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Some notations

We list some notations used throughout the text.

The symbol N denotes the set of the natural numbers starting from 0.

If (M, T , µ) is a measure space and f : M → C is a measurable function, then we denote the
essential range and the essential supremum of f w.r.t. the measure µ:

essµ Ran f
def
=
{
z ∈ C : µ

{
x ∈M :

∣∣z − f(x)∣∣ < ϵ
}
> 0 for all ϵ > 0

}
,

essµ sup |f |
def
= inf

{
a ∈ R : µ

{
x ∈M :

∣∣f(x)∣∣ > a
}
= 0
}
.

If the measure µ is obvious in the context, we will omit to indicate it in the notations.

In the following, we will consider linear operators acting on a comple Banach space, which we will
usually denote by the letter B, but a large part of the notes will be focussed on the case of Hilbert
spaces. What we call a Hilbert space will mean a separable complex Hilbert space, which we will
generally denote by H.

Because we’ll have in mind mostly Hilbert spaces made of functions on Rd or some domain Ω ⊂ Rd,
we will denote the “vectors” of H by u, v, w . . .. For two vectors u, v ∈ H, ⟨u, v⟩ will denote the
sesquilinear scalar product of u and v. If several Hilbert spaces are considered in the problem, we will
specify the scalar product with the notation ⟨u, v⟩H. To respect the convention in quantum mechanics,
our scalar products will always be linear with respect to the second argument, and as antilinear with
respect to the first one:

∀α ∈ C ⟨u, αv⟩ = ⟨ᾱu, v⟩ = α⟨u, v⟩.

For example, the scalar product in the Lebesgue space L2(R) is defined by

⟨f, g⟩L2 =

∫
R
f(x)g(x) dx.

If A is a finite or countable set, ℓ2(A) denotes the vector space of square-summable functions u :
A→ C: ∑

a∈A

∣∣u(a)∣∣2 <∞.
This forms a Hilbert space, equipped with the scalar product

⟨u, v⟩ =
∑
a∈A

u(a)v(a).
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Note that when A = N or A = Z the functions u are sometimes written as sequences: u(a) = ua.

L(B) and K(B) denote the spaces of bounded linear operators, respectively of compact operators
from B to B. A similar notation applies also to bounded, resp. compact opertors on a Hilbert space
H.

Some functional spaces

If Ω ⊂ Rd is an domain (= convex open set) and k ∈ N, then Hk(Ω) denotes the kth Sobolev space
on Ω, i.e. the space of functions in L2, whose partial derivatives up to order k are also in L2(Ω). The
Sobolev space Hk is equipped with the scalar product:

(0.0.1) ⟨u, v⟩Hk =
∑
|α|≤k

⟨∂αu, ∂αv⟩L2 ,

where α = (α1, . . . , αd) ∈ Nd is a multiindex, and ∂α = ∂α
1

x1
· · · ∂αd

xd
is the multi-derivative operators.

It is complete w.r.t. the norm associated with this scalar product.

We will use a notation frequent in the theory of partial differential equations: the symmetric derivative
operator Dx =

1
i
∂x, as well as its multi-derivative version

Dα = Dα1
x1
· · ·Dαd

xd
= (−i)|α|∂α, α ∈ Nd.

By Hk
0 (Ω) we denote the completion in H

k(Ω) of the subspace C∞
c (Ω) (with respect to the norm

of Hk(Ω)). The symbol Ck(Ω) denotes the space of functions on Ω whose partial derivatives up to
order k are continuous; in particular, the set of the continuous functions is denoted as C0(Ω). This
should not be confused with the notation C0(Rd) for the space of continuous functions f : Rd → C
vanishing at infinity: lim|x|→∞ f(x) = 0. The subscript comp on a functional space indicates that its
elements have compact supports: for instance H1

comp(Rd) is the space of functions in H1(Rd) having
compact supports.

We denote by F : L2(Rd)→ L2(Rd) the Fourier transform, defined for f ∈ S(Rd) by:

Ff(ξ) = 1

(2π)d/2

∫
Rd

f(x) e−iξ·x dx.

The normalization makes this transform unitary on L2(Rd, dx). The Fourier transformed function Ff
will sometimes be denoted by f̂ .
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Chapter 1

What is a Spectrum ?

1.1 The spectrum in physics

The term “spectrum” first appeared in different domains of physics; originally it described the decom-
position of the light observed from the spatial objects (like the sun, or other stars), when observed
through a device able to separate the different colors (that is, the different frequencies of the received
light). Quite often, one could observe peaks of luminosity at certain frequencies, above a more or
less uniform “background”. Chemists observed that the light emitted by some gases always produced
peaks at the same frequencies: the emitted spectra were thus characteristic of chemical elements,
and allowed to analyse chemical reactions inside stars.

In the study of electric circuits and electronics, one often observes a time signal (e.g. of the voltage
along some part of the circuit). This time signal S(t) can be analyzed through the Fourier transform,
or the Laplace transform

Ŝ(ω) =

∫ ∞

0

e−iωtS(t) dt

(we assume that the signal vanishes for negative times). Often one cannot detect the phase of Ŝ(ω),
but only observes |Ŝ(ω)|2, which is called the power spectrum of the signal S(t). For instance, the
RLC circuit leads to a power spectrum which is peaked at the characteristic frequency ω0 =

1√
LC
, the

width of the peak depending on the size of the resistance R.

In both examples, the spectrum corresponds to a decomposition in frequency. The hope is to analyze
a (possibly complicated) time signal, through a (hopefully small) set of characteristic frequencies,
which would contain most of the “interesting” information of the signal.

1.2 An example: Schrödinger evolution in quantum mechanics

This analysis is most relevant when the dynamics under study can be modeled by a semigroup gener-
ated by a linear operator. We will take for example the case of Quantum Mechanics, where the notion
of spectrum acquired a central place, which acted as a strong incentive to the fast development of
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spectral theory in mathematics.

The state of a quantum particle evolving in some domain (“box”) Ω ⊂ Rd is represented by a
time-dependent wavefunction

ψ : R ∋ t 7→ ψ(t) ∈ L2(Ω) .

The state of the particle at time t ∈ R is represented by the function ψ(t) ∈ L2(Ω). Quantum
mechanics is a probabilistic theory: if one uses a device to measure the position of the particle at time
t, then |ψ(t, x)|2 represents the probability density to detect the particle at the point x. With this
probabilistic interpretation in mind, one needs to enforce the normalization:

∀t ∈ R, ∥ψ(t)∥L2 = 1.

Quantum mechanics prescribes the law of evolution of ψ(t): it is given by the (time dependent)
Schrödinger equation

iℏ
∂

∂t
ψ(t, x) = − ℏ2

2m
∆ψ(t, x) + V (x)ψ(t, x),

where ∆ =
∑d

j=1
∂2

∂x2j
is the Laplacian, and the real valued function V : Ω → R represents the

potential energy of the particle (e.g. the electric potential, if the particle carries an electric charge).

By rescaling the units of time and space, we can remove the physical constants, to obtain1:

(1.2.1) i
∂

∂t
ψ(t, x) = −∆ψ(t, x) + V (x)ψ(t, x) = [P ψ](t)

where P = −∆+V appears as a linear operator acting on the Hilbert spaceH = L2(Ω); it is called a
Schrödinger operator, or also the Hamiltonian of this quantum system. This equation therefore takes
the form of a linear evolution equation, where the operator P acts as the generator of a semigroup
on H.

Several mathematical questions pop up. A generic function ψ ∈ L2 does not admit derivatives in
L2, so ∆ψ is not well-defined on L2. This means that the operator ∆ is not defined on the whole of
L2, but only on a linear subspace of that space, namely the Sobolev space H2(Ω). If the potential V
is bounded on Ω, then H is still well-defined on H2(Ω). We call H2(Ω) the domain of the operator
P , denoted by D(P ). In this course we will pay a special attention to the domains of operators.

Another question (both physical and mathematical) concerns the boundary behaviour of the functions
ψ(t): from physical ground, we may want to assume that the wavefunctions ψ(t, x) vanish when x
approaches the boundary of the box ∂Ω. One may want to take into account such a physical constraint,
when defining the domain of P .

1.2.1 The Schrödinger group

Semigroup theory, in particular the Hille-Yosida theorem, teaches us that, under favorable conditions
on the operator P : D(P )→ H, this operator will generate a semigroup of evolution, meaning that for
any initial data ψ(0) ∈ D(P ), the equation (1.2.1) admits a unique solution ψ ∈ C1(R+,H), defined

1. Implicitly, the functions ψ and V have been modified by the rescaling, but we keep the same notations.
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through a semigroup of bounded operators S(t) : H → H: ψ(t) = S(t)ψ(0). What is remarkable is
that this semigroup extends to the full Hilbert space H, namely the evolution is actually defined even
for initial data ψ(0) ̸∈ D(P ).

The “favorable conditions” on the operator H can be expressed in terms of the resolvent of the
operator, which will play a crucial role in these notes. We will give a more formal definition of the
resolvent, but roughly speaking it is a family of bounded operators R(z) = (P − z)−1 : H → H,
depending on complex parameter z defined on some open subset of C.

In the case of the Schrödinger operator P acting on L2(Ω), which is symmetric, these conditions
can be replaced by a positivity argument, provided the potential V is bounded from below. We will
see that, if one makes “good” choices of domain D(P ), the operator P is not only symmetric, but
actually selfadjoint. In this case, the semigroup generated by P extends to a unitary group (U t)t∈R
on L2(Ω), which describes the quantum evolution:

∀t ∈ R, ψ(t) = U tψ(0).

Formally, we may write U t = e−itP , eventhough the exponentiation of P cannot be defined by a
series.

1.2.2 Spectral expansion

In order to describe more quantitatively the behaviour of ψ(t) = U tψ(0), one is lead to study the
spectrum of the operator P . Let us restrict ourelves to the case where

i) the “box” Ω is bounded,

ii) one imposes Dirichlet boundary conditons on Ω,

iii) and the potential V ∈ L∞(Ω).

In that case, we will show that the spectrum of P is purely discrete: it is composed of a countable set
of real eigenvalues (λj)j∈N of finite multiplicities, associated with a family of eigenfunctions (φj)j∈N
which form an orthonormal Hilbert basis of L2(Ω). This spectral information allows to expand the
evolved state ψ(t), taking into account the decomposition of ψ(0) in this eigenbasis:

(1.2.2) ψ(0) =
∑
j∈N

⟨φj, ψ(0)⟩φj ∀t ∈ R, ψ(t) =
∑
j∈N

e−itλj ⟨φj, ψ(0)⟩φj.

We note that the spectrum of the differential operator P generally depends on the choice of its domain
D(P ), and so does the expansion (1.2.2). For instance, requiring Dirichlet, vs. Neumann boundary
conditions, leads to two different discrete spectra for P . This shows that the question of domain is not
just a mathematical subtlety, but it directly impacts the evolution of the quantum state.

Introduction to Spectral Theory, Fall 2022 Stéphane Nonnenmacher
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1.2.3 Stationary states

The above expansion shows that, if the initial state is an eigenstate of P , namely ψ(0) = φj for some
j, then the evolution of ψ is very simple:

ψ(t) = e−itλj ψ(0) = e−itλj φj .

The global phase factor e−itλj is not detectable physically, which explains why such a particle is said
to occupy a stationary state. A large part of atomic and molecular physics consists in computing
the eigenvalues (λj) and eigenstates (φj) of the corresponding Hamiltonian operator. Once this
spectrum is known, the evolution of the atom (or molecule) is often described in physics textbooks
as a sequence of “jumps” between different stationary states, induced by the interaction with an
external electromagnetic field (one speaks of light emission or absorption, depending on whether
the eigenvalue goes down or up). Such an evolution through “jumps” cannot simply result from the
Schrödinger group described above, and we will not try to do it here. Yet, it shows the importance of
identifying the spectra of Schrödinger operators in quantum physics.

1.3 Example of the heat equation

Let us briefly describe another equation making use of the spectral decomposition of the Laplacian on
a bouded open set Ω ⊂ Rd. The heat equation

∂tθ(t, x) = ∆θ(t, x)

describes the evolution of the temperature θ(t, x) in a body Ω, when this body is inserted in a thermo-
stat of given temperature θth ∈ R, starting from a given temperature distribution θ(0, x). The function
u(t) = θ(t)− θth describes the relative temperature. The physical condition of thermal contact at the
boundary of Ω imposes the constraint θ(t, x) = θth for all t > 0, x ∈ ∂Ω. It is easier to consider

the relative temperature u(t, x)
def
= θ(t, x) − θth, which satisfies the Dirichlet boundary conditions,

and satisfies the same heat equation as θ. The discrete spectrum of P = −∆ implies the following
spectral expansion for the function u:

(1.3.3) u(t) =
∑
j∈N

e−tλj ⟨φj, u0⟩φj.

As opposed to the expansion (1.2.2), we see that the above expansion is dominated by its first few
terms when t→∞. To understand the long time behaviour of the heat equation, it is not necessary
to identify the full spectrum, but only the “bottom” of the spectrum of P .

This example shows that, quite often, a partial description of the spectrum (like the identification
of the bottom of the spectrum, or the presence of a spectral gap at the bottom), already provides
relevant physical information for equations like the heat equation.

Focussing on selfadjoint operators on Hilbert spaces

In situations where the spectrum of P is not purely discrete, a similar (yet more complicated) decom-
position can be written. Such a decomposition uses the spectral theorem for selfadjoint operators.

Introduction to Spectral Theory, Fall 2022 Stéphane Nonnenmacher
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The power of this theorem, and its relevance for quantum mechanics, induce us to devote a large part
of the present notes to the specific case of selfadjoint operators defined on a Hilbert space. We will
already see that the precise identification of such operators (including their domains) requires some
care. A nice way to construct such selfadjoint operators is through the use of quadratic forms.

Yet, spectral expansions (possibly with some remainder term) can also be helpful in nonselfadjoint
situations, for instance when the natural functional space is not a Hilbert space, but only a Banach
space, for instance a space of Lebesgue type Lp(Ω), a Sobolev space based on such an Lp. Al-
ternatively, the space of continuous functions C0(Ω), or of finitely differentiable functions Ck(Ω) is
often useful when describing operators issued from the theory of dynamical systems, which is another
application of spectral theory.

Introduction to Spectral Theory, Fall 2022 Stéphane Nonnenmacher



Chapter 2

Bounded vs. Unbounded operators

In this section, after recalling the definition of a bounded operator on a Hilbert (or Banach) space,
we start to describe a more general class of linear operators, namely (densely defined) unbounded
operators, which will constitute the main focus of these notes. The Schrödinger operator P = −∆+
V on L2(Ω) mentioned in the introduction is and example of such unbounded operators; actually,
all differential operators belong to that class, which explains the importance of the study of these
operators towards understanding linear (and actually, also nonlinear) Partial Differential Equations.

2.1 Some definitions

A linear operator T on a Banach space B is a linear map from a subspace D(T ) ⊂ B (called the
domain of T ) to B. The domain is an important component of the definition of the operator, so one
should actually denote the operator by the pair (T,D(T )). Yet, we will often omit to mention the
domain, keeping the shorter notation T .

Across these notes, we will implicitly assume that the domainD(T ) is a dense subspace of B (w.r.to
the natural topology of B), unless the opposite is explicitly stated.

The range of (T,D(T )) is the set RanT
def
= {Tu : u ∈ D(T )}; this is obviously a linear subspace

of B. We say that a linear operator T is bounded if the quantity

µ(T )
def
= sup

u∈D(T )
u̸=0

∥Tu∥
∥u∥

is finite. On the opposite, an operator (T,D(T )) will be said to be unbounded if µ(T ) =∞.

If D(T ) = B and T is bounded, then the operator T : B → B is continuous. The set of continuous
operators on B forms a vector space, denoted by L(B). Equipped with the norm ∥T∥ def

= µ(T ), this
space has the structure of a Banach algebra: it is a Banach space, and also hosts an interal product
S, T ∈ L(B) 7→ ST = S ◦ T ∈ L(B), with the inequality ∥ST∥ ≤ ∥S∥ ∥T∥.
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Proposition 2.1.1 Assume (T,D(T )) is a bounded linear operator on B with a dense domain
D(T ). Then T can be uniquely extended to a continuous linear operator defined on all of B. This
extension is called the closure the T , and is usually denoted by T .

Proof.— Let us consider an element u ∈ B \D(T ). By the density of D(T ) in B, we may consider a
sequence (un ∈ D(T ))n∈N converging to u in B. The sequence (Tun)n∈N satisfies ∥Tun − Tum∥ ≤
∥T∥∥un − um∥, hence it is a Cauchy sequence in B, and admits a limit w ∈ B. Let us decide that w
is the image of u through an extended operator T ; we need to check that this image does not depend
on the choice of sequence converging to u. Indeed, if (ũn) is another sequence converging to u, with
T ũn converging to some w̃ ∈ B, then considering the alternating sequence (u0, ũ0, u1, ũ1, . . .) shows
that w = w̃, therefore the image of u is unique. It is easy to check that the resulting operator T is
linear, and bounded, with the same norm ∥T∥ = ∥T∥.

2.1.1 Closed unbounded operators

If (T,D(T )) is unbounded, it is not possible to extend it to all of B in a natural way. Yet, we can aim
at an alternative property, closedness, which refers to a topological property of the graph of T .

Definition 2.1.2 (Graph of a linear operator) The graph of a linear operator (T,D(T )) is the
set

grT
def
=
{
(u, Tu) : u ∈ D(T )

}
⊂ B × B.

This is obviously a linear subspace of B × B.

For two linear operators T1 and T2 in B, we write T1 ⊂ T2 if grT1 ⊂ grT2. Namely, T1 ⊂ T2
means that D(T1) ⊂ D(T2) and that T2u = T1u for all u ∈ D(T1); the operator T2 is then called an
extension of T1, while T1 is called a restriction of T2.

Definition 2.1.3 (Closed operator, closable operator)

• An operator (T,D(T )) on B is called closed if its graph is a closed subspace in B × B.

• An operator (T,D(T )) on B is called closable, if the closure grT of the graph of T in
B × B is still the graph of a certain operator, which we call T . The latter operator T is
called the closure of T .

Introduction to Spectral Theory, Fall 2022 Stéphane Nonnenmacher
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An easy exercise shows that any bounded operator T ∈ L(B) is closed. Similarly, if we start from
a bounded operator (T,D(T )) defined on a dense domain, the extension T constructed in Proposi-
tion 2.1.1 is the closure of T .

The closedness property can be characterized in terms of sequences.

Proposition 2.1.4 A linear operator T in B is closed if and only if, for any sequence (un)n∈N
satisfying the following two conditions:

i) the sequence (un)n∈N converges to some element u ∈ B,

ii) the sequence (Tun)n∈N converges to v ∈ B,

then one has u ∈ D(T ) and v = Tu.

Another characterization of the closedness can be obtained by introducing an auxiliary norm onD(T ),
called the graph norm.

Definition 2.1.5 (Graph norm) Let (T,D(T )) be a linear operator on B. We define on D(T )
the function:

u 7→ ∥u∥T
def
= ∥u∥B + ∥Tu∥B.

One easily checks that it makes up a norm on D(T ). We call it the graph norm for T .
If B = H is a Hilbert space, the graph norm is usually defined alternatively as

∥u∥′T
def
=
√
∥u∥2H + ∥Tu∥H

This definition has the advantage to be a Hilbert norm, associated with the scalar product
⟨u, v⟩T = ⟨u, v⟩+ ⟨Tu, Tv⟩. This norm is equivalent with ∥ · ∥T .

If T is bounded, the graph norm is equivalent with the standard norm. But this is not the case for
an unbounded operator.

The closedness property can then be characterized as follows.

Proposition 2.1.6 Let (T,D(T )) be a linear operator on B.

i) (T,D(T )) is closed iff the domain D(T ), equipped with the graph norm, is a complete
Banach space.
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ii) if (T,D(T )) is closable, then the domain D(T ), equipped with the graph norm, can be
completed inside B, namely its completionD(T )

∥·∥T can be identified with a certain subspace
of B, thereby extending the norm ∥ · ∥T to that subspace. This subspace is then the domain
D(T ) of the operator T .

The second point is a bit subtle: a normed space like (D(T ), ∥ · ∥T ) will always admit a formal
completion, that is a Banach space B̃ such that D(T ) embeds into B̃ isometrically, and in a dense
way. However, in general it is not clear whether B̃ can be identified with a subspace of the initial
Banach space B. See Example 2.1.11 for a counter-example to this property.

Proposition 2.1.7 (Closed graph theorem) A linear operator T on B with D(T ) = B is closed
if and only if it is bounded.

Proof.— The implication bounded =⇒ closed is obvious. Conversely, let us assume that T is closed.
Its graph grT is thus a closed linear subspace of the Banach space B ×B, hence grT can be viewed
itself as a Banach space. Consider the two natural projections p1, p2 : B×B → B; they are obviously
continuous linear maps. Their restrictions on grT → B are still continuous. In particular, the first
projection p1 : grT → B is a continuous bijection. The isomorphism theorem states that the inverse
map q : B → grT is also a continuous bijection. Finally, the composition p2◦q : B → B is continuous.
But note that p2 ◦ q is nothing but T itself.

(u, Tu)
p2←→
q

Tu

↓ p1 ↙ T
u

We now give some examples of closed unbounded operators.

Example 2.1.8 (Multiplication operator) Take H = L2(Rd) and pick f ∈ L∞
loc(Rd). Define a

linear operator Mf in H as follows:

D(Mf ) = {u ∈ L2(Rd) : fu ∈ L2(Rd)} and Mfu = fu for u ∈ D(Mf ).

It can be easily seen that D(Mf ), equipped with the graph norm ∥·∥′Mf
, coincides with the weighted

space L2
(
Rd, (1+ |f |2)dx

)
, which is a Hilbert space, hence complete. This shows that Mf is closed.

Exercise 2.1.9 For any p ∈ [1,∞[, one may define a closed multiplication operator Mf on B =
Lp(Rd) in a similar way.

Using the Fourier transform, we are able to transform multiplication operators on H = L2 into
differential operators. Let us start with the most famous one, the Laplacian on Rd, which will appear
many times in those notes.
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Example 2.1.10 (Laplacians in Rd) Take H = L2(Rd) and consider two operators in H:

T0u = −∆u, D(T0) = C∞
c (Rd),

T1u = −∆u, D(T1) = H2(Rd) (second Sobolev space).

We are going to show that T0 = T1 (this implies that T1 is closed, while T0 is not).
For this aim, we will use the Fourier transform to transform the differential operator ∆ into a

multiplication operator.
When acting on a function f ∈ S(Rd), we have the identity

F∆f(ξ) = −|ξ|2Ff(ξ), ξ ∈ Rd,

showing that −∆ is conjugate to the multiplication operator by |ξ|2.
By duality, the above identity holds as well for distributions f ∈ S ′(Rd). But we would like to

restrict −∆ to the Sobolev space H2(Rd). How does this space translate on the Fourier side?

f ∈ H2(Rd)⇐⇒ f̂ , ξj f̂ , ξjξkf̂ ∈ L2(Rd), for any indices j, k.
The conditions on the right-hand side can be simplified. Indeed, the bounds:

(2.1.1) ∀ξ ∈ Rd, ∀j, k = 1, . . . , d, |ξjξk| ≤
ξ2j + ξ2k

2
≤ |ξ|2, |ξj| ≤

1 + ξ2j
2
≤ (1 + |ξ|2),

imply that

f ∈ H2(Rd)⇐⇒ (1 + |ξ|2)f̂ ∈ L2(Rd)

⇐⇒ (1−∆)f ∈ L2(Rd)

⇐⇒ f, ∆f ∈ L2(Rd) .

(2.1.2)

The first line shows that the operator T1, with domain H2(Rd), is unitarily conjugate through the
Fourier transform to the operator T̂ defined by

D(T̂ ) = {g ∈ L2 : |ξ|2g ∈ L2}, T̂ g(ξ) = |ξ|2g(ξ).

In other words, we have the exact conjugacy

T1 = F−1 T̂ F , D(T1) = F−1D(T̂ ).

This conjugacy shows the following relation between the graphs of the two operators:

grT1 = {(F−1u,F−1T̂ u) : u ∈ D(T̂ )} = K(gr T̂ ),

where K is the linear operator on L2×L2 defined by K(u, v) = (F−1u,F−1v). The unitarity of F
implies that K acts unitarily on L2 × L2, in particular it maps closed sets to closed sets.

Now, the example 2.1.8 shows that the multiplication operator T̂ is closed on L2(Rd), which means
that gr T̂ is closed in L2 × L2. Finally, grT1 = K(gr T̂ ) is a closed set too, hence T1 is closed.
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Since T0 is a restriction of the closed operator T1, namely D(T0) ⊂ D(T1), it follows that the
closure of D(T0) is contained in the closed subspace D(T1), which implies that D(T0) is a graph.
Hence T0 is closable, and the domain of its closure D(T 0) is the closure of D(T0) in the graph norm
of T0 (Proposition 2.1.6).

What is this graph norm? The inequalities (2.1.1) show that the standard norm on H2, expressed
through the Fourier conjugacy, reads:

∥f∥2H2 = ∥f̂∥2L2 +
∑
j

∥ξj f̂∥2L2 +
∑
j,k

∥ξjξkf̂∥2L2 ,

This norm is equivalent with the modified norm

∥f∥2modif
def
= ∥f̂∥2L2 + ∥|ξ|2f̂∥2 = ∥f∥2L2 + ∥∆f∥2L2 ,

namely the graph norm of T0, so the two norms generate the same topology. The space D(T1) =
H2 is hence complete w.r.to the norm ∥ · ∥modif = ∥ · ∥T1 ∼ ∥ · ∥H2 (using the first item of
Proposition 2.1.6, this is a second way to prove that T1 is closed).

Finally, we know that D(T0) = C∞
c is a dense subspace in H2 (w.r.to the corresponding Sobolev

norm), hence its closure in H2 is the full space H2 = D(T1). In conclusion, D(T0) = H2 = D(T1),
or equivalently T0 = T1.

Let us now exhibit a rather simple operator which does NOT admit a closure.

