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1. Introduction

Let (M, g) be a compact smooth Riemannian manifold. The Laplace–Beltrami
operator Δ admits a complete set of eigenfunctions

uj ∈ C∞(M), (−Δ− λ2
j)uj = 0, ‖uj‖L2(M) = 1.

These can be interpreted as stationary states of a quantum particle evolving freely
on M , with λ2

j being the energy of the particle, and |uj(x)|2 the probability density
of finding the particle at the point x. One fundamental question in the field of
spectral geometry is to understand the structure of the eigenfunctions uj in the
high-energy regime λj → ∞, using some information on the geodesic flow on M
(this flow corresponds to the dynamics of a classical particle evolving freely on M).
In particular, the field of Quantum Chaos focuses on situations where the geodesic
flow on M has chaotic behavior.

In this paper we assume that (M, g) is a compact connected Riemannian surface
without boundary, whose geodesic flow has the Anosov property (see §2.1 for defi-
nitions and properties); we will refer to such (M, g) as an Anosov surface. Anosov
flows form a standard mathematical model of systems with strongly chaotic behav-
ior; in some sense they are the “purest” form of chaotic systems. A large family of
examples is provided by the surfaces of negative Gauss curvature. Our first result
gives a lower bound on the mass distribution of uj , showing that the probability
of finding the quantum particle in any fixed open set is bounded away from zero
uniformly in the high-energy limit:

Theorem 1. Assume that (M, g) is an Anosov surface. Choose Ω ⊂ M open and
nonempty. Then there exists a constant cΩ > 0 such that any eigenfunction uj of
the Laplace–Beltrami operator on (M, g) satisfies

(1.1) ‖uj‖L2(Ω) ≥ cΩ .

On any Riemannian manifold, the unique continuation principle shows that a
positive lower bound (1.1) holds if one allows cΩ to depend on λj ; see e.g. Lebeau–
Robbiano [LR95, Corollaire 2]; an introduction to quantitative unique continuation
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for eigenfunctions of the Schrödinger operators on Rd can be found in [Zw12, The-
orem 7.7]. In general, the lower bound decays exponentially fast as λj →∞, as can
be seen in the case of the round sphere, where one can construct Gaussian beam
eigenstates concentrating on a closed geodesic and exponentially small away from
this geodesic. Note that related propagation of smallness results for solutions of
elliptic equations were also obtained for any set Ω of positive Lebesgue measure
vol(Ω) by Logunov–Malinnikova [LM19, §1.7], who showed that

sup
Ω
|uj | ≥

(
vol(Ω)

C

)Cλj

sup
M
|uj |

for some constant C depending on (M, g), but not on Ω or j. In our situation, the
energy-independent lower bound (1.1) strongly relies on the chaotic behavior of the
geodesic flow.

The proof of Theorem 1 gives a stronger result featuring the localization of uj in
both position and Fourier spaces. Let Oph be a semiclassical quantization procedure
on M , and S0(T ∗M) be the standard symbol class; see §2.2. Denote by S∗M ⊂
T ∗M the cosphere bundle.

Theorem 2. Assume that a ∈ S0(T ∗M) and a|S∗M �≡ 0. Then there exist constants
C > 0 and h0 > 0 depending only on a, such that for all h ∈ (0, h0) and all
u ∈ H2(M) we have the estimate

(1.2) ‖u‖L2(M) ≤ C‖Oph(a)u‖L2(M) +
C log(1/h)

h

∥∥(−h2Δ− I)u
∥∥
L2(M)

.

If a = a(x) is a function on M , then Oph(a) is the multiplication operator by a.
Hence Theorem 2 implies Theorem 1 by taking a(x) supported inside Ω and putting
h := λ−1

j , u := uj . More generally, the lower bound (1.1) holds for quasimodes uh

of the Laplacian of the following type:

(1.3) ‖(−h2Δ− I)uh‖L2(M) = o
(
h/ log(1/h)

)
, h→ 0; ‖uh‖L2(M) = 1.

On the opposite, the lower bound (1.1) may fail for quasimodes of error
O(h/ log(1/h)): for (M, g) a surface of constant negative curvature (also known
as a hyperbolic surface), Brooks [Br15] constructed quasimodes of such strength
localized along a closed geodesic; the construction was extended to more general
two-dimensional quantum systems by Eswarathasan–Nonnenmacher [EN17], and
in higher dimension to quasimodes localized on an invariant submanifold of M by
Eswarathasan–Silberman [ES17].

1.1. Application to semiclassical measures. We now discuss two applications
of Theorem 2. The first one concerns semiclassical measures, which describe asymp-
totic macroscopic distribution of subsequences of eigenfunctions. More precisely, if
(ujk)k∈N is a sequence of eigenfunctions with λjk → ∞ and hjk := λ−1

jk
, then we

say that (ujk)k converges to a measure μ on T ∗M if

(1.4) 〈Ophjk
(a)ujk , ujk〉L2(M)

k→∞−−−−→
∫
T∗M

a dμ for all a ∈ S0(T ∗M).

The measure μ is called a semiclassical measure of the manifold (M, g); it describes
the asymptotic microlocal properties of the eigenstates along the sequence (ujk) of
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eigenfunctions. A compactness argument shows that, from any sequence of eigen-
states (ujk), it is always possible to extract a subsequence which converges to a semi-
classical measure. Any semiclassical measure is a probability measure supported
inside S∗M , which is invariant under the geodesic flow; see [Zw12, Chapter 5].

From (1.4) and the semiclassical calculus we see that ‖Ophjk
(a)ujk‖2L2(M) con-

verges to
∫
|a|2 dμ. Thus Theorem 2 implies the following

Theorem 3. Let μ be a semiclassical measure associated to a sequence of Lapla-
cian eigenfunctions on M . Then suppμ = S∗M , that is μ(U) > 0 for any open
nonempty U ⊂ S∗M .

While we do not provide an explicit formula for the lower bound on μ(U) in
terms of U , we show that this lower bound only depends on a certain dynamical
quantity associated to U :

Theorem 4. There exists ε0 > 0 depending only on (M, g) such that the following
holds. Assume that U ⊂ S∗M is an open set which is (L0, L1)-dense in both unstable
and stable directions in the sense of Definition 2.16, and has diameter less than ε0.
Then for each semiclassical measure μ we have μ(U) ≥ c, where the constant c > 0
depends only on (M, g) and on the lengths (L0, L1).

Theorem 4 follows by analyzing the dependence of various parameters in the
proof of Theorem 2. We indicate the required changes in various remarks through-
out the paper, with the proof of Theorem 4 explained at the end of §3.3.4. Let us
remark that Theorems 3 and 4 also apply to semiclassical measures associated with
quasimodes of the form (1.3).

We believe that our results are not specific to the Laplacian, but can be extended
to operators of the form P = −Δ + P1 + P0 on (M, g), where Pi are symmetric
differential operators of order i with smooth coefficients. One could also consider
semiclassical Schrödinger operators Ph = −h2Δ + V with V ∈ C∞(M ;R), and
study families of eigenstates Phuh = E(h)uh, with eigenvalues E(h) → 1 when
h → 0. If the potential V is sufficiently small, the Hamiltonian flow generated by
the symbol p(x, ξ) = |ξ|2g + V (x), restricted to the energy hypersurface p−1(1), will
still enjoy the Anosov property, due to the structural stability of that property. We
then believe that the eigenstates (uh)h→0, as well as the associated semiclassical
measures, will satisfy similar delocalization properties as in Theorems 1–4.

To put Theorems 2–4 into context, let us give a brief historical review, referring
to the expository articles of Marklof [Ma06], Zelditch [Ze09], and Sarnak [Sa11] for
more information. The Quantum Ergodicity theorem of Shnirelman [Sh74a,Sh74b],
Zelditch [Ze87], and Colin de Verdière [CdV85] states that when the geodesic flow
on S∗M is ergodic (with respect to the Liouville measure μL), there exists a density
one sequence (ujk) which asymptotically equidistributes, namely which converges to
the Liouville measure μL in the sense of (1.4). The Quantum Unique Ergodicity
(QUE) conjecture formulated by Rudnick–Sarnak [RS94] states that on any Anosov
manifold, the full sequence of eigenfunctions equidistributes, that is μL is the unique
semiclassical measure. So far this conjecture has only been established for hyper-
bolic surfaces possessing arithmetic symmetries [Li06]. On the other hand, there
exist toy models of quantized Anosov maps on the two-dimensional torus, where the
corresponding QUE conjecture fails; see Faure–Nonnenmacher–de Bièvre [FNdB03]
and Anantharaman–Nonnenmacher [AN07b]. On a similar Anosov toy model on a
higher dimensional torus, Kelmer [Ke10] exhibited counterexamples to QUE, but
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also to our full delocalization result, featuring semiclassical measure supported on
proper submanifolds.

With QUE seeming out of reach, it is natural to wonder which flow invari-
ant probability measures on S∗M can arise as semiclassical measures; in other
words, does quantum mechanics select certain invariant measures, or allow all of
them? The first restrictions on semiclassical measures were proved by Ananthara-
man [An08], Anantharaman–Nonnenmacher [AN07a], Rivière [Ri10], and
Anantharaman–Silberman [AS13], in the form of positive lower bounds on the
Kolmogorov–Sinai entropy of μ. The entropy is a nonnegative number associated
with each invariant measure, representing the information theoretic complexity of
the measure. Low-entropy measures therefore have low complexity. These lower
bounds on the entropy exclude, for instance, the extreme case when μ is a δ mea-
sure on a closed geodesic. Our Theorem 3 gives a different type of restriction on
μ. As explained in [DJ18], there exist invariant measures which are excluded by
Theorem 3 but not by entropy bounds, and vice versa. For instance, on any Anosov
surface one can construct flow invariant fractal subsets F � S∗M of Hausdorff di-
mension close to 3, which support invariant measures of large entropy. Conversely,
an invariant measure of the form εμL + (1− ε)δγ , with δγ the delta measure on a
closed geodesic and 0 < ε
 1, will have full support but small entropy.

In the special case of hyperbolic surfaces, Theorems 1–3 were proved by Dyatlov–
Jin [DJ18]; see also the reviews [Dy17, Dy19]. The proofs in the present paper
partially use the strategy of [DJ18]; in particular they rely on the fractal uncertainty
principle (FUP) established by Bourgain–Dyatlov [BD18]. However, many new
difficulties arise in the variable curvature case, in particular from the fact that the
stable and unstable foliations on S∗M are not smooth; see §§1.4, 4.1.

1.2. Application to control theory. The second application of Theorem 2 is
observability and exact null-controllability for the (nonsemiclassical) Schrödinger
equation:

Theorem 5. Assume that Ω ⊂M is open and nonempty, and fix T > 0. Then:

• (Observability) There exists a constant K > 0 depending only on M , Ω,
and T , such that for any u0 ∈ L2(M), we have

(1.5) ‖u0‖2L2(M) ≤ K

∫ T

0

‖eitΔu0‖2L2(Ω)dt;

• (Control) For any u0 ∈ L2(M), there exists f ∈ L2((0, T ) × Ω) such that
the solution to the equation

(i∂t +Δ)u(t, x) = f1(0,T )×Ω(t, x), u(0, x) = u0(x)

satisfies

u(T, x) ≡ 0.

The proof that the above statements follow from Theorem 2 is identical to the
one in Jin [Ji18], so we will not reproduce it here.

For a general manifold, such observability/control is known to hold if the open set
Ω satisfies the geometric control condition of Bardos–Lebeau–Rauch [BLR92,Le92],
namely if every geodesic ray intersects Ω. Yet, it may hold as well if this geomet-
ric condition is violated, for instance on compact manifolds of negative sectional
curvature, provided the set of geodesics never meeting Ω is “sufficiently thin”;
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see Anantharaman–Rivière [AR12]. The novelty in the above two-dimensional re-
sult is that this control holds for any open set Ω, no matter how thick the set of
uncontrolled geodesics. So far the only other family of manifolds for which observ-
ability/control was known to hold for any Ω were the flat tori; see Haraux [Ha89]
and Jaffard [Ja90]. Further references on this question may be found in Burq–
Zworski [BZ04] and Jin [Ji18].

1.3. Damped wave equation. Our final result concerns the long time behavior of
solutions to the damped wave equation on M , with damping function b ∈ C∞(M),
b ≥ 0, b �≡ 0:

(1.6) (∂2
t −Δ+ 2b(x)∂t)v(t, x) = 0, v|t=0 = v0(x), ∂tv|t=0 = v1(x).

Semigroup theory shows that for initial data (v0, v1) ∈ H0 := H1(M) × L2(M),
the above equation has a unique solution in C(R+;H1(M))∩C1(R+;L2(M)). The
energy of this solution at time t ≥ 0 is defined by

(1.7) E(v(t)) :=
1

2

∫
M

|∂tv(t, x)|2 + |∇xv(t, x)|2 dx.

It is well-known that on every compact Riemannian manifold, this energy decays to
zero when t→∞. However, the rate of decay depends on a subtle interplay between
the geodesic flow and the support of the damping function; see Lebeau [Le96].
In particular, exponential decay (the fastest possible decay) always holds if the
damping function satisfies the geometric control condition, that is any geodesic
intersects the set {b > 0}. In the case of an Anosov surface with any damping
function b, we obtain exponential decay without requiring this geometric condition:

Theorem 6. Assume that b ≥ 0 but b �≡ 0. Then for every s > 0, there exist
constants C and γ = γ(s) > 0 such that for any (v0, v1) ∈ Hs := Hs+1(M) ×
Hs(M), the energy of the solution decays exponentially:

(1.8) E(v(t)) ≤ C e−γt ‖(v0, v1)‖2Hs .

We remark that on any compact manifold, the decay (1.8) holds for s = 0 if
and only if the set {b > 0} satisfies the geometric control condition; see Rauch–
Taylor [RaTa75]. On manifolds of negative curvature, an exponential decay con-
trolled by a higher Sobolev norm s > 0 has been proved in situations where the set
of undamped trajectories is sufficiently “thin”; see Schenck [Sc10].

To our knowledge, Theorem 6 gives the first class of manifolds (of dimension
≥ 2) for which the energy decays exponentially (under a control by a higher Sobolev
norm), no matter how small the support of the damping is. As a comparison, in the
case of flat tori, in absence of geometric control of the region {b > 0}, the decay is
instead algebraic in time; see Anantharaman–Léautaud [AnLe14]. For an account
on previous results on the rate of energy decay for damped waves, the reader may
consult the introduction to [Ji20] and the references therein.

The proof of Theorem 6 uses many of the ingredients of the proof of Theorem 2,
including the key estimate, Proposition 3.2. In the special case of hyperbolic sur-
faces, Theorem 6 was proved by Jin [Ji20] using the methods of [DJ18].

1.4. Structure of the article.

• In §2 we review various ingredients used in the proof. Those include: hy-
perbolic (Anosov) dynamics and stable/unstable manifolds (§2.1); pseu-
dodifferential operators with mildly exotic symbols and Egorov’s theorem
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(§2.2); Lagrangian distributions/Fourier integral operators (§2.3); fractal
uncertainty principle (§2.4); proof of porosity of dynamically defined sets
(§2.5).
• In §3 we give the proofs of Theorems 2, 4 (§3.3), and 6 (§3.4). The strategy
of proof is similar to the one used in [DJ18,Ji20] in the constant curvature
case. It starts from a microlocal partition of the identity, quantizing the par-
tition of S∗M into the controlled vs. uncontrolled regions. Using the wave
group, we may refine this microlocal partition up to a time N , each element
of the refined partition being an operator Aw = AwN

(N) · · ·Aw1
(1)Aw0

in-
dexed by a word w = w0 . . . wN , each symbol wj indicating whether the
system sits in the controlled or uncontrolled region at the time j. We
need to push this refinement up to a time N ∼ C log(1/h) exceeding the
Ehrenfest time, which implies that the operators Aw are no longer pseudo-
differential operators. The core of the proof then consists in a key estimate
on these “long” operators Aw, given in Proposition 3.2.
• §4 is devoted to the proof of this key Proposition. It proceeds by trans-
forming this estimate into a collection of fractal uncertainty principles. This
part of the proof is very different from the constant curvature case, due to
the fact that the Ehrenfest time is not uniform, but depends on the trajec-
tory; the difficulty also comes from the low regularity of the stable/unstable
foliations, which are not C∞, but only C2−ε. An outline of the proof is
provided in §4.1.
• In §5 we complete the analysis of the operators Aw, by splitting them into
more elementary pieces, which we may precisely analyze through a version
of Egorov’s theorem up to the local Ehrenfest time. Similar elementary
pieces were already introduced in the proofs of entropic lower bounds [An08,
NZ09, Ri10]; we will need a somewhat more precise description of these
operators for our aims.
• Appendix A contains quantitative estimates for the semiclassical pseudo-
differential calculus on a compact surface, used in §2.2 and §5.

2. Ingredients

In this section we review some of the ingredients used in the proof: hyperbolic dy-
namics (§2.1), semiclassical analysis (§§2.2–2.3), fractal uncertainty principle (§2.4),
and porosity properties in the stable/unstable directions (§2.5).

2.1. Hyperbolic dynamics. Let (M, g) be a compact connected Riemannian sur-
face. Denote

T ∗M \ 0 := {(x, ξ) ∈ T ∗M : ξ �= 0},
S∗M := {(x, ξ) ∈ T ∗M : |ξ|g = 1}.

Define the smooth function

(2.1) p : T ∗M \ 0→ R, p(x, ξ) := |ξ|g.

The Hamiltonian flow of p,

(2.2) ϕt := exp(tHp) : T
∗M \ 0→ T ∗M \ 0

is the homogeneous geodesic flow; note that it preserves S∗M .
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We assume that the restriction of ϕt to S∗M is an Anosov flow, namely for each
ρ ∈ S∗M there is a splitting of the tangent space Tρ(S

∗M) into one-dimensional
spaces

Tρ(S
∗M) = E0(ρ)⊕ Es(ρ)⊕ Eu(ρ)

such that:

• E0(ρ) = RHp(ρ) is the flow direction;
• Es, Eu are invariant under dϕt;
• Es is stable and Eu is unstable in the following sense: for any choice of
continuous metric | • | on the fibers of T (S∗M), there exist C, θ > 0 such
that

(2.3) |dϕt(ρ)v| ≤ Ce−θ|t||v|,
{
v ∈ Es(ρ), t ≥ 0;

v ∈ Eu(ρ), t ≤ 0.

The Anosov assumption holds in particular if (M, g) has everywhere negative Gauss
curvature; see [KH97, Theorem 17.6.2], [Kl95, Theorem 3.9.1], or [Dy18, Theorem 6
in §5.1]. In the present setting the dependence of the spaces Es, Eu (and the
stable/unstable manifolds defined in §2.1.1) on the base point ρ is C2− but (unless
M has constant curvature) not C2; see Remark (1) following Lemma 2.3.

Since ϕt is a homogeneous Hamiltonian flow, it preserves the canonical 1-form
ξ dx (which is the symplectic dual of the dilation field ξ · ∂ξ). By (2.3) we see that
ξ dx annihilates Es ⊕ Eu, that is

(2.4) Es ⊕ Eu = ker(dp) ∩ ker(ξ dx).

We fix adapted metrics | • |s, | • |u, which are smooth Riemannian metrics on S∗M ,
so that the following stronger version of (2.3) holds for some Λ0 > 0:

(2.5)
|dϕt(ρ)v|s ≤ e−Λ0|t||v|s, v ∈ Es(ρ), t ≥ 0;

|dϕt(ρ)v|u ≤ e−Λ0|t||v|u, v ∈ Eu(ρ), t ≤ 0.

See for instance [Dy18, Lemma 4.7] for the construction of such metrics. By homo-
geneity we extend the spaces E0, Es, Eu to T ∗M \ 0. We also extend | • |s, | • |u to
homogeneous metrics of degree 0 on T ∗M \ 0.

For each ρ ∈ T ∗M \ 0 and t ∈ R we define the stable/unstable expansion rates
(since Es, Eu are one-dimensional these coincide with the stable/unstable Jaco-
bians):

(2.6)
|dϕt(ρ)v|s = Js

t (ρ)|v|s, v ∈ Es(ρ);

|dϕt(ρ)v|u = Ju
t (ρ)|v|u, v ∈ Eu(ρ).

From the stable/unstable decomposition and the homogeneity of the flow we see
that for all ρ ∈ { 14 ≤ |ξ|g ≤ 4} and all t

(2.7)
‖dϕt(ρ)‖ ≤ CJu

t (ρ), t ≥ 0;

‖dϕt(ρ)‖ ≤ CJs
t (ρ), t ≤ 0.

Since E0 is spanned by Hp and Es, Eu are tangent to the level sets of p, we see that
the weak stable/unstable spaces Es ⊕E0, Eu ⊕E0 are Lagrangian with respect to
the standard symplectic form ω on T ∗M \ 0 and Es ⊕ Eu is symplectic. Since ϕt

are symplectomorphisms, there exists a constant C such that for all ρ ∈ T ∗M \ 0
and t ∈ R

(2.8) C−1 ≤ Js
t (ρ)J

u
t (ρ) ≤ C.
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Moreover, Js
t and Ju

t are invariant under a short time evolution by the flow ϕt up
to a multiplicative constant: for all ρ ∈ T ∗M \ 0, t′ ∈ [−1, 1], and t ∈ R

(2.9) C−1Js
t (ρ) ≤ Js

t (ϕt′(ρ)) ≤ CJs
t (ρ), C−1Ju

t (ρ) ≤ Ju
t (ϕt′(ρ)) ≤ CJu

t (ρ).

By (2.5), Js
t is exponentially decaying in time, and Ju

t cannot grow faster than
exponentially due to the compactness of M . As a result, there exist constants1

0 < Λ0 ≤ Λ1 such that for all ρ ∈ T ∗M \ 0

(2.10)
eΛ0|t| ≤ Ju

t (ρ) ≤ eΛ1|t|, e−Λ1|t| ≤ Js
t (ρ) ≤ e−Λ0|t| for all t ≥ 0;

e−Λ1|t| ≤ Ju
t (ρ) ≤ e−Λ0|t|, eΛ0|t| ≤ Js

t (ρ) ≤ eΛ1|t| for all t ≤ 0.

For technical reasons (in the proof of Lemma 3.1) we choose to take Λ1 ≥ 1.
Define also

(2.11) Λ :=

⌈
Λ1

Λ0

⌉
∈ N.

2.1.1. Stable/unstable manifolds. For ρ ∈ S∗M , denote by

Ws(ρ),Wu(ρ) ⊂ S∗M

the local stable/unstable leaves passing through ρ. These are C∞-embedded one
dimensional disks (i.e. intervals) tangent to Es, Eu. Their definition depends on
arbitrary choices (because of the freedom of choosing where to end the interval);
however their behavior near each point depends only on (M, g). For the construction
of Ws(ρ),Wu(ρ) and their properties we refer to [KH97, Theorem 17.4.3], [Kl95,
Theorem 3.9.2], or [Dy18, Theorem 5 in §4.6]. We can adjust the definition of these
local leaves such that they satisfy the following invariance properties under the flow
ϕt:

(2.12) ∀ρ ∈ S∗M, ϕ1(Ws(ρ)) ⊂Ws(ϕ1(ρ)), ϕ−1(Wu(ρ)) ⊂Wu(ϕ−1(ρ)).

We also use the local weak stable/unstable leaves

(2.13) W0s(ρ) :=
⋃
|t|≤ε̃

ϕt(Ws(ρ)), W0u(ρ) :=
⋃
|t|≤ε̃

ϕt(Wu(ρ)),

which are C∞-embedded two dimensional rectangles inside S∗M tangent to the
weak stable/unstable spaces E0⊕Es, E0⊕Eu. Here ε̃ > 0 is fixed small, depending
only on (M, g). We extend Ws,Wu,W0s,W0u to T ∗M \ 0 by homogeneity; however
for simplicity the lemmas below are stated on S∗M .

The stable/unstable manifolds are related to the dynamics of ϕt by Lemma 2.1.
To state it we introduce the following piece of notation: for A,B > 0
(2.14)

A ∼ B iff C−1A ≤ B ≤ CA for some C > 0 depending only on (M, g).

Lemma 2.1. Fix a Riemannian metric on S∗M which induces a distance function
d(•, •). Then there exist C, ε0 > 0 such that for all ρ, ρ̃ ∈ S∗M we have:

(1) if ρ̃ ∈Ws(ρ), then

(2.15) d(ϕt(ρ), ϕt(ρ̃)) ≤ CJs
t (ρ)d(ρ, ρ̃) for all t ≥ 0;

1We can think of Λ0 as the minimal expansion rate and Λ1 as the maximal expansion rate
but strictly speaking this is not the case: instead one should take as Λ0 any number smaller than
the minimal expansion rate, and as Λ1 any number larger than the maximal expansion rate.
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(2) if ρ̃ ∈Wu(ρ), then

(2.16) d(ϕt(ρ), ϕt(ρ̃)) ≤ CJu
t (ρ)d(ρ, ρ̃) for all t ≤ 0;

(3) if ρ̃ ∈W0s(ρ), then Js
t (ρ) ∼ Js

t (ρ̃) and Ju
t (ρ) ∼ Ju

t (ρ̃) for all t ≥ 0;
(4) if ρ̃ ∈W0u(ρ), then Js

t (ρ) ∼ Js
t (ρ̃) and Ju

t (ρ) ∼ Ju
t (ρ̃) for all t ≤ 0;

(5) if T ∈ N0 and d(ϕt(ρ), ϕt(ρ̃)) ≤ ε0 for all integers t ∈ [0, T ], then

(2.17) d(ρ̃,W0s(ρ)) ≤ C/Ju
T (ρ)

and Js
t (ρ) ∼ Js

t (ρ̃), J
u
t (ρ) ∼ Ju

t (ρ̃) for all t ∈ [0, T ];
(6) if T ∈ N0 and d(ϕt(ρ), ϕt(ρ̃)) ≤ ε0 for all integers t ∈ [−T, 0], then

(2.18) d(ρ̃,W0u(ρ)) ≤ C/Js
−T (ρ)

and Js
t (ρ) ∼ Js

t (ρ̃), J
u
t (ρ) ∼ Ju

t (ρ̃) for all t ∈ [−T, 0].
Remarks.

(1) The difference between Lemma 2.1 and standard facts from hyperbolic dynam-
ics (see for instance [KH97, Theorem 17.4.3]) is that our estimates involve the local
expansion rates for the point ρ rather than the minimal expansion rate. This will
be important later in our analysis.
(2) By (2.8) we have Js

t (ρ) ∼ 1/Ju
t (ρ). However the present lemma does not rely

on ϕt being symplectomorphisms which is why we choose to keep both the stable
and unstable Jacobians in the estimates.

Proof. We only prove parts (1), (3), (5), with parts (2), (4), (6) proved similarly.
(1) Without loss of generality we may assume that the distance function d(•, •)

is induced by the metric | • |s used in (2.6) to define Js
t (ρ). Since the tangent space

to Ws(ρ) at ρ is Es(ρ), there exists a constant C such that for every ρ ∈ S∗M and
ρ̃ ∈Ws(ρ)

(2.19)
∣∣d(ϕ1(ρ), ϕ1(ρ̃))− Js

1 (ρ)d(ρ, ρ̃)
∣∣ ≤ Cd(ρ, ρ̃)2.

That is, when ρ̃ is close to ρ the dilation factor of the distance d(ρ, ρ̃) by the map
ϕ1 is well-approximated by the norm of the differential dϕ1(ρ) on Es(ρ).

Since ρ̃ ∈Ws(ρ), there exist constants C, θ > 0 such that (see for instance [KH97,
Theorem 17.4.3(3)] or [Dy18, (4.67)])

(2.20) d(ϕt(ρ), ϕt(ρ̃)) ≤ Ce−θtd(ρ, ρ̃) for all t ≥ 0.

For each integer t ≥ 0, we have ϕt(ρ̃) ∈Ws(ϕt(ρ)) by (2.12). Applying (2.19) with
ρ, ρ̃ replaced by ϕt(ρ), ϕt(ρ̃) we have

(2.21)
d(ϕt+1(ρ), ϕt+1(ρ̃)) ≤ Js

1 (ϕt(ρ))d(ϕt(ρ), ϕt(ρ̃)) + Cd(ϕt(ρ), ϕt(ρ̃))
2

≤ (1 + Ce−θt)Js
1 (ϕt(ρ))d(ϕt(ρ), ϕt(ρ̃)).

