C∞ boundary. Then
C∞(Ω) is dense in H1(Ω).

One difficulty in the above statement comes from the definition of the space C∞(Ω) (see Defini-
tion 2.4.20): to construct an approximation uε of u ∈ H1(Ω) lying in C∞(Ω), it is not sufficient to
construct uε inside Ω (e.g. by a smoothing of u), but also show that it can be extended beyond the
boundary of Ω, into a smooth function on all Rd. This capacity to extend uε outside Ω will rely on the
regularity of the boundary ∂Ω.

Proof.— Again, we will make our construction locally, using an open cover of Ω. Given a ∈ ∂Ω, there
exists an open neighbourhood Va of a, such that ∂Ω∩Va can be represented as the graph of a smooth
function, expressed in some variables. Since the Va cover the compact subset ∂Ω of Rd, we may
extract a finite covering

∂Ω ⊂
N∪
k=1

Vk

and we consider a partition of unity χ0, . . . , χN associated to the covering

Ω ⊂ Ω ∪
N∪
k=1

Vk ,
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so that χ0 ∈ D(Ω), χk ∈ D(Vk for k = 1, . . . , N , and

χ0 + χ1 + · · ·+ χN = 1

on Ω. In particular, on Ω, we may decompose

u = χ0u+
N∑
k=1

χku .

We may apply Proposition 2.5.8 to χ0u, which is compactly supported inside Ω.

Let us now turn to one of the functions χku (k = 1, . . . , N), and show that it can be approximated in
H1(Ω) by a sequence of C∞(Ω).

For simplicity we drop the index k, and assume that ∂Ω ∩ V can be represented by the graph of a
smooth function q : W → I, e.g. in the coordinates y = (x2, . . . , xN) 7→ x1 = q(y). The set
V = I×W is open in Rd = Rx1 ×Rd−1

y . We assume that Ω∩V is “above” the hypersurface ∂Ω∩V

Ω ∩ V = {(x1, y) ∈ I ×W,x1 > q(y) } ,

and we recall tha χ ∈ D(V ). We use the change of variables (x1, y) 7→ (z = x1 − q(y), y),
which represents a smooth vertical shear. This shear has the effect to map ∂Ω ∩ V to the horizontal
hyperplane {0}z ×Wy; we have rectified the boundary to make it flat.

Applying this change of variables, our function u is mapped to the function

v(z, y) := (χu)(z + q(y), y) , (z, y) ∈]0,∞[×W .

Since χ ∈ D(V ), there is a compact subset K ⋐ W and some a > 0 such that

supp(v) ⊂]0, a]×K .

Once we have performed this “rectification” of ∂Ω ∩ V , it will prove easier to construct a smooh
approximation to the function v. We first need to check the effect of this change of coordinates on the
regularity of u.

Lemma 2.5.10 The function v belongs to H1(]0,∞[×W ), and its generalized derivatives are
given by:

∂zv(z, y) = ∂x1
(
χu)(z+q(y), y

)
, ∂yjv(z, y) = ∂yj

(
χu)(z+q(y), y

)
+∂yjq(y)∂x1

(
χu)(z+q(y), y

)
.

Notice that those formulas are the “naive” ones, satisfied if u is differentiable.

Let us prove the Lemma. First of all, v ∈ L2(]0,∞[×W ), since, by the change of variables formula,∫
W

∫ ∞
0

|v(z, y)|2 dz dy =

∫
W

∫ ∞
q(y)

|(χu)(x1, y)|2 dx1 dy < +∞ .
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(in other words, the change of variables preserves the Lebesgue measure).

We now want to compute the generalized derivative ∂zv, and show that it isL2. Letφ ∈ D(]0,∞[z×Wy).
The bracket ⟨∂zv, φ⟩ gives the integral

−
∫
W

∫ ∞
0

v(z, y)∂zφ(z, y) dz dy
z→x1= −

∫
W

∫ ∞
q(y)

(χu)(x1, y)∂zφ
(
x1 − q(y), y

)
dx1 dy

= −
∫
Ω

(χu)(x1, y)
∂

∂x1

[
φ
(
x1 − q(y), y

)]
dx1 dy

IBP
=

∫
Ω

∂

∂x1

[
(χu)(x1, y)

]
φ
(
x1 − q(y), y

)
dx1 dy

x1→z=

∫
W

∫ ∞
0

∂x1(χu)(z + q(y), y)φ(z, y) dz dy .

The integration by parts makes sense because χu ∈ H1(Ω), so that ∂x1(χu) ∈ L2. The last integral
gives the expression of ∂zv stated in the Lemma.

Similarly, let us compute ⟨∂yjv, φ⟩ = −⟨v, ∂yjφ⟩ for φ ∈ D(]0, infty[×W ):

−
∫
W

∫ ∞
0

v(z, y)∂yjφ(z, y) dz dy
z→x1= −

∫
W

∫ ∞
q(y)

(χu)(x1, y) ∂yjφ
(
x1 − q(y), y

)
dx1 dy

= −
∫
Ω

(χu)(x1, y)
∂

∂yj

[
φ
(
x1 − q(y), y

)]
dx1 dy

−
∫
Ω

(χu)(x1, y) ∂yjq(y)
∂

∂x1

[
φ
(
x1 − q(y), y

)]
dx1 dy

=

∫
Ω

[
∂yj + ∂yjq(y)∂x1

]
(χu)(x1, y)φ

(
x1 − q(y), y

)
dx1 dy

x1→z=

∫
W

∫ ∞
0

[∂yj + ∂yjq(y)∂x1 ](χu)
(
z + q(y), y

)
φ(z, y) dz dy .

(in the third equality we performed integration by parts on x1 and on yj). The last integral provides
the expression for ∂yjv, in terms of the derivatives of (χu), which are in L2(Ω ∩ V ). Applying the
shear to these derivatives preserves their L2 character, hence the function

(z, y) ∈]0,∞[×W 7→ ∂x1(χu)(z + q(y), y)

(z, y) ∈]0,∞[×W 7→ [∂yj + ∂yjq(y)∂x1 ](χu)(z + q(y), y)

belong to L2(]0,∞[×W ). This completes the proof of Lemma 2.5.10.

Once we understand the function v ∈ H1(R∗+ ×W ), we extend it to R×W by symmetry w.r.t. the
hyperplane {z = 0}.

Lemma 2.5.11 Given v ∈ H1(R∗+ ×W ), we define ṽ ∈ L2(R×W ) by

ṽ(z, y) =

{
v(z, y) if z > 0

v(−z, y) if z < 0 .

Then ṽ ∈ H1(R×W ) .
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Notice that, even if the function v were in H1 ∩ C1(R∗+ ∩W ), its derivative ∂zv(z, y) has no reason
to go to zero when z ↘ 0, so the derivative ∂zṽ(z, y) generally has a jump at z = 0.

Let us prove the Lemma. First we observe that

∥ṽ∥2L2(R×W ) = 2∥ṽ∥2L2(]0,∞[×W ) <∞

so ṽ ∈ L2(R×W ). Like in the previous Lemma, let us compute the generalized derivatives of ṽ. We
now take test function φ ∈ D(R×W ), which “see” the plane {z = 0}. Let us calculate ⟨∂yj ṽ, φ⟩:

−
∫
R

∫
W

ṽ(z, y)∂yjφ(z, y) dz dy = −
∫ +∞

0

∫
W

v(z, y)∂yjφ(z, y) dz dy −
∫ 0

−∞

∫
W

v(−z, y)∂yjφ(z, y) dz dy

= −
∫ ∞
0

∫
W

v(z, y)
[
∂yjφ(z, y) + ∂yjφ(−z, y)

]
dz dy .

In order to use the information v ∈ H1(R∗+ ×W ), we need to reduce to test functions compactly
supported in R∗+×W . We introduce χ ∈ C∞(R) such that χ(t) = 0 for t ≤ 1

2
and χ(t) = 1 for t ≥ 1,

and we set, for ε > 0,

χε(z) := χ
(z
ε

)
.

Then χε(z)→ 1R∗
+
(z) as ε→ 0, and by dominated convergence, we have

−
∫
R

∫
W

ṽ(z, y)∂yjφ(z, y) dz dy = − lim
ε→0

∫ ∞
0

∫
W

v(z, y)χε(z) ∂yj
[
φ(z, y) + φ(−z, y)

]
dz dy

IBP
= lim

ε→0

∫ ∞
0

∫
W

∂yjv(z, y)χε(z)
[
φ(z, y) + φ(−z, y)

]
dz dy

∂yj v∈L
2

=

∫ ∞
0

∫
W

∂yjv(z, y)
[
φ(z, y) + φ(−z, y)

]
dz dy

:=

∫
R

∫
W

fj(z, y)φ(z, y) dz dy ,

where

fj(z, y) =

{
∂yjv(z, y) if z > 0

∂yjv(−z, y) if z < 0

defines an L2 function on R×W .

We similarly compute ⟨∂zṽ, φ⟩:

−
∫
R

∫
W

ṽ(z, y) ∂zφ(z, y) dz dy = −
∫ +∞

0

∫
W

v(z, y) ∂zφ(z, y) dz dy −
∫ 0

−∞

∫
W

v(−z, y) ∂zφ(z, y) dz dy

= −
∫ ∞
0

∫
W

v(z, y)∂z
[
φ(z, y)− φ(−z, y)

]
dz dy

= − lim
ε→0

∫ ∞
0

∫
W

v(z, y)χε(z) ∂z
[
φ(z, y)− φ(−z, y)

]
dz dy

= − lim
ε→0

∫ ∞
0

∫
W

v(z, y)∂z
[
χε(z)

(
φ(z, y)− φ(−z, y)

)]
dz dy

+ lim
ε→0

∫ ∞
0

∫
W

v(z, y)χ′ε(z)
[
φ(z, y)− φ(−z, y)

]
dz dy
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At this stage, we may integrate by parts the first integral. We will estimate the second one, with the
following remarks:

i) the function χ′ε is supported in the interval [ε/2, ε], where it takes values O(ε−1).

ii) the function φ(z, y)−φ(−z, y) = O(z), so in the interval [ε/2, ε] its values areO(ε), uniformly
w.r.t. y ∈ π suppφ.

iii) the function v ∈ L2, so by Cauchy-Schwartz
∫ ε
ε/2
|v|dz dy = O(ε1/2).

We then deduce that the second integral vanishes when ε→ 0. There remains:

⟨∂zṽ, φ⟩ = lim
ε→0

∫ ∞
0

∫
W

∂zv(z, y)χε(z)
[
φ(z, y)− φ(−z, y)

]
dz dy

=

∫ ∞
0

∫
W

∂zv(z, y)
[
φ(z, y)− φ(−z, y)

]
dz dy

=

∫
R

∫
W

g(z, y)φ(z, y) dz dy ,

where

g(z, y) =

{
∂zv(z, y) if z > 0

−∂zv(−z, y) if z < 0

defines an L2 function on R ×W . We notice that the formula for g is the “naive” formula for ∂zṽ,
without paying attention to the point (z = 0, y) where

We have thus computed
∂yj ṽ = fj , ∂zṽ = g,

given by “naive” expressions for ∂•ṽ, without paying attention to the points (z = 0, y) (notice that ṽ
is generally not differentiable w.r.t. z at the points z = 0). These derivatives are L2, which completes
he proof that ṽ ∈ H1(R×W ).

Let us now finish the proof of Proposition 2.5.9. Applying Lemma 2.5.11 to our “rectified function”
v(z, y) = (χu)(z+q(y), y), we observe that ṽ ∈ H1(R×W ) and supp(ṽ) ⊂ [−a, a]×K, a compact
subset of R × W . Now we appeal to Proposition 2.5.8 and obtain that there exist a family of test

functions (ṽε ∈ D(R ×W ))ε∈]0,1] such that supp(ṽε) ⊂ [−(a + ε, a + ε] × Kε and ṽε
→

ε→ 0 ṽ in
H1(R ×W ). Then the restriction vε of ṽε to R∗+ ×W converges to v in H1(R∗+ ×W ), and coming
back to the initial variables (x1, y),

uε(x1, y) := vε
(
x1 − q(y), y

)
is a family of functions in C∞(Ω)which, in view of the formulae for derivatives established in Lemma 2.5.10,
converges to χu in H1(Ω) as ε→ 0.
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2.5.4 The trace theorem

In dimension 1, every function u ∈ H1(I) is automatically continuous and bounded, which allowed us
to characterize the subspace H1

0 (I) in terms of the limits of u(x) when x approaches the boundary
of I. In higher dimension, the Sobolev embedding theorem shows that u ∈ H1(Ω) is not neces-
sarily continuous, and not necessarily uniquely defined at each point. It is therefore not possible to
characterize the property u ∈ H1

0 (Ω) in terms of the pointwise limits of u(x) when x approaches ∂Ω.

Yet, the following theorem will provide a way to characterize functions u ∈ H1
0 (Ω) in terms of a certain

function v = γ0u on ∂Ω, called the trace of u on the boundary, which can be viewed as a weak form
of “limit of u on ∂Ω”.

Theorem 2.5.12 Let Ω be a bounded regular open subset of Rd, with a C∞ boundary. Denote
by σ the superficial measure on ∂Ω and by N ext the exterior unit normal on ∂Ω.
There exists a unique linear mapping

γ0 : H
1(Ω)→ L2(∂Ω, σ)

such that, for every φ ∈ C∞(Ω),
γ0φ = φ|∂Ω .

Furthermore, γ0 satisfies the following identity, for all j = 1, . . . , d:

(2.5.11) ∀u, v ∈ H1(Ω) ,

∫
Ω

u ∂jv dx =

∫
∂Ω

γ0u γ0v N
ext
j dσ −

∫
Ω

∂ju v dx .

This formula generalizes the Green-Gauss formula of Remark 2.4.22 to functions u, v ∈ H1(Ω).
Finally, Ker γ0 is equal to H1

0 (Ω), the closure of D(Ω) in H1(Ω).

Proof.— From Remark 2.4.22 we have, for every φ, ψ ∈ C∞(Ω) and j ∈ {1, . . . , d}:

(2.5.12)

∫
Ω

φ∂jψ dx =

∫
∂Ω

φψN ext
j dσ −

∫
Ω

∂jφψ dx .

Consider the mapping
γ0 : φ ∈ C∞(Ω) 7−→ φ|∂Ω ∈ L2(∂Ω, σ) .

We claim that this mapping is continuous if C∞(Ω) is endowed with the H1 norm, which amounts to
proving the estimate

(2.5.13) ∥φ∥L2(∂Ω,σ) ≤ C∥φ∥H1(Ω) .

