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Abstract

The color-flavor transformation, an identity that connects two integrals, each of which is over one
of a dual pair of Lie groups acting in the fermionic Fock space, is extended to the case of the special
unitary group. Using this extension, a toy model of lattice QCD is stud\lgdspemes of spinless
fermions interacting with strongly coupled $AJ.) lattice gauge fields in 1 dimensions. The
color-flavor transformed theory is expressed in terms of gauge singlets, the meson fields, organized
into sectors distinguished by the distribution of baryonic flux. A comprehensive analytical and
numerical search is made for saddle-point configurations of the meson fields, with various topological
charges, in the vacuum and single-baryon sectors. Two definitions of the static baryon on the square
lattice, straight and zigzag, are investigated. The masses of the baryonic states are estimated using
the saddle-point approximation for largg . 0 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In quantum chromodynamics (QCD), a hierarchy of scales is providetiby 1 GeV,
the scale of chiral symmetry breaking, andcp ~ 0.18 GeV, defined as the location of
the Landau pole of the one-loop beta function. The running coupling constant increases
from weak to strong coupling as the momentum scale is lowered from the perturbative
regime abovel, down to Agcp.
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In the past two decades a great deal was learned about the non-perturbative structure
of QCD at scales between, and Agcp. The guiding idea was to construct low-energy
effective theories which encode the symmetries of the fundamental QCD Lagrangian. To
obtain these effective theories, one may start from full QCD, and integrate out the high-
energy degrees of freedom (quarks and gluons) in order to produce a low-energy effective
action in terms of mesons and baryons. In this way it was possible to recover the chiral
Lagrangian [1-4] that had been introduced phenomenologically by Weinberg [5].

In a more recent development, it was shown [6] how to extract the effective long-
distance degrees of freedom by starting from the lattice [7,8] formulation of QCD. In
that approach it is assumed that the long-distance physics of lattice QCD (LQCD) can
be described by a strongly coupled lattice theory. From the latter, one gets the continuum
chiral Lagrangian by expanding the effective action in powers of the lattice spacing and
external momenta. All the terms of the Gasser—Leutwyler continuum effective Lagrangian
[9] can be recovered in this way [10]. The lattice formulation is, however, deficient in
one respect: by the technical difficulties with chiral symmetry for lattice fermions, the
chiralanomaly is lost, i.e., faV y massless quark flavors the chiral symmetry of the lattice
effective theory is UNy) rather than SUVy).

This type of approach was initiated in [11,12]; it relied on a “bosonization” of the
strong-coupling LQCD action, and a lar@&-or large-dimension expansion. Technically,
the heart of the method is the computation of integrals over the grogy SWith Haar
measure, weighted by V), Some general results for such integrals have recently been
reviewed in [13].

A few years ago, an alternative kind of bosonization scheme was introduced [14],
relying on a mathematical formalism later called the “color-flavor transformation” [15].
This transformation relates two different formulations of a certain class of theories. In
condensed matter theory, the transformation has found a number of applications, among
others to the random flux model [16].

The color-flavor transformation in its original version applies to the gauge grovp)U
For this group, all gauge singlets are of “mesonic” (or quark—antiquark) type. In order
for baryons to appear, one needs to repla¢# ) by the special unitary group SW,).

In Section 2 of the present paper we extend the color-flavor transformation (.5U
by decomposing the (colorless) flavor sector of Fock space into disconnected subsectors
labeled by the baryonic charge.

In Sections 4-7 we apply the formalism to a toy model of LQQD: species of
spinless fermions interacting with strongly coupled(8b) lattice gauge fields in & 1
dimensions. The color-flavor transformation yields a dual representation of this non-
Abelian model. Combining numerical computations with analytical considerations, we
conduct a comprehensive search for saddle-point configurations in various baryonic sectors
with different topological properties. We use these configurations (without fluctuation
corrections) to estimate the mass of a single baryon in our model. In doing so we ignore
the Mermin—Wagner—Coleman theorem (asserting that spontaneous breaking of continuous
global symmetries does not occur in-11 dimensions), by assuming the pattern of chiral
symmetry breaking that is known to occur in the physical casejfidlimensions.

After the present work had been completed, we learned that thi&y Steneralization
of the color-flavor transformation has also been worked out by Schlittgen and Wettig [17].
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2. Color-flavor transfor mation for SU(N,)
2.1. Group action on fermionic Fock space

In this section we set up some algebraic structures, which are needed to establish the
“color-flavor” transformation for the special unitary group. Our discussion follows the line
of reasoning of Ref. [14] but is somewhat simpler, as we do not need the superalgebraic
framework employed there.

We start by considering a set of fermionic creation and annihilation operﬁjomd
fj‘, which obey the canonical anticommutation relations

(£ f31=0. {fa. fz}=0 {fa f}=5ans".

The lower index takes the valueisz or —a, with rangea = 1, ..., Ny, and the upper
index takes the values=1, ..., N.. Having QCD in mind, we interpret the operators
f: ia and f* , as creation operators for “quarks” and “antiquarks”, respectively; the index
corresponds to the gauge (or color) degrees of freedom and thedndegls the different
quark flavors. (The quarks are regarded here as being spinless.) The opﬁjmod;ﬁ‘
act on a Fock space with vacuu® and its conjugaté0|, by £ |0) = 0 and(0| f§ = 0 for
all A and:. N

We next consider the set of quadratic operaibjj% defined by

Elyiv=Tlatly E+a— = Flaf?y.
7a+b_fl f+b? E, 7b=fi fl

The C-linear span of these operators has the structure of a complex Lie alggbra,

More precisely, the operatoEf{B obey the commutation relations of a set of canonical
generators of the Lie algebg#(2N s N.):

) ) ) i
[EAB’ E ] = 5]k‘SBCEXD - SII‘SDAECJB

Thus we have a Lie algebra isomorphism frei2N¢N,) (i.e., the space of complex
matrices of size X ¢ N. x 2Ny N, with the Lie bracket given by the commutator)do

1gI@NN) — &, mistyi= Y mipEq,
ij,AB
This isomorphism lifts to an isomorphism of the corresponding complex groups:
T:GL(@2NsNe) — G, M =expim) — Ty = explty), (1)

which forms a (reducible) representation of @IV s N.) on Fock space. The representation
is single-valued (which means there are n@d \bbstructions from the multi-valuedness of
the logarithm) as the spectrum of each opermm is the sef0, 1}.

The Lie algebragl(2NyN,.) has two subalgebragl(N.) and gl(2N;) which are
embedded in a natural way: a matrk € gl(N,) is identified with Iy, ® X, and a
matrixY € gl(2N ) with Y ® I, . Through these embeddingg(N.) andgl(2N¢) form a
pair of maximal commuting subalgebrasgit2N s N.), also known as a “dual pair” [18].
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The subgroups GIV,.) and GL(2N ) are embedded into GRN¢N,) in the same way.
Their adjoint action on the fermionic creation and annihilation operators is described in
Appendix A.

We define theolor groupto be the subgroup SW.) of GL(N,), and theflavor group
to be the subgroup @Ny) of GL(2N ). GL(N,) contains an extra (1) subgroup which
lies outside the color group and, being generated by the unit matrix, commutes with the
whole group GI(2N s N.). This U(1) is generated by + Nyr where

~ 1 . 1 . .
Q=D Eily—Ny=-D (Flafia— Flafla) (2)
€ A € ai
counts the difference between the number of particles and the number of antiparticles:
0 = N%(N+ — N_). In contrast, the operator giving the total number of particles,

N=Y0:(fiafis+ flafL,), does not commute with the generatorgtiv ). We will
call Q the baryon charge operator

2.2. From color group integrals to flavor group integrals

Let wg andlﬁg be two independent sets of Grassmann variables, referred to as “quark
fields”, and consider the color group integral

2= [ v eali Ul +5,T00,). ®
SU(N,)

The Haar measur@éU of SU(N,) is understood to be normalized p"gu No) dU =1. We

also adopt the convention that repeated occurrence of an index impﬁies summation.

The color-flavor transformation will replace the integral (3) by an integral over the flavor
group U2N ). A key step in doing the transformation is to interpsgty, V) as the matrix
element of an operatd?P that projects on theolorless sectofor flavor sector) of Fock
space. This sector is the subspace of all stdl@gor) which are invariant under the color
group: Ty [flavor) = |flavor for all U € SU(N,).

The first step towards the color-flavor transformation is to express the projfeesr

P= / dU Ty. 4)
SU(Nc)
Let us now introduce the fermion coherent states
(W)= Olexp(Vl, fL+Viafia) 19 =exp(fL v, + fi,¥h,)I0).  (5)
By making use of the first set of relations in Appendix A, it is straightforward to show that
(@ Ty @) = exp(¥' Uyl + 97,0y’ )
for U € SU(N,). This yields the simple formula
Z(W,¥) = (¢[P|¥). (6)

To expressZ (v, ) as an integral over the flavor group, we will derive an alternative
representation of the project®, as an integral over coherent states of the flavor sector.
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2.3. The flavor sector

The subspace of states in Fock space which are invariant udgp Was described in
[14]. It consists of the vacuum and ofesonicexcitations on top of it. The prototype of
such an excitation is the “one-meson” state

|Mab) Z El, 0= fi,f,l0).

By the multiple action of thegl(2N ) generators?fﬁaﬁb (where we have gone back to
using the summation convention), one can build states containingyi\i@ mesons, with
different flavors. These states are automaticaliylJ-invariant; conversely, all UV,)-
invariant states are linear combinations of such multi-meson states. The g@nf U
acts irreducibly on this invariant subspace.

The set of SWUN,)-invariant states is larger. To obtain it, one relaxes the constraint
QW) = 0. Thus there exist colorless sectors of Fock space on which the central
generato@ takes a non-zero value. These sectors contaitéingons which are totally
antisymmetric combinations &, quarks. A baryon with flavoray, .. ., ay, is defined as

1 .
|bA1...ANC> = nglanc f,gl leC | >7 (7)
c!

where theA; = +q; are taken either all positive (baryon), or all negative (antibaryon).
A matrix g € GL(N,) acts on this state simply by multiplication with Dg}f (respec-
tively, Det"1(g)). Therefore, the state is invariant under the color group&U

The above baryon (respectively, antibaryon) is an eigenstate of the baryon charge
operato@ with eigenvaluet-1 (respectively—1). Acting on it with the generatorEXB
of the flavor algebrggl(2Ny), one builds other colorless states with the same baryon
number, which form an irreducible subspace fai2l,): the one-baryon (respectively,
one-antibaryon) sector.

The one-baryon sector can be generated from the state (7) with;al 1. One can
similarly build Q-baryon (respectivelyp-antibaryon) states from

0
1Bo) = Hf+a -fNej0), [Bo)=10), |BQ:]‘[ 0. (8)

The values of the baryon charge range frenvV, to Ny, according to Pauli’s exclusion
principle. As with Q = 41, acting on|Bg) with the algebrgl(2N ) builds the full O-
baryon part of the flavor sector, so the grouf2lV,) acts irreducibly on this part. This
can be proved by using the dual-pair property of the subalgei(as s) andgl(N.), as
exposed in [18].

To summarize, the flavor sector of Fock space decomposes Mto+21 subsectors,
characterized by their baryon chargés Each sector carries an irreducible unitary
representation of the flavor groug2Ny).



