
Université Paris-Saclay • M2 Analyse Modélisation Simulation
Introduction to spectral theory (2016-2017, 1er semestre)

Stéphane Nonnenmacher

Final exam (23 November 2016)

Problem : Negative eigenvalues of a Schrödinger operator
We consider the Schrödinger operator A = −∆ + V acting on H = L2(Rd), with a

potential function V ∈ L∞(Rd,R).

1. Recall the domainD(A) ⊂ L2(Rd) on which A is selfadjoint. Describe the quadratic
form qA associated with A, including its domain Q(A) = D(qA).

2. We assume V ∈ L∞(Rd) has a compact support. Explain why the essential spec-
trum σess(A) = R+. We want to show that σdisc(A) is finite.

Let B ⊂ Rd be an open ball containing the support of V . We define the sesquilinear
form

qB(ψ, ψ) =

∫
Rd

(
|∇ψ(x)|2 + V (x)|ψ(x)|2

)
dx ,

of domain D(qB) = H1(B ∪ (Rd \B)).

(a) Show that qB is a closed form. We call AB the associated self-adjoint operator.
Show that D(qB) = H1(B)⊕H1(Rd \B). Deduce that AB can be decomposed
as the sum of two independent selfadjoint operators.

(b) Show that AB admits at most a finite number of negative eigenvalues.
(c) Show the inclusion H1(Rd) ⊂ D(qB). Using the max-min principle for the

operators A and AB, show that µn(AB) ≤ µn(A) for any n ≥ 1.
Hint : use the form domain in the max-min principle.

(d) Deduce that A admits at most a finite number of negative eigenvalues.

3. From now on, we assume that V is continuous with compact support. We will
consider the family of semiclassical Schrödinger operators

Ah = −h2∆ + V (x),

where h ∈ (0, 1] is called “Planck’s constant”.
Using question 2, show that for any h ∈ (0, 1] the number N(h) of negative eigen-
values of Ah is finite. We want to study the behaviour of N(h), in the limit h→ 0+
(called the semiclassical limit).

To simplify the notations, we restrict ourselves to the dimension d = 2. We assume
that the support of V is contained in the unit square S = (0, 1)× (0, 1).
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(a) Our strategy is to approximate the function V by functions constant over small
squares. For any integer j ≥ 1, let us divide the square S into j2 disjoint open
squares

Sj(m)
def
=
(m1 − 1

j
,
m1

j

)
×
(m2 − 1

j
,
m2

j

)
, m = (m1,m2) ∈ {1, . . . , j}2,

and call their (disjoint) union Sj
def
=
⋃
m Sj(m). What is the boundary of Sj ?

Draw a sketch of ∂Sj.
(b) Using these squares, we define the functions V ±j as follows :

∀x ∈ Sj(m),

{
V −j (x) = V −j,m

def
= infx∈Sj(m) V (x)

V +
j (x) = V +

j,m
def
= supx∈Sj(m) V (x)

; ∀x ∈ R2\Sj, V ±j (x) = 0.

We want to show that V +
j and V −j are good approximations of V− when j is

large. For this, take ε > 0 arbitrary small. Show that there exists j0 = j0(ε) ∈ N
such that, ∀j ≥ j0, we have

(1) ‖V +
j − V ‖L1(R2 ≤ ε, ‖V −j − V ‖L1(R2 ≤ ε

(c) Notation : for any real valued function f(x), its negative part is defined as
f−(x) = max(0,−f(x)).
Show that the negative parts (V +

j )− and (V +
j )− are good approximations of V−

when j is large, in the sense of (1).
(d) We introduce two quadratic forms :

q±j (ψ, ψ) =

∫ (
h2|∇ψ(x)|2 + V ±j (x)|ψ(x)|2

)
dx , of respective domains

D(q+j ) = H1
0 (Sj ∪ R2 \ S), D(q−j ) = H1(Sj ∪ R2 \ S).

Show that q+j can be split as the sum of j2 + 1 quadratic forms, acting on
functions defined respectively on Sj,m, m ∈ {1, . . . , j}2, and on R2 \ S.
Call A+

j the operators associated with the forms q±j . Show that A+
j can be

represented as a sum of j2 selfadjoint operators A+
j,m acting on Sj(m), plus an

operator A+ acting on R2 \B. Describe the operators A+
j,m, A+, including their

domains.
(e) Same question for q−j and its associated operator A−j , split into A

−
j,m and A−

4. We now want to obtain quantitative informations on the spectra of the operators
A±j,m and A±.
(a) Taking m0 = (1, 1), compute explicitly the spectrum of the Dirichlet Laplacian

on the square Sj(m0). Deduce the spectrum of the operator A+
j,m0

. Compute
the spectrum of A+

j,m for each m ∈ {1, . . . , j}2.
Hint : notice that the squares Sj(m) are all isometric to each other.
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(b) We want to show that σ(A+) = R+. For any λ > 0, construct a sequence of
L2-normalized states (ψn ∈ H2(R2))n≥1, such that ψn are supported in the left
half-space R2

− = {(x, y) ∈ R2, x < 0}, and satisfy ‖(−∆−λ)ψn‖
n→∞→ 0. Deduce

that the Laplacian (−∆Rd\S) on Rd \ S, with Neumann or Dirichlet boundary
conditions, admits for spectrum R+. Conclude.
Hint : you may take for ψn truncated plane waves.