By the chain rule we have for all integers t ≥ 0

(2.22) Js
t (ρ) = Js

1 (ρ)J
s
1 (ϕ1(ρ)) · · ·Js

1 (ϕt−1(ρ)).

Iterating (2.21) and using that the product
∏∞

j=0(1+Ce−θj) converges, we get (2.15)
for all integer t ≥ 0, which immediately implies it for all t ≥ 0.

(3) We show that Js
t (ρ) ∼ Js

t (ρ̃), with the statement Ju
t (ρ) ∼ Ju

t (ρ̃) proved
similarly. Assume first that ρ̃ ∈ Ws(ρ). The map ρ �→ Es(ρ) is in the Hölder class
Cγ for some γ > 0 (see for instance [Dy18, Lemma 4.3]; in §2.1.2 we see that in our
setting it is in fact C2−). Recalling (2.6) we have for all ρ, ρ̃ ∈ S∗M

|Js
1 (ρ)− Js

1 (ρ̃)| ≤ Cd(ρ, ρ̃)γ .
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ρ′
W0s(ρ)

Wu(ρ̃)

ρ

ρ̃

ϕT (ρ
′)

W0s(ϕT (ρ))

Wu(ϕT (ρ̃))

ϕT (ρ)

ϕT (ρ̃)

Figure 1. Left: the points ρ, ρ̃, ρ′ in the proof of part (5) of
Lemma 2.1, with the flow direction removed. Right: the image
of the left half by ϕT .

Applying this with ρ, ρ̃ replaced by ϕt(ρ), ϕt(ρ̃) and using (2.20) we get for all
t ≥ 0

(2.23) (1 + Ce−γθt)−1Js
1 (ϕt(ρ)) ≤ Js

1 (ϕt(ρ̃)) ≤ (1 + Ce−γθt)Js
1 (ϕt(ρ)).

Using the chain rule (2.22) and iterating (2.23), we get Js
t (ρ) ∼ Js

t (ρ̃) for all t ≥ 0.
The general weak stable case ρ̃ ∈ W0s(ρ) follows since Js

t (ϕt′(ρ)) ∼ Js
t (ρ) for all

ρ ∈ S∗M and t′ ∈ [−1, 1] by (2.9).
(5) Since E0 ⊕ Es is transversal to Eu, for ε0 small enough and all ρ, ρ̃ ∈ S∗M

such that d(ρ, ρ̃) ≤ ε0, there exists a point (see Figure 1)

(2.24) ρ′ ∈W0s(ρ) ∩Wu(ρ̃), d(ρ, ρ′) ≤ Cε0.

See for instance [KH97, Proposition 6.4.13] (in the related case of maps) or [Dy18,
(4.66)]. Since ρ′ ∈W0s(ρ), by (2.20) there exists a constant C0 ≥ 1 such that

(2.25) d(ϕt(ρ
′), ϕt(ρ)) ≤ C0ε0 for all t ≥ 0.

By (2.12), for ε0 small enough we have (denoting by Bd balls with respect to the
distance function d(•, •))
(2.26) ϕ1(Wu(ρ̂)) ∩Bd(ϕ1(ρ̂), 2C0ε0) ⊂Wu(ϕ1(ρ̂)) for all ρ̂ ∈ S∗M.

Now, assume that ρ, ρ̃ ∈ S∗M and d(ϕt(ρ), ϕt(ρ̃)) ≤ ε0 for all integers t ∈ [0, T ].
Choose ρ′ satisfying (2.24). If ε0 is small enough, then by the local uniqueness of
unstable leaves we have ρ̃ ∈Wu(ρ

′). By (2.25) we have for all integers t ∈ [0, T ]

d(ϕt(ρ
′), ϕt(ρ̃)) ≤ d(ϕt(ρ

′), ϕt(ρ)) + d(ϕt(ρ), ϕt(ρ̃)) ≤ 2C0ε0.

Applying (2.26) with ρ̂ := ϕt(ρ
′), we see by induction on t that

ϕt(ρ̃) ∈Wu(ϕt(ρ
′)) for all integer t ∈ [0, T ].

In particular, ϕT (ρ̃) ∈Wu(ϕT (ρ
′)). Applying (2.16) with t := −T and ρ, ρ̃ replaced

by ϕT (ρ
′), ϕT (ρ̃),

d(ρ′, ρ̃) = d
(
ϕ−T (ϕT (ρ

′)), ϕ−T (ϕT (ρ̃))
)
≤ CJu

−T (ϕT (ρ
′)) =

C

Ju
T (ρ

′)
≤ C

Ju
T (ρ)

where the last inequality follows from part (3) of the present lemma. Since ρ′ ∈
W0s(ρ) this proves (2.17).
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t = 1 t = 2 t = 3 t = 4

Figure 2. An illustration of Corollary 2.2 for T = 3 with the flow
direction removed. The green points are ϕt(ρ0), the curves are the
local stable (red) and unstable (blue) manifolds of these points,
and the black rectangles are the sets ϕt(V).

It remains to show that Js
t (ρ) ∼ Js

t (ρ̃), J
u
t (ρ) ∼ Ju

t (ρ̃) for all t ∈ [0, T ]. As
before, we prove the first statement with the second one proved similarly. We
can moreover restrict ourselves to integer values of t. By part (4) of the present
lemma applied to the points ϕt(ρ

′), ϕt(ρ̃) ∈ Wu(ϕt(ρ
′)) and propagation time −t,

we have Js
−t(ϕt(ρ

′)) ∼ Js
−t(ϕt(ρ̃)). Since Js

t (ρ
′) = 1/Js

−t(ϕt(ρ
′)) this implies that

Js
t (ρ

′) ∼ Js
t (ρ̃). On the other hand by part (3) of the present lemma we have

Js
t (ρ) ∼ Js

t (ρ
′). Combining the last two statements we get Js

t (ρ) ∼ Js
t (ρ̃) as

needed. �
Parts (5) and (6) of Lemma 2.1 applied to ρ̃ := ϕt(ρ) together with (2.10) give

Corollary 2.2. Let d(•, •) and ε0 > 0 be fixed in Lemma 2.1. Fix ρ0 ∈ S∗M ,
T ∈ N0, and consider the set

V :=
{
ρ ∈ S∗M | d(ϕt(ρ), ϕt(ρ0)) ≤ ε0 for all integer t ∈ [0, T ]

}
.

Then we have for all ρ ∈ V and t ∈ [0, T ]

(2.27)
d
(
ϕt(ρ),W0s(ϕt(ρ0))

)
≤ C/Ju

T−t(ρ0) ≤ Ce−Λ0(T−t),

d
(
ϕt(ρ),W0u(ϕt(ρ0))

)
≤ CJs

t (ϕt(ρ0)) ≤ Ce−Λ0t.

Roughly speaking (2.27) implies that ϕt(V) lies inside an ε0× e−Λ0t× e−Λ0(T−t)

sized rectangle (with dimensions along E0, Es, Eu respectively) centered at ϕt(ρ0) –
see Figure 2.

2.1.2. Straightening out the weak unstable foliation. In §4.3.3 and §4.6.1 (most cru-
cially in the proof of Lemma 4.15) we rely on the following construction of normal
coordinates which straighten out a given weak unstable leaf. Similarly to Lemma 2.1
we fix a distance function d(•, •) on S∗M .

Lemma 2.3. For ε0 > 0 small enough and for any ρ0 ∈ S∗M there exists a C∞

symplectomorphism

κ = κρ0
: Uρ0

→ Vρ0
, Uρ0

⊂ T ∗M \ 0, Vρ0
⊂ T ∗R2 \ 0,

such that, denoting points in T ∗M by (x, ξ) and points in T ∗R2 by (y, η), we have:

(1) Uρ0
, Vρ0

are conic sets and the ball Bd(ρ0, ε0) is contained in Uρ0
∩ S∗M ;

(2) κ is homogeneous, namely it maps the vector field ξ · ∂ξ to η · ∂η;
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ρ0 0κW0u(ρ0)
{η

1
= 0}

W0u(ρ̃) {η
1
= F (y

1
, ζ̃)}

Uρ
0

Vρ
0

Figure 3. An illustration of Lemma 2.3, restricted to S∗M and
with the flow direction removed. The curves on the left are the
(weak) unstable manifolds and the curves on the right are their
images under κ.

(3) κ(ρ0) = (0, 0, 0, 1), dκ(ρ0)Eu(ρ0) = R∂y1
, and dκ(ρ0)Es(ρ0) = R∂η1

;
(4) putting p(x, ξ) := |ξ|g, we have p = η2 ◦ κ on Uρ0

;

(5) for each ρ̃ ∈ Uρ0
, the weak unstable leaf W0u(ρ̃) satisfies for some ζ̃ =

Z(ρ̃) ∈ R

(2.28) κ(W0u(ρ̃) ∩ Uρ0
) =

{
(y1, y2, p(ρ̃)F (y1, ζ̃), p(ρ̃)) | (y1, ζ̃) ∈ Ω, y2 ∈ R

}
∩ Vρ0

where F = Fρ0
is a function from an open set Ω = Ωρ0

⊂ R2 to R lying in

the Hölder class C3/2(Ω), the map y1 �→ F (y1, ζ) is C∞ for every ζ, and
Z : Uρ0

→ R is homogeneous of degree 0, in the class C3/2 on Uρ0
∩ S∗M ,

and constant on each local weak unstable leaf;
(6) Z(ρ0) = 0, F (y1, 0) = 0, and F (0, ζ) = ζ;
(7) ∂ζF (y1, 0) = 1;

(8) there exists Cρ0
> 0 such that |F (y1, ζ)− ζ| ≤ Cρ0

|ζ|3/2.
The derivatives of all orders of κρ0

and the constant Cρ0
are bounded independently

of ρ0. See Figure 3.

Remarks.

(1) The statements (1)–(7) of Lemma 2.3 rely on the C3/2 regularity of the unstable
distribution (Eu(ρ))ρ∈S∗M , proved by Hurder–Katok [HK90, Theorem 3.1]. They
actually proved that for a generic surface of negative curvature, the distribution has
regularity C2−, but not better: by [HK90, Theorem 3.2 and Corollary 3.7], if the
regularity is C2, then (M, g) must have constant curvature. For our application the
regularity C1+ε0 for some ε0 > 0 would suffice, but we will use the C3/2 regularity
to simplify the expressions.
(2) The point (6) in the Lemma shows that the weak unstable manifold W0u(ρ0) is
represented, in the coordinates given by κ, by the horizontal plane {η1 = 0, η2 = 1};
see (2.29). The nearby unstable leaves W0u(ρ̃) will then be approximately horizon-
tal, that is close to planes {η1 = ζ = const, η2 = const}. The statements (7)–(8)
express this almost horizontality more precisely. In §4 this almost horizontality
will allow us to apply the (“straight”) fractal uncertainty principle to families of
almost-horizontal unstable manifolds. The statement (8), which relies on the C3/2

regularity, will be directly used in Lemma 4.15.
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To prove Lemma 2.3 we start by constructing a local coordinate frame under
slightly weaker conditions:

Lemma 2.4. Under the assumptions of Lemma 2.3 there exists a symplectomor-
phism κ0 having properties (1)–(6) of that lemma.

Proof. To construct κ0 we need to define a system of symplectic coordinates
(y1, y2, η1, η2) on a conic neighborhood of ρ0 which are homogeneous (more pre-
cisely y1, y2 are homogeneous of degree 0 and η1, η2 are homogeneous of degree 1).
Put η2 := p and let η1|S∗M be a defining function of the leaf W0u(ρ0) (namely η1
vanishes on W0u(ρ0) and its differential is nondegenerate on that submanifold) sat-
isfying Hpη1 = 0; this is possible since Hp is tangent to W0u(ρ0). Extending η1 to
be homogeneous of degree 1, we see that the Poisson bracket {η1, η2} vanishes in a
conic neighborhood of ρ0. The existence of the system of coordinates (y1, y2, η1, η2)
now follows from the Darboux Theorem [HöIII, Theorem 21.1.9], where we can
arrange that y1(ρ0) = y2(ρ0) = 0.

Since κ0 is homogeneous, it sends the canonical 1-form ξ dx on T ∗M to the
canonical 1-form η dy on T ∗R2. By (2.4) we then have

dκ0(ρ0)(Es(ρ0)⊕ Eu(ρ0)) = ker(dη2) ∩ ker(dy2).

Since Eu(ρ0) is tangent to W0u(ρ0), we see that dκ0(Eu(ρ0)) = R∂y1
. To ensure

that dκ0(Es(ρ0)) = R∂η1
we compose κ0 with the nonlinear shear

(y, η) �→ (y + dF(η), η), F(η1, η2) := θ
η21
η2

for an appropriate choice of θ ∈ R.
Properties (1)–(4) of Lemma 2.3 follow immediately from the discussion above.

For property (5), we first note that by construction

(2.29) κ0(W0u(ρ0)) = {η1 = 0, η2 = 1}.
Since the tangent spaces E0u(ρ) to the leaves W0u(ρ) depend continuously on ρ, we
see that for ρ̃ ∈ S∗M near ρ the images κ0(W0u(ρ̃)) project diffeomorphically onto
the (y1, y2) variables. Therefore we can locally write

κ0(W0u(ρ̃)) = {η1 = F0(y1, y2, ζ̃), η2 = 1}
for some function F0(y1, y2, ζ) and some ζ̃ = Z0(ρ̃) depending on ρ̃, and we can
assume that F0(0, 0, ζ) = ζ which uniquely determines the functions F0, Z0. Since
W0u(ρ̃) is a C

∞ submanifold, the function y �→ F0(y, ζ) is C
∞ for each ζ. SinceHp is

tangent to each W0u(ρ̃) and is mapped by κ0 to ∂y2
, we see that ∂y2

F0 = 0; thus F0

is a function of (y1, ζ) only. This shows that (2.28) holds for all ρ̃ ∈ Uρ0
∩S∗M , and

it is easy to see that it holds for all ρ̃ ∈ Uρ0
by homogeneity, with Z0 homogeneous

of degree 0. Property (6) follows from (2.29).
It remains to prove that the functions F0, Z0 have regularity C3/2. According

to [HK90, Definition 4.1 and Theorem 4.2], the function F0 is C∞ in the variable
y1 (this shows that each unstable leaf is smooth submanifold), and is C1 w.r.t. ζ.
Besides, [HK90, Theorem 3.1] shows that the distribution Eu(ρ) depends C

3/2 on ρ.
In our coordinates κ0, this regularity means that the “slope function” eu(y1, η1) of
the unstable distribution has regularity C3/2 w.r.t. its variables. Now, the function
F0 is a solution of the differential equation

d

dy1
F0(y1, ζ) = eu

(
y1, F0(y1, ζ)

)
, with initial condition F0(0, ζ) = ζ.
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Standard results on ODEs [Ha02, Chapter V] show that the unique solution to such
an ODE with Ck function eu will depend in a Ck way of the initial condition ζ. The
proof of [Ha02, Theorem 3.1] can be easily adapted to show that a C3/2 function
eu induces a solution F0 with regularity C3/2. �

We now modify the map κ0 from Lemma 2.4 to obtain a map κ satisfying also
the condition (7) of Lemma 2.3. Let F0 be the function constructed in the proof of
Lemma 2.4. We have for every ζ

(2.30) y1 �→ ∂ζF0(y1, ζ) lies in C∞.

This follows from the existence of C∞-adapted transverse coordinates; see [HK90,
Point 2 in Definition 4.1 and Proposition 4.2].

From the normalization F0(0, ζ) = ζ we see that ∂ζF0(y1, ζ) > 0 for y1 close to 0.
Take the diffeomorphism ψ of neighborhoods of 0 in R defined by

ψ(y1) =

∫ y1

0

∂ζF0(s, 0) ds.

We define κ as the composition κ := Ψ ◦ κ0 where Ψ is the symplectic lift of ψ:

Ψ(y1, y2, η1, η2) = (ψ(y1), y2, η1/ψ
′(y1), η2).

Then κ satisfies all the properties in Lemma 2.3, with the function

F (y1, ζ) =
F0(ψ

−1(y1), ζ)

∂ζF0(ψ−1(y1), 0)
, Z = Z0 .

Like F0, the function F is C3/2 w.r.t. the variable ζ. We now use this regularity
to prove part (8) of Lemma 2.3. This C3/2 regularity, together with the property
(7), implies the Taylor expansion of F at the point (y1, 0):

F (y1, ζ) = F (y1, 0) + ζ∂ζF (y1, 0) +O(ζ3/2)
= ζ +O(ζ3/2),

with the implied constant being uniform w.r.t. y1. The second line is the point
(8) of the Lemma: the leaf W0u(ρ) at “height” ζ from the reference horizontal leaf
W0u(ρ0) is contained in horizontal rectangle of thickness O(ζ3/2).

Finally, the fact that the derivatives of all orders of κρ0
are bounded uniformly

in ρ0 follows directly from the arguments above and the fact that the leaf W0u(ρ0)
depends continuously on ρ0 as an embedded C∞ submanifold of S∗M . It also shows
that the constant Cρ0

in item (8) is uniformly bounded w.r.t ρ0. �

2.2. Pseudodifferential operators. Let M be a manifold. We use the standard
semiclassical symbol class Sk

h(T
∗M) whose elements a(x, ξ;h) satisfy uniform de-

rivative bounds on every compact subset K ⊂M :

|∂α
x ∂

β
ξ a(x, ξ;h)| ≤ CαβK〈ξ〉k−|β|, x ∈ K, ξ ∈ T ∗

xM,

and admit an expansion in powers of h and |ξ|. See for instance [DZ19, Defini-
tion E.3] or [DZ16, §2.1]. Denote by Sk(T ∗M) the class of h-independent symbols
in Sk

h(T
∗M). We fix a (noncanonical) quantization procedure Oph on M ; see (A.5)

and [DZ19, Proposition E.15]. Denote the class of semiclassical pseudodifferential
operators with symbols in Sk

h(T
∗M) by Ψk

h(M) and the (canonical) principal symbol
map by σh : Ψk

h(M)→ Sk(T ∗M). See for instance [DZ19, §E.1.7] or [Zw12, §14.2].
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If M is noncompact, then we do not impose any restrictions on the growth of
a(x, ξ;h) ∈ Sk

h(T
∗M) as |x| → ∞ and likewise do not say anything about the

asymptotic behavior of operators in Ψk
h(M) as we approach the infinity of M .

Therefore in general operators in Ψk
h(M) are bounded (uniformly in h) acting

Hs
h,comp(M) → Hs−k

h,loc(M) where Hs
h,loc(M) denotes the space of distributions lo-

cally in the semiclassical Sobolev space Hs
h and Hs

h,comp(M) consists of the com-

pactly supported elements of Hs
h,loc(M). See [DZ19, §E.1.8] or [Zw12, §8.3.1].

We will typically use operators in Ψk
h(M) which are properly supported, mapping

Hs
h,comp(M)→ Hs−k

h,comp(M) and Hs
h,loc(M)→ Hs−k

h,loc(M). The quantization proce-

dure Oph is chosen so that Oph(a) is properly supported for every a and Oph(a)
is compactly supported (i.e. it has a compactly supported Schwartz kernel) for
symbols a which are compactly supported in the x variable. Of course if M is a
compact manifold (which will mostly be the case in this paper), then Hs

h,loc(M)

and Hs
h,comp(M) are the same space, denoted by Hs

h(M). We will mostly use the

space H0
h(M) = L2(M).

For A ∈ Ψk
h(M) we denote by WFh(A) its wavefront set and by ellh(A) its elliptic

set. Both are subsets of the fiber-radially compactified cotangent bundle T
∗
M . See

for instance [DZ19, §E.2] or [DZ16, §2.1]. For A ∈ Ψk
h(M), B ∈ Ψ�

h(M) we say that

A = B +O(h∞) microlocally on some open set U ⊂ T
∗
M

if WFh(A−B) ∩ U = ∅.
We also use the notion of the wavefront set WFh(u) ⊂ T

∗
M of an h-dependent

tempered family of distributions u = u(h) ∈ D′(M) and the wavefront set WF′
h(B)

⊂ T
∗
(M1 × M2) of an h-dependent tempered family of operators B =

B(h) : C∞
c (M2)→ D′(M1); see [DZ19, §E.2.3].

2.2.1. Mildly exotic symbols. We also use the mildly exotic symbol class
Scomp
δ (T ∗M), δ ∈ [0, 1

2 ), consisting of symbols a(x, ξ;h) such that:

• the (x, ξ)-support of a is contained in an h-independent compact subset
of T ∗M ;
• the symbol a satisfies derivative bounds

|∂α
(x,ξ)a(x, ξ;h)| ≤ Cαβh

−δ|α|.

The operator class corresponding to Scomp
δ (T ∗M) is denoted by Ψcomp

δ (M). We
require operators in Ψcomp

δ (M) to be compactly supported. We use the same quan-
tization procedure Oph for this class and note that compactly supported elements
of Sk

h(T
∗M) lie in Scomp

0 (T ∗M). See [Zw12, §4.4] or [DG14, §3.1].
Operators in the class Ψcomp

δ (M) satisfy the following version of the sharp
G̊arding inequality for all u ∈ L2(M):

(2.31) a ∈ Scomp
δ (T ∗M), Re a ≥ 0 =⇒ Re〈Oph(a)u, u〉L2 ≥ −Ch1−2δ‖u‖2L2

where the constant C depends only on a certain Scomp
δ (T ∗M) seminorm of a. The

inequality (2.31) can be reduced to the case of the standard quantization on Rn;
the latter case is proved by applying the standard sharp G̊arding inequality [Zw12,
Theorem 4.32] to the rescaled symbol ã(x, ξ) := a(hδx, hδξ) and using the identity
Oph(a) = T−1 Oph1−2δ(ã)T where Tu(x) = u(hδx).
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We also have the following norm bound when M is compact:

(2.32) a ∈ Scomp
δ (T ∗M) =⇒ ‖Oph(a)‖L2→L2 ≤ sup

T∗M
|a|+ Ch

1
2−δ

where the constant C depends only on some Scomp
δ (T ∗M) seminorm of a. To

show (2.32) it suffices to apply (2.31) to the operator c2 − Oph(a)
∗Oph(a) =

Oph(c
2 − |a|2) +O(h1−2δ)L2→L2 where c = c(h) := supT∗M |a|.

Notation. We remark that there is a slight conflict of notation between the classes Sk
h

(h-dependent symbols of order k in ξ which are polyhomogeneous in both ξ and h)
and Scomp

δ (h-dependent compactly supported symbols losing h−δ with each differ-
entiation). A more proper notation would be

Sk
h,phg(T

∗M) := Sk
h(T

∗M), Scomp
h,δ (T ∗M) := Scomp

δ (T ∗M).

We however keep the shorter notation to reduce the number of indices used. For
δ ∈ [0, 12 ) we define the symbol class

Scomp
δ+ (T ∗M) =

⋂
ε>0

Scomp
δ+ε (T ∗M).

We also use the following notation:

f(h) = O(hα−) if f(h) = Oε(h
α−ε) for all ε > 0.

When writing a ∈ C∞
c (T ∗M) for a symbol a, we assume that a is h-independent

unless stated otherwise.

2.2.2. Egorov’s theorem. We now specialize to the case when (M, g) is a com-
pact Anosov surface as in §2.1. Since σh(−h2Δ) = p2 where p(x, ξ) = |ξ|g, by
the functional calculus of pseudodifferential operators (see [Zw12, Theorem 14.9]
or [DS99, §8]) we have

(2.33)
ψ ∈ C∞

c (R) =⇒ ψ(−h2Δ) ∈ Ψ−∞
h (M),

WFh(ψ(−h2Δ)) ⊂ suppψ(p2), σh(ψ(−h2Δ)) = ψ(p2).

We now discuss conjugation of pseudodifferential operators by the wave group.
Similarly to [DJ18, §2.2], to avoid technical issues coming from the zero section,

instead of the true half-wave propagator e−it
√
−Δ we use the unitary operator

(2.34) U(t) := exp(−itP/h), P := ψP (−h2Δ) ∈ Ψ−∞
h (M), P ∗ = P,

where we fixed some function

ψP ∈ C∞
c ((0,∞);R), suppψP ⊂ {

1

25
< λ < 25}, ψP (λ) =

√
λ for

1

16
≤ λ ≤ 16.

For a bounded operator A on L2(M), we define the Heisenberg-evolved operators

(2.35) A(t) := U(−t)AU(t), t ∈ R .

Assume that a ∈ C∞
c (T ∗M) and supp a ⊂ { 14 < |ξ|g < 4}. Then Egorov’s theo-

rem [Zw12, Theorem 11.1] implies that for t bounded independently of h we have

(2.36) A = Oph(a) =⇒ A(t) = Oph(a ◦ ϕt) +O(h)L2→L2

where ϕt = exp(tHp) is the homogeneous geodesic flow. In fact, the proof in [Zw12]
gives the following stronger statement (see e.g. [DG14, §C.2] or Lemma A.7 for
details): for each time t there exists at(x, ξ;h) ∈ Scomp

0 (T ∗M) such that
(2.37)

A(t) = Oph(at) +O(h∞)Ψ−∞ , at = a ◦ ϕt +O(h), supp at ⊂ ϕ−t(supp a).
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We next extend (2.36) to the case of t bounded by a small constant times log(1/h),
using the mildly exotic symbol classes described in §2.2.1. Let Λ1 > 0 be the
‘maximal expansion rate’ from (2.10). It follows from (2.7) and (2.10) that

(2.38) sup
ρ∈{ 1

4≤|ξ|g≤4}
‖dϕt(ρ)‖ ≤ CeΛ1|t| for all t ∈ R.

Lemma 2.5. Assume that a ∈ C∞
c (T ∗M) and supp a ⊂ { 14 ≤ |ξ|g ≤ 4}; put A :=

Oph(a). Fix δ ∈ (0, 1
2 ). Then we have uniformly in t satisfying |t| ≤ δΛ−1

1 log(1/h):

(1) a ◦ ϕt ∈ Scomp
δ+ (T ∗M);

(2) A(t) = Oph(a ◦ ϕt) +O(h1−2δ−)L2→L2 .

Remarks.

(1) A stronger statement similar to (2.37), which shows that the remainder
O(h1−2δ−) is actually pseudodifferential, is proved for instance in [DG14, Proposi-
tion 3.9].
(2) Lemma 2.5 shows that Egorov’s theorem holds for all times t which are smaller

(by at least ε log(1/h) for some ε > 0) than the minimal Ehrenfest time log(1/h)
2Λ1

.

Later we will show a finer version of Egorov’s theorem, up to the (potentially much
longer) local Ehrenfest time – see Proposition 4.2.

Proof. (1) The estimate (2.38) implies the following bounds on higher derivatives:
for all t ∈ R, all multiindices α, and all ε > 0

(2.39) sup
T∗M

|∂α(a ◦ ϕt)| ≤ Cα,εe
(Λ1+ε)|α|·|t|.

See for instance [DG14, Lemma C.1], whose proof applies directly to the present
situation; alternatively one could use the proof of Lemma 5.2 in the special case
k = 0. Under the condition |t| ≤ δΛ−1

1 log(1/h) the bound (2.39) implies that
a ◦ ϕt ∈ Scomp

δ+ (T ∗M) uniformly in t.

(2) We use the following commutator formula valid for all ã ∈ Scomp
δ+ (T ∗M) with

supp ã ⊂ { 14 ≤ |ξ|g ≤ 4}:

(2.40) [P,Oph(ã)] = −ihOph(Hpã) +O(h2−2δ−)L2→L2 .

Here it is important that p ∈ Scomp
0 (T ∗M) and we use the same quantization

procedure Oph on both sides of the equation; the Scomp
δ calculus would only give

an O(h2−4δ−) remainder. See Remark 2 following Lemma A.6 for the proof.
Using (2.40) and part (1) we compute for |t| ≤ δΛ−1

1 log(1/h)

∂t
(
U(t)Oph(a ◦ ϕt)U(−t)

)
= U(t)

(
− ih−1[P,Oph(a ◦ ϕt)]

+ Oph(∂t(a ◦ ϕt))
)
U(−t)

= O(h1−2δ−)L2→L2 .