Example 2.1.11 (Non-closable operator) Take B = Lp(R) for some p ∈ [1,∞[, and pick a
nontrivial function g ∈ B. Consider the rank-1 operator L defined on D(L) = C0(R) ∩ Lp(R) by
Lf = f(0)g. Let us show that this operator is not closable.

Choose some nontrivial function f ∈ D(L). It is easy to construct two sequences (fn)n∈N, (gn)n∈N
in D(L) such that both converge in Lp to f , but with fn(0) = 0 and gn(0) = 1 for all n. Then for
all n we have Lfn = 0, while Lgn = g: both sequences Lfn and Lgn converge to different limits.
This shows that the closure of grL in B × B is not a graph, since it contains both elements (f, 0)
and (f, g). Hence L is not closable.

If we try to complete D(L) w.r.to the graph norm ∥ · ∥L, we will obtain a space B̃ isometric to
Lp(R) × R, which takes into account both the limiting function limn f ∈ Lp(R), and the limiting
values limn fn(0). The space B̃ is “larger” than Lp(R), since it records the extra information of the
value taken by the function at zero.

The next example generalizes the case of the Laplacian, and shows that considering differential
operators acting on a domain Ω ⫋ Rd with boundaries makes the analysis more tricky.

2.1.2 Partial differential operators

Let Ω be an open subset of Rd and P (x,Dx) be a partial differential expression with C∞ coefficients:

P (x,Dx) =
∑
|α|≤m

aα(x)D
α, aα ∈ C∞(Ω),

Introduction to Spectral Theory, Fall 2022 Stéphane Nonnenmacher



CHAPTER 2. BOUNDED VS. UNBOUNDED OPERATORS 18

where we use the notation Dx = 1
i
∂x, and Dα = Dα1

x1
· · ·Dαd

xd
for multiple derivatives. Choosing as

reference space H = L2(Ω), this differential expression defines a linear operator P on the domain
D(P ) = C∞

c (Ω), Pu(x) = P (x,Dx)u(x). Like in the example of the Laplacian, we try to extend P
to some larger subspace of L2.

The theory of distributions teaches us that, for any u ∈ L2, the expression P (x,Dx)u makes sense
as a well-defined distribution in D′(Ω), yet generally this distribution is not in L2. However, if a
sequence (un ∈ D(P )) converges to u in L2, and satisfies Pun → v in L2, then the two limits
hold as well in D′. Because P acts continuously D′ → D′, the limit v must be equal to the (unique)
distribution defined by Pu. Hence, the limit v is independent of the sequence (un) converging towards
u. This shows that the closure of grP in L2 × L2 is a graph, hence that P is closable. Its closure
P = Pmin is called the minimal closed extension, orminimal operator. The above reasoning also shows
that grP = grP must be included in the set

(2.1.3)
{
(u, f) ∈ H ×H : P (x,Dx)u = f in D′(Ω)

}
.

The above set defines a closed graph in L2 × L2, the corresponding operator is called the maximal
extension, or the maximal operator, and is denoted by Pmax. Its domain is

D(Pmax) =
{
u ∈ H : P (x,Dx)u ∈ H

}
,

where, as above, P (x,Dx)u is understood in the sense of distributions.

We have already shown the inclusion Pmin ⊂ Pmax, and we saw in the Example 2.1.10 of the Laplacian
on Rd, that one can have Pmin = Pmax. But one may easily find examples where this equality does not
hold.

Example 2.1.12 If we take P (x,Dx) = d/dx and Ω = R∗
+, with domain D(P ) = C∞

c (R∗
+), we

find for the minimal closed extension
D(Pmin) = C∞

c (R∗
+)

H1
= H1

0 (R∗
+),

(the space of H1 functions vanishing at x = 0), since the graph norm ∥ · ∥P is equivalent with the
H1 norm. On the other hand,

D(Pmax) = {u ∈ L2(R∗
+), u

′ ∈ L2(R∗
+)} = H1(R∗

+)

(with no condition at x = 0).

In general, one may expect that Pmin ⫋ Pmax if Ω has a boundary.

Such questions become more involved if one studies partial differential operators with more singular
coefficients (e.g. with coefficients which are not smooth but just belong to some Lp), since one
cannot easily define their action on distributions. During the course, we will nevertheless deal with
certain classes of such operators (one easy case is the multiplication operator by an L∞

loc function of
Example 2.1.8).

In the next section, we restrict ourselves to operatorsP defined on a Hilbert space. In this framework,
we will define and study the adjoint operator of P ; we will see that the very definition of the adjoint
is not obvious, in cases where P is unbounded on H.

Note that adjoints can also be defined on Banach space B, yet the adjoint operator then acts on the
dual space B′, which is generally different from B. We will not describe this situation in those notes.
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2.2 Adjoint of an operator on a Hilbert space

In this section all operators are defined on a Hilbert space H.

2.2.1 Adjoint of a continuous operator

For a continuous operator T ∈ L(H), its adjoint T ∗ is defined by the identity

(2.2.4) ⟨u, Tv⟩ = ⟨T ∗u, v⟩ for all u, v ∈ H.

The fact that these identities uniquely define the operator T ∗ comes from the Riesz representation
theorem: for each u ∈ H the map H ∋ v 7→ ⟨u, Tv⟩ ∈ C is a continuous linear functional; the Riesz
theorem states that there exists a unique vector w ∈ H such that ⟨u, Tv⟩ = ⟨w, v⟩ for all v ∈ H.
One can then easily check that the map u 7→ w is linear, and by estimating the above scalar product
with v = w, one finds that this map is bounded:

⟨w,w⟩ = ⟨u, Tw⟩ =⇒ ∥w∥2 ≤ ∥u∥∥T∥∥w∥ =⇒ ∥w∥ ≤ ∥T∥∥u∥

We may hence denote this map by: w = T ∗u, thus defining the operator T ∗. The above bound shows
that ∥T ∗∥ ≤ ∥T∥. Actually, the symmetry of (2.2.4) shows that (T ∗)∗ = T , hence we actually have
∥T ∗∥ = ∥T∥.

2.2.2 Adjoint of an unbounded operator

Let us try to generalize this construction for an unbounded operator T . As we will see, the main
difficulty consists in properly defining the domain of T ∗.

Definition 2.2.1 (Adjoint operator) Let (T,D(T )) be a linear operator inH, with D(T ) dense
in H. We then define its adjoint operator (T ∗, D(T ∗)) as follows.

The domain D(T ∗) consists of the vectors u ∈ H for which the map D(T ) ∋ v 7→ ⟨u, Tv⟩ ∈ C
is a bounded linear form on H. For such u there exists, by the Riesz theorem, a unique vector
(which we denote by T ∗u) such that ⟨u, Tv⟩ = ⟨T ∗u, v⟩ for all v ∈ D(T ).

We notice that our assumption of a dense domain D(T ) = H is crucial here: if it is not satisfied,
then there are several ways to extend the linear form defined onD(T ), into a bounded linear form on
H. Equivalently, the vector T ∗u is not uniquely determined, since one can add to T ∗u an arbitrary
vector in D(T )⊥. Hence, when we mention the adjoint of an operator T , we always implicitly assume
that D(T ) is dense.
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Let us give a geometric interpretation of the adjoint operator. Consider the linear “−π/2 rotation”
operator

J : H×H → H×H, J(u, v) = (v,−u) .

We notice that J commutes with taking the orthogonal complement in H ×H: for any subset V ⊂
H×H, J(V )⊥ = J(V ⊥).

Proposition 2.2.2 (Geometric interpretation of the adjoint) Let T be a linear operator in H,
with dense domain D(T ). Then the graph of the adjoint operator T ∗ is given by:

(2.2.5) grT ∗ = J(grT )⊥ = J
(
(grT )⊥

)
.

Proof.— By definition, u ∈ D(T ∗) iff there exists a vector T ∗u such that, for any v ∈ D(T ),

0 = ⟨u, Tv⟩H − ⟨T ∗u, v⟩H
=
⟨
(u, T ∗u), (Tv,−v)

⟩
H×H

=
⟨
(u, T ∗u), J(v, Tv)

⟩
H×H .

(2.2.6)

Equivalently, u ∈ D(T ∗) iff there exists T ∗u ∈ H such that (u, T ∗u) is orthogonal to the subspace
J(grT ). Hence, the set of admissible pairs (u, T ∗u) is given by the orthogonal complement to J(grT ).
We know that these pairs form a graph (from the density of D(T ), to each admissible u corresponds
a unique T ∗u). We finally get the required identify grT ∗ = J(grT )⊥.

A byproduct of the equalities (2.2.6) is the identity

KerT ∗ = (RanT )⊥ .

As a simple application we obtain

Proposition 2.2.3 i) The adjoint T ∗ is a closed operator.
ii) If T is closable, then T ∗ = (T )∗.

Proof.— In (2.2.5), we remember that the orthogonal complement of a subspace is always a closed
subspace, so grT ∗ is closed, meaning that T ∗ is a closed operator.

Besides, the map J is continuous, and the complement of a subspace is equal to the complement of
its closure, so

J(grT )⊥ = J(grT )
⊥
= J(grT )⊥ = J(grT )⊥,

which proves the second item.

So far, we do not know if the domain of the adjoint operator could be nontrivial. This is discussed in
the following proposition.
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Proposition 2.2.4 (Domain of the adjoint) Let (T,D(T )) be a closable operator on H, with
dense domain. Then
i) D(T ∗) is a dense subspace of H;
ii) T ∗∗ def

= (T ∗)∗ = T .

Proof.— The item ii) easily follows from i) and Eq. (2.2.5): one remarks that J2 = −1, and that
taking twice the orthogonal complement results in taking the closure of the graph, hence grT .

Now let us prove i). Assume the opposite conclusion, namely that some nonzero vector w ∈ H is
orthogonal to D(T ∗): ⟨u,w⟩ = 0 for all u ∈ D(T ∗). Then for all u ∈ D(T ∗) one has

⟨J(u, T ∗u), (0, w)⟩H×H = ⟨u,w⟩+ ⟨T ∗u, 0⟩ = 0,

which means that (0, w) ∈ J(grT ∗)⊥ = grT . Since the operator T is closable, the closure grT must
be a graph, which imposes w = 0, so we have a contradiction.

Remark 2.2.5 In the above Proposition, the closability of T is a necessary assumption. Indeed, let
us come back to the Example 2.1.11 of the nonclosable operator L. The adjoint of this operator
has for domain D(L∗) = {g}⊥, a closed subspace of codimension 1, hence not dense on L2. Note
that the operator L∗ vanishes on this domain.

Let us consider some examples of adjoints of closable operators.

Example 2.2.6 (Adjoint of a bounded operator) The general definition (2.2.1) for the adjoint
operator is compatible with the definition of the adjoint of a continuous linear operators given in
section 2.2.1: in case T is bounded and D(T ) = H, the domain of the adjoint is D(T ∗) = H, and
the relation ⟨u, Tv⟩ = ⟨T ∗u, v⟩ for all u, v ∈ H fully defines T ∗.

Example 2.2.7 (Laplacian on Rd) Let us consider again the operators T0 and T1 from Exam-
ple 2.1.10, and show that T ∗

0 = T1.
By definition, the domain D(T ∗

0 ) consists of the functions u ∈ L2(Rd) for which there exists a
vector f ∈ L2(Rd) such that

∀v ∈ D(T0) = C∞
c (Rd),

∫
Rd

u(x)(−∆v)(x)dx =

∫
Rd

f(x)v(x)dx .

This equation exactly means that f = −∆u in D′(Rd). Therefore, D(T ∗
0 ) consists of the functions

u ∈ L2 such that the distribution −∆u is actually in L2. The identities (2.1.2) showed that this
is exactly the space H2(Rd) = D(T1). So D(T ∗

0 ) = D(T1), and the two operators both act by
u 7→ −∆u, they are thus identical.

Let us come back to the simplest differential operator, which appeared in Example 2.1.12.
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Example 2.2.8 Consider the operator A0 acting through A0u = Dxu
def
= −i∂xu for u ∈ D(A0) =

C∞
c (]0, 1[). In Example 2.1.12 we showed that the “minimal operator” A0 admits the domain

D(A0) = H1
0 (]0, 1[).

Let us show that the adjoint A∗
0 admits the larger domain D(A∗

0) = H1(]0, 1[). Indeed, if v ∈
C∞
c (]0, 1[), the equation

⟨u,Dxv⟩ = ⟨Dxu, v⟩

holds for any u ∈ C∞(]0, 1[) thanks to an integration by parts, and the resulting linear form in v can
be continuously extended to all of v ∈ L2, as long as Dxu ∈ L2, hence as long as u ∈ H1(]0, 1[).

To anticipate the Definition 2.2.10 below, the operator A0 is symmetric, but not essentially self-
adjoint, since A0 ⫋ A∗

0. Equivalently, the non-inclusion A∗
0 ̸⊂ A∗∗

0 = A0 shows that the operator
A∗

0 is not symmetric.

Exercise 2.2.9 Remember the multiplication operatorMf from Example 2.1.8, for a complex valued
function f ∈ L∞

loc. Show that (Mf )
∗ =Mf̄ .

2.2.3 Symmetric and Selfajdoint operators

The following definition introduces classes of linear operators defined on a Hilbert space, which will be
studied intensively in this course.

Definition 2.2.10 (Symmetric, self-adjoint, essentially self-adjoint ops) An operator
(T,D(T )) on a Hilbert space is said to be symmetric (or Hermitian) if

⟨u, Tv⟩ = ⟨Tu, v⟩ for all u, v ∈ D(T ).

Equivalently, T is symmetric iff T ⊂ T ∗ (that is, T ∗ is an extension of T ).

• T is called selfadjoint if T = T ∗ (in particular, D(T ) = D(T ∗))

• T is called essentially selfadjoint if T is closable and T is self-adjoint: T = (T )∗ = T ∗.

An important feature of symmetric operators is their closability:

Proposition 2.2.11 A symmetric operator (T,D(T )) is necessarily closable.

Proof.— Indeed, for a symmetric operator T we have grT ⊂ grT ∗ and, due to the closedness of T ∗,
grT ⊂ grT ∗ is a graph, the graph of the closure T .
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Example 2.2.12 (Free Laplacian on Rd) The Laplacian T1 from Example 2.1.10 is selfadjoint.
Indeed, we have shown in Ex. 2.2.7 that T ∗

0 = T1, hence T ∗
1 = T ∗∗

0 = T0 = T1, where the last
equality uses Ex. 2.1.10. This shows that T1 is selfadjoint, while its restriction T0 is essentially
selfadjoint.

The operator T1 is called the free Laplacian on Rd.
Example 2.2.13 (Continuous symmetric operators are self-adjoint) For T ∈ L(H), being sym-
metric is equivalent to being selfadjoint, since the domains of T and T ∗ are both the full space H.
Example 2.2.14 (Self-adjoint multiplication operators) As follows from example 2.2.9, the mul-
tiplication operator Mf on L2(Rd) from example 2.1.8 is self-adjoint iff f(x) ∈ R for a.e. x ∈ Rd.

The following proposition will allow to construct a large class of self-adjoint operators.

Proposition 2.2.15 Let T be an injective selfadjoint operator, then its inverse T−1 is also self-
adjoint (notice that the inverse may be unbounded).

Proof.— We show first that D(T−1)
def
= RanT is dense in H. Let u ⊥ RanT , then ⟨u, Tv⟩ = 0 for all

v ∈ D(T ). This can be rewritten as ⟨u, Tv⟩ = ⟨0, v⟩ for all v ∈ D(T ), which shows that u ∈ D(T ∗),
with image T ∗u = 0. Since by assumption T ∗ = T , we have u ∈ D(T ) and Tu = 0. Since T in
injective, the vector u must be trivial. Hence RanT is dense.

Now consider the “switch operator” S : H × H → H × H given by S(u, v) = (v, u). One has
then grT−1 = S(grT ). We conclude the proof by noting that S commutes with the operation of the
orthogonal complement in H ×H and anticommutes with J . From the assumption grT = grT ∗ =
J(grT )⊥, we draw:

grT−1 def
= S(grT )

ass.
= S(grT ∗) = S

(
J(grT )⊥

)
= −JS

(
(grT )⊥

)
= J

(
S grT

)⊥
= J(grT−1)⊥ = gr(T−1)∗.

Proving the symmetry of an unbounded operator is often easy (for differential operators, this fact
often involves some form of integration by parts); but proving selfadjointness requires a precise iden-
tification of the domains, which may be quite difficult in general. This is a reason why, in the next
section, we will appeal to quadratic forms to construct selfadjoints operators.

Yet, one may use the following criteria to check essential selfadjointness, or selfadjointness.

Proposition 2.2.16 Assume the operator (T,D(T )) is symmetric on the Hilbert space H. Then
the following properties are equivalent:
i) (T,D(T )) is essentially selfadjoint (selfadjoint);
ii) Ker(T ∗ + i) = Ker(T ∗ − i) = {0} (and furthermore (T,D(T )) is closed);
iii) Ran(T + i) = Ran(T − i) is dense in H (is equal to H).
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Proof.— We will give the proofs for the selfadjoint case only, the small adaptations necessary for the
essentially selfadjoint case being left to the reader.

i) =⇒ ii): easy.

ii) =⇒ iii): we have 0 = Ker(T ∗ ± i) = Ran(T ∓ i)⊥, which shows that Ran(T ± i) is dense.
Assuming the closedness of T , we want to show the closedness of Ran(T ± i). For this, we use
“Pythagore’s theorem”:

∥(T + i)u∥2 = ⟨(T + i)u, (T + i)u⟩ = ⟨Tu, Tu⟩+ ⟨u, u⟩

Assume that a sequence (un ∈ D(T )) is such that the sequence ((T + i)un) is Cauchy. The above
equality then shows that so are (un) and (Tun). The closedness of T then implies that un → u and
Tun → Tu, hence (T + i)un → (T + i)u ∈ Ran(T + i). As a result, Ran(T + i) is closed, and is
equal to H. The proof for Ran(T − i) is identical.

iii) =⇒ i) The symmetry means that T ⊂ T ∗, and we want to show the inverse inclusion T ∗ ⊂ T .

Take any v ∈ D(T ∗); one then has (T ∗ + i)v ∈ H. From the assumption that Ran(T + i) = H,
there exists u ∈ D(T ) such that (T ∗ + i)v = (T + i)u; since T ⊂ T ∗ (T is symmetric), this identity
also reads (T ∗ + i)u = (T ∗ + i)v, hence v − u ∈ Ker(T ∗ + i) = Ran(T − i)⊥. The assumption
Ran(T − i) = H shows that u = v, so that v ∈ D(T ), and finally D(T ∗) ⊂ D(T ).

Remark 2.2.17 (Why focus on selfadjoint operators?) As mentioned in the introduction, self-
adjoint operators lie at the heart of quantum mechanics, not just in as Hamiltonians generating
the quantum evolution, but also as quantum observables, selfadjoint operators representing the
quantities which can (in theory) be measured in an experiment.

Mathematically, selfadjoint operators enjoy a very special spectral structure: we will establish the
spectral theorem for selfadjoint operators, which provides a general description of these operators,
in terms of their spectral measure. From this theorem we will also construct a functional calculus
for selfadjoint operators, that is define operators of the form f(T ), where T is selfadjoint, and
f : R→ C is an arbitrary function.

2.3 Exercises

Exercise 2.3.1 (a) Let H1 and H2 be Hilbert spaces. Let A be a linear operator in H1, B be
a linear operator in H2. Assume that there exists a unitary operator U : H2 → H1 such that
D(A) = UD(B) and that U∗AUf = Bf for all f ∈ D(B); such A and B are called unitary
equivalent.

Let two operators A and B be unitarily equivalent. Show that A is closed/symmetric/self-adjoint
iff B has the same property.

(b) Let (λn) be an arbitrary sequence of complex numbers, n ∈ N. In the Hilbert space ℓ2(N)
consider the operator S:

D(S) =
{
(xn) : there exists N such that xn = 0 for n > N

}
, S(xn) = (λnxn).
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Describe the closure of S.
(c) Now let H be a separable Hilbert space and T be a linear operator in H with the following

property: there exists an orthonormal basis (en)n∈N of H with en ∈ D(T ) and Ten = λnen for all
n ∈ N, where λn are some complex numbers. We take as D(T ) the finite linear combinations of
the (en).

i) Describe the closure T of T . Hint: one may use (a) and (b).

ii) Describe the adjoint T ∗ of T .

iii) Let all λn be real. Show that the operator T is self-adjoint.

Exercise 2.3.2 Let A and B be self-adjoint operators in a Hilbert space H such that D(A) ⊂ D(B)
and Au = Bu for all u ∈ D(A). Show that D(A) = D(B). (This property is called the maximality
of self-adjoint operators.)

Exercise 2.3.3 We consider a linear operator A on a Hilbert space H, and a continuous operator
B on the same space; we define their sum A + B as the operator S with domain D(S) = D(A),
such that Su def

= Au + Bu for each u ∈ D(S). (We note that defining the sum of two unbounded
operators is a nontrivial task in general, due to questions of domains.)

(a) Assume A is a closed operator and B is continuous. Show that A+B is closed.
(b) Assume, in addition, that A is densely defined. Show that (A+B)∗ = A∗+B∗ (here the sum
A∗ +B∗ is defined similarly as A+B).

Exercise 2.3.4 Let H = L2(]0, 1[). For α ∈ C, consider the operator Tα acting as Tαf = if ′ on
the domain

D(Tα) =
{
f ∈ C∞([0, 1]) : f(1) = αf(0)

}
.

(a) Describe the adjoint of Tα.

(b) Describe the closure Sα def
= Tα.

(c) Find all α for which Sα is selfadjoint.
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Chapter 3

Operators and quadratic forms

In this section, we will focus on operators defined on a Hilbert space. In many situations, the action
of the operator is clear (typically it is a differential operator), but the difficult point is to identify the
domain of the operator which provides it with “good properties”, namely selfadjointness.

To construct such a “good domain”, we will start by defining a quadratic form on H (more precisely,
the form will be defined on a subspace of H). Provided this form enjoys some properties (which are
usually easy to verify), we will extract from the form an operator which will automatically be selfadjoint.
The advantage of this procedure is that the domain of the quadratic form is usually easier to construct,
or describe, than the domain of the resulting operator. This procedure can thus be seen as a “fast
track” to construct selfadjoint operators, without needing to explicitly describe their domains.

3.1 From quadratic form to operator

A sesquilinear form q on a Hilbert space H, with domain D(q) ⊂ H, is a map

q : D(q)×D(q)→ C ,

which is linear with respect to the second argument and antilinear with respect to the first one. By
default we assume that D(q) is a dense subspace of H. (In the literature, one uses also the terms
bilinear form and quadratic form.) The sesquilinear form q is said to be:

• bounded, if D(q) = H and there exists M > 0 such that
∣∣q(u, v)∣∣ ≤ M∥u∥ · ∥v∥ for all

u, v ∈ H;

• elliptic (or coercive), if it is bounded and there exists α > 0 such that
∣∣q(u, u)∣∣ ≥ α∥u∥2 for all

u ∈ H;

• symmetric if q(v, u) = q(u, v) for all u, v ∈ D(q),

• semibounded from below if for some c ∈ R one has q(u, u) ≥ c∥u∥2 for all u ∈ D(q); in this
case we write q ≥ c; by polarization, one checks that q is then necessarily symmetric;
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• positive or non-negative, if one can take c = 0 in the previous item;

• positive definite or strictly positive, if one can take c > 0 in the previous item.

Notice the subtle differences between ellipticity and strict positivity. It is important to notice that the
above properties refer to the Hilbert space structure on H. Later we will introduce a second norm,
in general stronger than ∥ · ∥H; when mentioning one of the above properties, it will be important to
specify w.r.to which norm the form q is bounded, or semibounded below etc.

One may canonically associate a linear operator to any bounded form. For a moment we switch
notations, and call A our operator, defined on a Hilbert space V.

Definition 3.1.1 (Operator associated with a bounded form)
Let V be a Hilbert space and let q be a bounded sesquilinear form on V . Then, by the Riesz
duality theorem, there is a unique operator Aq ∈ L(V ) such that

q(u, v) = ⟨u,Aqv⟩V for all u, v ∈ V .

.

In the sequel we will often drop the subscript q, and write A instead of Aq.

The following theorem will be crucial for our constructions, it relates ellipticity of the quadratic form
with invertibility of the operator.

Theorem 3.1.2 (Lax-Milgram theorem) If a quadratic form q on V is elliptic, then the asso-
ciated operator Aq is an isomorphism of V , that is, Aq is invertible and A−1

q ∈ L(V).

Proof.— By assumption, one can find two constants α,C > 0 such that

α∥v∥2 ≤
∣∣ q(v, v)∣∣ ≤ C∥v∥2 for all v ∈ V .

This implies α∥v∥2 ≤
∣∣q(v, v)∣∣ = ∣∣⟨v, Av⟩∣∣ ≤ ∥v∥ · ∥Av∥. Hence,

(3.1.1) ∥Av∥ ≥ α∥v∥ for all v ∈ V .

Step 1. The above inequality shows that A is injective.

Step 2. Let us show that RanA is closed. Assume that fn ∈ RanA and that fn converge to f in V.
By the result of step 1, there are uniquely determined vectors vn ∈ V with fn = Avn. The sequence
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(fn) = (Avn) is convergent and is Cauchy. By (3.1.1), the sequence (vn) is also Cauchy, hence, due
to the completeness of V, it converges to some v ∈ V. Since A is continuous, Avn converges to Av.
Hence, f = Av, which shows that f ∈ RanA

Step 3. Let us finally show that RanA = V. Since we showed already that RanA is closed, it is
sufficient to show that (RanA)⊥ = {0}. Let u ⊥ RanA, then q(u, v) = ⟨u,Av⟩ = 0 for all v ∈ V .
Taking v = u we obtain q(u, u) = 0, hence u = 0 by ellipticity of q.

We now extend the above construction to unbounded forms.

Definition 3.1.3 (Operator defined by a quadratic form)
Like in Theorem 3.1.2, consider an elliptic quadratic form q on a Hilbert space V . Moreover,
assume that V densely embeds into another Hilbert space H, and that there exists a constant
c > 0 such that

∥u∥H ≤ c∥u∥V for all u ∈ V
(that is, the V-norm is stronger than the H-norm).