(c) Describe the spectrum of the operator A+
j .

(d) Compute similarly the spectra of A−j,m, A−, and A−j .
(e) We call N±j (h) the number of negative eigenvalues of A±j . Show that these

numbers are finite.
(f) Apply the max-min principle (again, using form domains) to compare the µn’s

of the operators A+
j , A

−
j and A. Deduce that N+

j (h), N±j (h) and N(h) satisfy,
for any h ∈ (0, 1], the inequalities

(2) N+
j (h) ≤ N(h) ≤ N−j (h) .

(g) We want to obtain an asymptotic expression of N+
j (h) and N−j (h), when h→ 0.

For this aim, we will admit the following asymptotics for the number of integer
lattice points in large quarter-disks :

#{(n1, n2) ∈ N2, n2
1 + n2

2 ≤ λ} ∼ πλ

4
, when λ→∞ .

Use this expression to estimate the number of negative eigenvalues of the ope-
rators A±j,m when h↘ 0. Deduce the following asymptotics for N±j (h) :

N±j (h) ∼ 1

4πh2

∫
R2

(V ±j )−(x) dx when h↘ 0.

(h) Using the inequalities (2) and the approximation (1), deduce the following
asymptotics for the negative eigenvalues of A :

N(h) ∼ 1

4πh2

∫
R2

V−(x) dx when h↘ 0.

This type of asymptotics is called a (semiclassical) Weyl’s formula.
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Exercise : Rank 1 perturbation of a Schrödinger operator
Our base Hilbert space isH = L2(R). Consider a potential function V ∈ L1

loc(R, [1,∞)).
We consider the following sesquilinear form :

q(ϕ, ψ) =

∫
R
ϕ̄′(x)ψ′(x) dx+

∫
R
V (x) ϕ̄(x)ψ(x) dx ,

defined on the domain D(q) = {ψ ∈ H1(R),
√
V ψ ∈ L2(R)}. We call q0 the restriction of

q on the domain D(q0) = {ψ ∈ D(q), ψ(0) = 0}.

1. (a) Show that q and q0 are closed sesquilinear forms.
(b) Let A, A0 be respectively the operators associated with q and q0.
(c) Recall why A and A0 are selfadjoint.
(d) In the case where V ∈ L∞(R), describe the domains D(A) and D(A0).

Hint : Apply the integration by parts separately on R− and R+.
(e) Show that and that the spectra of A and A0 are included in the interval [1,∞).

2. We want to compare the operators A and A0.
(a) Show that there exists a unique φ ∈ D(q) such that q(φ, ψ) = ψ(0) for all

ψ ∈ D(q), and explain why φ(0) 6= 0.
Hint : apply Riesz’s theorem on the appropriate Hilbert space.

(b) Denote K = {ψ ∈ D(q), q(ϕ0, ψ) = 0 for all ϕ0 ∈ D(q0)}. Show that K is a
one-dimensional subspace, and is spanned by φ.
Hint : for any ψ ∈ D(q), show that ψ0

def
= ψ − ψ(0)

ϕ(0)
ϕ belongs to D(q0).

(c) Let f ∈ L2(R). Set ψ def
= A−1f and ψ0

def
= A−10 f . Justify that these states are

well-defined. Show that ψ − ψ0 ∈ K.
(d) Deduce that the difference A−1 − A−10 is a rank one operator. Show that this

operator must be a multiple of the orthogonal projector πφ on the state φ,
namely A−1 − A−10 = cπφ for some constant c = cV ∈ R.
Hint : notice that A−1 − A−10 is symmetric.

3. We will now treat more explicitly the case where the potential V = 1.
(a) Using the defining formula q(φ, ψ) = ψ(0), compute the Fourier transform φ̂(ξ)

of the state φ ∈ D(q) defined in 2(a). Using contour integrals, give the explicit
formula for φ(x).

(b) Write the action of A on f as a multiplication operator in Fourier space, and
then as a convolution operator acting on f .

(c) From this expression and the condition A−10 f ∈ D(A0) ⊂ D(q0), compute
explicitly the constant c = cV=1 for this case.

(d) What are the spectra of A and A0 for this case ? Hint : notice that A−10 is a
compact perturbation of A−1.
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