Integrating this from 0 to t, we get U(t)Oph(a ◦ ϕt)U(−t) = Oph(a)
+O(h1−2δ−)L2→L2 which finishes the proof since U(t) is unitary. �

We will also need to control products of many pseudodifferential operators.
Lemma 2.6 considers products of logarithmically many pseudodifferential opera-
tors; it is proved in the same way as [DJ18, Lemmas A.1 and A.6] using the norm
bound (2.32):
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Lemma 2.6. Let C be an arbitrary fixed constant, δ ∈ [0, 1
2 ), and assume that the

symbols

a1, . . . , aN ∈ Scomp
δ (T ∗M), N ≤ C log(1/h), sup |aj | ≤ 1

have each Scomp
δ seminorm bounded uniformly in j. Assume also that we are given

operators Aj = Oph(aj) +O(h1−2δ)L2→L2 with the remainders bounded uniformly
in j. Then:

(1) a1 · · · aN ∈ Scomp
δ+ (T ∗M);

(2) A1 · · ·AN = Oph(a1 · · · aN ) +O(h1−2δ−)L2→L2 .

That is, the product of these symbols (resp. operators) is essentially in the same
symbol class (resp. operator class) as the individual factors.

2.3. Lagrangian distributions and Fourier integral operators. In this sec-
tion we review the theory of semiclassical Lagrangian distributions and Fourier
integral operators. These are used in §4.3.3 to describe propagation of Lagrangian
states beyond the Ehrenfest time. In particular we use that the wave propagator
U(t) defined in (2.34) is, after appropriate cutoffs, a Fourier integral operator asso-
ciated to the geodesic flow ϕt; see (4.47). Fourier integral operators are also used
in §4.6.4 to quantize a symplectomorphism which locally straightens out unstable
leaves.

We keep the presentation brief, referring the reader to [Al08], [GS77, Chapter 5],
and [GS13, Chapter 8] for details. For other reviews (bearing some similarities to
the one here) see [DD13, §3.2], [DG14, §3.2], [Dy15, §3.2], [DZ16, §2.2], and [NZ09,
§4.1]. For the related nonsemiclassical case; see [HöIV, Chapter 25] and [GS94,
Chapters 10–11].

2.3.1. Lagrangian manifolds and phase functions. Let M be a smooth n-
dimensional manifold (in this subsection we do not assume M to be compact).
Denote by ξ dx the canonical 1-form on T ∗M , then the symplectic form is given by

ω := d(ξ dx).

An embedded n-dimensional submanifold L ⊂ T ∗M is called a Lagrangian sub-
manifold if the pullback of ω to L is zero; that is, the pullback of ξ dx to L is a
closed 1-form. A Lagrangian submanifold is called exact if the pullback of ξ dx to
L is equal to dF for some function F ∈ C∞(L ;R), called an antiderivative on L .
We henceforth define an exact Lagrangian submanifold as the pair (L , F ) but still
often denote it by L for simplicity.

We note that L is exact in particular if it is conic, namely the generator of
dilations ξ · ∂ξ is tangent to L . In this case the pullback of ξ dx to L is equal to 0
(since ω(ξ · ∂ξ, v) = 〈ξ dx, v〉 = 0 for any tangent vector v ∈ TL ); thus it is natural
to fix the antiderivative equal to 0 as well.

One way to obtain an exact Lagrangian submanifold is by using a phase function.
More precisely, if U ⊂ Mx × Rm

θ is an open set (for some m ∈ N0) then we call a
function Φ(x, θ) ∈ C∞(U ;R) a nondegenerate phase function if:

(1) the differentials d(∂θjΦ)1≤j≤m are linearly independent on the critical set

CΦ := {(x, θ) ∈ U | ∂θΦ(x, θ) = 0}

which is then an n-dimensional embedded submanifold of U ; and
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(2) the following map is a smooth embedding:

jΦ : CΦ → T ∗M, jΦ(x, θ) = (x, ∂xΦ(x, θ)).

We call θ the oscillatory variables.
Under the conditions (1)–(2) above the manifold

(2.41) LΦ := jΦ(CΦ) ⊂ T ∗M

is exact Lagrangian, with the antiderivative FΦ ∈ C∞(LΦ;R) given by the restric-
tion of the phase function on the critical set:

FΦ(jΦ(x, θ)) = Φ(x, θ), (x, θ) ∈ CΦ.
For an exact Lagrangian submanifold (L , F ) we say that a nondegenerate phase
function Φ generates L , if L = LΦ and F = FΦ.

Every exact Lagrangian submanifold (L , F ) is locally generated by phase func-
tions: that is, each point ρ ∈ L has a neighborhood generated by some phase
function; see [GS77, Proposition 5.1]. The simplest case is when the projection
π : L →M is a diffeomorphism onto its image, in which case L is given by

(2.42) L = LΦ = {(x, ∂xΦ(x)) | x ∈ U}, U := π(L ) ⊂M,

where the function Φ ∈ C∞(U ;R) is defined by F (x, ξ) = Φ(x) for all (x, ξ) ∈ L .
Another important case is when L ⊂ T ∗M \ 0 is conic. In this case each point

ρ ∈ L has a conic neighborhood which is generated by some phase function Φ(x, θ),
(x, θ) ∈ U , where U ⊂ M × Rm is conic and Φ is homogeneous of degree 1 in the
θ variables. For the proof see [GS77, Proposition 5.2], [HöIII, Theorem 21.2.16],
or [GS94, Proposition 11.4].

2.3.2. Lagrangian distributions. Let (L , F ) be an exact Lagrangian submanifold
of T ∗M . We use the class Icomp

h (L ) of (compactly microlocalized semiclassical)
Lagrangian distributions associated to L . Elements of Icomp

h (L ) are h-dependent
families of functions in C∞

c (M), with support contained in some h-independent
compact set. We give a definition and some properties of the class Icomp

h (L ) below.
If L = LΦ is generated by some phase function Φ(x, θ), (x, θ) ∈ U ⊂M × Rm,

in the sense of (2.41), then Icomp
h (L ) consists of distributions of the form

(2.43) u(x;h) = (2πh)−m/2

∫
Rm

eiΦ(x,θ)/ha(x, θ;h) dθ +O(h∞)C∞
c (M).

Here the amplitude a(x, θ;h) ∈ C∞
c (U) is a classical symbol ; that is, supp a is

contained in an h-independent compact subset of U and we have the asymptotic
expansion in C∞

c (U)

a(x, θ;h) ∼
∞∑
j=0

hjaj(x, θ) as h→ 0

for some a0, a1, . . . ∈ C∞
c (U).

In the special case when Φ has no oscillatory variables (i.e. L is given by (2.42))
the expression (2.43) simplifies to

(2.44) u(x;h) = eiΦ(x)/ha(x;h) +O(h∞)C∞
c (M).

The class of functions defined by (2.43) does not depend on the choice of the phase
function generating L . That is, if Φ,Φ′ are two phase functions with L = LΦ =
LΦ′ and u is given by (2.43) for the phase function Φ and some amplitude a, then
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u is also given by (2.43) for the phase function Φ′ and some other amplitude a′.
The simplest case of this statement is when Φ′ has no oscillatory variables (that is,
L is constructed from Φ′ using (2.42)) as we can then write (ignoring the O(h∞)
remainder in (2.43))

(2.45) a′(x;h) = e−iΦ′(x)/hu(x;h) = (2πh)−m/2

∫
Rm

e
i
h (Φ(x,θ)−Φ′(x))a(x, θ;h) dθ

and show that a′ is a classical symbol using the method of stationary phase. The
proof in the general case also uses stationary phase but is more involved; see [GS13,
§8.1.2]; for the nonsemiclassical case see [GS77, §6.4], [HöIV, Proposition 25.1.5],
or [GS94, Theorem 11.5].

For general Lagrangians L (not parametrized by a single phase function) we
define Icomp

h (L ) as consisting of sums u1+ · · ·+uk where uj ∈ Icomp
h (Lj) and each

Lj ⊂ L is generated by some phase function. Here are two important properties
of Lagrangian distributions:

(1) If u ∈ Icomp
h (L ) and A ∈ Ψk

h(M) is compactly supported (which means
that its Schwartz kernel is compactly supported) then Au ∈ Icomp

h (L );
(2) If u ∈ Icomp

h (L ) then WFh(u) ⊂ L ; that is, for any compactly supported

A ∈ Ψk
h(M) with WFh(A) ∩L = ∅ we have Au = O(h∞)C∞

c (M).

To show these, we first use a partition of unity to reduce to the case when M = Rn

and L is generated by some phase function Φ. We next write for b ∈ C∞
c (T ∗Rn)

and u given by (2.43)

Oph(b)u(x) = (2πh)−
m
2 −n

∫
R2n+m

e
i
h (〈x−y,ξ〉+Φ(y,θ))b(x, ξ)a(y, θ;h) dydξdθ.

We now apply stationary phase in the (y, ξ) variables to get an expression of the
form (2.43) with the phase function Φ(x, θ) and some amplitude which is a classical
symbol. On the other hand, if b is a symbol in Sk

h(T
∗Rn) and supp b ∩ L =

∅ then the method of nonstationary phase in the (y, ξ, θ) variables shows that
Oph(b)u(x) = O(h∞)C∞ .

2.3.3. Fourier integral operators. We next discuss Fourier integral operators asso-
ciated to symplectomorphisms. Let M1,M2 be two manifolds of the same dimen-
sion n, Uj ⊂ T ∗Mj be two open sets, and κ : U2 → U1 be a symplectomorphism.
The flipped graph
(2.46)

Lκ := {(x1, ξ1, x2,−ξ2) | (x2, ξ2) ∈ U2, κ(x2, ξ2) = (x1, ξ1)} ⊂ T ∗(M1 ×M2)

is a Lagrangian submanifold. We further assume that κ is exact, namely Lκ is
an exact Lagrangian submanifold. As before, we fix an antiderivative for Lκ but
suppress it in the notation. The exactness condition holds in particular if κ is
homogeneous, that is it sends ξ2 · ∂ξ2 to ξ1 · ∂ξ1 ; indeed, Lκ is conic and we fix the
antiderivative to be 0.

We say that an h-dependent family of operators B = B(h) : D′(M2)→ C∞
c (M1)

is a (compactly microlocalized semiclassical) Fourier integral operator associated
to κ, and write B ∈ Icomp

h (κ), if the corresponding integral kernel KB(x1, x2;h) ∈
C∞

c (M1 × M2) satisfies KB ∈ h−n/2Icomp
h (Lκ). Here Icomp

h (Lκ) is the class of
Lagrangian distributions defined in §2.3.2. In particular, the wavefront set WF′

h(B)
is contained in the graph of κ.
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An important special case is when M2 = Rn and the projection π : Lκ →
M1 ×Rn onto the (x1, ξ2) variables is a diffeomorphism onto its image. If F is the
antiderivative on Lκ, then we can write

(2.47) Lκ = {(x1, ∂x1
S(x1, ξ2), ∂ξ2S(x1, ξ2),−ξ2) | (x1, ξ2) ∈ U}

where U := {(x1, ξ2) | (x1, ξ1, x2,−ξ2) ∈ Lκ} and S ∈ C∞(U ;R) is given by

F (x1, ξ1, x2,−ξ2) = S(x1, ξ2)− 〈x2, ξ2〉, (x1, ξ1, x2,−ξ2) ∈ Lκ .

That is, Lκ is generated by the phase function Φ(x1, x2, θ) = S(x1, θ) − 〈x2, θ〉
in the sense of (2.41). Then every operator B ∈ Icomp

h (κ) has the following form
modulo an O(h∞)D′(Rn)→C∞

c (M1) remainder:

(2.48) Bf(x1) = (2πh)−n

∫
R2n

e
i
h (S(x1,θ)−〈x2,θ〉)b(x1, x2, θ;h)f(x2) dx2dθ

for some classical symbol b ∈ C∞
c (U(x1,θ) × Rn

x2
).

We list several fundamental properties of the class Icomp
h (κ):

(1) If B ∈ Icomp
h (κ), then B : L2(M2)→ L2(M1) is bounded in norm uniformly

in h;
(2) If κ is the identity map on T ∗M , then B ∈ Icomp

h (κ) if and only if B is a

compactly supported pseudodifferential operator in Ψk
h(M) and WFh(B) ⊂

T ∗M is compact;
(3) If B ∈ Icomp

h (κ) and u ∈ Icomp
h (L ) is a Lagrangian distribution, then Bu

is a Lagrangian distribution in Icomp
h (κ(L ));

(4) If B1 ∈ Icomp
h (κ1), B2 ∈ Icomp

h (κ2), then the composition B1B2 is a Fourier
integral operator in Icomp

h (κ1 ◦ κ2);
(5) If B ∈ Icomp

h (κ), then the adjoint B∗ lies in Icomp
h (κ−1).

Here in property (2) we let the antiderivative equal to 0 (as the identity map is
homogeneous). In property (3) we define the antiderivative Fκ(L ) on κ(L ) using
the antiderivatives FL , Fκ on L ,Lκ by
(2.49)
Fκ(L )(x1, ξ1) = Fκ(x1, ξ1, x2,−ξ2) + FL (x2, ξ2) where (x1, ξ1, x2,−ξ2) ∈ Lκ

and in property (4) the antiderivative on Lκ1◦κ2
is defined similarly. In property (5)

the antiderivative on Lκ−1 is minus the antiderivative on Lκ .
We briefly explain how the above properties are proven:

• For property (2), we can use a partition of unity to reduce to the case
M = Rn. The flipped graph of the identity map is given by (2.47) with
S(x1, ξ2) = 〈x1, ξ2〉. The corresponding expression (2.48) gives the class of
pseudodifferential operators with compactly supported symbols (see [Zw12,
Theorem 4.20]).
• For property (3), we reduce to the case when L = LΦ and Lκ = LΨ

are generated by some phase functions Φ(x2, θ2) and Ψ(x1, x2, θ1), where
θj ∈ Rmj . Using the corresponding representations (2.43) for u and B (with
some amplitudes a and b) we get

(2.50)
Au(x1) = (2πh)−

n+m1+m2
2

∫
Rn+m1+m2

e
i
h (Ψ(x1,x2,θ1)+Φ(x2,θ2))×

a(x2, θ2;h)b(x1, x2, θ1;h) dθ1dθ2dx2.
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This is an expression of the form (2.43) for the phase function Ψ(x1, x2, θ1)+
Φ(x2, θ2), with (θ1, θ2, x2) treated as oscillatory variables, and this phase
function generates the Lagrangian κ(L ). See also [NZ09, Lemma 4.1].
• Property (4) is proved similarly to property (3); see [GS13, §8.13]. Prop-
erty (5) is immediate by writing an expression of the form (2.43) for the
integral kernel of the adjoint of B.
• Finally, to show property (1) we note that B∗B is a semiclassical pseu-
dodifferential operator (and thus bounded on L2) by properties (2), (4),
and (5).

We now discuss the conjugation by Fourier integral operators. Assume that κ :
U2 → U1, Uj ⊂ T ∗Mj , is an exact symplectomorphism and

(2.51) B ∈ Icomp
h (κ), B′ ∈ Icomp

h (κ−1).

By properties (2) and (4) above we see that BB′ ∈ Ψ0
h(M1), B′B ∈ Ψ0

h(M2)
are pseudodifferential operators with wavefront sets compactly contained in T ∗Mj .
Moreover, if a ∈ Scomp

δ (T ∗M2), δ ∈ [0, 1
2 ) (see §2.2.1), then

(2.52)
BOph(a)B

′ = Oph(ã) +O(h∞)Ψ−∞ for some ã ∈ Scomp
δ (T ∗M1),

ã = (a ◦ κ−1)σh(BB′) +O(h1−2δ)Scomp
δ

, supp ã ⊂ κ(supp a).

Indeed, we may reduce to the case M1 = M2 = Rn. By oscillatory testing [Zw12,
Theorem 4.19] the symbol of BOph(a)B

′ as a pseudodifferential operator is given
by

ã(x1, ξ1;h) = e−i〈x1,ξ1〉/hBOph(a)B
′(ei〈•,ξ1〉/h).

Taking generating functions Φ(x1, x2, θ) of Lκ and −Φ(x1, x2, θ) of Lκ−1 we write
(2.53)

ã(x1, ξ1;h) = (2πh)−2n−m

∫
R4n+2m

e
i
h (〈x′

1−x1,ξ1〉+〈x2−x′
2,ξ2〉+Φ(x1,x2,θ)−Φ(x′

1,x
′
2,θ

′))

b(x1, x2, θ;h)a(x2, ξ2;h)b
′(x′

1, x
′
2, θ

′;h) dθdθ′dx′
1dx2dx

′
2dξ2

for some classical symbols b(x1, x2, θ;h), b
′(x′

1, x
′
2, θ

′;h). Using the method of sta-
tionary phase we get that ã is a symbol in Scomp

δ (T ∗Rn). The principal term in the
stationary phase expansion is equal to (a◦κ−1)σh(BB′), as can be seen by formally
putting a ≡ 1. The support property (modulo O(h∞)) follows immediately from
the expansion, finishing the proof of (2.52). See also [GS13, §8.9.3].

If Vj ⊂ Uj , j = 1, 2, are compact sets with κ(V2) = V1 and B,B′ are Fourier
integral operators as in (2.51), we say that B,B′ quantize κ near V1 × V2 if

(2.54)
BB′ = I +O(h∞) microlocally near V1,

B′B = I +O(h∞) microlocally near V2.

If Lκ is generated by a single phase function Φ (in the sense of (2.41)) then there
exist B,B′ quantizing κ near V1×V2. To show this, we choose B in the form (2.43):

Bf(x1) = (2πh)−
n+m

2

∫
Rn+m

eiΦ(x1,x2,θ)/hb(x1, x2, θ)f(x2) dθdx2

where b ∈ C∞
c (U) is chosen so that b(x1, x2, θ) �= 0 for any (x1, x2, θ) ∈ CΦ such

that (x1, ∂x1
Φ(x1, x2, θ)) ∈ V1 (or equivalently (x2,−∂x2

Φ(x1, x2, θ)) ∈ V2) and
U is the domain of Φ. We have σh(BB∗) �= 0 on V1 and σh(B

∗B) �= 0 on V2,
as can be proved using stationary phase similarly to (2.53). Multiplying B∗ on
the right by an elliptic parametrix of BB∗ and multiplying it on the left by an
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elliptic parametrix of B∗B (see for instance [DZ19, Proposition E.32]), we obtain
two operators B′, B′′ ∈ Icomp

h (κ) such that

BB′ = I +O(h∞) microlocally near V1,

B′′B = I +O(h∞) microlocally near V2.

We write

I −B′B = (I −B′′B)(I −B′B) +B′′(I −BB′)B.

The wavefront set of the right-hand side does not intersect V2. For the first term this
is immediate since WFh(I −B′′B)∩ V2 = ∅. For the second term this follows from
the fact that WFh(I −BB′)∩V1 = ∅, computing the full symbol of B′′(I −BB′)B
similarly to (2.53). It follows that B′B = I+O(h∞) microlocally near V2; therefore
B,B′ satisfy (2.54).

2.3.4. Fourier localization. We finally prove a fine Fourier localization statement
for a class of Lagrangian distributions, used in the proof of Lemma 4.25. Its proof
is contained in Appendix B.

Proposition 2.7. Assume that h, h′ ∈ (0, 1] satisfy h′ ≥ hτ for some τ < 1,
U ⊂ Rn is an open set, K ⊂ U is compact, and we have for some constant C0 > 0

(2.55) vol(K) ≤ C0, d(K,Rn \ U) ≥ C−1
0 .

Let Φ ∈ C∞(U ;R), a ∈ C∞
c (U ;C), supp a ⊂ K, and assume that

(2.56) diamΩΦ ≤ C0h
′ where ΩΦ := {dΦ(x) | x ∈ U} ⊂ Rn.

Assume also that Φ and a satisfy, for all N ≥ 1 and some constants CN :

(2.57) max
0<|α|≤N

sup
U
|∂αΦ| ≤ CN , max

0≤|α|≤N
sup
U
|∂αa| ≤ CN .

Define the Lagrangian state

(2.58) u(x) := a(x) eiΦ(x)/h ∈ C∞
c (U) ⊂ C∞

c (Rn).

Denote ΩΦ(C
−1
0 h′) := ΩΦ +B(0, C−1

0 h′). Then we have for all N ≥ 1

(2.59) ‖�
Rn\ΩΦ(C−1

0 h′)(hDx)u‖L2(Rn) ≤ C ′
NhN

where the constant C ′
N depends only on τ, n,N,C0, CN ′ for N ′ := � 2N+n

1−τ �+ 1.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

384 SEMYON DYATLOV ET AL.

Remarks.

(1) If Φ, a are fixed and h goes to zero, then the set ΩΦ is the projection of the
Lagrangian LΦ defined in (2.42) onto the ξ variables and the function u defined
in (2.58) is a Lagrangian distribution in Icomp

h (LΦ). However, the condition (2.56)
with h′ ∼ hτ , τ > 0, implies that if the phase Φ(x) is not constant (which would
correspond to a “horizontal” Lagrangian), then it necessarily depends on h. We
may still view u(h) as a family of Lagrangian states, but associated to h-dependent
Lagrangians LΦ(h) which become more and more horizontal as h→ 0. The propo-
sition shows that these Lagrangian states are microlocalized in boxes which are
microscopic in the momentum variables.
(2) For τ < 1

2 one can prove Proposition 2.7 without the assumption (2.57) us-
ing [HöI, Theorem 7.7.1]. On the other hand, if τ = 1− ε, the boxes of momentum
diameter hτ are almost Planckian (they almost saturate the uncertainty principle).

2.4. Fractal uncertainty principle. The fractal uncertainty principle of
Bourgain–Dyatlov [BD18, Theorem 4] is the central tool of our proof. (See [Dy17,
§4] for an expository account.) In this section we prove a slightly more general
version, Proposition 2.10, which will be used in §4.6.3.

We recall the definition of a porous set [DJ18, Definition 5.1]:

Definition 2.8. Let ν ∈ (0, 1) and 0 < α0 ≤ α1. We say that a subset Ω ⊂ R is
ν-porous on scales α0 to α1 if for every interval I ⊂ R of size |I| ∈ [α0, α1] there
exists a subinterval J ⊂ I of size |J | = ν|I| such that J ∩ Ω = ∅.

Define the unitary semiclassical Fourier transform Fh : L2(R)→ L2(R) by

(2.60) Fhf(ξ) = (2πh)−1/2

∫
R

e−ixξ/hf(x) dx.

For a set Ω ⊂ R, let �Ω : L2(R) → L2(R) be the multiplication operator by the
indicator function of Ω.

We first prove the following fractal uncertainty principle, which is a version
of [BD18, Theorem 4] adapted to unbounded ν-porous sets using almost orthogo-
nality and tools from [DJ18]:

Proposition 2.9. For each ν ∈ (0, 1) there exist β = β(ν) > 0 and C = C(ν) > 0
such that the following estimate holds

(2.61) ‖�Ω−Fh�Ω+
‖L2(R)→L2(R) ≤ Chβ

for all 0 < h ≤ 1 and all sets Ω± ⊂ R which are ν-porous on scales h to 1.

Remark. An explicit expression for the exponent β (for the smaller class of δ-regular
sets; see Step (4) of the proof below for an explanation of why this gives a result for
all ν-porous sets) was obtained by Jin–Zhang [JZ20]. Using [JZ20, Theorem 1.2],
one can get (2.61) with

(2.62) β(ν) = exp(− exp(exp(K/ν3)))

where K is a global constant.

Proof. (1) We first replace the indicator functions in (2.61) by their smoothed out
versions χ± ∈ C∞(R; [0, 1]). The functions χ± satisfy for all N ,

suppχ± ⊂ Ω±(h), supp(1− χ±) ∩ Ω± = ∅,(2.63)

sup |∂N
x χ±| ≤ CNh−N .(2.64)
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Here Ω±(h) = Ω±+[−h, h] denotes the h-neighborhood of Ω± and the constant CN

depends only on N . The functions χ± are constructed by convolving the indicator
function of Ω±(h/2) with a smooth cutoff which is rescaled to be supported in
(−h/2, h/2). See the proof of [DZ16, Lemma 3.3] for details.

The left-hand side of (2.61) is equal to

‖�Ω−χ−Fhχ+�Ω+
‖L2(R)→L2(R) ≤ ‖χ−Fhχ+‖L2(R)→L2(R).

(2) We next write the cutoffs χ± as sums of functions χ±
j , each supported in an

interval of size 2. More precisely, fix χ ∈ C∞
c (R; [0, 1]) such that suppχ ⊂ (−1, 1)

and

1 =
∑
j∈Z

χj where χj(x) := χ(x− j).

Put

(2.65) χ±
j := χjχ±, suppχ±

j ⊂ Ω±(h) ∩ (j − 1, j + 1).

Note that χ±
j satisfy the derivative bounds (2.64) for some constants CN depending

only on N . We have (with convergence in strong operator topology)

χ−Fhχ+ =
∑
j,k∈Z

Ajk where Ajk := χ−
j Fhχ

+
k .

Therefore it suffices to show the estimate

(2.66)
∥∥∥ ∑

j,k

Ajk

∥∥∥
L2(R)→L2(R)

≤ Chβ.

(3) To show (2.66) we use almost orthogonality. More precisely it suffices to prove
the following bounds for all j, k, j′, k′, N :

‖Ajk‖L2(R)→L2(R) ≤ Ch2β,(2.67)

‖AjkA
∗
j′k′‖L2(R)→L2(R) ≤ CNh−1(1 + |j − j′|+ |k − k′|)−N ,(2.68)

‖A∗
j′k′Ajk‖L2(R)→L2(R) ≤ CNh−1(1 + |j − j′|+ |k − k′|)−N .(2.69)

for some β > 0, C > 0 depending only on ν and some CN depending only on N .
Indeed, these estimates imply

sup
j,k

∑
j′,k′

‖AjkA
∗
j′k′‖1/2L2(R)→L2(R) ≤ Chβ,(2.70)

sup
j,k

∑
j′,k′

‖A∗
j′k′Ajk‖1/2L2(R)→L2(R) ≤ Chβ.(2.71)

Here we use (2.67) for |j−j′|+|k−k′| ≤ h−β/2 and (2.68), (2.69) withN := �8+2/β�
for |j−j′|+|k−k′| > h−β/2. Now (2.70) and (2.71) imply (2.66) by the Cotlar–Stein
Theorem [Zw12, Theorem C.5].
(4) We first prove (2.67) which will follow from the fractal uncertainty principle
[BD18, Theorem 4]. However [BD18] used a more restrictive class of δ-regular sets
rather than ν-porous sets. We recall from [BD18, Definition 1.1] that a nonempty
closed set Ω ⊂ R is called δ-regular with constant CR on scales 0 to 1 if there exists
a Borel measure μ supported on Ω such that for each interval I of size |I| ∈ (0, 1]
we have the upper bound μ(I) ≤ CR|I|δ, and if additionally I is centered at a point
in Ω, then we have the lower bound μ(I) ≥ C−1

R |I|δ.
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To address the difference between porous and regular sets we argue similarly
to the proof of [DJ18, Proposition 5.5]. Since Ω± are ν-porous on scales h to 1,

by [DJ18, Lemma 5.4] there exist sets Ω̃± ⊂ R such that:

(a) Ω± ⊂ Ω̃±(h);

(b) Ω̃± ⊂ R are δ-regular with constant CR on scales 0 to 1, for some δ ∈ (0, 1)
and CR ≥ 1 which depend only on ν.

Denote Ωj
± := Ω̃± − j; note that these sets are still δ-regular with constant CR on

scales 0 to 1. By (2.65) and since the norm ‖�XF∗
h�Y ‖L2(R)→L2(R) does not change

when shifting X and/or Y , we have

(2.72)
‖Ajk‖L2→L2 ≤ ‖�Ω+(h)∩[k−1,k+1]F∗

h�Ω−(h)∩[j−1,j+1]‖L2(R)→L2(R)

≤ ‖�Ωk
+(2h)∩[−1,1]F∗

h�Ωj
−(2h)∩[−1,1]‖L2(R)→L2(R).

By [BD18, Proposition 4.1] (which is a corollary of [BD18, Theorem 4]) the right-
hand side of (2.72) is bounded by Ch2β for some C, β > 0 depending only on δ, CR

(which in turn only depend on ν), giving (2.67). Note that [BD18] used a slightly
different normalization of Fh, rescaled by a factor of 2π, which however makes
no difference in the proof. (Alternatively one can use the more general [BD18,

Proposition 4.3] with Φ(x, y) := xy.) Similarly the fact that (2.72) features Ωj
±(2h)

instead of Ωj
±(h) does not make a difference: for instance we can write Ωj

±(2h) =

(Ωj
±(h) + h) ∪ (Ωj

±(h)− h) and use the triangle inequality.
(5) It remains to show (2.68) and (2.69). We only show the former one, the latter
proved similarly. We have

AjkA
∗
j′k′ = χ−

j Fhχ
+
k χ

+
k′F∗

hχ
−
j′ .

