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Abstract: We prove an Egorov theorem, or quantum-classical correspondence, for the
quantised baker’s map, valid up to the Ehrenfest time. This yields a logarithmic upper
bound for the decay of the quantum variance, and, as a corollary, a quantum ergodic
theorem for this map.

1. Introduction

The correspondence principle of quantum mechanics suggests that in the classical limit
the behaviour of quantum systems reproduces that of the system’s classical dynamics.
It is becoming clear that to understand this process fully represents a challenge not only
to methods of semiclassical analysis, but also the modern theory of dynamical systems.

For a broad class of smooth Hamiltonian systems it has been proved that if the sys-
tem is ergodic, then, in the classical limit, almost all eigenfunctions of the corresponding
quantum mechanical Hamiltonian operator become equidistributed with respect to the
natural measure (Liouville) over the energy shell. This is the content of the so-called
quantum ergodicity theorem [Šni, Zel1, CdV, HMR].

This mathematical result, even if it can be considered quite mild from the physical
point of view, still constitutes one of the few rigorous results concerning the properties
of quantum eigenfunctions in the classical limit, and it still leaves open the possible exis-
tence of exceptional subsequences of eigenstates which might converge to other invariant
measures. In the last few years a certain number of works have explored this mathemat-
ically and physically interesting issue. While exceptional subsequences can be present
for some hyperbolic systems with extremely high quantum degeneracies [FDBN], it
is believed that they do not exist for a typical chaotic system (by chaotic, we generally
mean that the system is ergodic and mixing). The uniqueness of the classical limit for the
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quantum diagonal matrix elements is called quantum unique ergodicity (QUE) [RudSar,
Sar1]. There have been interesting recent results in this direction for Hecke eigenstates
of the Laplacian on compact arithmetic surfaces [Lin], using methods which combine
rigidity properties of semi-classical measures with purely dynamical systems theory.

The model studied in the present paper is not a Hamiltonian flow, but rather a discrete-
time symplectic map on the 2-dimensional torus phase space. In the case of quantised
hyperbolic automorphisms of the 2-torus (“quantum cat maps”), QUE has been proven
along a subsequence of Planck’s constants [DEGI, KR2], and for a certain class of ei-
genstates (also called “Hecke” eigenstates) [KR1] without restricting Planck’s constant.
QUE has also been proved in the case of some uniquely ergodic maps [MR, Ros]. Quan-
tum (possibly non-unique) ergodicity has been shown for some ergodic maps which are
smooth by parts, with discontinuities on a set of zero Lebesgue measure [DBDE, MO’K,
DE+]. Discontinuities generally produce diffraction effects at the quantum level, which
need to be taken care of (this problem also appears in the case of Euclidean billiards
with non-smooth boundaries [GL, ZZ]). Most proofs of quantum ergodicity consist of
showing that the quantum variance defined below (Eq. (1.1)) vanishes in the classical
limit.

To state our results we now turn to the specific dynamics considered in the present
article. We take as classical dynamical system the baker’s map on T

2, the 2-dimensional
torus [AA]. For any even positive integerN ∈ 2N (N is the inverse of Planck’s constant
h), this map can be quantised into a unitary operator (propagator) B̂N acting on an N -
dimensional Hilbert space. The quantum variance measures the average equidistribution
of the eigenfunctions {ϕN,j }N−1

j=0 of B̂N :

S2(a,N) := 1

N

N−1∑

j=0

∣∣∣〈ϕN,j ,OpW
N (a)ϕN,j 〉 −

∫

T2
a(q, p) dqdp

∣∣∣
2
. (1.1)

Here a is some smooth function (observable) on T
2 and OpW

N (·) is the Weyl quantisa-
tion mapping a classical observable to a corresponding quantum operator. The quantised
baker’s map (or some variant of it) is a well-studied example in the physics literature
on quantum chaology [BV, Sa, SaVo, O’CTH, Lak, Kap, ALPŻ], which motivated our
desire to provide rigorous proofs for both the quantum-classical correspondence and
quantum ergodicity.

In this paper we prove a logarithmic upper bound on the decay of the quantum variance
(see Theorem 1 below), which implies quantum ergodicity as a byproduct (Corollary 2).
A similar upper bound was first obtained by Zelditch [Zel2] in the case of the geode-
sic flow of a compact negatively curved Riemannian manifold, and was generalized
by Robert [Rob] to more general ergodic Hamiltonian systems. Both are using some
control on the rate of classical ergodicity (Zelditch also proved similar upper bounds
for higher moments of the matrix elements). The main semiclassical ingredient needed
for all proofs of quantum ergodicity is some control on the correspondence between
quantum and classical evolutions of observables, namely some Egorov estimate. As for
billiard flows [Fa], such a correspondence can only hold for observables supported away
from the set of discontinuities. We establish this correspondence for the quantum baker’s
map in Sect. 5.2, generalizing previous results [DBDE] for a subclass of observables
(an Egorov theorem was already proven in [RubSal] for a different quantisation of the
baker’s map). Some related results can be found in [BGP, BR] for the case of smooth
Hamiltonian systems. To obtain this Egorov estimate, we study the propagation of coher-
ent states (Gaussian wavepackets): they provide a convenient way to “avoid” the set of
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discontinuities. The correspondence will hold up to times of the order of the Ehrenfest
time

TE(N) := logN

log 2
(1.2)

(here log 2 is the positive Lyapunov exponent of the classical baker’s map).
Equipped with this estimate, one could apply the general results of [MO’K] to prove

that the quantum variance semiclassically vanishes. We prefer to generalise the method
of [Schu2] (applied to smooth maps or flows) to our discontinuous baker’s map. This
method, inspired by some earlier heuristic calculations [FP, Wil, EFK+], yields a log-
arithmic upper bound for the variance. It relies on the decay of classical correlations
(mixing property), which is related, yet not equivalent, with the control on the rate of
ergodicity used in [Zel2, Rob].

Our main result is the following theorem.

Theorem 1. For any observable a ∈ C∞(T2), there is a constant C(a) depending only
on a, such that the quantum variance over the eigenstates of B̂N satisfies:

∀N ∈ 2N, S2(a,N) ≤ C(a)

logN
.

We believe that this method can be extended to any piecewise linear map satisfy-
ing a fast mixing. We also can speculate that the method would work for non-linear
piecewise-smooth maps, although in that case the propagation of coherent states should
be analysed in more detail (see Remark 2).

The upper bound in Theorem 1 seems far from being sharp. The heuristic calculations
in [FP, Wil, EFK+] suggest that the quantum variance decays like V (a)N−1, where the
prefactor V (a) is the classical variance of the observable a, appearing in the central
limit theorem. This has been conjectured to be the true decay rate for a “generic” Ano-
sov system. The decay of quantum variance has been studied numerically in [EFK+]
for the baker’s map and [BSS] for Euclidean billiards; in both cases, the results seem to
be compatible with a decay � N−1; however, a discrepancy of around 10% was noted
between the observed and conjectured prefactors. This was attributed to the low values
of N (or energy in the case of billiards) considered. A more recent numerical study of
a chaotic billiard, at higher energies, still reveals some (smaller) deviations from the
conjectured law [Bar], leaving open the possibility of a decay � N−γ with γ �= 1.

A decay of the form Ṽ (a)N−1 (with an explicit factor Ṽ (a)) could be rigorously
proven for two particular Anosov systems, using their rich arithmetic structure [KR1,
LS, RuSo]. In both cases, the prefactor Ṽ (a) generally differs from the classical variance
V (a), which is attributed to the arithmetic properties of the systems, which potentially
makes them “non-generic”. Algebraic decays have also been proven for some uniquely
ergodic (non-hyperbolic) maps [MR, Ros], by pushing the Egorov property to times of
order O(N).

The rigorous investigation of the quantum variance thus remains an important open
problem in quantum chaology [Sar2].

Quantum ergodicity follows from Theorem 1 as a corollary:

Corollary 2. For eachN ∈2N there exists a subset JN ⊂{1, . . . , N}, with #JN
N

N→∞−−−−→ 1,
such that for any a ∈ C∞(T2) and any sequence (jN ∈ JN)N∈2N,

lim
N→∞

〈ϕN,jN ,OpW
N (a)ϕN,jN 〉 =

∫

T2
a(x)dx. (1.3)
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This generalises a result of [DBDE] to any observable a ∈ C∞(T2) (previously only
observables of the form a = a(q) could be handled). The restriction to a subset JN is
the “almost all” clarification in quantum ergodicity.