314 J. Budczies et al. / Nuclear Physics B 635 (2002) 309-356

2.4. Coherent states

Having decomposed the flavor sector as described above, we can now express the
projectorP in a different way. For this purpose we will use coherent states, in the spirit
of Perelomov [19]. On each subsector with a fixed baryon ch&gee consider the
generalized coherent statbsilt by the action oG = U(2N ) on the reference stat8y),

i.e., the states

def def
VgeG, YO=-Nys.....Np: lg0) = TelBo), (20l = (BolTy.  (9)

The crucial property of coherent states we will now use, is that they supply a resolution of
unity. Because of the irreducibility of the(2NV ) action on eacl@-subsector, the operator

def
Po = “Q/dg|8Q>(gQ| (10)
G

coincides with the orthogonal projector on that subsector, the only provision being that
the normalization constanty be chosen appropriately. Indeed, the oper&prtrivially
commutes with every element of the flavor group; Schur's lemma then ensures that it
is proportional to the identity on each irreducible space of this group, therefore, on
each subsector with fixed baryonic charge. Owing to orthogonétigyvanishes on all
subsectors witl)’ £ Q, whereas it is the identity on th@-subsector if we take

-1
ag=(fdg|<BQ|Tg|BQ>|2> : (11)

G

Some particular values of the constant (namelyx..1) are computed in Appendix B.
For the matrix element (6) of the projectBron the full flavor sector,

Ny
P= @ Po,

0=—Ny
we now have a new representation:
Ny
Zw= ) agfdg (Zlg0)(g0l¥). (12)
0=-Ny ¢

To compute the overlap@ |go) and(gp|¥), it is convenient to use a Gauss decomposi-
tion of G = U(2N): almost any matrixg = (2 g)e G can be factored as

where the relationg = BD™1, Z = D~1C, andA = A — BD~1C hold. The decomposi-
tion becomes singular ib does, but this happens only on a submanifold of codimension

one (and, hence, measure zero)hfThe unitarity ofg implies Z = —DTztAT™" and
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allows to write the central matrix in the form

A 0\ [(Q+zzhY? 0 U 0 "
(o D)_< 0 (1+ZTZ)—1/2)<0 v)' (14)

The matriceg/ and) are unitary, S((Zg O) is an element of the diagonallV s) x U(Ny)
subgroup oG, which we callH . It can thus be shown that the elemegaitsf an open dense
subset ofG are in one-to-one correspondence with the trip{e&si/, V), where the pair
diagt, V) is an element o1, while Z represents a point in the coset spaged and can
be any complexVvs x Ny matrix. Moreover, the Haar measutg of G factorizes as

/dg: / d(gH)/dh: f du(Z,ZT)/dZ/{dV. (15)
G H C H

G/H foNf

Bothdif anddV are normalized Haar measures o(Ny), and

du(z,z%) = cy,Det(1+ 22" 2V [[dzi; dZ;
i,j
is the normalized invariant measure G H. The normalization facto€y, is computed
in Appendix B; see Eq. (B.6).
We now explain how to use this decomposition to compute the overlaps. The Gauss
decomposition (13) carries over to any representatio6 oo for everyg € G we can
write the operatof, as

Ty, =T; Tdiag(A,D) Tg, (16)

wheret = ((1) i) and = (% f) According to the relations given in Appendix A, the factors
T; andT; act trivially on the reference states:

VYO =—Ng,...,Ny: TZ|BQ>=|BQ), (Bol|Ty = (Bogl. a7

The action of the block-diagonal operator is slightly more subtle. Using the third set of
relations given in Appendix A, we get
Tgiagi.p)|0) = (DetD)<|0),
Ne
T g iy BL) = (DetDN [ [ Au1 fL,10),
i=1
N
Tyagi.py| B-1) = @etD) [ (D7), /2,10).
i=1
(To make sense of these formulas one must remember that we are using the summation
convention: the flavor index under the product is understood to be summed over.) These
formulas directly yield the desired overlaps with |

iag(A, D

Ne
(7 |g0) = (DetD)™ [ [exp(V', Zap ¥’ ;).
i=1
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Nc
(¥ |g1) = (DetD)N [ [ v Acrexp(¥h y Zap V' ).

i=1

rs 1>—<DetD>Nf1"[D Y exp(V, Zavi ),

i=1
as well as the overlaps witld):

Ne¢
(gol¥) = (DetD") ¥ [Texp(v . Z asvrisy).

i=1

NC ~ . . .
(q1|W) = (DetDT)N‘ Ayl exp(vl 2T vl,),

N

(g-11¥) = (DetD")" H )y 2 vr).

The overlaps with the coherent statgg) containing more than one baryorf)| > 1) can
be computed in the same way; in front of the exponential factors, there wifd bsimilar
products, with flavor indices, 1. ., | Q.

We now insert the above expressions for the overlaps into (12), and use the factorization
(15) to arrive at an integral over tripleZ (i, V). Leaving theZ-integral for later, we next
carry out the integrations over the unitary matrieand). They enter in the overlaps via
the matrix elements of andD; see Eq. (14). To simplify the notation, we first perform a
flavor rotation on the Grassmann fields:

¢, =1+ZZavi,, ¢, =¥ (V1+ZTZ)w,
$oy =V W1+ 220w, ¢, = (V1+272),,0",

The integrals we need to compute then read as follows (assuthin®):

Q NC
X0 ((Z)-l— ’ ¢+) dzefaQ / au 1_[ l_[((isiauac‘) (¢f§-buc_bl) ’ (18)

UNy) c=1i=1

x-0G9)Eay [ dv]'[l"[qs Y@ Vhe). (19)

UNy) c=1i=1

We also setyo = oo, and xo (¥, ¥; Z) = xo(p+. d+), and x—o (¥, ¥; Z) = x—o(¢-,

¢_). The functiony1(¢+, ¢+) will play a distinguished role in the lattice gauge theory

application in Section 3, and we therefore evaluate it explicitly in the next subsection.
The integrations oveH having been done, we are left with an integral ogeH , i.e.,

over aZ-dependentintegrand, in eaghsubsector. Putting everything together, we finally
arrive at the following identity:
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dU exp(¥' Uyl + 9,07y’ ,)
SU(N,)

Ny ] exp, Zap W, + ), 2Tl )

Q:_Nf(CNfXNf (20)

which is called the color-flavor transformation for §\4.), and is the central result of the
present section. Note that the right-hand side of the transformation has the attractive feature
of organizing the contributions according to the different baryonic sectors.

An effective action in the bosonic variablfecan be obtained by doing the (Gaussian)
integral over the Grassmann fields. This will be done in a lattice gauge contextin Section 3.

2.5. Evaluation ofy1

In this subsection we evaluate the coefficient

N,
s =a [ a0 (6 0)
U i=1
Only the first column of the unitary matri% occurs in the integrand, so the integral
is effectively over a unit sphere iN ¢-dimensional complex space?8—1 = CNs /R,.

Parametrizing the latter by a complex vectet (z1, .. ., INy) with unit norm|z| =1, we
have

[z 42 @ D TTE (B2 (@, 20)
f|z|:1dQ(Z, 2) ’
whered 2 (z, 7) is a UNy)-invariant measure on the unit spherg= 1. By homogeneity

in z andz, we may use the trick of replacing the numerator and denominator by integrals

overCVr, with a Gaussian weight functiom&” included in the integrands. The answer
then easily follows from Wick’s theorem:

x1(p4, p4) = a1

_ Nr—1)! e Zi o(i
1@ b =ar— T =D S oo T 7,07

— 1)
Ne+ N - & 0 L
(N = D! - B
= sgno v (142277 o, 21
a1 (Ne + N}‘ N GGZG: g il_!w+a( + )abw+b ( )
. Ne —

whereG y, denotes the group of permutations of the numbers.1N,.

This result was already obtained in [22]. More general considerations based on the
group theoretical approach were presented in [17]. Our calculation of the pre-exponential
factorsyxo, x+1 are in agreement with the latter work where a general formulg fowas
derived.
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3. Color-flavor transfor mation on the lattice

We consider a Euclidean $W,.) gauge theory in I+ d dimensions placed on a
hypercubic lattice with lattice constant The fermionspé(n), with colorsi =1, ..., N,
and flavorsh = 1,..., Ny, are put on lattice sites labeled by= (no, ..., ny), while the
gauge matrix variable§ (n + 45) = expliag A, (na + %5)] € SU(N,) are placed on lattice
links n + /2 (we label links by theimiddle point}, starting from sites in any of the
directionsu =0, ..., d. In the limit of a strong gauge coupling the gauge theory has the
partition sumz = [ [], dy (n) dy (n) Z (Y, ¥) with [11]

ZW, ) = Hesm,w.&(n) I1 / dU(n + %) exp{ Suyd (n + %) } (22)
U(Ne)

n kg

The fermions on two neighboring sitesandn + & are coupled through the gauge fields
on the connecting link + /i/2 in a gauge-invariant way:

9 d N
H a | 7 ij u ' .
Sv.y.p (n + E) = 7|:wb(”)U / (n + E)l/fé (n+n)
— i+ Uty (n—}— %)w,i(n)], (23)
while the (bare) quark mass couples the fermions diagonally

Sy (M) = amy (n)y (n). 24

We are not going to worry here about the fermion doubling problem and will restrict our
considerations to this naive discretization of the fermionic action. Also, for simplicity we
do not take into account the spin degrees of freedom, leaving their inclusion for a future
publication.

We rescale the fermionic fields so as to absorb the prefa¢j@. This just adds a global
prefactor toZ, and has no effect on the physical quantities. Th&/&\-integral overU
on each link is then identical to (3) after the following substitutions:

Ve=vm),  Yu=y0+p, Y-=vy0), Y-=v¢@+.
On each link, we perform the color-flavor transformation (20), thereby introducing a

complex “flavor matrix field"Z (n + %), Ztn + %). The outcome of the transformation
reads

ZW,¥) = Z l_[ g2amy (n)y (n)
{0} n

[ oo d b
H NNy

exp{S.y.5(n+5)}
Det(1+ Z1Z(n + &)V’

(25)
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where the sum on the right-hand side extends over all possible distrib{ifigms baryonic
charge (actually, baryonic flux) over the links of the lattice. The color-flavor transformed
actionon alinks + 1/2 is

Sz (” + %) =Vl () Zap (n + %)wl‘;(n)
U+ ) Z b <n~|- %)wj(nﬂl), (26)

and they -coefficients are%(n + %) =qagand (withQ = Q(n + %) > 0)

0 f
XZ"//»W(H+2>
= NEIONIEY A n—l—& 14277 n+E Y(n+ Q) (27)
Xom+4) 2) 2 w)
o it
XZ,I/le(n—}_ 2)

_ XQ(n+g)<\/1+ sz(n n %)w(n), Jn +;1)\/1+ sz<n n %)) (28)

The fermions are now coupled through thigvor indices, whereas in the original action
the coupling had been mediated by the color degrees of freedom. Moreover, the coupling

has become ultralocal: the fermions at a siteouple only to one another, vié(n + %),

and so do the fermions at site+ /i, via ZT(n + %). Correlations between neighbors
are solely due to the relation betwegnand ZT by Hermitian conjugation. A graphical
description of the change of coupling scheme is given in Fig. 1.