If |k − k′| > 1 then suppχ+
k ∩ suppχ+

k′ = ∅ and thus AjkA
∗
j′k′ = 0. We henceforth

assume that |k − k′| ≤ 1. The integral kernel of AjkA
∗
j′k′ , which we denote K, can

be computed in terms of the Fourier transform of χ+
k χ

+
k′ :

K(x, y) = (2πh)−1χ−
j (x)χ

−
j′(y)

∫
R

ei(y−x)ξ/hχ+
k (ξ)χ

+
k′(ξ) dξ.

We may assume that |j − j′| > 2, then |x − y| ≥ 1
10 |j − j′| on suppK. The

function χ+
k χ

+
k′ is supported inside an interval of size 2 and satisfies the derivative

bounds (2.64). Integrating by parts N times in ξ, we get

sup
x,y
|K(x, y)| ≤ CNh−1|j − j′|−N .

Since K(x, y) is supported in a square of size 2, this implies (2.68). �
We now give a version of Proposition 2.9 with relaxed assumptions regarding the

scales on which Ω± are porous:

Proposition 2.10. Fix numbers γ±
j , j = 0, 1, such that

0 ≤ γ±
1 < γ±

0 ≤ 1, γ+
1 + γ−

1 < 1 < γ+
0 + γ−

0

and define

(2.73) γ := min(γ+
0 , 1−γ−

1 )−max(γ+
1 , 1−γ−

0 ) =
∣∣[γ+

1 , γ+
0 ]∩ [1−γ−

0 , 1−γ−
1 ]

∣∣ > 0.

Then for each ν > 0 there exists β = β(ν) > 0 and C = C(ν) > 0 such that the
estimate

(2.74) ‖�Ω−Fh�Ω+
‖L2(R)→L2(R) ≤ Chγβ
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holds for all 0 < h < 1 and all Ω± ⊂ R which are ν-porous on scales hγ±
0 to hγ±

1 .

Remark. The formula (2.73) is related to the fact that the proof of the fractal
uncertainty principle [BD18, Theorem 4] proceeds by induction on scale and uses
the structure of Ω− on scale hμ together with the structure of Ω+ on the dual
scale h1−μ. In fact, it is likely that the proof in [BD18] can be adapted to yield
Proposition 2.10 directly.

Proof. Define

γ0 := min(γ+
0 , 1− γ−

1 ), γ1 := max(γ+
1 , 1− γ−

0 ),

note that γ0 − γ1 = γ > 0. The set Ω+ is ν-porous on scales hγ0 to hγ1 , and the
set Ω− is ν-porous on scales h1−γ1 to h1−γ0 .

Put

Ω̂+ := h−γ1Ω+, Ω̂− := hγ0−1Ω−, h̃ := hγ .

Then the sets Ω̂± are ν-porous on scales h̃ to 1. Consider the unitary rescaling
operators

T± : L2(R)→ L2(R), T+f(x) = hγ1/2f(hγ1x), T−f(x) = h(1−γ0)/2f(h1−γ0x).

We have

T±�Ω± = �
̂Ω±

T±, T−FhT
−1
+ = Fh̃.

Therefore the left-hand side of (2.74) is equal to

(2.75) ‖T−�Ω−Fh�Ω+
T−1
+ ‖L2(R)→L2(R) = ‖�̂Ω−

Fh̃�̂Ω+
‖L2(R)→L2(R).

The right-hand side of (2.75) is bounded by Ch̃β = Chγβ by Proposition 2.9. �

We conclude this section with two simple lemmas used in §§4.6.2–4.6.3:

Lemma 2.11. Let ν ∈ (0, 1), 0 < α0 ≤ α1, and 0 < α2 ≤ ν
3α1. Assume that Ω ⊂ R

is ν-porous on scales α0 to α1. Then the neighborhood Ω(α2) = Ω + [−α2, α2] is
ν
3 -porous on scales max(α0,

3
να2) to α1.

Proof. Take an interval I ⊂ R such that max(α0,
3
να2) ≤ |I| ≤ α1. Since Ω is

ν-porous on scales α0 to α1, there exists a subinterval J ⊂ I with |J | = ν|I| ≥ 3α2

and J ∩ Ω = ∅. Let J ′ ⊂ J be the subinterval with the same center and |J ′| =
1
3 |J | =

ν
3 |I|, then J ′(α2) ⊂ J and thus J ′ ∩ Ω(α2) = ∅. �

Lemma 2.12. Let ψ : R→ R be a C2 diffeomorphism such that for some C1 ≥ 1

(2.76) max(sup |ψ′|, sup |ψ′|−1, sup |ψ′′|) ≤ C1.

Let also ν ∈ (0, 1), 0 < α0 ≤ α1, and α0 ≤ min(C−2
1 α1,

1
2C

−4
1 ). Assume that Ω ⊂ R

is ν-porous on scales α0 to α1. Then the image ψ(Ω) is ν
2 -porous on scales C1α0

to min(C−1
1 α1,

1
2C

−3
1 ).

Proof. We have

sup
∣∣∂x log |ψ′(x)|

∣∣ = sup
∣∣∣ψ′′

ψ′

∣∣∣ ≤ C2
1 .

Therefore for each interval I ′ ⊂ R we have

(2.77) sup
I′
|ψ′| ≤ eC

2
1 |I′| inf

I′
|ψ′|.
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Let I ⊂ R be an interval such that |I| ≤ 1
2C

−3
1 . Put I ′ := ψ−1(I), then |I ′| ≤ 1

2C
−2
1 ;

thus by (2.77)

(2.78)
|ψ(J ′)|
|J ′| ≥

|I|
2|I ′| for all intervals J ′ ⊂ I ′.

Now assume additionally that C1α0 ≤ |I| ≤ C−1
1 α1. Then α0 ≤ |I ′| ≤ α1; thus by

porosity of Ω there exists an interval

J ′ ⊂ I ′, |J ′| = ν|I ′|, J ′ ∩ Ω = ∅.
Put J := ψ(J ′) ⊂ I; then J ∩ ψ(Ω) = ∅ and we estimate by (2.78)

|J | ≥ |I| · |J
′|

2|I ′| =
ν

2
|I|. �

2.5. Dynamics and porosity. In this section we use the results of §2.1 to estab-
lish porosity of certain sets in the stable/unstable direction (Lemma 2.15). This
property is used in §4.6 in combination with the fractal uncertainty principle.

Recall from §2.1.1 that for each ρ ∈ S∗M the local stable/unstable manifolds
Ws(ρ),Wu(ρ) are C∞ submanifolds of S∗M tangent to Es, Eu (despite the fact
that Es(ρ), Eu(ρ) do not in general depend smoothly on ρ; see §2.1.2). We define
the global stable/unstable manifolds

Ŵs(ρ) :=
⋃
j≥0

ϕ−j

(
Ws(ϕj(ρ))

)
, Ŵu(ρ) :=

⋃
j≥0

ϕj

(
Wu(ϕ−j(ρ))

)
which are immersed one-dimensional C∞ submanifolds of S∗M tangent to Es(ρ),
Eu(ρ); see for instance [KH97, (17.4.1)] and [Dy18, §4.7.3].

We fix a Riemannian metric on S∗M . A proper parametrization of pieces of
global stable/unstable manifolds yields stable/unstable intervals as defined below:

Definition 2.13. Let L > 0. An unstable interval of length L is a C∞ map
γ : I → S∗M , where I ⊂ R is an interval of size L, such that for each s ∈ I
the tangent vector γ̇(s) ∈ Tγ(s)S

∗M is a unit length vector in Eu(γ(s)). A stable
interval of length L is defined similarly except we require γ̇(s) ∈ Es(γ(s)). In both
cases we denote |γ| := L.

We sometimes identify a stable/unstable interval γ with its range γ(I) ⊂ S∗M .
For a set W ⊂ S∗M denote

(2.79) γ−1(W) := {s ∈ I | γ(s) ∈ W}.
If γ : I → S∗M is an unstable interval and t ∈ R, then the map ϕt ◦ γ : I → S∗M
can be reparametrized to yield another unstable interval, which we denote by ϕt(γ).
Same is true for stable intervals.

Recalling the definitions (2.6) of stable/unstable Jacobians Js
t , J

u
t , we see that

there exists a constant C depending only on (M, g) and the choice of the metric on
S∗M such that for each unstable interval γ and all t ∈ R

(2.80) C−1
(
inf
γ

Ju
t

)
|γ| ≤ |ϕt(γ)| ≤ C

(
sup
γ

Ju
t

)
|γ|.

Similarly if γ is a stable interval then

(2.81) C−1
(
inf
γ

Js
t

)
|γ| ≤ |ϕt(γ)| ≤ C

(
sup
γ

Js
t

)
|γ|.
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In particular by (2.10) we have

(2.82) |ϕt(γ)| ≤ Ce−Λ0|t||γ|

for all t ≥ 0 and stable intervals γ, and for all t ≤ 0 and unstable intervals γ.
Therefore each stable/unstable interval is contained in some global stable/unstable
manifold.

Since M is connected and ϕt is not a constant time suspension of an Anosov

diffeomorphism (being a contact flow), each global stable/unstable manifold Ŵs(ρ),

Ŵu(ρ) is dense in S∗M ; see [An67, p.29, Theorem 15]. A quantitative version of
this statement is given by

Lemma 2.14. Let U ⊂ S∗M be a nonempty open set. Then there exists LU > 0
such that every unstable interval of length LU intersects U . Same is true for stable
intervals.

Proof. We argue by contradiction, considering the case of unstable intervals; the
case of stable intervals is handled similarly. If the statement of the lemma fails,
then there exists a sequence of unstable intervals

γj : [−�j , �j ]→ S∗M, �j →∞, γj([−�j , �j ]) ∩ U = ∅.

Passing to a subsequence, we may assume that (γj(0), γ̇j(0)) converges to some
point (ρ, ξ) ∈ T (S∗M). Take the unstable interval γ : R → S∗M such that

(γ(0), γ̇(0)) = (ρ, ξ). Then γ(R) is the global unstable manifold Ŵu(ρ). We have

γj(s) → γ(s) locally uniformly in s ∈ R. Therefore Ŵu(ρ) ∩ U = ∅, giving a

contradiction with the fact that Ŵu(ρ) is dense in S∗M . �

To state the main result of this section, Lemma 2.15, we introduce some notation
formally similar to the symbolic formalism in dynamical systems and motivated
by §3.1 (see also Remark (2) following Proposition 3.2). We fix finitely many open
conic sets

(2.83) V1, . . . ,Vm ⊂ T ∗M \ 0

and assume that S∗M \ Vk has nonempty interior for each k. In our application
in Lemma 4.18 we will take m = 2 and use a slight fattening of the sets V1,V�
constructed in §3.3.1. The set V1 will be assumed to be “small”; as a consequence
V� will necessarily be “large”.

For words v = v0 . . . vn−1, w = w1 . . . wn where vj , wj ∈ {1, . . . ,m}, define the
open conic sets (similarly to (3.2))

(2.84) V−
v :=

n−1⋂
j=0

ϕ−j(Vvj ), V+
w :=

n⋂
j=1

ϕj(Vwj
).

Lemma 2.15 shows the porosity of V−
v in the unstable direction and of V+

w in the
stable direction, in the sense of Definition 2.8. See Figure 4.

Lemma 2.15. There exist ν > 0, C0 > 0 depending only on V1, . . . ,Vm such that

• for all words v = v0 . . . vn−1, sets W− ⊂ V−
v ∩S∗M , and unstable intervals

γ : I0 → S∗M , the set γ−1(W−) is ν-porous on scales C0(infW− Ju
n )

−1

to 1;
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V−
v V+

w

Figure 4. The sets V−
v and V+

w with the flow direction removed.
In this figure and in Figures 6 and 8 we use numerical simula-
tions for a perturbed two-dimensional cat map (which has similar
properties to three-dimensional Anosov flows studied here).

• for all words w = w1 . . . wn, sets W+ ⊂ V+
w ∩ S∗M , and stable intervals

γ : I0 → S∗M , the set γ−1(W+) is ν-porous on scales C0(infW+ Js
−n)

−1

to 1.

Here the sets γ−1(W±) ⊂ I0 ⊂ R are defined by (2.79).

Remarks.

(1) In the situation where all the Vj are “small conic balls”, the sets V−
v ∩ S∗M

have the shapes of “deformed ellipses” aligned along a small piece of weak stable
manifold. Their width transversely to this manifold is bounded by C0J

u
n (ρ)

−1, for
ρ any point in V−

v ∩ S∗M , so γ−1(V−
v ) will be contained in an interval of length

≤ C0J
u
n (ρ)

−1. The Lemma shows that, in the general case where some Vj may be
“not small”, V−

v ∩S∗M may be a union of many such “deformed ellipses”, arranged
in a fractal (that is, porous) way along the unstable direction.
(2) By (2.10) we see in particular that if γ is an unstable interval, then γ−1(V−

v )
is ν-porous on scales C0e

−Λ0n to 1. If γ is instead a stable interval, then γ−1(V+
w)

is ν-porous on scales C0e
−Λ0n to 1.

Proof. (1) We consider the case of unstable intervals, with stable intervals handled
similarly. Our proof is similar to [DJ18, Lemma 5.10]. Throughout the proof C
denotes constants depending only on V1, . . . ,Vm whose precise value might change
from place to place.

Fix nonempty open sets U1, . . . ,Um ⊂ S∗M such that Uk∩Vk = ∅; this is possible
since S∗M \Vk have nonempty interior. Fix ε > 0 smaller than the distance between
Uk and Vk for all k. Using Lemma 2.14, we fix L0 > 0 depending only on V1, . . . ,Vm
such that every unstable interval of length L0 intersects each of the sets U1, . . . ,Um.
(2) We fix C0 > 0 large enough to be chosen later in Step (4) of the proof. Take
an arbitrary unstable interval γ : I0 → S∗M and extend it to an unstable interval
γ : R → S∗M . Let I ⊂ R be an interval such that C0(infW− Ju

n )
−1 ≤ |I| ≤ 1 and
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γI

γJ ϕ

Vv�

Uv�

ϕ (γI)

ϕ (γJ )

>ε

Figure 5. An illustration of the proof of Lemma 2.15. The large
lighter shaded region is Vv� and the small darker shaded region is
Uv� . The marked point inside Uv� ∩ ϕ�(γJ ) is ϕ�(γ(s)).

γI := γ|I be the corresponding unstable interval; note that |γI | = |I|. We may
assume that γI ∩ W− �= ∅ as otherwise γ−1(W−) ∩ I = ∅ and we could take any
J ⊂ I in Definition 2.8.

Let ϕj(γI), j ≥ 0, be the images of γI under ϕj . By (2.82) we have |ϕj(γI)| ≥
C−1eΛ0j |I|. Therefore there exists an integer � ≥ 0 such that |ϕ�(γI)| ≥ L0. Take
the minimal integer � ≥ 0 with this property; then there exists C > L0 such that

(2.85) L0 ≤ |ϕ�(γI)| ≤ C.

(3) The map ϕ� has a uniform expansion rate on γI , namely

(2.86) sup
γI

Ju
� ≤ C inf

γI

Ju
� .

Indeed, by (2.82) and (2.85) there exists t0 > 0 depending only on the con-
stants in (2.85) (which in turn depend only on V1, . . . ,Vm) such that ϕ�−t0(γI) =
ϕ−t0(ϕ�(γI)) is contained in a local unstable manifold, more precisely

(2.87) ϕ�−t0(ρ̃) ∈Wu(ϕ�−t0(ρ)) for all ρ, ρ̃ ∈ γI .

If � ≤ t0 then (2.86) is immediate since C−1 ≤ Ju
� ≤ C. Assume now that � > t0.

Then we write for all ρ ∈ γI

Ju
� (ρ) =

Ju
t0
(ϕ�−t0(ρ))

Ju
t0−�(ϕ�−t0(ρ))

.

By part (4) of Lemma 2.1 and (2.87) we have Ju
t0−�(ϕ�−t0(ρ)) ≤ CJu

t0−�(ϕ�−t0(ρ̃))

for all ρ, ρ̃ ∈ γI . Together with the bound C−1 ≤ Ju
t0 ≤ C this proves (2.86).

(4) By (2.80), (2.85), and (2.86) we relate the expansion rate of ϕ� on γI to the
length |I|:
(2.88) C−1

1 ≤ |I| · inf
γI

Ju
� ≤ |I| · sup

γI

Ju
� ≤ C1

where C1 is some constant depending only on V1, . . . ,Vm. Fix C0 := C1 + 1; then
the integer � satisfies

0 ≤ � ≤ n− 1,

where we recall that n = |v|. Indeed, assume that � ≥ n instead. Then Ju
� (ρ) ≥

Ju
n (ρ) for all ρ by (2.10). Since γI ∩ W− �= ∅ and from our initial assumption on
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|I|, we have

(2.89) C0 ≤ |I| · inf
W−

Ju
n ≤ |I| · infW−

Ju
� ≤ |I| · sup

γI

Ju
� ≤ C1

giving a contradiction with our choice of C0.
(5) We finally construct an interval J ⊂ I such that J ∩ γ−1(W−) = ∅. By (2.85)
and the choice of L0, the unstable interval ϕ�(γI) intersects Uv� . That is, there
exists s ∈ I such that ϕ�(γ(s)) ∈ Uv� . Choose an interval J ⊂ I such that s ∈ J
and |ϕ�(γJ)| = ε where γJ := γ|J is the corresponding unstable interval. Since the
distance between Uv� and Vv� is larger than ε, the unstable interval ϕ�(γJ) does not
intersect Vv� . (See Figure 5.) By (2.84), the unstable interval γJ does not intersect
V−
v ⊃ W−, so that J ∩ γ−1(W−) = ∅ as needed.
By (2.80) and (2.88) we obtain a lower bound on the size of J :

|J | ≥ |ϕ�(γJ)|
C supγI

Ju
�

≥ ε

C2
|I|.

Thus γ−1(W−) is ν-porous on scales C0(infW− Ju
n )

−1 to 1 with ν := ε/C2 > 0. �

We finally discuss the dependence of the constant ν on the sets V1, . . . ,Vm in
Lemma 2.15, used in Theorem 4. We use the following

Definition 2.16. Let U ⊂ S∗M be a set and 0 < L1 ≤ 1 ≤ L0. We say that
U is (L0, L1)-dense in the unstable direction if for each unstable interval γ :
I → S∗M of length L0 there exists a subinterval J ⊂ I of length L1 such that
γ(J) ⊂ U◦, where U◦ denotes the interior of U . We similarly define the notion of
being dense in the stable direction.

Lemma 2.14 implies (similarly to step (5) in the proof of Lemma 2.15) that
if U has nonempty interior then it is (L0, L1)-dense in both stable and unstable
directions for some L0, L1. Following the proof of Lemma 2.15 (using density in
the stable/unstable directions in step (5)), we obtain

Lemma 2.17. In the notation of Lemma 2.15, assume that each of the complements
S∗M \ V1, . . . , S∗M \ Vm is (L0, L1)-dense in the unstable direction. Then for all
words v = v0 . . . vn−1, sets W− ⊂ V−

v ∩S∗M , and unstable intervals γ : I0 → S∗M ,
the set γ−1(W−) is ν-porous on scales C0(infW− Ju

n )
−1 to 1, where ν, C0 > 0 depend

only on (M, g), L0, L1. A similar statement holds for stable intervals under the
assumption of (L0, L1)-density in the stable direction.

We also record here a useful property of (L0, L1)-dense sets:

Lemma 2.18. Assume that U ⊂ S∗M is (L0, L1)-dense in the unstable direction.
Then there exists U � ⊂ S∗M which is (L0, L1)-dense in the unstable direction and
such that the closure of U � is contained in the interior of U . The same is true for
(L0, L1)-dense sets in the stable direction.

Proof. Without loss of generality we assume that U is open. We exhaust U by open
subsets

U =
⋃
j≥0

Uj , Uj ⊂ Uj+1, Uj ⊂ U .

For instance, we may take Uj to be the set of all points ρ ∈ S∗M such that the

closed ball B(ρ, 1j ) is contained in U .
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We argue by contradiction, assuming that neither of the sets Uj is (L0, L1)-dense
in the unstable direction. Then there exists a sequence of unstable intervals γj :
[0, L0] → S∗M such that for each j and each subinterval J ⊂ [0, L0] of length L1,
we have γj(J) �⊂ Uj . Passing to a subsequence, we may assume that γj converges
uniformly to some unstable interval γ : [0, L0] → S∗M . Since U is (L0, L1)-dense
in the unstable direction, there exists a subinterval J ⊂ I of length L1 such that
γ(J) ⊂ U . Then for j large enough, γj(J) ⊂ Uj , giving a contradiction. �

3. Proofs of the theorems

In this section we prove Theorems 2 and 6. We follow the strategy used in [DJ18,
Ji20] in the case of constant curvature (which in turn was partially inspired by
[An08]). The main difference is the proof of the key fractal uncertainty estimate
(Proposition 3.2).

In §§3.1–3.2 we provide notation and statements used in the proofs of both
theorems. The proof of Theorem 2 is presented in §3.3. In §3.4 we prove Theorem 6,
using some parts of §3.3 as well.

3.1. Notation. We first introduce some notation used throughout the rest of the
paper. Let M be a compact connected Anosov surface; see §2.1. Fix a Riemannian
metric on S∗M inducing a distance function d(•, •). We assume that:

(1) we are given h-independent functions a1, a� ∈ C∞
c (T ∗M \ 0) with 2

supp a1, supp a� ⊂ {
1

4
< |ξ|g < 4}, a1, a� ≥ 0, a1 + a� ≤ 1;

(2) supp a1 ⊂ V1, supp a� ⊂ V� where V1,V� ⊂ T ∗M \ 0 are some conic open
sets;

(3) the complements T ∗M \ V1, T ∗M \ V� have nonempty interiors;
(4) the diameter of V1 ∩ S∗M with respect to d(•, •) is smaller than some

constant ε0 > 0 to be fixed later; as a consequence, V� ∩ S∗M will cover a
large part of S∗M

(5) we are given A1, A� ∈ Ψ−∞
h (M) with σh(Aw) = aw, WFh(Aw) ⊂ Vw∩{ 14 <

|ξ|g < 4}, w ∈ {1, �}.
The specific functions a1, a� used in the proof of Theorem 2 are fixed in §3.3.1.
Roughly speaking, a1, a� will form a partition of unity on S∗M , a1 will be supported
on the region {a �= 0}, where a is the symbol featured in Theorem 2, and a� will
be supported near the complement of this region. The proof of Theorem 6 uses
a damped version of these functions; see §3.4.2. The fact that the complements
T ∗M \ V1, T ∗M \ V� have nonempty interiors is used in §4.6.2.

We next introduce dynamically refined symbols corresponding to words, using
the geodesic flow ϕt defined in (2.2). Define

A� := {1, �}, A •
� := {w = w0 . . . wn−1 | n ≥ 0, w0, . . . , wn−1 ∈ A�}.

We call elements of A •
� words. Denote by A n

� ⊂ A •
� the set of words of length n.

We write |v| := n for v ∈ A n
� .

For each word v = v0 . . . vn−1, resp. w = w1 . . . wn, define the functions

(3.1) a−v :=

n−1∏
j=0

(avj ◦ ϕj), a+w :=

n∏
j=1

(awj
◦ ϕ−j).

2The choice of 1, � for indices will become clear later in §4.2 where we write a� = a2+a3+ . . . .
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Note the different indexing for v and w which makes sure that the product a−v a
+
w

has only one factor of the form aw ◦ ϕ0, w ∈ {1, �}. The supports of a−v , a
+
w are

contained in the open conic sets

(3.2) V−
v :=

n−1⋂
j=0

ϕ−j(Vvj ), V+
w :=

n⋂
j=1

ϕj(Vwj
).

The operators corresponding to a−v , a
+
w are defined using the notation A(t) :=

U(−t)AU(t) from (2.35):

(3.3)
A−

v := Avn−1
(n− 1)Avn−2

(n− 2) · · ·Av1(1)Av0(0),

A+
w := Aw1

(−1)Aw2
(−2) · · ·Awn−1

(−(n− 1))Awn
(−n).

If n is bounded independently of h then Egorov’s theorem (2.36) implies

(3.4) A−
v = Oph(a

−
v ) +O(h)L2→L2 , A+

w = Oph(a
+
w) +O(h)L2→L2 .

This is a form of classical/quantum correspondence.
For future use we record the following concatenation formulas : if v = v1 . . . vk,

w = w1 . . . w�, then

(3.5) A+
vw = U(k)A−

vA
+
wU(−k), A−

vw = U(−k)A−
wA+

vU(k)

where the reverse word v is defined by v := vk . . . v1. Similarly we have

V+
vw = ϕk(V−

v ∩ V+
w), V−

vw = ϕ−k(V−
w ∩ V+

v ),(3.6)

a+vw = (a−v a
+
w) ◦ ϕ−k, a−vw = (a−wa

+
v ) ◦ ϕk.(3.7)

In the particular case w = ∅ we get the reversal formulas

(3.8) A+
v = U(k)A−

vU(−k), V+
v = ϕk(V−

v ), a+v = a−v ◦ ϕ−k.

If E ⊂ A •
� is a finite set, then we define

(3.9) a±E :=
∑
w∈E

a±w, A±
E :=

∑
w∈E

A±
w,

and if F : A •
� → C is zero except at finitely many words, then we put

(3.10) a±F :=
∑

w∈A •
�

F (w)a±w, A±
F :=

∑
w∈A •

�

F (w)A±
w.

Note that if E ⊂ A n
� for some n, then 0 ≤ a±E ≤ 1.

In the remainder of this section we will only use the operators A−
w. (This is

an arbitrary choice – one could instead only use the operators A+
w.) To simplify

notation, we denote

aw := a−w, Aw := A−
w,

and same for aE , AE , aF , AF .

3.2. Long propagation times and the key estimate. Similarly to [DJ18,Ji20]
our argument uses words of length that grows like log(1/h). More precisely, we
define the following integer propagation times:

(3.11) N0 :=
⌈ log(1/h)

6Λ1

⌉
, N := (6Λ + 1)N0 >

log(1/h)

Λ0

where the ‘minimal/maximal expansion rates’ 0 < Λ0 ≤ Λ1 were defined in (2.10)
and Λ := �Λ1/Λ0�. We call N0 a short logarithmic time and N a long logarithmic
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time. Note that if (M, g) had constant curvature −1 as in [DJ18] then we could
take Λ0 = Λ1 = 1 and N ≈ 7

6 log(1/h).

3.2.1. Short logarithmic words. We first study words of length N0, for which a
version of the classical/quantum correspondence (3.4) still applies. We use the
mildly exotic symbol classes introduced in §2.2.1.

Lemma 3.1. For each w ∈ A N0
� , we have

(3.12) aw ∈ Scomp
1/6+ (T ∗M), Aw = Oph(aw) +O(h2/3−)L2→L2 .

Moreover, for each F : A N0
� → C with sup |F | ≤ 1, we have (using the nota-

tion (3.10))

(3.13) aF ∈ Scomp
1/6+ (T ∗M), AF = Oph(aF ) +O(h1/2−)L2→L2

with the constant in the remainder independent of the function F .

Remarks.

(1) The choice of index δ := 1
6 (which corresponds to the factor 1

6 in the definition
of N0) was guided by the proof of Proposition 3.2, yet it is somewhat arbitrary—in
practice one could probably replace 1

6 by any δ ∈ (0, 1
2 ).

(2) Later we will prove much finer statements regarding the propagation up to the
local Ehrenfest time—see §4.3.1–4.3.2. It is possible to avoid the precise derivative
bounds for aF by increasing the value of δ, as in [DJ18, Lemma 4.4]; however the
proof of these bounds below can be seen as a basic case of the more complicated
bounds of §5.3.

Proof. We write w = w0 . . . wN0−1. By Lemma 2.5 with δ := 1
6 we have uniformly

in j = 0, . . . , N0 − 1

(3.14) awj
◦ ϕj ∈ Scomp

1/6+ (T ∗M), Awj
(j) = Oph(awj

◦ ϕj) +O(h2/3−)L2→L2 .

Now (3.12) follows from Lemma 2.6 with δ := 1
6 + ε and ε > 0 arbitrarily small.