Using (again) a partition of unity associated to a finite open cover of the compact set ∂Ω, it is enough
to prove the above inequality when φ is supported in the intersection of Ω with a small neighbourhood
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Va of some point a ∈ ∂Ω. We may assume that, on such a neighbourhood Va, a certain component
j = ja of the normal vector satisfies

∀x ∈ Va ∩ ∂Ω, |N ext
j (x)| ≥ c,

for some c = ca > 0. Then, considering the formula (2.5.12) with ψ = φ and the index ja, and using
the Cauchy–Schwarz inequality, we find that the cutoff function χaφ satisfies (2.5.13). Summing over
the finitely many pieces χaφ composing φ, we obtain (2.5.13) for the full function φ.

At this stage, we appeal to Proposition 2.5.9, namely the density of C∞(Ω) in H1(Ω). Since γ0
is a continuous linear mapping from a dense subspace of C∞(Ω) ⊂ H1(Ω) into the Hilbert space
L2(∂Ω, σ), it admits a unique linear continuous extension from H1(Ω) to L2(∂Ω, σ), which we will
still denote by γ0. This proves the existence an uniqueness of γ0.

Let us come to the second point. Since both sides of Green’s formula (2.5.11) are continuous bilinear
maps on H1(Ω)×H1(Ω), and coincide on the dense subspace C∞(Ω)× C∞(Ω) in view of (2.5.12),
we infer that this equality holds as well on the closure H1(Ω)×H1(Ω).

Finally, let us characterise the kernel of γ0. If φ ∈ D(Ω), we have γ0φ = φ|∂Ω = 0, therefore Ker γ0
contains the closure H1

0 (Ω) of D(Ω) in H1(Ω).

The proof of the converse inclusion is more intricate. Let us start by a notation: for every f ∈ L2(Ω),
we denote by f ∈ L2(Rd) the extension of f by 0 to Rd \ Ω. Let us then take some u ∈ Ker γ0; our
goal is to show that u ∈ H1

0 (Ω). We will consider the extension u, and compute its ∂j derivative in
D ′(Rd). For this, consider some test function φ ∈ D(Rd), and compute:

⟨∂ju, φ⟩ = −⟨u, ∂jφ⟩ = −
∫
Ω

u ∂jφdx .

We may the apply the Green identity (2.5.11), with u and v := φ|Ω:

−⟨∂ju, φ⟩ =
∫
Ω

∫
Ω

∂juφ dx−
∫
∂Ω

γu γ0φdσ

=

∫
Ω

∫
Ω

∂juφ dx ,

where we have used the assumption u ∈ Ker γ0. This equality amounts to the identification of the
following distributions in D ′(Rd):

∂j(u) = ∂ju .

In particular, it shows that ∂j(u) ∈ L2(Rd). Since this holds for for all j = 1, . . . , d, we have proved
that

u ∈ Ker γ0 =⇒ u ∈ H1(Rd).

In other words, the behaviour of u when approaching ∂Ω is sufficiently regular, so that taking the
gradient of u does not produce any singularity on ∂Ω.

Let us use the same partition of unity (χk) as in the proof of Proposition 2.5.9, and the same notations
of that proof. We are reduced to proving that, for every k = 1, . . . , N , χku ∈ H1

0 (Ω). Notice that
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χku = χku ∈ H1(Rd). Let us drop the index k and apply the change of variables (x1, y) 7→ (z, y) to
straighten ∂Ω ∩ V ; we obtain the function

v(z, y) = (χu)
(
z + q(y), y

)
, (z, y) ∈ R∗+ ×W .

This function extends to Rd:

v(z, y) = χu
(
z + q(y), y

)
, (z, y) ∈ R× Rd−1 .

Since u ∈ H1(Rd), we infer, by the same argument as in Lemma 2.5.10, that v ∈ H1(Rd).

The final arguments consists in shifting this function v upwards, to make it compactly supported in
R∗+ ×W . Namely, for ε > 0 small, we define the translated function

vε(z, y) := v(z − ε, y) (z, y) ∈ Rd .

Of course vε ∈ H1(Rd) and supp(vε) ⊂ [ε, a + ε] × W̄ , a compact subset of Rd. Furthermore, the
continuous action of translations on L2 implies that

∥vε − v∥2H1 =

∫
R+

∫
W

(
|v(z − ε, y)− v(z, y)|2 +

∑
j

|∂jv(z − ε, y)− ∂jv(z, y)|2
)
dz dy

converges to 0 when ε↘ 0. We conclude that vε → v in H1(R∗+×W ), and, again by Lemma 2.5.10,
that the family (uε)ε∈]0,1] defined by

uε(x1, y) = vε
(
x1 − q(y), y

)
= χu(x1 − ε, y) ,

is supported in Ω ∩ V for ε small enough, and converges to χu in H1(Ω).

Finally, since, for every ε > 0, uε is supported in a compact subset of Ω∩V , Proposition 2.5.8 implies
that vε ∈ H1

0 (Ω). Consequently, χu ∈ H1
0 (Ω). Summing up over all the indices k = 1, . . . , N , we

find that u ∈ H1
0 (Ω).

Reformulating the Poisson equation

As an application of the trace theorem, we may express the following Dirichlet problem on a bounded
regular subset Ω as follows.

Theorem 2.5.13 Let Ω be a bounded regular open subset of Rd with a C∞ boundary. For every
f ∈ L2(Ω), there exists a unique u ∈ H1(Ω) such that{

−∆u = f in Ω ,

γ0u = 0 in ∂Ω .

Proof.— This is an immediate consequence of Remark 2.5.5 3. and of the trace Theorem 2.5.12.
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Remark 2.5.14 One can show that, under the assumptions of Theorem 2.5.13, the solution u ∈
H2(Ω), so that the mapping

∆ : H2(Ω) ∩H1
0 (Ω)→ L2(Ω)

is an isomorphism if Ω is a regular bounded open subset. Furthermore, more regularity on f implies
more regularity on u. For instance, if f ∈ Hm(Ω) for some m ∈ N, then u ∈ Hm+2(Ω). As a result
of Sobolev injection theorems on Ω, if f ∈ C∞(Ω), then u ∈ C∞(Ω). The latter statement is a
consequence of the previous one and of∩

m∈N

Hm(Ω) = C∞(Ω) .

The proofs of these statements go beyond these lecture notes.

2.6 The uniform boundedness principle

In this section, we prove an important result about families of distributions, which implies Lemma 2.3.25.
It is a generalization to the space of distributions of the uniform boundedness for Banach spaces,
proved by Banach-Steinhaus.

Theorem 2.6.1 [Uniform boundedness for distributions] Let (Tn) be a family if distributions on
Ω such that, for every φ ∈ D(Ω),

sup
n
|⟨Tn, φ⟩| < +∞ .

Then, for every compact subset K of Ω, there exist C > 0 and m ∈ N such that, for every
φ ∈ DK(Ω),

sup
n
|⟨Tn, φ⟩| ≤ C∥φ∥Cm .

In other words, if for instance a sequence Tn is such that ⟨Tn, φ⟩ has a limit for every φ ∈ D(Ω), one
gets a uniform estimate on the action of the sequence Tn.

Before proving this theorem, let us show how it implies the Lemma 2.3.25. If Tn → T , then the
assumption of Theorem 2.6.1 is fulfilled. If φn → φ in D(Ω), let K be a compact subset which
contains the support of φn for every n, and hence the support of φ. By Theorem 2.6.1, we have, for
some C,m independent of n,

|⟨Tn, φn − φ⟩| ≤ C∥φn − φ∥Cm → 0 .

Then
⟨Tn, φn⟩ = ⟨Tn, φn − φ⟩+ ⟨Tn, φ⟩ → ⟨T, φ⟩ .

Distributions and PDEs, Fall 2022 Stéphane Nonnenmacher



CHAPTER 2. DISTRIBUTIONS IN SEVERAL VARIABLES 121

This completes the proof of Lemma 2.3.25.

In the rest of this section, we give a proof of Theorem 2.6.1, in three steps. For every compact subset
K of Ω, we denote by DK = DK(Ω) the subspace of D(Ω) of test functions φ such supp(φ) ⊂ K.

2.6.1 Step1. Realizing DK as a complete metric space

In this section we fix a compact subset K ⋐ Ω, and consider he space of test functions DK . We show
that the topology on DK can be metrized.

Lemma 2.6.2 [Metrization of DK(Ω)] There exists a distance function d on DK having the
following properties:

i) if a sequence (φn)n and φ are in DK then φn
→

n→∞ φ in D if and only if d(φn, φ)→ 0;

ii) the metric space (DK , d) is complete;

iii) for every φ, ψ, θ ∈ DK , d(φ+ θ, ψ + θ) = d(φ, ψ);

iv) for every ε > 0, there exist m ∈ N and r > 0 such that the “cylinder” {φ ∈ DK : ∥φ∥Cm ≤
r} is contained in the closed ball {ϕ ∈ DK : d(φ, 0) ≤ ε}.

Proof.— For φ, ψ ∈ DK , we define the function

d(φ, ψ) :=
∞∑
m=0

min
(
2−m, ∥φ− ψ∥Cm

)
.

It is clear that d takes values in [0,∞[, and that d(φ, ψ) = 0 iff φ = ψ. The symmetry d(φ, ψ) =
d(ψ, φ) is trivial, as well as item iii) of the Lemma. Finally, the triangle inequality is a consequence
of the elementary inequality

min(a, x+ y) ≤ min(a, x) + min(a, y) , a ≥ 0, x ≥ 0, y ≥ 0 .

Let us prove item i). If a sequence φn and φ are in ∈ DK , the statement φn → φ in D is equivalent
to

(2.6.14) ∀m ∈ N, ∥φn − φ∥Cm → 0 .

Since d(φn, φ) ≥ min (2−m, ∥φn − φ∥Cm), it is clear that (2.6.14) is implied by d(φn, φ) → 0.
Conversely, (2.6.14) implies that every term of the series defining d(φn, φ) tends to 0. Since this
series is normally convergent, this implies d(φn, φ)→ 0.

Let us prove item ii). Let (φn) be a Cauchy sequence in the metric space (DK , d). This can be
expressed as follows:

∀ε > 0, ∃N(ε) ∈ N, ∀n, p ≥ N(ε), d(φn, φp) ≤ ε .
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Let m ∈ N and ε > 0 be such that ε < 2−m. Since d(φn, φp) ≥ min (2−m, ∥φn − φp∥Cm), we
conclude that, for n, p ≥ N(ε), ∥φn − φp∥Cm ≤ ε. This means that (φn) is a Cauchy sequence
in the Banach space CmK of Cm functions supported in K. Hence there exists φ[m] ∈ CmK such that
∥φn − φ[m]∥Cm → 0. Since this is true for every m ∈ N, and since the convergence in Cm+1

K implies
the convergence in CmK , we conclude that

φ[m] = φ ∈
∩
m∈N

CmK = DK ,

and that φn → φ in D , which, by item i), means d(φn, φ)→ 0. Hence (DK , d) is a complete metric
space.

Finally, let us prove item iv). Let m ∈ N be such that 2−m ≤ ε
2
, and let r > 0 be such that

(m+ 1)r ≤ ε
2
. If ∥φ∥Cm ≤ r, we have

d(φ, 0) =
∞∑
q=0

min
(
2−q, ∥φ∥Cq

)
≤

m∑
q=0

∥φ∥Cq +
∞∑

q=m+1

2−q

≤ (m+ 1)r + 2−m ≤ ε .

This completes the proof of the Lemma.

2.6.2 Step 2. The Baire lemma

The second step in the proof of the Uniform boundedness Theorem 2.6.1 is a standard result in general
topology, namely Baire’s Theorem on complete metric spaces.

Theorem 2.6.3 Let (E , d) be a complete metric space. Then every countable intersection of
open dense subsets of E is dense in E . By complementarity Every countable union of closed
subsets of E with empty interior has empty interior.

Proof.— The second statement is equivalent to the first one, since the complement of an open set is
a closed set, and the complement of a dense set has an empty interior.

Let us prove the first statement. Denote byB(φ, r) andBf (φ, r) respectively the open and the closed
balls of radius r centered at φ ∈ E . Let (Ok)k∈N be a sequence of dense open subsets of E . Fix φ0 ∈ E
and ε > 0. We want to prove that

B(φ0, ε) ∩
∩
k∈N

Ok ̸= ∅ .
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Since O0 is dense, B(φ0, ε) ∩ O0 contains some element φ1. Since B(φ0, ε) ∩ O0 is open, there
exists r1 > 0 such that

B(φ1, r1) ⊂ B(φ0, ε) ∩ O0 ,

moreover we may assume that r1 ≤ ε
2
.

Since O1 is dense, B(φ1, r1) ∩ O1 contains some element φ2. Since B(φ1, r1) ∩ O1 is open, there
exists r2 > 0 such that

B(φ2, r2) ⊂ B(φ1, r1) ∩ O1 ,

moreover we may assume that r2 ≤ ε
22

.

Continuing that way, we define a sequence (φk)k≥1 of elements of E and a sequence (rk)k≥1 of positive
numbers such that

∀k ≥ 1, B(φk+1, rk+1) ⊂ B(φk, rk) ∩ Ok , rk ≤
ε

2k
.

In particular, the sequence of closed balls (B(φk, rk))k≥1 is decreasing, with a radius tending to 0.
Moreover,

B(φk, rk) ⊂ Ok ∩ · · · ∩ O0 ∩B(φ0, ε) .

Hence we are reduced to proving that

∞∩
k=1

B(φk, rk) ̸= ∅ .

We observe that (φk)k≥1 is a Cauchy sequence in E . Indeed, if ℓ ≥ 0, φk+ℓ ∈ B(φk, rk), hence

d(φk+ℓ, φk) ≤ rk ,

which tends to 0 as k tends to∞. Since E is a complete metric space, φk has a limit φ ∈ E . Passing
to the limit as ℓ tends to infinity in the above inequality, we get, for every k ≥ 1,

d(φ, φk) ≤ rk =⇒ φ ∈ B(φk, rk) ,

so that

φ ∈
∞∩
k=1

B(φk, rk) ⊂
( ∞∩
k=1

Ok
)
∩B(φ0, ε) .

This completes the proof of Baire’s theorem.

2.6.3 Step 3. A uniform boundedness theorem on a complete metric space

Let us use the notation of Theorem 2.6.1. We set, for every k ∈ N,

Fk = {φ ∈ DK : ∀n, |⟨Tn, φ⟩| ≤ k} .