The partition function (25) is a sum over all configurations of baryonic fluxes

{Q(n+ 5)}. For most of these configurations, the Grassmann integral vanishes identically.
To see that, we expand the integrand for a given configuration into a polynomial in the
Grassmann fields, and count (for each ay¢he number of fermiong (n), ¥ (n) in the
various monomials:

Voo Uy Wap

n ‘za,, ZL,’ nHi

| |

UAG) -u A

Fig. 1. Coupling of the fermion fields before and after the color-flavor transformation.



320 J. Budczies et al. / Nuclear Physics B 635 (2002) 309-356

e For every directionu, the coefficienty € (n + %) containsN,.| Q| Grassmann variables
¥i(n)if Q > 0, and the same number of Grassmann variapjgs) if Q0 <O0.

e For the coefficientg 2 (n — %) the situation is the same, except thiat) and (n)
switch roles. . ) )

e Each term of the expansion of U+ Z"V+2ami v jnvolves as many/ (n) asy (n).

The Grassmann integrdild v (n) dv (n) extracts the coefficient of the top-monomial,

Ne Ny

/dnﬁ(n)dw(n) [TTTviomvio =1,

i=la=1

setting all others to zero. This monomial contains as maqy) asv (n). Hence, in view
of the counting above, the contribution from a configurafiorin + %)} vanishes unless
the following condition is met:

ég(n%):é(z(”_%)‘ (29)

The physical meaning of this equation is conservation of the baryon current: the (algebraic)
number of baryons “arriving” at the site(from the linksn — [1/2) must equal the number
of baryons “leaving” the site (via the links+ [i/2).

The general structure of the partition function (25) corresponds to the hadronic
correlation function written in terms of colorlesg -quark currents [20,21].

3.1. Integration over the fermions

Based on the general considerations above, we perform the integration over the fermions
sector by sector, and present below two particular cases: the “vacuum”, i.e., the sector

where the baryonic fluxQ (n + %) vanishes on every link + 1/2, and a toy model of a

static baryon on a mesonic background (witkv: + %) =1 along a time axis).

In each case, integration over the Grassmann variables yields a purely bosonic effective
action, which depends on the configuration of the fiefisand ZT. After computing
these effective actions, we will look for their saddle-point configurations to estimate the
respective partition functions.

Before computing the effective actions in particular cases, we emphasize the conse-
guences of chiral symmetry, which emerges in the limit of zero quark mass. The hyper-

cubic lattice is bipartite, so it can be split into two sublattices according to the parity of

|n| d=EfZM n,. Given this splitting, the effective actiors§Z, Z™1) of all sectors are invari-

ant under the following global transformation:

|n| even Z(n + %) > Ulz(n + %)Uz,

ZT<n+ %) UZTZT<n+ %)UI
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|n| odd: Z<n+ %) — UgZ<n—|— %)UI,

ZT<n n %) > UlzT<n n %)Uz, (30)
for any pair (Uy, U2) € U(Ny) x U(Ny). Therefore, in each sector, the saddle-point
configurations in the chiral limit form a continuous set (namely an “orbit”) generated by
acting with the chiral symmetry group (W) x U(Ny). As soon as the quark masses

are turned on, this degeneracy disappears, and the saddle points become isolated. Eq. (30)
show that the fieldZ, ZT(n + 5) transform differently according to the parity pf|.

To stress this difference, we give different names to the fields on different sublattices: the

fields living on the “even” lattice links will be called, vim+ %), while the fields on the
“odd” links will be denoted by, W' + £).

3.1.1. Vacuum action
For the vacuum sector we have zero baryonic flgx= 0) everywhere on the lattice;
the integral over the fermions, being Gaussian, is then easily done and yields

Zyacuum= f A9 () (1) Zvacuun(V B)

= /{l_[aodu(z, VAl (n + %)) } exXp(—Ne¢Svacuurl Z1), (31)

nu

where the result of the integration has been sent back to the exponent. The integration
measure in curly brackets will be denoted ByZ, Z%) in the following. The factorN,

in the exponent comes from the color content of the fermions: since the atign v)

does not couple fermions with different colors, the Grassmann integral is a proddgt of
identical integrals. The effective action is

d ~

n M=0
where

def d i 2

de Ll t [l
M) = 2am + Z[z<n+ 2)+Z <n+ 2)} (33)

n=0
A1) def AV T

N(n+2>—1+Z<n+2>Z <n+2>. (34)

3.1.2. Static baryon action

By the static baryon we mean the following distribution of baryonic fluxes over the
lattice: Q(n + %) = 1 along the links of the “world line” (or “string”) = (¢,0,...,0) €
73 =0, withs =0,..., T — 1; on all other linksQ = 0 (see Fig. 2). This distribution
satisfies the current conservation law (29) at all sites but the erd® andr =T
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Fig. 2. Baryon string placed on a two-dimensional lattice.

of the world line. There it does, too, if we impose periodic (or antiperiodic) boundary
conditions on the Grassmann fields: for a lattice of sizen the time direction, we set
V(T +1,7)=v(L7), v(T+1,7)=¢(l,7). We again write the partition function in
the form (31),

Zharyon= / Dy Dy Zharyo( ¥, Y) = / D(Z, ZT) eXP(—NcSbaryorl Z]). (35)

The effective actiorSparyoncontains the “sea” termyacuurd Z1, plus an extra part coming
from the factorsy; along the world line of the baryon. These factors depend on the values
of the Z field along this line and on the adjacent links, through the following matrix:

def (14 ~ 1.3 3\ 4
G=N|[=0)M@10O)"N|(=0])--- T—--)0
(30)mavw(30)-w((7-3
R 1\ . .
x M((T — 1)0)—1N<<T — E>0>M(TO)—1. (36)
(We use the abbreviatiord = 0 + 0 to denote the sites or links on the world line of
the baryon.) This product of matrices runs over all sitesn the baryon world line (it

is expressed as a “quark propagator” along that line). In Appendix C we show that the
effective action takes the form

-7
o NeSoaryorl Z1 _ 1 { a0 (Nc +Ny— 1) }

N | o1 N,
N

x Y N@[(Tre!) e Ne SacuniZ], (37)
&G@SNC =1

In the non-vacuum factor of (37§, runs over all conjugacy classes of the gradp, of
permutations of the s¢L, ..., N.}. Every representative of the clas€an be decomposed
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as a product of cycles of various lengthsuch that;(¢) cycles of length occur; thus,
each classé is uniquely specified by the sequerieg, or equivalently by a Young diagram.
The weight facto\V'(6) is simply the cardinality of the class, and is given by

N¢!
[Ty 1@ e @)
For the lowest numbers of colors the explicit expressions are

N(@©G) = (38)

Ne=1:  Sparyon= Svacuum— INTrG 4 const

1
Ne=2:  Sparyon= Svacuum— > |n((Tr G)Z +Tr GZ) + const

1
NL‘ == 3: Sbaryonz Svacuum— é |n((TI’ G)3 + 3TrGZ TrG + 2TI’G3) + COHS'[ (39)

The constants, which are not given above, make contributions to the baryon mass, so they
need to be taken into account in the final answer.

In the following section, we look for the saddle-point configurations of the effective
actionsSyacuumand Sparyon

3.2. Saddle-point equations

In the two sectors that we are interested in—the vacuum and the static baryon—we
wish to compute, or at least estimate, the partition functions (31), respectively, (35). Since
we are unable to provide an exact answer, we will treat both integrals in a saddle-point
approximation, valid in the limit of a large number of cola¥ws. For both the vacuum
and the static baryon, we will restrict ourselves to a purely classical approximation, which
is to say we will identify the saddle points, evaluate the action functional on them, and
approximate the partition function @&~ e~5(Zsp), Thus we neglect all loop corrections,
which are of higher order in/iv,.

In the vacuum sector, wheé. appears explicitly as a factor 6{acuunl Z1, the saddle-
point approximation is fully justified in the largh’; limit. The situation is less transparent
in the static-baryon sector (37). However, for the ansatz made below, the rGatsix
proportional to unityG = glly, . (Note thatG transforms under the chiral transformation
(30) asG — UGU 1, so the multiples of unity are fixed points of this group action.) If
one decides to consider only those configurationg @ind ZT for which G is scalar, the
static-baryon action (37) simplifies to

Sbaryor{Z] = Svacuunl Z] — |Ogg -+ const
so the saddle-point expansion is rigorously justified (for lang@ if the integral is

restricted to these configurations. We will use it to approximate the full integral.
4. Vacuum saddle-point configurations

The saddle-point analysis for the action functiofigakuun{ Z] has already been carried
outin[16,22,23], so we are going to be brief here. In varying the action (32), the complex
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matricesZ and ZT are to be considered as independent, which leads to two sets of

equations. Variations of (n + %) affect only the blocksV/ (n) and N (n + %), with the
linear response being

N A —1 N
SSvacuuszr<—M(n)_l~|—ZT<n+%)N(n—l—%) >8Z<n+%>.

The resulting saddle-point equation reads:) 1 = ZT(n + %)N(n + %)*1 or, by taking
the inverse on both sides,

AN\ —1

M(n)=Z<n+ %) +ZT<n+%) . (40)

Similarly, the variatiorsZ" (n — $) influencesM (n) andN (n — ), and yields the saddle-
point equationV (n) " = N(n — 5)~1Z(n — 3), which is equivalent to

A AN —1
M(n):ZT<n—g> +Z(n— g) . (41)

As an immediate corollary, we have

A AN —1 PN AN —1
Z(n—i—%)—l—ZT(n—i—%) :Z‘(n—%)—l—Z(ﬂ—%) (42)

at every siten and for any paig, v.
4.1. Homogeneous vacuum

The simplest possibility for the field, ZT is the scalar ansatz = ZT = zI, with
z a spacetime-independent real number. The vacuum saddle-point Egs. (40) and (41) are
solved by this ansatz if we put

e 1 14 (am)? am (43)
CTET T oarIV T T2+l 2+ 1

If m > 0, the actionSyacuum takes different values on these solutions. Expanding it in
powers of(am), we get

(44)

(2d + 2)¢ V2d+1
am |,
(2d + 1)d+l/2 d+1

which shows that for a positive quark mass, the configuratierz . minimizes the action.

In the chiral limit ¢z = 0), a continuous set of solutions is obtained by applying the
transformations (30) to the homogeneous configuratien ZT = zyadl for

Svacuuniz+] = L4TIN, [In(

Zvac= (2d + 1)_1/2~

This vacuum configuration is invariant under the transformations of the diagonal
subgroupl; = Uz € U(Ny) of the chiral symmetry group, but it maps to a new “vacuum”
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by takingU1 = U € U(Ny), U2 = Iy, . By the Goldstone mechanism, the breaking of the
continuous WN r) symmetry leads to the existence of massless modes, namely the mesons,
an effective Lagrangian for which was obtained by expandiag,umnear this vacuum in
[16,22].

If £I+# U € U(Ny), the vacua obtained by translating the homogeneous ori& dne
staggered, in the sense that the valu& afepends on the parity of its position. However,
on adopting the notatiorg(n + %), W' + %) for fields on the even and odd sublattices,
the staggered vacua become homogeneous for each sublattice:

V(n + %) = (2d + 1)V, W(”/ + %) e e A (45)

In [23], it was proved that, modulo the(&s) degeneracy, the configuratiagh= zyac
is theuniquesolution of the vacuum saddle-point equations in the chiral limit (except in
dimensiond = 0, where the symmetry of the action is larger). The proof proceeds by a local
argument, showing that for each sit¢he 2d + 1) saddle-point equations involving (n)
imply the equality of the matrice®(n + %), ZTn + %) forall u =0,...,d; iteration of
this result then trivially leads to the set of staggered configurations (45). The proof strongly
relies onZ™ being the Hermitian conjugate &, a constraint which is not mandatory. By
relaxing it, we are now going to find a plethora of additional solutions of the vacuum
saddle-point equations.