The paper is organised as follows. In Sect. 2 we briefly describe the classical baker’s
map on T

2. In Sect. 3, we recall how this map can be quantised [BV] into anN ×N uni-
tary matrix. We then describe the action of the quantised baker map on coherent states
(Proposition 5). This is the first step towards the Egorov estimates proven in Sect. 5
(Theorems 12 and 13, which shows the correspondence up to the Ehrenfest time). The
first part of that section (Subsect. 5.1) compares the Weyl and anti-Wick quantisations,
for observables which become more singular whenN grows. This technical step is nec-
essary to obtain Egorov estimates for times � logN . In the final section, we implement
the method of [Schu2] to the quantum baker’s map, using our Egorov estimates up to
logarithmic times, and prove Theorem 1.

2. The Classical Baker’s Map

The baker’s map1 is the prototype model for discontinuous hyperbolic systems, and it
has been extensively studied in the literature. Standard results may be found in [AA],
while the exponential mixing property was analyzed by [Has], and also derives from
the results of [Ch]. Here, for the sake of fixing notations, we restrict ourself to recalling
the very basic definitions and properties, referring the reader to the above references for
more details concerning the ergodic properties of the map.

We identify the torus T
2 with the square [0, 1)× [0, 1). The first (horizontal) coordi-

nate q represents the “position”, while the second (vertical) represents the “momentum”.
In our notations, x = (q, p) will always represent a phase space point, either on R

2 or
on its quotient T

2.
The baker’s map is defined as the following piecewise linear bijective transformation

on T
2:

B(q, p) = (q ′, p′) =
{
(2q, p/2), if q ∈ [0, 1/2),
(2q − 1, (p + 1)/2), if q ∈ [1/2, 1).

(2.1)

The transformation is discontinuous on the following subset of T
2:

S1 := {p = 0} ∪ {q = 0} ∪ {q = 1/2}, (2.2)

and smooth everywhere else. If we consider iterates of the map, the discontinuity set be-
comes larger: for any n ∈ N, the mapBn is piecewise linear, and discontinuous on the set

Sn := {p = 0} ∪
2n−1⋃

j=0

{
q = j

2n

}
,

while its inverse B−n is discontinuous on the set S−n obtained from Sn by exchanging
the q and p coordinates. Clearly, the discontinuity set becomes dense in T

2 as |n| → ∞.
The map is area preserving and uniformly hyperbolic outside the discontinuity set, with
constant Lyapunov exponents ± log 2 and positive topological entropy (see below). The
stable (resp. unstable) manifold is made of vertical (resp. horizontal) segments.

A nice feature of this map lies in a simple symbolic coding for its orbits. Each real
number q ∈ [0, 1) can be associated with a binary expansion

1 The name refers to the cutting and stretching mechanism in the dynamics of the map which is
reminiscent of the procedure for making bread. Hence we write the word “baker” with a lower case “b”.
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q = · ε0ε1ε2 . . . (εi ∈ {0, 1}).
This representation is one-to-one if we forbid expansions of the form ·ε0ε1 . . . 111 . . . .
Using the same representation for the p-coordinate:

p = · ε−1ε−2 . . . ,

a point x = (q, p) ∈ T
2 can be represented by the doubly-infinite sequence

x = . . . ε−2ε−1 · ε0ε1 . . . .

Then, one can easily check that the baker’s map acts on this representation as a symbolic
shift:

B(. . . ε−2ε−1 · ε0ε1 . . . ) = . . . ε−2ε−1ε0 · ε1 . . . . (2.3)

From this symbolic representation, one gets the Kolmogorov-Sinai entropy of the map
with respect to the Lebesgue measure, hKS = log 2, as well as exponential mixing prop-
erties [Ch, Has]: there exists � > 0 and C > 0 such that, for any smooth observables
a, b on T

2, the correlation function

Kab(n) :=
∫

T2
a(x) b(B−nx) dx −

∫

T2
a(x) dx

∫

T2
b(x) dx (2.4)

is bounded as

|Kab(n)| ≤ C ‖a‖C1 ‖b‖C1 e−�|n|. (2.5)

According to [Has], one can take for � any number smaller than log 2.

3. Quantised Baker’s Map

The quantisation of the 2-torus phase space is now well-known and we refer the reader to
[DEG], here describing only the important facts. The quantisation of an area-preserving
map on the torus is less straightforward, and in general it contains some arbitrariness.
The quantisation of linear symplectomorphisms of the 2-torus (or “generalised Arnold
cat maps”) was first considered in [HB], and the case of nonlinear perturbations of cat
maps was treated in [BdM+] (quantum ergodicity was proven for these maps in [BDB]).
The scheme we present below, specific for the baker’s map, was introduced in [BV].

We start by defining the quantum Hilbert space associated to the torus phase space.
For any � ∈ (0, 1], we consider the quantum translations (elements of the Heisenberg
group) T̂v = ei(v2q̂−v1p̂)/�, v ∈ R

2, acting on L2(R) and by extension on S ′(R). We
then define the space of distributions

H� = {ψ ∈ S ′(R), T̂(1,0)ψ = T̂(0,1)ψ = ψ}.
These are distributions ψ(q) which are Z-periodic, and such that their �-Fourier trans-
form

(F̂�ψ)(p) :=
∫ ∞

−∞
ψ(q) e−iqp/� dq√

2π�
(3.1)

is also Z-periodic.
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One easily shows that this space is nontrivial iff (2π�)−1 = N ∈ N, which we will
always assume from now on. This space can be obtained as the image of L2(R) through
the “projector”

P̂T2 =
∑

m∈Z2

(−1)Nm1m2 T̂m =
( ∑

m2∈Z

T̂0,m2

) ( ∑

m1∈Z

T̂m1,0

)
. (3.2)

H� = HN then forms an N -dimensional vector space of distributions, admitting a
“position representation”

ψ(q) = 1√
N

N−1∑

j=0

∑

ν∈Z

ψj δ

(
q − j

N
+ ν

)
=:

N−1∑

j=0

ψj qj (q), (3.3)

where each coefficient ψj ∈ C. Here we have denoted by {qj }N−1
j=0 the canonical (“po-

sition”) basis for HN .
This space can be naturally equipped with the Hermitian inner product:

〈qj ,qk〉 = δjk �⇒ 〈ψ,ω〉 :=
N−1∑

j=0

ψj ωj . (3.4)

Since HN is the image of S(R) through the “projector” (3.2), any state ψ ∈ HN can
be constructed by projecting some Schwartz function �(q). The decomposition on the
RHS of (3.2) suggests that we may first periodicise in the q-direction, obtaining a peri-
odic function �C(q); such a wavefunction describes a state living in the cylinder phase
space C = T × R. The torus state ψ(q) is finally obtained by periodicising �C in the
Fourier variable; equivalently, the N components of ψ in the basis {qj } are obtained by
sampling this function at the points qj = j

N
:

ψj = 1√
N
�C

( j
N

)
, 0 ≤ j < N. (3.5)

The �-Fourier transform F̂� (seen as a linear operator on S ′(R)) leaves the space HN

invariant. On the basis {qj }, it acts as an N ×N unitary matrix F̂N called the “discrete
Fourier transform”:

(F̂N )kj = 1√
N

e−2iπkj/N , k, j = 0, . . . , N − 1. (3.6)

F̂� quantises the rotation by −π/2 around the origin, F (q0, p0) = (p0,−q0). As a
result, F̂N maps the “position basis” {qj } onto the “momentum basis” {pj }:

pj =
N−1∑

k=0

(F̂−1
N )kj qk.

The quantised baker’s map B̂N was introduced by Balazs and Voros [BV]. They require
N to be an even integer, and prescribe the following matrix in the basis {qj }:

B̂N := (F̂N )
−1B̂N,mix, with B̂N,mix :=

(
F̂N/2 0

0 F̂N/2

)
. (3.7)
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This definition was slightly modified by Saraceno [Sa], in order to restore the parity
symmetry of the classical map. Although we will concentrate on the map (3.7), all our
results also apply to this modified setting.

3.1. Notations. Since we will be dealing with quantities depending on Planck’s constant
N (plus possibly other parameters), all asymptotic notations will refer to the classical
limit N → ∞.

The notations A = O(B) and A � B both mean that there exists a constant c such
that for any N ≥ 1, |A(N)| ≤ c|B(N)|. Writing A = Or (B) and A �r B means that
the constant c depends on the parameter r . SimilarlyA = o(B) andA << B both mean
that limN→∞ A(N)

B(N)
= 0. By A � B we mean that A � B and B � A simultaneously.

We indicate by A ∼ B the more precise asymptotics limN→∞ A(N)
B(N)

= 1.
We use the convention for number sets that N := {1, 2, 3, . . . } and N0 := N ∪ {0}.

