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Problem : Negative eigenvalues of a Schrodinger operator
We consider the Schrédinger operator A = —A + V acting on H = L*(R?), with a
potential function V € L>®(R% R).

1. Recall the domain D(A) C L*(R?) on which A is selfadjoint. Describe the quadratic
form g4 associated with A, including its domain Q(A) = D(qa).

2. We assume V € L®(R?) has a compact support. Explain why the essential spec-
trum oeg(A) = Ry. We want to show that og;s.(A) is finite.

Let B C R? be an open ball containing the support of V. We define the sesquilinear
form

an.0) = [ (V0 + Vo) da.

of domain D(gg) = HY (B U (R%\ B)).

(a) Show that gp is a closed form. We call Ap the associated self-adjoint operator.
Show that D(qp) = HY(B) ® H*(R?\ B). Deduce that Ap can be decomposed
as the sum of two independent selfadjoint operators.

(b) Show that Ap admits at most a finite number of negative eigenvalues.

(c) Show the inclusion H'(R?) C D(gg). Using the max-min principle for the
operators A and Ap, show that yu,(Ap) < p,(A) for any n > 1.
Hint : use the form domain in the max-min principle.

(d) Deduce that A admits at most a finite number of negative eigenvalues.

3. From now on, we assume that V' is continuous with compact support. We will
consider the family of semiclassical Schrodinger operators

Ah = —hQA + V(LL’),

where h € (0,1] is called “Planck’s constant”.

Using question 2, show that for any h € (0, 1] the number N(h) of negative eigen-
values of Ay, is finite. We want to study the behaviour of N(h), in the limit h — 0+
(called the semiclassical limit).

To simplify the notations, we restrict ourselves to the dimension d = 2. We assume
that the support of V' is contained in the unit square S = (0,1) x (0,1).



(a) Our strategy is to approximate the function V' by functions constant over small
squares. For any integer j > 1, let us divide the square S into j2 disjoint open
squares

Sy(m) e (ML Ty (M2 = ey

- - - - m = (my,me) € ]_,...,j 2,
r FE ( ) €4 }

and call their (disjoint) union S; o U,, Sj(m). What is the boundary of S;?
Draw a sketch of 95;.

(b) Using these squares, we define the functions VjjE as follows :

def .

Vo =V, =nfes.m)V
vz € S;(m), { J+($) ];rm y infoes;m) V() . Vre R2\Sj, V]i(x) —0.
Vj (1:) = Vj,m = SUPgzes;(m) V(x)

We want to show that V;-* and V"~ are good approximations of V_ when j is
large. For this, take £ > 0 arbitrary small. Show that there exists jo = jo(¢) € N
such that, Vj > jo, we have

(1) V" =Vipe <&, [V; = Vipg <c

(¢) Notation : for any real valued function f(x), its negative part is defined as

f-(z) = max(0, — f(z)).
Show that the negative parts (V;")_ and (V;")_ are good approximations of V_
when j is large, in the sense of (1).

(d) We introduce two quadratic forms :

G (0, 0) = / (RN ()] + Vi () [(2) ) da, of respective domains
D(qf) = Hy(S;UR*\S), D(q;) = H'(S;UR*\S).

Show that q;-r can be split as the sum of j? 4+ 1 quadratic forms, acting on
functions defined respectively on Sjm, m € {1,...,5}? and on R?\ S.

Call A;r the operators associated with the forms q;.:. Show that A;r can be
represented as a sum of ;2 selfadjoint operators Aj,m acting on S;(m), plus an
operator AT acting on R?\ B. Describe the operators A;:m, AT, including their
domains.

(e) Same question for q; and its associated operator A}, split into A}, and A~

4. We now want to obtain quantitative informations on the spectra of the operators
Aji’m and A*.
(a) Taking mgy = (1,1), compute explicitly the spectrum of the Dirichlet Laplacian
on the square S;j(my). Deduce the spectrum of the operator Aj+,m0' Compute
the spectrum of A7, for each m € {1,...,j}*
Hint : notice that the squares S;(m) are all isometric to each other.
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(b) We want to show that o(A") = R*. For any A > 0, construct a sequence of

()
(d)
(e)

(f)

L*-normalized states (¢, € H*(R?)),>1, such that 1), are supported in the left
half-space R? = {(x,y) € R?, z < 0}, and satisfy ||(—=A—\)1,|| "= 0. Deduce
that the Laplacian (—Agag) on R?\ S, with Neumann or Dirichlet boundary
conditions, admits for spectrum R*. Conclude.