4.2. Nonhomogeneous vacuum configurations

By local considerations, as stated above, the only solutions of the vacuum saddle-
point equations (and the Hermiticity constraint relatifigo Z1) in the chiral case are
homogeneous in both sublattice fieltlsand W. However, on a finite lattice, say with
the topology of a(d + 1)-dimensional torus.? x T, there is also ajlobal aspect to
consider: one has to make a choice of boundary conditions for the various fields. The
simplest choice are periodic boundary conditions in all directions, but one can also impose
6-twisted boundary conditions, say along the first spatial direction

A\ e i
4+ L1)=¢€ =
V<n+ 2+ ) V(n-l— 2),

W(n/ + % + Li) = ei9W<n’ + %) (46)

for all n and 1. An opposite twist for the field¥, W is natural in view of their opposite
behavior under the chiral transformations (30).

Now, accepting these twisted boundary conditions, let us investigate which configura-
tion will minimize the action (32). A homogeneous configuration suffers from a “phase
jump” along ad-dimensional boundary, which is energetically very costly. A more rea-
sonable ansatz for a minimum of the action is the following: the fi#d$¥ smoothly
rotate their phase, starting frolh W ~ zyacfor ny =1, t0 V = €%zyac, W = € 0zy5¢ at
n1 = L, with a linear phase evolution in between. In this way, everywhere in spacetime the
configuratioriocally looks like one of the degenerate homogeneous vacua.
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4.2.1. Contour deformation
The above ansatz fo¥, W is only qualitative. In order to actually obtain field
configurations that satisfiyoththe twisted boundary conditions (4&hdthe saddle-point
equations (40), (41), we need to relax the Hermiticity relation between the fiedatsl Z 7.
By its construction via the color-flavor transformation, the integrantieeum is to be
viewed primarily as a function of threal variables (Z,; + Z,‘;a)(n + %), i(Zap— Z;fa)(n +
%)}, the total number of which i® = 2N§ (d + 1) (TL%). From [23], this function for

0 ¢ 277 has no saddle points &, but it can be analytically continued in@?, where
complex saddle pointmay exist. On such a saddle point there must exist at least one link
(n+ %) where the matrixZ ™ differs from the Hermitian conjugate &f.

If a complex saddle point is not “too far” from the original contour of integration,
it contributes to the vacuum-sector partition function, upon deforming the contour of
integration so as to reach that point.

4.2.2. Vacuum saddle-point equations for twisted fields

We will demonstrate below the existence of complex saddle points for the vacuum
sector with anyd-twist. To make things simpler, we restrict ourselves to a 2-dimensional
spacetime, with a twist in the spatial boundary conditions (we call the time incée
spatial indexx). The above qualitative ansatz for the fields W suggests the following
symmetries:

o All fields are scalar, i.e., at each pointand ZT are multiples of the identity matrix.

e The fieldsV, W are time-independent. For each positigrihere are 4 field variables
associated with the time-like link which we denotedgyx), wo(x), vg(x), wg(x),
and 4 field variables associated with the space direction, which we denote by
vi(x +1/2), wi(x +1/2), vi(x +1/2), wi(x +1/2).

Thus, at each position=0, ..., L — 1 we have 8 independent complex variables. In the
chiral limit (m = 0), the saddle-point equation (40) pertainingMdx, t) on an even site
(x,1) read
vo(x) + wo(x) +v1(x +1/2) + wi(x — 1/2)

= vo(x) + 1/vg(x)

= wj(x) + 1/wo(x)

=v1(x +1/2) + 1/v](x + 1/2)

=wix —1/2) + 1/wi(x — 1/2). (47)

Eq. (41) pertaining td/ (x, t + 1) are obtained by interchanginge w, v* < w*. For a
finite quark mass,@n is to be added to the left-hand side.

e The two first equations, together with their~ w exchange analogs, allow us one
more simplification. Indeed, they imply the identities(x) = w{(x), vj(x) = wo(x)
(the alternative possibilityyo(x) = 1/wo(x) andvg(x) = 1/wg(x), is incompatible
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with other relations that need to be satisfied). So there remain only 6 complex variables
for eachx.

In the next section, we will provide approximate solutions for Eq. (47) together with their
v <> w partners and assuming the above symmetries.

4.2.3. Linearized problem

To solve (at least approximately) the above equations, we will use the fact that we
expect the fields to be locally close to one of the configurations (45). We can then expand
the saddle-point equations to first order in the perturbations from that configuration, and
solve the linear problem. We start by expanding the fields around the real positive vacuum
V., W =1/V3:

vo(x) = %(1+8vo(x)),

v (x) = %(l—l-ﬁvé(x)),

vix+1/2) = %(1+ Su1(x +1/2),
Vi (x +1/2) = %3(1+ Svi(x +1/2)),
wi(x +1/2) = %(1+ Swi(x +1/2)),
wi(x+1/2) = %(14— Swi(x +1/2)).

After inserting these expressions into (47) and expanding to linear order, we obtain a
“transfer matrix representation” of these equations, i.e., a linear equation relating the
vector of deviations of the spatial components of the figdas, sv], Swi, Swi} at position

x +1/2, to the same vector at positian— 1/2. The structure of the 4 4 transfer matrix
allows to decompose it into two 2 2 matrices, upon considering at each point the vectors

1) 1) Svy—§
rR= (00 wl), T wl). (48)
dv] + dwj dvy —dwy

In terms of these two vectors, the linearized equations read

R(x +1/2) = (:i é) R(x — 1/2) E'1.R(x — 1/2), (49)
I(x +1/2) = (i; ; _1722) 1 — 1/2) E' 1000 — 172). (50)

Similarly, the deviations of the temporal componehtg(x), $vjj(x) are determined by the
variations atc — 1/2:

Svo(x)\ _ (3/4 —1/4 38 —1/8
(et B OB LS LS (v A T L A
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Thus, the transfer matrix allows to express the linear variation of all fields by the deviations
at position J2.

To make thex-dependence more explicit, we seek to diagonalize the transfer matrices
T, andT;. The first transfer matriX, has the eigenvalues

1
—et* 21 (3122), associated to the vectors. &' (eﬂFl)' (52)

The second transfer matrt cannot be diagonalized but only put in Jordan normal form.
Indeed, it acts on the vectors

LE(Q) () (59

Tily=14 + 1, Til-=I_.

as

Therefore, an initial deviation
R(1/2)=c4r Ry +c—r R_, 1(1/2) =cqi |4 +c—j I
propagates through the transfer matrix as follows:
R(x +1/2) =cir(—€")" Ry + e (—€7*)" R,
I(x+1/2) =cyi 4 + (c—i +xcqi) 1. (54)

This linear evolution is only valid as long as the deviations frgi'2 are small compared
to unity. This cannot be the case uniformly for our twisted ansatz, where the fields near
x = L take values close to'¢ /+/3. Still, the fact that(x + 1/2) dependsinearly on the
position is encouraging: this is exactly the behavior we expect fopliasesf the fields
in the ansatz.

The linearization of the saddle-point equations can actually be performeangaf
the degenerate family of vacua (45). Linearizing the equations in the vicinity of a vacuum
v = et?/./3, we obtain for the deviations the same transfer matrix as before. We can
therefore construct local solutions near varigagacua using (54), and glue them together
to obtain a global, “rotating” solution. An equivalent procedure is to exponentiate the
deviations,

(1) = = explouo(o), (55)

etc., and extend Eqg. (54) farx + 1/2) to a larger domain of validity. This we do as follows.

First of all, theR-part of the deviations grows exponentially, and is staggered with
respect tax. Our ansatz excludes both features, so we simplyset= c_, = 0. Next,
we note that the-deviations depend on two coefficients,; andc_;. According to (55),
their real parts describe the moduli of the fields, and the imaginary parts the phases. In our
ansatz, we expect the moduli of the fields to be constant and cloge/® (h linear growth
would be incompatible with the boundary conditions). Therefore, we set Re 0.

The other coefficient_; causes a global shift of the fields, which can be interpreted
as a “generalized chiral rotation”: the generalization consists in taking in Eqs. (30) for
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and U, anyinvertible complex matrixand replacinglir and UZJr by Ul*l and Ugl. One

easily checks that the effective action is invariant under thisAGl) x GL(N ) extension

of the chiral symmetry group. The complex extension appears since we have relaxed the
Hermiticity condition. The parameter; is then seen to parametrize tG& -manifold of

scalar complex homogeneous vacua.

The remaining coefficient, which we abbreviated® Im c+i, IS responsible for a non-
homogeneous solution. As we explained above, deviations- iax of order@(1) can
be rescaled to deviations of ord&(«) by changing the reference vacuumi%/+/3. As
a result, the fields built from (55), (54) witty., = 0, Rec; = O satisfy the saddle-point
equations up to orded(«2) uniformly in x.

One can add terms of higher orderarno the exponent, so as to kill the higher-order
terms in the expansion of (47). By iterating the procedure, one obtains for the fields a series
expansion in powers ai, such that the saddle-point equations are satisfied to any order.
We conjecture that this expansion can be (re)summed, at least in a certain domain in
thereby yielding an exact solution of (47). The solution up to oudeis

jox

UO(X) — eC,,'—iOl/2+5012/8’

V3
gox L2
v(x+1/2) = g-itla—a/8
1( /)Aﬁ
—iax .
UI(X +1/2) = NE efcfi+la7a2/8_ (56)

The expressions for the fields, w* are obtained by replacing— —«, c_; — —c_;.
The coefficientx parametrizes the slope of the phase with respegt tmd it must be
tuned according to the boundary conditions:

aLl =0 +21Qy, (57)

where Q,, is some integer. For a finite twist « can be chosen small only in the large—
volume limit L > 1, in which casex can take several values labeled by the integers
Quw < L.

4.2.4. Topologically non-trivial configurations

We now return to the original problem with periodic boundary conditiaghs=(0).
We have shown that there exist non-trivial solutions, for which the fields are position-
dependent, with their phases rotatigg, times when the positiom goes from 0 toL.
The integerQ,, can be called thevinding numbeof the configuration. We can associate
a winding number to a (discrete) configuration because the phases of thevfieldare
varying smoothlywith position. More generally, when the lattice has the topology of a
(1 + d)-dimensional torus, one can associate to any smooth scalar configuration a set
of winding numbergQ,, ,}, each number specifying the number of times(aygotates
between the positiona + %) and(n+ L+ %).

Using Newton'’s algorithm, we have searched for numerical solutions of the vacuum
saddle-point equations (47), starting from trial configurations @ith=1, 0., = 2. We
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Vacuum m=0 Quw=1
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Fig. 3. Vacuum configuration computed numerically, with winding num@dgr= 1 in the chiral limit. Fields
which are numerically indistinguishable (e.guq| and |wj|) are represented by the same symbol. There is a

perfect fit with formulas (56), including the? correction. The difference betweéry| and |v8\ comes from
Rec_; #0.

plot some results in Fig. 3. These plots are very well described by our approximation (56),
including theO(«?) corrections.