Let us construct a linear operator T = Tq on the larger space H, associated with q as follows.
The domain D(T ) consists of the vectors v ∈ V ⊂ H for which the map V ∋ u 7→ q(u, v) can
be extended to a continuous antilinear map H → C. By the Riesz representation theorem, for
such v there exists a unique fv ∈ H such that q(u, v) = ⟨u, fv⟩H for all u ∈ V ; we then set
Tv

def
= fv.

Notice the difference between the operator T : D(T ) ⊂ H → H constructed above, and the
bounded operator A : V → V constructed in Definition (3.1.1): the duality defining these operators
comes from different scalar products, namely the one on H, resp. the one on V. So the actions of
the two operators are genuinely different, even if both of them are well-defined on D(T ):

for any u, v ∈ D(T ) ⊂ V , q(u, v) = ⟨u,Av⟩V = ⟨u, Tv⟩H .

Hence, the subtlety of the construction comes from the different vector spaces which are into play:
- the “large” Hilbert space H, equipped with its scalar product ⟨·, ·⟩H and norm ∥ · ∥H;
- the “small” Hilbert space V ⊂ H, which is the domain of q, equipped with the scalar product ⟨·, ·⟩V
and norm ∥ · ∥V; the form q is elliptic on this Hilbert space V, not on H!
– the domain D(T ) ⊂ V of the operator T .

To avoid confusions, we will keep on the scalar products the subscripts H or V .

Theorem 3.1.4 The operator constructed in Definition 3.1.3 satisfies the following properties.

i) the domain of T is dense in H;

Introduction to Spectral Theory, Fall 2022 Stéphane Nonnenmacher



CHAPTER 3. OPERATORS AND QUADRATIC FORMS 29

ii) T : D(T )→ H is bijective;

iii) T−1 ∈ L(H).

Proof.— Let v ∈ D(T ). Using the V-ellipticity of q and the relation between V and H, we find:

α∥v∥2H ≤ αc2∥v∥2V ≤ c2
∣∣q(v, v)∣∣ ≤ c2

∣∣⟨v, Tv⟩H∣∣ ≤ c2∥v∥H · ∥Tv∥H,

showing that

(3.1.2) ∥Tv∥H ≥
α

c2
∥v∥H.

This inequality shows that T in injective.

Let us show that T is surjective. Let h ∈ H and let A ∈ L(V) be the operator associated with q.
The map V ∋ u 7→ ⟨u, h⟩H ∈ C is a continuous antilinear map V → C, so from Riesz’s theorem, one
can find w ∈ V such that

⟨u, h⟩H = ⟨u,w⟩V for all u ∈ V .

Denote v
def
= A−1w ∈ V, then

⟨u, h⟩H = ⟨u,Av⟩V = q(u, v).

By definition this means that v ∈ D(T ) and h = Tv. Hence, T is surjective and injective, and the
inverse is bounded by (3.1.2).

It remains to show that the domain of T is dense in H. Let h ∈ H with ⟨u, h⟩H = 0 for all
u ∈ D(T ). Since T is surjective, there exists v ∈ D(T ) with h = Tv. Taking now u = v we obtain
0 = ⟨v, Tv⟩H = q(v, v); the V-ellipticity of q finally gives v = 0, and h = 0.

If the form q enjoys some additional properties, the associated operators T do so as well. Our main
constructions will come from the following theorem.

Theorem 3.1.5 (Selfadjoint operators defined by forms) In Definition 3.1.3, assume fur-
thermore that the sesquilinear form q is symmetric. Then the associated operator T satisfies:

i) T is a selfadjoint operator on H;

ii) D(T ) is a dense subspace of the Hilbert space V (and therefore, is also dense in H).

Proof.— For any u, v ∈ D(T ) we have:

⟨u, Tv⟩H
def
= q(u, v)

symmetry
= q(v, u) = ⟨v, Tu⟩H = ⟨Tu, v⟩H.
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Therefore, T is symmetric, T ⊂ T ∗.

Take v ∈ D(T ∗). We know from the previous theorem that T is surjective. This means that we can
find v0 ∈ D(T ) such that Tv0 = T ∗v. Then for all u ∈ D(T ) we have:

⟨Tu, v⟩H = ⟨u, T ∗v⟩H = ⟨u, Tv0⟩H = ⟨Tu, v0⟩H.

Since T is surjective, this implies that v = v0 ∈ D(T ), hence T = T ∗.

Let us now show the density of D(T ) in V. Let h ∈ V such that ⟨v, h⟩V = 0 for all v ∈ D(T ). Since
the operator A ∈ L(V) associated with q is invertible, we may define f = A−1h ∈ V. We then have
the equalities

0 = ⟨v, h⟩V = ⟨v, Af⟩V = q(v, f)
symm.
= q(f, v) = ⟨f, Tv⟩H = ⟨Tv, f⟩H.

Since the vectors Tv cover the full spaceH when v runs overD(T ), this imples f = 0 and h = Af =
0. This proves that D(T ) is dense in V.

In the above definitions, the Hilbert space V preceded the appearance of H. The space V also
coincides with the domain of the form q. In practice, H is usually defined beforehand, and one has to
identify V, together with its Hilbert structure, so as to make q V-elliptic.

This motivates the following definition:

Definition 3.1.6 (Closed forms) A sesquilinear form q on a Hilbert space H with a dense
domain D(q) ⊂ H is called closed if the following properties are satisfied:

• q is symmetric;

• q is semibounded from below: there exists C ≥ 0 such that q(u, u) ≥ −C∥u∥2H for all
u ∈ D(q);

• The domain D(q) equipped with the scalar product

(3.1.3) ⟨u, v⟩q
def
= q(u, v) + (C + 1)⟨u, v⟩H

is a Hilbert space.

As opposed to our previous construction, this definition starts from the “large” Hilbert space, and
constructs an auxiliary norm ∥ · ∥q on the domain of D(q), making this domain complete.

Notice that the notion of closed form is quite different with that of a closed operator, which already
makes sense on a Banach space. In the case of forms, closedness requests symmetry and semibound-
edness of the form.
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Proposition 3.1.7 (Operators defined by closed forms) Let q be a closed sesquilinear form
in H. Then the associated linear operator (T,D(T )) is selfadjoint on H. This operator is also
automatically bounded from below:

⟨u, Tu⟩H ≥ −C∥u∥2H, for any u ∈ D(T ).

Proof.— If q is closed, one simply takes
(
D(q), ⟨·, ·⟩q

)
as the auxiliary Hilbert space V ⊂ H in

Def. 3.1.3. One has indeed ∥u∥2q = q(u, u) + (C + 1)∥u∥2H ≥ ∥u∥2H, showing that ∥ · ∥V is stronger
than ∥ · ∥H.

The modified form q̃ : V × V → C defined by q̃ = q(u, v) + (C + 1)⟨u, v⟩H is V-bounded:

|q̃(u, v)| = |⟨u, v⟩q| ≤ ∥u∥ ∥v∥,

and V-elliptic:
q̃(u, u) = ∥u∥2q.

The operator T̃ constructed from q̃ is hence selfadjoint on H, with domain D(T̃ ) ⊂ V. Finally, we
notice that T = T̃ − (C + 1)Id is the operator associated with q; as a sum of a selfadjoint operator
with a bounded selfadjoint operator, it is also selfadjoint, with the same domain D(T ) = D(T̃ ).

Like in the case of operators, the forms we will encounter will not always be closed. The main question
is whether they can be made so, up to an extension of their domain.

Definition 3.1.8 (Closable form) We say that a symmetric sesquilinear form q is closable, if
there exists a closed form on H which extends q. The closed sesquilinear form with the above
property and with the minimal domain is called the closure of q, and is denoted by q̄.

In the case of a closable semibounded form q, the following proposition identifies the domain of q̄.

Proposition 3.1.9 (Domain of the closure of a form) If q(u, u) ≥ −C∥u∥H, for some C ∈
R+, and q is a closable form, then D(q̄) is exactly the completion of D(q) inside H, with respect
to the scalar product ⟨u, v⟩q def

= q(u, v) + (C + 1)⟨u, v⟩H.

Proof.— In the proof we assume for simplicity that q ≥ 1, therefore we may take for the norm
∥u∥q =

√
q(u, u).

Since the domain D(q̄) of the closure of q must be a Hilbert space w.r.t. the norm ∥ · ∥q̄, it must
contain the limits of all the sequences (un) ⊂ D(q̄) which are Cauchy w.r.t. the norm ∥ · ∥q̄, in
particular the limits of the sequences (un) ⊂ D(q) which are Cauchy w.r.t. the norm ∥ · ∥q̄ (we
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will call those “q-Cauchy sequences” in the following). Notice that such a Cauchy sequence is also a
Cauchy sequence for the weaker H-norm, hence it converges in H to some u ∈ H. The union of
such limits u constructs the completion D(q)

∥·∥q
. This shows that the domain D(q̄) must contain this

completion. For this completion to form a Hilbert space, we need to extend the form q to a form q̄
defined on that space. Are there several ways to extend q?

Take a q-Cauchy sequence (un)n ⊂ D(q), and itsH-limit u. What should be the value q̄(u, u)? The
reverse triangle inequality, ∣∣∥un∥q − ∥um∥q∣∣ ≤ ∥un − um∥q,
shows that the sequence of norms (∥un∥q)n is Cauchy in R+, and thus admits a limit, which we call
Nu. Hence the sequence

(
q(un, un) = ∥un∥2q

)
n
converges to N2

u . If we want D(q̄) to be complete
w.r.t. the q̄-norm, we want (un)n to converge to u not only in the H-norm, but also in the q̄-norm,
so we need that

∥u− um∥q̄ → 0

This convergence, and the reverse triangle inequality∣∣∥u∥q̄ − ∥un∥q∣∣ ≤ ∥u− un∥q̄
forces us to define q̄(u, u) = ∥u∥2q̄ by:

(3.1.4) q̄(u, u)
def
= lim

n→∞
q(un, un) = N2

u .

As a result, it seems that there is no choice when extending q to q̄ on the completion D(q)
∥·∥q
. On

the diagonal q̄ is defined by (3.1.4), and the off-diagonal terms can be recovered by polarization. The

form q̄ we have constructed on D(q̄)
def
= D(q)

∥·∥q
, makes this space complete, so q̄ is closed.

Is that all? Actually, we have hidden a problem under the carpet. Assume that a second q-Cauchy
sequence (ũn)n ⊂ D(q) also converges in H to the same u. Is the limit limn q(ũn, ũn) equal to N2

u?
As we will see in the next example, this is not always the case! If the limits are different, our procedure
to extend q to u by (3.1.4) fails, since there is no way to choose between the values Nu and Nũ. But
the closability assumption on q implies that we can extend q. So this assumption actually implies that
the limits Nu and Nũ are necessarily equal, in other words that the limit (3.1.4) does not depend on
the choice of q-sequence (un)n converging to u. This coincidence between Nu and Nũ also implies
that the two sequences (un), (ũn) actually converge to one another in the q-norm:

∥un − ũn∥q ≤ ∥un − u∥q̄ + ∥u− uñ∥q̄ → 0.

As promised, let us now exhibit the case of a non-closable form.

Example 3.1.10 (Non-closable form) Take H = L2(R) and consider the form defined on D(q) =
L2(R) ∩ C0(R) by q(u, v) = u(0)v(0); it is obviously symmetric and positive. Let us show that it
is not closable, using the proof of the preceding proposition.

By contradiction, let us assume that q can be extended to a closed form q̄. One should then have
the following property: if (un)n∈N ⊂ D(q) is a ∥ · ∥q-Cauchy sequence, then it should converges to
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some u ∈ D(q̄) w.r.t. this norm. In view of the definition of the q-norm, this convergence implies
that un → u in H, hence ∥un∥ → ∥u∥, and also that q(un, un)→ q̄(u, u) (cf. (3.1.4) above)

Now, let us choose some u0 ∈ D(q̄). We may easily construct two sequences (un)n≥1 and (vn)n≥1

in D(q) with the following properties:

• both sequences converge to u0 in the H-norm,

• un(0) = 1 and vn(0) = 0 for all n.

These two properties show that these two sequences are q-Cauchy, so they should converge towards
limits u, v w.r.t. the q-norm. In particular, they L2-converge towards u, v; from their properties, we
must then have equality u = v = u0. As a result, the sequences q(un, un) and q(vn, vn) should both
converge to q̄(u0, u0). But the definition of un, vn show that the limits of q(un, un) and q(vn, vn) are
necessarily different: for all n ∈ N one has q(un, un) = 0, while q(vn, vn) = 1, so these sequences
cannot converge to the same value q(u0, u0).

We have obtained a contradiction in the construction of the closure q̄, which shows that q is not
closable.

Remark that this counter-example is based on the same phenomenon as the non-closable operator of
Example 2.1.11, namely the fact that L2 functions are not defined pointwise.

3.1.1 Various Laplacians

Let us give some more “canonical” examples of forms, from which we will extract selfadjoint operators.
We focus on various versions of the Laplacian.

Example 3.1.11 (Laplacian) Consider the Hilbert space H = L2(Rd) and the Dirichlet form

q(u, v) =

∫
Rd

∇u∇v dx, with domain D(q) = H1(Rd) .

This form is clearly closed. Let us find the associated operator T , which will automatically be
selfadjoint.

Let f ∈ D(T ) and g def
= Tf , then for any u ∈ H1(Rd) we have∫

Rd

∇u∇f dx =

∫
Rd

ug dx.

In particular, this equality holds for u ∈ C∞
c (Rd), which gives∫

Rd

ug dx =

∫
Rd

∇u∇f dx =

∫
Rd

(−∆u)f dx = ⟨f,−∆u⟩D′,D .
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It follows that g = −∆f in D′(Rd). Therefore, for each f ∈ D(T ) we must have ∆f ∈ L2(Rd),
which by (2.1.2) means that f ∈ H2(Rd). Conversely, f ∈ H2 is a sufficient condition to extend
the map

u 7→ q(u, f) =

∫
Rd

u(−∆f) dx

to all u ∈ L2. According to the Definition 3.1.3, this shows that D(T ) = H2(Rd).
In other words, the operator T constructed from the form q is T = T1, where T1 is the free

Laplacian in Rd (see Definition 2.2.12). We thus recover the fact that the free Laplacian on Rd is
selfadjoint.

Example 3.1.12 (Neumann boundary condition on the halfline) TakeH = L2(]0,∞[), and con-
sider the form

(3.1.5) q(u, v) =

∫ ∞

0

u′(x) v′(x)dx, D(q) = H1(]0,∞[).

This form is semibounded below and closed (this is due to the completeness of H1 w.r.to the norm
∥ · ∥H1 ∼ ∥ · ∥q). Let us describe the associated operator T .

For v ∈ D(T ), there exists fv ∈ H such that∫ ∞

0

u′(x) v′(x) dx =

∫ ∞

0

u(x) fv(x) dx

for all u ∈ H1. Taking here u ∈ C∞
c , we obtain just the definition of the distributional derivative:

fv = −(v′)′ = −v′′ in D′(]0,∞[). As we require fv ∈ L2, the function v must be in H2(]0,∞[),
and Tv = fv = −v′′.

Now, notice that for v ∈ H2(]0,∞[) and u ∈ H1(]0,∞[) the integration by parts gives:∫ ∞

0

u′(x)v′(x)dx = u(x)v′(x)
∣∣∣x=∞

x=0
−
∫ ∞

0

u(x)v′′(x)dx.

If we want the identity q(u, v) = ⟨u, Tv⟩H to be continuously extended to all u ∈ L2, the boundary
term at x = 0 must vanish; this will be the case if we ensure the additional condition v′(0) = 0
(remember that for v ∈ H2(]0,∞[), we have v′ ∈ H1(]0,∞[) ⊂ C0([0,∞[), so the value v′(0) is
well-defined). This condition is necessary and sufficient for this extension to hold.

In conclusion, the operator associated with the form (3.1.5) is T def
= TN , which acts as TNv = −v′′

on the domain D(TN) =
{
v ∈ H2(0,∞) : v′(0) = 0

}
. It will be referred to as the (positive)

Laplacian with the Neumann boundary condition, or simply the Neumann Laplacian on ]0,∞[. It is
automatically selfadjoint on L2.

The following example starts with a slight modification of the form (3.1.5).

Example 3.1.13 (Dirichlet boundary condition on the halfline) Take H = L2(0,∞). Consider
the following form, which is a restriction of the previous one,

(3.1.6) q0(u, v) =

∫ ∞

0

u′(x)v′(x)dx, with the domain D(q0) = H1
0 (0,∞).
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This form, which is a restriction of (3.1.5), is still semibounded below and closed (because H1
0 is still

complete with respect to the H1-norm). Due to this restricted domain, no boundary term appears
when integrating by parts, which means that the associated operator TD acts as TDv = −v′′ on
the domain D(TD) = H2(0,∞) ∩H1

0 (0,∞) = {v ∈ H2(0,∞) : v(0) = 0}. This operator will be
referred to as the (positive) Laplacian with the Dirichlet boundary condition, or Dirichlet Laplacian
for short.

Remark 3.1.14 In the two previous examples we see an important feature: the fact that one closed
form extends another closed form (here, D(q0) ⊂ D(q)) does not imply the same ordering between
the associated operators: D(TD) ̸⊂ D(TN).

Example 3.1.15 (Neumann/Dirichlet Laplacians: general case) The two previous examples can
be generalized to the multidimensional case. Let Ω be an open subset of Rd with a sufficiently reg-
ular boundary ∂Ω (for example, a compact Lipschitz one). In H = L2(Ω), consider two sesqulinear
forms:

q0(u, v) =

∫
Ω

∇u∇vdx, D(q0) = H1
0 (Ω),

q(u, v) =

∫
Ω

∇u∇vdx, D(q) = H1(Ω).

Both these forms are closed and semibounded from below, and one can easily show that the respective
operators TD and TN act both as u 7→ −∆u. By a more careful analysis and, for example, for a
smooth ∂Ω, one can show that

D(TD) = H2(Ω) ∩H1
0 (Ω) = {u ∈ H2(Ω) : u|∂Ω = 0},

D(TN) = {u ∈ H2(Ω) :
∂u

∂n

∣∣
∂Ω

= 0},

where n = n(x) denotes the outward pointing unit normal vector on ∂Ω ∋ x, and the restrictions
to the boundary should be understood as the respective traces of the functions on the boundary. If
the boundary is not regular, the domains become more complicated, in particular, the domains of
TD and TN are not necessarily included in H2(Ω), see e.g. detailed results in Grisvard’s book [5].
Nevertheless, the operator TD is called the Dirichlet Laplacian in Ω and TN is called the Neumann
Laplacian.

These constructions are relevant only if the boundary of Ω is non-empty: if Ω = Rd, then q = q0,
because as H1(Rd) = H1

0 (Rd), hence TD = TN = T1 the free Laplacian.

3.2 Semibounded operators and Friedrichs extensions

The goal of this section is to start from a linear operator T on H enjoying “good” properties (namely,
symmetric and semibounded from below), and construct an extension of this operator which is self-
adjoint, called the Friedrichs extension of T . The strategy is to make a “detour” through quadratic
forms: schematically, the construction goes as follows:

(T,D(T ))→ (q,D(q))→ (q̄, D(q̄))→ (TF , D(TF )) .
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Let us start with the definition of the “good properties” we require T to enjoy. In Section 3.1 we have
seen the definition of a quadratic form being semibounded from below. A similar notion exists for
linear operators:

Definition 3.2.1 (Semibounded operator) Let T be a symmetric operator T on H. T is said
to be semibounded from below if there exists a constant C ∈ R such that

⟨u, Tu⟩ ≥ C⟨u, u⟩ for all u ∈ D(T ),

and in that case we write T ≥ C.

From an operator T we naturally induce a sesqulinear form q = qT onH, with domainD(q) = D(T ):

q(u, v)
def
= ⟨u, Tv⟩, ∀u, v ∈ D(T ).

Proposition 3.2.2 If T is semibounded from below, then the sesqulinear form q is semibounded
from below and closable (see Def. 3.1.8).

Proof.— The semiboundedness of q directly follows from the analogous property of T . For simplicity,
we will consider in the proof that T ≥ 1, so that the q-norm is simply given by ∥u∥q = q(u, u)1/2.

To show the closability of q, we come back to the proof of Proposition 3.1.9, which attempted to con-
struct the closed extension q̄ to the form q. The construction went by considering q-Cauchy sequences
(un)n ⊂ D(T ). Each such sequence converges to a limit u ∈ H in the H-norm, which is then in the
completion D(q)

∥·∥q
. As shows in the previous proof, consistency forces us to extend q by

q̄(u, u)
def
= lim

n→∞
q(un, un) .

As noticed in that proof, to show the closability of q we must check that the above limit q̄(u, u) does not
depend on the choice of q-Cauchy sequence (un)n ⊂ D(q) converging to u. Let us show that in the
present situation (q is derived from the semibounded operator T ), this is indeed the case. Namely, we
assume that another q-Cauchy sequence (ũn)n converges (in H) to u. Let us show that, necessarily,

(3.2.7) lim
n
q(un, un) = lim

n
q(ũn, ũn).

A simple decomposition gives

q(un, un)− q(ũn, ũn) = q(un − ũn, un) + q(ũn, un − ũn)
=⇒ |q(un, un)− q(ũn, ũn)| ≤ |q(un − ũn, un)|+ |q(ũn, un − ũn)|

≤ ∥un − ũn∥q(∥un∥q + ∥ũn∥q)
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The sequence (wn = un − ũn)n is obviously a q-Cauchy sequence (since both (un) and (ũn) are so,
and H-converges to zero. The following Assertion shows that it must also q-converge to zero. Since
the sequences (∥un∥q) and (∥ũn∥q) are bounded, we obtain the requested equality (3.2.7). This
allows to define q̄ consistently, as a closed extension of q.

Assertion. If (wn) ⊂ D(q) is a q-Cauchy sequence converging to zero inH, then limn→∞ ∥wn∥q =
0.

We already noticed that (∥wn∥q)n∈N is a nonnegative Cauchy sequence, so it converges to some
limit Nw ≥ 0. Suppose by contradiction that Nw > 0. Now let us split

q(wn, wm) = q(wn, wn) + q(wn, wm − wn),

and consider the Cauchy-Schwarz inequality:∣∣q(wn, wm − wn)∣∣ ≤ ∥wn∥q∥wm − wn∥q ≤ C ∥wm − wn∥q .

Combining these two expressions with the fact that wn is q-Cauchy, we see that for any ϵ > 0 there
exists nϵ > 0 such that

∣∣q(wn, wm) − N2
w

∣∣ ≤ ϵ for all n,m > nϵ. We now use the definition of the
form q, and take ϵ = N2

w/2. Then, for n,m > nϵ we have∣∣⟨wn, Twm⟩∣∣ = ∣∣q(wn, wm)∣∣ ≥ N2
w

2
.

On the other hand, if we fix some m ≥ nϵ and take the limit n → ∞, the left-hand side goes to 0

since wn
H→ 0, so we obtain a contradiction. The Assertion is proved, and thus the Proposition as well.

The closability of q, together with Prop. 3.1.7 allows us to construct a selfadjoint extension of T .

Definition 3.2.3 (Friedrichs extensions) Let T be a linear operator in H which is semi-
bounded from below. Consider the sesquilinear form q associated with T , and its closure q̄.
The self-adjoint operator TF associated with the form q̄ is called the Friedrichs extension of T .

Let us notice that, in general, such an operator T could admit several selfadjoint extensions. The
above procedure selects one of these extensions.

Proposition 3.2.4 If T is a selfadjoint operator and is semibounded from below, then it is equal
to its own Friedrichs extension.

Proof.— Let q be the sesquilinear form associated with T . It is closable, and the domain of its closure

V def
= D(q̄) is given by the closure of D(T ) w.r.t. the norm ∥ · ∥q. By definition, the domain D(TF )
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is the set of v ∈ V s.t. the map u ∈ V 7→ q̄(u, v) extends to a bounded antilinear form on H; hence
D(TF ) ⊃ D(T ). On the other hand, v ∈ D(T ∗) iff u ∈ D(T ) 7→ ⟨Tu, v⟩ extends to a bounded
antilinear form on H. Since u ∈ V 7→ q̄(u, v) is already an extension of u ∈ D(T ) 7→ ⟨Tu, v⟩, we
see that extending the latter allows to extend the former: this means that D(TF ) ⊂ D(T ∗). Since T
is selfadjoint, we draw D(T ) = D(TF ), hence T = TF .

Remark 3.2.5 (Form domain) The domain of the associated closed form q̄ is usually called the
form domain of T , and is denoted by Q(T ). The form domain plays an important role in the analysis
of selfadjoint operators, see e.g. the Section ?? on variational methods.

By construction, this form domain Q(T ) contains the operator domain D(T ), and this inclusion
is often a strict one. Yet, for u, v ∈ Q(T ) one sometimes uses the slightly abusive notation ⟨u, Tv⟩
to denote q̄(u, v), eventhough v may not belong to D(T ).

Example 3.2.6 (Semibounded Schrödinger operators) A basic example for the Friedrichs exten-
sion is delivered by Schrödinger operators with semibounded potentials. Let W ∈ L2

loc(Rd,R) and
W ≥ −C, C ∈ R (i.e. W is semibounded from below). On H = L2(Rd), we consider the operator
T acting as Tu(x) = −∆u(x) + W (x)u(x) on the domain D(T ) = C∞

c (Rd). This operator is
clearly symmetric and bounded from below:

(3.2.8) ∀u ∈ C∞
c (Rd), ⟨u, Tu⟩ = ∥∇u∥2 +

∫
W |u|2 dx ≥ −C∥u∥2 .

The Friedrichs extension TF of T will be called the Schrödinger operator with potential W . Note
that the expression in the middle of (3.2.8) allows to define the sesqulinear form q associated with
T :

q(u, v) =

∫
Rd

∇u∇v dx+
∫
Rd

W uv dx.

Let us denote by q̄ the closure of q. One can easily show that the domain of this closure is included
in the following weighted Sobolev space:

D(q̄) ⊂ H1
W (Rd)

def
=
{
u ∈ H1(Rd) :

∫
|W ||u|2 dx <∞

}
.