Since each Tn is continuous on DK , Fk is a closed subset of DK . Furthermore, the assumption of
Theorem 2.6.1 precisely means that ∪

k∈N

Fk = DK .
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Let endow DK with the distance function of Lemma 2.6.2. By Baire’s theorem, we infer that there
exists k0 such that Fk0 has a nonempty interior, which means that there exists some φ0 ∈ DK and
ε > 0 such that

B(φ0, ε) ⊂ Fk0 .

By item iii) of Lemma 2.6.2, we know that

B(0, ε) = −φ0 +B(φ0, ε),

so that, for every ψ ∈ B(0, ε), for every n,

|⟨Tn, ψ⟩| ≤ |⟨Tn,−φ0⟩|+ k0 ≤ A , with A = k0 + sup
n
|⟨Tn, φ0⟩| .

Using item iv) of Lemma 2.6.2, there exists m ∈ N and r > 0 such that every ψ ∈ DK such that
∥ψ∥Cm ≤ r belongs to B(0, ε), hence satisfies

sup
n
|⟨Tn, ψ⟩| ≤ A .

Given φ ∈ DK \ {0}, we may apply this fact to

ψ := r
φ

∥φ∥Cm

,

and we conclude that

sup
n
|⟨Tn, φ⟩| ≤

A

r
∥φ∥Cm .

The proof is complete.

Remark 2.6.4 The above theorem is an adaptation of the Banach–Steinhaus theorem to the case
of vector spaces admitting a distance enjoying the properties of Lemma 2.6.2. Such spaces are called
Fréchet spaces.
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Chapter 3

The Fourier Transformation

Classically, the Fourier transform of a function f ∈ L1(Rd) is the function F(f) ∈ L∞(Rd) given by

∀ξ ∈ Rd, F(f)(ξ) =
∫
Rd

e−ix·ξf(x)dx, so that ∥F(f)∥L∞ ≤ ∥f∥L1 .

Here the variable ξ ∈ Rd lives in the Fourier space, or reciprocal space, or (in quantum mechanics)
momentum space; the corresponding space Rd is dual to the “direct space” Rd ∋ x.

The Fourier transform was invented in order to help solving certain linear PDEs from physics (originally
the heat equation). This role is mainly due to the following algebraic property of the Fourier transform:
when these objects are well-defined,

∀ξ ∈ Rd, F(∂jf)(ξ) = iξjF(f)(ξ)

In other words, F transforms a differential operator with constant coefficients into the product by a
polynomial. This would be worthless without an inversion formula giving back the function f in terms
of F(f):

∀x ∈ Rd, f(x) =
1

(2π)d

∫
Rd

eix·ξF(f)(ξ)dξ,

Unfortunately, this formula only makes sense whenF(f) ∈ L1(Rd), and this is not the case in general
for f ∈ L1. In this chapter, we are going to introduce a subspace of distributions, which contains
L1(Rd), and a Fourier transformation on this space, which sastifies the two above identities, in an
appropriate sense. This space will thus help us solve certain linear PDEs.

In most of the chapter, we will consider functions and distributions defined in the full space Rd. Yet,
some applications will also deal with functions or distributions on some open set Ω ⊂ Rd.

3.1 The Schwartz space

Before introducing distributions on Rd in the previous chapter, we needed to properly define the space
of test functions D(Rd). Test functions are in L1(Rd), so we may define their Fourier transforms.
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However, we will see that the Fourier transform of a nonzero test function φ is never compactly
supported, showing that F does not map the space D(Rd) to itself.

This is the reason why, in the next section, we will introduce a new space of smooth functions, which
are not necessarily compactly supported, but which will decay fast at infinity, called the space of
Schwartz functions. We will then show that this the Fourier transform maps this space of functions to
itself. Besides, the Schwartz space is left invariant by differentiation and multiplication by polynomials.
We will view this space as an “enlargement” of the space D(Rd) of test functions.

In a second step, we will introduce a subspace of distributions which can be extended into linear forms
on the Schwartz space. By duality, the Fourier transform will act on this space of distributions (called
tempered distributions, or Schwartz distributions); this will allow us to solve certain PDEs on this space
of distributions.

3.1.1 Definitions and examples

Definition 3.1.1 A function f : Rd → R is said to be rapidly decreasing if, as |x| → ∞,

∀α ∈ Nd, xαf(x)→ 0 .

Notice that, if f is rapidly decreasing and continuous, all the functions xαf are bounded on Rd.
Conversely, if f is continuous on Rd and all functions xαf are in L∞(Rd), then f is rapidly decreasing.

Definition 3.1.2 We denote by S (Rd) the set of functions φ ∈ C∞(Rd) which are rapidly
decreasing, as well as all their derivatives. In other words, they satisfy:

∀(α, β) ∈ Nd, xα∂βφ(x)→ 0 as |x| → ∞ .

The set S (Rd) is a vector space called the Schwartz space on Rd, or the space of Schwartz
functions on Rd.

Examples 3.1.3 i) C∞0 (Rd) ⊂ S (Rd).

ii) For z ∈ C such that Re z > 0, the Gaussian function φ(x) = e−z|x|
2 belongs to S (Rd).

iii) If φ1, φ2 ∈ S (Rd), then φ1φ2 ∈ S (Rd).

iv) No nontrivial rational function belongs to S (Rd).
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The topology on S (Rd) we will work with is generated by the family of norms (Np)p∈N given by

Np(φ) = sup
|α|,|β| ≤p

sup |xα∂βφ(x)| .

It is clear that for φ ∈ C∞(Rd), we have the equivalence

φ ∈ S (Rd)⇐⇒ ∀p ∈ N, Np(φ) < +∞⇐⇒ ∀α, β ∈ Nd, xα∂βφ ∈ L∞ .

The next Proposition shows a stability of S through differentiation or multiplication by polynomials.

Proposition 3.1.4 If φ ∈ S (Rd) then xα∂βφ ∈ S (Rd) for every α, β ∈ Nd.

Proof.— This follows immediately from the fact that for multi-indices |α|, |β| ≤ q,

(3.1.1) Np(x
α∂βφ) = sup

|λ|,|µ|≤p
sup
x
|xλ∂µ(xα∂βφ(x))| ≤ Cp,α,β Np+q(φ) .

Here we applied the Leibniz formula to transform ∂µ(xα∂βφ) into a sum of terms x•∂•φ. The constant
Cp,α,β results from the corresponding combinatorial factors, and of the sum over all the terms.

3.1.2 Convergence in S (Rd) and density results

Definition 3.1.5 Let (φn) be a sequence of functions in S (Rd). One says that (φn) converges
to φ in S (Rd) when, for every α, β ∈ Nd, xα∂βφn(x) → xα∂βφ(x) uniformly in x ∈ Rd.
Equivalently, for all p ∈ N,

Np(φn − φ)→ 0 as n→ +∞.

Remark 3.1.6 i) Comparing this definition to the convergence in D(Rd) (see Definition 1.2.10),
we replaced the condition of uniform support for the φn, into a condition of “uniform fast decay”
when x goes to infinity.
ii) Let α ∈ Nd. It follows from (3.1.1) that, if (φn) converges to φ in S (Rd), then (xαφn)
converges to xαφ and (∂αφn) converges to (∂αφ) in S (Rd). Otherwise stated, multiplication by a
polynomial and differentiation act continuously in S (Rd).

We already know that S ⊂ L∞, from the fact that ∥φ∥L∞ = N0(φ). The next proposition states a
similar property for L1.
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Proposition 3.1.7 S (Rd) ⊂ L1(Rd). More precisely, there exists a constant Cd > 0 such that

∀φ ∈ S (Rd) , ∥φ∥L1 ≤ CdNd+1(φ) .

This estimate shows that the injection S ↪→ L1 is continuous.

Proof.— We have the polynomial expansion

(1 + |x|2)d+1 = (1 + x21 + · · ·+ x2d)
d+1 =

∑
|α|≤d+1

cα,d x
2α

for some combinatorial coefficients cα,d ∈ N, hence for some constant Bd > 0 and any φ ∈ D(Rd)
we find:

∀x ∈ Rd, (1 + |x|2)d+1|φ(x)|2 ≤ BdNd+1(φ)
2 .

Consequently, ∫
Rd

|φ(x)| dx ≤
√
BdNd+1(φ)

∫
Rd

dx

(1 + |x|2)(d+1)/2
≤ CdNd+1(φ) ,

since x 7→ (1 + |x|2)−(d+1)/2 is integrable on Rd.

Remark 3.1.8 For every q ∈ N, one can establish similarly

∀φ ∈ S (Rd) , ∀x ∈ Rd , (1 + |x|q)|φ(x)| ≤ Cq,dNq(φ) .

Since C∞0 (Rd) is dense in each space Lp(Rd) space for p ∈ [1,+∞[, we get the

Corollary 3.1.9 For each p ∈ [1,+∞[, the space S (Rd) is dense in Lp(Rd).

We also have the important density of test functions:

Proposition 3.1.10 The space D(Rd) = C∞0 (Rd) is dense in S (Rd): for any φ ∈ S (Rd), there
is a sequence (φn ∈ D(Rd))n≥1 which converges to φ in the topology of S (Rd).

Proof.— Take a function φ ∈ S (Rd). We want to construct approximations χn ∈ D(Rd), such that
for each p ∈ N, Np(φn − φ)→ 0 when n→∞.

We will proceed by smoothly truncating φ in larger and larger balls. Let χ ∈ D(Rd) be a plateau
function over B(0, 1). For each n ≥ 1 we set φn(x) = φ(x)χ(x/n). Each function φn is in D(Rd),
and equals φ inside B(0, n).
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In order to control the norms Np(φn − φ), we use the Leibniz formula to compute:

∂β(φ− φn)(x) = ∂βφ(x) (1− χ(x/n)) +
∑

|γ|≥1,γ≤β

(
β

γ

)
1

n|γ|
∂β−γφ(x) (∂γχ)(x/n) .

If we multiply this expression by xα, we get for a certain constant C > 0:

∀n ≥ 1, ∥xα∂β(φ− φn)(x)∥∞ ≤ sup
|x|≥n
|xα∂βφ(x)|+ C

n

∑
γ≤β

∥xα∂β−γφ∥∞ .

The first term on the right hand-side goes to zero when n → ∞, due to the fast decay of ∂βφ. The
sum on the RHS is controlled by the norm Np(φ) such that p = max(|α|, |β|). Due to the prefactor
1/n, the second term also vanishes when n→∞. This achieves to show that Np(φ− φn)→ 0.

3.2 The Fourier transformation in S (Rd)

In this section we define, and study the properties of the Fourier transformation acting on functions
φ ∈ S (Rd).

3.2.1 Definition and first properties

Any φ ∈ S (Rd) satisfies φ ∈ L1(Rd), so that F(φ) is well defined ans belongs to L∞(Rd).

Definition 3.2.1 For φ ∈ S (Rd), we denote φ̂, F(φ) or even Fx→ξ(φ(x)), the function in
L∞(Rd) given by

∀ξ ∈ Rd, φ̂(ξ) = F(φ)(ξ) = Fx→ξ(φ(x)) =
∫
Rd

e−ix·ξφ(x)dx.

The linear map F : φ 7→ φ̂ is called the Fourier transformation.

Here follow the elementary, yet important properties of the Fourier transform acting on the space
S (Rd).

Proposition 3.2.2 Let φ ∈ S (Rd). Then φ̂ ∈ S (Rd). More precisely,

i) For all j ∈ {1, . . . , n} Fx→ξ(xjφ(x)) = i∂ξjF(φ)(ξ).

ii) For all j ∈ {1, . . . , n}, we have F(∂xjφ)(ξ) = iξjF(φ)(ξ).
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iii) For a ∈ Rd, Fx→ξ(φ(x− a)) = e−ia·ξF(φ)(ξ).

iv) For a ∈ Rd, Fx→ξ(eia·xφ(x)) = F(φ)(ξ − a).

v) For all integrer p ≥ 0, Np(φ̂) ≤ Cp,dNp+d+1(φ) for some absolute constant Cp,d > 0.

Proof.— i) The function (x, ξ) 7→ e−ix·ξφ(x) is C1 on Rd × Rd, and

∀ξ ∈ Rd, |∂ξj(e−ix·ξφ(x))| = | − ixje−ix·ξφ(x)| = |xjφ(x)| ∈ L1(Rd).

By the theorem of derivation under the integral, we get that F(φ) is differentiable at each point ξ,
and

∂ξjF(φ)(ξ) =
∫
Rd

−ixje−ix·ξφ(x) = F(−ixjφ(x)).

The theorem of continuity under the integral shows that this function of ξ is continuous. Altogether
F(φ) is C1.

ii) Let us first write the proof for j = 1. Integrating by parts, we get∫
R
∂1φ(x)e

−ix·ξdx1 = iξ1

∫
R
φ(x)e−ix·ξdx1

Now we integrate with respect to the variable x′. By Fubini, since φ, ∂1φ ∈ S (Rd) ⊂ L1(Rd), we
have ∫

Rd

∂1φ(x)e
−ix·ξdx = iξ1

∫
Rd

φ(x)e−ix·ξdx.

To get iv), we only have to write

Fx→ξ(eia·xφ(x)) =
∫
Rd

e−ix·ξeia·xφ(x)dx =

∫
Rd

e−i(ξ−a)·xφ(x)dx = F(φ)(ξ − a).

Eventually, performing a change of variable, we have

Fx→ξ(φ(x− a)) =
∫
Rd

e−ix·ξφ(x− a)dx =

∫
Rd

e−i(x+a)·ξφ(x)dx = e−ia·ξF(φ)(ξ),

and this is property iii).

Since xjφ ∈ L1, the property i) implies that ∂jφ̂ is in L∞. Similarly, ii) implies hat ξjφ̂ ∈ L∞.
Since φ ∈ S , ∂α(xβφ) ∈ L1 for any multiindices α, β, so iterating the properties i), ii) we get that
ξα∂βξ φ̂ ∈ L∞; this shows that φ̂ ∈ S (Rd).

Furthermore, using Proposition 3.1.7 we find explicit bounds for the norms ∥ξα∂βξ φ̂∥∞, which lead to
the following bounds for the norms Np(φ̂):

Np(φ̂) = max
|α|,|β|≤p

∥ξα∂βφ̂∥L∞ = max
|α|,|β|≤p

∥F(∂α(xβφ))∥L∞

≤ max
|α|,|β|≤p

∥∂α(xβφ)∥L1 ≤ Bd max
|α|,|β|≤p

Nd+1(∂
α(xβφ))

≤ Cp,dNp+d+1(φ) .