To establish bounds on aF , we first note that sup |aF | ≤ 1 since sup |F | ≤ 1 and
|a1| + |a�| = a1 + a� ≤ 1. To prove bounds on derivatives, take arbitrary vector
fields X1, . . . , Xk on T ∗M . For a set I ⊂ {1, . . . , k} define the differential operator

XI := Xi1 · · ·Xir where I = {i1, . . . , ir}, i1 < · · · < ir.

By the product rule we have for all w ∈ A N0
�

X1 . . . Xkaw =
∑
L∈L

N0−1∏
j=0

XI(L,j)(awj
◦ ϕj).

where the sum is over the set of sequences (with each �i encoding which of the
factors of the product defining aw the vector field Xi was applied to)

L :=
{
L = (�1, . . . , �k) | �1, . . . , �k ∈ {0, . . . , N0 − 1}

}
and for L ∈ L and j ∈ {0, . . . , N0 − 1} we put

I(L, j) :=
{
i ∈ {1, . . . , k} | �i = j

}
.
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It follows that (with w summed over A N0
� )

|X1 . . .XkaF | ≤
∑
L∈L

∑
w

N0−1∏
j=0

|XI(L,j)(awj
◦ ϕj)| =

∑
L∈L

N0−1∏
j=0

N (L, j)

where N (L, j) :=
∑

w∈{1,�}
|XI(L,j)(aw ◦ ϕj)|.

Fix arbitrary ε > 0. By (3.14) and since |a1|+ |a�| ≤ 1 we have for some constant
C depending only on X1, . . . , Xk, ε

N (L, j) ≤ 1, if I(L, j) = ∅;
N (L, j) ≤ Ch−(1/6+ε)#(I(L,j)), if I(L, j) �= ∅.

For each L ∈ L , we have
∑N0−1

j=0 #(I(L, j)) = k. Moreover, the set L has Nk
0 =

O(h0−) elements. It follows that

sup |X1 . . .XkaF | ≤ Ch−(1/6+2ε)k

which implies that aF ∈ Scomp
1/6+ (T ∗M \ 0).

Finally, to show that AF = Oph(aF ) + O(h1/2−)L2→L2 it suffices to sum the
second parts of (3.12) over w with coefficients F (w) and use the counting bound
#(A N0

� ) = 2N0 = O(h−1/6) which holds since Λ1 ≥ 1. �

Lemma 3.1 together with (2.32) gives the norm bound

(3.15) ‖AF ‖L2→L2 ≤ 1 +O(h1/3−) for all F : A N0
� → C, sup |F | ≤ 1

where the constant in the remainder is independent of F . This bound in particular
applies to operators of the form Aw, w ∈ A N0

� , and more generally of the form AE
where E ⊂ A N0

� .

3.2.2. Long logarithmic words. We now study operators associated to words of
length N . The following key estimate is proved in §4 using the fractal uncertainty
principle and the fact that the complements T ∗M \ V1, T ∗M \ V� have nonempty
interior. It implies that each operator Aw, where w ∈ A N

� , has norm decaying
with h.

Proposition 3.2. Let the assumptions (1)–(5) of §3.1 hold and ε0 be small enough
depending only on M . Then there exists β > 0 depending only on V1,V� and there
exists C > 0 depending only on A1, A� such that for all w ∈ A N

�

(3.16) ‖Aw‖L2→L2 ≤ Chβ.

Remarks.

(1) We note that N is considerably larger than twice the maximal Ehrenfest time
log(1/h)

Λ0
, that is for all ρ ∈ S∗M the norm dϕN (ρ) is much larger than h−1. There-

fore the classical/quantum correspondence (3.4) no longer applies to the operator
Aw, w ∈ A N

� . In fact the norm bound (3.16) contradicts this correspondence: if
Aw were a quantization of aw, then we would expect the norm ‖Aw‖ to be close to
sup |aw|; however in general we could have sup |aw| = 1 while (3.16) implies that
‖Aw‖ is small.
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(2) In the constant curvature case a version of Proposition 3.2 is proved in [DJ18,
Proposition 3.5]. We remark that [DJ18] considered words of length ≈ 2 log(1/h),
while here we study words of shorter length N ≈ 7

6 log(1/h). The factor
7
6 was cho-

sen for convenience in the proof of Proposition 3.2; see §4.1 and in particular (4.6),
(4.11). We could probably have replaced this factor by any number in the interval
(1, 32 ); yet we did not try to optimize the estimate in the proposition by varying
this factor.
(3) Proposition 3.2 is formally similar to [AN07a, Theorem 2.7] and [An08, Theo-
rem 1.3.3], as all these statements imply norm decay for operators corresponding
to words of long logarithmic length. However [AN07a,An08] used a fine partition
of S∗M , for which each symbol aw in a thin neighbourhood of a single stable leaf
(see §4.2). On the contrary, the partition (3.19) we use here is not fine; in fact
supp a� contains all of S∗M except a small ball, and the supports of operators aw
typically have a complicated fractal structure. As a result, the method of proof of
Proposition 3.2 is very different from those in [AN07a,An08]; it relies on the fractal
uncertainty principle, which takes advantage of the “fractality” of supp aw. A com-
mon point with the proofs in [AN07a] is that we will only use words of “moderately
long” logarithmic length (e.g. in constant curvature words of length ∼ 7

6 log(1/h)),
instead of “very long” logarithmic length as in [An08].
(4) Following the proof of Proposition 3.2 in §4 and using the remarks after Lem-
mas 4.16–4.17, we obtain the following statement: if the complements S∗M \
V1, S∗M \ V� are (L0, L1)-dense in both unstable and stable directions (in the
sense of Definition 2.16) then Proposition 3.2 holds for some β depending only
on (M, g), L0, L1.

3.3. Proof of Theorem 2. We now prove Theorem 2, following the strategy
of [DJ18, §§3,4].

3.3.1. Construction of the partition. We first construct the functions a1, a� and
the operators A1, A� satisfying the assumptions of §3.1 and used in the proof of
Theorem 2.

In addition to A1, A� we use an operator A0 which cuts away from the cosphere
bundle S∗M . More precisely we put

(3.17)
A0 := ψ0(−h2Δ) where ψ0 ∈ C∞(R; [0, 1]) satisfies

suppψ0 ∩ [
1

4
, 4] = ∅, supp(1− ψ0) ⊂ (

1

16
, 16).

By the functional calculus (2.33) applied to 1− ψ0 we see that

(3.18) A0 ∈ Ψ0
h(M), σh(A0) = a0 := ψ0(|ξ|2g), WFh(I−A0) ⊂ {

1

4
< |ξ|g < 4}.

The functions a1, a� and the operators A1, A� are constructed in Lemma 3.3. Here
we let a be the function in the statement of Theorem 2 and ε0 > 0 be small enough
so that Proposition 3.2 applies.

Lemma 3.3. Let a ∈ C∞(T ∗M) satisfy a|S∗M �≡ 0, and fix ε0 > 0. Then there
exist a1, a�, A1, A� such that conditions (1)–(5) of §3.1 hold and moreover

(6) A0, A1, A� form a pseudodifferential partition of unity, namely I = A0 +
A1 +A�. This in particular implies that 1 = a0 + a1 + a�;

(7) if V1 ⊂ T ∗M \0 is the open conic set containing supp a1 introduced in §3.1,
then V1 ∩ S∗M ⊂ {a �= 0}.
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Proof. We first choose a nonempty open conic set V1 ⊂ T ∗M \ 0 such that V1 ∩
S∗M ⊂ {a �= 0}, the diameter of V1 ∩ S∗M is less than ε0, and the complement
T ∗M \V1 has nonempty interior. For instance, we can let V1∩S∗M be a small ball
centered around a point in {a �= 0}∩S∗M . We next choose another open conic set
V� ⊂ T ∗M \ 0 such that T ∗M \ V� has nonempty interior and

(3.19) T ∗M \ 0 = V1 ∪ V�.
By (3.18) we may write

I −A0 = Oph(b) +R, R = O(h∞)Ψ−∞

where the h-dependent symbol b ∈ S−∞
h (T ∗M) satisfies for some compact h-

independent set K

supp b ⊂ K ⊂ {1
4
< |ξ|g < 4}, b = 1− a0 +O(h).

By (3.19) we see that K ⊂ Ṽ1 ∪ Ṽ� where Ṽw := Vw ∩ { 14 < |ξ|g < 4}. Take an
h-independent partition of unity

χ1 ∈ C∞
c (Ṽ1; [0, 1]), χ� ∈ C∞

c (Ṽ�; [0, 1]), χ1 + χ� ≡ 1 on K

and define

A1 := Oph(χ1b) +R, A� := Oph(χ�b).

Then the conditions (1)–(7) hold, where the principal symbols a1, a� are given by
a1 = χ1(1− a0), a� = χ�(1− a0). �

We now establish two corollaries of properties (6)–(7) in Lemma 3.3. First of all,
since A1+A� = I−A0 commutes with U(t), we see that (using the notation (3.9))

(3.20) AA n
�
= (A1 +A�)

n = (I −A0)
n for all n ∈ N.

The proof of [DJ18, Lemma 3.1] then implies that for all n ∈ N and u ∈ H2(M)

(3.21) ‖u−AA n
�
u‖L2 ≤ C‖(−h2Δ− I)u‖L2

where C is a constant independent of n, h. In particular, if (−h2Δ− I)u = 0 then
u = AA n

�
u.

Secondly, since supp a1∩S∗M ⊂ {a �= 0}, the elliptic estimate [DJ18, Lemma 4.1]
implies that for all u ∈ H2(M)

(3.22) ‖A1u‖L2 ≤ C‖Oph(a)u‖L2 + C‖(−h2Δ− I)u‖L2 + Ch‖u‖L2 .

In particular, A1u is controlled, by which we mean that it is bounded in terms of
the right-hand side of (1.2) and a remainder which goes to 0 as h → 0. Later in
Lemma 3.6 we extend (3.22) to the propagated operators A1(t).

We remark that if we additionally know that supp a1 ∩ S∗M ⊂ {|a| ≥ 1} then
we may take the first constant C on the right-hand side of (3.22) to be equal
to 2 (or in fact, any fixed number larger than 1). This follows from the proof
of [DJ18, Lemma 4.1] together with the norm bound (2.32).

The rest of the proof consists of writing u = AXu+AYu (microlocally near S∗M ;
see (3.34)), with the operators AX , AY defined in §3.3.3, such that:

• AYu is controlled (the proof of this uses classical/quantum correspondence,
Lemma 3.1), and
• AXu is small (the proof of this uses the smallness of the norm ‖AX ‖L2→L2

which follows from the key estimate, Proposition 3.2).
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3.3.2. Controlled short logarithmic words. We now define the set of controlled words
of length N0 (see (3.11)). Following [DJ18, §3.2] we define the density function

(3.23) F : A N0
� → [0, 1], F (w0 . . . wN0−1) =

#{j ∈ {0, . . . , N0 − 1} | wj = 1}
N0

.

Fix small α ∈ (0, 12 ) to be chosen in (3.37), and define the controlled, resp. uncon-

trolled words in A N0
� :

(3.24) Z := {w ∈ A N0
� | F (w) ≥ α}, Z� = {w ∈ A N0

� | F (w) < α}.
Define the operator AZ by (3.9). Then AZu is estimated by the following

Lemma 3.4. There exists a constant C > 0 independent of α or h, such that for
all α ∈ (0, 12 ), h ∈ (0, 1], and u ∈ H2(M) we have
(3.25)

‖AZu‖L2 ≤ C

α
‖Oph(a)u‖L2 +

C log(1/h)

αh
‖(−h2Δ− I)u‖L2 +O(h1/4−)‖u‖L2

where the constant in O(•) depends on α but not on h, u.

To prove Lemma 3.4 we use the following almost monotonicity property:

Lemma 3.5. Assume that the functions F1, F2 : A N0
� → C satisfy

|F1(w)| ≤ F2(w) ≤ 1 for all w ∈ A N0
� .

Then for all u ∈ L2(M) we have (using the notation (3.10))

(3.26) ‖AF1
u‖L2 ≤ ‖AF2

u‖L2 + Ch1/4−‖u‖L2

where the constant C is independent of F1, F2, h, u.

Proof. We have

‖AF2
u‖2 − ‖AF1

u‖2 = 〈Bu, u〉 where B := A∗
F2
AF2
−A∗

F1
AF1

.

By Lemma 3.1 the operator B is pseudodifferential:

B = Oph(b) +O(h1/2−)L2→L2 where b := |aF2
|2 − |aF1

|2 ∈ Scomp
1/6+ (T ∗M).

From the positivity of the symbols aw, we deduce that∣∣∣ ∑
w

F1(w)aw

∣∣∣ ≤∑
w

|F1(w)|aw ≤
∑
w

F2(w)aw,

or in short |aF1
| ≤ aF2

, which implies that b ≥ 0. By the G̊arding inequality (2.31)
we have for all ε > 0

〈Bu, u〉 ≥ −Cεh
1/2−ε‖u‖2L2

which gives ‖AF1
u‖2L2 ≤ ‖AF2

u‖2L2 + Cεh
1/2−ε‖u‖2L2 , implying (3.26). �

We also use the following control bound on A1(t)u which is obtained from (3.22)

using that ‖U(t)u−e−it/hu‖L2 ≤ C |t|
h ‖(−h2Δ−I)u‖L2 (see [DJ18, Lemma 4.3] for

details):

Lemma 3.6. For all t ∈ R and u ∈ H2(M), we have

(3.27) ‖A1(t)u‖L2 ≤ C‖Oph(a)u‖L2 +
C〈t〉
h
‖(−h2Δ− I)u‖L2 + Ch‖u‖L2

where 〈t〉 :=
√
1 + t2 and the constant C is independent of t and h.
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Remark. Using the remark after (3.22) and the proof of [DJ18, Lemma 4.3], we see
that under the condition supp a1∩S∗M ⊂ {|a| ≥ 1} we may take the first constant
on the right-hand side of (3.27) to be equal to 2 (or in fact, any fixed number larger
than 1).

We are now ready to finish

Proof of Lemma 3.4. By the definition (3.24) of the set Z, the indicator function
1Z satisfies 0 ≤ α1Z(w) ≤ F (w) ≤ 1 for all w ∈ A N0

� . Thus by Lemma 3.5

(3.28) α‖AZu‖L2 ≤ ‖AFu‖L2 +O(h1/4−)‖u‖L2 .

On the other hand, (3.23) together with (3.20) gives the following formula for AF :

AF =
1

N0

N0−1∑
j=0

∑
w∈A

N0
� ,wj=1

Aw =
1

N0

N0−1∑
j=0

(A1 +A�)
N0−1−jA1(j)(A1 +A�)

j .

Recall that ‖A1 +A�‖L2→L2 ≤ 1 by Lemma 3.3. It follows that

‖AFu‖L2 ≤ max
0≤j<N0

‖A1(j)(A1 +A�)
ju‖L2 .

Since ‖A1(j)‖L2→L2 = ‖A1‖L2→L2 ≤ C and (A1 + A�)
ju − u can be estimated

by (3.21), we get

‖AFu‖L2 ≤ max
0≤j≤N0

‖A1(j)u‖L2 + C‖(−h2Δ− I)u‖L2 .

Estimating A1(j)u by Lemma 3.6 and using that N0 = O(log(1/h)), we get

(3.29) ‖AFu‖L2 ≤ C‖Oph(a)u‖L2 +
C log(1/h)

h
‖(−h2Δ− I)u‖L2 + Ch‖u‖L2 .

Combining (3.28) and (3.29), we obtain (3.25). �

3.3.3. Controlled long logarithmic words. The proof of Lemma 3.4 used the mono-
tonicity property, Lemma 3.5, which in turn relied on classical/quantum correspon-
dence. Thus it only applied to words of short logarithmic length N0. On the other
hand, Lemma 3.2 only applies to words of long logarithmic length N = (6Λ+1)N0.
To bridge the gap between the two, we define the sets of uncontrolled, resp. con-
trolled words of length N as follows:

(3.30)

A N
� = X � Y ,
X := {w(1) . . .w(6Λ+1) | w(�) ∈ Z� for all �},
Y := {w(1) . . .w(6Λ+1) | there exists � such that w(�) ∈ Z},

where Z ⊂ A N0
� is defined in (3.24) and we view words in A N

� as concatenations
w(1) . . .w(6Λ+1) with w(1), . . . ,w(6Λ+1) ∈ A N0

� .
Using previously established bound on controlled short logarithmic words,

Lemma 3.4, we now estimate the contribution of controlled long logarithmic words:

Proposition 3.7. For all u ∈ H2(M)
(3.31)

‖AYu‖L2 ≤ C

α
‖Oph(a)u‖L2 +

C log(1/h)

αh
‖(−h2Δ− I)u‖L2 +O(h1/4−)‖u‖L2

where the constant C does not depend on α, h, u and the constant in O(•) depends
on α but not on h, u.
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Proof. The set Y can naturally be split as follows:

Y =
6Λ+1⊔
�=1

Y�, Y� := {w(1) . . .w(6Λ+1) | w(�) ∈ Z, w(�+1), . . . ,w(6Λ+1) ∈ Z�}.

Accordingly, we may write (using (3.20))

AY =
6Λ+1∑
�=1

AY�
, AY�

= AZ�(6ΛN0) · · ·AZ�(�N0)AZ((�− 1)N0)(A1 +A�)
(�−1)N0 .

We have ‖A1+A�‖L2→L2 ≤ 1 by Lemma 3.3 and ‖AZ‖, ‖AZ�‖L2→L2 ≤ C by (3.15).

Moreover, u− (A1 +A�)
(�−1)N0u can be estimated by (3.21). It follows that for all

�

(3.32) ‖AY�
u‖L2 ≤ C‖AZ((�− 1)N0)u‖L2 + C‖(−h2Δ− I)u‖L2 .

We now estimate

(3.33)
‖AZ((�− 1)N0)u‖L2 ≤ ‖AZu‖L2 +

C log(1/h)

h
‖(−h2Δ− I)u‖L2

≤ C

α
‖Oph(a)u‖L2 +

C log(1/h)

αh
‖(−h2Δ− I)u‖L2 +O(h1/4−)‖u‖L2

where the first inequality follows similarly to (3.27) from [DJ18, Lemma 4.2] and
the bound N0 = O(log(1/h)), and the second inequality follows from Lemma 3.4.
Combining (3.32) and (3.33) we get the bound (3.31). �

Remarks.

(1) In passing from ‖AY�
u‖L2 to ‖AYu‖L2 we used the triangle inequality. Con-

sequently the constant C in (3.31) has a factor of 6Λ + 1 = N/N0. Thus it is
important in our argument that the ratio N/N0, where N0 is the time for which
classical/quantum correspondence applies and N is the time for which fractal un-
certainty principle gives decay of ‖Aw‖, is bounded by an h-independent constant.
(2) Following the proofs of Lemma 3.4 and Proposition 3.7 and using the remark
after Lemma 3.6, we see that under the condition supp a1∩S∗M ⊂ {|a| ≥ 1} we may
take the first constant C on the right-hand side of (3.31) to be equal to 4(6Λ+ 1).
Here the extra factor of 2 comes from taking C := 2 in (3.32); in fact, we could
take that factor to be any fixed number larger than 1.

3.3.4. Uncontrolled long words and end of the proof. We can now finish the proof
of Theorem 2. Take arbitrary u ∈ H2(M). We decompose

(3.34) u = (u−AA N
�
u) +AYu+AXu

where AX , AY are defined using the notation (3.9) and the decomposition (3.30).
The first term can be estimated by (3.21) and the second term can be estimated

by Proposition 3.7, giving

(3.35)
‖u‖L2 ≤ C

α
‖Oph(a)u‖L2 +

C log(1/h)

αh
‖(−h2Δ− I)u‖L2

+ ‖AXu‖L2 +O(h1/4−)‖u‖L2 .

To deal with the term AXu we apply the key estimate, Proposition 3.2, to each
individual Aw with w ∈ X and use the triangle inequality. For that we need the
following counting lemma on the number of elements in X :



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

402 SEMYON DYATLOV ET AL.

Lemma 3.8. There exists a constant C > 0 depending on α,Λ0,Λ1 but not on h,
such that

(3.36) #(X ) ≤ Ch−(Λ−1
0 +2)α(1−logα).

Proof. By definition, elements of X are concatenations of 6Λ+1 words in Z�; thus
#(X ) = #(Z�)6Λ+1. Since Z� consists of words w ∈ A N0

� such that less than αN0

letters of w are equal to 1, we have

#(Z�) ≤
�αN0�∑
k=0

(
N0

k

)
.

Since α < 1/2, we have for k = 0, 1, . . . , �αN0� − 1(
N0

k

)
=

k + 1

N0 − k

(
N0

k + 1

)
≤ αN0

N0 − αN0

(
N0

k + 1

)
=

α

1− α

(
N0

k + 1

)
and thus (

N0

k

)
≤

(
α

1− α

)�αN0�−k (
N0

�αN0�

)
.

In particular,

#(Z�) ≤ 1− α

1− 2α

(
N0

�αN0�

)
.

Using Stirling’s formula, we have(
N0

�αN0�

)
=

N0!

�αN0�!(N0 − �αN0�)!
≤ C exp(−(α logα+ (1− α) log(1− α))N0).

Using the elementary inequality

−(α logα+ (1− α) log(1− α)) ≤ α(1− logα)

we see that

#(X ) = #(Z�)6Λ+1 ≤ Ch−(Λ−1
0 +2)α(1−logα). �

We are now ready to finish the proof of Theorem 2. Let β > 0 be the constant
from Proposition 3.2. Fix α > 0 small enough so that

(3.37) (Λ−1
0 + 2)α(1− logα) ≤ β

2
.

Combining Proposition 3.2 and Lemma 3.8 we get

‖AX ‖L2→L2 ≤ #(X ) · Chβ ≤ Chβ/2

which (assuming without loss of generality that β < 1
2 ) together with (3.35) implies

for some constant C depending only on a

‖u‖L2 ≤ C‖Oph(a)u‖L2 +
C log(1/h)

h
‖(−h2Δ− I)u‖L2 + Chβ/2‖u‖L2 .

Taking h small enough, we can remove the last term on the right-hand side, giving
Theorem 2.
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Remark. Using the remarks after Propositions 3.2 and 3.7 we obtain the following
statement: if supp a1 ∩S∗M ⊂ {|a| ≥ 1} and the complements S∗M \V1, S∗M \V�
are (L0, L1)-dense in both unstable and stable directions (in the sense of Defini-
tion 2.16) then the first constant on the right-hand side of (1.2) depends only on
(M, g), L0, L1. In fact, we can take this constant to be

(3.38) C :=
4(6Λ + 1)

α

where α satisfies (3.37) and thus depends on the fractal uncertainty exponent β.
(The factors 4 and 6 above can be improved but this does not improve the result
significantly since the known bounds on β are very small.) In particular, as β → 0
the constant C from (3.38) behaves like β−1 log(1/β) times a constant depending
only on the minimal/maximal expansion rates Λ0,Λ1.

This gives Theorem 4 as follows. Take an open set U ⊂ S∗M which is (L0, L1)-
dense in both unstable and stable directions and has diameter smaller than the
constant ε0 from Proposition 3.2. Using Lemma 2.18, fix U � compactly contained
in U which is also (L0, L1)-dense in both unstable and stable directions. Choose

a ∈ C∞
c (T ∗M ; [0, 1]), supp a ∩ S∗M ⊂ U, supp(1− a) ∩ U � = ∅.

We choose the sets V1,V� in the proof of Lemma 3.3 such that

U � ⊂ V1 ∩ S∗M ⊂ {a = 1}, V� ∩ S∗M = S∗M \ U �.

Then supp a1 ∩ S∗M ⊂ {|a| ≥ 1} and the complement S∗M \ V� is (L0, L1)-dense
in both unstable and stable directions. Next, S∗M \ V1 contains the complement
of a set in S∗M diameter ε0, and thus is (1, 1

2 )-dense in both unstable and stable
directions for small enough ε0. Now if ujk is a sequence of Laplacian eigenfunctions
converging to a measure μ in the sense of (1.4) then by (1.2) we have the estimate

1 = ‖ujk‖L2 ≤ C‖Ophjk
(a)ujk‖L2

k→∞−−−−→ C

∫
S∗M

|a|2 dμ ≤ Cμ(U)

where C is the constant from (3.38), which depends only on (M, g), L0, L1.

3.4. Proof of Theorem 6. We finally give the proof of Theorem 6, following the
strategy of [Ji20] and using some parts of the proof of Theorem 2.

3.4.1. Reduction to decay for a microlocal damped propagator. We first reduce The-
orem 6 to a decay statement for a damped propagator following [Ji20, §4]. Let
b ∈ C∞(M) be the damping function, with b ≥ 0 and b �≡ 0. We replace h∂t by
−iz in the semiclassically rescaled damped wave operator h2(∂2

t −Δ+2b(x)∂t), to
obtain the following differential operator on M :

(3.39) P(z) := −h2Δ− 2izhb(x)− z2, z ∈ C.

By a standard argument (see [Sc10, §3] or [Zw12, Theorem 5.10]) Theorem 6 follows
from the following high energy spectral gap:

Proposition 3.9. There exist C0 > 0, γ0 > 0, and h0 > 0 such that
(3.40)

‖P(z)−1‖L2→L2 ≤ Ch−1+C0 min(0,Im z/h) log(1/h), 0 < h ≤ h0, |z − 1| ≤ γ0h.

Recall the operator P = ψP (−h2Δ) defined in (2.34). Fix a cutoff function

ψ1 ∈ C∞
c ((0,∞); [0, 1]), suppψ1 ⊂ {ψP �= 0}, ψ1 = 1 on [

1

16
, 16].
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Then

P(z) = P 2 − 2izhb(x)ψ1(−h2Δ)− z2 +O(h∞) microlocally near S∗M.

We now write

(3.41) P 2 − 2izhb(x)ψ1(−h2Δ) = (P − ihA(z))2 +O(h∞)

where A(z) ∈ Ψ−∞
h (T ∗M) is some family of pseudodifferential operators entirely in

z and satisfying σh(A(z)) = za with

(3.42) a(x, ξ) :=
b(x)ψ1(|ξ|2g)

p(x, ξ)
.

See [Ji20, §4.1] for the construction of A(z) (denoted by Q(z) there).
Define the microlocal damped propagator

(3.43) Ũ(t) = Ũ(t; z) := exp
(
− it(P − ihA(z))

h

)
, t ≥ 0.

We also take the following frequency cutoff operator:

Π := χ(−h2Δ) where χ ∈ C∞
c (R; [0, 1]), suppχ ⊂ [

1

4
, 4], 1 /∈ supp(1− χ).

Following [Ji20, §4.2] we see that Proposition 3.9 (and thus Theorem 6) follows

from a decay statement on the propagator Ũ(t):

Proposition 3.10. There exists β1 > 0 depending only on M and b such that for
all h ∈ (0, 1], z ∈ C such that |z − 1| ≤ h, and N defined in (3.11) we have

(3.44) ‖Ũ(N ; z)Π‖L2(M)→L2(M) ≤ Chβ1 .

In the rest of §3.4 we prove Proposition 3.10.

3.4.2. Damped partition of unity. Let A0 be given by (3.17) and a1, a�, A1, A� be
constructed in Lemma 3.3, with the function a given by (3.42) and ε0 > 0 taken
small enough so that Proposition 3.2 applies. Define the damped operators

(3.45) Ãw := U(−1)Ũ(1)Aw, w ∈ {1, �}.

Here U(t) = exp(−itP/h) is the unitary propagator defined in (2.34) and Ũ(t) is

the damped propagator defined in (3.43). By [Ji20, (2.24)] we have Ãw ∈ Ψ−∞
h (M),

WFh(Ãw) ⊂WFh(Aw), and

(3.46) σh(Ãw) = ãw := aw exp

(
−

∫ 1

0

a ◦ ϕs ds

)
, w ∈ {1, �}.

Lemma 3.11. The operators Ã1, Ã� and the symbols ã1, ã� satisfy conditions (1)–
(5) in §3.1. Moreover, there exists a constant η > 0 such that

(3.47) 0 ≤ ã1 ≤ e−ηa1, 0 ≤ ã� ≤ a�.

Proof. Since a ≥ 0, we have 0 ≤ ãw ≤ aw, and conditions (1)–(5) in §3.1 follow
immediately. It remains to show that ã1 ≤ e−ηa1. As a consequence of the ho-
mogeneity of a in { 14 ≤ |ξ|g ≤ 4}, we see that condition (7) in Lemma 3.3 implies
that

V1 ∩ {
1

4
≤ |ξ|g ≤ 4} ⊂ {a > 0}.
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Since supp a1 ⊂ V1 ∩ { 14 < |ξ|g < 4}, there exists η > 0 such that∫ 1

0

a ◦ ϕs(x, ξ) ds ≥ η for all (x, ξ) ∈ supp a1.