Also R+ := [0,∞), as usual.
We will use various norms.We denote by ‖·‖HN

the norm on HN defined as ‖ψ‖2
HN

=
〈ψ,ψ〉. Unless stated otherwise, ‖·‖ will refer to the norm on bounded operators on HN ,
also denoted by ‖·‖B(HN). The Hilbert-Schmidt scalar product of two operators A, B
on HN will be denoted by

〈
A,B

〉
:= 1

N
Tr(A†B). (3.8)

Other norms describe classical observables (smooth functions f on T
2). The sup-

norm will be denoted by ‖f ‖C0 , and for any j > 0, the Cj -norm is defined as

‖f ‖Cj :=
∑

0≤|γ |≤j
‖∂γ f ‖C0 .

Here γ = (γ1, γ2) ∈ N
2
0 denotes the multiindex of differentiation: ∂γ = ∂

γ1
q ∂

γ2
p , and

|γ | := γ1 + γ2.
Because we want to consider large time evolution, namely times n � logN , we need

to consider (smooth) functions which depend on Planck’s constant 1/N . Indeed, starting
from a given smooth function a, its evolution a ◦B−n fluctuates more and more strongly
along the vertical direction, while it is smoother and smoother along the horizontal one
as n → ∞ (assuming a is supported away from the discontinuity set Sn). For this reason,
we introduce the following spaces of functions [DS, Chap. 7]:

Definition 1. For any α = (α1, α2) ∈ R
2+, we call Sα(T

2) the space of N -dependent
smooth functions f = f (·, N) such that, for any multiindex γ ∈ N

2
0, the quantity

Cα,γ (f ) := sup
N∈N

‖∂γ f (·, N)‖C0

Nα·γ

is finite (here α · γ = α1γ1 + α2γ2). The seminorms Cα,γ (γ ∈ N
2
0) endow Sα(T

2) with
the structure of a Fréchet space.
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4. Coherent States on T
2

Our proof of the quantum-classical correspondence will use coherent states on T
2. Below

we define them, and collect some useful properties. More comprehensive details and
proofs may be found in [Fo, Per, LV, BDB, BonDB].

We define a (plane) coherent state at the origin with squeezing σ > 0 through its
wavefunction �0,σ ∈ S(R) (we will always omit the indication of �-dependence):

�0,σ (q) :=
( σ
π�

)1/4
e− σq2

2� . (4.1)

The (plane) coherent state at the point x = (q0, p0) ∈ R
2 is obtained by applying a

quantum translation T̂x to the state above, which yields:

�x,σ (q) :=
( σ
π�

)1/4
e−i p0q0

2� ei
p0q
� e

−σ(q−q0)
2

2�

= (2Nσ)1/4e−πiNq0p0+2πiNp0q−σNπ(q−q0)
2
.

(In the second line, we took � = (2πN)−1, as is required if we want to project on the
torus). From here we obtain a coherent state on the cylinder by periodicising along the
q-axis:

�x,σ,C(q) :=
∑

ν∈Z

�x,σ (q + ν). (4.2)

Finally, the coherent state on the torus is obtained by further periodicising in the Fourier
variable, or equivalently by sampling this cylinder wavefunction: its coefficients in the
canonical basis read

(
ψx,σ,T2

)
j

= 1√
N
�x,σ,C(j/N), j = 0, . . . , N − 1. (4.3)

One can check that ψx+m,σ,T2 ∝ ψx,σ,T2 for any m ∈ Z
2: up to a phase, the state

ψx,σ,T2 depends on the projection on T
2 of the point x.

In the classical limit, it will often be useful to approximate a torus (or cylinder)
coherent state by the corresponding planar one:

Lemma 3. Let q0 ∈ (δ, 1 − δ) for some 0 < δ < 1/2. Then in the classical limit:

∀q ∈ [0, 1), �x,σ,C(q) = �x,σ (q)+ O(
(σN)1/4e−πNσδ2)

. (4.4)

The error estimate is uniform for σN ≥ 1.

Proof. Extracting the ν = 0 term in (4.2), one gets

∀q ∈ [0, 1), �x,σ,C(q) = �x,σ (q)+ O
(
(σN)1/4 e−πσN min{|q−q0+ν|2:ν �=0}

)
.

Now, if q0 ∈ (δ, 1 − δ), one has |q − q0| ≤ 1 − δ, so that

∀ν �= 0, |q − q0 − ν| ≥ |ν| − |q − q0| ≥ 1 − |q − q0| ≥ δ. ��
The next lemma describes how a torus coherent state transforms under the application

of the discrete Fourier transform.
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Lemma 4. For any x = (q0, p0) ∈ R
2, let F x := (p0,−q0) denote its rotation by

−π/2 around the origin. Then

∀N ≥ 1, ∀σ > 0, F̂N ψx,σ,T2 = ψFx,1/σ,T2 . (4.5)

Proof. The plane coherent states, which are Gaussian wavefunctions, are obviously
covariant through the Fourier transform F̂�: a straightforward computation shows that

∀x ∈ R
2, F̂� ψx,σ = ψFx,1/σ .

When (2π�) = N−1, we apply the projector (3.2) to both sides of this inequality, and
remember that F̂� acts on HN as the matrix F̂N : this means P̂T2 F̂� = F̂N P̂T2 , so the
above covariance is carried over to the torus coherent states. ��

4.1. Action of B̂N on coherent states. We assume N to be an even integer, and apply
the matrix B̂N to the coherent state ψx,σ,T2 , seen as anN -component vector in the basis
{qj }. We get nice results if the point x = (q0, p0) is “far enough” from the singularity
set S1 (in this case Bx is well-defined). More precisely, we define the following subsets
of T

2:

Definition 2. For any 0 < δ < 1/4 and 0 < γ < 1/2, let

D1,δ,γ :=
{
(q, p) ∈ T

2, q ∈ (δ, 1/2 − δ) ∪ (1/2 + δ, 1 − δ), p ∈ (γ, 1 − γ )
}
. (4.6)

The evolution of coherent states will be simple for states localised in this set.

Proposition 5. For some parameters δ, γ (which may depend onN ), we consider points
x = (q0, p0) ∈ T

2 in the set D1,δ,γ . We associate to these points the phase

�(x) =




0, if q0 ∈ (δ, 1/2 − δ),

q0 + p0 + 1

2
, if q0 ∈ (1/2 + δ, 1 − δ).

(4.7)

We assume that the squeezing σ may also depend on N , remaining in the interval
σ ∈ [1/N,N ]. From δ, γ , σ we form the parameter

θ = θ(δ, γ, σ ) := min(σδ2, γ 2/σ). (4.8)

Then, in the semiclassical limit, the coherent state ψx,σ,T2 evolves almost covariantly
through the quantum baker’s map:

‖B̂N ψx,σ,T2 − eiπ�(x) ψBx,σ/4,T2‖HN
= O(N3/4σ 1/4 e−πNθ ). (4.9)

The implied constant is uniform with respect to δ, γ , σ ∈ [1/N,N ], and the point
x ∈ D1,δ,γ .

We notice that the exponential in the above remainder will be small only if θ >> 1/N ,
which requires both σ >> 1/N and σ << N . In further applications we will always
consider squeezings satisfying these properties in the limit N → ∞.
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Remark 1. If we extend to the full plane each of the maps given by the two lines of
Eq. (2.1), we get two linear symplectic transformation S0, S1, which can be quantised
on L2(R) by the metaplectic transformations

Ŝ0,� = D̂2, Ŝ1,� = T̂(−1,0) ◦ D̂2 ◦ T̂(0,1)
(here [D̂2 ψ](q) = 2−1/2 ψ(q/2) is the unitary dilation by a factor 2). Such metaplectic
transformations act covariantly on plane coherent states:

∀σ > 0, ∀x = (q0, p0) ∈ R
2,

{
Ŝ0,��x,σ = �S0x,σ/4,

Ŝ1,��x,σ = e
i

2�
(q0+ p0+1

2 ) �S1x,σ/4.

The approximate covariance stated in Proposition 5 is therefore a microlocal version of
this exact global covariance.

Remark 2. The fact that the error is exponentially small is due to the piecewise-linear
character of the map B. Indeed, for a nonlinear area-preserving mapM on T

2, coherent
states are also transformed covariantly through M̂N , but the error term is in general
of order O(N �x3), where �x is the “maximal width” of the coherent state (here
�x = max(σ, σ−1)N−1/2) [Schu1]. Moreover, in general the squeezing σ takes values
in the complex half-plane {Re (σ ) > 0}: the reason why we can here restrict ourselves
to the positive real line is due to the orientation of the baker’s dynamics.

Proof of Proposition 5. Since we already know that F̂N acts covariantly on coherent
states, we only need to analyse the action of B̂N,mix (Eq. (3.7)).

We first consider a coherent state in the “left” strip (δ, 1/2−δ)×(γ, 1−γ ) of D1,δ,γ .
In this case, the “relevant” coefficients of B̂N,mix ψx,σ,T2 are in the interval 0 ≤ m < N

2 :

(
B̂N,mix ψx,σ,T2

)

m
= 1√

N

N/2−1∑

j=0

(F̂N/2)mj �x,σ,C
(
j

N

)
. (4.10)

From the formula (3.6), we have for all 0 ≤ j,m < N/2:

(F̂N/2)mj =
√

2 (F̂N )2mj .