These controls show that the the Fourier transform F acts continuously S → S .
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Notation

Because of the presence of a factor i =
√
−1 in i) and ii), it is sometimes convenient to use the

notation

Dj =
1

i
∂j.

With this notation, ii) becomes F(Dxjφ) = ξjF(φ), and i) reads DξjF(φ) = −F(xjφ). Summing
up, we have {

D̂xjφ = ξjφ̂,

x̂jφ = −Dξj φ̂.

3.2.2 Example of the Gaussian function

Let us compute the Fourier transform of the simplest “nontrivial” Schwartz function, namely the Gaus-
sian. For a parameter λ > 0, we set

Gλ(x) = exp
(
− λ |x|

2

2

)
, x ∈ Rd .

Proposition 3.2.3 The Fourier transform of the Gaussian Gλ is given by

Ĝλ(ξ) =
(2π
λ

) d
2
G 1

λ
(ξ), ξ ∈ Rd .

That is, the Fourier tranform maps a Gaussian to another Gaussian (up to a change of global
prefactor and parameter).

Proof.— If we denote by gλ the 1-dimensional Gaussian with parameter λ, we notice thatGλ(x1, . . . , xd) =∏d
j=1 gλ(xj). Since the exponential e−ix·ξ also factorizes, we find F(Gλ)(ξ) =

∏d
j=1F(gλ)(ξj). We

are thus reduced to computing the Fourier transform of the 1-dimensional Gaussian gλ.

For that aim, we observe that gλ satisfies a simple ODE:

∀x ∈ R, g′λ(x) = −λx gλ(x) .

The properties i) and ii) of Proposition 3.2.2 lead to

iξĝλ(ξ) = −iλ
d

dξ
ĝλ(ξ) .

Solving this ODE leads to the solution

ĝλ(ξ) = ĝλ(0) e−
ξ2

2λ = ĝλ(0) g1/λ(ξ) .
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To finish the proof we just need to compute the value at ξ = 0, which is given by the Gauss integral:

ĝλ(0) =

∫
R

e−λ
x2

2 dx =

√
2π

λ
.

Exercise 3.2.4 Alternatively, one can compute ĝλ(ξ) by completing the square in the the exponent
in the Fourier integral:

−λx2/2− ixξ = −λ
2

(
x+ iξ/λ)2 − ξ2

2λ
,

which results in the complex contour integral e− ξ2

2λ

∫
Im ζ=ξ/λ

e−λ
ζ2

2 dζ. The integral can be brought
to the above Gauss integral by a contour deformation (which needs to be carefully justified).

3.2.3 The Inversion formula

A very important property of the Fourier transform on S (Rd) is the fact that it acts bijectively S →
S , and that the inverse map is as simple as F itself.

Theorem 3.2.5 Let φ ∈ S (Rd). Then

∀x ∈ Rd, φ(x) =
1

(2π)d

∫
Rd

eix·ξφ̂(ξ) dξ .

Compared with the expression of F itself, we just have a change of sign in the exponential, and
a global prefactor (2π)−d.

Proof.— We first observe that it is enough to prove this identity at the point x = 0. Indeed, in view
of property iii) in Proposition 3.2.2, the general statement follows from applying the formula

(3.2.2) ψ(0) =
1

(2π)d

∫
Rd

ψ̂(ξ) dξ

to the function ψx defined by ψx(•) = φ(x+ •).

To prove (3.2.2), we consider two linear form on S (Rd):

L0 : ψ 7→ ψ(0), 1 : ψ 7→
∫
Rd

ψ̂(ξ) dξ .

We claim that, if L0(ψ) = 0, then L1(ψ) = 0. Indeed, applying the Hadamard lemma 2.3.13 and its
proof, we may decompose ψ ∈ Ker(L0) as

ψ(x) =
d∑
j=1

xjψj(x) ,

Distributions and PDEs, Fall 2022 Stéphane Nonnenmacher



CHAPTER 3. THE FOURIER TRANSFORMATION 133

where the explicit expressions for ψj show that these functions are in S (Rd). Taking the Fourier
transform of both sides and applying property i) of Proposition 3.2.2, we infer

ψ̂(ξ) =
d∑
j=1

i∂jψ̂j(ξ) .

Integrating both sides on Rd, we conclude∫
Rd

ψ̂(ξ) dξ = 0 , that is, L1(ψ) = 0 .

We have proved that the kernel of L0 is contained in the kernel of L1. Since these linear forms act
continuously on S , their kernels are closed hyperplanes in S . The inclusion implies that those kernels
are the same hyperplane, thus that the two forms are proportional each other: there exists c ∈ C∗
such that L1 = c L0.

To determine the constant c, it is sufficient to apply this identity to a nontrivial particular case. Taking
ψ = G1 and using Proposition 3.2.3 shows that c = (2π)d, hence the formula (3.2.2).

In order to reformulate this important theorem, we introduce the operator of symmetry w.r.to the
origin

σ : S → S defined by σφ(x) := φ(−x) , ∀x ∈ Rd ,

and observe that
σ ◦ F = F ◦ σ =: F̌ .

The transformation F̌ is given by the integral in Definition 3.2.1, up to replacing e−ix·ξ by eix·ξ.

Corollary 3.2.6 The Fourier transformation is an isomorphism on the vector space S (Rd). Its
inverse F−1 is given by

F−1 = (2π)−dF̌ .

Equivalently, we have

(3.2.3) F ◦ F = (2π)dσ .

Remark 3.2.7 As an immediate consequence of (3.2.3), F4 = (F ◦ F)2 = (2π)2d Id .

3.2.4 The “change of head” lemma

The following proposition is elementary but crucial for the whole chapter.

Proposition 3.2.8 Let φ, ψ ∈ S (Rd). Then∫
Rd

φ̂(ξ)ψ(ξ) dξ =

∫
Rd

φ(x) ψ̂(x) dx .
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Proof.— Since φ, ψ ∈ S , these functions are smooth and fast decaying, so it is possible to use
Fubini’s theorem:∫

Rd

φ̂(ξ)ψ(ξ) dξ =

∫
Rd

(∫
Rd

e−ix.ξφ(x) dx

)
ψ(ξ) dξ

Fubini
=

∫
Rd

φ(x)

(∫
Rd

e−ix.ξψ(ξ) dξ

)
dx =

∫
Rd

φ(x)ψ̂(x) dx .

This change-of-head property will be used in the next section, which will prove an important identity.

3.2.5 The Plancherel identity

Proposition 3.2.9 (Plancherel formula) Let φ and ψ be two functions in S (Rd). Then∫
Rd

φ(x)ψ(x) dx = (2π)−d
∫
Rd

φ̂(ξ) ψ̂(ξ) dξ .

Proof.— In the proof we will pile up several successive operations: Fourier transform, complex con-
jugation, inversion. The symbols above the functions should be read from bottom to top.

We first observe the following identity:

(3.2.4) F(φ) = φ̂ = σ
(
φ̂
)
,

which is merely a reformulation of

φ̂(ξ) =

∫
Rd

e−ix·ξ φ(x) dx =

∫
Rd

eix.ξ φ(x) dx .

Applying the “change-of-head” Proposition 3.2.8, we obtain∫
Rd

φ̂ ψ̂ =

∫
Rd

φ
ˆ̂
ψ .

Applying the identity (3.2.4) to ψ̂, and then identity (3.2.3), we get

ˆ̂
ψ = σ

ˆ̂
ψ = (2π)dσσψ = (2π)dψ .

This completes the proof.

The above identity can be written in terms of the Hermitian scalar product on L2(Rd,C):

(φ, ψ)L2 =
1

(2π)d
(φ̂, ψ̂)L2 .

In particular, for ψ = φ, we obtain the famous Plancherel formula, here for functions in S (Rd):
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Corollary 3.2.10 (Plancherel) For any φ ∈ S (Rd), it holds that

∥φ∥L2(Rd) = (2π)−d/2∥φ̂∥L2(Rd) .

Now that we have explored the space of Schwartz functions and the action of the Fourier transform
on it, we are ready to define the tempered (or Schwartz) distributions.

3.3 The space S ′(Rd) of tempered distributions

3.3.1 Definition, examples

Initially, tempered distributions are just a subclass of distributions on Rd.

Definition 3.3.1 A distribution T ∈ D ′(Rd) is said to be tempered when there exists C > 0
and p ∈ N such that, for all test function φ ∈ D(Rd),

|⟨T, φ⟩ ≤ CNp(φ) .

Tempered distributions are also called Schwartz distributions. We denote by S ′(Rd) the space
of tempered distributions on Rd.

Example 3.3.2 If T ∈ E ′(Rd), the space of distributions of compact supports, then there is C > 0,
m ∈ N, such that for any φ ∈ D(Rd) (independently of the support of φ),

|⟨T, φ⟩| ≤ C
∑
|α|≤m

sup |∂αφ| ≤ CNm(φ).

Thus E ′(Rd) ⊂ S ′(Rd): compactly supported distributions are tempered.

Example 3.3.3 For p ∈ [1,+∞], we have Lp(Rd) ⊂ S ′(Rd). Indeed, if f ∈ Lp(Rd) and φ ∈
D(Rd), and for q ∈ [1,+∞] such that 1/p+ 1/q = 1, we have

|⟨Tf , φ⟩| ≤ |
∫
f(x)φ(x)dx|

Hlder

≤ ∥f∥Lp∥φ∥Lq .

A simple adaptation of Proposition 3.2.2 shows that if an integer n satisfies n > d
q
, then ∥φ∥Lq ≤

C Nn(φ). We thus obtain, for some constant Cp,n,d > 0:

|⟨Tf , φ⟩| ≤ Cp,n,d ∥f∥Lp Nn(φ) .

In particular, in view of Proposition 3.1.7, we see that S (Rd) ⊂ S ′(Rd).
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Example 3.3.4 Let f ∈ L1
loc(Rd) be growing not too fast when |x| → ∞ in the following averaged

sense: for some C > 0 and p ∈ N,

(3.3.5) ∀R > 0,

∫
|x|≤R

|f(x)| dx ≤ Cf (1 +R)p .

Then we claim that f is a tempered distribution. Indeed, if φ ∈ D(Rd), we have

|⟨Tf , φ⟩| ≤
∫
Rd

|f(x)||φ(x)| dx .

The integral on Rd will be split by using a dyadic partition of Rd into the unit ball and the annuli
Ak := {2k ≤ |x| < 2k+1}, for k ∈ N.

|⟨Tf , φ⟩| ≤
∫
|x|<1

|f(x)| |φ(x)| dx+
∞∑
k=0

∫
Ak

|f(x)| |φ(x) dx.

The hypothesis (3.3.5) easily leads to the following bounds:∫
|x|<1

|f(x)| |φ(x)| dx ≤ C (1 + 1)p∥φ∥∞ = Cf 2
pN0(φ) ,∫

Ak

|f(x)| |φ(x)| dx ≤ Cf (1 + 2k+1)p sup
x∈Ak

|φ(x)|

Notice that we did not just use ∥phe∥∞ in the second line, because we want to use some decay
property of φ in order to sum over k ∈ N.
Since |x| ≥ 2k on Ak, we have obviously

2kp+k sup
x∈Ak

|φ(x)| ≤ sup
x∈Ak

|x|p+1|φ(x)| , hence

(1 + 2k+1)p sup
x∈Ak

|φ(x)| ≤ Cp 2
−k sup

x∈Ak

|x|p+1|φ(x)| ≤ C ′p 2
−kNp+1(φ) .

This rewriting allows us to sum over k ∈ N, and obtain finally

|⟨Tf , φ⟩| ≤ C ′′p Cf Np+1(φ) .

Example 3.3.5 The previous example admits the following partial converse. If f ∈ L1
loc(Rd) has

nonnegative values and is a tempered distribution, then, there exists C > 0 and p ∈ N such that:

∀R > 0,

∫
|x|≤R

f(x) dx ≤ C (1 +R)p.

Indeed, if f is tempered, we have, for some A > 0 et p ∈ N,

∀φ ∈ D(Rd),
∣∣∣ ∫

Rd

f(x)φ(x) dx
∣∣∣ ≤ ANp(φ) .
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Let χ ≥ 0 be a plateau function over the ball B(0, 1), supported in the ball B(0, 2). Then

0 ≤
∫
|x|≤R

f(x) dx ≤
∫
Rd

f(x)χ
( x
R

)
dx ≤ ANp

(
χ
( ·
R

))
,

and an explicit computation (using the fact that suppχ
( ·
R

)
⊂ B(0, 2R)) shows that

Np

(
χ
( ·
R

))
≤ C (1 +R)p .

In particular, on R the function ex is not tempered, since, for every p ∈ N,

R−p
∫ R

0

ex dx −→
R→∞

+∞ .

We conclude this first paragraph with a simple observation.

Proposition 3.3.6 If T ∈ S ′(Rd), then xα∂βT ∈ S ′(Rd) for all α, β ∈ Nd. In other words, the
space of tempered distributions is left invariant by differentiation and multiplication by polynomials.

Proof.— Assume that T ∈ S ′ is controlled by the norm Np. It is sufficient to show that xjT and ∂jT
are tempered distributions. For any test function φ ∈ D(Rd) ⊂ S (Rd), we have

|⟨xjT, φ⟩| = |⟨T, xjφ⟩| ≤ C Np(xjφ) ≤ C C ′pNp+1(φ),

where we made use of (3.1.1). A similar computation shows that ∂jT is controlled by Np+1 as well,
hence that ∂jT ∈ S ′.

Exercise 3.3.7 Show that the function x 7→ exeie
x is not bounded by a polynomial, but nevertheless

belongs to S ′(R). Hint: it is the derivative of a tempered distribution.

The multiplication of a tempered distribution by a smooth function does not always yield a tempered
distribution. However, it is the case when the function has moderate growth, a notion we now define.

Definition 3.3.8 A function f ∈ C∞(Rd) has moderate growth if, for any β ∈ Nd, there is
Cβ > 0 and mβ ∈ N such that

|∂βf(x)| ≤ Cβ(1 + |x|)mβ , ∀x ∈ Rd .

We denote by OM(Rd) the space of such functions.

We notice that polynomials are of moderate growth. It is also the case of continuous rational functions.

This notion allows us to extend the stability of S ′ through multiplication by polynomials.
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Proposition 3.3.9 If T ∈ S ′(Rd) and f ∈ OM(Rd), then fT ∈ S ′(Rd).