4.2.5. Nontrivial vacua for finite quark mass

So far we have constructed non-trivial vacua only in the chiral limit, where a continuum
of homogeneous vacuum configurations exists. What happens to these non-trivial vacua
when the chiral symmetry is broken explicitly by switching on the quark mass?

Recall that form # 0 there remain only two homogeneous scalar vacua (43) out of
the former U1) continuum, with one of thenmz(ac = z+) being an absolute minimum of
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the action. One can again study the linearized saddle-point equations near this solution.
Unlike before, the results will apply only locally, since we cannot use the trick of rescaling
the homogeneous reference vacuum any more.

We have performed numerical searches fbr+ 1)-dimensional topologically non-
trivial vacua, assuming the same symmetries as before (we took scalar, time-independent,
smoothly varying fields). The saddle-point equations are modified by the addition of the
guark mass termdn to the left-hand side of Eq. (47). The outcome of these calculations
(see below) can be understood in large part by analytical reasoning, as follows.

To linearize the saddle-point equations around the paintve set

vo(x) = z4 €M etc (58)

As in the chiral case, the 4 4 transfer matrix splits into two 2 2 matrices that apply to

the vectorR, | defined in Eq. (48). These matrices can be written for an arbitrary value of
am, using the exact expression (43) tor(am) (we only consider the cagé= 1). Using

the same notations as above, they are

1 —z;2-2— 2 272 +27%
Trtam) = 1-27% —272 =24 2424 438 )
+ + + + + +
-2 2 2 4
1 2.°—2+72 275 — 2z
Tilam) = - ( —+212 + ZZ: 22 ++2z4 —EZG ) ' 9
+ + + 4+ + +
and the deviations on links pointing in the time direction propagate as
(5”0(’”) -t (1 _Z‘ZF> R(x — 1/2)
sp(x))  21-z2)\1 —z2
1 1 —zi)
+— I(x —1/2). 60
20+ 2) (—1 2 / (60)

One easily checks that both transfer matrices have the property Retn) = 1.

We expand both matrices and their spectra in powersmfsince we are interested in
the case of a small quark mass. In the massless limit the niat® is hyperbolic, with
negative real eigenvalues that are well separated from each other (one expanding, the other
contracting). Thus, a perturbation of ord@¢am) is still diagonalizable, with eigenvalues
and eigenspaces shifted by that same o€dern). We will keep calling the eigenvalues
—e*, with the expansion

Aam) =In(B+ 2v2) + am/V6+ O((am)?). (61)

On the other handT; (0) was non-diagonalizable with eigenvalad., so a perturbation

can change its qualitative features. For any postiiwe T; (am) becomes diagonalizable,
with real positive eigenvalues&@™ associated to eigenvectc(reakll(am). To express the

deviations of the fieldg(x), we use the coefficients

grao der L+ A€
1+2%
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For smallam, these data have the following expansions:

2 5
y(am) = sram)? + 2 @m®? + 0((am)™?).

4 4
k1(am) = —W(am)l/2 — W(am)w2 + (’)((am)5/2),
1 V3 1
k+o(am) = :|:W(am)l/2 + 7am + 2% 37/ (am)®? + O((am)z). (62)

For a finite massim, one expects the linear approximation to be valid only for small
deviations. However, the error introduced in the saddle-point equations by the linear
approximation is at most of ordé€?(am|5z|), so it remains small if the mass is small.

The numerical solution we obtained for a mass= 0.01 and winding numbe@,, = 1
(see Figs. 4, 5) suggest that the vec®mare negligible in a large domain efaround the
point x = O where fields are close to.. This indicates that the coefficientg, vanish,
like in the chiral case. The fields will, therefore, depend on two complex paranaeters

Svi(x +1/2) = e € 4 e_e 7,

SVi(x +1/2) = —e €1V —e_g VY

Svo(x + 1) = e, &40V ¢ _g-omrY, (63)
As opposed to the chiral case, both coefficientsre complex, so that both the phases and
the moduli of the fields vary witl. This ansatz fits the numerical solution even when the
deviations fron become of orde©(1), which is quite surprising. However, it is unable

to reproduce the zone where the fields cross the negative real axisc(rehy2). For a
quark massam = 0.01 the values of the various exponents are

y =0.1527, k1 =—0.3045 Kk 0= —-0.0673 k—o=0.0845 (64)

These values are used in the fits to the numerical solution shown in Fig. 5.

5. Static baryon saddle-point equations

The effective actionSyaryon for the static-baryon sector, Eq. (37), contains a “string”
term in addition to the “sea” tern§g,. While the sea term depends on every one of the

matricesZ (n + %), the string term involves only those matriceésand Z" that are situated
in the near vicinity of the string. More precisely, what enters into the baryon world line
propagatore, are the matrice®/ ((r + %)0) andM (:0). Of these, the former depend only

on Z andZT along the string, whereas the latter also involve the matéices+ i1/2) and
ZT#0— 1/2). The Z field on the remaining links (away from the string) appears only in
S0y, SO the variation with respect to these matrices yields the same Eqgs. (40) and (41) as
in the vacuum sector.

For simplicity let us consider the two particular cagés= 2 and N, = 3, using the
expressions (39) for the effective action. The most general variation yields

TrH(G8G) + Tr(G) Tr(5G)
Tr(G2) + (TrG)2

N.=2 Z3Sbaryon= 8 Svacuum—

)
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Vacuum am=0.01 Qw=1
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Fig. 4. Numerical vacuum configuration with winding numlggy, = 1 and chiral symmetry explicitly broken by
a finite quark mass. The fields are normalized with respect to the corresponding yalliee phases atgg) and
— arg(vé) are indistinguishable, so we plot them together (idem fotiapgand — arg(w1), respectively, arguf)
and—arg(vy)).

N¢ = 3:5Sbaryon

(TrG)2Tr8G + 2 TrG Tr(G8G) + Tr(G?) Tr(8G) + 2 Tr(G25G)
(TrG)3 +3TrG Tr(G2) + 2TrG3 '

= 8Svacuum—

We then work out how the various traces of powerssofespond to variations of each
matrix Z and ZT entering in the definition ofs. For instance, variations (10 + /2
with 1 # 0 affect only the matrixy (:0), whereas varyingZ ((r + 1/2)0) affects both
Mt0) and N((r + 1/2)0). These computations are simplified by the use of cyclicity
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Vacuum am=0.01 Qw=1 (L=120)
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Fig. 5. Same vacuum configuration as in the previous figure, plotted on a logarithmic scale. We fit the fields in the
range O< |x| < 30 (where they are close ta-) with the ansatz (63), using the theoretical valuesyfpk1, kg
from Eq. (64). The best fit is obtained with = (—2.80+i7.62) x 1075 ande_ = (—1.82—i5.48) x 1075,

properties: given any decompositién= G1G2, we may replaces in the static-baryon
action by the matrixG = G,G1, asG always appears under a trace.

We provide detailed calculations for the variation with respeat te Z((r + 1/2)0).
The modified factors o in this case areM(tﬁ)‘1 andN((r + 1/2)()), and the modified
matrix G reads

G+ =" M@0 1+5¢c[-MeO ™+ N (0 +1/20) "]

x N((t +1/2)0)---.
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It is now natural to conjugate + §G into

T(G+8G)T =38 +6¢ [—M(té)*l +etN(e+ 1/2)6)*1]6,
where & €'V (@ + 1/20)M(( + DO N((t — 1/20)M(:0)"L. The saddle-point
equation that follows from varying ((r + 1/2)0) then takes the succinct form

Z((t+1/20): 0= [—M(t())*l + 7N+ 1/20)N (¢ + 1/2)6)*1]
x (Iy, — Fn.(©)),

with the case-by-case definition of the matrix-valued funcfi@gn(G) being

N = 2: Fo(G) = G*’+GTrG
T TN GH (M6

G(TrG)? +2G2TrG + G Tr(G?) + 2G3
Ne=3:F3(G)= 2019+ +OTNG) +

(TrG)3+3TrG Tr(G?) + 2Tr(G3)

The saddle-point equation obtained by varyEfg(t — 1/2)0) is similar. In terms of the
matrix G’ = M (t0) "IN ((t +1/2)0) - -- M((r — 1)O) "IN ((t — 1/2)0) it is best expressed:

1

0= (Iy, — Fn.(&)) - [—M(t())—l +N((t—1/20) "z (¢ — 1/2)6)],

with the same definitions faFy, as above. The term multiplying the unit matfix, stems
from 8 Svacuum Note that this term factors out in both of the above variations.

To get an idea of the matriky, — FN (G), we compute it in the vacuum configuration
Z = zvadln, . In this case we have = G=0C Iy, . We then notice thaty, (aln,) =
N, 1 [y, for any number of colors and aiy+# 0. Therefore, on the vacuum configuration,
we getly, — Fn.(G) = (1 - Nf_l)]INf, which is invertible as soon a&¥; > 1. More
generally, this equation holds as long @ss a multiple of the unit matrix, which is a
property of the inhomogeneous scalar ansatz we will make in the next section.

Clearly, as long as the matriky, — Fy,(G) remains non-singular, the saddle-point
equations due to varying ((r + 1/2)6) and ZT((t + 1/2)6) are identical to those in the
vacuum sector, Egs. (40) and (41). As was said earlier, this is also the case for the equations
due to varying all matriceg andZ" not involved in the matrixg, i.e., those away from the
string. The only difference to the vacuum equations comes from the matrices on the links
adjacentto the string, nameI)Z(tfH- /2, VA= @/2) for the directiongt =1, ..., d.

These matrices are contained only in somie?! factor of G, and their variations give the
following saddle-point equations:

820+ 1/2): —M@0)+ ZT0+ a/2N@0+ /2) 7t

=—-M(t0)"' Fy,(G), (65)
V10— p/2): M@0 T+ N0 - /2 z(t0— i/2)

= —Fy,(G)M10)1, (66)
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where the matrice§, G’ are the same as before. These equations represent the only
obstruction that prevents the vacuum configuratibe= ZT = zyad from being also a
saddle point of the static-baryon sector.

5.1. Configurations for the static baryon 4+ 1 dimensions

In this section we present approximate solutions of the saddle-point equations in
the static baryon sector for the simplest non-trivial case, which is the two-dimensional
Euclidean square latticed (= 1). We use the same notations and assume the same
symmetries as in Section 4.2.2, so at each positidhere are 8 independent complex
scalar variables.

The baryonic string is placed on the Euclidean time axis at positief®. The equations
to solve are the vacuum saddle-point equations (47) off the strigg0), and the modified
equations

vo(0) + wg(0) +v1(1/2) + wi(—=1/2) + 2am
=v0(0) + 1/v5(0)
= wp(0) 4 1/wo(0)
= (1— Ny Y {ua(1/2) + 1/v5(1/2)}
= (1= N Y {wi(=1/2) + L/wi(-1/2)} (67)

on the string, together with the equations obtained by exchangirgw, v* < w*.
As in the vacuum sector, these equations imply the identificatigts) = wg(x) and
wo(x) = vg(x) forall x.

5.1.1. Physical requirements

Recall from Section 4.1 that demandi&g to be the Hermitian conjugate & (and
assuming the vacuum saddle-point equations) leads to a homogeneous configuration,
where the fields are constant on each sublattice. Such a homogeneous configaratitn
satisfy the last two of Eq. (67). To get a solution, we must relax the Hermiticity condition
(cf. Section 4.2.1), and consider the fieldsind ZT as independent variables.