This immediately implies that ã1 ≤ e−ηa1. �

Using Ã1, Ã�, a1, a�, we define Ãw, ÃE , ÃF , ãw, ãE , ãF by (3.3), (3.9), (3.10). (As

before, we use the notation Ãw := Ã−
w etc.) We also consider the cutoff damped

propagators

(3.48) Ũw := U(n)Ãw = Ũ(1)Awn−1
Ũ(1)Awn−2

· · · Ũ(1)Aw0
, w = w0 . . . wn−1.

We define the operators ŨE , ŨF using Ũw similarly to (3.9), (3.10).
Let the partition X �Y ⊂ A N

� be defined in (3.30), where we fix α > 0 in §3.4.4.
We prove Proposition 3.10 by establishing decay of ŨX and ŨY .

3.4.3. Controlled words. To bound the norm of ŨY , we first use the inequali-

ties (3.47) to estimate ŨZ , where Z ⊂ A N0
� is defined in (3.24):

Lemma 3.12. We have

(3.49) ‖ŨZ‖L2→L2 ≤ hα1 +O(h1/3−) where α1 :=
αη

6Λ1
> 0.

Proof. Since U(N0) is unitary, we have ‖ŨZ‖L2→L2 = ‖ÃZ‖L2→L2 . The symbol ãZ
is given by

ãZ =
∑
w∈Z

ãw =
∑
w∈Z

N0−1∏
j=0

(ãwj
◦ ϕj).

By the definition (3.24), each w ∈ Z has at least αN0 letters equal to 1. Therefore
by (3.47), recalling the definition (3.11) of N0,

|ãZ | ≤ e−ηαN0

∑
w∈Z

N0−1∏
j=0

(awj
◦ ϕj) ≤ e−ηαN0

∑
w∈A

N0
�

N0−1∏
j=0

(awj
◦ ϕj)

= e−ηαN0

N0−1∏
j=0

(a1 + a�) ◦ ϕj ≤ hα1 .

By Lemma 3.1 (which still applies by Lemma 3.11) we have ãZ ∈ Scomp
1/6+ (T ∗M) and

ÃZ = Oph(ãZ)+O(h1/2−)L2→L2 . Then by (2.32) we have ‖ÃZ‖ ≤ hα1 +O(h1/3−),
finishing the proof. �

Armed with Lemma 3.12 we now estimate the norm of ŨY :

Proposition 3.13. With α1 > 0 defined in (3.49), we have

(3.50) ‖ŨY‖L2→L2 ≤ O(hα1) +O(h1/3−).

Proof. From the definition (3.30) of Y we have

ŨY =
6Λ+1∑
�=1

Ũ6Λ+1−�
Z� ŨZ Ũ

�−1

A
N0
�

.

By (3.15) we have

‖ŨZ�‖L2→L2 = ‖ÃZ�‖ ≤ 1 +O(h1/3−)
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and same is true for Ũ
A

N0
�

. Using Lemma 3.12 and the triangle inequality we then

have
‖ŨY‖L2→L2 ≤ (6Λ + 1)hα1 +O(h1/3−),

finishing the proof. �

3.4.4. Uncontrolled words and end of the proof. We now finish the proof of Propo-
sition 3.10 and thus of Theorem 6. Similarly to [Ji20, §3.5], using the identities

ŨA N
�

= (Ũ(1)(I −A0))
N and A0Π = 0 we have

(3.51) Ũ(N)Π = ŨA N
�
Π+O(h1−)L2→L2 , ŨA N

�
= ŨX + ŨY .

Let β > 0 be the constant in Proposition 3.2 for the operators Ãw, w ∈ A N
� .

Choose α > 0 satisfying (3.37). Using the triangle inequality, Proposition 3.2, and
Lemma 3.8, we have

(3.52) ‖ŨX ‖L2→L2 = ‖ÃX ‖L2→L2 = O(hβ/2).

Combining (3.51), (3.52), and Proposition 3.13, we get Proposition 3.10 with

β1 := min(
β

2
, α1,

1

4
) > 0.

4. Decay for long words

In this section we prove Proposition 3.2, relying on propagation results up to
the local Ehrenfest time (Propositions 4.2, 4.4) established in §5 and on the fractal
uncertainty principle (Proposition 2.10).

Recall from (3.11) the short and long logarithmic propagation times N0 and N .
Put

(4.1) N1 := N −N0 = 6ΛN0 ≥
log(1/h)

Λ0
.

We will prove the following equivalent version of Proposition 3.2 in terms of prod-
ucts of two operators corresponding to propagation forward and backwards in time
(see (3.3) for the definitions of A−

v , A
+
w):

Proposition 4.1. Let the assumptions (1)–(5) of §3.1 hold and ε0 > 0 be small
enough depending only on (M, g). Then there exists β > 0 depending only on
V1,V� and there exists C > 0 depending only on A1, A� such that for all v ∈ A N0

� ,
w ∈ A N1

�

(4.2) ‖A−
vA

+
w‖L2(M)→L2(M) ≤ Chβ.

Remark. The smallness of ε0 is used in several places in the proof, in particular at
the beginning of §4.2, in §4.3.3, in Lemma 4.13, in the beginning of §4.6.1, and in
Lemma 4.25. Roughly speaking, we need ε0 to be much smaller than the sizes of
local stable/unstable leaves from §2.1.1 and the domains of the local coordinates
constructed in Lemma 2.3.

To show that Proposition 4.1 implies Proposition 3.2 we note that each word
in A N

� can be written as a concatenation wv where v ∈ A N0
� , w ∈ A N1

� and
w = wN1

. . . w2w1 is the reverse of w = w1w2 . . . wN1
. We have by (3.5)

Awv = A−
wv = U(−N1)A

−
vA

+
wU(N1).

Since U(N1) is unitary, the bound (4.2) implies that ‖Awv‖L2(M)→L2(M) ≤ Chβ

which gives Proposition 3.2.
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Figure 6. The sets
⋂n

j=1 ϕj(V�) for n = 1, 2, 3, 4, pictured with

the flow direction removed. See also Figures 4 (page 390) and 8
(page 422).

4.1. Outline of the proof. We provide here an informal explanation of the proof
of Proposition 4.1. For this we use a naive version of the classical/quantum cor-
respondence, thinking of A−

v , A
+
w as quantizations of the symbols a−v , a

+
w defined

in (3.1) and restricting the analysis to the cosphere bundle S∗M . We also make
the simplifying assumption

(4.3) v = � . . . �︸ ︷︷ ︸
N0 times

, w = � . . . �︸ ︷︷ ︸
N1 times

.

Recall from (3.2) that a−v , a
+
w are supported in the sets V−

v ,V+
w which under the

assumption (4.3) have the form

V−
v =

N0−1⋂
j=0

ϕ−j(V�), V+
w =

N1⋂
j=1

ϕj(V�).

We call the complement of V� (which has nonempty interior by assumption (3)
in §3.1) the hole. Then ρ ∈ V−

v if the geodesic starting at ρ does not enter the hole
at least until the time N0 in the future, more precisely ϕj(ρ) ∈ V� for all integer
j ∈ [0, N0 − 1]. Similarly ρ ∈ V+

w if that geodesic does not enter the hole up to the
time N1 in the past, more precisely ϕj(ρ) ∈ V� for all integer j ∈ [−N1,−1]. See
Figure 6. Viewing A−

v , A
+
w as operators which microlocalize to V−

v ,V+
w , our goal is

to use the fractal uncertainty principle to show that microlocalizations to these two
sets are incompatible with each other, this incompatibility taking the form of the
norm bound (4.2).

Recall from §2.1.1 that S∗M is foliated by (local) weak unstable leaves. We use
this foliation to partition V+

w into clusters

V+
w =

⊔
r

V+
w,r

where each V+
w,r lies O(h2/3) close to a certain local weak unstable leaf (the con-

struction of the partition uses the Lipschitz regularity of the unstable foliation).
On the operator side this gives the decomposition (see Lemma 4.13 and (4.75))

(4.4) A−
vA

+
w =

∑
r

A−
vA

+
w,r.

If two clusters V+
w,r,V+

w,r′ are “sufficiently disjoint”, then the corresponding opera-

tors in (4.4) satisfy the almost orthogonality bounds

(4.5) (A−
vA

+
w,r)

∗A−
vA

+
w,r′ , A−

vA
+
w,r′(A

−
vA

+
w,r)

∗ = O(h∞)L2→L2 .
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This follows from the classical/quantum correspondence and the fact that

(4.6) h2/3 · h1/6  h

where h2/3 is the minimal distance between disjoint clusters (in the stable direc-
tion), while h1/6 is the minimal scale of oscillation of the symbol a+v , along the
unstable direction. The almost orthogonality bounds are proved in Lemma 4.12,
and the inequality (4.6) appears in (4.72) in the proof. The remark following that
Lemma gives an informal argument on how the inequality (4.6) leads to almost
orthogonality. (Note that in §4.6 the “cluster objects” V+

w,r, A
+
w,r are replaced by

the more flexible objects V+
Q , A+

Q.)
Using (4.4), the Cotlar–Stein Theorem, and the fact that each cluster is disjoint

from all but boundedly many other clusters, we reduce the estimate (4.2) to a
bound for every single cluster (see Proposition 4.14)

(4.7) ‖A−
vA

+
w,r‖L2(M)→L2(M) ≤ Chβ.

We henceforth fix some cluster V+
w,r, contained in an O(h2/3) sized neighbor-

hood of the weak unstable leaf W0u(ρ0) for some ρ0 ∈ S∗M . We use the sym-
plectic coordinates κ : (x, ξ) �→ (y, η) centered at ρ0 which were constructed
in Lemma 2.3; see (4.80). We conjugate A−

v , A
+
w,r by Fourier integral operators

quantizing κ (see §4.6.4). This produces (still under our naive view of the classi-
cal/quantum correspondence) pseudodifferential operators which microlocalize to
the sets κ(V−

v ),κ(V+
w,r). The latter are subsets of T ∗R2 but we reduce them to

subsets of T ∗R by restricting to κ(S∗M) = {η2 = 1} and projecting along the flow
direction ∂y2

. Denote the resulting sets by Θ−,Θ+ ⊂ T ∗R. The informal argument
above (see Lemma 4.24 for more details on reducing from T ∗R2 to T ∗R and Lem-
mas 4.25–4.26 for microlocalization of the conjugated operators) reduces (4.7) to
the estimate

(4.8) ‖A−A+‖L2(R)→L2(R) ≤ Chβ

where A± are operators on L2(R) which microlocalize to the sets Θ± described
above.

We next understand the structure of the sets Θ±. The set V+
w,r is ‘smooth’ along

the flow and unstable directions: if ρ, ρ′ lie on the same local weak unstable leaf
then the trajectories ϕj(ρ), ϕj(ρ

′), j ≤ 0, stay close to each other; thus ρ ∈ V+
w,r

if and only if ρ′ ∈ V+
w,r unless the boundary of the hole was involved. This is easy

to see in Figure 6 with the ‘strokes’ along the unstable direction (corresponding to
unstable rectangles introduced below); see Lemma 4.19 for a rigorous statement.
We then embed V+

w,r into a union of many ‘unstable rectangles’, each of which is
the hτ -neighborhood of a local weak unstable leaf, with τ < 1, defined in (4.61)
below, chosen very close to 1. This uses the inequality (4.1) which ensures that the
thickness of each ‘stroke’ is smaller than h. On the operator side unstable rectangles
correspond to individual summands A+

q in the operator A+
Q′

n(w,e) introduced in §4.4.
See also Figure 8 (page 422).

The specific unstable rectangles which are part of V+
w,r are distributed in a porous

way, which is where we use that the hole has nonempty interior (see Lemma 4.18
which is an application of Lemma 2.15). The set Θ+ is a union of components arising
from the images of these rectangles under κ. Using the fact that V+

w,r is within

O(h2/3) of the leaf W0u(ρ0) and the properties of κ in Lemma 2.3 (whose proof
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used the C3/2 regularity of the unstable foliation), we show that each component
of Θ+ is contained in a ‘horizontal rectangle’ of dimensions 1× hτ , stretched along
the y1 direction—see Lemma 4.15 and Figure 9. This gives

(4.9) Θ+ ⊂ {(y1, η1) | η1 ∈ Ω+}

where Ω+ ⊂ R is porous on scales hτ to 1—see Lemma 4.16.
As for the set V−

v , it can be embedded into a union of stable rectangles of thick-
ness h1/(6Λ) each (here we use the definition of N0). The corresponding components
of Θ− look like rectangles of thickness h1/(6Λ) with the long axis aligned along the
stable direction, thus transverse to the ∂y1

direction. Because the stable direction
is usually not vertical, the projection of each of these rectangles onto the y1 axis
might be large (e.g. it could be an interval of a size 1). However, we only need
to understand the intersection of Θ− with a neighborhood of Θ+. Since V+

w,r lies

O(h2/3) close to the leaf W0u(ρ0), Θ
+ lies O(h2/3) close to {η1 = 0}, in particular

Θ+ ⊂ {|η1| ≤ h1/6}. The intersection of each component of Θ− with {|η1| ≤ h1/6}
is a rectangle of thickness h1/(6Λ) and height h1/6 
 h1/(6Λ); thus its projection
onto the y1 variable is now contained in an h1/(6Λ) sized interval; see Figure 9. This
implies that

(4.10) Θ− ⊂ {(y1, η1) | y1 ∈ Ω−}

where Ω− ⊂ R is porous on scales h1/(6Λ) to 1 – see Lemma 4.17.
Together (4.9) and (4.10) show that in (4.8), we may replace A+ by the Fourier

multiplier �Ω+(hDy1
) and A− by the multiplication operator �Ω−(y1). The re-

sulting estimate follows by the fractal uncertainty principle, in the version given
by Proposition 2.10; see also Lemma 4.24. Here we use that there is a nontrivial
overlap in the porosity scales of Ω+ and Ω−, namely

(4.11) hτ · h1/(6Λ) 
 h,

see (4.115). This is where we use that τ is chosen very close to 1.
To make the above explanations into a rigorous proof, we in particular need

to make precise the classical/quantum correspondence naively used above. This is
complicated since to study A+

w we need to go beyond the Ehrenfest time, that is the
expansion rate of the geodesic flow for time N1 is much larger than h−1/2; therefore
A+

w will not lie in the mildly exotic pseudodifferential calculus Ψcomp
δ of §2.2.1. To

overcome this problem we use several ideas:

• We write a� = a2+ · · ·+aQ, A� = A2+ · · ·+AQ where the supports of the
symbols a2, . . . , aQ are small enough to form a dynamically fine partition
(§4.2). We next write A+

w as the sum of polynomially many in h terms of
the form A+

q where q are words in the alphabet {2, . . . , Q}. One advantage
of this splitting is that each q has a well-defined local expansion rate of the
flow; see (4.19).
• If q has expansion rate no more than h−2τ (i.e. the length of q is below
the local double Ehrenfest time) then we can conjugate A+

q by U(t) for an
appropriate choice of t to get a pseudodifferential operator in the mildly
exotic calculus Ψcomp

δ+ , δ := τ/2. Here we use Egorov’s theorem up to local
Ehrenfest time and the fact that τ < 1; see §4.3.2. This technique is used
in the proof of the almost orthogonality statements (4.5) and also to show
that the operators A+

w,r corresponding to individual clusters are bounded
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on L2 almost uniformly in h (see (4.122)). We also use mildly exotic symbol
calculus to show microlocalization of A−

v in Lemma 4.26.
• For microlocalization of A+

w,r (Lemma 4.25) we again write it as the sum of

individual termsA+
q . We then study each of these using the long logarithmic

time hyperbolic parametrix of [An08,AN07a,NZ09] – see §4.3.3.

4.2. A refined partition. For each w ∈ A •
� the supports of a±w can be rather

large, including many trajectories of the flow; this is due to the fact that supp a�
typically contains the entire S∗M minus a fixed small set. It will be convenient to
break the symbols a±w and the operators A±

w into smaller pieces, each of which is
‘dynamically simple’. To do this, we let ε0 > 0 be small enough so that Lemma 2.1
holds and write

(4.12) a� = a2 + · · ·+ aQ, A� = A2 + · · ·+AQ

where Q is some h-independent number and:

(1) a2, . . . , aQ ∈ C∞
c (T ∗M \ 0; [0, 1]) are h-independent;

(2) supp aq ⊂ Vq ∩ { 14 < |ξ|g < 4} for all q = 2, . . . , Q where Vq ⊂ V� are some
conic open sets;

(3) the diameter of each Vq ∩ S∗M with respect to d(•, •) is smaller than ε0;
(4) A2, . . . , AQ ∈ Ψ−∞

h (M) satisfy for q = 2, . . . , Q

(4.13) σh(Aq) = aq, WFh(Aq) ⊂ Vq ∩ {
1

4
< |ξ|g < 4}.

Following the proof of Lemma 3.3 it is straightforward to see how to construct
decompositions (4.12) with the above properties, given a�, A�, ε0.

Denote

A := {1, . . . , Q},
then the properties (1)–(4) above hold for all q ∈ A (indeed, for q = 1 they follow
from the assumptions of §3.1), except we do not have V1 ⊂ V�. We also note that

a1 + a2 + · · ·+ aQ = a1 + a� ≤ 1.

Similarly to §3.1 we define the set of words A • over the alphabet A . For q ∈ A •

we define the symbols a±q , the conic sets V±
q , and the operators A±

q following (3.1),

(3.2), and (3.3). We will also use the notation A±
E , A

±
F from (3.9), (3.10), this time

for E which is a subset of A • (resp. F which is a function on A •).
Since sup |aq| ≤ 1, we see from (2.32) (with δ = 0) that ‖Aq‖L2→L2 ≤ 1+Ch1/2.

Therefore we have for any fixed constant C0 and small enough h depending on C0

(4.14) ‖A±
q ‖L2→L2 ≤ 2 for all q ∈ A n, n ≤ C0 log(1/h).

4.2.1. Jacobians for the refined partition. To each refined word q ∈ A n we associate
the minimal Jacobians

(4.15) J−
q := inf

ρ∈V−
q

Ju
n (ρ), J+

q := inf
ρ∈V+

q

Js
−n(ρ)

where Ju
n (ρ), J

s
−n(ρ) are defined in (2.6). Since the Jacobians Ju, Js are homoge-

neous of degree 0 on T ∗M \ 0, one can replace V±
q by V±

q ∩ S∗M in (4.15). Note

that the sets V±
q might be empty in which case we have J±

q =∞.
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It follows from (2.10) that the Jacobians J±
q , q ∈ A n, grow exponentially in n:

(4.16)
V−
q �= ∅ =⇒ eΛ0n ≤ J−

q ≤ eΛ1n,

V+
q �= ∅ =⇒ eΛ0n ≤ J +

q ≤ eΛ1n.

Denote

(4.17) q′ := q1 . . . qn−1 where q = q1 . . . qn ∈ A n, n > 0.

Then we have for each q ∈ A n, n > 0

(4.18) J±
q ≥ eΛ0J±

q′ .

Indeed, for each ρ ∈ V−
q we have ρ ∈ V−

q′ and thus

Ju
n (ρ) = Ju

1 (ϕn−1(ρ))J
u
n−1(ρ) ≥ eΛ0J −

q′

where the last inequality used (2.10). This proves (4.18) for J −, with the case of
J+ handled similarly.

Next, parts (5)–(6) of Lemma 2.1 imply that the quantities J±
q give the order

of the expansion rate of the flow ϕ∓n at every point in V±
q :

(4.19)
Ju
n (ρ) ∼ J−

q for all ρ ∈ V−
q ,

Js
−n(ρ) ∼ J +

q for all ρ ∈ V+
q

where A ∼ B means that C−1A ≤ B ≤ CA for some constant C depending only
on (M, g) (in particular, independent of n and q). More precisely, Lemma 2.1 shows
that Ju

n−1(ρ) ∼ Ju
n−1(ρ̃) for all ρ, ρ̃ ∈ V−

q ; using that Ju
n (ρ) ∼ Ju

n−1(ρ) we obtain
the first statement in (4.19). The second statement is obtained similarly using that
Js
−n(ρ) ∼ Js

1−n(ϕ−1(ρ)). Note that (4.19) uses that the diameter of each Vq ∩S∗M
is smaller than ε0; in particular it is typically false for the sets V±

v corresponding
to the unrefined partition defined in (3.2).

From (4.19) and (2.7) we derive the following bounds:

sup
ρ∈V−

q ∩{ 1
4≤|ξ|g≤4}

‖dϕn(ρ)‖ ≤ CJ−
q ,(4.20)

sup
ρ∈V+

q ∩{ 1
4≤|ξ|g≤4}

‖dϕ−n(ρ)‖ ≤ CJ+
q .(4.21)

It also follows from parts (5) and (6) of Lemma 2.1 that there exists C depending
only on (M, g) such that

d(ρ̃,W0s(ρ)) ≤
C

J−
q

for all ρ, ρ̃ ∈ V−
q ∩ S∗M,(4.22)

d(ρ̃,W0u(ρ)) ≤
C

J +
q

for all ρ, ρ̃ ∈ V+
q ∩ S∗M.(4.23)

(Strictly speaking, for the proof of (4.23) we should strengthen the assumption on
the sets V1, . . . ,VQ, requiring additionally that the diameter of each ϕ1(Vq)∩S∗M
is smaller than ε0.) In other words, V−

q lies in a small neighborhood of a weak stable

leaf and V+
q lies in a small neighborhood of a weak unstable leaf, with the sizes of

the neighborhoods given by the reciprocals of J−
q , J +

q . See also Corollary 2.2 and
Figure 2.
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From (4.19) we immediately derive the following statement for every pair of
words q, q̃ of the same length:

(4.24)
V+
q ∩ V+

q̃ �= ∅ =⇒ J +
q ∼ J +

q̃ ,

V−
q ∩ V−

q̃ �= ∅ =⇒ J−
q ∼ J−

q̃ .

If we write a word q ∈ A n as a concatenation q = q1q2 where qj ∈ A nj ,
n1 + n2 = n, then

(4.25)
V−
q �= ∅ =⇒ J−

q ∼ J−
q1 J −

q2 ,

V+
q �= ∅ =⇒ J +

q ∼ J +
q1 J +

q2 .

Indeed, for each ρ ∈ V−
q we have ρ ∈ V−

q1 , ϕn1
(ρ) ∈ V−

q2 , and Ju
n (ρ) =

Ju
n1
(ρ)Ju

n2
(ϕn1

(ρ)); using (4.19) this gives the first statement in (4.25). The second
statement is proved similarly.

Finally, if q = q1 . . . qn and q = qn . . . q1 is the reverse word, then

(4.26) J−
q ∼ J +

q .

Indeed, V+
q = ϕn(V−

q ) by (3.8). It now suffices to use that for each ρ ∈ T ∗M we

have Ju
n (ρ) = Ju

−n(ϕn(ρ))
−1 ∼ Js

−n(ϕn(ρ)) by (2.8).

4.3. Propagation results for refined words. In this section we state several
propagation results concerning the operators A±

q , which will be used in the proof of

Proposition 4.1. Some of these results will use the Jacobians J±
q defined in (4.15).

We recall that a±q ,V±
q , A±

q are defined using (3.1), (3.2), (3.3).

4.3.1. Local Ehrenfest times. We have already encountered two global Ehrenfest

times, a minimal one Tmin =
⌊ log(1/h)

2Λ1

⌋
, usually called the Ehrenfest time, and a

maximal one Tmax =
⌈ log(1/h)

2Λ0

⌉
. We will now attach (future or past) local Ehrenfest

times to each word q ∈ A •, describing the time it takes for the (future, resp. past)
flow to expand by a factor h−1/2, starting from points ρ ∈ V∓

q . We will not use
these directly, but discuss them briefly here to motivate the constructions below.

Let us first define the future local Ehrenfest time T−
q , related to the values of

J−
q . If V−

q = ∅, we set T−
q = ∞. Otherwise, let us assume that h−1/2 ≤ J −

q < ∞
(this is for instance the case if V−

q �= ∅ and |q| ≥ Tmax). Then there exists a unique

integer m ≤ |q| such that, splitting q into q = q1qmq2, where q1 = q1 . . . qm−1, we
have

(4.27) J−
q1 < h−1/2 ≤ J−

q1qm
.

We then call

T−
q := m the local future Ehrenfest time of the word q.

In the case J −
q < h−1/2, we consider the extensions qp of q with all possible words

p of length Tmax. For any such extension J−
qp ≥ h−1/2, so the corresponding times

T−
qp can be defined as above. We then take

T−
q := min

|p|=Tmax

T−
qp, a value which is necessarily finite.

For all q such that V−
q �= ∅, the local Ehrenfest time satisfies Tmin ≤ T−

q ≤ Tmax.

We similarly define the local past Ehrenfest time T+
q associated to the words q

such that V+
q �= ∅, depending on the values of the Jacobians J+

q .
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We also define, similarly to the above, a local double Ehrenfest time T̃±
q , by

replacing h−1/2 by h−1 in the threshold property (4.27). Notice that if V±
q �= ∅, the

double Ehrenfest times satisfy 2Tmin ≤ T̃±
q ≤ 2Tmax, but in general T̃±

q �= 2T±
q .

In the proofs below the thresholds h−1/2 and h−1 will be reduced to h−δ and h−2δ

for some fixed δ ∈ (0, 12 ).

4.3.2. Propagation up to local Ehrenfest time. We first consider words q which are
shorter than their local Ehfenfest times T±(q). For these words the operators A±

q

lie in the mildly exotic calculus introduced in §2.2.1:

Proposition 4.2. Fix δ ∈ [0, 1
2 ), C0 > 0, and let q ∈ A •.

(1) Assume that J−
q ≤ C0h

−δ. Then we have

(4.28) A−
q = Oph(a

�−
q ) +O(h∞)L2→L2

for some symbol a�−q ∈ Scomp
δ+ (T ∗M) such that

(4.29) a�−q = a−q +O(h1−2δ−)Scomp
δ

, supp a�−q ⊂ V−
q ∩ {

1

4
≤ |ξ|g ≤ 4}.

The constants in O(•) are independent of h and q.
(2) The same is true for the operator A+

q and some symbol a�+q =

a+q + O(h1−2δ−)Scomp
δ

, supp a�+q ⊂ V+
q ∩ { 14 ≤ |ξ|g ≤ 4}, under the assumption

J+
q ≤ C0h

−δ.

Remarks.

(1) The assumption of part (1) of Proposition 4.2 does not hold when V−
q = ∅,

as in that case J−
q = ∞. Yet, the statement (4.28), which in this case is A−

q =
O(h∞)L2→L2 , still holds (at least when |q| = O(log(1/h))) but to prove it in the
case of long logarithmic words q one would need to employ the techniques of §4.3.3.
In the present section we will only use a special case of this rapid decay statement;
see Lemma 4.3. The same remark applies to part (2).
(2) In the special case q ∈ A N0 the assumptions of Proposition 4.2 are satisfied
for δ = 1

6 (assuming V±
q �= ∅) as follows from (4.16) and the definition (3.11) of N0.

In this case a weaker version of (4.28) (with O(h1−2δ−)L2→L2 remainder) follows
from Lemma 3.1 (more precisely, its version for the refined partition of §4.2). The
latter relies on Egorov’s theorem up to the (minimal) Ehrenfest time, Lemma 2.5.

Proposition 4.2 is proved in §5.1. The argument is morally similar to the proof
of the first part of Lemma 3.1, but much more complicated because of two reasons:

• We establish the classical/quantum correspondence up to the local Ehrenfest
times associated with the particular words. While the global expansion
rates of ϕ±n, where n is the length of q, might be very large, the expansion
rates of ϕ±n restricted to supp a±q are still smaller than h−δ 
 h−1/2.

• We obtain asymptotic expansions of the full symbols of A±
q , which give the

O(h∞) remainder in (4.28), similarly to (2.37).

As a corollary of Proposition 4.2 we obtain the following rapid decay results for
operators A±

q and their products under assumptions of empty or nonintersecting
supports:
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Lemma 4.3. Fix δ ∈ [0, 1
2 ) and C0 > 0.

(1) Assume that p,q ∈ A •. Then

(4.30) max(J−
p ,J +

q ) ≤ C0h
−δ, V−

p ∩V+
q = ∅ =⇒ ‖A−

pA
+
q ‖L2→L2 = O(h∞).