We actually have the equality D(q̄) = H1
W (Rd) (see Theorem 8.2.1 in Davies’s book [4] for a rather

technical proof), but the inclusion will suffice for our purposes.

We now extend the construction of Schrödinger operators to a class of potentials which are not
semibounded from below, but which are still bounded from below by a specific negative function (see
Corollary 3.2.9). The main interest of this class of potentials is that they include the physically relevant
Coulomb potential.

Proposition 3.2.7 (Hardy inequality) Let d ≥ 3. Then, for any u ∈ C∞
c (Rd), the following

inequality holds: ∫
Rd

∣∣∇u(x)∣∣2dx ≥ (d− 2)2

4

∫
Rd

∣∣u(x)∣∣2
|x|2

dx.
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The restriction on the dimension is necessary to make the function x 7→ |x|−2 locally integrable near
the origin.

Remark 3.2.8 (Uncertainty principles) Before proving Hardy’s inequality, let us argue that this
inequality can be intepreted as a form of uncertainty principle, similar to the well-known Heisenberg
uncertainty principle in quantum mechanics or harmonic analysis. The latter takes the following
form: for any u ∈ C∞

c (Rd) normalized as ∥u∥L2 = 1, one has

∥∇u∥L2∥|x|u∥L2 ≥ C0, with the constant C0 =
d

4
.

The interpretation is the following: a function which is very localized near x = 0, thus for which
∥|x|u∥L2 is much smaller than ∥u∥L2 = 1, must have a large gradient (in the L2 sense). Conversely,
a very “flat” function, for which ∥∇u∥ ≪ ∥u∥, must be quite delocalized, forcing ∥|x|u∥L2 to be
large.

In quantum mechanics, the two above factors can be interpreted as the quantum averages, for
the normalized state u, of the positive Laplacian (the “kinetic energy” operator), respectively of the
operator of multiplication by |x|2:

∥∇u∥2 = ⟨u,−∆u⟩ = ⟨u, (−i∇)2u⟩ def= Eu(D2
x),

∥|x|u∥2 = ⟨u, |x|2u⟩ def= Eu(|x|2).

Written in these probabilistic notations, the uncertainty principle reads:

Eu((−i∇)2)Eu(|x|2) ≥ C0 ⇐⇒ E((−i∇)2) ≥ C0

E(|x|2)
, for all normalized u.

Expressed in these notations, the right-hand side in Hardy’s inequality takes the form of the quantum
average of the operator of multiplication by 1

|x|2 :

Eu((−i∇)2) ≥ C1 E
( 1

|x|2
)
, with the constant C1 =

(d− 2)2

4
.

Hence, Hardy’s inequality essentially amounts to remplacing, on the right-hand side, the inverse
average 1

Eu(|x|2) , by the average of the inverse, Eu( 1
|x|2 ). Both inequalities have a similar meaning: a

function with a small gradient Eu((−i∇)22) must be delocalized, hence it cannot concentrate too
much at the origin, which prevents Eu( 1

|x|2 ) from exploding.

Proof.— The proof of the Hardy inequality borrows the same methods as the proof of the Heisenberg
uncertainty principle. For any γ ∈ R, we construct the mixed operator

u ∈ C∞
c (Rd) 7→ Pγu(x)

def
=

1

i
∇u(x) + iγ

x

|x|2
u(x),

Now, the obvious inequality

∥Pγu∥2L2 ≥ 0, for any u ∈ C∞
c (Rd),
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may be expanded into:

(3.2.9)

∫
Rd

∣∣∣∇u(x)∣∣∣2dx+ γ2
∫
Rd

∣∣u(x)∣∣2
|x|2

dx ≥ γ

∫
Rd

(
x · ∇u(x) u(x)

|x|2
+ x · ∇u(x) u(x)

|x|2
)
dx.

Using the identities

∇|u|2 = u∇u+ u∇u, div
( x

|x|2
)
=
d− 2

|x|2
,

and integration by parts, the integral in the right-hand side of (3.2.9) becomes∫
Rd

( x

|x|2
·
(
∇u(x)u(x) +∇u(x)u(x)

)
dx =

∫
Rd

x

|x|2
· ∇
∣∣u(x)∣∣2 dx

= −
∫
Rd

div
( x

|x|2
) ∣∣u(x)∣∣2 dx = −(d− 2)

∫
Rd

|u(x)|2

|x|2
dx.

The above expression could be recast into the “magic fact” that sum of commutators
∑d

j=1[
1
i
∂j,

xj
|x|2

]

gives back a multiple of the operator 1
|x|2 , which already appears on the left-hand side of (3.2.9).

Finally, inserting this equality into (3.2.9) gives∫
Rd

∣∣∇u(x)∣∣2dx ≥ γ
(
(d− 2) + γ

) ∫
Rd

∣∣u(x)∣∣2
|x|2

dx.

In order to maximize the coefficient before the integral, we adjust the parameter γ to the value
γ = −(d− 2)/2, which gives our result.

From Hardy’s inequality, we draw the following criterium for a semibounded Schrödinger operator.

Corollary 3.2.9 Let d ≥ 3 and W ∈ L2
loc(Rd) be real-valued, with W (x) ≥ − (d−2)2

4|x|2 . Then the
operator T = −∆+W defined on the domain C∞

c (Rd \ 0), is semibounded from below, hence it
admits a selfadjoint extension.

Notice that we need to be careful when multiplying by the potential W : applying this multiplication
to a function u ∈ C∞

c (Rd) with u(0) ̸= 0 will not produce a function in L2(Rd) if d ≤ 4, since 1
|x|4 is

not locally integrable at the origin. This is why we need to define the operator T on C∞
c (Rd \ 0).

Example 3.2.10 (Coulomb potential) In the ambient space R3, the Coulomb potential generated
by a charge placed at the origin, is of the form W (x) = C

|x| , where C ∈ R is the product of the
charges of the particle at the origin and of the particle at the point x. If both particles have charges
of the same sign, they repel each other, implying that W (x) grows to +∞ when |x| → 0. In the
case of opposite charges, C < 0, and the potential energy goes to −∞ when |x| → 0: the particles
attract each other.

We want to show that whatever the value of C ∈ R, the operator T = −∆ + C/|x| acting on
C∞
c (R3) is semibounded from below. In the “repulsive situation” C ≥ 0, we are in the situation of
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Example 3.2.6, since the potential is positive; the operator is then positive as well (the sum of two
positive operators is obviously positive). On the opposite, in the case C < 0, it is not clear whether
the operator is bounded from below: could the quantum particle “collapse” to the origin under the
attraction of the charge at the origin, leading to arbitrary negative values of ⟨u, Tu⟩?

We are going to show that this collapse is impossible: eventhough W (x) → −∞ when |x| → 0,
the operator T = −∆+ C

|x| will be bounded from below, due to the uncertainty principle embodied
in Hardy’s inequality.

For any u ∈ C∞
c (R3) and any p ∈ R∗, we may write:∫

R3

|u|2

|x|
dx =

∫
R3

p|u| |u|
p|x|

dx ≤ p2

2

∫
R3

|u|2dx+ 1

2p2

∫
R3

|u|2

|x|2
dx

Hardy

≤ p2

2

∫
R3

|u|2dx+ 1

8p2

∫
R3

|∇u|2dx.

As a consequence (remember that C < 0):

⟨u, Tu⟩ =
∫
R3

|∇u|2dx− |C|
∫
R3

|u|2

|x|
dx ≥

(
1− |C|

8p2

)∫
R3

|∇u|2dx− |C|p
2

2

∫
R3

|u|2dx.

We may now pick p =
√

|C|
8

to make the operator T bounded from below by −|C|
2

16
.

As a consequence, for any C ∈ R the above operator T can be extended to a selfadjoint Friedrichs
extension (actually, we will see later that this selfadjoint extension is the unique possible one).

3.3 Exercises

Exercise 3.3.1 Show that the following sesquilinear forms q are closed and semibounded from
below, and describe the associated self-adjoint operators on H (α ∈ R is a fixed parameter):

(a) H = L2([0,∞[), D(q) = H1([0,∞[), q(u, v) =
∫ ∞

0

u′(s)v′(s) ds+ αu(0)v(0).

(b) H = L2(R), D(q) = H1(R), q(u, v) =
∫
R
u′(s)v′(s) ds+ αu(0) v(0).

(c) H = L2([0, 1]), D(q) =
{
u ∈ H1([0, 1]) : u(0) = u(1)

}
, q(u, v) =

∫ 1

0

u′(s)v′(s) ds.

Exercise 3.3.2 This exercise shows a possible way of constructing the sum of two unbounded
operators under the assumption that one of them is “smaller” that the other one. In a sense, we
are going to extend the construction of Exercise 1.4.

Let H be a Hilbert space, q be a closed sesquilinear form on H, and T the self-adjoint operator on
H associated with q. Let B be a symmetric linear operator in H such that D(q) ⊂ D(B) and such
that there exist α, β > 0 with ∥Bu∥2 ≤ αq(u, u) + β∥u∥2 for all u ∈ D(q). Consider the operator
S on D(S) = D(T ) defined by Su = Tu+Bu. We are going to show that S is self-adjoint.
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(a) Consider the sesquilinear form s(u, v) = q(u, v) + ⟨u,Bv⟩, D(s) = D(q). Show that s is
closed.

(b) Let S̃ be the operator associated with s. Show that D(S̃) = D(T ) and that S̃u = Tu + Bu
for all u ∈ D(T ).

(c) Show that S is self-adjoint.

Exercise 3.3.3 In the examples below the Sobolev embedding theorem and the previous exercise
can be of use.

(a) Let v ∈ L2(R) be real-valued. Show that the operator A having as domain D(A) = H2(R)
and acting by Af(x) = −f ′′(x) + v(x)f(x) is a self-adjoint operator on L2(R).

(b) Let v ∈ L2
loc(R) be real-valued and 1-periodic, i.e. v(x + 1) = v(x) for all x ∈ R. Show

that the operator A with the domain D(A) = H2(R) acting by Af(x) = −f ′′(x) + v(x)f(x) is
self-adjoint.

(c) Let H = L2(R3). Suggest a class of unbounded potentials v : R3 → R such that the operator
Af(x) = −∆f(x) + v(x)f(x), with the domain D(A) = H2(R3), is self-adjoint on H.

Exercise 3.3.4 (a) Let H be a Hilbert space and A be a closed densely defined operator in H (not
necessarily symmetric). Consider the operator L given by

Lu = A∗Au, u ∈ D(L) =
{
u ∈ D(A) : Au ∈ D(A∗)

}
.

We will write simply L = A∗A having in mind the above precise definition. While the above is a
natural definition of the product of two operators, it is not clear if the domain D(L) is sufficiently
large. We are going to study this question.

i) Consider the sesquilinear form b(u, v) = ⟨Au,Av⟩ + ⟨u, v⟩ on H defined on D(b) = D(A).
Show that this form is closed.

ii) Let B be the self-adjoint operator associated with the form b. Find a relation between L and
B and show that L is densely defined, self-adjoint and positive.

iii) Let A0 denote the restriction of A to D(L). Show that A0 = A.

(b) A linear operator A acting in a Hilbert space H is called normal if D(A) = D(A∗) and
∥Ax∥ = ∥A∗x∥ for all x ∈ D(A).

i) Show that any normal operator is closed.

ii) Let A be a closed operator. Show: A is normal iff A∗ is normal.

iii) Let A be a normal operator. Show: ⟨Ax,Ay⟩ = ⟨A∗x,A∗y⟩ for all x, y ∈ D(A) ≡ D(A∗).

iv) Let A be a closed operator. Show: A is normal iff AA∗ = A∗A. Here the both operators are
defined as in (a), the operator AA∗ being understood as (A∗)∗A∗.
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Chapter 4

Spectrum and resolvent

We will now focus on the central topic of this course, namely the spectrum of (mostly unbounded)
linear operators.

4.1 Definitions

In this section we will consider operators (T,D(T )) defined on a Banach space B, or sometimes only
a Hilbert space H, and with dense domain D(T ).

On a d-dimensional vector space, the spectrum of an operator (which can be represented as a matrix)
is identical to the union of all eigenvalues of the operator; it is composed of at most d complex numbers.

On infinite dimensional vector spaces, the situation is more complicated: the eigenvalues of the
operator are usually only one part of the spectrum, namely the point spectrum, while the full spectrum
can be more easily defined through its complement, called the resolvent set of the operator.

Definition 4.1.1 (Resolvent set, spectrum, point spectrum) Let (T,D(T )) be a linear op-
erator on a Banach space B. The resolvent set resT consists of the complex numbers z ∈ C
for which the operator T − z : D(T ) → B is bijective, and with inverse (T − z)−1 : B → B a
continuous operator.

The spectrum specT of T is defined by specT def
= C \ resT . The point spectrum specp T is

the set of eigenvalues of T , namely the set of points z ∈ C such that Ker(T − z) ̸= {0}. The
dimension of Ker(T − z) is called the geometric multiplicity of the eigenvalue z.

The resolvent set, respectively the spectrum of T are often denoted by ρ(T ), resp. σ(T ) = spec(T ).
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Proposition 4.1.2 If resT ̸= ∅, then T must be a closed operator.

Proof.— Let z ∈ resT , then the graph gr(T − z)−1 of the continuous operator (T − z)−1 is closed
(by the closed graph theorem). Since gr(T − z) = S(gr(T − z)−1) where S(u, v) = (v, u), the graph
of T − z is also closed, since the involution S is continuous.

Proposition 4.1.3 Let T be a closed operator on B. Then one has the following equivalence:

z ∈ resT ⇐⇒
{
Ker(T − z) = {0} and Ran(T − z) = B

}
.

Proof.— The⇒ direction follows from the definition.

Assume (T,D(T )) is a closed operator, and z ∈ C such that Ker(T−z) = {0} and Ran(T−z) = H.
The operator (T − z)−1 is then well-defined on the whole of B, and has a closed graph (since the
graph of T − z is closed); by the closed graph theorem, this operator is continuous.

Notice that, as opposed to finite-dimensional situations, the condition Ker(T − z) = {0} alone does
not suffice to characterize the spectrum; it only characterizes the point spectrum of T .

The resolvent is a family of operators {(T − z)−1 ; z ∈ resT}, which enjoys interesting properties.
It will be very important in the rest of these lectures. We first recall a few facts:

Lemma 4.1.4 (Neumann series inversion) Assume A ∈ L(B) is such that ∥A∥ < 1. Then the
operator (I − A) ∈ L(B) is invertible, and its inverse can be expressed as a Neumann series:

(I − A)−1 =
∑
n≥0

An .

As a first application, let us observe the case of bounded operators.

Proposition 4.1.5 (Spectrum of bounded operators) Let T be a continuous operator on B.
Then the resolvent set of T is not empty. More precisely, it contains {z ∈ C ; |z| > ∥T∥L(B).

Proof.— If |z| > ∥T∥, then the operator (zI−T ) = z(I−z−1T ) can be inverted by Neumann series:

|z| > ∥T∥ =⇒ (zI − T )−1 = z−1
∑
n≥0

(z−1T )n .

The resolvent is a function of z ∈ resT , valued in L(B). An important property will be the holomor-
phy of this function, a notion which directly generalizes the holomorphy of complex valued functions.
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Definition 4.1.6 Let Ω ⊂ C be open. An operator valued function z ∈ Ω 7→ A(z) ∈ L(B) is
said to be holomorphic (or strongly analytic) at a point z0 ∈ Ω if the ratio A(z)−A(z0)

z−z0 admits a
limit in L(B) when z → z0 in Ω. The limit, denoted A′(z0), is the (holomorphic) derivative of
A(z) at the point z0.

Lemma 4.1.7 If z 7→ A(z) is holomorphic in all points of a ball B(z0, r), r > 0, then the function
A(z) admits a convergent Taylor series at the point z0.

Like for scalar valued holomorphic functions, the coefficients A(n)(z0)/n! of the Taylor series can be
obtained by the Cauchy formula centered at z0:

1

n!
A(n)(z0) =

1

2iπ

∮
|z−z0|=r−ϵ

A(z)

z − z0
dz .

Proposition 4.1.8 (Elementary properties of the resolvent) The set resT is open, so its com-
plement specT is closed. The operator function

resT ∋ z 7→ RT (z)
def
= (T − z)−1 ∈ L(B) ,

called the resolvent of T , is holomorphic and satisfies the following identities:

RT (z1)−RT (z2) = (z1 − z2)RT (z1)RT (z2) , (Resolvent identity)(4.1.1)

RT (z1)RT (z2) = RT (z2)RT (z1) , (commutative family)(4.1.2)

d

dz
RT (z) = RT (z)

2 ,(4.1.3)

for all z, z1, z2 ∈ resT .

Proof.— Let z0 ∈ resT . The obvious equality

(T − z0)(T − z0)−1 = I : B → B ,

implies the following one:
T − z = (T − z0)

(
I − (z − z0)RT (z0)

)
.

If |z − z0| < 1/∥RT (z0)∥, then the operator on the right-hand side admits a bounded inverse, which
can be obtained through a Neumann series. This implies that such values z ∈ resT . Moreover, one
has the series representation

(4.1.4) RT (z) =
(
I − (z − z0)RT (z0)

)−1
RT (z0) =

∑
j=0

(z − z0)jRT (z0)
j+1, .
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This representation shows thatRT exists in a neighbourhood of z0, and that it depends holomorphically
on z in this neighbourhood.

The resolvent identity (4.1.1) is obtained through easy manipulations:

I − (T − z2)RT (z2) = 0

⇐⇒ I − {(T − z2) + (z2 − z1)}RT (z2) = (z1 − z2)RT (z2)

⇐⇒ I − (T − z1)RT (z2) = (z1 − z2)RT (z2)

⇐⇒ RT (z1)−RT (z2) = (z1 − z2)RT (z1)RT (z2) .

The commutativity of the family {RT (z), z ∈ res(T )} directly follows from this identity. Besides,
taking z2 in a ball B(z1, r) ⊂ res(T ) and taking z2 → z1 in this ball, we draw from this identity, and
the continuity of RT w.r.t. z, the derivative identity (4.1.3).

4.2 Examples

Let us consider a series of examples featuring various situations where an explicit calculation of the
spectrum is possible. We emphasize that the point spectrum is usually a proper subset of the spectrum!

4.2.1 Spectrum of bounded operators

We start by a simple, yet not completely obvious fact.

Proposition 4.2.1 Let T be a continuous operator on a Banach space B. Then its spectrum is
nonempty: specT ̸= ∅.

Proof.— We know that for |z| > ∥T∥L(B), the operator (z − T )−1 can be represented by a Neumann
series, and is holomorphic. Assuming that res(T ) = C means that this operator valued holomorphic
function can be continued to all of C. For any vectors v ∈ B and continuous linear form L ∈ B∗, the
function z 7→ ⟨L

(
(z − T )−1v

)
is thus entire and bounded; besides, it decays to zero when |z| → ∞.

Liouville’s theorem then implies that this function vanishes identically. Since it is the case for any u, L,
the operator (z − T )−1 vanishes identically, which is a contradiction.

Proposition 4.2.2 (Invertible continuous operator) Assume T ∈ L(B) is invertible with
bounded inverse. Then spec(T−1) = 1

spec(T ) = {
1
z
; z ∈ spec(T )}.

Proof.— For any 0 ̸= z ∈ res(T ), we may write

(T − z)−1 =
(
zT (z−1 − T−1)

)−1
= (z−1 − T−1)−1z−1T−1 ,
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which shows that (z−1−T−1)−1 is bounded, hence z−1 ∈ res(T−1). Besides, T−1 is invertible, hence
0 ∈ res(T−1). We have shown that 0 ̸= z ∈ resT =⇒ z−1 ∈ resT−1. Exchanging the roles of T and
T−1, we obtain the reverse inclusion. Finally, 0 is in the resolvent sets of T and T−1, hence

res(T−1) = {z−1 ; z ∈ res(T )} ∪ {0} ,

from where we deduce the statement.

This proposition allows to constrain the spectrum of unitary operators on a Hilbert space H.

Corollary 4.2.3 Let H be a Hilbert space, and U : H → H be a unitary operator. Then
spec(U) ⊂ {z ∈ C ; |z| = 1}.

Example 4.2.4 Let us define the shift operator on Z, S : ℓ2(Z) → ℓ2(Z) by (Su)(n) = u(n + 1).
Then spec(S) = {z ∈ C ; |z| = 1}.

Proof.— The above corollary shows the inclusion. To show that eiθ ∈ spec(S) for any θ ∈ [0, 2π[, we
will construct quasimodes associated with the spectral value eiθ. Namely, for any small ε > 0, there
exists a nonzero uθ,ε ∈ ℓ2, such that

(4.2.5) ∥(S − eiθ)uθ,ε∥ ≤ ε∥uθ,ε∥ .

The sequence (uθ,1/m)m≥1 then shows that (S − eiθ) is not invertible with bounded inverse, hence
eiθ ∈ spec(S).

Definition 4.2.5 Nontrivial vectors uθ,ϵ satisfying (4.2.5) are called quasimodes of S, with
quasi-eigenvalue eiθ, and error (or discrepancy) ε.

How to construct such quasimodes? If we tried to construct an eigenstate (S − eiθ)u = 0, it would
necessarily take the form

uθ(n) = eiθ uθ(n− 1) = einθ uθ(0) ,

which gives a sequence uθ ̸∈ ℓ2. Hence eiθ is not in the point spectrum, which shows that the point
spectrum is empty.

In order to contruct a quasimode, we may truncate the formal eigenvector uθ, taking for someN > 0
the vector

uθ,N(n) = 1l|n|≤Ne
inθ.

An easy computation shows that ∥uθ,N∥ =
√
2N + 1 while ∥(S − eiθ)uθ,N∥ =

√
2, so this state is an

ε-quasimode for ε = N−1/2.
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One can obtain a smaller error by smoothly truncating the above formal eigenstate. Namely, we fix
some auxiliary function χ ∈ C1

c (]− 1, 1[), and define

uε(n)
def
= χ(nε) einθ .

We notice that this sequence is supported in the interval {|n| ≤ 1/ε}. We then check that

uε(n+1)− eiθuε(n) = ei(n+1)θ
(
χ((n+1)ε)−χ(nε)

)
=⇒ |[Suε− eiθuε](n)| ≤ ε sup

t∈[nε;(n+1)ε]
|χ′(t)|

Squaring this expression and summing over n ∈ Z, we find that

∥Suε − eiθuε∥2 ≤ ε
∑
n∈Z

sup
t∈[nε;(n+1)ε]

|χ′(t)|2 .

The sum on the RHS converges to Cχ
def
=
∫
R |χ

′(t)|2 dt <∞ when ε→ 0, so for ε > 0 small enough
we have:

∥Suε − eiθuε∥2 ≤ ε2Cχ.

On the other hand, we check that

∥uε∥2 =
∑
n∈Z

|χ(nε)|2 = ε−1
(∫

R
|χ(t)|2 dt+ o(1)ε→0

)
.

Comparing the two expressions, we see that there exists C > 0 such that, for ε > 0 small enough,

∥Suε − eiθuε∥ ≤ C ε ∥uε∥ .

Another method of proof will be presented later, which uses the fact that the Fourier transform maps
S to a simple multiplication operator on [0, 1[.

Example 4.2.6 Let us now consider the shift operator acting on the single-sided sequences ℓ2(N).
It is still defined by Tu(n) = u(n+1). This operator is not an isometry on ℓ2(N), it is a contraction
of norm ∥T∥ = 1

We claim that spec(T ) = {|z| ≤ 1}, and most it consists in eigenvalues: specp(T ) = {|z| < 1}.
The adjoint of this operator is given by T ∗(u(0), u(1), u(2) . . .) = (0, u(0), u(1), u(2) . . .). Its

spectrum can be obtained through the following general

Proposition 4.2.7 Let (T,D(T )) be a closed operator on some Hilbert space H. Then

spec(T ∗) = specT = {z̄ ; z ∈ spec(T )}.

Proof.— For any z ∈ res(T ), the operator [(z − T )−1]∗ satisfies

∀v ∈ H, ∀u ∈ D(T ∗), ⟨[(z − T )−1]∗(z̄ − T ∗)u, v⟩ = ⟨(z̄ − T ∗)u, (z − T )−1v⟩
= ⟨u, (z − T )(z − T )−1v⟩ = ⟨u, v⟩
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(notice that (z−T )−1v is automatically in D(T )). This shows that [(z−T )−1]∗(z̄−T ∗) = ID(T ∗).
The equality (z̄ − T ∗)[(z − T )−1]∗ = IH is proved similarly. This shows that z̄ ∈ res(T ∗), and
therefore resT ⊂ res(T ∗). Since for a closed operator T ∗∗ = T , we obtain the reverse inclusion,
hence the equality for the resolvent sets. The statement is obtained by taking the complementary
sets.

If we apply the above Proposition to our continuous operator T of Ex.4.2.6, we find that spec(T ∗) =
{|z| ≤ 1}. However, that spectrum is not of the same nature as spec(T ). A simple computation
shows that for any z ∈ C, Ker(T ∗ − z) = {0}, so specp(T ∗) = ∅. On the other hand, for |z| < 1
we have Ker(T ∗− z) = {0} and Ran(z̄−T ∗) = Ker(z−T )⊥ has codimension one. In this situation
we say that z̄ belongs to the residual spectrum of T ∗.

Definition 4.2.8 (Residual spectrum) Let (T,D(T )) be a closed linear operator on H. We
say that z lies in the residual spectrum of T if Ker(T − z) = {0} and Ran(T − z) is not dense
in H.

4.2.2 Evolution operators

Let us consider a situation where a continuous operator T ∈ L(B) models the evolution of a state
u0 ∈ B, that is it embodies a certain dynamical system. One is then interested by the evolution of the
state for long times, that is the behaviour of T nu0 when n → ∞. An important information is then
the spectral radius of the operator T .

Definition 4.2.9 Let T ∈ L(B). We define the spectral radius of T by:

r(T )
def
= sup{|z| ; z ∈ spec(T )} .