We want the baryon to belacalizedobject, in the sense that a baryonic saddle-point
configuration should differ from a vacuum configuration only in some neighborhood of the
baryon world line. The baryon can then be interpreted as a spatially localized excitation of
this vacuum. A priori, baryon excitations may exist on top of each of the vacua described
in Section 4.

In Eqg. (67), the number of flavorS s enters just as a parameter, so one can extend the
equations to any real value of¢. In the limit Ny = oo, we recover the vacuum saddle-
point equations. We can therefore obtain a solution of the baryon saddle-point equations by
starting from a given vacuum configuration (&t = oo), and deforming the configuration
by continuous variation ofV; down to its physical value (say}; = 2). Any baryon
configuration obtained in this way carries the same topological charge as the vacuum it
is associated to.
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Baryon m=0 Qw=0 (L=120)
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Fig. 6. Numerical baryon configuration in the chiral limit. All fields are real. Top: the fields converge exponentially
fast tozyac. Bottom: we compare the numerical data (circles, triangles, squares) with the theory of Section 5.1.2
(3 lines, cross fot(0)).

5.1.2. Topologically trivial secto@,, = 0, chiral limit

In the sector with zero winding number, we numerically found a unique solution
(see Fig. 6) asymptotic to the homogeneous vacuwy i.e., satisfying the asymptotic
condition

* % 1X|—>00
Uy Vs Wpy Wy, —> zvaczl/\/é.

All the fields of this configuration are real and time-independent. Various components
coincide pairwise or in quadruples:

U0 = wo = v = W = z0, V1 = w1 = 71, vy =wi =z].
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One easily checks that the saddle-point equations are invariant under the following
transformation:

21(x +1/2) < 25(—x — 1/2), z0(x) < zo(—x), (68)

which represents a reflection at the baryon world line. The solution found numerically is
invariant under this transformation, and we believe the same to be true for the exact solution
(or else we would get a second solution by reflection). We can therefore restrict our study
to the domain & x.

Our numerics show an exponential convergence of all the fields towggedas we
depart from the string (see Fig. 6), and the signs of the deviations alternater with
This phenomenon can be explained by the linearized saddle-point equations studied in
Section 4.2.3. The linear theory indeed applies if the fields are cloggadowhich is
the case for large enough Egs. (51), (54), together with the physical condition that the
deviations decay as — oo, requirec, = 0. We thus get the ansatz

20(x) = %[u e v2e (~e)']

21x+1/2) = %[14_ c_, (_e—)t)x]7

1
* _ _ A\ X
zl(x+1/2)_ﬁ[1+c,ré( e ] (69)
with & = 3+ 24/2 as before. According to this linear approximation, the fields oscillate
around the asymptotic valugac, and the amplitude of the oscillations is controlled by a

. . . def
unique coefficient, which we denote lay = c_,.

The results (69) fit the numerical configuration not only far from the string (where this
is expected), but even down to the baryon string, where the fields deviate significantly from
zvac. More precisely, the ansatz fitg, z] for all x, whereas departs from it only at = 0.

The valuezg(0) def %(1—% 50) together with the parametér can be computed using the

(nonlinear) saddle-point equations on the string (67) and the reflection symmetry (68). We
obtain two equations:

C3+2C1Co+2C1 +4Co =0,
3€"C% + 4€'CoC1 + 4Co + C1(3+ 7€") +4=0.

The equations have four pairs of solutions, two real ones and two complex ones, conjugate
to one another. The physical solution (which deform&te= Co = 0 as we varyN ; from
2t000) is C1 = —0.0971 andCy = 0.0504, giving

V2 C1 =-0.8002 (70)

The relative smallness of these constants (except for the last one, which governs the
amplitudeszo(0)) may explain why the ansatz works well down to the string.

The above saddle-point configuration is indeed situated outside of the original contour
of integration: it is a “complex saddle point” (although all fields have real values).
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A contour deformation has to be performed for the variables+ z7)(x), which move
away from the real axis gs| decreases.

This ansatz is tailored to the limit — oo, but owing to the fast decrease towarqs.,
it is already quite good for short lattices. In Fig. 6 (bottom), we show a logarithmic plot
of the deviations of the fields from the homogeneous vacuum, for a lattice of total length
L = 20, as well as the values predicted by the above ansatz.

This configuration might be called a non-topological soliton, cf. [21]. Its characteristic
length (in units of the lattice spacing is »~1 = 0.5673, and its mass will be computed in
the next section.

This real scalar configuration is just one point on éWJ)-manifold of solutions,
obtained by the action (30) of the chiral symmetry group. For a generic point on
this manifold, the configuration is staggered in time. These solutions are saddle-point
configurations forNy = 2, and do not depend on the number of coltfs(which does
not appear in the saddle-point equations). However, the value of the action for these
configurations does depend di; see the next section.

5.1.3. Topological baryon, chiral limit

We also obtained topologically non-trivial configurations, characterized by a non-
vanishing winding numbep,,. In Fig. 7 we plot a solution in the baryon sector with
0y = 1. All fields are scalar, and have the symmetries described in Section 4.2.2.

Away from the string £ > 1), the moduli of the fields are close 1¢,¢, and the phase
varies linearly. In this region, we can apply the linear theory described in Section 4.2.3,
in particular the ansatz (55). Now only the coefficient has to vanish, to prevent the
deviations from exploding as — oco. As in the vacuum case, the coefficiant; can
take any value, yielding only a chiral shift of the fields. We find that =i« is purely
imaginary, as in the vacuum. The fields are well fitted by

vi(x +1/2) = %ei“(”l)[l—k cr (7)), etc (71)

for positive x. Near the string, the moduli of the fields behave in a similar way as in the
non-topological sector, whereas their phases make a smallfuetp = 0. Both this jump

and the value of _, can be computed from the full saddle-point equations near the string
(see below). The value of the parametedepends on the height of this jungp:will not

be exactly equal to its value in the vacuum, which is/2 for this topological sector,

but rather to(2r — B)/L. As a consequence, the convergence of the fields towards the
vacuum configuration away from the string will not be exponential, but only linear (the
fields coincide at the “antipode” of the baryon= L/2).

From Fig. 7, we can assume that the above ansatz is still a good approximation
for v1(1/2), and forvj(1/2) up to a phase jump oB/2. Given this assumption and
setting Ny = 2, the saddle-point equation on the baryon worldling0) + 1/v5(0) =
1/2{v1(1/2) + 1/v7(1/2)}, yields two real equations, one of which reads

sin(Ba/2+p/2)  3(1+Cy)
sin(a/2) T 2(14Cret)’
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Fig. 7. Numerical baryon in the chiral limit with winding numbér,, = 1 (we only plot the vicinity of the
baryon worldline). The absolute values are very similar to the ¢ge= 0, but now the phases vary linearly
away from the worldline. The slope and the phase jump at the baryon are in good agreement with the theory
of Section 5.1.3: we find2/a = 12342 and ar@g(1) — argvg(—1) = 0.046~ 5.24«.

For small anglesr and 8, this equation gives a linear relation between them: using the
value for C1 obtained in the non-topological sector, we get 3.24«. The value of the
slopex thenise =27 Q,,/(3.24+ L).

5.1.4. Topological baryony #0
As in the vacuum sector, our results for a finite quark mass are mostly humerical (see

Figs. 8, 9). We obtained solutions of the saddle-point equations with various winding
numbers, which are close to the corresponding vacuum configurations exceptin the vicinity
of the baryon string. Near the antipode of the string=L/2), the field approaches the
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Baryon am=0.01 Qw=1 (L=120)

absolute values (near x=0)

1z1z+

arg(2)/2 pi

Fig. 8. Numerical baryon with winding numbér,, = 1 and broken chiral symmetry. Away from the worldline,
the fields converge exponentially fastp. The logarithms of the phases are linear in the rangex3< 55, with
slopes 01523< y < 0.1533 in agreement with the theoretical value from Egs. (64).

homogeneous valug,, and the fields can be fitted by the linear theory developed in
Section 4.2.5.

6. Mass of the static baryon (N s = 2)

The massMparyon Of the baryon is defined by comparing the static baryon partition
function to the vacuum one. Since the saddle-point configurations are classified according
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Fig. 9. Numerical baryon with winding numbér,, = 2 and broken chiral symmetry. The symmetry with respect
to x = 0 is only approximate, due to a numerical loss of accuracy.

their winding numbeQ,,, the comparison is performed within a given topological class,
i.e., between a baryon configuration and the corresponding vacuum sector.
In the limit of large lattices, the ratio of partition functions is expected to behave as

Zbaryong, (L xT)
Zvacuum@,, (L x T)

As explained in Section 3.2, we estimate both partition functions through their respective
lowest-order saddle-point approximations:

e Moayonow T 35T — 0. (72)

Zp
Zbaryon exp(— N { Sbaryor zbaryonl — Svacuun{zvacl })- (73)

Zvacuum
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As before, we will only treat thél + 1)-dimensional case.
6.1. Mass of the static non-topological baryon

We first study the baryonic excitation on top of a homogeneous vacuum, which has
vanishing winding number. The value of the action for the homogeneous vacuum was
given in Eq. (44). It is proportional to the volume of the lattice, and is called a “sea” term
in the literature.

The actionSyacuumis part of the full static baryon action (37), which leads to a “sea”
contribution to the baryon mass:

MseadZef N, Svacuun{Zbaryon] — Svacuun{zvacl )
T
We now assume the limitz = 0 (Section 5.1.2). By the time-independence of both
configurations, the sea contribution reads

L/2
> Ni(x +1/2) No(x)
Mseaz NfNL‘( In M/
x=—L/2 ) Z=zbaryon

N Ni(x +1/2)No(x)
M (x)

VA =Zvac>

Since the deviations of the fields fromac are small and decrease exponentially—see
Eq. (69)—it is reasonable to keep only the linear order, and extend the suns: tso.
Quite remarkably, this linear approximation givesvanishingsea term (form = 0).
Alternatively, we can compute the sea term from thie = 2 configuration obtained
numerically. In this way we obtain

Msea™ 0.02324x N, (in units ofa™1).

This answer is small (5%) compared to the second term we compute below, so the linear
approximation (giving\sea= 0) is rather good in this respect.

The remaining contribution to the baryon mass comes from the sum over traces of
which involve only the fields on or adjacent to the string. In the QCD context this is
generally referred to as the “valence quark contribution” [21]. For the time-independent
configuration described in Section 5.1.2, the valence ternvios= 2 becomes

ag (Ne+ Ny — 1) } (ZZO(O) + 2z1(1/2)>
M =Iny— ; + N¢In
valence {011< N, ¢ 1+Zo(0)2

(74)

Zbar

The term proportional t&vV, evaluates to

1+ C1/2+ Co/2
N3 + |n<L+J2’/) ~Inv/3 + C1/2=0.5493— 0.0485
1+ Coj2+ C2/4

We notice that the second term due to the deviati@ggyon— zvacl is small compared to
the first term In/3, obtained by inserting the vacuum configuratiog into (74).
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Table 1
Qw m=0 am=0.002 am=0.01
0 2.839 2.840 2.852
1 2.840 3.097 3.692

The result of this linear approximation is very close to the exact (numerical) value,
0.5004. On including the combinatorial and normalization terms (see Eq. (B.7)), we finally
get, for the non-topological static baryon in the chiral limit:

This yields for example

Ne = 2: Mparyon= 2.839% 2,
N = 3: Mparyon=3.873a "},

where we have reinstated the mass scale given by the lattice constant.
6.2. Masses of topological baryons

To compute the baryon masses in the topologically non-trivial sectors, we first need
to evaluateSyacuum ON the corresponding vacua with winding numb@y,. This is
straightforward in the chiral limit, where we have the accurate approximation (56) at our
disposal. The result up to second order in the small paramete2r Q,,/L is

2 202
T~} (Svacuunlzvace] — Svacuunfzvad]) = NfL% = 3”4LQW
The vacuum energies are obtained from this by multiplication with the number of colors,
N.. They agree well with the values computed numerically foe 120 (andN, = 2):
E® =025 EY =0.98.