Proof.— Let φ ∈ S (Rd), and α, β ∈ Nd. The Leibniz formula gives

|xα∂β(fφ)| ≤
∑
γ≤β

(
β

γ

)
|xα∂γf | |∂β−γφ| ≤ Cβ

∑
γ≤β

(
β

γ

)
|xα| (1 + |x|)mγ |∂β−γφ|.

Then, as in (3.1.1), we obtain
Np(fφ) ≤ CNp+M(φ),

where M = |α|+ max|γ|≤pmγ. Thus, for φ ∈ D(Rd), we obtain

|⟨fT, φ⟩| = |⟨T, fφ⟩| ≤ CNp(fφ) ≤ C ′Np+M(φ),

showing that fT is a tempered distribution.

Exercise 3.3.10 Show that vp(1/x) ∈ S ′(R).

3.3.2 The fundamental characterization of S ′

So far our tempered distributions were acting on D(Rd), like any distribution. The following Proposition
shows that they can be naturally extended as linear forms on the space of Schwartz functions, which
explains the notation S ′ for those distributions.

Proposition 3.3.11 If T is a tempered distribution, then T extends in a unique way as a continu-
ous linear form T̃ on S (Rd), in the following sense: if φn → φ in S (Rd), then ⟨T̃ , φn⟩ → ⟨T̃ , φ⟩.

Proof.— Let φ ∈ S (R). From Corollary 3.1.10, we may construct a sequence (φj) in D(Rd) such
that φj → φ in S (Rd) when j →∞. The sequence (⟨T, φj⟩)j is a Cauchy sequence in C since T is
tempered:

(3.3.6) |⟨T, φj − φk⟩| ≤ CNp(φj − φk) when j, k →∞ .

Its limit does not depend on the choice of the sequence (φj), since, for any other sequence ψj → φ,
we have

|⟨T, φj − ψj⟩| ≤ CNp(φj − ψj)
→

j →∞ 0 .

Thus we can define T̃ the linear form on S (Rd) by

⟨T̃ , φ⟩ = lim
j→+∞

⟨T, φj⟩,

where (φj) is any sequence in D(Rd) which converges to φ. Since Np is a continuous function on S ,
taking the limit of the inequalities

|⟨T, φj⟩| ≤ CNp(φj),
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we get
|⟨T̃ , φ⟩| ≤ CNp(φ) .

This control holds for any φ ∈ S (Rd). This shows that T̃ is a continuous linear form on S .

Finally, if T1 were another continuous extension of T to S (Rd), we should have

⟨T1, φ⟩ = ⟨T1, φ− φj⟩+ ⟨T1, φj⟩
→

j →∞ 0 + ⟨T̃ , φ⟩,

so finally T1 = T̃ .

Remark 3.3.12 For simplicity, we shall drop the tilde above T in the sequel, and write T in place
of T̃ ; that is, we identify the tempered distribution T with its extension to S .
Notice that, conversely, every continuous linear form on S (Rd) must satisfy a bound of the form

∀φ ∈ S , |⟨T, φ⟩| ≤ C Np(φ) ,

hence its restriction to D(Rd) is a tempered distribution. Summing up, tempered distributions
identify to continuous linear forms on the Schwartz space S (Rd). This explains the notation S ′.
We shall use this identification systematically.

3.3.3 Convergence in S ′(Rd)

The notion of convergence for distributions in S ′(Rd) is similar to the one in D ′(Rd), but is slightly
more restrictive.

Definition 3.3.13 Let (Tn) be a sequence of tempered distributions. One says that (Tn) tends
to T in S ′(Rd) if, for any function φ ∈ S (Rd), it holds that ⟨Tn, φ⟩

→
n→∞ ⟨T, φ⟩.

As it is the case in D ′(Rd), this notion of convergence, a weak one, implies a stronger one. We admit
the following uniform boundedness result.

Proposition 3.3.14 (Uniform boundedness in S ′) If Tn → T in S ′, there exists C > 0 and
p ∈ N such that

∀φ ∈ S , ∀n , |⟨Tn, φ⟩| ≤ C Np(φ) .

This uniform boundedness principle can be proven by identifying the convergence on S as the one
on a complete metric space.
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Remark 3.3.15 When Tn → T in S ′(R), it is true that Tn → T in D ′(R), since D(Rd) ⊂ S (Rd).
The converse is not true in general, as shown by the following example: for any sequence (an)
of complex numbers, the sequence (anδn) converges to 0 in D ′(R). However it only converges
(necessarily to 0) in S ′(Rd) if (an) has moderate growth, i.e. there is C > 0, p ∈ N such that for
all n, |an| ≤ C(1 + n)p .

Remark 3.3.16 One can compare the convergence in S ′ to more standard ones.
If fn → f in Lp(Rd), then fn → f in S ′(Rd).
If Tn → T in S ′(Rd) and f ∈ OM(Rd), then fTn → fT in S ′(Rd).

3.4 The Fourier Transformation in S ′(Rd)

3.4.1 Definition

Let T ∈ S ′(Rd) be a tempered distribution. We know that for any φ ∈ S , its Fourier transform φ̂ is
also in S , so the expression ⟨T, φ̂ is well-defined. The map φ 7→ ⟨T, φ̂⟩ is obviously a linear form on
S (Rd), let us check that it is continuous, hence a tempered distribution.

There exist C > 0 and p ∈ N such that

|⟨T, φ̂⟩| ≤ C Np(φ̂) ≤ C ′Np+d+1(φ) ,

thanks to Proposition 3.2.6.

We also remember the change-of-head formula for φ, ψ ∈ S , which can be rephrased as follows,
remembering that Tψ is a tempered distribution:

⟨Tψ, φ̂⟩ = ⟨Tψ̂, φ⟩ .

This expression suggests to define the Fourier transform of a tempered distribution as follows

Definition 3.4.1 For T ∈ S ′(Rd), we denote by T̂ = F(T ) the tempered distribution given by

⟨T̂ , φ⟩ := ⟨T, φ̂⟩, ∀φ ∈ S (Rd).

Examples 3.4.2 i) For f ∈  L1, we have by Fubini’s theorem,

⟨f̂ , φ⟩ =

∫
Rd

f(x)φ̂(x) dx =

∫
Rd

f(x)

(∫
Rd

φ(ξ) e−ix.ξ dξ

)
dx

=

∫
Rd

(∫
Rd

f(x) e−ix.ξ dx

)
φ(ξ) dξ =

∫
Rd

f̂(ξ)φ(ξ)dξ,

so that T̂f = Tf̂ . Hence in this case we recover the classical Fourier transformation on L1

(see also Proposition 3.4.6 below).
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ii) For φ ∈ S (Rd), ⟨δ̂0, φ⟩ =
∫
φ(x)dx, which shows that δ̂0 = 1 (constant function).

Proposition 3.4.3 The Fourier Transform F is an isomorphism on S ′(Rd). Its inverse is F−1 =
(2π)−dF̌ . Moreover F and F−1 are continuous on S ′(Rd), in the following sense: if Tn → T ∈
S ′(Rd), then F(Tn)→ F(T ) in S ′(Rd).

These results follow immediately form the above definition and Proposition 3.2.6. We may also easily
transfer to S ′(Rd) the properties of the Fourier transform on S (Rd) of Proposition 3.2.2, thereby
obtaining the following identities.

Corollary 3.4.4 For any distribution T ∈ S ′(Rd), its Fourier transform intertwines as follows
with differentiation, multiplication, translation:

∀j = 1, . . . , d, F(DjT ) = ξjT̂ , F(xjT ) = −DjT̂ ,

∀x0, ξ0 ∈ Rd, F(τx0T ) = e−ix0·ξ F(T ), F
(
eiξ0·xT

)
= τξ0F(T ) .

Example 3.4.5 F(1) = F ◦ F(δ0) = (2π)d δ0

̂

= (2π)d δ0.

3.4.2 The Fourier Transformation on L1(Rd) and L2(Rd)

Here we briefly sum up the main properties of the Fourier transform of a tempered distribution asso-
ciated with an L1 or an L2 function.

Proposition 3.4.6 If T = f ∈ L1(Rd), then F(T ) = f̂ . More precisely

i) F(T ) is the continuous function given by F(T )(ξ) =
∫
e−ix·ξf(x)dx, and F(T )(ξ) → 0

when |ξ| → +∞.

ii) If moreover F(T ) belongs to L1(Rd), then F−1(F(T )) = T almost everywhere.

Proof.— The fact that f̂ is a continuous function follows easily from the Lebesgue theorem of continuity
of an integral w.r.to parameters, and the fact that f̂ decays at infinity is called the Riemann-Lebesgue
lemma. For φ ∈ S (Rd), we have

⟨T̂ , φ⟩ = ⟨T, φ̂⟩ =
∫
f(ξ)φ̂(ξ)dξ =

∫
f(ξ)

(∫
e−ix·ξφ(x)dx

)
dξ.

Since the function (x, ξ) 7→ f(ξ) e−ix·ξφ(x) belongs to L1(Rd
x × Rd

ξ), we have by Fubini

⟨T̂ , φ⟩ =
∫
φ(x)

(∫
e−ix·ξf(ξ)dξ

)
dx = ⟨f̂ , φ⟩,
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and this ends the proof of i). We also know that F−1(f̂) = f in S ′(Rd). If f̂ ∈ L1(Rd), we thus
have F−1(f̂) = f in D ′(Rd), and this equality of two distributions which are both in L1 implies that
F−1(f̂) = f almost everywhere.

Let us now focus on distributions associated with functions f ∈ L2(Rd).

Proposition 3.4.7 The map T ∈ S ′(Rd) 7→ (2π)−d/2F(T ) ∈ S ′(Rd) induces a bijective isom-
etry on the subspace L2(Rd) ⊂ S ′(Rd).

Proof.— Let f ∈ L2(Rd). For every φ ∈ S (Rd), we have by definition

⟨T̂f , φ⟩ =
∫
Rd

f(x)φ̂(x) dx .

By the Cauchy–Schwarz inequality and the Plancherel identity (Corollary 3.2.10),

|⟨T̂f , φ⟩| ≤ ∥f∥L2 ∥φ̂∥L2 = (2π)
d
2∥f∥L2 ∥φ∥L2 .

This shows that the distribution T̂f can be extended into a continuous linear form on L2(Rd). The
Riesz representation theorem then shows that this linear form is represented by a single element of
L2(Rd), which we denote by f̂ ∈ L2(Rd). We then have the identification T̂f = Tf̂ . Besides, the
above inequality shows that

∥f̂∥L2 ≤ (2π)
d
2∥f∥L2 .

Applying this inequality to f̂ in place of f and using the inversion formula from Proposition 3.4.3, we
infer

(2π)d∥f∥L2 = ∥ ˆ̂f∥L2 ≤ (2π)
d
2∥f̂∥L2

so finally,
∥f∥L2 = (2π)−

d
2∥f̂∥L2 .

This shows that (2π)−d/2 acts as an isometry L2 → L2. Since it is clear from Proposition 3.4.3 that
F is bijective on S ′, this isometry is actually a unitary bijection.

Remark 3.4.8 There are functions f in L2(Rd) such that x 7→ e−ix·ξf(x) is not integrable whatever
the value of ξ is (for example, for d = 1, f(x) = (1 + |x|)−3/4), so one cannot compute f̂(ξ) by a
direct computation of the integral

∫
f(x) e−ix·ξ dx.

However, we know that the truncated functions f1lB(0,R) converge to f in the L2(Rd) sense, when
R → ∞. The functions f1lB(0,R) are in L1(Rd), so their Fourier transforms are well-defined classi-
cally, given by

gR(ξ) =

∫
|x|<R

e−ix·ξf(x) dx, ξ ∈ Rd ,

Thanks to Proposition 3.4.7, the L2 convergence of f1lB(0,R) implies the convergence of the Fourier
transforms:

gR
L2

→ f̂ when R→∞ .
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3.4.3 The Fourier Transform of compactly supported distributions

The Fourier transformation exchanges the speed of decay at infinity of a function with the regularity
of its image, as shown for example by the following inequality

∥Dαφ̂∥L∞ = ∥F(xαφ)∥L∞ ≤ ∥xαφ∥L1 , φ ∈ S (Rd) .

The strongest speed of decay at infinity is achieved for compactly supported function ; the result of
this subsection explores this phenomenon more precisely.

Proposition 3.4.9 Let T ∈ D ′(Rd) be compactly supported, and take χ ∈ D(Rd) a cutoff
function above suppT . Then the Fourier transform F(T ) is the smooth function on Rd given by

∀ξ ∈ Rd, F(T )(ξ) = ⟨T, χ e−ix·ξ⟩.

Moreover, there is an integer m ∈ N such that, for any α ∈ Nd, there is a Cα > 0 satisfying

|∂αF(T )(ξ)| ≤ Cα(1 + |ξ|)m.

In particular, F(T ) is a function of moderate growth.

Proof.— Differentiating w.r.to ξ under the bracket, we see that the function v(ξ) given by

v(ξ) := ⟨T, χe−ix·ξ⟩

is a C∞ function. We also have

∂αv(ξ) = ⟨T, χ (−ix)α e−ix·ξ⟩,

All those test function are supported on K = suppχ, so there are C > 0, m ∈ N such that

|∂αv(ξ)| ≤ C
∑
|β|≤m

∥∂βx
(
χ (−ix)α e−ix·ξ

)
∥∞

≤ C
∑
|β|≤m

Cχ,β sup
x∈K

∣∣∂βx((−ix)α e−ix·ξ)∣∣ ≤ Cα,K(1 + |ξ|)m .

Let us finally check that this function v represents T̂ . Indeed, for φ ∈ D(Rd), thanks to the theorem
of integration under the bracket, we find

⟨T̂ , φ⟩ =
⟨
T, χ

∫
e−ix·ξφ(ξ)dξ

⟩
=

∫
⟨T, χ e−ix·ξ⟩φ(ξ)dξ,

hence T̂ is given by the function T̂ (ξ) = ⟨T, χ e−ix·ξ⟩ = v(ξ).
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3.4.4 Fourier characterization of Sobolev spaces on Rd

We recall that Sobolev spacesHn(Ω) were introduced in Chapter 2 for n ∈ N and Ω an open subset of
Rd. In this subsection, we use the Fourier transform to provide more information about these spaces
when Ω = Rd.

Notation

For ξ ∈ Rd, we define the “Japanese bracket notation”

⟨ξ⟩ :=
√

1 + |ξ|2 , , ξ ∈ Rd .