(2) Assume that q = q1 . . . qn ∈ A •, n ≤ C0 log(1/h), satisfies V+
q = ∅. Take

the largest m such that V+
q1...qm �= ∅ and assume that J +

q1...qm ≤ C0h
−2δ. Then

‖A+
q ‖L2→L2 = O(h∞).

The same holds for A−
q (under an assumption on J−

q1...qm), and also if we consider
subwords of the form qn−m+1 . . . qn instead.

(3) Assume that q, q̃ ∈ A • have the same length and max(J +
q ,J +

q̃ ) ≤ C0h
−2δ,

V+
q ∩ V+

q̃ = ∅. Then

‖(A+
q )

∗A+
q̃ ‖L2→L2 = O(h∞), ‖A+

q̃ (A
+
q )

∗‖L2→L2 = O(h∞).

The same is true for the operators A− if we make assumptions on J−,V− instead.
In all these statements the constants in O(•) do not depend on h and on the

choice of the words.

Remark. Note that the Jacobians in parts (2) and (3) above are required to be
bounded by C0h

−2δ – that is Lemma 4.3 essentially applies up to the local double
Ehrenfest time. We are able to do this by writing a word with Jacobian O(h−2δ)
as a concatenation of two words with Jacobians O(h−δ) and using (3.5). If M had
constant curvature, we could instead use pseudodifferential calculi adapted to the
stable/unstable foliations as in [DJ18].

Proof. (1) Using Proposition 4.2 we write

A−
p = Oph(a

�−
p ) +O(h∞)L2→L2 , A+

q = Oph(a
�+
q ) +O(h∞)L2→L2 .

Here supp a�−p ⊂ V−
p and supp a�+q ⊂ V+

q ; therefore supp a�−p ∩supp a�+q = ∅. It then
follows from the product formula in the Scomp

δ+ calculus (see for instance [Zw12,

Theorem 4.18]) that Oph(a
�−
p )Oph(a

�+
q ) = O(h∞)L2→L2 .

(2) We assume that V+
q = ∅, with the case of V−

q , A−
q following from here us-

ing (3.8) and (4.26). We also assume that there exists m < n such that V+
q1...qm+1

=

∅ and J+
q1...qm ≤ C0h

−2δ; the other case (when there exists m < n such that

V+
qn−m...qn = ∅ and J +

qn−m+1...qn ≤ C0h
−2δ) is handled similarly.

We first show that q can be written as a concatenation (where C1 denotes a
constant depending on C0 whose exact value might differ from place to place)

(4.31) q = q1prq2 where max(J+
p ,J +

r ) ≤ C1h
−δ, V+

pr = ∅.
To do this we first put q2 := qm+2 . . . qn. Next, choose maximal � ≤ m such that
J+
q1...q�

≤ h−δ. We claim that

(4.32) J +
q�+1...qm

≤ C1h
−δ.

Indeed, we may assume that � < m since otherwise (4.32) holds automatically.
Since � was chosen maximal, we have J+

q1...q�+1
> h−δ, which by (4.25) implies

that J +
q1...q�

≥ C−1
1 h−δ. Now (4.32) follows from (4.25) and the bound J +

q1...qm ≤
C0h

−2δ.
Now the decomposition (4.31) is obtained by considering two cases:

(1) V+
q�+1...qm+1

= ∅: put q1 := q1 . . . q�, p := q�+1 . . . qm, r := qm+1.
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(2) V+
q�+1...qm+1

�= ∅: put q1 := ∅, p := q1 . . . q�, r := q�+1 . . . qm+1. We have

J+
r ≤ C1h

−δ by (4.25) and (4.32).

Having established (4.31) we write by (3.5) and (3.8) (where p is the reverse of p)

(4.33)
A+

q = U(|q1p|)A−
pq1A

+
rq2

U(−|q1p|)
= U(|q1|)A−

q1U(|p|)A−
pA

+
r U(|r|)A+

q2U(−|q1pr|).

Recall that J+
r ≤ C1h

−δ. We moreover have J−
p ∼ J +

p ≤ C1h
−δ by (4.26). Also

V−
p ∩ V+

r = ∅ by (3.6) since V+
pr = ∅. Finally ‖A−

q1‖L2→L2 and ‖A+
q2‖L2→L2 are

bounded by (4.14). Therefore by (4.30) we have

(4.34) ‖A+
q ‖L2→L2 ≤ C‖A−

pA
+
r ‖L2→L2 = O(h∞).

(3) We consider the operators A+, with the case of A− following from here
using (3.8) and (4.26). We first show that ‖(A+

q )
∗A+

q̃ ‖L2→L2 = O(h∞). We write
q = q1 . . . qn and q̃ = q̃1 . . . q̃n and take maximal � ≤ n such that

(4.35) max(J +
q1...q�

,J +
q̃1...q̃�

) ≤ h−δ.

We have the following two cases:

(1) V+
q1...q�

∩ V+
q̃1...q̃�

= ∅. Arguing similarly to part (1) of this lemma and

using (4.35), we see that

(4.36) ‖(A+
q1...q�

)∗A+
q̃1...q̃�

‖L2→L2 = O(h∞).

By (3.5) and (3.8) we have

(A+
q )

∗A+
q̃ = U(�)(A+

q�+1...qn
)∗U(−�)(A+

q1...q�
)∗A+

q̃1...q̃�
U(�)A+

q̃�+1...q̃n
U(−�).

Using (4.36) and the norm bound (4.14) we get ‖(A+
q )

∗A+
q̃ ‖L2→L2 = O(h∞).

(2) V+
q1...q�

∩ V+
q̃1...q̃�

�= ∅. We claim that

(4.37) max(J +
q�+1...qn

,J +
q̃�+1...q̃n

) ≤ C1h
−δ.

Indeed, we may assume that � < n since otherwise (4.37) is immediate.
Since � was chosen maximal we have

max(J+
q1...q�+1

,J +
q̃1...q̃�+1

) > h−δ.

Without loss of generality we may assume that J+
q1...q�+1

> h−δ. Then

by (4.25) we have J +
q1...q�

≥ C−1
1 h−δ. Since J +

q1...q�
∼ J +

q̃1...q̃�
by (4.24), we

have J +
q̃1...q̃�

≥ C−1
1 h−δ as well. Now (4.37) follows from (4.25) and the

bound max(J+
q ,J +

q̃ ) ≤ C0h
−2δ.

Since V+
q ∩ V+

q̃ = ∅, by (3.6) we have

V−
q�...q1

∩ V+
q�+1...qn

∩ V−
q̃�...q̃1

∩ V+
q̃�+1...q̃n

= ∅.
Arguing similarly to part (1) of this lemma and using (4.35), (4.37), and
(4.26) we get

‖(A−
q�...q1

A+
q�+1...qn

)∗A−
q̃�...q̃1

A+
q̃�+1...q̃n

‖L2→L2 = O(h∞).

Now by (3.5) we have

(4.38) (A+
q )

∗A+
q̃ = U(�)(A−

q�...q1
A+

q�+1...qn
)∗A−

q̃�...q̃1
A+

q̃�+1...q̃n
U(−�)

which gives ‖(A+
q )

∗A+
q̃ ‖L2→L2 = O(h∞).
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To prove that ‖A+
q̃ (A

+
q )

∗‖L2→L2 = O(h∞) we argue similarly. More precisely, take
minimal � ≥ 1 such that

max(J +
q�...qn

,J +
q̃�...q̃n

) ≤ h−δ.

Assume first that V+
q�...qn

∩V+
q̃�...q̃n

= ∅. Arguing similarly to part (1) of this lemma
we get

(4.39) ‖A+
q̃�...q̃n

(A+
q�...qn

)∗‖L2→L2 = O(h∞).

By (3.5) we have

A+
q̃ (A

+
q )

∗ = U(�− 1)A−
q̃�−1...q̃1

A+
q̃�...q̃n

(A+
q�...qn

)∗(A−
q�−1...q1

)∗U(1− �)

and the right-hand side is O(h∞)L2→L2 by (4.39) and (4.14).
Assume now that V+

q�...qn
∩ V+

q̃�...q̃n
�= ∅. Then similarly to (4.37) we get

max(J +
q1...q�−1

,J +
q̃1...q̃�−1

) ≤ C1h
−δ.

The bound ‖A+
q̃ (A

+
q )

∗‖L2→L2 = O(h∞) is now proved similarly to the case (2)

above, with (4.38) replaced by the following corollary of (3.5):

A+
q̃ (A

+
q )

∗ = U(�− 1)A−
q̃�−1...q̃1

A+
q̃�...q̃n

(A−
q�−1...q1

A+
q�...qn

)∗U(1− �).

�

In addition to Proposition 4.2 we will also need the following statement regarding
sums of operators of the form A−

pA
+
r :

Proposition 4.4. Fix δ ∈ [0, 1
2 ), C0 > 0. Assume that F : A • × A • → C is a

function such that:

(1) for each (p, r) with F (p, r) �= 0, we have max(J−
p ,J +

r ) ≤ C0h
−δ;

(2) sup |F | ≤ 1.

Then we have for some constant C independent of h and F

(4.40) ‖AF ‖L2→L2 ≤ C log2(1/h) where AF :=
∑
p,r

F (p, r)A−
pA

+
r .

Remarks.

(1) It is easy to see that sup |aF | ≤ C log2(1/h) where aF =
∑

(p,r) F (p, r)a−p a
+
r

is the symbol corresponding to AF , grouping terms in the sum by the lengths
|p|, |r|. However the statement (4.40) does not follow by summing Proposition 4.2
over (p, r), since the number of terms in this sum grows polynomially with h.
(We got around this problem in Lemma 3.1 by taking δ := 1

6 small enough so
that the individual remainder still dominates the growth of the number of terms;
however in this section we will need to take δ very close to 1

2 .) Instead the proof of
Proposition 4.4, given in §5.3, uses fine estimates on the full symbols of A−

p , A
+
r .

(2) The proof of Proposition 4.4 shows that AF is a pseudodifferential operator,
similarly to Proposition 4.2. However, we will only need a norm bound on AF .

Similarly to Lemma 4.3 we deduce from Proposition 4.4 a statement up to the
local double Ehrenfest time which is used to establish the norm bound (4.122)
below:

Lemma 4.5. Fix δ ∈ [0, 1
2 ), C0 > 0. Assume that F : A • → C and

(1) for each q with F (q) �= 0, we have J+
q ≤ C0h

−2δ;
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(2) sup |F | ≤ 1.

Then we have for some constant C independent of h and F

(4.41) ‖A+
F ‖L2→L2 ≤ C log3(1/h) where A+

F :=
∑
q

F (q)A+
q .

Same is true for A−
F if we make an assumption on J −

q instead.

Remark. We make no attempt to optimize the power of log(1/h) in (4.41) – for our
purposes all that matters is that ‖A+

F ‖L2→L2 = O(h0−).

Proof. We prove a bound on A+
F , with the case of A−

F handled similarly.
For each q with J +

q ≤ C0h
−2δ there exists an integer � = �(q) ∈ [0, n] such that

(4.42) max(J +
q1...q�

,J +
q�+1...qn

) ≤ C1h
−δ

where C1 is a large constant depending on C0. Indeed, we choose maximal � ≤ n
such that J+

q1...q�
≤ h−δ. If � = n then J+

q�+1...qn
= 1. If � < n then J+

q1...q�+1
> h−δ,

which by (4.25) implies that J+
q1...q�

≥ C−1h−δ and thus by another application

of (4.25), J +
q�+1...qn

≤ C1h
−δ.

We may take C1 large enough so that J +
q ≤ C0h

−2δ implies that |q| ≤
C1 log(1/h). Then we decompose

(4.43) A+
F =

∑
0≤�≤C1 log(1/h)

A+
F�
, F�(q) :=

{
F (q), if �(q) = �,

0, otherwise.

We have by (3.5)

A+
F�

= U(�)AG�
U(−�) where AG�

:=
∑
(p,r)

G�(p, r)A
−
pA

+
r

and the function G� : A • ×A • → C is defined as follows:

G�(p, r) :=

{
F�(pr), if |p| = �,

0, otherwise.

For each (p, r) with G�(p, r) �= 0 we have max(J−
p ,J +

r ) ≤ Ch−δ by (4.42) and
(4.26). Therefore by Proposition 4.4

(4.44) ‖A+
F�
‖L2→L2 = ‖AG�

‖L2→L2 ≤ C log2(1/h).

Using the triangle inequality in (4.43) and the norm bound (4.44) we get (4.41). �
4.3.3. Propagation beyond Ehrenfest time. We now study microlocalization of the
operators A+

q for words q of length no more than C log(1/h), where C is any
fixed constant. The resulting Proposition 4.8 is applied in the proof of Lemma 4.25
in §4.6.4 to words q with J +

q ∼ h−τ , where τ ∈ ( 12 , 1) is defined in (4.61). Analogous

statements hold for the operators A−
q , but we will not make or use them here.

When J +
q  h−1/2 (as in the proof of Lemma 4.25) the symbol a+q oscillates

too strongly to belong to the symbol class Scomp
δ for any δ < 1

2 . In the case when

M has constant curvature, it was shown in [DZ16,DJ18] that for J +
q 
 h−1 the

operator A+
q belongs to a certain anisotropic class of pseudodifferential operators

“aligned” with the unstable foliation; see [DJ18, Lemma 3.2]. The construction
of this anisotropic class strongly relied on the smoothness of the unstable folia-
tion; see [DZ16, §3.3]. However in the case of variable curvature considered here,
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the unstable foliation is no longer smooth and it is not clear how to define the
corresponding anisotropic pseudodifferential class.

We will therefore take a different strategy to study the microlocalization of A+
q ,

which uses methods developed in [An08,AN07a,NZ09]. Given an arbitrary function
f ∈ L2(M) (possibly depending on h), we will study the microlocalization of the
function A+

q f . This gives less information than A+
q being pseudodifferential but it

suffices for the application in §4.6.4.
Since f is chosen arbitrary and the microlocal wave propagator U(t) defined

in (2.34) is unitary, it suffices to study microlocalization of U+
q f where the operator

U+
q : L2(M) → L2(M) is defined similarly to (3.48) (recalling the definition (3.3)

of A+
q ):

(4.45) U+
q := A+

qU(n) = U(1)Aq1U(1)Aq2 · · ·U(1)Aqn , q = q1 . . . qn ∈ A •.

Using the Fourier inversion formula we will decompose f into a superposition of
Lagrangian distributions (see §2.3.2) associated to a family of Lagrangian subman-
ifolds Lqn,θ ⊂ T ∗M , θ ∈ R2. Roughly speaking, the main result of the present
subsection, Proposition 4.8, shows that

(4.46) f ∈ Icomp
h (Lqn,θ) =⇒ U(−1)U+

q f ∈ Icomp
h (Lq,θ)

where Lq,θ is the propagated Lagrangian manifold (see Definition 4.6). The key
point, exploited in the proof of Lemma 4.25, is that for long q the manifold Lq,θ

depends little on θ, so that the full state A+
q f (written as an integral of propagated

Lagrangian distributions over θ) is microlocalized in a very small neighborhood of
a single unstable leaf.

The propagator U(1) is a Fourier integral operator (see §2.3.3) associated to the
time-one map of the geodesic flow ϕ1, microlocally in { 14 < |ξ|g < 4}:
(4.47)

U(1)A,AU(1) ∈ Icomp
h (ϕ1) for all A ∈ Ψ0

h(M), WFh(A) ⊂ {1
4
< |ξ|g < 4}.

This follows from the definition (2.34) and the standard hyperbolic parametrix
construction; see e.g. [Zw12, Theorem 10.4] or [NZ09, Lemma 4.2].

Using (4.47) we can prove (4.46) for q of bounded length using standard proper-
ties of Lagrangian distributions (more specifically, property (3) in §2.3.3). However,
since the length of q grows with h, the argument becomes more complicated. In
fact, we cannot even use the general definition of the class Icomp

h (L ) in §2.3.2 since
it applies to an h-dependent family of distributions with h-independent L . We will
rely on the results of [NZ09], featuring a detailed analysis of the behavior of the
propagated Lagrangian manifolds and the oscillatory integral representations (2.43)
for U(−1)U+

q f as the length of q grows. For this analysis it will be important that
the initial Lagrangians Lq,θ are chosen close to weak unstable leaves, and thus
transverse to stable leaves.

To fix the parametrization of propagated Lagrangian manifolds and distributions,
it is convenient to introduce adapted symplectic coordinates. For each ρ0 ∈ S∗M
let

(4.48) κρ0
: Uρ0

→ Vρ0
, Uρ0

⊂ T ∗M \ 0, Vρ0
⊂ T ∗R2 \ 0

be the symplectomorphism constructed in Lemma 2.3 (in fact we will only use
properties (1)–(4) of Lemma 2.3 here). Since κρ0

is homogeneous we may shrink Uρ0

so that the flipped graph Lκρ0
is generated by a single phase function; see §2.3.1.
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Figure 7. An illustration of Definition 4.6 and Lemma 4.7, fixing
ρ̃ = ϕn−1(ρ

′) ∈ Lq,θ ∩ S∗M . We restrict to S∗M = {η2 = 1} and
remove the flow direction ∂y2

. In the bottom figures the horizontal
direction is y1 and the vertical one is η1. The original Lagrangian
Lqn,θ is O(ε0) close to the weak unstable leaf W0u(ρ

′) as a C∞

submanifold; thus the propagated Lagrangian Lq,θ is O(ε0) close
to the weak unstable leaf W0u(ρ̃) (in fact, it is O(e−γnε0) close for
some γ > 0). A word of caution: in general Vqn ,W0u(ρqn) are not
mapped by ϕn−1 to Vq1 ,W0u(ρq1).

Let ε0 > 0 be the constant from §4.2; recall that the diameter of each Vq∩S∗M is
smaller than ε0. We will assume in several places in this subsection that ε0 is small
depending only on (M, g). For each q ∈ A fix an arbitrary point ρq ∈ Vq ∩ S∗M
and put

(4.49) κq := κρq
: V�

q →Wq, V�
q := Uρq

, Wq := Vρq
.

We denote elements of T ∗M by ρ = (x, ξ) and elements of T ∗R2 by (y, η). We
assume that ε0 is small enough so that Vq ⊂ V�

q where the closure is taken in
T ∗M \ 0.

We are now ready to define the Lagrangian submanifolds Lq,θ:

Definition 4.6. Consider the family of ‘horizontal’ Lagrangian submanifolds

L̂θ := {(y, θ) | y ∈ R2} ⊂ T ∗R2, θ ∈ R2.

For q = q1 . . . qn ∈ A • and θ ∈ R2, define

(4.50)
Lq,θ := ϕn−1(κ

−1
qn (L̂θ)) ∩ ϕ−1(V+

q ) ⊂ Vq1 ⊂ T ∗M \ 0,

L̂q,θ := κq1(Lq,θ) ⊂ Wq1 ⊂ T ∗R2 \ 0.

We call Lq,θ := κ−1
q (L̂θ) ∩ Vq, q ∈ A , the original Lagrangian corresponding

to q, θ, and Lq,θ, q ∈ A •, the propagated Lagrangian corresponding to q, θ.
See Figure 7.
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Remarks.

(1) The set Lq,θ may be empty. This happens in particular if V+
q = ∅, if θ2 ≤ 0,

or if |θ1/θ2| ≥ Cε0 for some large fixed C.
(2) We see from the definition (4.50) and the properties of κq in Lemma 2.3 that
Lq,θ is a Lagrangian submanifold of p−1(θ2) ⊂ T ∗M \ 0 and the flow lines of ϕt

are tangent to Lq,θ. Therefore L̂q,θ is a Lagrangian submanifold of {(y, η) | η2 =
θ2} ⊂ T ∗R2 \ 0 and ∂y2

is tangent to this manifold.
(3) Recalling the definition (3.2) of V+

q , we see that Lq,θ is obtained starting from

the original Lagrangian Lqn,θ = κ−1
qn (L̂θ)∩Vqn by iteratively applying the map ϕ1

and intersecting with Vqn−1
, . . . ,Vq1 :

(4.51) Lqj ...qn,θ = ϕ1(Lqj+1...qn,θ) ∩ Vqj , 1 ≤ j < n.

By (4.23) the submanifold Lq,θ is contained in a C/J +
q neighborhood of the

weak unstable leaf W0u(ρ̃), for any ρ̃ ∈ Lq,θ. The next statement, which is a weak
version of the Inclination Lemma, shows in particular that Lq,θ is controlled as
a C∞ submanifold uniformly in q, θ, regardless of the length of q. (A stronger
version is that Lq,θ is exponentially close in C∞ to W0u(ρ̃) when |q| is large.) To

make the statement precise it is convenient to write the image L̂q,θ of Lq,θ under
κq1 as a graph in the y variables.

Lemma 4.7. If ε0 > 0 is small enough depending only on (M, g) then the following
holds. Let q ∈ A •, θ ∈ R2, and assume that Lq,θ �= ∅. Then

(4.52) L̂q,θ = {(y, η) | y ∈ Uq,θ, η1 = θ2Gq,θ(y1), η2 = θ2}
where Uq,θ ⊂ R2 is an open set and Gq,θ is a function on an open subset of R

which satisfies the following derivative bounds:

(1) ‖Gq,θ‖C1 ≤ Cε0 for some constant C depending only on (M, g);
(2) ‖Gq,θ‖CN ≤ CN for all N,3 where the constant CN depends only on (M, g)

and N.

Moreover, if Fq,θ : Uq,θ → R2 is defined by

(4.53) ϕn−1(κ
−1
qn (Fq,θ(y), θ)) = κ−1

q1 (y, θ2Gq,θ(y1), θ2), y ∈ Uq,θ

then we have the weakly contracting property for some C depending only on (M, g)

(4.54) ‖dFq,θ(y)‖ ≤ C for all y ∈ Uq,θ.

Remark. The set Uq,θ (the domain of the function Gq,θ) depends on q but it has
macroscopic size (of the same scale as the sets Vq) even for long words q.

We omit the proof of Lemma 4.7 here, referring the reader to [NZ09, Proposi-
tion 5.1], [KH97, Proposition 6.2.23], and the first version of this article [DJN19,
Lemma 4.7].

We now quantize the symplectomorphisms κq. As explained following (4.48) the
flipped graph of each κq is generated by a single phase function. Then (see §2.3.3)
there exist Fourier integral operators

(4.55)
Bq : L2(M)→ L2(R2), Bq ∈ Icomp

h (κq),

B′
q : L2(R2)→ L2(M), B′

q ∈ Icomp
h (κ−1

q )

3Here and in Proposition 4.8 we use boldface N to distinguish it from the propagation time
defined in (3.11).
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quantizing κq near κq(Vq ∩ { 14 ≤ |ξ|g ≤ 4}) × (Vq ∩ { 14 ≤ |ξ|g ≤ 4}) in the sense
of (2.54).

Using the operators Bq we give a precise definition of the classes Icomp
h (Lqn,θ)

and Icomp
h (Lq,θ) featured in (4.46). We have Lqn,θ = κ−1

qn (L̂θ) ∩ Vqn where L̂θ is
generated in the sense of (2.42) by the function

(4.56) Φθ ∈ C∞(R2;R), Φθ(y) = 〈y, θ〉.
Thus by (2.44) the elements of Icomp

h (Lqn,θ) which are microlocalized in { 14 < |ξ|g <

4} have the form B′
qn(e

iΦθ/ha) for some a ∈ C∞(R2). We will in fact take a ≡ 1.

Next, by Lemma 4.7 the Lagrangian manifold L̂q,θ = κq1(Lq,θ) is generated in
the sense of (2.42) by a function

Φq,θ ∈ C∞(Uq,θ;R), ∂y1
Φq,θ = θ2Gq,θ(y1), ∂y2

Φq,θ = θ2.

Here Φq,θ is defined uniquely up to a locally constant function. We fix this freedom

by recalling that the functions induced on L̂θ, L̂q,θ by Φθ,Φq,θ are antideriva-

tives on these Lagrangian submanifolds (see (2.42)). The antiderivative on L̂q,θ

can be computed by applying (2.49) to the definition (4.50), where the symplec-
tomorphisms κq1 , ϕn−1,κ

−1
qn are homogeneous and thus have zero antiderivative

(see §2.3.3). Thus we may put

(4.57) Φq,θ(y) := Φθ(Fq,θ(y)), y ∈ Uq,θ,

where Fq,θ is defined in (4.53). Then by (2.44) the elements of Icomp
h (Lq,θ) which

are microlocalized in { 14 < |ξ|g < 4} have the form B′
q1(e

iΦq,θ/ha) for some a ∈
C∞

c (Uq,θ).
Building on the above discussion we now give the main statement of this sub-

section, which is a precise version of (4.46). We again omit the proof, refer-
ring to [NZ09, Proposition 4.1 and §7.2] and to the first version of this arti-
cle [DJN19, Proposition 4.8]. See also [An11, §3] for a simplified proof in a model
case.

Proposition 4.8. Assume that ε0 is small enough depending only on (M, g). Let
q = q1 . . . qn ∈ A •, θ ∈ R2, and assume that n ≤ C0 log(1/h), |θ1| ≤ C0,

1
4 ≤ θ2 ≤

4 for some constant C0. Define Φθ,Φq,θ using (4.56), (4.57). Let U+
q be defined

in (4.45) and fix N > 0. Then we have uniformly in q, θ

(4.58) U+
q B′

qn(e
iΦθ/h) = U(1)B′

q1(e
iΦq,θ/haq,θ,N) +O(hN)L2(M)

for some aq,θ,N(y;h) ∈ C∞
c (Uq,θ) such that:

(1) the distance between supp aq,θ,N and the complement of Uq,θ is larger than
C−1 for some constant C > 0 depending only on the choice of Aq,Vq,κq,
q ∈ A ;

(2) for any multiindex α there exists CN,α > 0 such that

(4.59) sup
y
|∂α

y aq,θ,N(y)| ≤ CN,α.

Here CN,α depends only on the choices of Aq, Bq, B
′
q, and C0.

Remarks.

(1) If Lq,θ = ∅ then we have aq,θ,N = 0 and Proposition 4.8 states that the left-
hand side of (4.58) is O(h∞)L2(M).
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Figure 8. Supports of the symbols a−v , a
+
w, and

∑
n,e a

+
Qn(w,e),

corresponding to the operators A−
v , A

+
w, and

∑
n,e A

+
Qn(w,e). We

restrict to some hypersurface in S∗M transversal to the flow direc-
tion. By (3.11) and (4.1) the thickness of the strokes in supp a−v
(corresponding to the Jacobian (Ju

N0
)−1) is at least h1/6, while in

supp a+w it is at most h. Both of these have strokes of very dif-
ferent thicknesses because the Jacobians vary from point to point.
The set supp

∑
n,e a

+
Qn(w,e) contains supp a+w and has strokes of

uniform thickness approximately h−τ = h−2δ (roughly speaking,
each stroke corresponds to one term a+q ), so that classical/quantum
correspondence still applies.

(2) [AN07a, NZ09] show that the symbols aq,θ,N satisfy stronger bounds, in fact
they decay exponentially with |q|; see [AN07a, Lemma 3.5] and [NZ09, (7.11)]. We
state the weaker bound (4.59) since it suffices for our application in §4.6.4.

4.4. Reduction to words of moderate length. We now return to the proof of
Proposition 4.1. Henceforth we fix two words

v ∈ A N0
� , w ∈ A N1

� .

We first write a decomposition (4.60) of A+
w into a sum of terms of the form A+

q

where q are words over the refined alphabet A = {1, . . . , Q} (see §4.2). For that
we use the following

Definition 4.9. For q ∈ A and w ∈ A�, we write q � w if one of the following
holds:

• w = 1 and q = 1, or
• w = � and q ∈ {2, . . . , Q}.

If q = q1 . . . qn ∈ A • and w = w1 . . . wm ∈ A •
� , then we say that q � w if n ≤ m

and qj � wj for all j = 1, . . . , n.

Since A� = A2 + · · ·+AQ, we have

(4.60) A+
w =

∑
q∈A N1 , q�w

A+
q .

Since N1 is larger than the maximal Ehrenfest time Tmax (see (4.1)), for all
words q ∈ A N1 we have J +

q > h−1, so the symbol a+q is very irregular. To fix this
problem, we will rewrite (4.60) in terms of an expression which involves words with
length bounded by the local double Ehrenfest time – see (4.64) and Figure 8.
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Recall the ‘minimal/maximal expansion rates’ 0 < Λ0 ≤ Λ1 defined in (2.10); as
before we put Λ := �Λ1/Λ0�. We fix constants

(4.61) τ := 1− 1

10Λ
, δ :=

τ

2
<

1

2
.