The baryon mass in each topological sector is defined relative to the corresponding
vacuum energ)Eg’v)v. For a non-vanishing quark mass, both the vacuum energy and the
baryon energy are computed numerically. In Table 1, we summarize our results for a lattice
L =120, with N. = Ny = 2, for various quark masses: In Fig. 10, we plot the baryon
masses in the topological sect@?g, = 0 andQ,, = 1 as a function of the quark mass.

7. Zigzag baryon

In the standard formulation of the theory on the Euclidean 2-dimensional square lattice,
the temporal and spatial directions are given by the lattice generatord, 0), £ = (0, 1).
However, it is also possible to use different spacetime axes. For instance, on the same
square lattice, we define ttmgzagspacetime axes ds= (1/2, —1/2), £ = (1/2,1/2)

(see Fig. 11). The unit spacetime separation now has the lerigfB. For convenience,
we choose the spacetime origin on thildle of a link(say, a link in the directiof + %),
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Static baryon mass vs. bare quark mass

(in units of 1/a)
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Fig. 10. Masses of static baryons as functions of the quark masgor the topological sector®,, =0 and
Oy =1.

Fig. 11. Zigzag baryon string on a square lattice.

so that the coordinates of lattice sites will be half-integers, while links will be indexed by
integers.

The division of the square lattice into two sublattices is now expressed only in terms of
the spatial coordinate: the links erenpositionsx = 2n carry the fieldsV, v, while the
links at oddx = 21 + 1 carry the fieldsv, W',

The vacuum effective action and its corresponding saddle-point equations are still given
by the formulas (40), (41), after a suitable change of labels for links and sites.
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7.1. Time-independent vacua

Once again, we make a scalar time-independent ansatz for the fields:

Vxeven Vi: V(x, 1) =v), Vi, ) =v ()L, (76)
vrodd Vi: W, ) =wx)l, Wlx, 1) = w*(x)L (77)
In particular, this implies the equality of fields situated on liikkst) and(x, ¢ + 1). There

are 2 scalar variables at each position.
With these symmetries, the vacuum saddle-point equations read:

xeven: 2v(x)+2w*(x —1) + 2am = v(x) + 1/v*(x)
=w*(x -1+ 1/wkx-1),
xodd: 2w(x)+2v*(x — 1) + 2am = w(x) + 1/w*(x)
=v"(x -1+ 1/v(x — 1. (78)
In the chiral limit, the homogeneous vacuum configurations are still given byw* =

€9zvac andv* = w = €719 z,5¢. For fields close to this vacuuna(x) = €%zyacexp(dv(x)},
etc.) the linearized saddle-point equations yield the following transfer matrix equation:

dz(x)\ _ (—3/2 —-1/2 dz(x — 1) T dz(x — 1) (79)
szxx))  \ 172 —172)\sz*r(x—-1)  "Nszxx—1))
The symbolsz stands for eithe8v or §w, depending of the parity of. In contrast with
Section 4.2.3, we now have just one transfer matrix, which relates deviatiangoto

deviations ofw, w* and vice versa. This transfer matiixg is related to the matrix;
described in Section 4.2.3. Indeed, it acts on the vetigrs_ as follows:

Tziglt = =14+ —1-, Tzigl- =—1_.
The deviationgv(0), §v*(0) are parametrized by twoomplexparametersy as

Sv(0)
(5v*<0>

The deviations will then depend on position as followsq even):

Sv(x) c—+ (x+ Dy Sw(x +1) —c— — (x+2)cy
(Y I St A e S QA
(80)

The rest of the discussion is identical to the one following Eq. (55). The coefficient
plays the role of a global shift, or “generalized chiral rotation”. If®Re# 0, the absolute
values of the fields vary linearly with, which is incompatible with their periodicity. On
the other hand, taking, = i will linearly rotate the phases of the fields, keeping them
close to some vacuum configuration, as in Eq. (56). Taking«farmultiple of 2r/L, we
obtain a topologically non-trivial configuration.

The case of broken chiral symmetmy & 0) can be treated along the same lines as in
Section 4.2.5; the above linear evolution in position is then replaced by an exponential

) =C+|+ +C_|_.
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one, at least for fields in the vicinity of the valua.. The transfer matrix takes the

20 _
form (73, %), and has the eigenvaluesexp(::yzig) associated to the eigenvectors
T
. exp(li,czig)), with the expansions
V2
yeig = gz (am)™? + O((am)*?). -
2./2
g = 317z (am) % + O((am) %), (82)

Up to this order, the exponentig differs from the corresponding expongnbf Eq. (62)

by a factor ofv/2. This factor actually compensates for the ratio of unit lengths between
the two frameworksd versusa/+/2). For the quark massn = 0.005 used in compiling
the figures, we havg,ig = 0.0762 and €&s = 0.85905.

7.2. Zigzag baryon configurations

In the new labeling conventions, the worldline of a static baryon situated at position
x = 0 forms a zigzag curve (see Fig. 11). Assuming that the fields are scalar and time-
independent, th& matrix appearing in the baryonic part of the action is

G = {[2v(0) + 2w*(—1) + 2am] (1 + v(O)v*(0))
x [2w(1) + 20*(0) + 2am] (1 + v(Q)v* (@) } /> 1.
The resulting saddle-point equations on the string read

2v(0) + 2w*(—1) 4 2am = v(0) 4+ 1/v*(0)
=(1- Nf_l){w*(—l) +1/w(-D},
2w (1) + 2v*(0) + 2am = v*(0) + 1/v(0)
= (1= N Y {w@® + 1w @)} (83)
The saddle-point equations are invariant under the transformation
w(=x) «<— w*(x), v(=x) «<— v (x), (84)

which is also a symmetry of our numerical solutions.

In the chiral limit, the linear dependence in (80) makes it impossible for the absolute
values of the fields to approaglyc at infinity, unless the deviations are purely imaginary;
this latter possibility (z(x)| = zvac) iS incompatible with the saddle-point equations on
the baryon string (83). However, for a finite lattice, infinity is the “antipodal point”
Xoo = =L /2. In numerical searches (see Fig. 12, top), we found a solution which comes
close tozyac Near the antipode (but does not converge exponentially to it). To describe these
fields, it is convenient to use the position variable centered at the antipboge; + L/2
(we assume thdt/2 is even, so that andx’ have the same parity). The symmetry (84) also
holds if one replaces by x’. Forx’ even,—L/2 < x < L/2, the fields are well described

by
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Zigzag Baryon m=0 Qw=0 (L=80)

(real fields)

ov

o-v*

° —-W

awr
— fitforv

Ln(Z/Zvac)
o

Zigzag Baryon am=0.005 Qw=0 (L=80)

log-plot of real fields

ov

o —v*

o —-W

aw*

v, -w (ansatz)
-v*, w* (ansatz)

Ln(Z/Z+)

-1.0 |

=40 -30 -20 -10 0 10 20 30 40

Fig. 12. Numerical zigzag baryon for the case with chiral symmetry (top) and without (bottom). We plot the
(real) fields on a logarithmic scale. Top: a linear fit yields the slape= 0.04 and the field on the baryon

v(0) = 0.1735, in excellent agreement with formulas (86). Bottom: we use the exponential ansatz of Section 7.2.1,
with coefficientse fitted over the domaifx’| < 30. The valuegs; = 0.062,e— = —0.053 are in good agreement

with the analytical theory.

U(x/) = Zvacec+(xl+l)7 v* (x/) = Zvace_CJr(xl_l),
w(x' + 1) = zyace 2, w*(x' 4+ 1) = zvacE™* ™, (85)

where the value of the real coefficient is small (for a lattice of length. = 80, we
foundcy ~ 0.04). At all pointsx # 0, the fields are close to a “generalized homogeneous
vacuum”.

The coefficient can be analytically estimated by using the above ansatz far* at
the positionx’ = —1 + L/2, and then enforcing Eq. (83). One obtains (to lowest order in
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c4) the transcendental equation
cpetl =1, (86)
with approximate solution, ~ L~1In L. The field on the baryon then takes the value

3
v(0) = v*(0) = Z;aca/—q.
This configuration is very “distorted” compared to the original contour of integration.
Indeed, the ratios/v* andw/w* are of orderL in the vicinity of the string. In the case
L = 80, the above equations yietd = 0.04018,v(0) = 0.1736, which are in excellent
agreement with our numerical data.

7.2.1. Zigzag baryon—broken chiral symmetry

If chiral symmetry is broken by a non-vanishing quark mass, the deviationsZrom
evolve exponentially withe’ away from the antipodal point’ = 0. More precisely, in
some domainx’| <« L/2 the fields should follow the ansatz

8z(x") - E+(_eJ/zig)X/ + E_(_efyzig)x’
5Z*(_x/) —€y eKzig(_eVZig)x’ e e*KZig(—eiyzig)x’ .
From the mirror symmetry (84), the coefficierts are related by
€_ = —gdg €. (87)

We numerically computed a solution with= 80, am = 0.005 (see Fig. 12, bottom), for
which this ansatz works well up to the string. Using this fact, it is possible to estimate the
value ofe, (the last remaining parameter), as in the chiral case. The crudest approximation
yields the equation

—ey kaigCECr =2, with € Elexp{ysig(L/2— 1)}

The solution of this equation in the cage= 80, am = 0.005 is e, = 0.0614. This
configuration has a magg = 2.8854 1 with respect to the homogeneous vacuum.

There also exist topologically non-trivial vacuum and baryon saddle-point configura-
tions with the symmetry (84). For example, Fig. 13 shows the solution in the egter1
with quark masam = 0.005 on a lattice of length = 160. With respect to the correspond-
ing vacuum configuration, this configuration has a méss 3.18a 1.

8. Concluding remarks

The “color-flavor transformation” introduced in [14,15] replaces an integral over the
gauge group UV,) by an integral over the “flavor” degrees of freedom. In the present
paper we extended this transformation to the gauge groyp/gu

The color-flavor transformation can be interpreted as a kind of duality, linking two
different formulations of the theory. We believe that this duality transformation may be
useful for treating realistic non-perturbative QCD. Here we have applied it to a simple
model of two-dimensional lattice fermions. The non-Abelian theory we have treated is
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Zigzag Baryon am=0.005 Qw=1 (L=160)
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Fig. 13. Numerical zigzag baryon with winding numb@y, = 1 and broken chiral symmetry. We plot the real
(top) and imaginary (bottom) parts of lag'z+) on a logarithmic scale, together with a fit by the ansatz (7.2.1) in
the regionx’| < 60. The coefficients take the values ~ (3.48+i1.07) x 1073, ¢_ ~ —(3.00+i0.92) x 1073,

-80 -60 -40 -20
X

and satisfy quite well the relation (87).

of course too far from realistic four-dimensional QCD for our results to be of direct

phenomenological relevance.