The function ξ 7→ ⟨ξ⟩ is smooth on Rd, and there is a constant C > 0 such that, for |ξ| ≥ 1,

1

C
|ξ| ≤ ⟨ξ⟩ ≤ C|ξ|.

Thus, ⟨ξ⟩ is a regularized version of |ξ|, in the sense that it has the same behavior at infinity. Fur-
thermore, since this function is smooth and since all its derivatives have growth at most polynomial
at infinity, it is of moderate growth, so it acts on S ′(Rd) by multiplication.

The following proposition is a characterization of the Sobolev spaces Hn(Rd) using the Fourier trans-
form.

Proposition 3.4.10 Let n ∈ N and u ∈ S ′(Rd). Then u ∈ Hn(Rd) if and only if the distribution
⟨ξ⟩nû ∈ belongs to L2(Rd). Furthermore, there exists Cn > 0 such that

∀u ∈ Hn(Rd) , C−1s ∥⟨ξ⟩nû∥L2 ≤ ∥u∥Hn ≤ Cn∥⟨ξ⟩nû∥L2 .

In other words, ∥⟨ξ⟩nû∥L2 defines an norm on Hn(Rd), equivalent with the usual norm.
The characterization can be stated as the fact that the distribution û belongs to the weighted L2

space L2(Rd, ⟨ξ⟩2n dξ).

Proof.— If u ∈ Hn(Rd), then for all |α| ≤ n we have ∂αu ∈ L2(Rd). By the Plancherel theorem, its
Fourier transform ξαû is also in L2(Rd), with the same norm (up to a constant (2π)d/2).

Now observe the polynomial expansion

⟨ξ⟩2n = (1 + ξ21 + · · ·+ ξ2d)
n =

∑
|α|≤s

cα,nξ
2α

for some positive constants cα,n. Consequently,

⟨ξ⟩2n |û(ξ)|2 =
∑
|α|≤n

cα,nξ
2α |û(ξ)|2 is integrable,
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whence ⟨ξ⟩nû ∈ L2(Rd), with

∥⟨ξ⟩nû∥L2 ≤ C
∑
|α|≤n

∥ξα û∥L2

Conversely, if ⟨ξ⟩nû ∈ L2(Rd), then, for any multiindex such that |α| ≤ n, the function ξα⟨ξ⟩−n is
bounded on Rd, and we have

ξαû = ξα⟨ξ⟩−n ⟨ξ⟩n û ∈ L2(Rd), with ∥ξαû∥L2 ≤ Cα ∥⟨ξ⟩n û∥L2 .

which precisely means that ∂αu ∈ L2(Rd).

Proposition 3.4.10 suggests to generalize the definition ofHn(Rd) to every real index s ∈ R as follows.

Definition 3.4.11 Let s ∈ R. A tempered distribution u ∈ S ′(Rd) belongs to the Sobolev
space Hs(Rd) iff ⟨ξ⟩sû ∈ L2(Rd). Equivalently, iff û ∈ L2(Rd, ⟨ξ⟩2s dξ).
The natural scalar product on L2(Rd, ⟨ξ⟩2s dξ) defines a Hermitian scalar product on Hs(Rd):

(u, v)Hs :=

∫
Rd

û(ξ) v̂(ξ) ⟨ξ⟩2s dξ ,

which makes Hs a Hilbert space, with norm denoted by ∥ · ∥Hs .

We notice that the Hs inject in one another as Hilbert spaces: if s′ > s then Hs′ ⊂ Hs and the
definition of the norms directly shows that the injection Hs′ → Hs is continuous:

∀u ∈ Hs′ , ∥u∥Hs ≤ ∥u∥Hs′ .

Examples 3.4.12 i) δ0 ∈ Hs(Rd) if and only if s < −d
2

. Indeed δ̂0 = 1, so that ⟨ξ⟩sδ̂0 ∈ L2(Rd)
if and only if 2s < −d.

ii) The constant function 1 does not belong to any Hs(Rd), since 1̂ = (2π)dδ0 is not in L1
loc,

hence not in any L2(⟨ξ⟩2s dξ) (any of these weighted L2 spaces is contained in L1
loc).

The above example shows that ∪
s∈R

Hs(Rd) ⊊ S ′(Rd) .

Below follows another illustration of the fact thatHs contains elements that are more and more singular
as s decreases.

Proposition 3.4.13 Let T ∈ E ′(Rd) be a compactly supported distribution, with order m ≥ 0.
Then T ∈ Hs(Rd)for any s < −m− d

2
.
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In particular, we have the inclusion

E ′(Rd) ⊊
∪
s∈R

Hs(Rd) .

Proof.— For T ∈ E ′(Rd), we already know that T̂ ∈ C∞. Moreover,

|⟨ξ⟩sT̂ (ξ)| = |⟨ξ⟩s⟨T, χ e−ix·ξ⟩| ≤ C⟨ξ⟩s
∑
|α|≤m

sup |∂αx (e−ix·ξ)| ≤ C⟨ξ⟩s+m

Thus T ∈ Hs(Rd) when ⟨ξ⟩s+m ∈ L2, thus when s+m < −d/2.

We close this subsection by proving an important result in functional analysis, namely a connection
between the Sobolev regularity (which is, in some sense, a regularity “on average”) and the pointwise
(Ck) regularity.

We denote by Ck→0(Rd) the space of Ck functions which decay to 0 at infinity, as well as all their
derivatives of order ≤ k.

Proposition 3.4.14 (Sobolev embedding 1) If s > d
2
+k, then every element of Hs(Rd) belongs

to Ck→0(Rd), and the embedding Hs(Rd)→ Ck→0(Rd) is continuous.

Proof.— Let u ∈ Hs(Rd). For α ∈ Nd such that |α| ≤ k, we have ξαû ∈ L1. Indeed,

|ξαû(ξ)| ≤ |ξ|
|α|

⟨ξ⟩s
⟨ξ⟩s|û(ξ)| ≤ ⟨ξ⟩k−s⟨ξ⟩s|û(ξ)|,

and ⟨ξ⟩k−s ∈ L2(Rd) since k − s < −d/2. By the Cauchy-Schwarz inequality, we thus get

(3.4.7) ∥ξαû∥L1 ≤ Cs,d∥u∥Hs .

Therefore ∂αu = F−1((iξ)αû) ∈ C0→0 by Proposition 3.4.6. The fact that the injection from Hs(Rd)
to Ck→0(Rd) is continuous is just a way to read the inequalities

∀|α| ≤ k, ∥∂αu∥L∞ ≤ ∥ξαû∥L1 ≤ Cs,d∥u∥Hs .

Another interesting consequence of Proposition 3.4.10 is that we recover solutions to the damped
Poisson equation −∆u + u = f on Rd (see Theorem 2.5.4) in a very general setup, with optimal
regularity of the solution.

Proposition 3.4.15 For every s ∈ Rd, the mapping u ∈ Hs(Rd) 7→ u − ∆u ∈ Hs−2(Rd) is an
isomorphism.
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Proof.— This mapping is conjugated, through Fourier transform, to the mapping

û ∈ L2(⟨ξ⟩2sdξ) 7→ ⟨ξ⟩2û ∈ L2(⟨ξ⟩2s−4dξ)

which is trivially an isomorphism (actually, a unitary one).

Combining the above three propositions, we obtain he following extension of Theorem 1.9.16 to several
dimensions.

Theorem 3.4.16 For every distribution T on Rd with compact support, there exist p ∈ N and
a family (fα)|α|≤p of continuous functions on Rd such that

T =
∑
|α|≤p

∂α(fα) .

Proof.— From Proposition 3.4.13, we know that, for some s ∈ R, T ∈ Hs(Rd) Let q be a positive
integer such that

s+ 2q >
d

2
.

By the isomorphism of Proposition 3.4.15 iterated q times, there exists g ∈ Hs+2q unique such that

(I −∆)qg = T .

From the Sobolev embedding of Proposition 3.4.14, the distribution g is a continuous function. It
remains to write

T = (I −∆)qg =
(
1−

d∑
j=1

∂2j
)q
g =

∑
|β|≤q

cβ∂
2βg ,

and the proof is complete by identifying the even multiindices α = 2β, |α| ≤ 2q, and functions
fα = cβg.

3.4.5 Local Sobolev spaces on Ω

In this subsection we come back to the general setup of distributions on an arbitrary open set Ω ⊂ Rd

of Chapter 2. Using the Sobolev spaces Hs(Rd), we define subspaces of D ′(Ω), called local Sobolev
spaces on Ω. Those spaces will be very useful when studying the local regularity of PDEs on Ω.

Definition 3.4.17 Let Ω be an open subset of Rd, and let s ∈ R. We denote by Hs
loc(Ω) the

space of distributions T ∈ D ′(Ω) such that, for any χ ∈ D(Ω), the extension to Rd by 0 of the
compactly supported distribution χu belongs to Hs(Rd).
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We first show the following important regularity theorem.

Proposition 3.4.18 ∩
s∈R

Hs
loc(Ω) = C∞(Ω) .

This “local” result may be compared with the strict inclusions

S (Rd) ⊊
∩
s∈R

Hs(Rd)
F⇐⇒ S (Rd) ⊊

∩
s∈R

L2(Rd, ⟨ξ⟩2s dξ) .

Proof.— If u ∈ C∞(Ω), then, for any test functionχ ∈ D(Ω), the product χu ∈ D(Ω), so that its
extension to Rd by 0 belongs to S (Rd), and admits a Fourier transform χ̂u ∈ S (Rd); consequently
χu ∈ Hs for every s ∈ R.

Conversely, if u ∈ Hs
loc(Ω) for every s ∈ R, then for any χ ∈ D(Ω) we have by definition χu ∈

Hs(Rd), for every s. Proposition 3.4.14 implies that χu ∈ Ck→0(Rd) for every k, in particular χu ∈
C∞(Rd). Since this holds for any χ ∈ D(Ω), we obtain u ∈ C∞.

Like all “local” results in D ′(Ω), the inclusion u ∈ Hs
loc(Ω) does control how fast the “local” Hs norms

∥χu∥Hs may grow when suppχ approaches the boundary of Ω.

3.5 Some applications to PDEs

In this section we use the Fourier transform as a very convenient tool to study the solutions of Partial
Differential equations on Rd, or on Ω ⊂ Rd, especially those with constant coefficients.

3.5.1 Partial differential equations with constant coefficients

Let p ∈ C[X1, . . . , Xd] be a polynomial of d variables with complex coefficients,

p(X) =
∑
|α|≤m

aαX
α, X ∈ Rd, with aα ∈ C .

We assume that, for at least one multiindex |α| = m, the coefficient aα ̸= 0: p is then a polynomial
of degree m.

Given an open subset Ω ⊂ Rd, we denote by p(∂) the operator on D ′(Ω) given by

D ′(Ω) ∋ T 7→ p(∂)T =
∑
|α|≤m

aα∂
αT ∈ D ′(Ω).

Those operators are called linear partial differential operators with constant coefficients. The equation

p(∂)u = f,
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where f ∈ D ′(Ω) is given, and u ∈ D ′(Ω) is the unknown, is called a Partial Differential Equation
(PDE) of order m with constant coefficients. When f ̸= 0, it is said to be inhomogeneous, or with
source term f .

Remark 3.5.1 For d = 1, the equation p(∂)u = f is a linear differential equation of order m
with constant coefficients, which can be explicitly solved by transforming it into a linear system of
differential equations of order 1, of the form U ′ =MU +F with U a vector valued distribution, M
a matrix of constant coefficients, F a vector valued inhomogeneous term.
On the opposite, in d > 1 the situation is drastically different: in general we have no explicit, or
even approximate expression for the solutions u, and it may even be difficult to show the existence
of solutions. The theory of PDEs tries to give as precise informations as possible of the solutions,
without giving explicit formulae: their existence in some space of distributions, their regularity,
sometimes a more precise structure.

Example 3.5.2 If p(X1, . . . , Xd) = X2
1 + · · ·+X2

d , then

p(∂)T = ∂21T + · · ·+ ∂2dT = ∆T .

We already encountered operator ∆ which is called the Laplacian (or Laplacean), and equation the
equation ∆u = f is called the Laplace (or Poisson) equation.
A particularity of ∆ is that this operator is covariant under the rotations of Rd centered at the
origin: for any rotation matrix R ∈ O(d,R) and f ∈ C2(Rd), one has

∀x ∈ Rd, ∆x

[
f(Rx)

]
= [∆f ](Rx) .

Moreover, one can show that every linear partial differential operator with constant coefficients
on Rd which is invariant by rotations, is of the form P = q(∆), where q is a polynomial of one
variable. This invariance property explains why the Laplacian appears so frequently in many areas of
Mathematical Physics: to name a few, in the heat equation, wave equation, Schrödinger equation...

The following proposition, which is at the heart of the use of F in PDEs, is a direct consequence of the
properties of the Fourier transform on S ′(Rd) given in Corollary 3.4.4.

Proposition 3.5.3 Let p ∈ C[X1, . . . , Xd] and P = p(∂) be the corresponding differential oper-
ator. For every u ∈ S ′(Rd), we have

P̂ u = p(iξ)û .

Therefore, the action of F transforms a linear differential operator with constant coefficients, into the
operator of multiplication by a polynomial, a priori a much simpler object to study. The importance
of the above proposition appears through the multiplicity of its consequences. We shall draw some of
them in the next subsections.
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3.5.2 Local results on Ω

Let P = p(∂) be a linear partial differential operators with constant coefficients. In this section, we
study some properties of P on D ′(Ω), where Ω is an open subset of Rd. We start with a very natural
statement.

Proposition 3.5.4 If P is a linear partial differential operators with constant coefficients of order
≤ m. Let s ∈ R. Then P : Hs

loc(Ω) → Hs−m
loc (Ω). That is, for any u ∈ Hs

loc(Ω), Pu belongs to
Hs−m

loc (Ω).

Proof.— The result Pu ∈ Hs−m
loc (Ω) means that, or any φ ∈ D(Ω), φPu belongs to Hs−m(Rd). On

the other hand, the assumption involves the functions of the form ψu, ψ ∈ D(Ω). It is thus necessary
to connect these two types of function. The following Lemma is thus relevant.

Lemma 3.5.5 Let P be a linear partial differential operators with constant coefficients of order
≤ m, and φ ∈ D(Ω). Then there exist functions

(
φβ ∈ D(Ω)

)
|β|≤m−1, such that, for every

u ∈ D ′(Ω),
P (φu) = φPu+

∑
|β|≤m−1

∂β(φβu) .