Notice that the supremum is well-defined, since we know that spec(T ) ̸= ∅. The Proposition 4.1.5
already shows that r(T ) ≤ ∥T∥. The following theorem connects this radius with the long time iterates
of the operator.

Theorem 4.2.10 Let T ∈ L(B). Then r(T ) = limn→∞ ∥T n∥1/n.

Proof.— The inequality ∥T n+m∥ ≤ ∥T n∥ ∥Tm∥ shows that the sequence tn
def
= log ∥T n∥ is subad-

ditive. As a result, the sequence (tn/n) converges to a limit, hence its exponential is the limit of
∥T n∥1/n, which we call r. Let us check that this limit is the spectral radius.
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Take z ∈ C such that |z| > r. then for any 0 < ϵ < |z| − r, there exists nϵ ∈ N such that for any
n ≥ nϵ, ∥T n∥ ≤ (|z|− ϵ)n. As a result, the series

∑
n∈N

Tn

zn
converges, which shows that z ∈ res(T ).

This shows that r(T ) ≤ r.

On the opposite, since {|z| > r} ⊂ resT , the function w 7→ (I−wT )−1 is well-defined and analytic
in the disk {|w| < r(T )−1}, so its series expansion converges in this disk. Take any r0 > r(T ). The
Cauchy formula then allows to compute T n by integrating on the circle {|z| = r0}:

(4.2.6) T n =
1

2iπ

∮
|z|=r0

(z − T )−1 zn dz .

Since ∥(z − T )−1∥ ≤ C on the circle |z| = r0, we find the bounds ∥T n∥ ≤ C ′ rn0 forall n ∈ N, and
thus r ≤ r0.

For an initial state u0 ∈ B, we then have, for any ϵ > 0 and n large enough, the bound

∥T nu0∥ ≤ (r(T ) + ϵ)n ∥u0∥ .

If we have more informations on the spectrum, the long time behaviour can be made more precise.
This is the case if the external spectrum is discrete.

Definition 4.2.11 (Discrete vs. essential spectrum) The spectrum of an operator (T,D(T ))
splits into two parts:
1. the discrete spectrum specd(T ) made of eigenvalues with finite algebraic multiplicities, which
are isolated from the rest of the spectrum;
2. the essential spectrum specess(T ) = spec(T ) \ specd(T ).

We recall that the algebraic multiplicity of an eigenvalue z is the dimension of
∪
n≥1[Ker(T − z)n].

By “isolated from the rest of the spectrum”, we mean that for each such eigenvalue zi, there is some
radius ri > 0 s.t. {0 < |zi| < ri} ∩ spec(T ) = ∅.

In general specd(T ) is a subset of specp(T ); for instance, the shift operator T on ℓ2(N) has no
discrete spectrum, but the open unit disk is made of eivenvalues.

Let us assume that the “external spectrum” of a bounded evolution operator T is discrete, which
means that for some rint < r(T ) we have

spec(T ) ∩ {rint ≤ |z| ≤ r(T )} = specd(T ) ∩ {rint ≤ |z| ≤ r(T )} ,

then this external (and compact) part of the spectrum contains only finitely many eigenvalues, all of
finite multiplicities. We assume that {|z| = rint}∩spec(T ) = ∅. It is then possible to take into account
these external eigenvalues in the description of T nu0, starting from the integral representation (4.2.6).
The discrete external spectrum shows that (z − T )−1 is holomorphic in {rint ≤ |z|} \ specd(T ). It

Introduction to Spectral Theory, Fall 2022 Stéphane Nonnenmacher



CHAPTER 4. SPECTRUM AND RESOLVENT 51

is then possible to deform the contour {|z| = r(T ) + ϵ} into the union of {|z| = r∫ } with the small
circles {|z − zi| = ri}:

T n =
1

2iπ

∮
|z|=rint

(z − T )−1 zn dz +
∑
i

1

2iπ

∮
|z−zi|=ri

(z − T )−1 zn dz.

For n = 0, the integral around the eigenvalue zi produces the spectral projector

Πi =
1

2iπ

∮
|z−zi|=ri

(z − T )−1 dz.

The fact that Πi is a projector can be shown by using the resolvent identity (Exercise).
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int
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Figure 4.1: Spectrum of a quasicompact operator.

This spectral projector naturally commutes with T : [T,Πi] = 0, implying that T preserves the
generalized eigenstate Vi = RanΠi. We may then call this finite rank operator Ti = T|Vi

. It admits
as only eigenvalue zi, but can feature a nontrivial Jordan structure. In the simple case where there is
no Jordan structure, then T nΠi = (Ti)

nΠi = zni Πi. In the limit n→∞, these external eigenvalues
allow to expand T n as:

T n =
∑
i

zni Πi +O(rnint)L(B), n→∞,

where the sum over eigenvalues is finite. In the case of nontrivial Jordan blocks, the operator Ti takes
the form of (zi + Ji)Πi, where Ji : Vi → Vi is nilpotent, so that

(Ti)
n = (zi + Ji)

nΠi = zni

n∑
k=0

(
n

k

)( 1
zi
Ji

)k
Πi
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The nilpotency of Ji implies that for some di > 1, Jdii = 0, hence the above sum actually stops at
the order k = min(n, di − 1). As a function of n, the sum is a product of zni with an operator-valued
polynomial in n of degree ≤ di − 1.
An operator T with such an external discrete spectrum is said to be quasicompact.

Let us now restrict ourselves to operators acting on a Hilbert space H. The spectral radius of a
bounded selfadjoint operator is easy to determine.

Proposition 4.2.12 Let T ∈ L(H) be selfadjoint. Then its spectral radius r(T ) = ∥T∥.

Proof.— The statement just comes from the following variational identification:

∥T∥2 = sup
u∈H, ∥u∥=1

∥Tu∥2 = sup
u∈H, ∥u∥=1

⟨Tu, Tu⟩ = sup
u∈H, ∥u∥=1

⟨T 2u, u⟩ ≤ ∥T 2∥ .

On the other hand, ∥T 2∥ ≤ ∥T∥2, so finally we have for any selfadjoint continuous operator ∥T 2∥ =
∥T∥2. Since T 2 is itself selfadjoint, we have then ∥T 4∥ = ∥T 2∥2 = ∥T∥4. Iterating this procedure,
we see that for any j ≥ 1, ∥T 2j∥ = ∥T∥2j . We thus deduce that

r(T ) = lim
j→∞
∥T 2j∥2−j

= ∥T∥ .

4.2.3 Unbounded operators

All the following examples live on a Hilbert space.

Example 4.2.13 (Multiplication operator) Consider the measured space (Rd, µ) equipped with a
locally finite measure on the Borel σ-algebra. Lef f : (Rd, µ) → C be a borelian function. The
essential range of f is defined by: by

ess-ranµ f =
{
z ∈ C : µ

{
x ∈ Rd : |f(x)− z| < ϵ

}
> 0 for all ϵ > 0

}
.

Proposition 4.2.14 (Spectrum of the multiplication operator) Let f ∈ L∞
loc(Rd, µ;C), and

consider the multiplication operator Mf acting on L2(Rd, µ), as defined in Example 2.1.8. Then,

specMf = ess-ranµ f,

specpMf =
{
z ∈ C : µ{x ∈ Rd : f(x) = z} > 0

}
.

Proof.— Let z /∈ ess-ranµ f , showing that for some ϵ > 0, |f(x)−z| ≥ ϵ for µ-a.e. x. The function
x 7→ (f(x) − z)−1 is therefore in L∞(Rd, µ). As a result, the multiplication operator M1/(f−z) is
bounded on L2(Rd, µ), and one easily checks that it is the inverse of the operator (Mf − z).
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On the other hand, let z ∈ ess-ranµ f . For any m ∈ N denote

S̃m
def
=
{
x ∈ Rd : |f(x)− z| < 2−m

}
and choose a subset Sm ⊂ S̃m of strictly positive but finite measure. If ϕm is the characteristic
function of Sm, one has

(4.2.7)
∥∥(Mf − z)ϕm

∥∥2 = ∫
Sm

∣∣f(x)− z∣∣2∣∣ϕm(x)∣∣2 dµ(x) ≤ 2−2m
∥∥ϕm∥∥2 .

The vector ϕm is a quasimode of Mf , of quasi-eigenvalue z and error 2−m. Since the error can be
chosen arbitrary small, the operator (Mf − z) cannot be inverted with bounded inverse. Indeed, if
this were the case, there would be some C > 0 such that

∀m ≥ 1, ∥ϕm∥ = ∥(Mf − z)−1(Mf − z)ϕm∥ ≤ C∥(Mf − z)ϕm∥ .

For m large enough, these inequalities contradict the ones above. This shows the statement on
specMf .

To prove the assertion on the point spectrum, we remark that the condition z ∈ specpMf is
equivalent to the existence of ϕ ∈ L2(Rd, µ) such that

(
f(x) − z

)
ϕ(x) = 0 for µ-a.e. x. This

means that ϕ(x) = 0 for µ-a.e. x in {f(x) ̸= z}. If we further assume hat {x ; f(x) = z} is
negligible, then we would have ϕ(x) = 0 for µ-a.e. x, or ϕ = 0 in L2(µ), so ϕ cannot be an
eigenstate. We deduce that µ(f−1(z)) = 0 implies that z ̸∈ specp(Mf ).

On the opposite, if µ(f−1(z)) > 0, one can choose a measurable subset Σ ⊂ {x : f(x) = z} of
strictly positive but finite measure. The function ϕ = 1lΣ is then an element of L2(Rd), and it is an
eigenfunction of Mf with eigenvalue z.

We notice that the above example is already nontrivial when the function f ∈ L∞(Rd, µ), and the
operatorMf : L

2(Rd, µ)→ L2(Rd, µ) is bounded.

Exercise 4.2.15 If µ is the Lebesgue measure and f ∈ C(Rd,C), then its essential range coincides
with the closure of its range.
But if (xn ∈ Rd)n∈S is a finite or countable family with no accumulation point, and µ =

∑
n∈S δxn ,

then ess-ranµ f =
∪
n∈S{f(xn)}.

In the Hilbert space context, an important property of the spectrum of an operator (T,D(T )) is its
invariance through unitary conjugacy.

Proposition 4.2.16 (Spectrum and unitary conjugacy) Let two operators (A,D(A)) and
(B,D(B)) defined on a Hilbert space H be unitarily conjugate: there exists a unitary opera-
tor U : H → H such that D(B) = UD(A) and A = U∗BU .

Then specA = specB and specpA = specpB.
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Proof.— See Exercise 4.3.7.

Let us make use of this unitary invariance of the spectrum, to analyze our old friend, the free laplacian
on Rd.

Example 4.2.17 Let T = T1 be the (positive) free Laplacian on Rd (see Definition 2.2.12). As
seen above, through the Fourier transform on L2(Rd), T is unitarily equivalent to the multiplication
operator by the function f(ξ) = |ξ|2. By Propositions 4.2.14 and 4.2.16, we find specT1 = [0,+∞)
and specp T1 = ∅.

An interesting example of space L2(R, µ) is the case of the discrete measure µ =
∑

n∈Z δn. This
space is equivalent with the Hilbert space ℓ2(Z).

Example 4.2.18 (Discrete multiplication operator) Take H = ℓ2(Z). Consider an arbitrary
function a : Z→ C, n 7→ an, and the associated multiplication operator Ma:

D(Ma) =
{
(un) ∈ ℓ2(Z) : (anun) ∈ ℓ2(Z)

}
, (Mau)n = anun.

Similarly to Example 2.1.8, one can show that Ma is a closed operator. Applying the rule of
Example 4.2.14, we may extend the function a to all of R (ex. by ã(x) = 0 for x ̸∈ Z), and then
view Ma as the multiplication operator Mã by this function ã : R → C. Because ess-ranµ(ã) =

{an : n ∈ Z}, while ã−1(z) has positive measure only if z = an for some n ∈ Z, we then find that
specMa = specMã = ess-ranµ(ã) = {an : n ∈ Z}, specpMa = {an : n ∈ Z}.

For each value an0 , set Λ(an0) = {m ∈ Z : am = an0}. The eigenspace associated with the
eigenvalue an0 is easy to describe:

Ker(Ma − an0) = span
{
δm : m ∈ Λ(an0)

}
,

where the vector (δm)n = δmn (Kronecker symbol).

Example 4.2.19 (Harmonic oscillator) Let H = L2(R). Consider the operator T0 = −d2/dx2 +
x2 defined on the Schwartz space S(R). We see that this operator is semibounded from below
and denote by T its Friedrichs extension. The operator (T,D(T )) is called the quantum harmonic
oscillator; it is one of the basic operators appearing in quantum mechanics.

One can easily see that the numbers λn = 2n−1 are eigenvalues of T0, n ∈ N∗, and the associated
eigenfunctions ϕn are given by

ϕ1(x) = c1 exp(−x2/2), ϕn(x) = cn(−d/dx+ x)n−1ϕ1(x), n ≥ 2 ,

where cn are normalization constants. It is known that the functions (ϕn) (called Hermite functions)
form an orthonormal basis in L2(R). We remark that ϕn ∈ D(T0) for all n, hence, T0 is essentially
self-adjoint (see Exercise 2.3.1c). This means, in particular, that T = T0.

Furthermore, using the unitary map U : L2(R) → ℓ2(N), Uf(n) = ⟨ϕn, f⟩, one easily checks
that the operator T is unitarily equivalent to the operator of multiplication by (λn) in ℓ2(N), cf.
Example 4.2.18, which gives

specT = specp T = {2n− 1 : n ∈ N∗}.

Hence, for this operator, the spectrum is only composed of the point spectrum.
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Example 4.2.20 (A finite-difference operator) Consider again the Hilbert space H = ℓ2(Z) and
the operator T in H acting as (Tu)n = un−1 + un+1. Clearly, T ∈ L(H). To find its spectrum, we
consider the map

Φ : ℓ2(Z)→ L2([0, 1[, dx), (Φu)(x) =
∑
n∈Z

une
2πinx,

where the sum on the right-hand side should be understood as a series in L2. Φ is is the inverse
of the Fourier series expansion of a function in L2([0, 1[). From Plancherel’s identity, this map is
unitary. On the other hand, for any u ∈ ℓ2(Z) supported at a finite number of points we have

Φ(Tu)(x) =
∑
n

(Tu)n e
2πinx

=
∑
n

un−1 e
2πinx +

∑
n

un+1 e
2πinx

=
∑
n

un e
2πi(n+1)x +

∑
n

un e
2πi(n−1)x

= e2πix
∑
n

un e
2πinx + e−2πix

∑
n

une
2πinx

= 2 cos(2πx)(Φu)(x).

This shows that the operator ΦTΦ∗ is exactly the multiplication by f(x) = 2 cos(2πx) on the space
L2([0, 1[); its spectrum coincides with the segment [−2, 2], i.e. with the essential range of f . So
we have specT = [−2, 2] and specp T = ∅.

Notice that, by using the same unitary transformation, one shows that the shift operator (Su)n = un+1

on ℓ2(Z) is conjugate to the multiplication by e2iπx on L2([0, 1[, dx). We thus easily recover that
spec(S) = {e2iπx , x ∈ [0, 1[}, with no point spectrum.

The next example shows that, as opposed to the case of bounded operators, nontrivial unbounded
operators may have an empty spectrum.

Example 4.2.21 (Empty spectrum) Take H = L2([0, 1], dx) and consider the operator T defined
on the domain D(T ) =

{
f ∈ H1(0, 1) : f(0) = 0

}
, acting as Tf = f ′. One can easily see that for

any g ∈ L2(0, 1) and any z ∈ C the equation (T − z)f = g admits the unique solution in D(T ),
given by

f(x) =

∫ x

0

ez(x−t)g(t) dt, ∀x ∈ [0, 1[.

This shows that (T − z) : D(T ) → H is a bijection, and one easily checks that this inverse map
(T − z)−1 : g ∈ H 7→ f ∈ H is a bounded operator on H. So we have obtained resT = C and
thus specT = ∅.

Example 4.2.22 (Empty resolvent set) Let us modify the previous example. TakeH = L2([0, 1], dx)
and consider the operator T acting as Tf = f ′ on the domain D(T ) = H1([0, 1]). Now, for any
z ∈ C we see that the function ϕz(x) = ezx belongs to D(T ) and satisfies (T−z)ϕz = 0. Therefore,
specp T = specT = C.
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As we can see in the two last examples, for general operators one cannot say much on the location
of the spectrum. In what follows we will study mostly self-adjoint operators on a Hilbert space H,
whose spectral theory is much better understood than in the nonselfadjoint case.

4.3 Basic facts on the spectra of self-adjoint operators

In this section we will “prepare the ground” for the spectral theorem of selfadjoint operators, and the
associated functional calculus. The following two propositions will be of importance during the whole
course.

Proposition 4.3.1 Let T be a closable operator acting on a Hilbert space H, and z ∈ C. Then

Ker(T ∗ − z̄) = Ran(T − z)⊥,(4.3.8)

Ran(T − z) = Ker(T ∗ − z̄)⊥.(4.3.9)

Proof.— Note that the second equality can be obtained from the first one by taking the orthogonal
complement in the both parts. Let us prove the first equality. Since D(T ) is dense, the condition
f ∈ Ker(T ∗ − z̄) is equivalent to ⟨(T ∗ − z̄)f, g⟩ = 0 for all g ∈ D(T ), which can be also rewritten as

⟨T ∗f, g⟩ = z⟨f, g⟩ for all g ∈ D(T ).

By the definition of T ∗, one has ⟨T ∗f, g⟩ = ⟨f, Tg⟩ and

⟨f, Tg⟩ − z⟨f, g⟩ ≡ ⟨f, (T − z)g⟩ = 0 for all g ∈ D(T ),

i.e. f ⊥ Ran(T − z), using the density of D(T ).

Proposition 4.3.2 (The spectrum of a selfadjoint operator is real) Let T be a selfadjoint op-
erator in a Hilbert space H, then specT ⊂ R, and for any z ∈ C \ R, the norm of the resolvent
is bounded by:

(4.3.10)
∥∥(T − z)−1

∥∥ ≤ 1

| Im z|
.

Proof.— Let z ∈ C \ R and u ∈ D(T ). We have

⟨u, (T − z)u⟩ = ⟨u, Tu⟩ − Re z⟨u, u⟩ − i Im z⟨u, u⟩.

Since T is self-adjoint, the number ⟨u, Tu⟩ is real. Therefore,

| Im z|∥u∥2 ≤
∣∣⟨u, (T − z)u⟩∣∣ ≤ ∥∥(T − z)u∥∥ · ∥u∥,
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which shows that

(4.3.11)
∥∥(T − z)u∥∥ ≥ | Im z| · ∥u∥.

It follows from here that Ran(T − z) is closed, that Ker(T − z) = {0} and, by proposition 4.3.1, than
Ran(T − z) = H. Therefore, (T − z)−1 ∈ L(H), and the estimate (4.3.10) follows from (4.3.11).

We have already mentioned that the spectral radius of a bounded selfadjoint operator is equal to
r(T ) = ∥T∥. Since the spectrum is real, the spectral radius corresponds to max(|min spec(T )|,max spec(T )),
so spec(T ) ⊂ [−∥T∥, ∥T∥], and at least one of the boundaries of the interval belong to the spectrum.
We can be a bit more precise:

Proposition 4.3.3 (Location of the spectrum of self-adjoint operators) Let T ∈ L(H) be
selfadjoint. Denote

m = m(T ) = inf
u̸=0

⟨u, Tu⟩
⟨u, u⟩

, M =M(T ) = sup
u̸=0

⟨u, Tu⟩
⟨u, u⟩

,

then specT ⊂ [m,M ] and {m,M} ⊂ specT . We also have ∥T∥ = max(|m|, |M |).

Proof.— We already proved that specT ⊂ R. For λ ∈]M,+∞[ we have∣∣⟨u, (λ− T )u⟩∣∣ ≥ (λ−M)∥u∥2,

so by the Lax-Milgram theorem, (T − λ)−1 ∈ L(H) . In the same way one shows that specT ∩
(−∞,m) = ∅.

Let us show thatM ∈ specT (form the proof is similar). The quadratic form (u, v) 7→ ⟨u, (M−T )v⟩
is nonnegative, it is called a semi-scalar product, and satisfies as well a Cauchy-Schwarz inequality:∣∣⟨u, (M − T )v⟩∣∣2 ≤ ⟨u, (M − T )u⟩ · ⟨v, (M − T )v⟩.
Taking the supremum over all u ∈ H with ∥u∥ ≤ 1 we obtain∥∥(M − T )v∥∥ ≤ ∥M − T∥ · ⟨v, (M − T )v⟩.
By assumption, one can construct a sequence (vn) with ∥vn∥ = 1 such that ⟨vn, T vn⟩ → M as
n→∞. By the above inequality we have then (M −T )vn → 0, so the operatorM −T cannot have
bounded inverse. ThusM ∈ specT .

Corollary 4.3.4 If T = T ∗ ∈ L(H) and specT = {0}, then T = 0.

Proof.— By proposition 4.3.3 we have m(T ) = M(T ) = 0. This means that ⟨u, Tu⟩ = 0 for all
u ∈ H, and by polarization, ⟨u, Tv⟩ = 0 for all u, v ∈ H.
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Notice that the conclusion does not apply for a general bounded operator (think of a nilpotent finite
rank operator).

Let us combine all of the above to show the following

Theorem 4.3.5 (Non-emptiness of spectrum) The spectrum of a selfadjoint operator
(T,D(T )) on a Hilbert space H is a non-empty closed subset of the real line.

Proof.— In view of the preceding discussion, it remains to show the non-emptyness of the spectrum.
Let T be a self-adjoint operator in a Hilbert space H. By contradiction, assume that specT = ∅.
Then, first of all, T−1 ∈ L(H). Let z ∈ C \ {0}. One can easily show that the operator

Lz
def
= −T

z

(
T − 1

z

)−1

≡ −1

z
− 1

z2

(
T − 1

z

)−1

belongs to L(H), and that (T−1− z)Lz = Lz(T
−1− z) = IH. Therefore, z ∈ res(T−1). Since z was

an arbitrary non-zero complex number, we have spec(T−1) ⊂ {0}. Since T−1 is bounded, Prop. 4.2.1
shows that its spectrum is non-empty, hence we must have specT−1 = {0}. On the other hand, T−1

is selfadjoint by Proposition 2.2.15, so Corollary 4.3.4 imposes that T−1 = 0, which contradicts the
definition of the inverse operator.

4.3.1 Exercises

Exercise 4.3.6 [Jordan block of an isolated eigenvalue] Let T ∈ L(B), and let z1 be one isolated
eigenvalue of finite multiplicity, so that for r > 0 small enough, spec(T ) ∩ {|z − z1| ≤ r} = {z1}.

i) show that
Π

def
=

1

2iπ

∮
|z−z1|=r

(z − T )−1 dz

is a projector, namely it satisfies Π2 = Π. For this, express Π2 by a double contour integral,
and use the resolvent identity.

ii) show that Π commutes with T , hence that T preserves V def
= Ran(Π). Show that

T Π = ΠT = ΠTΠ =
1

2iπ

∮
|z−z1|=r

(z − T )−1 z dz

iii) We call the finite rank operator T1 = ΠTΠ. Show that for any z ∈ res(T ), the resolvent
satisfies

(z − T )−1Π = (z − T1)−1Π .

Deduce that the spectrum of T1 in {0 ≤ |z| < r} reduces to {zi}, and therefore that T1 takes
the form T1 = z1IV +J , where J : V → V is nilpotent of order ≤ D (that is, JD = 0), where
D = dimV .
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iv) Compute T n1 for any n ≥ 1.

Exercise 4.3.7 i) Let two operators A and B be unitarily equivalent (see Exercise 2.3.1). Show
that the specA = specB and specpA = specpB.

ii) Let µ ∈ resA ∩ resB. Show that A and B are unitarily equivalent iff their resolvents RA(µ)
and RB(µ) are unitarily equivalent.

iii) Let A be a closed operator. Show that specA∗ = {z : z ∈ specA} and that the resolvent
identity RA(z)

∗ = RA∗(z) holds for any z ∈ resA.

iv) Let k ∈ L1(R). Consider on L2(R) the operator A, Af(x) =
∫
R k(x− y)f(y) dy. Show: (i)

the operator A is well-defined and bounded, (ii) the spectrum of A is a connected set.

Exercise 4.3.8 i) Let Ω ⊂ Rn be a non-empty open set and let L : Ω→M2(C) be a continuous
matrix valued function such that L(x)∗ = L(x) for all x ∈ Ω. Define an operator A in
H = L2(Ω,C2) by

Af(x) = L(x)f(x), D(A) =
{
f ∈ H :

∫
Ω

∥L(x)f(x)∥2C2dx < +∞
}
.

Show that A is self-adjoint and explain how to calculate its spectrum using the eigenvalues
of L(x).

Hint: For each x ∈ Ω, let ξ1(x) and ξ2(x) be suitably chosen eigenvectors of L(x) forming
an orthonormal basis of C2. Consider the map

U : H → H, Uf(x) =

(⟨
ξ1(x), f(x)

⟩
C2⟨

ξ2(x), f(x)
⟩
C2

)

and the operator M = UAU∗.

ii) In H = ℓ2(Z) consider the operator T given by

Tf(n) = f(n− 1) + f(n+ 1) + V (n)f(n), V (n) =

{
4 if n is even,
−2 if n is odd.

Calculate its spectrum.

Hint: Consider the operators

U : l2(Z)→ l2(Z,C2), Uf(n) :=

(
f(2n)

f(2n+ 1)

)
, n ∈ Z,

F : ℓ2(Z,C2)→ L2
(
(0, 1),C2

)
, (Ff)(θ) =

∑
n∈Z

f(n)e2πinθ.