Since q0 ∈ (δ, 1/2 − δ), for any N/2 ≤ j one has j/N − q0 ≥ δ; using Lemma 3, we
obtain

∀j ∈ {N/2, . . . , N − 1}, �x,σ,C
(
j

N

)
= O(

(σN)1/4 e−πNσδ2)
. (4.11)

We can therefore extend the range of summation in (4.10) to j ∈ {0, . . . , N − 1},
incurring only an exponentially small error:

(
B̂N,mix ψx,σ,T2

)

m
=

√
2
N−1∑

j=0

(F̂N )2mj

(
ψx,σ,T2

)

j
+ O((σN)1/4e−πNσδ2

)

=
√

2
(
ψFx,1/σ,T2

)

2m
+ O((σN)1/4e−πNσδ2

). (4.12)

In the last step, we have used the covariance property of Lemma 4.
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Since p0 ∈ (γ, 1 − γ ) and N/σ ≥ 1, it follows from Lemma 3 and simple manipu-
lations of plane coherent states that for all q ∈ [0, 1/2),

√
2 �Fx,1/σ,C(2q) =

√
2 �Fx,1/σ (2q)+ O(

(N/σ)1/4e−πNγ 2/σ
)

= �(p0/2,−2q0),4/σ (q)+ O(
(N/σ)1/4e−πNγ 2/σ

)

= �(p0/2,−2q0),4/σ,C(q)+ O(
(N/σ)1/4 e−πNγ 2/σ

)
.

The identity (p0/2,−2q0) = FBx (valid for x in the left strip) inserted in (4.12) yields
for all m ∈ {0, . . . , N/2 − 1},

(
B̂N,mix ψx,σ,T2

)

m
= (

ψFBx,4/σ,T2
)
m

+ O((σN)1/4e−πNθ ) (4.13)

(θ is defined in (4.8), and we used the assumption σN > 1 to simplify the remainder).
The remaining coefficients N/2 ≤ m < N are bounded using (4.11):

(
B̂N,mix ψx,σ,T2

)

m
= 1√

N

N−1∑

j=N/2
(F̂N/2)m j �x,σ,C

(
j

N

)
= O((σN)1/4e−πσNδ2

).

(4.14)

On the other hand, Lemma 3 shows that the coefficients
(
ψFBx,4/σ,T2

)
m

for N/2 ≤
m < N are bounded from above by the same RHS. Hence, Eq. (4.13) holds for all
m = 0, . . . , N − 1. A norm estimate is obtained by multiplying this component-wise
estimate by a factor

√
N .

We now apply the inverse Fourier transform and Lemma 4, to obtain the part of the
theorem dealing with coherent states in the left strip of D1,δ,γ .

A similar computation treats the case of coherent states in the right strip of D1,δ,γ .
The large components of ψx,σ,T2 are in the interval j ≥ N/2, so the second block of

B̂N,mix is relevant. The analogue to (4.13) reads, for m∈ {N/2, . . . , N − 1}:

(
B̂N,mix ψx,σ,T2

)

m
=

√
2

N
�Fx,1/σ

(
2m

N
− 1

)
+ O((σN)1/4e−πNθ ). (4.15)

Proceeding as before, we identify for all q ∈ [1/2, 1),

√
2 �Fx,1/σ (2q − 1) = eπiN(q0+ p0+1

2 ) �((p0+1)/2,−(2q0−1)),4/σ (q)

= eπiN(q0+ p0+1
2 ) �FBx,4/σ,C(q)+ O((N/σ)1/4 e−πNγ 2/σ ).

(4.16)

Applying the inverse Fourier transform we obtain the second part of the theorem. ��
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5. Egorov Property

Our objective in this section is to control the evolution of quantum observables through
B̂N , in terms of the corresponding classical evolution. Namely, we want to prove an
Egorov theorem of the type

‖B̂nN OpN(a) B̂
−n
N − OpN(a ◦ B−n)‖ N→∞−−−−→ 0. (5.1)

Here OpN(a) is some quantisation of an observable a ∈ C∞(T2). As explained in the
introduction, to avoid the diffraction problems due to the discontinuities of B, we will
require the function a to be supported away from the set Sn of discontinuities of Bn.
Otherwise, a ◦ B−n may be discontinuous, and already its quantisation poses some
problems.

An Egorov theorem has been proven in [RubSal] for a different quantisation of the
baker’s map, also using coherent states. In [DBDE, Cor. 17] an Egorov theorem was
obtained for B̂N , but valid only for observables of the form a(q) (or a(p), depending
on the direction of time) and restricting the observables to a “good” subspace of HN of
dimension N − o(N).

Since we control the evolution of coherent states through B̂N (Proposition 5), it is
natural to use a quantisation defined in terms of coherent states, namely the anti-Wick
quantisation [Per] (see Definition 4 below). However, because the quasi-covariance (4.9)
connects a squeezing σ to a squeezing σ/4, it will be necessary to relate the correspond-
ing quantisations OpAW,σ

N and OpAW,σ/4
N to one another. This will be done in the next

subsection, by using the Weyl quantisation as a reference.
Besides, we want to control the correspondence (5.1) uniformly with respect to the

time n. We already noticed that for n >> 1, an observable a supported away from Sn
needs to fluctuate quite strongly along the q-direction, while its dependence in the p
variable may remain mild. Likewise, a ◦ B−n, supported away from S−n, will strongly
fluctuate along the p-direction.

All results in this section will be stated for two classes of observables:

– general functions f ∈ C∞(T2), without any indication on how f depends on N .
This yields a Egorov theorem valid for time |n| ≤ ( 1

6 − ε) TE (with ε > 0 fixed),
which will suffice to prove Theorem 1 (TE = TE(N) is the Ehrenfest time (1.2)).

– functions f ∈ Sα(T
2) for some α ∈ R

2+ with |α| < 1 (see Definition 1). Here we
use more sophisticated methods in order to push the Egorov theorem up to the times
|n| ≤ (1 − ε)TE.

5.1. Weyl vs. anti-Wick quantizations on T
2. In this subsection, we define and compare

the Weyl and anti-Wick quantisations on the torus. The main result is Proposition 8,
which precisely estimates the discrepancies between these quantisations, in the classical
limit. We start by recalling the definition of the Weyl quantisation on the torus [BDB,
DEG].

Definition 3. Any function f ∈ C∞(T2) can be Fourier expanded as follows:

f =
∑

k∈Z2

f̃ (k) ek, where ek(x) := e2πix∧k = e2πi(qk2−pk1).
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The Weyl quantisation of this function is the following operator:

OpW
N (f ) :=

∑

k∈Z2

f̃ (k) T (k), where T (k) := T̂hk. (5.2)

We use the same notations for translation operators T (k) acting on either HN orL2(R);

in the latter case, the Weyl-quantised operator will be denoted by OpW,R2

N (f ).

The operators {T (k) ; k ∈ Z
2} acting on L2(R) form an independent set of uni-

tary operators. On the other hand, on HN these operators satisfy T (k + Nm) =
(−1)k∧m T (k). Hence, defining ZN := {−N/2, . . . , N/2−1}, the set {T (k), k ∈ Z

2
N }

forms a basis of the space of operators on HN . This basis is orthonormal with respect
to the Hilbert-Schmidt scalar product (3.8).

The Weyl quantisations on L2(R) and HN satisfy the following inequality [BDB,
Lemma 3.9]:

∀f ∈ C∞(T2), ∀N ∈ N, ‖OpW
N (f )‖B(HN) ≤ ‖OpW,R2

N (f )‖B(L2(R)). (5.3)

This will allow us to use results pertaining to the Weyl quantisation of bounded functions
on the plane (see the proof of Lemma 9).

We now define a family of anti-Wick quantisations.

Definition 4. For any squeezing σ > 0, the anti-Wick quantisation of a function f ∈
L1(T2) is the operator OpAW,σ

N (f ) on HN defined as:

∀φ, φ′ ∈ HN, 〈φ,OpAW,σ
N (f ) φ′〉 := N

∫

T2
f (x) 〈φ,ψx,σ,T2〉 〈ψx,σ,T2 , φ′〉 dx.

(5.4)

Both Weyl and anti-Wick quantisations map a real observable onto a Hermitian operator.
As opposed to the Weyl quantisation, the anti-Wick quantisation enjoys the important
property of positivity. Namely, if the function a is nonnegative, then for any N, σ , the
operator OpAW,σ

N (a) is positive.
These quantisations will be easy to compare once we have expressed the anti-Wick

quantisation in terms of the Weyl one [BonDB].