Let us use this Lemma. Take u ∈ Hs
loc(Ω) and choose some φ ∈ D(Ω). Apply the Lemma: the

functions φu and φβu belong to Hs(Rd) by the assumption on u. From the orders of the differential
operators P and ∂β, we get

P (φu) ∈ Hs−m(Rd) , ∂β(φβu) ∈ Hs−m+1(Rd) .

This leads to φPu ∈ Hs−m(Rd), which means that Pu ∈ Hs−m
loc (Rd).

Let us now prove the Lemma 3.5.5. By linearity, it is enough to prove it for P = ∂α. We proceed by
induction on |α|. If |α| = 0, the formula trivially holds.

Assume that the statement holds for multiindices |α| ≤ m−1, and let us prove it at the rank |α| = m.
By the Leibniz formula,

(3.5.8) ∂α(φu) = φ∂αu+
∑

β≤α,|β|≤m−1

(
α

β

)
∂α−βφ∂βu .

Each term in the last sum is of the form φα−β ∂
βu, with |β| ≤ m − 1 and φα−β ∈ D(Ω). We may

then apply the induction hypothesis, to rewrite this term as

φα−β ∂
βu = ∂β(φα−β u)−

∑
γ≤β,|γ|<|β|

(
β

γ

)
∂β−γφα−β∂

γu ,

so altogether φα−β ∂βu is a sum of terms of the type ∂γ(ψα−β,γu) with |γ| ≤ m − 1 and ψγα−β,γ ∈
D(Ω). Summing all these terms in (3.5.8), we get the statement of the Lemma.
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Elliptic regularity

We showed above that if P = p(∂) is a differential operator of order ≤ m, then it maps Hs+m
loc (Ω) to

Hs
loc(Ω). A classical problem in PDEs asks the reverse question: knowing the local regularity of f , and

assuming that u ∈ D ′(Ω) solves Pu = f , what can we say about the local regularity of solutions u?

It is possible to give a general answer to this question under an assumption on the polynomial p, which
we now define.

Definition 3.5.6 An operator p(∂) =
∑
|α|≤m aα∂

α is called elliptic of order m if the highest
homogeneous part pm =

∑
|α|=m aαX

α of the polynomial p satisfies

∀ξ ∈ Rd \ {0} , pm(ξ) ̸= 0 ,

equivalently, ∀ξ ∈ Sd−1, pm(ξ) ̸= 0 .

For instance, in any dimension d ≥ 1 the Laplacian ∆ is elliptic, while the wave operator operator
∂21 − ∂22 on R2 is not.

Theorem 3.5.7 (Elliptic regularity) Let Ω ⊂ Rd be an open subset, and let P be a linear
partial differential operator with constant coefficients, elliptic of order m, acting on Ω. If u ∈
D ′(Ω) satisfies Pu ∈ Hs

loc(Ω) for some s ∈ R, then u ∈ Hs+m
loc (Ω). In particular, if Pu ∈ C∞(Ω),

then u ∈ C∞(Ω).

Proof.— 1. Let us first prove the result under the additional assumption that u ∈ Hσ
loc(Ω) for some

σ ∈ R. Since P is elliptic and since the unit sphere Sd−1 is compact, there exists c > 0 such that,

∀ξ ∈ Sd−1, |pm(iξ)| ≥ c .

By homogeneity of pm, this implies

∀ξ ∈ Rd , |pm(ξ)| ≥ c |ξ|m .

We are actually intested in p(iξ), which is the Fourier multiplier corresponding to the operator p(∂).
Comparing p(iξ) with pm(iξ), we find

p(iξ)− pm(iξ) = O(|ξ|m−1) when |ξ| → ∞ .

As a result, there exits R > 0 such that, for every ξ ∈ Rd with |ξ| ≥ R,

(3.5.9) |p(iξ)| ≥ c

2
|ξ|m .
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We see here one important aspect of the ellipticity assumption: it gives nontrivial information in the
regime of high frequencies |ξ| ≫ 1. Here, we find that the Fourier multiplier p(iξ) does not vanish for
large frequencies.

2. Using this nonvanishing property, we will define a quasi-inverse of this multiplier. Let χ ∈ D(Rd)
be a plateau function on the ball B(0, R). Then the function

q(ξ) :=

{
1−χ(ξ)
p(iξ)

, |x| ≥ R,

0, |x| < R,

is well-defined and C∞ on Rd and satisfies, due to estimate (3.5.9),

(3.5.10) |q(ξ)| ≤ C⟨ξ⟩−m) .

An easy computation shows that the same estimate holds for any derivative ∂αq, so that q is a function
of moderate growth. The multiplication by function q(ξ) thus acts on S ′(Rd). Viewing q(ξ) as a Fourier

multiplier amounts to defining the operator Q on S ′, such that Q̂(u) = q(ξ)û. The decay (3.5.10)
shows that for every τ ∈ R, this operator Q maps Hτ (Rd) to Hτ+m(Rd).

This operator Q is a quasi-inverse of P in the following sense:

QP = Id−R, where the operator R is defined by R̂(u) = χ û .

The operator R kills the high frequencies, it is called a regularizing operator. Indeed, for any v ∈
Hσ(Rd), R(u) will belong to all the Sobolev spaces Hτ , τ ∈ R, in particular R(u) will be a smooth
function.

3. Now let us take u ∈ Hσ
loc(Ω) such that Pu ∈ Hs

loc(Ω). For every φ ∈ D(Ω), Lemma 3.5.5 yields

P (φu) = φPu+
∑

|α|≤m−1

∂α(φαu) ,

where φα ∈ D(Ω). Applying the operator Q on both sides, we find

QP (φu) = Q(φPu) +
∑

|α|≤m−1

Q(∂α(φαu)) .

On the right hand side, the first term belongs toHs+m(Rd) while the other terms belong toHσ+1(Rd),
so the full RHS belongs to Hmin(s+m,σ+1)(Rd). Turning to the left hand side, the decomposition

QP (φu) = φu−R(φu) ,

and the regularizing properties of R, show that φu belongs to the same space Hmin(s+m,σ+1)(Rd) as
QP (φu).

We have thus proved that
u ∈ Hmin(s+m,σ+1)

loc (Ω) .

4. If σ + 1 < s + m, we iterate this result, taking into account the new information u ∈ Hσ+1
loc :

we may thus start from this assumption, and prove that Hmin(s+m,σ+2)(Rd). After a finite number of
steps, we finally obtain the required result u ∈ Hs+m

loc (Ω).
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4. Now let assume u ∈ D ′(Ω) satisfying Pu ∈ Hs
loc(Ω), without a priori knowledge that u ∈ Hσ

loc(Ω).
We will obtain such a property by restricting u in a bounded set of Ω. Indeed, let V be an open subset
of Ω, so that V ⊂ Ω is compact. If ψ ∈ D(Ω) is a plateau function on V , Proposition 3.4.13 implies
that there exists σ ∈ R such that ψu ∈ Hσ(Rd). The following Lemma 3.5.8 implies that, for any
χ ∈ D(V ), the function χu = χψu belongs to Hσ(Rd) as well. This exactly shows that the restriction
u|V ∈ Hσ

loc(V ). Similarly, from f ∈ Hs
loc(Ω) we draw f|V ∈ Hs

loc(V ). On the other hand, u|V is a
solution of

P (u|V ) = (Pu)|V = f|V ∈ Hs
loc(V ) .

We may thus apply the above proof to this equation of V , and get that u|V ∈ Hσ+m
loc (V ).

Finally, since this conclusion holds for any bounded open subset V ⋐ Ω, it holds on all Ω.

Lemma 3.5.8 If σ ∈ R, v ∈ Hσ(Rd) and φ ∈ D(Rd), then φv ∈ Hσ(Rd).

Proof.— Proposition 3.4.9 shows that,

φ̂v(ξ) = ⟨v, φ e−ix·ξ⟩ ,

and this function of ξ is smooth. Call ψξ(x) = φ(x) e−ix·ξ. Using the inversion formula, we compute

⟨v, ψξ⟩ = ⟨v,F ◦ F−1(ψξ)⟩ = ⟨F(v), (2π)−dσ ◦ F(ψξ)⟩ .

The properties of the Fourier transform (see Corollary 3.4.4) show that F(ψξ)(η) = φ̂(η + ξ), and
finally

φ̂v(ξ) = (2π)−d⟨v̂, φ̂(ξ − ·)⟩ = (2π)−d
∫
Rd

v̂(η) φ̂(ξ − η) dη .

We want to show that ⟨ξ⟩τ φ̂v(ξ) is square integrable on Rd. Since this function is smooth, it is L2
loc,

so the convergence question only comes from |ξ| → ∞. After a change of variables in the above
integral, we have

⟨ξ⟩σφ̂v(ξ) = (2π)−d
∫
Rd

⟨ξ⟩σ v̂(ξ − η)φ̂(η) dη .

The information we have is the square-integrability of ⟨ξ⟩σv̂(ξ). We decompose the integral into two
parts, corresponding to relative size of η w.r.t. |ξ|/2, and define:

I<(ξ) =

∫
|η|<|ξ|/2

⟨ξ⟩σ |v̂(ξ − η)φ̂(η)| dη, I>(ξ) =

∫
|η|>|ξ|/2

⟨ξ⟩σ |v̂(ξ − η)φ̂(η)| dη .

Let us start by estimating the integral I>(ξ). The function φ̂ ∈ S decays rapidly, namely φ̂(η) =
O
(
⟨η⟩−N

)
for any N > 0, so

I>(ξ) ≤ CN⟨ξ⟩σ
∫
|η|>|ξ|/2

|v̂(ξ − η)| ⟨ξ − η⟩σ

⟨ξ − η⟩σ ⟨η⟩N
dη .

A Cauchy-Schwartz argument gives the following bound for the integral(∫
|η|>|ξ|/2

|v̂(ξ − η) ⟨ξ − η⟩σ|2 dη
∫
|η|>|ξ|/2

⟨ξ − η⟩−2σ ⟨η⟩−2N dη
)1/2
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The first integral above converges from the assumption on v ∈ Hσ. Whatever the sign of σ, the
second integral is bounded above by∫

|η|>|ξ|/2
⟨ξ − η⟩2|σ| ⟨η⟩−2N dη ≤ C

∫
|η|>|ξ|/2

⟨ξ⟩2|σ| + ⟨η⟩2|σ|

⟨η⟩2N
dη

≤ C ′
∫
|η|>|ξ|/2

1

⟨η⟩2N−2|σ|
dη

≤ C ′′⟨ξ⟩−2N+2|σ|+d .

Since N can be chosen arbitrary large, we see that I>(ξ) is rapidly decreasing when |ξ| → ∞, in
particular it is square-integrable.

Let us now deal with the integral I<(ξ).Applyint the Cauchy–Schwarz inequality, we get

I<(ξ) ≤
(∫
|η|≤|ξ|/2

|φ̂(η)| dη
)1/2(∫

|η|≤|ξ|/2
⟨ξ⟩2σ|v̂(ξ − η)|2|φ̂(η)| dη

)1/2
.

The first integral on the RHS obviously converges. Since |η| ≤ |ξ|/2, we have ⟨ξ⟩ ≤ A⟨ξ − η⟩ for
some constant A > 0; this allows to replace ⟨ξ⟩2σ|v̂(ξ − η)|2 by A⟨ξ − η⟩2σ|v̂(ξ − η)|2, which we
know to be square integrable. We thus get:

I<(ξ)
2 ≤ B

∫
Rd

⟨ξ − η⟩2σ|v̂(ξ − η)|2|φ̂(η)| dη .

If we integrate this expression over ξ ∈ Rd, we may apply Fubini’s theorem and first integrate over ξ,
which gives a finite result since v ∈ Hσ. The remaining η-integral also converges. This proves that
I< ∈ L2 as well, so finally I< + I< ∈ L2.

3.5.3 Global results: equations over Rd

Homogeneous equations on Rd

We start by studying homogeneous equations of the form Pu = 0 for u ∈ S ′(Rd).

Corollary 3.5.9 With the notation of Proposition 3.5.3, we have

i) If p(iξ) ̸= 0 for every ξ ∈ Rd, then the only tempered distribution solution of Pu = 0 is
u = 0.

ii) If p(iξ) ̸= 0 for every ξ ∈ Rd \{0}, then every tempered solution of Pu = 0 is a polynomial
function.

Proof.— If u ∈ S ′ satisfies Pu = 0, then p(iξ)û = 0, which implies that the distribution û is
supported in the set {ξ ∈ Rd, p(iξ) = 0}. If this set is empty, this implies û = 0, hence u = 0,
whence i).
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If this set reduces to {0}, this implies, from the structure of the distributions supported at a single
point, that û is a finite linear combination of derivatives of δ0. Applying F−1, we conclude that u is a
polynomial function, which is ii).

Remark 3.5.10 A consequence of Corollary 3.5.9 is that, under the assumption ii), bounded solu-
tions of Pu = 0 on Rd are constant functions. Indeed, since L∞(Rd) ⊂ S ′(Rd), this follows from
the elementary fact that a polynomial function which is bounded on Rd is constant. This is well-
known if d = 1, but less obvious if d ≥ 2. Let us sketch a proof of this fact. Let p ∈ C[X1, . . . , Xd]
be a polynomial such that the function p(x) is bounded on x ∈ Rd. For every y ∈ Rd, consider

py(t) = p(ty) , t ∈ R .

The function py is a polynomial function of one variable, which is bounded, hence it is a constant
of t. Decomposing

p(X) =
∑
|α|≤m

aαX
α,

this implies that, for every r = 1, . . . ,m, and every y ∈ Rd, the coefficient of tr in py vanishes:∑
|α|=r

aαy
α = 0 .

Taking the ∂α derivative of the left hand side, we infer aα = 0, so all these r-homogeneous parts
vanish, and only the constant component r = 0 remains.

Examples 3.5.11 • Case i) is fulfilled by P = ∆+ λ if λ ∈ C \ R+.

• Case ii) is fulfilled by P = ∆ on Rd. Consequently, tempered harmonic functions on Rd

are polynomial functions. In particular, we infer the strong Liouville theorem : any bounded
harmonic function on Rd is a constant.
Case ii) is also fulfilled by P = ∂1 + i∂2 on R2. In other words, the only tempered entire
functions on C are polynomial, and again (Liouville), we recover that the only bounded entire
functions are constant.

Fundamental solutions

The second application concerns inhomogeneous equations, Pu = f . It starts with the special case
where f = δ0.