Write explicit expressions for the operators S := UTU∗ and Ŝ := FSF ∗ and use the item i).
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Exercise 4.3.9 On H, let A be a semibounded from below selfadjoint operator. Show:

i) inf specA = inf
x∈D(A)
x ̸=0

⟨x,Ax⟩
⟨x, x⟩

.

ii) inf specA = inf
x∈Q(A)
x ̸=0

⟨x,Ax⟩
⟨x, x⟩

, where Q(A) is the form domain of A.
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Chapter 5

Spectral theory of compact operators

5.1 Fredholm’s alternative and spectra of compact operators

5.1.1 Definitions and elementary properties

It is assumed that the the reader already has some knowledge of compact operators. We recall briefly
the key points. Recall first that any Hilbert space is locally compact in the weak topology:

Proposition 5.1.1 Let H be a Hilbert space. Then:
i) Any bounded sequence (un)n∈N in H contains a weakly convergent subsequence: one can
extract a subsequence (unk

)k≥1 converging weakly to some u ∈ H, that is such that

∀v ∈ H, ⟨v, unk
⟩ k→∞→ ⟨v, u⟩ .

ii) Conversely, any weakly converging subsequence is necessarily bounded.

Before introducing the concept of compact operator, let us recall Riesz’s theorem:

Theorem 5.1.2 (Riesz’s theorem) In a Banach space B, for V ⊂ B a subspace, the intersec-
tion V ∩BB(0, 1) is compact iff V is finite dimensional.

We now recall the definition of compact operators.
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Definition 5.1.3 A linear operator T : B1 → B2 is called compact, if the image of the unit ball
in B1 is relatively compact in B2. In particular, T is continuous.

We denote by K(B1,B2) the subspace of L(B1,B2) formed by the compact operators.

As a first property of compact operators, we check that limits of compact operators are compact.

Proposition 5.1.4 The space K(B1,B2) is closed in L(B1,B2).

Proof.— Assume that (Tj)j≥1 are a family of compact operators, and that ∥Tj−T∥L(B1,B2) → 0 when
j → ∞. Let us consider a sequence (un)n≥1 in the unit ball of B1. From the compactness of T1, we
can extract a subsequence (uφ1(k))k≥1 of (un) (that is, φ1 : N∗ → N∗ is strictly growing), such that
T1uφ1(k) admits a limit v1 ∈ B2 when k →∞.

Then, from the sequence (uφ1(k))k≥1 we can further extract a subsequence (uφ2(k))k≥1 such that
T2uφ2(k) converges to some v2 ∈ B2. And so on: for each j ≥ 2, there is a subsequence (uφj(k))k≥1

of (uφj−1(k))k≥1, such that Tjuφj(k) → vj.

What can we do with this “sequence of thinner and thinner sequences” (φj(k))k≥1? It does not make
sense to consider the limit j → ∞ of those sequences, because this limit could actually be empty.
Instead, we invoke a diagonal trick, that is define the “diagonal sequence”

φ̃(n)
def
= φn(n), n ≥ 1.

For each j ≥ 1, the integers (φ̃(n))n≥j are elements of the sequence (φj(k))k≥1, therefore

Tjuφ̃(n)
n→∞→ vj .

We now use the assumption ∥Tj − T∥ → 0, to show that

∥vj − vj′∥ = lim
n→∞

∥Tjuφ̃(n) − Tj′uφ̃(n)∥ ≤ C ∥Tj − Tj′∥,

where C is a global bound for the sequence (un). The above expression converges to zero when
j, j′ →∞, showing that the (vj) form a Cauchy sequence in B2, and thus converge to some v ∈ B2.
We easily check that the limit operator satisfies Tuφ̃(n) → v. Hence, we have extracted a subsequence
of (un), such that Tuφ̃(n) converges. This proves the compactness of T .

Below we will provide various characterizations of compact operators between Hilbert spaces. Those
characterizations (in particular i)) are also valid on certain types of Banach spaces, namely the ones
satisfying the Property of Approximation.
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Theorem 5.1.5 (Characterizations of a compact operator on a Hilbert space) Let H1,H2

be two Hilbert spaces, and let T : H1 → H2 be a continuous operator. Then the following
statements are equivalent:
i) There exists a sequence (Tn)n∈N of finite rank operators, such that ∥Tn − T∥L(H1,H2) → 0.
ii) T is compact.
iii) The image T (B(0, 1)) is compact.
iv) For any sequence (un)n in H1 which weakly converges to u ∈ H1, then (Tun)n strongly
converges to Tu in H2.
v) If (en)n∈N forms an orthonormal family in H1, then ∥Ten∥ → 0.

Proof.— i)→ ii): for any n ≥ 0, the image Tn(B(0, 1)) is contained in a ball in a finite dimensional
subspace, it is therefore precompact. This shows that each Tn is a compact operator. Prop. 5.1.4 then
ensures that the limit operator T is compact.

ii) → iii): Since B(0, 1) ⊂ B(0, 2), the image T (B(0, 1)) is precompact. There remains to show
that it is closed. Take a sequence (un)n≥1 in B(0, 1). From the compactness of T , we may extract a
subsequence (uφ0(k))k≥1 such that Tuφ0(k) → v ∈ H. On the other hand, from Prop. 5.1.1 we can
extract from the bounded sequence (uφ0(k))k≥1 a subsequence (uφ1(k))k≥1 which weakly converges

to some u ∈ B1; one easily checks that this weak limit u belongs to B(0, 1) as well:

∥u∥ ≥ ∥u∥ ∥uφ1(k)∥ ≥ |⟨u, uφ1(k)⟩| → ∥u∥2.

For any w ∈ H2, we have the limits:

⟨T ∗w, uφ1(k)⟩ → ⟨T ∗w, u⟩ = ⟨w, Tu⟩,
⟨w, Tuφ1(k)⟩ → ⟨w, v⟩ ,

which shows that v = Tu ∈ T (B(0, 1)). This image is therefore closed, hence compact.

iii)→ iv): without loss of generality, let us assume that a sequence (un)n ⊂ H1 weakly converges
to 0. From Prop. 5.1.1, the sequence (un)n is necessarily bounded: ∥un∥ ≤ C. The assumption tells
us that (Tun)n belongs to a compact set, hence it admits a limit point v ∈ H2, which can be reached
by extracting a subsequence (Tuφ(k))k. As a result, for any w ∈ H2,

⟨w, Tuφ(k)⟩ → ⟨w, v⟩, while ⟨T ∗w, uφ(k)⟩ → ⟨T ∗w, 0⟩ = 0 .

We deduce that v = 0 is the only limit point; this means that the full sequence (Tun)n converges to
0, as stated.

iv) → v): for any orthonormal family (en)n, one has en ⇀ 0, so the assumption iv) implies that
Ten → 0.

v)→ i): a natural guess would be to use the restricted operators T| span(e1,...,en) as approximants for
T . Yet, the assumption Ten → 0 is not sufficient to produce a direct bound on T| span(e1,...,en)⊥.
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We instead reason ab absurdo. Namely, we assume that there exists ϵ > 0 such that, for any finite
rank operator R, ∥T −R∥ ≥ ϵ. In particular, this implies ∥T∥ ≥ ϵ, so there exists a normalized state
e1 ∈ H1 such that ∥Te1∥ ≥ ϵ. Let us now iteratively construct an orthonormal family (e1, e2, . . .),
such that ∥Tej∥ ≥ ϵ for all ej; this will thus contradict the statement v).

Let us assume we have constructed (e1, . . . , en) with the above property Call Πn the orthogonal
projector on span(e1, . . . , en). Then ∥T − TΠn∥ ≥ ϵ implies the existence of u ̸= 0 such that

∥(T (I − Πn)u∥ ≥ ϵ∥u∥ ≥ ϵ∥(1− Πn)u∥,

where we used Pythagore’s theorem for the last inequality. We then define the normalized vector

en+1
def
=

(1− Πn)u

∥(1− Πn)u∥
,

it is orthogonal to e1, . . . , en, and satisfies ∥Ten+1∥ ≥ ϵ. This constructs our infinite family (e1, . . .),
and gives a contradiction with v).

Using the weak compactness property of Prop. 5.1.1, the statement iv) shows that T is compact iff
any bounded sequence (un) ⊂ H1 admits a subsequence (unk

) such that Tunk
converges (strongly)

in H2.

The statement i) induces the fact that if A ∈ L(B) is a continuous operator and B ∈ K(B) is a
compact one, then the products AB and BA are compact operators.

Examples of compact operators

On ℓ2(Z), consider the multiplication operator T =Mf by a function (fn)n∈Z such that fn → 0 when

|n| → ∞. We already know that ∥Mf∥ = maxn |fn|. Let us define TN
def
= TΠN , where ΠN is the

orthogonal projector on span(e−N , . . . , eN). We then check that

∥T − TN∥ = max
|n|>N

|fn|
N→∞→ 0,

so the criterium i) in Thm 5.1.5 shows that T is compact.

Through Fourier series, the multiplication by the function (fn
def
= 1

(1+|n|2)s )n∈Z, for some s > 0, is

unitary equivalent with the the operator (1 − ∆T)
−s/2, where ∆T is the Laplacian acting on L2(T),

with T = R/(2πZ) the 1-dimensional torus (equivalent with the unit circle). This shows that for any
s > 0, the operator (1−∆T)

−s/2 is compact on L2(T).

In the section 5.1.3 we will study various families of compact operators: Hilbert-Schmidt and trace-
class operators.

5.1.2 The Fredholm alternative

We now describe the spectral properties of a holomophic family of compact operators on a Hilbert
space. This is part of the analytic Fredholm theory.

Introduction to Spectral Theory, Fall 2022 Stéphane Nonnenmacher



CHAPTER 5. SPECTRAL THEORY OF COMPACT OPERATORS 65

Theorem 5.1.6 (Analytic Fredholm theorem) Let Ω ⊂ C a domain of the complex plane,
and

z ∈ Ω 7→ T (z) ∈ K(B)

a holomorphic family of compact operators. Then:
(a) either (I − T (z))−1 does not exist as bounded operator for any z ∈ Ω;
(b) or (I − T (z))−1 exists in L(B) for z ∈ Ω \ S, where S is a discrete set of Ω. (I − T (z))−1

is then a meromorphic operator valued function in Ω, and the residue on each pole zj is an
operator of finite rank. Besides, for each zj ∈ S there exists u ∈ B s.t. T (zj)u = u.

As an application, for T ∈ K(B) and z ∈ Ω = C∗, we take T (z) = 1
z
T . Since (I − z−1T ) can be

inverted for z large enough, we are necessarily in the second alternative.

Corollary 5.1.7 For T ∈ K(B) and z0 ∈ C∗, either (z0 − T ) : B → B is invertible with bounded
inverse, or Ker(z0 − T ) ̸= {0}, in which case this kernel has finite dimension.

Proof.— We will restrict here the proof to the Hilbert space setting, so that any compact operator T
can be approached by a family of finite rank operators, as shown in Thm 5.1.5.

The idea of the proof is to “project” the spectral problem on finite dimensional subspaces, using the
approximation of the compact operators by finite rank ones.

Let us assume that (I − T (z))−1 exists at z = z0 ∈ Ω. For a given ε > 0, the compact operator
T (z0) can be approximated by an operator TN of rank N: ∥T (z0)− TN∥ ≤ ε.

Besides, by continuity of z 7→ T (z), we know that for |z− z0| ≤ r small enough (in particular, such
that all such z lie in Ω), ∥T (z)− T (z0)∥ ≤ ε. As a result,

∀z ∈ D(z0, r), ∥T (z)− TN(z0)∥ ≤ 2ε .

By Neumann series, if we had chosen ε < 1/2, we can invert
(
I − (T (z)−TN)

)
in that disk, and call

its inverse
R(z)

def
=
(
I − (T (z)− TN)

)−1
, holomorphic in z ∈ D(z0, r) .

An easy factorization shows that

(I − T (z)) =
(
I − (T (z)− TN)

) (
I −R(z)TN

)
,

which shows hat (I − T (z)) is invertible iff
(
I −R(z)TN

)
is invertible, in which case we have

(I − T (z))−1 =
(
I −R(z)TN

)−1
R(z) .

We have replaced the question of the invertibility of (I − T (z)) by the invertibility of
(
I −R(z)TN

)
,

which is a finite rank perturbation of the identity, locally holomorphic in z. Let us show that this second
invertibility problem can be mapped to the one of some N ×N matrix.
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Since TN has rank N , there exists (ψ1, . . . , ψN) a basis for Ran(TN) and (ϕ1, . . . , ϕN) a basis for
Ker(TN)⊥ = Ran(T ∗

N), such that

TNu =
N∑
j=1

⟨ϕj, u⟩ψj .

Then the spectral equation (I − T (z))u = 0 is equivalent with
(
I − R(z)TN

)
u = 0, which can be

written:

u =
N∑
j=1

⟨ϕj, u⟩R(z)ψj .

If we write this vector as u =
∑

j αjR(z)ψj, the coefficients αj satisfy

∀j = 1, . . . , N, αj =
N∑
k=1

⟨ϕj, R(z)ψk⟩αk ,

or in matrix notation α⃗ =MN(z)α⃗, with the matrixMN(z) having entries ⟨ϕj, R(z)ψk⟩, which depend
holomophically on z.

We have transformed our spectral problem into the problem of inverting IN − MN(z); the non-
invertibility is equivalent with the determinantal equation

d(z)
def
= det(IN −MN(z)) = 0 .

The matrixMN(z) is sometimes called an effective Hamiltonian for the initial invertibility problem.

The function d(z) is holomorphic in Ω, so it is either vanishing everywhere, on only on a discrete set
S ⊂ Ω.

On a point such that d(z) = 0, the eigenvector α⃗ ∈ CN such that (IN −MN(z))α⃗ = 0 leads to an
eigenvector u ∈ B such that (I − T (z))u = 0.

On the opposite, if d(z) ̸= 0, for a given f ∈ B we may solve the equation (I − T (z))uz = f
by the noticing that uz also satisfies (I − R(z)TN)uz = R(z)f; the state R(z)TNuz belongs to
RanR(z)TN , so it can be decomposed in the basis (ψj(z) = R(z)ψj)j=1,...,N of that subspace: there

exists a z-dependent vector β⃗(z) = (β1, . . . , βN) s.t.

uz = R(z)f +
∑
j

βj(z)ψj(z) .

After a few computations we find that the vector β⃗(z) is unique, it is given by

β⃗(z) = (IN −MN(z))
−1
(
⟨ϕj, R(z)f⟩

)
.

Putting together these expressions, we obtain schematically:

(I − T (z))−1f = R(z)f +t(R(z)ψ⃗) (IN −MN(z))
−1⟨ϕ⃗, R(z)f⟩

This element is meromorphic in z, with poles of finite rank. Note that the residue at any pole z, is
independent of the integer N , as long as the latter is large enough.

The codimension of Ran(I − T (z)) in H is equal the codimension of Ran(IN −MN(z)) in CN .
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Proposition 5.1.8 Let T be a compact operator on a Hilbert space H.
Then Ran(I − T ) = Ker(I − T ∗)⊥ is closed, of finite codimension.

codim Ran(I − T ) = dimKer(I − T ∗) = dimKer(I − T ) .

These equalities indicate that (I − T ) is a Fredholm operator of index 0.

Proof.— Let us show that Ran(I−T ) is closed. Assume that for some sequence (un) in Ker(I−T )⊥,
we have

vn
def
= (I − T )un → v ∈ H.

We claim that there exists c > 0 such that

∀u ∈ Ker(I − T )⊥, ∥(I − T )u∥ ≥ c∥u∥.

Before proving this claim, let us use it. The limit (I−T )un → v implies that ((I−T )un)n is a Cauchy
sequence; the claim shows that (un)n is itself a Cauchy sequence, hence it converges to some u ∈ H.
The continuity of (I − T ) implies that (I − T )u = v, hence v ∈ Ran(I − T ), which shows that this
subspace is closed.

Let us now prove the claim, by reasoning ab absurdo. The inverse statement would imply the
existence of a sequence (un)n of normalized vectors in Ker(I − T )⊥, such that ∥(I − T )un∥ ≤ 1

n
.

Since the states are normalized, one can extract a weakly converging subsequence uφ(k) ⇀ u∞.
The compactness of T implies that Tuφ(k) → Tu∞. On the other hand, we have assumed that
un− Tun → 0, hence the sequence uφ(k) strongly converges to Tu∞. Since the strong limit must be
equal to the weak one, we deduce that Tu∞ = u∞. This shows that u∞ ∈ Ker(I − T ). On the other
hand, since uφ(k) ∈ Ker(I − T )⊥, we must have u∞ ∈ Ker(I − T )⊥ as well. In the end, we must
have u∞ = 0, which contradicts the normalization ∥un∥ = 1. This proves the claim.

We already know the general identity Ker(I − T ∗) = Ran(I − T )⊥. Taking the orthogonal spaces,
we get

Ker(I − T ∗)⊥ =
(
Ran(I − T )⊥

)⊥
= Ran(I − T ) = Ran(I − T ).

The statement on the dimensions directly follows from these identities.

In a sense, the Fredholm alternative shows that the operators (1 − T ), with T compact, behave
like operators on finite dimensional spaces. We know that a linear operator A on a finite dimensional
space is injective if and only if it is surjective, with dim Ker(A) = dimRan(A)⊥, and we see a similar
feature in the case of I − T . The Fredholm alternative also holds for compact operators between
Banach spaces, but we do not give the general proof in these notes.

Using this Fredholm alternative, we are now ready to describe the spectrum of a compact operator.

Theorem 5.1.9 (Spectrum of compact operator) Let H be an infinite-dimensional Hilbert
space and T ∈ K(H). Then
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(a) 0 ∈ specT ;

(b) specT \{0} is composed of at most countably eigenvalues of T ; each eigenvalue is isolated
from the rest of the spectrum, and of finite multiplicity: dimKer(T − λj) < ∞, and the
dimensions of dimKer(T − λj)n are finite, and saturate after a certain power nj.

(c) If we order the eigenvalues by decreasing moduli |λ1| ≥ |λ2| ≥ · · · , we are in one and
only one of the following situations:

– specT \ {0} = ∅,
– specT \ {0} is a finite set of eigenvalues λ1, . . . , λN ,
– specT \ {0} is an infinite sequence (λn)n≥1 converging to 0.

These properties can be summarized by the fact that specT \{0} is composed of discrete
spectrum.

(d) On the opposite, {0} makes up the essential spectrum of T .

Proof.— (a) Assume that 0 /∈ specT , then T−1 ∈ L(H), and the operator I = T−1T is compact.
This is possible only if H is finite-dimensional.

(b) If λ ̸= 0 we have T−λ = −λ(1−T/λ), and by the Fredholm alternative the condition λ ∈ specT
is equivalent to Ker(1 − T/λ) = Ker(T − λ) ̸= {0}. A value λ ̸= 0 satisfying this condition is thus
an eigenvalue, of finite multiplicity, and it is isolated from the rest of the spectrum. This isolation
property implies that the nontrivial spectrum is at most countable: indeed, this isolation shows that
any annulus { 1

n+1
< |z| ≤ 1

n
} contains at most finitely eigenvalue.

The point (c) is just a more detailed version of (b).

(d) if T has no or finitely many nonzero eigenvalues, 0 is an isolated spectral point, but it cannot
be a finite multiplicity eigenvalue. Indeed, the sum of all the generalized eigenspaces associated with
the λj ̸= 0 and with λN+1 = 0 would be finite dimensional.

Let us now specifically study the spectra of compact selfadjoint operators.

Theorem 5.1.10 (Spectrum of compact self-adjoint operator) Let T = T ∗ ∈ K(H), then
one can construct an orthonormal basis consisting of eigenvectors of T , and the corresponding
eigenvalues form a real sequence converging to 0.

Proof.— Let (λn)n≥1 be the distinct nonzero eigenvalues of T , ordered by decreasing moduli; this
set can be empty, finite or infinite countable. Since T is self-adjoint, these eigenvalues are real. For
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n ≥ 1, denote En
def
= Ker(T − λn) the corresponding finite dimensional eigenspace. We also call

E0
def
= Ker(T ), which can be trivial, finite dimensional or infinite dimensional. Due to selfadjointness,

one can easily see that En⊥Em for any pair n ̸= m. Denote by F the linear hull of ∪n≥0En. We are
going to show that F is dense in H, equivalently that F⊥ = {0}.

Clearly, we have T (F ) ⊂ F . Due to the selfadjointness of T we also have T (F⊥) ⊂ F⊥. Denote by
T̃ the restriction of T to F⊥; then T̃ is compact, self-adjoint, and its spectrum equals {0}, so T̃ = 0.
But this means that F⊥ ⊂ KerT = E0 ⊂ F which shows that F⊥ = {0}.

Taking an orthonormal basis in each subspace (En)n≥0, we obtain an orthonormal basis in the whole
space H. We may relabel the nonzero eigenvalues by (µk)k≥1, with repetitions according to the
multiplicities, and corresponding eigenstates ϕk. The operator T can then be represented by:

(5.1.1) T =
∑
k≥1

µk⟨ϕk, ·⟩ϕk .

This expansion is called the spectral decomposition of T . Notice that the sum may be empty, finite or
countable, and that the basis states in KerT do not contribute.

Let us finish this section by defining the singular values of a general compact operator.

Theorem 5.1.11 For any operator T ∈ K(H), there exist two orthonormal bases (ϕj)j≥1 and
(ψj)j≥1, and a decreasing sequence of positive numbers (sj)j≥1, converging to zero, such that

(5.1.2) T =
∑
j≥1

sj⟨ϕj, ·⟩ψj .

The (sj)j≥1 are called the singular values of the operator T .

The above representation, valid for any compact operator, is in general different from the represen-
tation (5.1.1) for selfadjoint compact operators. The two coincide only when T is positive.

Proof.— The operator T ∗T is compact, selfadjoint and positive, so its spectral decomposition can be
written:

N∑
k=1

s2k⟨ϕk, ·⟩ϕk ,

simply by defining sk =
√
µk > 0. Here N is either finite or infinite, according to the number

of nonzero eigenvalues. The (ϕk)k=1,...,N generate the sum of eigenspaces associated with nonzero
eigenvalues. If necessary, wemay then append an orthonormal basis of KerT to obtain an orthonormal
basis (ϕj)k of H. We then also append the values sj = 0 associated with these completed vectors.

For each j = 1, . . . , N , we define ψ̃j = Tϕj, and normalize it into ψj =
ψ̃j

∥ψ̃j∥
=

ψ̃j

sj
. One easily

checks that (ψj)j=1,...,N forms an orthonormal family, which can be completed by and orthonormal
basis of Ran(T )⊥ = Ker(T ∗) if necessary, to obtain an o.n.b. of all H.
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One then easily checks that the action of T on the o.n.b. (ϕj)k corresponds to the expansion (5.1.2).

5.1.3 Hilbert-Schmidt operators, as examples of compact operators

Integral operators

An important class of compact operators is composed of integral operators, that is operators defined
by an integral Schwartz kernel enjoying certain properties. For simplicity we restrict our attention to
the case H = L2(Ω), where Ω ⊂ Rd is an open set.

Let K ∈ L1
loc(Ω × Ω). We consider the operator TK acting on bounded functions with compact

support u ∈ L∞
comp(Ω) as follows:

(5.1.3) TKu(x) =

∫
Ω

K(x, y)u(y) dy .

We would first like to find conditions under which the expression (5.1.3) defines a bounded operator
on H = L2(Ω). A standard result in this direction is provided by the following important theorem.

Theorem 5.1.12 (Schur’s test) Assume that

M1 = ess− sup
x∈Ω

∫
Ω

∣∣K(x, y)
∣∣dy <∞ and M2 = ess− sup

y∈Ω

∫
Ω

∣∣K(x, y)
∣∣dx <∞.

Then the operator defined by (5.1.3) extends to a continuous linear operator TK : L2 → L2,
and its norm satisfies the bound

∥TK∥L(L2) ≤
√
M1M2 .

Proof.— We have

|TKu(x)|2 ≤
(∫

Ω

√
|K(x, y)|

√
|K(x, y)| |u(y)| dy

)2
C−S
≤
∫
Ω

|K(x, y)| dy
∫
Ω

|K(x, y)| · |u(y)|2 dy

x−a.e.
≤ M1

∫
Ω

|K(x, y)| · |u(y)|2 dy.

integrating over x, we get ∥TKu∥2 ≤M1

∫
Ω

∫
Ω

∣∣K(x, y)
∣∣|u(y)|2 dy dx Fubini

≤ M1M2∥u∥2.
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Proposition 5.1.13 Another class of integral operators are bounded, namely those such that
K ∈ L2(Ω× Ω). One indeed has the bound

∥TK∥ ≤ ∥K∥L2(Ω×Ω) .

Proof.— For any u ∈ L2(Ω), we find

|TKu(x)|2 =
∣∣∣ ∫ K(x, y)u(y) dy

∣∣∣2
C−S
≤
∫
|K(x, y)|2 dy

∫
|u(y)|2 dy

=⇒ ∥TKu∥2 ≤
∫∫
|K(x, y)|2 dy dy ∥u∥2 = ∥K∥2L2 ∥u∥2

The next section will show that the operators associated with such L2 kernels form an important
class of compact operators.

Hilbert-Schmidt operators

To obtain a class of compact integral operators we introduce the following class of operators.

Definition 5.1.14 An operator T ∈ L(H) is said to be Hilbert-Schmidt if, for some orthonormal
basis (en)n≥1 of H the sum

(5.1.4) ∥T∥22
def
==

∑
n≥1

∥Ten∥2 is finite.

For any two Hilbert-Schmidt operators T, T ′, one defines their Hilbert-Schmidt scalar product
as follows:

⟨T, T ′⟩HS =
∑
n≥1

⟨en, T ∗T ′en .

(the Cauchy-Schwartz inequality ensures that the sum converges). One obviously has
⟨T, T ⟩HS = ∥T∥22. This explains why ∥T∥2 is called the Hilbert-Schmidt norm of T .

This definition could let believe that the choice of o.n.b. (en) matters. This is fortunately not the
case.
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Proposition 5.1.15 (Hilbert-Schmidt norm) For a Hilbert-Schmidt operator T , the quantity
∥T∥2 does not depend on the choice of the basis (en)n.

In particular, another characterization of Hilbert-Schmidt operators consists in the following
property of its singular values:

(5.1.5)
∑
j≥1

s2j <∞ .

The operator norm satisfies

(5.1.6) ∥T∥ ≤ ∥T∥2.

Moreover, the adjoint operator T ∗ is also Hilbert-Schmidt with ∥T ∗∥2 = ∥T∥2.