Lemma 6. Using the quadratic form Qσ(k) := σ k2
1 + σ−1 k2

2 , one has the following
expression for the anti-Wick quantisation:

∀f ∈ L1(T2), OpAW,σ
N (f ) =

∑

k∈Z2

f̃ (k) e− π
2N Qσ (k) T (k). (5.5)

Equivalently, OpAW,σ
N (f ) = OpW

N (f
�), where the function f � is obtained by convolution

of f (on R
2) with the Gaussian kernel

KN,σ (x) := 2N e−2πNQσ (x). (5.6)
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Proof. To prove this lemma, it is sufficient to show that for any k0 ∈ Z
2, the anti-Wick

quantisation on HN of the Fourier mode ek0(x) reads:

OpAW,σ
N (ek0) = e− π

2N Qσ (k0) T (k0). (5.7)

This formula has been proven in [BonDB, Lemma 2.3 (ii)], yet we give here its proof
for completeness. The idea is to decompose OpAW,σ

N (ek0) in the basis {T (k), k ∈ Z
2
N },

using the Hilbert-Schmidt scalar product (3.8). That is, we need to compute

〈
T (k),OpAW,σ

N (ek0)
〉
=

∫

T2
ek0(x) 〈ψx,σ,T2 , T (k)† ψx,σ,T2〉 dx. (5.8)

The overlaps between torus coherent states derive from the overlaps between plane
coherent states, which are simple Gaussian integrals:

∀x, y ∈ R
2, 〈�y,σ , �x,σ 〉R2 = ei

y∧x
2� 〈�0,σ , T̂x−y �0,σ 〉R2 = ei

y∧x
2� e−Qσ (x−y)

4� .

Using the projector (3.2), we get

〈ψx,σ,T2 , T̂k/N ψx,σ,T2〉 =
∑

m∈Z2

(−1)Nm1m2 〈�x,σ , T̂k/N T̂m�x,σ 〉R2

=
∑

m∈Z2

(−1)Nm1m2+m∧k e2iπ(x∧(k+Nm)) e− πN
2 Qσ (m+k/N).

We insert this expression in the RHS of (5.8) (and remember that N is even):

〈
T (k),OpAW,σ

N (ek0)
〉
=

∑

m∈Z2

δk0,k+Nm (−1)m∧k e− πN
2 Qσ (m+k/N).

This expression vanishes unless k = k1, the unique element of Z
2
N such that k1 =

k0 + Nm1 for some m1 ∈ Z
2. The orthonormality of the basis {T (k) : k ∈ Z

2
N } gives

that OpAW,σ
N (ek0) = (−1)m1∧k1 e− πN

2 Qσ (k0) T (k1) = e− πN
2 Qσ (k0) T (k0). ��

A simple property of these quantisations is the semi-classical behaviour of the traces
of quantized observables:

Lemma 7. For any integer M ≥ 3,

∀f ∈ C∞(T2),
1

N
Tr(OpW

N (f )) =
∫

T2
f (x) dx + OM

(‖f ‖CM
NM

)
. (5.9)

For the anti-Wick quantisation, we have:

∀f ∈ L1(T2),
1

N
Tr(OpAW,σ

N (f )) =
∫

T2
f (x) dx + O(‖f ‖L1 e− πN

2 min(σ,1/σ)).

(5.10)
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Proof. The first identity uses the fact that on the space HN ,

1

N
Tr T (k) =

{
1 if k = Nm for some m ∈ Z

2,

0 otherwise.

The error term in (5.9) is bounded above by
∑

m∈Z2\{0} |f̃ (Nm)|. Now, the Fourier
coefficients of a smooth function satisfy

∀M ≥ 1, ∀k ∈ Z
2, |f̃ (k)| �M

‖f ‖CM
(1 + |k|)M . (5.11)

Using this upper bound (with M ≥ 3) in the above sum yields (5.9).
In the anti-Wick case, each term |f̃ (Nm)| ≤ ‖f ‖L1 of the sum is multiplied by

e− πN
2 Qσ (m) ≤ e− πN

2 min(σ,1/σ)|m|2 , which yields (5.10). ��
We will now compare the Weyl and anti-Wick quantisations in the operator norm.

We give two estimates, corresponding to the two classes of functions described in the
introduction of this section.

Proposition 8. I) For any f ∈ C∞(T2) and σ > 0,

‖OpW
N (f )− OpAW,σ

N (f )‖ � ‖f ‖C5
max{σ, σ−1}

N
. (5.12)

Here σ may depend arbitrarily on N .
II) Let α ∈ R

2+, |α| < 1 and assume that σ > 0 may depend onN such that the quantity

�α(N, σ ) := max
(N2α1−1

σ
,Nα1+α2−1, σ N2α2−1

)
(5.13)

goes to zero asN → ∞. Then there exists a seminorm Nα on the space Sα(T
2) such

that, for any f = f (·, N) ∈ Sα(T
2), one has:

∀N ≥ 1, ‖OpAW,σ
N (f (·, N))− OpW

N (f (·, N))‖ � Nα(f ) �α(N, σ ). (5.14)

Remark 3. The effective “small parameter” �α(N, σ ) will be small as N → ∞ only if
three conditions are simultaneously satisfied:

– |α| = α1 + α2 < 1,
– N2α1 << Nσ ,
– N2α2 << N/σ .

These conditions mean that the horizontal and vertical widths of the kernel (5.6) must be
small compared to the typical scale of fluctuations of f in the respective directions. The
conditions Nσ ≥ 1, N/σ ≥ 1 assumed in Sect. 4 are therefore automatically satisfied.

Proof of Proposition 8. We start with the first (simple) part. Our main ingredient is
Lemma 6. By Taylor’s theorem,

∀k ∈ Z
2, e− π

2N Qσ (k) = 1 + O
(
Qσ(k)

N

)
= 1 + O

(
max{σ, σ−1}

N
|k|2

)
, (5.15)
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where the implied constant is independent of k. Substituting (5.15) into (5.5), the first
term gives the Weyl quantisation of f . Using the bounds (5.11) with M = 5, we obtain
the first part of the proposition:

‖OpAW,σ
N (f )− OpW

N (f )‖ � max{σ, σ−1}
N

∑

k∈Z2

|f̃ (k)| |k|2

� max{σ, σ−1}
N

∑

k∈Z2

‖f ‖C5

(1 + |k|)5 |k|2

� max{σ, σ−1}
N

‖f ‖C5 .

The second part of the proposition requires more care. We first need to control the norm
of the Weyl operator.

Lemma 9. Take any α, β ∈ R
2+ such that |β| = 1 and β ≥ α (i.e. βi ≥ αi , i = 1, 2).

Then, for any function f = f (·, N) ∈ Sα(T
2), we have

‖OpW
N (f (·, N))‖ �

1∑

γ1, γ2=0

Cα,γ (f ) N
−γ ·(β−α), (5.16)

and the implied constant is independent of α,β.

Proof. This lemma is a simple consequence of the Calderón-Vaillancourt theorem, a
sharp form of which was obtained in [Boul]. Assume f is a smooth function on R

2 such
that ∂γ f is uniformly bounded for all γ with γ1, γ2 ∈ {0, 1}. Then, its Weyl quantisation
on L2(R) for � = 1 is a bounded operator, and

‖OpW,R2

�=1 (f )‖ ≤ C

1∑

γ1,γ2=0

‖∂γ f ‖C0(R2). (5.17)

Here ‖·‖ is the norm of bounded operators on L2(R), and C is independent of f .
Now, we use the scaling properties of the Weyl quantisation2. For any β ∈ [0, 1] and

� > 0 we define

f�,β(q, p) := f (�βq, �1−βp).

Then, if U�,β is the dilation operator U�,βψ(q) = �
β/2ψ(�βq), we have [Ma, p. 60]

U�,β OpW,R2

�
(f )U−1

�,β
= OpW,R2

�=1 (f�,β). (5.18)

Applying (5.17) to f�,β , we obtain

∀� > 0, ‖OpW,R2

�
(f )‖ ≤ C

1∑

γ1,γ2=0

‖∂γ f ‖C0(R2) �
βγ1+(1−β)γ2 .

In the case � = (2πN)−1 we apply this bound to a function f ∈ Sα(T
2), select-

ing β = (β, 1 − β) such that β ≥ α: we then obtain the upper bound of (5.16) for

OpW,R2

N (f ). The inequality (5.3) shows that this bound applies as well to the Weyl
operator on HN . ��

2 We thank N. Anantharaman for pointing out to us this scaling argument.
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Equipped with this lemma, we can now prove the second part of Proposition 8. From
the Taylor expansion

|f (x + y)− f (x)− (y · ∇)f (x)| ≤ 1

2
max

0≤t≤1

{∣∣(y · ∇)2f (z)∣∣, z = x + ty
}

and Lemma 6, one easily checks that for any f ∈ C∞(T2),

‖f � − f ‖C0 ≤ 1

8πN

( 1

σ
‖∂2
qf ‖C0 + 2‖∂q∂pf ‖C0 + σ ‖∂2

pf ‖C0

)
.