The main approximation we made was to assume the strong-coupling limit for the
lattice gauge fields. In this approximation gluons do not propagate, and the connection
to asymptotic freedom at short distances is lost. An unphysical consequence is the absence
of the U(1) chiral anomaly. Thus, the chiral symmetry group of our low-energy effective

action is not SWN ¢) but the larger group V).
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Among the gauge groups $N,) the caseV, = 2 is special, as the vector and covector
representations of SB) happen to be equivalent. Since these representations correspond
to quarks and antiquarks, respectively, there is no physical distinction between baryons
and mesons in that case. This symmetry between baryons and mesons is obscured in the
present treatment which, by the use of a saddle-point approximation valid omVy for1,
is geared to the larg#k. limit. It can, however, be made manifest by identifying@uwith
the compact symplectic gauge group(3pand using the color-flavor transformation for
the latter [15].

To extend the formalism to lattice QCD in four dimensions, we need to take into account
the spin degrees of freedom and put the chiral fermions properly on the lattice. We hope to
address these issues in a separate publication. Here we only note that a first step towards
a more realistic color-flavor transformed theory of the strong interaction was described in
[22,24], where we discuss the effect of spontaneous chiral symmetry breaking and estimate
the numerical values of the chiral condensate, the pion decay constant and the mass of the
pion.
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Appendix A. Action of the color and flavor groups
Transformationg/ € GL(N,) of color space act on the one-fermion operators by
_ i _Inkj _ i ;
TUf-QIiaTUlzf-ﬁj—a(U 1)]’ TUffaTUl:fiaU]k’
. . S =i _1\kj
TUf-QIiaTUlzf-ﬁj—ankv TUffaTUlZfia(U l)J'

Transformations(A g) € GL(2Ny) of flavor space can be decomposed in the way shown
in Eq. (13), and the action of the various factors may be described separately. An element

17 0z
¢ =(57) =exp(y7) acts by
T 5T = = fraZoar T, T = 15 + £ Zab,
AP IR
Tifalich :ffb’ Tifbe; :ffb’
an element diagt, D) = (4 9) € GL(2Ny) by

. k -1 _ rk -1 . k -1 _ rk
Td'agA’D)f-Q—deiaQIA,D) = f+a(A )ba’ Tdiaga.0) fZ, Tdiag(A,D) = fZaDab,

. ko1 _ % _ ko1 _ 7k (-1
Tdiag.0) [+ Tdiaga.py = fraAab, Taiaga.0) [~ Tgiag a0y = foa (D7) o
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and an elemertt = (£ 9) e GL(2N/) by
k -1 k k -1 k
Tl ™= LT =1, N
Tgfbeg]':ff_b—}—ffaZab, Té:fbe{l:ffb — f_{{_azba.
All these formulas are particular cases of the fermionic Fock-space representation of the
Lie group GL(2N ) expounded in Chapter 9 of [19].

Appendix B. Normalization constants

We are going to calculate the normalization constarg% = fG dg |(BQ|Tg|BQ)|2
introduced in Eqg. (11)—for the value® = 1,0,—1. To that end, we employ the
decomposition of the grou@ = U(2N ) given by Egs. (13) and (14). This yields

22 |(V1+ ZZT)1alhar |

~ Det(1+ ZzZzMNe
for 0 = 1, and similar expressions for the other two cases. The first step now is to do the
integral overd € U(Ny), which for 9 = +1 is effectively an integral over &Ny — 1)-
dimensional sphere. Carrying it out by the method of Section 2.5, we get the preliminary
expressions

dzdz?
-1 _
“or =y / Det(1+ ZZT)2Nr+Ne’ (B.1)

|(B1lT,|B1)

(CNf ><Nf

N —1)IN,! 1+ 7zt 2)11)Nedz dz?
0‘11_0‘% Cw (Ny )N, / [+ )11l ’ (B.2)

"Ne+Np=DU ) DetL+2ZH2N N
CcVfNSf

WhereCNf is defined by

dzdzt
Cyl= f . (B.3)
Ny ™ Det(1+ zZT)2Ns

(CNf ><Nf

For later convenience, we have made a change of integration variablesz™ in the
numerator of the integral in (B.2).

In the second step we perform the integration overhex N, matrix Z using a
recursion procedure similar to that in [25]. From here on we use the simplified notation
n = Ny. The recursion consists in slicing the mat#xinto vertical vectors, step by step.

We now detail the first step of the recursion. We decompabasZ = (Z,, ,—1, z1), where
z1is a (columny-vector, andzZ, ,,—1 is an x (n — 1) matrix. We then have the expressions

t t t t t
YAARS Z”ﬂ*lzn,nfl + 2129, (Z Z)ll = (Zn,nflz’%”*l)ll'
Using the (positive definite) x n matrix I'y which is defined as the square root of

rf=1+Z,, 12!

n,n—21
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we make a change of variables, fragto w1 = Fflzl. From1+ZzZT= @A+ wlwI)FL
we get the relation
Det(1+ZZ") = (1+ wiwi) Det(1+ Z,,12Z] ).

n,n—1

The change of variables fro&ito {Z, ,—1, w1} has the Jacobian D@t+ Z,,,n_lz:lr,n_l).
Each of the integrals (B.1), (B.2), and (B.3) can now be written as the produd,pf.a;—
integral times av1-integral.

The former can in turn be expressed as the product Bf a »-integral times awo-
integral (with wz a n-vector), which can be decomposed in turn, and so on, until we
reach, at theith step, aZ, 1-integral, i.e., an integral over the first column of the original
matrix Z. We call this column vectow, for reasons of homogeneity.

The successive Jacobians multiply to give the following integration measure:

dZd7Z" = dwldw(1+ whwp)dwdwz - (14 wiw,)"dw, dw.

The integrands in (B.1)—(B.3) also have simple expressions in the new variables, due to the
identities(Z'Z)11 = w,w, and

Det(1+Z2Z") = (1+ wlwi) (1 + whwa) - - (1 + wlwy).
The w;-integrals to be performed are all of the typé & n)
/ dwTdw L (N —n)!

A+wiwV L =7 Nl
(Cn

The resulting expressions for the normalization constants are
1 @2Nf+Ne =Dl (Nyp+ Np)!

T ’ (B.4)
Cij'[N% (NL+Nf—1)'NL1
v =a 1 Ny@Nj+Ne—D!---(Nj+ Ne+1)! -
1=0-1= , |
CNfT[N% (NC+Nf_2)!"'NC!
1 @Ns—1)!.--N¢!
O = Dot (B.6)

o NE (Np—Dl---00
where we have reinstated= N ¢. The quantity entering into the baryon mass is the ratio

o1 Ny

= (B.7)
apg  Nf+ N

Appendix C. Static baryon

In this appendix we prove the formula (37) for the action functional of the static baryon
sector. We need to integrate polynomials in the quark fields along the worldline of the
baryon (the baryon “string”), weighted by the same Gaussian as in the vacuum sector.

We start out using the short-hand notatior= 0+ 0 of Section 3.1.2 for sites and links
on the string. The part of the integrand containing the quark fields situated on the string,
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namelyy (:0), ¥ (:0) fort =0, ..., T — 1, then reads

X1<1ﬂ(0) N( >¢(10)>X1(W(10) N( )W(20)>

} . 1 r-r - .
Xl(lﬁ((T - 1)0), N((T - —> )W(T0)> eXp—|:Z Y (t0)M (0)y! (tO):|.

t=0
Isolating the terms with fermions at the site= 10, we are faced with the integral

/ dy (n)dy(n) x1(¥(n —0), N(n — 0/2)y(n))

x @ VMY 3, (7 (), N(n +0/2)y (n + 0))

Ny — ! / —. . KM )k ()
=log—— | | At i (e VEMM, k
( (Ne + Ny —1)! i Y, (n)dy,(n)

x Y sgnosgnr ]_[ Vi (n = O)Nap(n — 0/2)y7 " (n)

g, TEGNC

x Hw () Naryy (n + 0/2)z/f’(”<n +0)

=(a1(Nf—_1)!)2 3 sgr(or)]"[[ 0 (1 — ) Ny (n — 0/2)
(Ne + Ny —1)! “

0,71eGy,

{/d‘/f (n) dy’ (n)drb (n)qp (n)e Ui ()M )y (n)}

x Nopr (n + 072095 (n + ())],

where the first equality sign uses the expression (21) for the fungtioNote that the
integral between curly brackets involves only fermions of céldrhe fermionic version
of Wick’s theorem yields for it the valuebei{(n) DetM (n), so after combining the
permutationg andz, the above expression becomes

Ny —1)1?

ZLNC! DetM (n)Ne

(N + Ny — 1)12

x 3" sgno [ [ 9,0 = 0)Gyy 00— 0— n+ 0V (n +0)
,DGGNL i

S _l - A A A A
— oy DetM (n) (NC;N_fl 1) (@ —=0).Gn—0—n+0yn+0).

with the “propagatorG(n — 0 — n + 0) &' N — 0/2M ()N (n + 0/2).

Repeating the procedure, we successively integrate over the quark fields along the string,
by which process the matricdsand M get organized into a single propagator. In the final
integration step, we need to take into account the periodic boundary conditions for the
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quark fields:y (T0) = ¥ (0). The final integral ovet (0) then reads

/ d(0)dy(0) xa(¥(0), GO — TO)y (0))e™ ¥ OM OV O,

We now use the following expression for the functipn

- - 1!
Tt D X 1%,

{aj} 0eSy. i=1

which is easily obtained from Eq. (21) by interchanging the product over colors with the
sum over flavors. Wick’s theorem then yields for th€0)-integral the result

Ny =D!

o PO DY 3 3 []Gun @ TOM; ;.

{ai.bi}oeBy, i

The last matrix product may also be expressed in terms of the propagatefined in
Eq. (36),G = G(0— TO)M(©0) L.

What is the interpretation of the sign facter1)Y? To answer that question,
recall that we evaluated the Grassmann field integral usimg-periodic boundary
conditions (instead of the conventional time-antiperiodic ones). ld-dmensional
guantum mechanical frame work with Hamiltoni&h and inverse temperatug, this
would mean that we are computing not the usual partition function but rather the
supertraceTr(—1)"Fe ## with N the total fermion number. The overall sign factor
(—1)Ne originates from that very fermion number, and is simply telling us that the baryon
is a fermion (boson) iV, is odd (respectively, even).

Let us take a closer look at the contributions from the sum over permutatiar&y, .

Each permutatiom can be uniquely decomposed into a product of independent cycles.
Denoting byc; (o) the number of cycles of lengthin this decomposition, the contribution
from o to the partition function can be written as

N
ZHGMW) [T(rre!).
=1

{ai} i=1

The permutation grou,y, may be partitioned into disjoint classes with respect to
conjugation §, o’ are said to be conjugate to each other iff there exists a permutation
t such that’ = t~1o 7). Two permutations ando’ are in the same conjugacy class iff
they have the same cycle structure, M., ¢;(0) = ¢ (¢/). This allows to rewrite the sum
overo as a sum over the conjugacy clasées Sy, , taking into account the cardinality of
each classN(4), given in Eq. (38). We then obtain the result (37).
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