Proof.— Let (en)n and (fm)m be two orthonormal bases. Using the resolution of identity associated
with these two bases, we get∑

n

∥Ten∥2 =
∑
n

(∑
m

∣∣⟨fm, T en⟩∣∣2) =∑
m

(∑
m

∣∣⟨T ∗fm, en⟩
∣∣2) =∑

m

∥T ∗fm∥2.

Note that the two sums could be switched since all terms are positive.

This equality shows that the expression (5.1.4) is independent of the choice of the basis. It also
shows that that ∥T ∗∥2 = ∥T∥2. If we take for basis (en) the basis (ϕj) associated with the singular
value decomposition (5.1.2), we see that

∥T∥22 =
∑
j≥1

s2j .

To show ∥T∥ ≤ ∥T∥2, choose some o.n.b. (en)n, and for any u ∈ H, call the coefficients un = ⟨en, u⟩.

∥Tu∥2 =
∥∥∥∑

n

unTen

∥∥∥2 ≤ (∑
n

|un| ∥Ten∥
)2 C−S
≤
∑
n

|un|2
∑
n

∥Ten∥2 = ∥T∥22 ∥u∥2.

Due to the characterization (5.1.5) in terms of singular values, the space of Hilbert-Schmidt operators
is often denoted by S2(H), the second Schatten class of the Hilbert spaceH. This class forms a Hilbert
space, when equipped with the H-S scalar product.

Remark 5.1.16 The compact operators T satisfying the property∑
j

sj <∞

are also interesting. They are called trace class operators, and form the first Schatten class S1(H).
We will not study them any further in these notes, but only mention that this class of operators
admit a trace linear functional, which is defined, for any given o.n.b. (en)n, by

trT =
∑
n

⟨en, T en⟩ .
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This trace extends the usual trace functional of finite rank operators.
These operators can be equipped with a so-called trace norm, defined by:

∥T∥tr
def
=
∑
j

sj .

This trace norm is equal to the trace of the operator

|T | def=
√
T ∗T ,

where the square root of the positive operator T ∗T can be defined either by spectrally, replacing
the positive eigenvalues µk by their square roots sk =

√
µk.

The crucial property of Hilbert-Schmidt operators is their compactness.

Proposition 5.1.17 Any Hilbert-Schmidt operator is compact. In other words, the class S2(H) ⊂
K(H). Besides, finite rank operators are dense in the Hilbert space S2(H).

Proof.— Let us choose an o.n.b. (en). For any u ∈ H, we have the expansion

Tu =
∞∑
n=1

⟨en, u⟩Ten.

For N ≥ 1, let us define the truncated operators

TNu =
N∑
n=1

⟨en, u⟩Ten.

These operators are obviously of finite rank. Using the inequality (5.1.6), we find:

∥T − TN∥2 ≤ ∥T − TN∥22 =
∑

n≥N+1

∥Ten∥2
N→∞−−−→ 0.

This proves the compactness of T , norm-limit of the finite rank operators TN . Incidentally, we also
proved that TN converges to T in the H-S norm. Hence finite rank operators are dense in the Hilbert
space S2(H).

The following proposition gives a nice characterization of Hilbert-Schmidt operators as a particular
class of integral operators.

Proposition 5.1.18 (Integral Hilbert-Schmidt operators) Let H = L2(Ω). An operator T in
H is Hilbert-Schmidt iff there exists an integral kernel K ∈ L2(Ω × Ω) such that T = TK , cf.
Eq. (5.1.3).

In that case, we have the equality

∥TK∥2 = ∥K∥L2(Ω×Ω).
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We thus recover the norm inequality of Prop. 5.1.13.

Proof.— Let firstK ∈ L2(Ω×Ω). Let us show that the associated operator TK is Hilbert-Schmidt. Let
(en) be an orthonormal basis inH, then the functions em,n(x, y) = em(x)en(y) forms an orthonormal
basis in H⊗H∗ ≃ L2(Ω× Ω). Again, by expanding the identity in the o.n.b. (en), we find:∑

n≥1

∥TKen∥2 =
∑
m,n≥1

∣∣⟨em, TKen⟩∣∣2 = ∑
m,n≥1

∣∣∣ ∫
Ω

em(x)
(∫

Ω

K(x, y) en(y) dy
)
dx
∣∣∣2

=
∑
m,n≥1

∣∣∣ ∫
Ω

∫
Ω

em(x) en(y)K(x, y) dx dy
∣∣∣2 = ∑

m,n≥1

∣∣⟨em,n, K⟩∣∣2 = ∥K∥2L2(Ω×Ω).

Conversely, let T be a Hilbert-Schmidt operator on H. Let us choose an o.n.b. (en), and let us use
the same finite rank approximations TN of T as in the proof of Prop. 5.1.17. We have, for any u ∈ H
and with un = ⟨en, u⟩ as before:

TNu =
N∑
n=1

⟨en, u⟩Ten =
N∑
n=1

∑
m≥1

⟨en, u⟩ ⟨em, T en⟩ em.

If we take

KN(x, y)
def
=

N∑
n=1

∑
m≥1

en(y) ⟨em, T en⟩ em(x) =
N∑
n=1

∑
m≥1

⟨em, T en⟩ em,n(x, y),

we see that TNu(x) =
∫
KN(x, y)u(u) dy, which shows that TN is equal to the integral operator

TKN
. In turn, the kernel KN belongs to L2(Ω× Ω):∫

|KN(x, y)|2 dx dy =

∫ ∣∣∣ N∑
n=1

∑
m≥1

⟨em, T en⟩ em,n(x, y)
∣∣∣2 dx dy

=
N∑

n,n′=1

∑
m,m′≥1

⟨em,n, em′,n′⟩L2(Ω×Ω ⟨em, T en⟩ ⟨em′ , T en′⟩

=
N∑
n=1

∑
m≥1

|⟨em, T en⟩|2

=
N∑
n=1

∥Ten∥2 = ∥TN∥22 .

The proof of Prop. 5.1.17 actually shows that ∥TN −T∥2 → 0. Hence, the kernelsKN form a Cauchy
sequence in L2(Ω× Ω), which converge to a kernel K, and we have T = TK .

We have thus obtained a unitary equivalence between S2(H) (equipped with the H-S scalar product)
and L2(Ω× Ω).

One can easily see that the operator TK is self-adjoint iffK(x, y) = K(y, x) for a.e. (x, y) ∈ Ω×Ω.
The characterization of H-S operators from their integral kernel (Proposition 5.1.18) often allows to
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identify the H-S property rather easily. For this reason, it is often easier to prove that an operator is
H-S, rather than trying to directly prove that it is compact.

If we now focus on self-adjoint compact operators, we see that a compact self-adjoint operator T is
H-S iff its nonzero eigenvalues (µk) (counted with multiplicities) satisfy∑

k≥1

µ2
k = ∥T∥22 <∞ .

Moreover, by Proposition 5.1.18, for T = TK one has the exact equality (trace formula)∑
k≥1

µ2
k = ∥K∥2L2(Ω×Ω).

This expression may be used to estimate properties of the eigenvalues from the integral kernel.

5.1.4 Unbounded operators with compact resolvent

Now that we have analyzed the spectral properties of compact operators, we will apply these results
to a particular family of operators, namely the resolvents of certain unbounded selfadjoint operators
on a Hilbert space H.

Proposition 5.1.19 Assume that (T,D(T )) is selfadjoint on H, and that for some z0 ∈ res(T ),
the resolvent (T − z0)−1 is a compact operator.

Then the spectrum of T is purely discrete, it consists in isolated eigenvalues (λn)n≥1 of finite
multiplicities, with |λn| → ∞, associated with an orthonormal basis (ϕn)n. Here the eigenvalues
λn are not necessarily distinct from one another, each value appears as often as its multiplicity.

Such a (T,D(T )) is said to be an operator of compact resolvent.

Proof.— Through the resolvent identity, the compactness of (T − z0)−1 implies the compactness of
all resolvents (T − z)−1, z ∈ res(T ). We claim that this compactness implies that res(T ) ∩ R ̸= ∅.
This will be shown later through the spectral theorem, see Example 6.3.14 below. Let us admit
this fact for now: we may then assume that z0 ∈ R ∩ res(T ). In this case, the resolvent (T −
z0)

−1 is compact and selfadjoint, it admits discrete nonzero eigenvalues (µn)n≥1, associated with an
orthonormal family (ϕn). I claim that Ker(T − z0)

−1 = {0}: indeed, the existence of a nontrivial
eigenstate (T − z0)−1ϕ0 = 0 would imply

0 = (T − z0)(T − z0)−1ϕ0 = ϕ0 ,

hence a contradiction. This implies that the family (ϕn)n≥1 generates allH, in particular the sequence
of nonzero eigenvalues (µn)n≥1 is infinite, and converges to 0.

For any such eigenvalue, we have

(T − z0)−1ϕn = µn ϕn

=⇒ ϕn = µn (T − z0)ϕn
=⇒ Tϕn = (z0 + µ−1

n )ϕn .
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The o.n.b. (ϕn) thus forms a basis of eigenstates of T , associated with the eigenvalues λn = (z0+µ
−1
n )

(counted with multiplicities). Since µn → 0, the eigenvalues of T satisfy |λn| → ∞. In particular,
they have no accumulation point. The full spectrum of T is thus discrete.

For an example of such operators, we come back to the construction of selfadjoint operators associ-
ated with closed quadratic forms, see Section 3.

We recall the Theorem 3.1.5 and the more particular Prop. 3.1.7, which start from a symmetric
(resp. closed) quadratic form q, such that the form domain D(q) = V is complete w.r.t. the form
norm ∥ · ∥q = ∥ · ∥V , and construct from there a selfadjoint (resp. selfadjoint and bounded below)
operator T,D(T ).

The proof of Theorem 3.1.5 starts from Thm 3.1.4, which describes properties of the operator T
constructed from a quadratic form q elliptic on the Hilbert space V , ∥ · ∥V , subspace of H. The latter
theorem states that the inverse operator T−1 : H → H is continuous. One can actually strengthen
the statement as follows:

Lemma 5.1.20 In the situation of Theorem 3.1.4, the operator T−1 maps H to V , and it is also
continuous from (H, ∥ · ∥H) to (V , ∥ · ∥V): T−1 ∈ L(H,V).

Proof.— For any u ∈ D(T ) we have:

∥u∥H∥Tu∥H
C−S
≥
∣∣⟨u, Tu⟩H∣∣ = |q(u, u)| ellipt.≥ α∥u∥2V ≥ Cα∥u∥V∥u∥H,

i.e. ∥Tu∥H ≥ Cα∥u∥V and ∥T−1u∥V ≤ (Cα)−1∥u∥H.

This improved control on T−1 leads to an important consequence:

Corollary 5.1.21 In the situation of Theorem 3.1.4, let us assume that the embedding j : V → H
is compact. Then the operator T−1 : H → H is a compact operator.

This applies in particular to the situations of Theorem 3.1.5 Prop. 3.1.7, if j : V → H is
compact.

Proof.— Indeed, the operator T−1 : H → H can be decomposed as T−1 = j ◦ L, where L is the
operator T−1 viewed as an operator from H to V, which is continuous accoding to Lemma 5.1.20.
Hence T−1 is compact, as the composition of a bounded operator and a compact one.

The above can be applied to a variety of cases. To identify situations where the embedding V ↪→ H
is compact, we may invoke the following compactness criterion for a subset in L2(Rd).

Theorem 5.1.22 (Riesz-Kolmogorov Theorem) A subset F ⊂ L2(Rd) is precompact if and
only if:
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i) For any ϵ > 0, there exists R = Rϵ > 0 such that

∀u ∈ F ,
∫
|x|>R

|u(x)|2 dx ≤ ϵ.

This property is sometimes referred to as equitightness (roughly speaking, the elements of F
are essentially of uniformly bounded support).
ii) For any ϵ > 0, there exists η = ηϵ such that

∀h ∈ Rd, |h| ≤ η, ∀u ∈ F , ∥τhu− u∥L2(Rd) ≤ ϵ.

Here τhu(x) = u(x − h) is the translation of u by the vector h. This condition is a form of
equicontinuity, it states that the oscillations of u are uniformly under control.

This second condition is equivalent with the equitightness of the Fourier transform û:
ii′) For any ϵ > 0, there exits R̂ > 0 such that

∀u ∈ F ,
∫
|ξ|>R̂

|û(ξ)|2 dξ ≤ ϵ.

Remark 5.1.23 The first versions of the theorem were proved independently by M.Riesz and by
A.Kolmogorov, complemented by Tamarkin. It contained the extra condition that F must be
bounded in L2(Rd). However, this extra condition was later proved to be redundant by Sudakov.
The theorem extends to all Lp(Ω) p ∈ [1,∞[, and Ω an open subset of Rd.

Dirichlet Laplacian on a bounded domain

The second example we provide is the Dirichlet Laplacian T0 = −∆Ω on an open set Ω ⊂ Rd, defined
in Example 3.1.15. If Ω is bounded, then the embedding of V = H1

0 (Ω) to H = L2(Ω) is compact.

This should be a well-known fact, but let us check it using the Riesz-Kolmogorov theorm. One
needs to prove that the unit ball in H1

0 (Ω) is precompact in L
2(Ω). First, the equitightness property

i) is obvious, due to the compact support. Any function u ∈ H1
0 (Ω) with ∥u∥H1 ≤ 1 extends to

u ∈ H1(Rd), so we may use the Fourier transform criterion ii′). The fact that ∥u∥H1 ≤ 1 implies that∫
|ξ|>R

|û(ξ)|2 dξ ≤ 1

R2

∫
|ξ|>R

|ξ|2 |û(ξ)|2 dξ ≤ 1

R2
∥u∥2H1 ≤

1

R2
.

This directly proves the property ii′), hence the compactness of the embedding H1
0 (Rd) ↪→ L2(Rd).

From the Corollary 5.1.21, we deduce that the operator L = (T0+1)−1 is compact and self-adjoint.
This shows that the Dirichlet Laplacian admits a discrete spectrum (λn)n≥1. From Poincaré’s inequality
we already know that all eigenvalues of T0 are strictly positive, hence the eigenvalues λn → +∞.
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The eigenvalues λn are called the Dirichlet eigenvalues of the domainΩ. An important part of modern
analysis, spectral geometry, study the relations between the geometric and topological properties of
Ω, and the distribution of its Dirichlet eigenvalues.

Schrödinger operators with a confining potential

Let us discuss another class of operators with compact resolvents, namely the Schrödinger operators
T = −∆+ V , where the potential V ∈ L2

loc(Rd) is positive, and diverges when |x| → ∞:

w(r)
def
= inf

|x|≥r
V (x)

r→∞→ +∞ ,

Remark 5.1.24 1. Such a potential is said to be confining, since in classical mechanics particles
of total energy E > 0 are confined (trapped) in the region AE = {x ∈ Rd, V (x) ≤ E}, which is
bounded in Rd.

2. Actually, it suffices to ensures that ess−inf|x|≥rV (x) diverges as r → ∞, since negligible
points x will not contribute to the operator of multiplication by V .

The operator T = −∆+V can be properly defined through the Friedrichs extension of the differential
operator T0 = −∆+V acting on C∞

c (Rd), as discussed in Example 3.2.6. We already know that T is
self-adjoint and semibounded from below on H = L2(Rd). The following theorem shows that T has
discrete spectrum.

Theorem 5.1.25 If the potential V ∈ L2
loc(Rd) is confining, then the selfadjoint Schrödinger

operator T = −∆+ V admits a compact resolvent. As a result, its spectrum is purely discrete,
with finite multiplicity eigevalues λn → +∞.

Proof.— As follows from Example 3.2.6, it is sufficient to show that the embedding of V = H1
V (Rd) ↪→

L2(Rd) is compact, where V is equipped with the norm

∥u∥2V = ∥u∥2H1 + ∥
√
V u∥2L2 .

Let B be the unit ball in V. We will show that B is relatively compact in L2(Rd) using Theorem 5.1.22.

The equitightness condition i) follows from∫
|x|≥R

|u(x)|2dx ≤ 1

w(R)

∫
|x|≥R

V (x)|u(x)|2 ≤ 1

w(R)
∥
√
V u∥2L2 ≤

1

w(R)
∥u∥2V .
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For the condition ii) we have:∫
Rd

∣∣u(x+ h)− u(x)
∣∣2dx =

∫
Rd

∣∣∣ ∫ 1

0

d

dt
u(x+ th)dt

∣∣∣2dx
=

∫
Rd

∣∣∣ ∫ 1

0

h · ∇u(x+ th)dt
∣∣∣2dx ≤ h2

∫
Rd

∫ 1

0

∣∣∇u(x+ th)
∣∣2dt dx

≤ h2
∫ 1

0

∫
Rd

∣∣∇u(x+ th)
∣∣2dx dt = h2∥∇u∥2L2 ≤ h2∥u∥2V .

The confining assumption of Theorem 5.1.25 is not necessary to ensure a discrete spectrum. For
example, it is known that the Schrödinger operator on L2(Rd) with potential V (x1, x2) = x21x

2
2 admits

a compact resolvent, although that potential is not confining.

A rather simple necessary and sufficient condition is known in the case d = 1:

Proposition 5.1.26 (Molchanov criterium) The operator T = −d2/dx2 + V has a compact
resolvent iff

∀δ > 0, lim
x→∞

∫ x+δ

x

V (s)ds = +∞ .

Necessary and sufficient conditions are also available for the multi-dimensional case, but their forms
are more complicated. An advanced reader may refer to [10] for the discussion of such questions.
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Chapter 6

The spectral theorem for selfadjoint
operators

Some points in this section are just sketched to avoid technicalities. A more detailed presentation can
be found in [4, Chapter 2] or in [12, Section 12.7].

Given a selfadjoint operator (T,D(T )) on a Hilbert spaceH, the goal of the present chapter is to give
a meaning to the operator f(T ), where f is a sufficiently general function on R; here R represents
the “spectral real line”, and we will use the parameter λ ∈ R to represent the corresponding variable.
We have several interesting functions in mind:

i) for z ∈ C \ R, the function fz(λ) = 1
λ−z will lead to the resolvent fz(T ) = (T − z)−1. These

functions will be a “benchmark” for our functional calculus.

ii) the characteristic functions on a Borel set on R, e.g. an interval I ⊂ R. Indeed, we will see
later that 1lI(T ) is the associated spectral projector on the interval I. The functions 1lI(T ) are
bounded, but unfortunately they are not smooth, so dealing with them will require some efforts.

iii) some functions will be issued from certain evolution equations. For instance, the function λ 7→
e−itλ will lead to e−itT , the propagator of the Schrödinger equation generated by the Hamiltonian
T . This function is smooth and bounded.

6.1 The case of operators with compact resolvent

To prepare the ground, let us first consider (T,D(T )) to be a selfadjoint operator with a compact
resolvent. As shown in the previous section, there exists then an orthonormal eigenbasis (en)n∈N and
associated (real) eigenvalues of finite multiplicities (λn)n∈N, such that

∀u ∈ D(T ), Tu =
∑
n∈N

λn⟨en, u⟩en ,
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and the domain D(T ) is the subspace of H composed of the vectors u ∈ H such that∑
n∈N

λ2n
∣∣⟨en, u⟩∣∣2 <∞ .

For f ∈ Cb(R) (the space of bounded continuous functions), one can define an operator f(T ) ∈ L(H)
by the expansion

f(T )u =
∑
n∈N

f(λn) ⟨en, u⟩en .

This expression is equivalent with the following procedure. Introduce the map U : H → ℓ2(N) defined
by Uu = (un)n∈N, where un = ⟨en, u⟩. This map is unitary, it is simply the expansion of u in the
eigenbasis (en) of T . Through this diagonalization, the conjugated operator UTU∗ is merely the
multiplication operator (un) 7→ (λnun) on ℓ2(N), cf. Example 4.2.18. Similarly, for any f ∈ Cb(H),
the conjugation of f(T ), Uf(T )U∗, is the (bounded) multiplication operator (un) 7→ (f(λn)un) on
ℓ2(N).

f(T ) is therefore unitarily conjugated to the multiplication operator (un) 7→ (f(λn)un) on ℓ2(N).
We will see below that this structure generalizes to arbitrary selfadjoint operators: f(T ) will be defined
through a conjugation to a certain (more complicated) multiplication operator.

Some properties of f(T )

At this stage, we can already observe some interesting properties of the operators f(T ), in this
situation of operators with compact resolvent:

(fg)(T ) = f(T )g(T ), f̄(T ) = f(T )∗, 1(T ) = Id.

These properties show that the family of operators (f(T )) form a commutative ∗-algebra.

The expansion (6.1) shows that the basis (en) is also an eigenbasis of the operator f(T ), with
eigenvalues (f(λn)). From this, we immediately deduce the formula:

spec f(T ) = f(specT ).

The expression (6.1) also provides explicit expressions to solutions of certain differential equations
involving the operator T . An example is the “T -Schrödinger equation”, which is the evolution equation
of the form:

iu′(t) = Tu(t), u(0) = v ∈ D(T ), u : R→ D(T ) .

Conjugating through the diagonalizing operator U , we obtain an infinite set of independent ordinary
differential equations

u′n(t) = λnun(t) ,

which are obvious to solve as un(t) = vn e
−itλn. Conjugating back, we see that the solution to (6.1)

can be written in the form u(t) = ft(T )v, using the family of bounded functions ft(λ) = e−itλ.
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6.2 Continuous functional calculus for general selfadjoint op-
erators

In the preceding paragraph we have dealt with operator with a compact resolvent (the procedure
actually applies to any selfadjoint operator admitting an orthonormal eigenbasis). The aim of the
present section is to develop a theory for general selfadjoint operators.

Notation 6.2.1 Let us recall that C0(R) denotes the class of the continuous functions f : R→ C
with lim|λ|→+∞ f(λ) = 0, equipped with the sup-norm. This should not be confused with the
space C0(R) of continuous functions on R, or the space Cc(R) = C0

c (R) of compactly supported
continuous functions on R.

We say that a function f : C → C belongs to C∞(C) if the function of two real variables
R2 ∋ (x, y) 7→ f(x + iy) ∈ C belongs to C∞(R2). In the similar way one defines the classes
C∞
c (C), Ck(C) etc. In what follows we always use the notation Re z =: x, Im z =: y for z ∈ C.

Using x =
z + z̄

2
and y =

z − z̄
2i

, for f ∈ C1(C) one defines the derivative

∂

∂z̄
:=

1

2

( ∂
∂x

+ i
∂

∂y

)
Clearly, ∂g/∂z̄ = 0 if g is a holomorphic function.

Recall the Stokes formula written in this notation: if f ∈ C∞(C) and Ω ⊂ C is a domain with a
sufficiently regular boundary, then ∫∫

Ω

∂f

∂z̄
dx dy =

1

2i

∮
∂Ω

f dz.

The following fact is actually known, but is presented in a slightly unusual form.

Lemma 6.2.2 (Cauchy integral formula) Let f ∈ C∞
c (C), then for any w ∈ C we have

1

π

∫∫
C

∂f

∂z̄

1

w − z
dx dy = f(w).

Proof.— We note first that the singularity 1/z is integrable in two dimensions, and the integral is
well-defined. Let Ω be a large ball containing the support of f and the point w. For small ϵ > 0
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denote Bϵ := {z ∈ C : |z − w| ≤ ϵ}, and set Ωϵ := Ω \Bϵ. Using the Stokes formula we have:

1

π

∫∫
C

∂f

∂z̄

1

w − z
dx dy =

1

π

∫∫
Ω

∂f

∂z̄

1

w − z
dx dy

= lim
ϵ→0

1

π

∫∫
Ωϵ

∂f

∂z̄

1

w − z
dx dy = lim

ϵ→0

1

π

∫∫
Ωϵ

∂

∂z̄

(
f(z)

1

w − z

)
dx dy

= lim
ϵ→0

1

2πi

∮
∂Ωϵ

f(z)
1

w − z
dz

=
1

2πi

∮
∂Ω

f(z)
1

w − z
dz − lim

ϵ→0

1

2πi

∮
|z−w|=ϵ

f(z)
1

w − z
dz.

The first term on the right-hand side is zero, because f vanishes at the boundary of Ω. The second
term can be calculated explicitly:

lim
ϵ→0

1

2πi

∮
|z−w|=ϵ

f(z)
1

w − z
dz = lim

ϵ→0

1

2πi

∫ 2π

0

f(w + ϵeit)
iϵeitdt

w − (w + ϵeit)

= − lim
ϵ→0

1

2π

∫ 2π

0

f(w + ϵeit)dt = −f(w),

which gives the result.

The main idea of the subsequent presentation is to define the operators f(T ), for a self-adjoint
operator T , using an operator-valued generalization of the Cauchy integral formula.

Introduce first some notation. For z ∈ C we write

⟨z⟩ :=
√

1 + |z|2.

For β < 0 denote by Sβ the set of the smooth functions f : R→ C satisfying the estimates∣∣f (n)(x)
∣∣ ≤ cn⟨x⟩β−n

for any n ≥ 0 and x ∈ R, where the positive constant cn may depend on f . Set A :=
∪
β<0 Sβ;

one can show that A is an alebra. Moreover, if f = P/Q, where P and Q are polynomials with
degP < degQ and Q(x) ̸= 0 for x ∈ R, then f ∈ A. For any n ≥ 1 one can introduce the norms
on A:

∥f∥n :=
n∑
r=0

∫
R

∣∣f (r)(x)
∣∣ ⟨x⟩r−1dx.

One can easily see that the above norms onA induce continuous embeddingsA → C0(R). Moreover,
one can prove that C∞

c (R) is dense in A with respect to any norm ∥ · ∥n.

Now let f ∈ C∞(R). Pick n ∈ N and a smooth function τ : R→ R such that τ(s) = 1 for |s| < 1
and τ(s) = 0 for |s| > 2. For x, y ∈ R set σ(x, y) := τ(y/⟨x⟩). Define f̃ ∈ C∞(C) by

f̃(z) =

[ n∑
r=0

f (r)(x)
(iy)r

r!

]
σ(x, y).
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Clearly, for x ∈ R we have f̃(x) = f(x), so f̃ is an extension of f . One can check the following
identity:

(6.2.1)
∂f̃

∂z̄
=

1

2

[
n∑
r=0

f (r)(x)
(iy)r

r!