Since differentiation commutes with convolution, one controls all derivatives: for all
γ ∈ N

2
0,

‖∂γ (f � − f )‖C0 ≤ 1

8πN

( 1

σ
‖∂γ+(2,0)f ‖C0 + 2‖∂γ+(1,1)f ‖C0 + σ ‖∂γ+(0,2)f ‖C0

)
.

(5.19)

For f = f (·, N) ∈ Sα(T
2), this estimate implies:

‖∂γ (f � − f )‖C0 ≤ Nα·γ
(N2α1−1

σ
Cα,γ+(2,0)(f )

+Nα1+α2−1 Cα,γ+(1,1)(f )+ σ N2α2−1 Cα,γ+(0,2)(f )
)

≤ Nα·γ
�α(N, σ )

(
Cα,γ+(2,0)(f )

+Cα,γ+(1,1)(f )+ Cα,γ+(0,2)(f )
)
. (5.20)

Here we used the parameter �α(N, σ ) defined in (5.13). This shows that the function
f �,rem(·, N) := 1

�α(N,σ )

(
f �(·, N)− f (·, N)) is also an element of Sα(T

2), with semi-
norms dominated by seminorms of f . Applying Lemma 9 to that function and taking
any β ≥ α, |β| = 1, we get

‖OpAW,σ
N (f (·, N))− OpW

N (f (·, N))‖ � �α(N, σ )
∑

|γ ′|≤2

1∑

γ1,γ2=0

Cα,γ+γ ′(f ).

The seminorm stated in the theorem can therefore be defined as

Nα(f ) :=
∑

|γ ′|≤2

1∑

γ1,γ2=0

Cα,γ+γ ′(f ). (5.21)

��
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5.2. Egorov estimates for the baker’s map. We now turn to the proof of the Egorov
property (5.1). Let us start with the case n = 1. We assume that a is supported in the set
D1,δ,γ defined in Eq. (4.6), away from the discontinuity set S1 of B.

Proposition 10. Let 0 < δ < 1/4 and 0 < γ < 1/2. Assume that the support of
a ∈ C∞(T2) is contained in D1,δ,γ . Then, in the classical limit,

‖B̂N OpAW,σ
N (a) B̂−1

N − OpAW,σ/4
N (a ◦ B−1)‖ � ‖a‖C0 N5/4 σ 1/4 e−πNθ ,

uniformly with respect to δ,γ ,σ ∈ [1/N,N ]. Here we took as before θ=min(σδ2, γ 2/σ).

Proof. For any normalised state φ ∈ HN , we consider the matrix element

〈φ, B̂NOpAW,σ
N (a)B̂−1

N φ〉 = N

∫

T2
a(x) 〈φ, B̂Nψx,σ,T2〉 〈B̂Nψx,σ,T2 , φ〉 dx. (5.22)

Using the quasi-covariance of coherent states localised in D1,δ,γ (Proposition 5) and
applying the Cauchy-Schwarz inequality, the RHS reads

N

∫

T2
a(x) 〈φ,ψBx,σ/4,T2〉 〈ψBx,σ/4,T2 , φ〉 dx + O(‖a‖C0N5/4σ 1/4e−πNθ ). (5.23)

The remainder is uniform with respect to the state φ. Through the variable substitution
x = B−1(y), this gives

〈φ, B̂NOpAW,σ
N (a)B̂−1

N φ〉 = 〈φ,OpAW,σ/4
N (a ◦ B−1)φ〉 + O(‖a‖C0N5/4σ 1/4e−πNθ ).

(5.24)

Since the operators on both sides are self-adjoint, this identity implies the norm estimate
of the proposition. ��
Remark 4. Here we used the property that the linear local dynamics is the same at each
point x ∈ T

2 \S1 (expansion by a factor 2 along the horizontal, contraction by 1/2 along
the vertical). Were this not the case, the state B̂Nψx,σ,T2 would be close to a coherent
state at the point Bx, but with a squeezing depending on the point x. Integrating over
x, we would get an anti-Wick quantisation of a ◦B−1 with x-dependent squeezing, the
analysis of which would be more complicated (see [Schu1, Chap. 4] for a discussion of
such quantisations).

We now generalise to n > 1. We assume that a is supported away from the set Sn
of discontinuities of Bn. More precisely, for some δ ∈ (0, 2−n−1) and γ ∈ (0, 1/2), we
define the following open set, generalizing (4.6):

Dn,δ,γ :=
{
(q, p) ∈ T

2, ∀k ∈ Z,

∣∣∣q − k

2n

∣∣∣ > δ, p ∈ (γ, 1 − γ )

}
.

The evolution of the sets Dn,δ,γ through B satisfies:

∀j ∈ {0, . . . , n− 1}, BjDn,δ,γ ⊂ Dn−j,2j δ,γ /2j . (5.25)

This is illustrated for n = 2, j = 1 in Fig. 5.1. If a is supported in Dn,δ,γ , then the
support of a ◦B−j is contained in Dn−j,2j δ,γ /2j ⊂ D1,2j δ,γ /2j . So for each 0 ≤ j < n,
we can apply Proposition 10 to the observable a◦B−j , replacing the parameters δ, γ, σ
by their corresponding values at time j ; we find that the parameter θ is independent of
j . The triangle inequality then yields:
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B

δ

γ

2δ

γ

2

Fig. 5.1. The action of the map B. On the left we show the set D2,δ,γ (shaded) and on the right is its
image under the action of B

Corollary 11. Let n > 0 and for some δ ∈ (0, 2−n−1), γ ∈ (0, 1/2), let a ∈ C∞(T2)

have support in Dn,δ,γ . Then, as N → ∞,

‖B̂nN OpAW,σ
N (a) B̂−n

N − OpAW,σ/4n

N (a ◦ B−n)‖ � ‖a‖C0 N5/4 σ 1/4e−πNθ . (5.26)

This estimate is uniform with respect to n, the parameters δ, γ in the above ranges and
the squeezing σ ∈ [ 4n

N
,N ].

Remark 5. The requirementNθ >> 1, together with the allowed ranges for δ, γ , impose
the restriction 4n

N
<< σ << N , n ≤ TE. This is possible only if TE − n >> 1, where

TE is the Ehrenfest time (1.2).
We can reach times n ∼ TE(1 − ε) (with ε > 0 fixed) by taking the parameters

δ = 2−n−2 � N−1+ε , γ � 1, σ � N1−ε : in that case, the argument of the exponential
in the RHS of Eq. (5.26) satisfies πNθ � Nε , so that the RHS decays in the classical
limit.

We wish to obtain Egorov theorems where both terms correspond to a quantisation
with the same parameter σ , or the Weyl quantisation. To do so, we will use Proposition 8
to replace the anti-Wick quantisations by the Weyl quantisation. Using the first statement
of that proposition, we easily obtain the following Egorov theorem:

Theorem 12. Let n > 0 and for some δ ∈ (0, 2−n−1), γ ∈ (0, 1/2), let a ∈ C∞(T2)

have support in Dn,δ,γ . Then, in the limit N → ∞, and for any squeezing parameter
σ ∈ [ 4n

N
,N ], we have

‖B̂nN OpW
N (a) B̂

−n
N − OpW

N (a ◦ B−n)‖ � ‖a‖C0 N5/4 σ 1/4 e−πNθ

+ 1

N

(
max(σ, σ−1) ‖a‖C5 + max

(
σ

4n
,

4n

σ

)
‖a ◦ B−n‖C5

)
. (5.27)

The implied constants are uniform in n, σ, δ, γ .
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If n, δ, γ and the observable a supported on Dn,δ,γ are independent of N , the RHS
semi-classically converges to zero if we simply take σ = 1. This is the “finite-time”
Egorov theorem.

On the other hand, if we let n grow withN , the function a needs to change withN as
well (at least because its support needs to change). In the next subsection we construct
a specific family of functions {an}n≥1, each one supported away from Sn, and compute
the estimate (5.27) for this family.

Remark 6. The same estimate holds if we replace n by −n on the LHS of (5.27), and
replace σ by σ−1 on the RHS, including the definition of θ . Now, the function a must be
supported in the set D−n,δ,γ obtained from Dn,δ,γ by exchanging the roles of q and p.

Indeed, using the unitarity of B̂N , we may interpret the estimate (4.9) as the quasi-
covariant evolution of the coherent state ψy,σ ′,T2 (where y = Bx, σ ′ = σ/4) into the
state ψB−1y,4σ ′,T2 , and the rest of the proof identically follows.