Hint : you may take for 1, truncated plane waves.

Describe the spectrum of the operator A;r.

Compute similarly the spectra of A, A7, and A} .

J1m7
We call Nji(h) the number of negative eigenvalues of A;-t. Show that these
numbers are finite.
Apply the max-min principle (again, using form domains) to compare the p,’s
of the operators AF, A7 and A. Deduce that N (h), N;-(h) and N(h) satisfy,
for any h € (0, 1], the inequalities
(2) N;7(h) < N(h) < Ny (h).
We want to obtain an asymptotic expression of N7 (h) and N; (h), when h — 0.

For this aim, we will admit the following asymptotics for the number of integer
lattice points in large quarter-disks :

#{(n1,m2) € N? 03 +n3 < A\} ~ %)\, when A — oco.

Use this expression to estimate the number of negative eigenvalues of the ope-
rators Ajf when h \, 0. Deduce the following asymptotics for NV f(h) :

m

1
+ +
N;=(h) e /R2(Vj )—(z)dx when h N\, 0.

Using the inequalities (2) and the approximation (1), deduce the following
asymptotics for the negative eigenvalues of A :

1

N(h) ~ e /R2 V_(z)dx when h 0.

This type of asymptotics is called a (semiclassical) Weyl’s formula.



Exercise : Rank 1 perturbation of a Schrédinger operator
Our base Hilbert space is # = L?(R). Consider a potential function V' € L] (R, [1,00)).
We consider the following sesquilinear form :

o) = [ Faa)det [ Vi) playte) de.
R R
defined on the domain D(q) = {¢p € H'(R), vV € L*(R)}. We call ¢ the restriction of
q on the domain D(qy) = {¢ € D(q), ¥(0) = 0}.

1. (a) Show that ¢ and ¢o are closed sesquilinear forms.

)
(b) Let A, Ay be respectively the operators associated with ¢ and gp.
(c) Recall why A and A, are selfadjoint.

)

(d) In the case where V' € L>*(R), describe the domains D(A) and D(Ap).
Hint : Apply the integration by parts separately on R_ and R,.

(e) Show that and that the spectra of A and Ay are included in the interval [1, c0).
2. We want to compare the operators A and A.

(a) Show that there exists a unique ¢ € D(q) such that ¢(¢,v) = 1(0) for all
Y € D(q), and explain why ¢(0) # 0.
Hint : apply Riesz’s theorem on the appropriate Hilbert space.

(b) Denote K = {¢ € D(q), q(¢0,%) = 0 for all ¢g € D(qy)}. Show that K is a

one-dimensional subspace, and is spanned by (b

Hint : for any ¢ € D(q), show that vy o P — 90 belongs to D(qp).

(c) Let f € L*(R). Set v & A-1f and vy

well-defined. Show that ¢ — 1y € K.

(d) Deduce that the difference A=! — A;' is a rank one operator. Show that this
operator must be a multiple of the orthogonal projector m, on the state ¢,
namely A~! — A;' = ¢, for some constant ¢ = ¢y € R.

Hint : notice that A~! — A! is symmetric.

o Ay f Justify that these states are

3. We will now treat more explicitly the case where the potential V' = 1.

(a) Using the defining formula g(¢, 1) = 1(0), compute the Fourier transform QAﬁ(f)
of the state ¢ € D(q) defined in 2(a). Using contour integrals, give the explicit
formula for ¢(x).

(b) Write the action of A on f as a multiplication operator in Fourier space, and
then as a convolution operator acting on f.

(c) From this expression and the condition Aj'f € D(Ag) C D(qo), compute
explicitly the constant ¢ = ¢y—; for this case.

(d) What are the spectra of A and Ay for this case? Hint : notice that Aj*
compact perturbation of A1