](
σx + iσy

)
+

1

2
f (n+1)(x)

(iy)n

n!
σ.

Now let T be a self-adjoint operator in a Hilbert space H. For f ∈ A define an operator f(T ) in H
by

(6.2.2) f(T ) :=
1

π

∫∫
C

∂f̃

∂z̄
(T − z)−1 dx dy.

This integral expression is called the Helffer-Sjöstrand formula. We need to show several points: that
the integral is well-defined, that it does not depend in the choice of σ and n etc. This will be done is
a series of lemmas.

Note first that, as shown in Proposition 4.3.2, we have the norm estimate ∥(T − z)−1∥ ≤ 1/| Im z|,
and one can see from (6.2.1) that ∂̃f/∂z̄(x+iy) = O(yn) for any fixed x, so the subintegral function in
(6.2.2) is locally bounded. By additional technical efforts one can show that the integral is convergent
and defines an continuous operator with ∥f(T )∥ ≤ c∥f∥n+1 for some c > 0. Using this observation
and the density of C∞

c (R) in A the most proofs will be provided for f ∈ C∞
c and extended to A and

larger spaces using the standard density arguments.

Lemma 6.2.3 If F ∈ C∞
c (C) and F (z) = O(y2) as y → 0, then

A :=
1

π

∫∫
C

∂F

∂z̄
(T − z)−1 dx dy = 0.

Proof.— By choosing a sufficiently large N > 0 one may assyme that the support of F is contained
in Ω := {z ∈ C : |x| < N, |y| < N}. For small ϵ > 0 define Ωϵ := {z ∈ C : |x| < N, ϵ < |y| < N}.
Using the Stokes formula we have

A = lim
ϵ→0

1

π

∫∫
Ωϵ

∂F

∂z̄
(T − z)−1 dx dy = lim

ϵ→0

1

2πi

∮
∂Ωϵ

F (z) (T − z)−1 dz.

The boundary ∂Ωϵ consists of eight segments. The integral over the vertical segments and over the
horizontal segments with y = ±N are equal to 0 because the function F vanishes on these segments.
It remains to estimate the integrals over the segments with y = ±ϵ. Here we have ∥(T−z)−1∥ ≤ ϵ−1

and

∥A∥ ≤ lim
ϵ→0

1

2π

∮
∂Ωϵ

(
|F (x+ iϵ)|+ |F (x− iϵ)|

)
ϵ−1dx = 0.

Introduction to Spectral Theory, Fall 2022 Stéphane Nonnenmacher



CHAPTER 6. THE SPECTRAL THEOREM FOR SELFADJOINT OPERATORS 85

Corollary 6.2.4 For f ∈ A the integral in (6.2.2) is independent of the choice of n ≥ 1 and σ.

Proof.— For f ∈ C∞
c (C) the assertion follows from the definition of f̃ and Lemma 6.2.3. This is

extended to A using the density arguments.

Lemma 6.2.5 Let f ∈ C∞
c (R) with supp f ∩ specT = ∅, then f(T ) = 0.

Proof.— If f ∈ C∞
c (R), then obviously f̃ ∈ C∞

c (C). One can find a finite family of closed curves γr
which do not meet the spectrum of T and enclose a domain U containing supp f̃ . Using the Stokes
formula we have

f(T ) =
1

π

∫∫
U

∂f̃

∂z̄
(T − z)−1 dx dy =

∑
r

1

2πi

∮
γr

f̃(z) (T − z)−1dz.

All the terms in the sum are zero, because f̃ vanishes on γr.

Lemma 6.2.6 For f, g ∈ A one has (fg)(T ) = f(T )g(T ).

Proof.— By the density arguments is it sufficient to consider the case f, g ∈ C∞
c (R). LetK and L be

large balls containing the supports of f̃ and g̃ respectively. Using the notation w = u+ iv, u, v ∈ R,
one can write:

f(T )g(T ) =
1

π2

∫∫∫∫
K×L

∂f̃

∂z̄

∂g̃

∂w̄
(T − z)−1(T − w)−1 dx dy du dv.

Using the resolvent identity

(T − z)−1(T − w)−1 =
1

w − z
(T − w)−1 − 1

w − z
(T − z)−1

we rewrite the preceding integral in the form

f(T )g(T ) =
1

π2

∫∫
L

∂g̃

∂w̄
(T − w)−1

(∫∫
K

∂f̃

∂z̄

1

w − z
dx dy

)
du dv

− 1

π2

∫∫
K

∂f̃

∂z̄
(T − z)−1

(∫∫
L

∂g̃

∂w̄

1

w − z
du dv

)
dx dy.

By Lemma 6.2.2 we have∫∫
K

∂f̃

∂z̄

1

w − z
dx dy = πf(w),

∫∫
L

∂g̃

∂w̄

1

w − z
du dv = −πg(z),
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and we arrive at

f(T )g(T ) =
1

π

∫∫
L

f̃(w)
∂g̃

∂w̄
(T − w)−1du dv +

1

π

∫∫
K

g̃(z)
∂f̃

∂z̄
(T − z)−1dx dy

=
1

π

∫∫
K∪L

∂(f̃ g̃)

∂z̄
(T − z)−1dx dy

=
1

π

∫∫
C

∂f̃g

∂z̄
(T − z)−1dx dy +

1

π

∫∫
C

∂(f̃ g̃ − f̃g)
∂z̄

(T − z)−1dx dy

= (fg)(T ) +
1

π

∫∫
C

∂(f̃ g̃ − f̃g)
∂z̄

(T − z)−1dx dy.

By direct calculation one can see that (f̃g − f̃ g̃)(z) = O(y2) for small y, and Lemma 6.2.3 shows
that the second integral is zero.

Lemma 6.2.7 Let w ∈ C \ R. Define a function rw by rw(z) = (z − w)−1. Then rw(T ) =
(T − w)−1.

Proof.— We provide just the main line of the proof without technical details (they can be easily
recovered). Use first the independence of n and σ. We take n = 1 and put σ(z) = τ(λy/⟨x⟩) where
λ > 0 is sufficiently large, to have w /∈ suppσ. Without loss of generality we assume Imw > 0. For
large m > 0 consider the region

Ωm := {z ∈ C : |x| < m,
⟨x⟩
m

< y < 2m}.

Using the definition and the Stokes formula we have

rw(T ) = lim
m→∞

1

π

∫∫
Ωm

∂r̃w
∂z̄

(T − z)−1 dx dy = lim
m→∞

1

2πi

∮
∂Ωm

r̃w(z) (T − z)−1 dz.

By rather technical explicit estimates (which are omitted here) one can show that

lim
m→∞

∮
∂Ωm

(
r̃w(z)− rw(z)

)
(T − z)−1 dz = 0.

and we arrive at

rw(T ) =
1

2πi
lim
m→∞

∮
∂Ωm

1

z − w
(T − z)−1 dz.

For sufficiently large m one has the inclusion w ∈ Ωm. For any f, g ∈ H the function C ∋ z 7→
⟨f, (T − z)−1g⟩ ∈ C is holomorphic in Ωm, so applying the Cauchy formula, for large m we have

1

2πi

∮
∂Ωm

1

z − w
⟨
f, (T − z)−1g

⟩
dz =

⟨
f, (T − w)−1g

⟩
,

which shows that rw(T ) = (T − w)−1.
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Lemma 6.2.8 For any f ∈ A we have:

(a) f̄(T ) = f(T )∗,

(b)
∥∥f(T )∥∥ ≤ ∥f∥∞.

Proof.— The item (a) follows directly from the equalities(
(T − z)−1

)∗
= (T − z̄)−1, f̃(z) = ˜̄f(z̄).

To show (b), take an arbitrary c > ∥f∥∞ and define g(s) := c−
√
c2 − |f(s)|2. One can show that

g ∈ A. There holds f̄f − 2cg + g2 = 0, and using the preceding lemmas we obtain f(T )∗f(T ) −
cg(T )− cg(T )∗ + g(T )∗g(T ) = 0, and

f(T )∗f(T ) +
(
c− g(T )

)∗(
c− g(T )

)
= c2.

Let ψ ∈ H. Using the preceding equality we have:∥∥f(T )ψ∥∥2 ≤ ∥∥f(T )ψ∥∥2 + ∥∥∥(c− g(T ))ψ∥∥∥2
=
⟨
ψ, f(T )∗f(T )ψ

⟩
+
⟨
ψ,
(
c− g(T )

)∗(
c− g(T )

)
ψ
⟩

= c2∥ψ∥2.

As c > ∥f∥∞ was arbitrary, this concludes the proof.

All the preceding lemmas put together lead us to the following fundamental result.

Theorem 6.2.9 (Spectral theorem, continuous functional calculus) Let T be a self-adjoint
operator in a Hilbert space H. There exists a unique linear map

C0(R) ∋ f 7→ f(T ) ∈ L(H)

with the following properties:

• f 7→ f(T ) is an algebra homomorphism,

• f̄(T ) = f(T )∗,

• ∥f(T )∥ ≤ ∥f∥∞,

• if w /∈ R and rw(s) = (s− w)−1, then rw(T ) = (T − w)−1,

• if supp f does not meet specT , then f(T ) = 0.
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Proof.— Existence. If one replaces C0 by A, everything is already proved. But A is dense in C0(R)
in the sup-norm, because C∞

c (R) ⊂ A, so we can use the density argument.

Uniqueness. If we have two such maps, they coincide on the functions f which are linear combina-
tions of rw, w ∈ C \R. But such functions are dense in C0 by the Stone-Weierstrass theorem, so by
the density argument both maps coincide on C0.

Remark 6.2.10 • One may wonder why to introduce the class of functions A: one could just
start by C∞

c which is also dense in C0. The reason in that we have no intuition on how the
operator f(T ) should look like if f ∈ C∞

c . On the other hand, it is naturally expected that for
rw(s) = (s− w)−1 we should have rw(T ) = (T − w)−1, otherwise there are no reasons why
we use the notation rw(T ). So it is important to have an explicit formula for a sufficiently
large class of functions containing all such rw.

• The approach based on the Helffer-Sjöstrand formula, which is presented here, is relatively new,
and it allows one to consider bounded and unbounded self-adjoint operators simultaneously.
The same results can be obtained by other methods, starting e.g. with polynomials instead
of the resolvents, which is a more traditional approach, see, for example, Sections VII.1 and
VIII.3 in the book [7].

6.3 Borelian functional calculus and L2 representation

Now we would like to extend the functional calculus to more general functions, not necessarily contin-
uous and not necessarily vanishing at infinity.

Definition 6.3.1 (Invariant and cyclic subspaces) Let H be a Hilbert space, L be a closed
linear subspace of H, and T be a self-adjoint linear operator in H.

Let T be bounded. We say that L is an invariant subspace of T (or just T -invariant) if
T (L) ⊂ L. We say that L is a cyclic subspace of T with cyclic vector v if L coincides with the
closed linear hull of all vectors p(T )v, where p are polynomials.

Let T be general. We say that L is an invariant subspace of T (or just T -invariant) if
(T − z)−1(L) ⊂ L for all z /∈ R. We say that L is a cyclic subspace of T with cyclic vector v if
L coincides with the closed linear space of all vectors (T − z)−1v with z /∈ R.

Clearly, if L is T -invariant, then L⊥ is also T -invariant.

Proposition 6.3.2 Both definitions of an invariant/cyclic subspace are equivalent for bounded
self-adjoint operators.
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Proof.— Let T = T ∗ ∈ L(H). We note first that resT is a connected set.

Let a closed subspace L be T -invariant in the sense of the definition for bounded operators. If z ∈ C
and |z| > ∥T∥, then z /∈ specT and

(T − z)−1 = −z
(
1− T

z

)−1

=
∞∑
n=0

z−n−1T n.

If x ∈ L, then T nx ∈ L for any n. As the series on the right hand side converges in the operator
norm sense and as L is closed, (T − z)−1x belongs to L.

Let us denote W =
{
z ∈ resT : (T − z)−1(L) ⊂ L

}
. As just shown, W is non-empty. On the

other hand, W is closed in resT in the relative topology: if x ∈ L, zn ∈ W and zn converge to
z ∈ W , then (T − zn)−1x ∈ L and (T − zn)−1x converge to (T − z)−1x. On the other hand, W is
open: if z0 ∈ W and |z − z0| is sufficiently small, then

(T − z)−1 =
∑
n=0

(z − z0)n(T − z0)−n−1,

see (4.1.4), and (T − z)−1L ⊂ L. Therefore, W = resT , which shows that L is T -invariant in the
sense of the definition for general operators.

Now let T = T ∗ ∈ L(H), and assume that L is T -invariant in the sense of the definition for general
operators, i.e. (T − z)−1(L) ⊂ L for any z /∈ R. Pick any z /∈ R and any f ∈ L. We can
represent Tf = g + h, where g ∈ L and h ∈ L⊥ are uniquely defined vectors. As L⊥ is T -invariant,
(T − z)−1h ⊂ L⊥. On the other hand

(T − z)−1h = (T − z)−1(Tf − g)
= (T − z)−1

(
(T − z)f + zf − g

)
= f + (T − z)−1(zf − g).

As zf − g ∈ L, both vectors on the right-hand side are in L. Therefore, (T − z)−1h ∈ L, and finally
(T − z)−1h = 0 and h = 0, which shows that Tf = g ∈ L. The equivalence of the two definitions of
an invariant subspace is proved.

On the other hand, for both definitions, L is T -cyclic with cyclic vector v iff L is the smallest T -
invariant subspace containing v. Therefore, both definitions of a cyclic subspace also coincide for
bounded self-adjoint operators.

Theorem 6.3.3 (L2 representation, cyclic case) Let T be a self-adjoint linear operator in H
and let S := specT . Assume that H is a cyclic subspace for T with a cyclic vector v, then there
exists a bounded measure µ on S with µ(S) ≤ ∥v∥2 and a unitary map U : H → L2(S, dµ)
with the following properties:

• a vector x ∈ H is in D(T ) iff hUx ∈ L2(S, dµ), where h is the function on S given by
h(s) = s,
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• for any ψ ∈ U
(
D(T )

)
there holds UTU−1ψ = hψ.

In other words, T is unitarily equivalent to the operator Mh of the multiplciation by h in
L2(S, dµ).

Proof.— Step 1. Consider the map ϕ : C0(R) → C defined by ϕ(f) =
⟨
v, f(T )v

⟩
. Let us list the

properties of this map:

• ϕ is linear,

• ϕ(f̄) = ¯ϕ(f),

• if f ≥ 0, then ϕ(f) ≥ 0. This follows from

ϕ(f) =
⟨
v, f(T )v

⟩
=
⟨
v,
√
f(T )

√
f(T )v

⟩
=
∥∥√f(T )v

∥∥2.
•
∣∣ϕ(f)∣∣ ≤ ∥f∥∞ ∥v∥2.

By the Riesz representation theorem there exists a uniquely defined regular Borel measure µ such
that

ϕ(f) =

∫
R
fdµ for all f ∈ C0(R).

Moreover, for supp f ∩ S = ∅ we have f(T ) = 0 and ϕ(f) = 0, which means that suppµ ⊂ S, and
we can write the above as

(6.3.3)
⟨
v, f(T )v

⟩
=

∫
S

fdµ for all f ∈ C0(R).

Step 2. Consider the map Θ : C0(R)→ L2(S, dµ) defined by Θf = f . We have

⟨Θf,Θg⟩ =
∫
S

f̄g dµ = ϕ(f̄g)

=
⟨
v, f(T )∗g(T )v

⟩
=
⟨
f(T )v, g(T )v

⟩
.

DenoteM :=
{
f(T )v : f ∈ C0(R)

}
⊂ H, then the preceding equality means that the map

U : H ⊃M→ C0(R) ⊂ L2(S, dµ), U
(
f(T )v

)
= f,

is one-to-one and isometric. Moreover,M is dense in H, because v is a cyclic vector. Furthermore,
C0(R) is a dense subspace of L2(S, dµ), as µ is regular. Therefore, U is uniquely extended to a
unitary map from H to L2(S, dµ), and we denote this extension by the same symbol.
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Step 3. Let f, fj ∈ C0(R) and ψj := fj(T )v, j = 1, 2. There holds⟨
ψ1, f(T )ψ2

⟩
=
⟨
f1(T )v, f(T )f2(T )v

⟩
=
⟨
v, (f̄1ff2)(T )v

⟩
=

∫
S

ff̄1f2 dµ

= ⟨Uψ1,MfUψ2⟩,

where Mf is the operator of the multiplication by f in L2(S, dµ). In particular, for any w /∈ R and
rw(s) = (s−w)−1 we obtain Urw(T )U∗ξ = rwξ for all ξ ∈ L2(S, dµ). The operator U maps the set
Ran rw(T ) ≡ D(T ) to the range ofMrw . In other words, U is a bijection from D(T ) to

RanMrw =
{
ϕ ∈ L2(S, dµ) : x 7→ xϕ(x) ∈ L2(S, dµ)

}
= D(Mh).

Therefore, if ξ ∈ L2(S, dµ), then ψ := rwξ ∈ D(Mh),

Trw(T )U
∗ξ = (T − w)rw(T )U∗ξ + wrw(T )U

∗ξ = U∗ξ + wrw(T )U
∗ξ

and, finally,

UTU∗ψ = UTU∗rwξ = UTrw(T )U
∗ξ = U

(
U∗ξ + wrw(T )U

∗ξ
)

= ξ + wrwξ = hψ.

Theorem 6.3.4 (L2 representation) Let T be a self-adjoint operator in a Hilbert space H
with specT =: S. Then there exists N ⊂ N, a finite measure µ on S × N and a unitary
operator U : H → L2(S ×N, dµ) with the following properties.

• Let h : S × N → R be given by h(s, n) = s. A vector x ∈ H belongs to D(T ) iff
hUx ∈ L2(S ×N, dµ),

• for any ψ ∈ U
(
D(T )

)
there holds UTU−1ψ = hψ.

Proof.— Using the induction one can find N ⊂ N and non-empty closed mutually orthogonal sub-
spaces Hn ⊂ H with the following properties:

• H =
⊕

n∈N Hn,

• each Hn is a cyclic subspace of T with cyclic vector vn satisfying ∥vn∥ ≤ 2−n.
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The restriction Tn of T toHn is a self-adjoint operator inHn, and one can apply to all these operators
Theorem 6.3.3, which gives associated measures µn with µ(S) ≤ 4−n, and unitary maps Un : Hn →
L2(S, dµn). Now one can define a measure µ on S×N by µ

(
Ω×{n}

)
= µn(Ω), and a unitary map

U : H ≡
⊕
n∈N

Hn → L2(S ×N, dµ) ≡
⊕
n∈N

L2(S, dµn)

by U(ψn) = (Unψn), and one can easily check that all the properties are verified.

Remark 6.3.5 • The previous theorem shows that any self-adjoint operator is unitarily equiv-
alent to a multiplication operator in some L2 space, and this multiplication operator is some-
times called a spectral representation of T . Clearly, such a representation is not unique, for
example, the decomposition of the Hilbert space in cyclic subspaces is not unique.

• The cardinality of the set N is not invariant. The minimal cardinality among all possible N
is called the spectral multiplicity of T , and it generalizes the notion of the multiplicity for
eigenvalues. Calculating the spectral multiplicity is a non-trivial problem.

Theorem 6.3.4 can be used to improve the result of Theorem 6.2.9. In the rest of the section we
use the function h and the measure µ from Theorem 6.3.4 without further specifications.

Introduce the set B∞ consisting of the bounded Borel functions f : R→ C. In what follows, we say
that fn ∈ B∞ converges to f ∈ B∞ and write fn

B∞−−→ f if the following two conditions hold:

• there exists c > 0 such that ∥fn∥∞ ≤ c,

• fn(x)→ f(x) for all x.

Definition 6.3.6 (Strong convergence) Wa say that a sequence An ∈ L(H) converges
strongly to A ∈ L(H) and write A = s− limAn if Ax = limAnx for any x ∈ H.

Theorem 6.3.7 (Borel functional calculus) (a) Let T be a self-adjoint operator in a Hilbert
space H. There exists a map B∞ ∋ f 7→ f(T ) ∈ L(H) extending the map from
Theorem 6.2.9 and satisfying the same properties except that one can improve the estimate
∥f(T )∥ ≤ ∥f∥∞ by ∥f(T )∥ ≤ ∥f∥∞,T .

(b) This extension is unique if we assume that the condition fn
B∞−−→ f implies f(T ) =

s− lim fn(T ).
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Proof.— Consider the map U from Theorem 6.2.9. Then it is sufficient to define f(T ) := U∗Mf◦hU ,
then one routinely check that all the properties hold, and (a) is proved.

To prove (b) we remark first that the map just defined satisfies the requested condition: If x ∈
L2(S, dµ) and fn

B∞−−→ f , then fn(h)x converges to f(h)x in the norm of L2(S × N, dµ) by the
dominated convergence. But this means exactly that f(T ) = s− lim fn(T ).

On the other hand, C0(R) is obviously dense in B∞ with respect to the B∞ convergence, which
proves the uniqueness of the extension.

We have a series of important corollaries, whose proof is an elementary modification of the construc-
tions given for the multiplication operator in Example 4.2.14.

Corollary 6.3.8 • specT = essµ Ranh,

• for any f ∈ B∞ one has spec f(T ) = essµ Ran f ◦ h,

• in particular, ∥f(T )∥ = essµ sup |f ◦ h|.

Example 6.3.9 One can also define the operators φ(T ) with unbounded functions φ by φ(T ) =
U∗Mφ◦hU . These operators are in general unbounded, but they are self-adjoint for real-valued φ;
this follows from the self-adjointness of the multiplication operators Mφ◦h.

Example 6.3.10 The usual Fourier transform is a classical example of a spectral representation.
For example, Take H = L2(R) and T = −id/dx with the natural domain D(T ) = H1(R). If
F is the Fourier transform, then FTF is exactly the operator of multiplication x 7→ xf(x), and
specT = R.

In particular, for bounded Borel functions f : R → C one can define the operators f(T ) by
f(T )h = F∗MfF , where Mf is the operator of multiplication by f , i.e. in general one obtains a
pseudodifferential operator.

Let us look at some particular examples. Consider the shift operator A in H which is defined by
Af(x) = f(x+1). It is a bounded operator, and for any u ∈ S(R) we have FAF∗u(p) = eipu(p).
This means that A = eiT , and this gives the relation specA = {z : |z| = 1}. On may also look at
the operator B defined by

Bf(x) =

∫ x+1

x−1

f(t)dt.

Using the Fourier transform one can show that B = φ(T ), where φ(x) = 2 sinx/x with specB =
φ(R).

Example 6.3.11 For practical computations one does not need to have the canonical representation
from Theorem 6.3.4 to construct the Borel functional calculus. It is sufficient to represent T =
U∗MfU , where U : H → L2(X, dµ) and Mf is the multiplcation operator by some function f .
Then for any Borel function φ one can put φ(T ) = U∗Mφ◦fU .
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For example, for the free Laplacian T in H = L2(Rd) the above is realized with X = Rd and U
being the Fourier transform, and with f(p) = p2. This means that the operators φ(T ) act by

φ(T )f(x) =
1

(2π)d/2

∫
Rd

φ(p2)f̂(p)eipx dx.

For example,
√
−∆+ 1f(x) =

1

(2π)d/2

∫
Rd

√
1 + p2f̂(p)eipx dx

and one can show that D(
√
−∆+ 1) = H1(Rd).

Example 6.3.12 Another classical example is provided by the Fourier series. Take H = ℓ2(Zd) and
let a function t : Zd → R satisfy t(−m) = t(m) and

∣∣t(m)
∣∣ ≤ c1e

−c2|m| with some c1, c2 > 0.
Define T by

Tu(m) =
∑
n∈Zd

t(m− n)u(n).

One can easily see that T is bounded. If one introduces the unitary map Φ : H → L2(Td),
T := R/Z,

Φu(x) =
∑
m∈Zd

e2πimxu(m), mx := m1x1 + · · ·+mdxd,

then T = Φ∗MτΦ with
τ(x) =

∑
m∈Zd

t(m)e2πimx.

Example 6.3.13 A less obvious example is given by the Neumann Laplacian TN on the half-line
defined in Example 3.1.12.

Let T be the free Laplacian in L2(R). Denote by G := L2
p(R) the subspace of L2(R) consisting

of the even functions. Clearly, G is an invariant subspace for T (the second derivate of an even
function is also an even function), and the restriction of T to G is a self-adjoint operator; denote
this restriction by A. Moreover, G is an invariant subspace of the Fourier transform F (the Fourier
image of an even function is also an even function). Introduce now the a map Φ : L2(R+)→ G by
Φf(x) = 2−1/2f

(
|x|
)
. One checks easily that Φ is unitary and that D(A) = Φ

(
D(TN)

)
.

So we have TN = Φ∗AΦ and A = F∗M̃hF , where M̃h is the multiplication by the function
h(p) = p2 in G. Finally, M̃h = ΦMhΦ

∗, where Mh is the multiplication by h in L2(R+).
At the end of the day we have TN = U∗MhU with U = Φ∗FΦ, and U is unitary being a

composition of three unitary operators. By direct calculation, for f ∈ L2(R+) ∩ L1(R+) one has

Uf(p) =

√
2

π

∫ ∞

0

cos(px)f(x) dx.

This transform U is sometimes called the cos-Fourier transform. Roughly speaking, U is just the
Fourier transform restricted to the even functions together with some identifications.

An interested reader may adapt the preceding constructions to the Dirichlet Laplacian TD on the
half-line, see Example 3.1.13.
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Example 6.3.14 [Operators with compact resolvents] Let us fill the gap which was left open in
Subsection 5.1.4. Namely let us show that if a self-adjoint T has a compact resolvent, then specT ̸=
R.

Assume that specT = R and consider the function g given by g(x) = (x−i)−1. Then g(T ) = (T−
i)−1 is a compact operator, and its spectrum has at most one accumulation point. On the other hand,
using Corollary 6.3.8 and the continuity of g one has the equality spec g(T ) = g(specT ) = g(R),
and this set has no isolated points.
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