5.3. Egorov estimates for truncated observables.

5.3.1. A family of admissible functions. For future purposes (see the proof of Theorem 1
in the next section), and in order to understand better the bound (5.27), we explicitly con-
struct a sequence of functions {an}n≥0, each function being supported away from Sn. This
sequence is simply obtained by taking the products of a fixed observable a ∈ C∞(T2)

with cutoff functions χδ,n, which we now describe.

Definition 5. For some 0 < δ < 1/4, we consider a Z-periodic function χ̃δ ∈ C∞(R)
which vanishes for x ∈ [−δ, δ] mod Z and takes value 1 for x ∈ [2δ, 1 − 2δ] mod Z.

For any n ≥ 0, we then define the following cutoff functions on T
2:

χδ,n(x) := χ̃δ(2n q) χ̃δ(p),

χδ,−n(x) := χ̃δ(2n p) χ̃δ(q).

For any n ∈ Z, we split the observable a ∈ C∞(T2) into its “good part” an(x) :=
a(x) χδ,n(x) and its “bad part” abad

n (x) = a(x) (1 − χδ,n(x)).

One easily checks that an is supported on Dn,δ/2n,δ , while abad
n is supported on a

neighbourhood of Sn of area O(δ).
In light of Remark 6 we can, without loss of generality, consider only times n > 0.

For any multiindex γ ∈ N
2
0, we have

‖∂γ an‖C0 �γ ‖a‖C|γ | 2nγ1 δ−|γ |. (5.28)

When evolving an through the map B, the derivatives grow along p and decrease along
q; after n iterations, an ◦ B−n is still smooth, and

‖∂γ (an ◦ B−n)‖C0 �γ ‖a‖C|γ | 2nγ2 δ−|γ |. (5.29)

These estimates show that the C5-norms of an and an ◦ B−n (appearing on the RHS of
Eq. (5.27)) are both of order 25n/δ5. With our conventions, the parameter θ appearing
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in the RHS of (5.26) reads θ = δ2

max(σ,4n/σ ) . We maximise it by selecting σ = 2n. With
this choice, the upper bound (5.27) reads

‖B̂nN OpW
N (an) B̂

−n
N − OpW

N (an ◦ B−n)‖ � ‖a‖C0 N5/4 2n/4 e−πNδ2/2n

+26n ‖a‖C5

N δ5
. (5.30)

Using Remark 6, the same estimate holds if we replace n by −n on the LHS.
The last term of the RHS in (5.30) can semiclassically vanish only if |n| < TE

6 . This
time window, although not optimal (see the following subsection), will be sufficient to
prove Theorem 1 in Sect. 6.

Before that, in the last part of this section we will sharpen this estimate by using the
second part of Proposition 8: this will allow us to prove a Egorov property up to times
|n| ≤ (1 − ε)TE, for any ε > 0.

5.3.2. Optimised Egorov estimates. In this subsection we prove the following “optimal”
Egorov theorem.

Theorem 13. Choose ε > 0 arbitrarily small, and consider any observablea ∈ C∞(T2).
For any N ≥ 1 and n ∈ Z, construct the “good part” an of that observable using Defi-
nition 5 with a width δ(N) ≥ min(N−ε/4, 1/10).

Then, the following Egorov estimate holds: there exists C > 0 (independent of a, ε)
and N(ε) > 0 such that for any N ≥ N(ε) and any time |n| ≤ (1 − ε)TE,

‖B̂nN OpW
N (an) B̂

−n
N − OpW

N (an ◦ B−n)‖ ≤ C
(
‖a‖C0 N3/2 e−πNε/2 + ‖a‖C4

Nε/2

)
. (5.31)

Proof. We only treat the case n ≥ 0, finally invoking the time-reversal symmetry as in
Remark 6.

We consider ε > 0 fixed, and define N(ε) through the equation N(ε)−ε/4 = 1/10.
We then take N ≥ N(ε) and consider any positive time n ≤ (1 − ε)TE.

The improvement over Theorem 12 will be a sharper bound for the norms ‖OpAW,σ
N

(an) − OpW
N (an)‖ and ‖OpAW,σ/4n

N (an ◦ B−n) − OpW
N (an ◦ B−n)‖. Using the rescaled

time t = n
TE

and the property δ(N) ≥ N−ε/4, the bound (5.28) on derivatives of an
reads:

‖∂γ an‖C0 �γ ‖a‖C|γ | 2nγ1 N
ε
4 |γ | = ‖a‖C|γ | Ntγ1 N

ε
4 |γ |.

Thus, the derivatives ofan scale as those of anN -dependent function in the spaceSαt (T
2),

where αt := (t + ε/4, ε/4). As in the former subsection, we must take σ = 2n = Nt to
minimise the remainder. The second part of Proposition 8 applied to a function inSαt (T

2)

yields a “small parameter” �αt (N, 2n) = Nt+ε/2−1, so that the difference between the
two quantisations of an is bounded as

‖OpW
N (an)− OpAW,2n

N (an)‖ � ‖a‖C4 Nt+ε/2−1.

Similar considerations using (5.29) show that ‖OpW
N (a ◦ B−n)− OpAW,2−n

N (a ◦ B−n)‖
is bounded by the same quantity. The argument of the exponential in Eq. (5.26) takes
the value Nθ = Nδ2/2n ≥ N1−t−ε/2, so that the full estimate reads:

‖B̂nN OpW
N (an) B̂

−n
N − OpW

N (an ◦ B−n)‖ � ‖a‖C0 N3/2 e−πN1−t−ε/2 + ‖a‖C4

N1−t−ε/2 .
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We obtain the bound (5.31) uniform in n by noticing that for the time window we
consider, N1−t−ε/2 ≥ Nε/2. ��

Our reason for believing that this estimate is “optimal” lies in Remark 5: we evolve
states which stay away from the discontinuity set S1 along their evolution. Since any
state satisfies �q�p � 1

2 � due to Heisenberg’s uncertainty principle, and �q doubles
at each time step, it is impossible for such a state to remain away from S1 during a time
window larger than TE.

Besides, at the time TE the “good part” an oscillates on a scale ≈ � in the q direction,
so it behaves more like a Fourier integral operator than an observable (pseudo-differential
operator).

6. Quantum Ergodicity

For any evenN , we denote by {ϕN,j } the eigenvectors of B̂N (if some eigenvalues happen
to be degenerate, which seems to be ruled out by numerical simulations, take an arbitrary
orthonormal eigenbasis). Let us consider a fixed real-valued observable a ∈ C∞(T2)

satisfying
∫
T2 a(x) dx = 0. Quantum ergodicity follows if we prove that the quantum

variance

S2(a,N) = 1

N

N∑

j=1

|〈ϕN,j ,OpW
N (a) ϕN,j 〉|2

N→∞−−−−→ 0. (6.1)

One method to prove this limit for our quantised baker’s map would be to apply
the methods of [MO’K]: one only needs the Egorov property (Theorem 12) for finite
times n, and the classical ergodicity of B. However, this method seems unable to give
information about the rate of decay of the variance.

In order to prove the upper bound stated in Theorem 1, we will rather adapt the method
used in [Zel2, Schu2] to our discontinuous map. This method requires the correlation
functions of the classical map to decay sufficiently fast, which is the case here (Eq. 2.5).

Proof of Theorem 1. To begin with, we consider the function

g(x) := 2

(
1 − cos x

x2

)
(6.2)

and its Fourier transform

ĝ(k) =
∫ ∞

−∞
g(x) e−2πikx dx =

{
2π(1 − |k|), for −1 ≤ k ≤ 1,
0, elsewhere.

For any T ≥ 1, we use it to construct the following periodic function:

fT (θ) :=
∑

m∈Z

g(T (θ +m)).

fT admits the Fourier decomposition fT (θ) = ∑
k∈Z

f̂T (k) e2πikθ , where

f̂T (k) =
{

2π
T

(
1 − |k|

T

)
for −T ≤ k ≤ T ,

0 for |k| > T .

Using this function, one may easily prove the following lemma [Schu2].
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Lemma 14. With notations described above, for any even N ≥ 2 and T ≥ 1 one has

S2(a,N) ≤
∑

n∈Z

f̂T (n)
1

N
Tr

(
OpW

N (a) B̂
n
N OpW

N (a) B̂
−n
N

)
.

Notice that the terms in the sum on the RHS vanish for |n| > T .

Proof. Let {ϕj } be the eigenbasis of B̂N , with B̂Nϕj = e2πiθj ϕj . Then one has

Tr
(

OpW
N (a) B̂

n
N OpW

N (a) B̂
−n
N

)
=

N−1∑

j,k=0

e2πin(θk−θj ) |〈OpW
N (a)ϕj , ϕk〉|2.