Definition 3.5.12 Let P = p(∂) be a linear partial differential operator with constant coeffi-
cients. One says that E ∈ D ′(Rd) is a fundamental solution of P if it satisfies PE = δ0.

In Physics, fundamental solutions are often called Green’s functions. The importance of fundamental
solutions is provided by the following
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Proposition 3.5.13 If P has a fundamental solution E ∈ D ′(Rd), then for all φ ∈ D(Rd), the
equation Pu = φ has a solution given by the convolution u = E ∗ φ.

Proof.— In chapter 2, we saw that for any T ∈ D ′(Rd) andφ ∈ D(Rd), ∂j(T∗φ) = T∗∂jφ = ∂jT∗φ.
Hence

P (E ∗ φ) = (PE) ∗ φ = δ0 ∗ φ = φ,

so that u = E ∗ φ is a solution of Pu = φ.

Using a convenient definition of the convolution between a distribution and a compactly supported
distribution, it is possible to extend the above proposition to any right hand side which is a compactly
supported distribution. We shall see an example of this in Theorem 3.5.17 below.

B. Malgrange and L. Ehrenpreis have proved, independently in 1954/1955, that any non trivial linear
partial differential operator with constant coefficients has a fundamental solution. It is fact possible to
prove that one can choose this distribution to be tempered. The proofs of these results are beyond the
scope of these lectures. In what follows, we rather study the important case of the Laplace operator.

Proposition 3.5.14 Let d ≥ 3, and let Ed ∈ D ′(Rd) be the L1
loc(Rd) function defined by

Ed(x) =
1

(d− 2)σ(Sd−1)

1

|x|d−2
.

Then
−∆Ed = δ0 .

Proof.— 1. We are going to use Fourier transformation. Indeed, by Proposition 3.5.3, in S ′(Rd), the
equation

−∆E = δ0

is equivalent to
|ξ|2Ê = 1 .

Since d ≥ 3, the function 1/|ξ|2 is locally integrable in Rd. More precisely, by decomposing it as
the sum of the contributions for |ξ| ≤ 1 and for |ξ| > 1, one notes that this function is the sum of
an L1 function and of an L∞ function. As a consequence, 1/|ξ|2 belongs to S ′(Rd), therefore the
distribution

(3.5.11) Ed := F−1
(

1

|ξ|2

)
is a tempered fundamental solution of −∆ (a priori, there can be many different solutions in S ′,
differing by harmonic polynomials.

2.We now want to evaluate the particular solution Ed. Since any fundamental solution satisfies
−∆E = 0 on Rd \ {0}, we know from Theorem 3.5.7 that Ed is a C∞ function on Rd \ {0}. We want
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to show that the particular fundamental solution Ed is of the form

Fd(x) =
cd
|x|d−2

, ∀x ∈ Rd \ 0 ,

for some constant cd. This functional form is characterized by the following symmetries: for every
rotation R ∈ O(d,R) and every λ > 0,

∀x ∈ Rd \ {0}, Fd(λRx) = λ2−dFd(x) ,

namely Fd is invariant by the rotations centered at the origin, and 2−d-homogeneous w.r.to dilations.
Equivalently, for every φ ∈ D(Rd \ {0}),

(3.5.12)

∫
Rd

Fd(λRx)φ(x) dx = λ2−d
∫
Rd

Fd(x)φ(x) dx .

We will group together rotation and dilation in a single matrix A := λR, and defined its action of φ as:
φA(x) := | detA|−1φ(A−1x). Le us now study the action of this matrix on the solution Ed defined in
(3.5.11). Using the same φ ∈ D(Rd \ {0}), we get∫

Rd

Ed(Ax)φ(x) dx =

∫
Rd

Ed(x)φA(x) dx, with φA(x) := | detA|−1φ(A−1x) .

The Plancherel formula leads to∫
Rd

Ed(x)φA(x) dx = (2π)−d
∫
Rd

σ(Êd)(ξ) φ̂A(ξ) dξ

= (2π)−d
∫
Rd

φ̂A(ξ)

|ξ|2
dξ .

The action of A on φ reads as follows on the Fourier transform side:

φ̂A(ξ) =

∫
Rd

| detA|−1φ(A−1x)e−ix·ξ dx =

∫
Rd

φ(x)e−iAx·ξ dx = φ̂(tAξ) .

Consequently, ∫
Rd

φ̂A(ξ)

|ξ|2
dξ =

∫
Rd

φ̂(tAξ)

|ξ|2
dξ = | detA|−1

∫
Rd

φ̂(ξ)

|tA−1ξ|2
dξ .

Since tA−1 = λ−1R and | detA| = λd, we conclude∫
Rd

φ̂A(ξ)

|ξ|2
dξ = λ2−d

∫
Rd

φ̂(ξ)

|ξ|2
dξ, hence

∫
Rd

Ed(Ax)φ(x) dx = λ2−d
∫
Rd

Ed(x)φ(x) dx .

so that Ed satisfies the identity (3.5.12), and is therefore of the form Fd on Rd \ 0.

3. Before computing the constant cd, we need to verify that the solution Ed is just given, near 0, by
the L1

loc function Fd, without any extra singular piece supported at the origin. Such extra piece would
be a linear combination of ∂αδ0. On what grounds can we exclude them? Above we tested Ed only
with functions φ ∈ D(Rd \ 0), which cannot detect such singularities at the origin. But the above
computations, which show that for A = λR,

⟨Ed, φA⟩ = λ2−d ⟨Ed, φ⟩,
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applies as well to φ ∈ D(Rd). Let us show that singular components at the origin ∂αδ0 cannot satisfy
this identity. The action of the dilation A = λ Id will suffice: for any α ∈ Nd, the expression

⟨∂αδ0, φA⟩ = (−1)|α|⟨δ0, ∂α[λ−dφ(λ·)]⟩ = λ−d−|α| ⟨∂αδ0, φ⟩

satisfies a wrong homogeneity, so it cannot be part of Ed. Finally, the distribution Ed is equal to the
L1
loc function Fd.

4. Let us finally calculate the factor cd. For this aim, it is sufficient to check Ed against the Gaussian
function G1, and apply the Plancherel formula :

cd

∫
Rd

G1(x)

|x|d−2
dx = (2π)−d

∫
Rd

Ĝ1(ξ)

|ξ|2
dξ .

Since Ĝ1(ξ) = (2π)d/2G1(ξ), we infer

cd

∫
Rd

e−|x|
2/2

|x|d−2
dx = (2π)−d/2

∫
Rd

e−|ξ|
2/2

|ξ|2
dξ .

Passing in spherical coordinates, this reads

cd

∫ ∞
0

re−r
2/2 dr = (2π)−d/2

∫ ∞
0

rd−3e−r
2/2 dr ,

or

cd = (2π)−d/22(d−4)/2
∫ ∞
0

t(d−4)/2e−t dt =
1

4
π−d/2Γ

(
d

2
− 1

)
We recall that the superficial measure of the unit sphere Sd−1 is given by

σ(Sd−1) =
2πd/2

Γ(d/2)
=

4πd/2

(d− 2)Γ(d/2− 1)
,

so that

cd =
1

(d− 2)σ(Sd−1)
.

Remark 3.5.15 The value of cd can also be determined by applying the Gauss–Green formula to
the integral of |x|2−d∆φ(x) outside a ball of radius ε.

Remark 3.5.16 It is possible to extend Proposition 3.5.14 to d = 1, 2. For d = 1, it is easy to
check that

E1(x) = −
1

2
|x|

is a fundamental solution of −∂2.
The case d = 2 is more delicate. The above approach by Fourier analysis has to be slightly modified,
because 1/|ξ|2 is not locally integrable in R2. A possible way out of this problem is to consider the
operator

P = ∂1 + i∂2 = 2∂z̄ , if we take z = x1 + ix2 .
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Since 1/(ξ1 + iξ2) ∈ L1
loc(R2), the distribution E ∈ S ′(R2) defined by its Fourier transform

Ê =
1

i(ξ1 + iξ2)
, which is in L1

loc(Rd) ∩S ′(Rd) ,

satisfies PE = δ0. Furthermore, from Theorem 3.5.7, E is a holomorphic function outside {0}, and
the above proof shows that it is homogeneous of degree −1. These properties lead to the expression
E(x) = c (x1 + ix2)

−1 on R2 \ 0, and the constant c can be computed again by testing PE again
G1, leading to:

E(x) =
1

2π(x1 + ix2)
.

Now, observing that ∆ = (∂1 + i∂2)(∂1 − i∂2) and that

E = (∂1 − i∂2)
[
(4π)−1 log(x21 + x22)

]
in D ′(R2) ,

we conclude that
E2 = −

1

2π
log |x|

is a fundamental solution of −∆ on R2.

Poisson equation on R3

We finally study the Poisson equation −∆u = f on R3, where f is an arbitrary compactly supported
distribution. Notice that, from Theorem 3.5.7, every solution u of this equation is a C∞ function
outside of supp(f). In physics, this is the equation satisfied by the electric potential u generated by
a charge distribution f .

Theorem 3.5.17 For every compactly supported distribution f on R3, there exists a unique
distribution u on R3 satisfying −∆u = f and such that, outside supp f , u(x) → 0 when
x→∞. Furthermore, for any x ∈ R3 \ supp(f), the function u(x) is given by

(3.5.13) u(x) =

⟨
f,

χ

4π|x− .|

⟩
,

for every χ ∈ D(R3) equal to 1 in a neighbourhood of supp(f) and equal to 0 near x (so that
the function in the bracket is indeed in D(R3)).

Proof.— The uniqueness of u is immediate in view of the Liouville theorem for harmonic functions —
see Example 3.5.11. For the existence, we look for u in S ′(R3), and Proposition 3.5.3 leads to the
equation

|ξ|2 û = f̂ .
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Since f̂ is smooth on R3 with moderate growth and 1/|ξ|2 belongs to S ′(Rd), the function

û(ξ) =
f̂(ξ)

|ξ|2
belongs to S ′(Rd) .

We define u = F−1û ∈ S ′(Rd). Our task is now to prove the identity (3.5.13). Notice that this
expression automatically satisfies u(x)→ 0 as x→∞.

As a first step, we are going to prove this identity when f = φ ∈ D(R3). In this case, let us denote
by g the inverse Fourier transform of

ĝ =
φ̂

|ξ|2
.

Since ĝ is integrable on R3 and decays rapidly at infinity, g is smooth and converges to 0 at infinity.
Consider the following smooth function, obtained by convolution of E3 ∈ S ′ with φ ∈ D:

E3 ∗ φ(x) =
∫
R3

φ(y)

4π|x− y|
dy .

Then we’ve seen before that
−∆(E3 ∗ φ) = φ = −∆g ,

and it is clear on the above expression that E3 ∗ φ(x) → 0 as x → ∞. Therefore, by the Liouville
uniqueness theorem, g = E3 ∗ φ.

Let us come to the general case of a compactly supported distribution f . The strategy is to approximate
f by smooth regularizations fε ∈ D . Let ρ ∈ D(R3) be a convolution kernel and, for every ε > 0,
defined the renormalized kernel

ρε(x) =
1

ε3
ρ
(x
ε

)
.

Then fε := ρε ∗ f is in D(R3) and converges to f in D ′(R3) when ε → 0. As we already observed
in similar cases, the distributions (fε)ε∈]0,1] are all supported inside some compact neighbourhood of
supp(f), so that

f̂ε(ξ) = ⟨fε, χ e−ix·ξ⟩
converge to f̂(ξ), and these brackets are controlled by a uniform norm C∥χ e−ix·ξ
|Cm ≤ C ⟨ξ⟩m. Let uε = E3 ∗ fε. We know from the above identity that

ûε =
f̂ε
|ξ|2

,

and the right hand side converges to û in S ′(R3). Hence uε converges to u in S ′(R3), and for every
test function φ ∈ D(R3),

⟨u, φ⟩ = lim
ε→0
⟨uε, φ⟩ = lim

ε→0

∫
R3

(E3 ∗ fε)(x)φ(x) dx

= lim
ε→0

∫ ∫
R3×R3

E3(x− y)fε(y)φ(x) dy dx

Fubini
= lim

ε→0

∫
R3

fε(y)E3 ∗ φ(y) dy

= ⟨f, χ(E3 ∗ φ)⟩
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for every χ ∈ D equal to 1 on the supports the fε for ε small enough. Notice that

χ(y) (E3 ∗ φ)(y) =
∫
R3

χ(y)

4π|x− y|
φ(x) dx .

If supp(φ)∩ supp(χ) = ∅, we can apply Proposition 2.3.21 of integration under the bracket to obtain

⟨u, φ⟩ = ⟨f, χ(E3 ∗ φ)⟩ =
∫
R3

φ(x)

⟨
f,

χ

4π|x− .|

⟩
dx

and this yields formula (3.5.13).

Remark 3.5.18 Notice that formula (3.5.13) leads to an expansion of u(x) as x→∞. In particular,

u(x) =
q

4π|x|
+O

(
1

|x|2

)
,

where q = ⟨f, χ⟩ for every χ ∈ D(R3) a cutoff function in a neighbourhood of supp(f). This
expansion supports the well known fact in Physics that any charge distribution f with nonzero total
charge q can be seen at infinity as a point distribution at the origin with charge q.

PDEs with variable coefficients

We conclude this section by a remark about the generalization of the above approach to partial differ-
ential equations with nonconstant coefficients. The Fourier transformation can be used to study such
equations, along several directions:

i) The first and most direct topic concerns equations with affine coefficients. Indeed, the Fourier
transform converts such equations into first order linear equations with polynomial coefficients,
which can be solved in general. A famous example in dimension d = 1 is the Airy differential
equation on R,

u′′(x) = xu(x) .

It is well known from the classical theory of differential equations that the solutions of this ODE
make up a 2-dimensional space of smooth functions. Let us look for solutions u which are
moreover tempered. Then the equation satisfied by û is

(iξ)2û = i
d

dξ
û, that is

dû

dξ
= iξ2û .

The solutions in D ′(R) are given by

û(ξ) = c ei
ξ3

3 , c ∈ C ,

which are indeed tempered distributions, since in L∞(R). Consequently, the space of tempered
solutions of the Airy differential equation is one dimensional, generated by the Airy function,

Ai(x) = F−1
(
ei

ξ3

3

)
.

ii) The second and much more general topic concerns the regularity theory of distribution, solutions
to partial differential equations with arbitrary smooth coefficients in arbitrary open subsets ofRd,
using cutoff functions in a smart way. This is the starting point of the theory of pseudodifferential
operators, which is beyond the scope of this course.
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