Multiplying by f̂T (n) and summing over n, we get,
∑

n∈Z

f̂T (n) Tr
(

OpW
N (a) B̂

n
N OpW

N (a) B̂
−n
N

)

=
N−1∑

j,k=0

fT (θk − θj ) |〈OpW
N (a)ϕj , ϕk〉|2

=
N−1∑

j=0

fT (0) |〈OpW
N (a)ϕj , ϕj 〉|2 +

∑

j �=k
fT (θk − θj ) |〈OpW

N (a)ϕj , ϕk〉|2

≥ N S2(a,N).

The final inequality follows from the positivity of fT and the property fT (0) ≥ 1. ��
To prove the theorem we will estimate the traces appearing in Lemma 14. Due to the

support properties of f̂T , only the terms with n ∈ [−T , T ] will be needed. We take the
time T depending on N , precisely as

T = T (N) := TE

11
,

where TE is the Ehrenfest time (1.2). For each n ∈ Z ∩ [−T , T ], we will apply the
Egorov Theorem 12. We first decompose a into a “good” part an and “bad” part abad

n , as
described in Definition 5:

a = an + abad
n , an := a.χδ,n. (6.3)

We let the width δ > 0 depend on N as δ � (logN)−1. Therefore, for any n ∈ [−T , T ]

we will have 2|n|
δ

� N1/10. As a result, the bounds (5.28) for the derivatives of an read:

∀n ∈ Z ∩ [−T , T ], ‖∂γ an‖C0 �γ ‖a‖C|γ | N
|γ |
10 . (6.4)

Furthermore, the same bounds are satisfied by the derivatives of abad
n and an ◦ B−n.

We decompose the traces of Lemma 14 according to the splitting (6.3):

Tr
(

OpW
N (a) B̂

n
N OpW

N (a) B̂
−n
N

)
= Tr

(
OpW

N (a) B̂
n
N OpW

N (an) B̂
−n
N

)

+Tr
(

OpW
N (a) B̂

n
N OpW

N (a
bad
n ) B̂−n

N

)
. (6.5)
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The second term in the RHS will be controlled by replacing OpW
N (a

bad
n ) by its anti-Wick

quantisation:

Tr
(

OpW
N (a) B̂

n
N OpW

N (a
bad
n ) B̂−n

N

)
= Tr

(
OpW

N (a) B̂
n
N OpAW,1

N (abad
n ) B̂−n

N + RN(n)
)
.

(6.6)

The remainder RN(n) is dealt with using part I of Proposition 8, together with the
bounds (6.4) applied to abad

n :

‖RN(n)‖ ≤ ‖OpW
N (a)‖ ‖OpW

N (a
bad
n )− OpAW,1

N (abad
n )‖

� ‖OpW
N (a)‖

‖abad
n ‖C5

N
� ‖OpW

N (a)‖
‖a‖C5

N1/2 . (6.7)

In order to compute Tr
(

OpW
N (a) B̂

n
N OpAW,1

N (abad
n ) B̂−n

N

)
, we split the function abad

n into

its positive and negative parts, abad
n = abad

n,+ − abad
n,−, where abad

n,± ≥ 0. We then use the
following (standard) linear algebra lemma to estimate the trace:

Lemma 15. Let A, B be self-adjoint operators on HN , and assume B is positive. Then

|Tr(AB)| ≤ ‖A‖ Tr(B). (6.8)

Since the anti-Wick operator OpAW,1
N (abad

n,+) is positive, this lemma yields:
∣∣∣Tr

(
OpW

N (a) B̂
n
N OpAW,1

N (abad
n,+) B̂

−n
N

)∣∣∣ ≤ ‖OpW
N (a)‖ Tr

(
OpAW,1

N (abad
n,+)

)
,

and similarly by replacing abad
n,+ by abad

n,−. By linearity and abad
n,+ + abad

n,− = |abad
n |, we get

∣∣∣Tr
(

OpW
N (a) B̂

n
N OpAW,1

N (abad
n ) B̂−n

N

)∣∣∣ ≤ ‖OpW
N (a)‖ Tr

(
OpAW,1

N (|abad
n |)).

From Eq. (5.10), the trace on the RHS is equal to N · ‖abad
n ‖L1(T2)

(
1 + O(e−πN/2)

)
.

Since abad
n is supported on a neighbourhood of Sn of area O(δ), its L1 norm is of order

O(δ ‖a‖C0). Using the Calderón-Vaillancourt estimate ‖OpW
N (a)‖ ≤ C ‖a‖C2 , we have

thus proven the following bound for the second term in (6.5):

1

N
Tr

(
OpW

N (a) B̂
n
N OpW

N (a
bad
n ) B̂−n

N

)
� ‖a‖C2

(
δ ‖a‖C0 + ‖a‖C5

N1/2

)
. (6.9)

We now estimate the first term in (6.5). We write

Tr
(

OpW
N (a) B̂

n
NOpW

N (an)B̂
−n
N

)
= Tr

(
OpW

N (a)OpW
N (an ◦ B−n)+ R′

N(n)
)
, (6.10)

and control the remainder R′
N(n) with the Egorov estimate (5.30), remembering that

n ≤ TE/11:

‖R′
N(n)‖ � ‖OpW

N (a)‖
(
‖a‖C0 N5/4 2n/4 e−πNδ2/2n + 26n ‖a‖C5

N δ5

)

� ‖a‖2
C5

N2/5
. (6.11)

The following lemma (proved in [MO’K, Lemma 3.1]) will allow us to replace the
quantum product by a classical one.
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Lemma 16. There exists C > 0 such that, for any pair a, b ∈ C∞(T2),

∀N ≥ 1, ‖OpW
N (a)OpW

N (b)− OpW
N (ab)‖ ≤ C

‖a‖C4 ‖b‖C4

N
. (6.12)

Using this lemma and the bounds (6.4), we get

Tr
(

OpW
N (a)OpW

N (an ◦ B−n)
)

= Tr
(

OpW
N

(
a(an ◦ B−n)

) + R′′
N(n)

)
,

with ‖R′′
N(n)‖ � ‖an‖C4 ‖an ◦ B−n‖C4

N
� ‖a‖2

C4

N1/5
. (6.13)

To finally estimate the trace of OpW
N

(
a(an ◦ B−n)

)
, we use Eq. (5.9) together with the

estimates (6.4):

1

N
Tr

(
OpW

N

(
a(an ◦ B−n)

)) =
∫

T2
a(an ◦ B−n)(x) dx + O

(‖a‖2
C3

N2

)
.

It remains to compute the integral on the RHS. We split it in two integrals, according to
an = a − abad

n . The second integral can be bounded by
∣∣∣∣
∫

T2
a(x) abad

n (B−nx) dx

∣∣∣∣ ≤ ‖a‖C0 ‖abad
n ‖L1 � ‖a‖2

C0 δ, (6.14)

while the first one reads
∫

T2
a(x) a(B−nx) dx = Ka a(n). (6.15)

This integral is the classical autocorrelation function for the observable a(x), a purely
classical quantity. At this point we must use the dynamical properties of the classical
baker’s map B, namely its fast mixing properties (see the end of Sect. 2): for some
� > 0, the autocorrelation decays (when n → ∞) as

Ka a(n) � ‖a‖2
C1 e−�|n|.

Collecting all terms and using the properties of the function f̂T , Lemma 14 finally
yields the following upper bound:

S2(a,N) � ‖a‖2
C5

∑

n∈[−T ,T ]

|f̂T (n)|
(

e−�|n| + δ + 1

N1/5

)

� ‖a‖2
C5

( 1

T
+ δ

)
.

Since we took T � logN and δ � (logN)−1, this concludes the proof of Theorem 1. ��
Proof of Corollary 2. We start by picking an observable a ∈ C∞(T2), assuming

∫
a(x)

dx = 0. For any decreasing sequence α(N)
N→∞−−−−→ 0, Chebychev’s inequality yields an

upper bound on the number of eigenvectors of B̂N for which |〈ϕN,j ,OpW
N (a)ϕN,j 〉| >

α(N):

#
{
j ∈ {1, . . . , N} : |〈ϕN,j ,OpW

N (a) ϕN,j 〉| > α(N)
}

N
≤ S2(a,N)

α(N)2
. (6.16)
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From Theorem 1, if we take α(N) >> (logN)−1/2, the above fraction converges to
zero. Defining JN(a) as the complement of the set in the above numerator, we obtain a
sequence of subsets JN(a) ⊂ {1, . . . , N} satisfying #JN (a)

N
→ 1, such that the eigen-

states ϕN,jN with jN ∈ JN(a) satisfy (1.3).
Using a standard diagonal argument [CdV, HMR, Zel1], one can then extract subsets

JN ⊂ {1, . . . , N} independent of the observable a ∈ C∞(T2), with #JN
N

→ 1, such that
(1.3) is satisfied for any a ∈ C∞(T2) if one takes jN ∈ JN . ��
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