Note that τ is very close to 1; this will be used in (4.115). (In [DJ18] the parameter
τ was denoted by ρ.)

For n = 1, . . . , N1 and e ∈ A let us define sets of refined words starting with the
letter e and controlled by their local Jacobians:

(4.62)

Qn(w, e) := {q = q1 . . . qn ∈ A n | q1 = e, q � w, J +
q ≥ h−τ > J +

q′ },
Q′

n(w, e) := {q ∈ Qn(w, e) | V+
q �= ∅},

Q′′
n(w, e) := {q ∈ Qn(w, e) | V+

q = ∅}

where we recall that for any q = q1 · · · qn, we denote q′ := q1 · · · qn−1. By (4.25)
we have for some constant C depending only on (M, g)

(4.63) h−τ ≤ J +
q ≤ Ch−τ = Ch−2δ for all q ∈ Q′

n(w, e).

That is, words q ∈ Q′
n(w, e) correspond to sets V+

q on which the backwards stable

Jacobian Js
−n(ρ) is approximately equal to h−τ . These words are such that their

local double Ehrenfest time T̃+
q is approximately equal to their length n (they would

be equal if we had taken τ = 1).
For each q = q1 . . . qN1

∈ A N1 with q � w we have J+
q ≥ eΛ0N1 ≥ h−1 ≥ h−τ

by (4.1) and (4.16). Using (4.18) we see that for each such q there exists unique
n ∈ {1, . . . , N1} such that the prefix q1 . . . qn lies in Qn(w, q1). We also have
Qn(w, e) = Q′

n(w, e)�Q′′
n(w, e). Therefore the decomposition (4.60) can be written

as

(4.64) A+
w =

N1∑
n=1

∑
e∈A

A+
Qn(w,e)Zn,w =

N1∑
n=1

∑
e∈A

(A+
Q′

n(w,e) +A+
Q′′

n(w,e))Zn,w

where A+
Qn(w,e) is defined by (3.9) and

Zn,w := Awn+1
(−n− 1) · · ·AwN1

(−N1) = U(n+ 1)A+
wn+1···wN1

U(−n− 1).

We have ‖Zn,w‖L2→L2 ≤ 2 similarly to (4.14). Moreover, since the number of ele-
ments ofQ′′

n(w, e) is bounded by some negative power of h, by part (2) of Lemma 4.3
we get

‖A+
Q′′

n(w,e)‖L2→L2 = O(h∞).

We then estimate

‖A−
vA

+
w‖L2→L2 ≤ 2

N1∑
n=1

∑
e∈A

‖A−
vA

+
Q′

n(w,e)‖L2→L2 +O(h∞).

Since N1 = O(log(1/h)), Proposition 4.1 is proved once we establish its analogue
with A+

w replaced by A+
Q′

n(w,e), that is the sum of A+
q over the refined words q with

length n, initial letter e, and local Jacobians J +
q ∼ h−τ (that is, their local double

Ehrenfest time is approximately equal to n):
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Proposition 4.10. Assume that v ∈ A N0
� , w ∈ A N1

� , 1 ≤ n ≤ N1, and e ∈ A .
Then there exists β > 0 depending only on V1,V� and there exists C > 0 depending
only on A1, A� such that

‖A−
vA

+
Q′

n(w,e)‖L2→L2 ≤ Chβ.

Remark. The value of β in Proposition 4.1 can be taken to be any number smaller
than the value of β in Proposition 4.10. Since we do not give a precise formula for
β we call both by the same letter to simplify notation.

4.5. Partition into clusters. We fix v ∈ A N0
� , w ∈ A N1

� , n ∈ {1, . . . , N1},
e ∈ A , and define Q′

n(w, e) ⊂ A n by (4.62). We make the following

Definition 4.11. Let q, q̃ ∈ Q′
n(w, e). We say q, q̃ are close to each other if

V+
q ∪V+

q̃ lies in the h2/3-sized conic neighborhood of some weak unstable leaf; more

precisely there exists ρ ∈ V+
e ∩ S∗M such that

d(ρ̃,W0u(ρ)) ≤ h2/3 for all ρ̃ ∈ (V+
q ∪ V+

q̃ ) ∩ S∗M.

If q, q̃ are not close to each other, we say they are far from each other.

Remark. If q, q̃ are far from each other, then V+
q ∩V+

q̃ = ∅. The proof of Lemma 4.12

in fact gives a stronger statement; see (4.69).

For words which are far from each other, we have the following almost orthogo-
nality statement:

Lemma 4.12. Assume that q, q̃ ∈ Q′
n(w, e) are far from each other. Then

‖(A−
vA

+
q )

∗A−
vA

+
q̃ ‖L2→L2 = O(h∞),(4.65)

‖A−
vA

+
q̃ (A

−
vA

+
q )

∗‖L2→L2 = O(h∞)(4.66)

with the constants in O(h∞) independent of h, n,v,w,q, q̃.

Remark. Lemma 4.12 has the following informal interpretation (which is different
from the formal proof below). Imagine that we remove the flow and dilation di-
rections from T ∗M and conjugate by a Fourier integral operator whose canonical
transformation maps stable leaves into horizontal lines {η = const} and unstable
leaves into vertical lines {y = const} on T ∗Ry ! R2

y,η. (This is not possible to do
globally but the argument in §4.6 uses a localized version of such conjugation with
the roles of y, η switched.) Then A−

v is replaced by a Fourier multiplier χ−(hDy)

where supη |∂k
ηχ−(η;h)| = O(h−k/6−) (corresponding to the fact that a−v ∈ Scomp

1/6+

which follows from Lemma 3.1). Next, A+
q , A

+
q̃ are replaced by multiplication op-

erators χ+(y), χ̃+(y) where χ+, χ̃+ have supports of size ∼ hτ . The condition that
q, q̃ are far from each other implies that the supports of χ+, χ̃+ are at least h2/3

apart. Then (4.65) turns into the estimate (assuming χ−, χ+, χ̃+ are real valued)

‖χ+(y)χ
2
−(hDy)χ̃+(y)‖L2(R)→L2(R) = O(h∞)

which can be proved using repeated integration by parts to establish rapid decay
of the integral kernel: at each integration we gain a factor h · h−2/3 · h−1/6 = h1/6.
Notice that the size of the supports of χ+ and χ̃+ does not matter; it is the distance
between the two supports which is responsible for the factor h−2/3. In turn, the
analogue of (4.66) trivially follows from the fact that suppχ+ ∩ supp χ̃+ = ∅. In
this interpretation (4.65), (4.66) are analogous to the bounds [BD18, (4.26),(4.25)]
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and the decomposition into clusters below to the one used in the proof of [BD18,
Proposition 4.3].

Proof. (1) Denote q = q1 . . . qn, q̃ = q̃1 . . . q̃n. Take maximal m ≤ n such that

V+
q1...qm ∩ V

+
q̃1...q̃m

�= ∅.

If V+
q1 ∩ V

+
q̃1

= ∅ then we put m := 0.

By (4.24) we have J +
q1...qm ∼ J

+
q̃1...q̃m

. We claim that

(4.67) max(J+
q1...qm ,J +

q̃1...q̃m
) ≤ Ch−2/3.

The case m = 0 is trivial, so we assume that m > 0. Take ρ ∈ V+
q1...qm ∩ V

+
q̃1...q̃m

∩
S∗M . Note that since q1 = q̃1 = e we have ρ ∈ V+

e . By (4.23) we have for every
ρ̃ ∈ (V+

q ∪ V+
q̃ ) ∩ S∗M ⊂ (V+

q1...qm ∪ V
+
q̃1...q̃m

) ∩ S∗M

(4.68) d(ρ̃,W0u(ρ)) ≤
C ′

min(J+
q1...qm ,J +

q̃1...q̃m
)
≤ C

max(J+
q1...qm ,J +

q̃1...q̃m
)
.

Since q, q̃ are far from each other, the right-hand side of (4.68) has to be greater
than h2/3, which gives (4.67).

By (4.63) we have J +
q ≥ h−τ  h−2/3, so from (4.67) we obtain m < n. Denote

p := q1 . . . qm+1, p̃ := q̃1 . . . q̃m+1.

Since m was chosen maximal we have

(4.69) V+
p ∩ V+

p̃ = ∅.

Moreover by (4.67) and (4.25) and since V+
q ,V+

q̃ �= ∅ and thus V+
p ,V+

p̃ �= ∅ we get

(4.70) max(J+
p ,J +

p̃ ) ≤ Ch−2/3.

(2) We now prove (4.65). We have by (3.5) and (3.8)

(A−
vA

+
q )

∗A−
vA

+
q̃ =U(m+ 1)(A+

qm+2...qn)
∗U(−m− 1)

· (A−
vA

+
p )

∗A−
vA

+
p̃U(m+ 1)A+

q̃m+2...q̃n
U(−m− 1).

Thus by (4.14) it suffices to prove that ‖(A−
vA

+
p )

∗A−
vA

+
p̃ ‖L2→L2 = O(h∞). Simi-

larly to (4.60) we write

A−
v =

∑
s∈A N0 , s�v

A−
s .

Then by (3.5)

(A−
vA

+
p )

∗A−
vA

+
p̃ =

∑
s,s̃∈A N0 , s,s̃�v

U(−N0)(A
+
sp)

∗A+
s̃p̃U(N0).

Since the number of terms in the sum above is bounded polynomially in h, it suffices
to show that

(4.71) ‖(A+
sp)

∗A+
s̃p̃‖L2→L2 = O(h∞) for all s, s̃ ∈ A N0 .

By (3.11), (4.16), (4.25), and (4.70) for each word t of length no more than N0 we
have

(4.72) V+
tp �= ∅ =⇒ J +

tp ≤ CJ +
t J +

p ≤ CeΛ1N0 · h−2/3 ≤ Ch−5/6 ≤ Ch−2δ.

Then by part (2) of Lemma 4.3, if V+
sp = ∅ then ‖A+

sp‖L2→L2 = O(h∞) which

immediately implies (4.71). A similar argument applies to A+
s̃p̃.
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Wemay now assume that V+
sp �= ∅, V+

s̃p̃ �= ∅. Then by (4.72) we have max(J +
sp,J +

s̃p̃)

≤ Ch−2δ. Moreover V+
sp∩V+

s̃p̃ ⊂ ϕN0
(V+

p ∩V+
p̃ ) = ∅ by (3.6) and (4.69). Then (4.71)

follows from part (3) of Lemma 4.3.
(3) To show (4.66), we first write

A−
vA

+
q̃ (A

−
vA

+
q )

∗ = A−
vA

+
q̃ (A

+
q )

∗(A−
v )

∗.

Thus it suffices to prove that

‖A+
q̃ (A

+
q )

∗‖L2→L2 = O(h∞).

This follows from part (3) of Lemma 4.3. Indeed, we have max(J+
q ,J +

q̃ ) ≤ Ch−2δ

by (4.63) and V+
q ∩ V+

q̃ ⊂ V+
p ∩ V+

p̃ = ∅ by (4.69). �

We will decompose A−
vA

+
Q′

n(w,e) into a sum of operators, each of which corre-

sponds to a cluster of words q ∈ Q′
n(w, e) – see (4.75). Each cluster has the

property that the sets V+
q lie in an O(h2/3) sized conic neighborhood of some weak

unstable leaf. Moreover, most clusters lie far from each other in the sense of Def-
inition 4.11, which will let us decouple different clusters using the Cotlar–Stein
Theorem and Lemma 4.12. The clusters are constructed in the following

Lemma 4.13. If the constant ε0 in §4.2 is chosen small enough depending on
(M, g) then there exists a partition into clusters

Q′
n(w, e) =

Rn(w,e)⊔
r=1

Qn(w, e, r)

such that for some constant C depending only on (M, g) we have:

(1) for each r there exists ρ(r) ∈ V+
e ∩ S∗M such that the r-th cluster is

contained in a Ch2/3 sized conic neighborhood of the weak unstable leaf
W0u(ρ(r)), that is

(4.73) d
(
ρ̃,W0u(ρ(r))

)
≤ Ch2/3 for all ρ̃ ∈

⋃
q∈Qn(w,e,r)

(V+
q ∩ S∗M);

(2) let us call the clusters r, r̃ disjoint when each pair of words q ∈ Qn(w, e, r),
q̃ ∈ Qn(w, e, r̃) is far from each other in the sense of Definition 4.11. Then
for each r, the number of clusters r̃ which are not disjoint from r is bounded
by C.

Proof. In this proof C denotes constants depending only on (M, g) whose precise
value might change from place to place.

Since the weak unstable leaves W0u(ρ), ρ ∈ V+
e ∩ S∗M , foliate V+

e ∩ S∗M , and
depend Lipschitz continuously on ρ, if the diameter of V+

e ∩ S∗M is less than ε0
and ε0 is small enough, there exists a Lipschitz continuous function (with Lipschitz
constant C)

Z : V+
e ∩ S∗M → R

which is constant on each weak unstable leaf W0u(ρ) ∩ V+
e , ρ ∈ V+

e ∩ S∗M and

(4.74) d(ρ̃,W0u(ρ)) ≤ C|Z(ρ)− Z(ρ̃)| for all ρ, ρ̃ ∈ V+
e ∩ S∗M.

For instance, one could take as Z(ρ) the function constructed in Lemma 2.3.
For each q ∈ Q′

n(w, e), define the set

Iq := Z(V+
q ∩ S∗M) ⊂ R.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CONTROL OF EIGENFUNCTIONS IN VARIABLE CURVATURE 427

Fix an arbitrary point zq ∈ Iq. We choose a maximal subset

{z1, . . . , zR} ⊂ {zq | q ∈ Q′
n(w, e)}

which is h2/3 separated, that is |zr − zr̃| ≥ h2/3 for each r �= r̃. Put Rn(w, e) := R.
Since the set {z1, . . . , zR} was chosen maximal, for each q ∈ Q′

n(w, e) there
exists r such that |zq − zr| ≤ h2/3. We can thus define a partition into clusters

Q′
n(w, e) =

R⊔
r=1

Qn(w, e, r) where |zq − zr| ≤ h2/3 for all q ∈ Qn(w, e, r).

By (4.23) and (4.63), each V+
q ∩ S∗M is contained in a Chτ sized neighborhood

of some weak unstable leaf; therefore (since the map Z is Lipschitz continuous)
Iq ⊂ [zq−Chτ , zq+Chτ ]. Since hτ 
 h2/3 we see that for each q ∈ Qn(w, e, r) we

have Iq ⊂ [zr −Ch2/3, zr +Ch2/3]. Take ρ(r) ∈ V+
e ∩S∗M such that Z(ρ(r)) = zr;

then by (4.74) for each q ∈ Qn(w, e, r) and ρ̃ ∈ V+
q ∩S∗M we have d(ρ̃,W0u(ρ(r))) ≤

Ch2/3. This gives property (1).
Finally, if q, q̃ ∈ Q′

n(w, e) are close in the sense of Definition 4.11, then |zq−zq̃| ≤
Ch2/3. Therefore, if the clusters r, r̃ are not disjoint then |zr − zr̃| ≤ Ch2/3. Since
{z1, . . . , zR} is h2/3 separated, we see that for each r the number of clusters r̃ not
disjoint from r is bounded by some constant C. This gives the property (2). �

Armed with Lemma 4.13 we now decompose

(4.75) A−
vA

+
Q′

n(w,e) =

Rn(w,e)∑
r=1

Br, Br := A−
vA

+
Qn(w,e,r) =

∑
q∈Qn(w,e,r)

A−
vA

+
q .

We claim that, with the constant C appearing in Lemma 4.13,
(4.76)

max
r

∑
r̃

‖B∗
rBr̃‖1/2L2→L2 ,max

r

∑
r̃

‖Br̃B
∗
r‖

1/2
L2→L2 ≤ Cmax

r
‖Br‖L2→L2 +O(h∞).

Indeed, the sum over clusters r̃ not disjoint from r is estimated by
Cmaxr ‖Br‖L2→L2 . The sum over clusters disjoint from r isO(h∞) by Lemma 4.12,
using that the number of elements in Q′

n(w, e) and thus the number Rn(w, e) of
clusters are O(h−C) for some constant C.

Applying the Cotlar–Stein Theorem [Zw12, Theorem C.5], we see that

‖A−
vA

+
Q′

n(w,e)‖L2→L2 ≤ Cmax
r
‖Br‖L2→L2 +O(h∞).

Therefore Proposition 4.10 follows from the bound

max
r
‖A−

vA
+
Qn(w,e,r)‖L2→L2 ≤ Chβ

which in turn is implied by the following

Proposition 4.14. Assume that v ∈ A N0
� , w ∈ A N1

� , 1 ≤ n ≤ N1, e ∈ A ,
ρ0 ∈ V+

e ∩ S∗M , and Q ⊂ Q′
n(w, e) lies in an O(h2/3) sized conic neighborhood of

the weak unstable leaf W0u(ρ0), namely for some constant C0

(4.77) d(ρ̃,W0u(ρ0)) ≤ C0h
2/3 for all ρ̃ ∈

⋃
q∈Q

(V+
q ∩ S∗M).
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Then there exists β > 0 depending only on V1,V� and there exists C > 0 depending
only on A1, A�, C0 such that

(4.78) ‖A−
vA

+
Q‖L2→L2 ≤ Chβ.

In the above expression, A+
Q is a sum of many refined word operators A+

q with

q having Jacobians J+
q ∼ h−τ ; in turn, A−

v can also be split into the sum of

many word operators A−
q̃ with words |q̃| = N0. The hyperbolic dispersion estimates

of [AN07a] show that all the individual terms A−
q̃A

+
q are small (their norms are

bounded by some hα), yet to cope with the sum of many such terms, we will have
to use another ingredient, namely a fractal uncertainty principle.

4.6. Fractal uncertainty principle and decay for a single cluster. In this
section we prove Proposition 4.14; as shown earlier in §4 this implies Proposition 3.2.
We fix

(4.79) v ∈ A N0
� , w ∈ A N1

� , n ∈ {1, . . . , N1}, e ∈ A , ρ0 ∈ V+
e ∩ S∗M,

and Q ⊂ Q′
n(w, e) which lies in an O(h2/3) sized conic neighborhood of W0u(ρ0) in

the sense of (4.77).
Throughout this section C denotes constants depending only on A1, . . . , AQ,

and C0, whose meaning might change from place to place, unless noted otherwise.
The strategy of the proof is to conjugate the operators A−

v , A+
Q by Fourier

integral operators to obtain a situation to which the fractal uncertainty principle
of Proposition 2.10 can be applied. The proof of Proposition 4.14 is given in §4.6.4,
using components described in the rest of this section.

4.6.1. Normal form. We first study the symbols a−v , a
+
Q. We use the symplectomor-

phism constructed in Lemma 2.3, which approximately straightens out the weak
unstable leaves close to W0u(ρ0).

By the assumptions on V1, . . . ,VQ in §4.2, the diameter of V+
e ∩S∗M = ϕ1(Ve ∩

S∗M) is bounded above by Cε0 for some C depending only on (M, g). Therefore,
if we fix ε0 > 0 small enough then by Lemma 2.3 there exists a symplectomorphism

(4.80) κ = κρ0
: Uρ0

→ Vρ0
, Uρ0

⊂ T ∗M \ 0, Vρ0
⊂ T ∗R2 \ 0

which satisfies conditions (1)–(7) of Lemma 2.3 and V+
e ⊂ Uρ0

. (Here the closure
of V+

e is taken in T ∗M \ 0.) We denote elements of T ∗M and T ∗R2 by (x, ξ) and
(y, η) = (y1, y2, η1, η2) respectively.

Since κ is homogeneous, the flipped graph Lκ defined in (2.46) is conic. There-
fore, shrinking Uρ0

(and reducing ε0) we may assume that Lκ is generated by a
single phase function; see §2.3.1.

We will analyze the images of the supports supp a−v , supp a
+
Q under the map κ.

The goal is to relate these to localization to porous sets in y1 and η1/η2 respectively;
see (4.89), (4.90).

We start with supp a+Q which is contained in the open conic set

(4.81) V+
Q :=

⋃
q∈Q
V+
q ⊂ V+

e � Uρ0
.

Lemma 4.15 is a key point in the argument where C3/2 regularity of the unstable
foliation (used in Lemma 2.3) is combined with the fact that Q lies O(h2/3) close
to the weak unstable leaf W0u(ρ0) (the latter was made possible by the cluster
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decomposition of §4.5). It states that the projection of each weak unstable leaf
κ(W0u(ρ̃)), ρ̃ ∈ V+

Q ∩ S∗M , onto the η1 coordinate lies in an interval of size O(h).
Since by (4.23) and (4.63) each V+

q ∩ S∗M , q ∈ Q, lies in an O(hτ ) neighborhood

of some weak unstable leaf, we see that the projection of κ(V+
q ∩S∗M) onto the η1

coordinate lies in an interval of size O(hτ ).

Lemma 4.15. Let ρ̃ ∈ V+
Q ∩ S∗M . Then

(4.82) |η1(κ(ρ))− η1(κ(ρ̃))| ≤ Ch for all ρ ∈W0u(ρ̃) ∩ Uρ0
.

Proof. We recall the straightening of the unstable foliation described in Lemma 2.3.
By (2.28) we have

(4.83) κ(W0u(ρ̃) ∩ Uρ0
) =

{(
y1, y2, F (y1, ζ̃), 1

)
| (y1, ζ̃) ∈ Ω, y2 ∈ R

}
∩ Vρ0

where ζ̃ := Z(ρ̃) and the functions F ∈ C3/2(Ω;R), Z ∈ C3/2(Uρ0
∩ S∗M ;R) are

defined in Lemma 2.3. Moreover, by (4.77) we have d(ρ̃,W0u(ρ0)) ≤ C0h
2/3, which

by parts (5)–(6) of Lemma 2.3 implies

(4.84) |ζ̃| ≤ Ch2/3.

Combining this estimate with the point (8) of Lemma 2.3, we obtain

(4.85) sup
y1

|F (y1, ζ̃)− ζ̃| ≤ Ch

which together with (4.83) gives (4.82). �

In §4.6.2 we use Lemma 4.15 and the results of §2.5 to show the following porosity
statement (see Definition 2.8):

Lemma 4.16. Define the set

(4.86) Ω+ := η1(κ(V+
Q ∩ S∗M)) ⊂ R.

Then there exist R and ν > 0 depending only on V1,V� such that Ω+ ⊂ Ω+
1 ∪· · ·∪Ω+

R

where each Ω+
k is ν-porous on scales Chτ to C−1.

Remarks.

(1) Since κ(V+
Q ∩S∗M) is contained in an O(h2/3) sized neighborhood of {η1 = 0}

by (4.77) and parts (5)–(6) of Lemma 2.3, we have

(4.87) Ω+ ⊂ [−Ch2/3, Ch2/3].

In particular, it is easy to see that Ω+ is 1
3 -porous on scales above Ch2/3 for C

large enough. Lemma 4.16 shows that each Ω+
k is in fact ν-porous on scales above

Chτ (where τ is very close to 1) for some ν > 0.
(2) Using Lemmas 2.17–2.18 and following the proof of Lemma 4.16, we get the
following statement: if the complements S∗M \ V1, S∗M \ V� are (L0, L1)-dense
in the stable direction (in the sense of Definition 2.16) then Lemma 4.16 holds for
some ν depending only on (M, g), L0, L1.

We next study supp a−v , which is contained in V−
v . By (4.87) and since supp a+Q ⊂

V+
e it would be enough to study the intersection of κ(V−

v ∩V+
e ∩S∗M) with the set

{|η1| ≤ Ch2/3}. However, for the purpose of microlocalization of the operator A−
v
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η1=0

η1=h1/6

η1=−h1/6

κ
(V

− v
)

Ω−

η1=−Ch2/3

η1=Ch2/3

η1=0 Ω+κ(V+
Q)

Figure 9. The sets κ(V−
v ∩V+

e ∩S∗M)∩{|η1| ≤ h1/6} and κ(V+
Q∩

S∗M) (lighter shaded). Here y1 is the horizontal coordinate (with
the width of the figure having h-independent scale) and η1 is the
vertical coordinate. The darker shaded sets are Ω− and Ω+, defined
in (4.88) and (4.86).

it is convenient to choose a larger, h1/6-sized, neighborhood of {η1 = 0}. We thus
define

(4.88) Ω− := y1
(
κ(V−

v ∩ V+
e ∩ S∗M) ∩ {|η1| ≤ h1/6}

)
⊂ R.

Lemma 4.17, proved in §4.6.2, establishes porosity of Ω−:

Lemma 4.17. Let Λ := �Λ1/Λ0� be defined in (2.11). Then there exist R and
ν > 0 depending only on V1,V� such that Ω− ⊂ Ω−

1 ∪ · · · ∪ Ω−
R where each Ω−

k is

ν-porous on scales Ch1/(6Λ) to C−1.

Remark. Using Lemmas 2.17–2.18 and following the proof of Lemma 4.17, we get
the following statement: if the complements S∗M \V1, S∗M \V� are (L0, L1)-dense
in the unstable direction (in the sense of Definition 2.16) then Lemma 4.17 holds
for some ν depending only on (M, g), L0, L1.
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For future use we record the following corollaries of the definitions (4.86), (4.88)
of Ω± and the homogeneity of κ:

κ
(
V+
Q ∩

{1

4
≤ |ξ|g ≤ 4

})
⊂

{η1
η2
∈ Ω+

}
∩

{1

4
≤ η2 ≤ 4

}
,(4.89)

κ(V−
v ∩ V+

e ) ∩
{∣∣∣η1

η2

∣∣∣ ≤ h1/6
}
⊂ {y1 ∈ Ω−}.(4.90)

See Figure 9. For (4.89) we additionally used part (4) of Lemma 2.3.

4.6.2. Proof of porosity. We now prove Lemmas 4.16 and 4.17. We start by defining
fattened versions of the sets V+

Q , V−
v . Fix two conic open sets

V�
1,V�

� ⊂ T ∗M \ 0
such that:

• Vw ⊂ V�
w for w ∈ A� = {1, �} where the closure is taken in T ∗M \ 0;

• the complements T ∗M \ V�
w have nonempty interior.

This is possible since T ∗M \ V1, T ∗M \ V� have nonempty interior; see §3.1.
Since Vq ⊂ V� for q = 2, . . . , Q (see §4.2), we can also fix conic open sets

V�
q ⊂ V�

�, Vq ⊂ V�
q , q = 2, . . . , Q.

Moreover, since the diameters of Vq ∩ S∗M , q ∈ A := {1, . . . , Q}, are less than ε0,
we can make the diameters of V�

q ∩ S∗M less than ε0 as well. We may also assume

that V�+
e ⊂ Uρ0

where Uρ0
is the domain of the map κ; see (4.80).

Let v = v0 . . . vN0−1 ∈ A N0
� be the word in the statement of Proposition 4.14

and q = q1 . . . qn ∈ A n be arbitrary. Similarly to (3.2) define the open conic sets

(4.91) V�−
v :=

N0−1⋂
j=0

ϕ−j(V�
vj ), V�+

q :=

n⋂
j=1

ϕj(V�
qj ).

Clearly V−
v ⊂ V�−

v , V+
q ⊂ V�+

q . Following (4.81) define also

(4.92) V�+
Q :=

⋃
q∈Q
V�+
q ⊃ V+

Q .

We use the results of §2.5 and the fact that T ∗M \V�
1, T

∗M \V�
� have nonempty inte-

riors to establish the porosity of the intersections of V�−
v , V�+

Q with unstable/stable
intervals:

Lemma 4.18. There exists ν > 0 depending only on V1,V� such that:

(1) for every unstable interval γ : I0 → S∗M (see Definition 2.13), the preim-
age γ−1(V�−

v ) ⊂ R is ν-porous on scales Ch1/(6Λ) to 1;

(2) for every stable interval γ : I0 → S∗M , the set γ−1(V�+
Q ) is ν-porous on

scales Chτ to 1.

Proof. Recall that Q is contained in the set Q′
n(w, e) defined by (4.62). Therefore,

each q = q1 . . . qn ∈ Q satisfies q � w (where w ∈ A N1
� is fixed in the statement

of Proposition 4.14), which (recalling Definition 4.9) implies that V�
qj ⊂ V�

wj
for all

j = 1, . . . , n. It follows that

V�+
Q ⊂ V�+

w1...wn
:=

n⋂
j=1

ϕj(V�
wj
).
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Thus the required porosity statements follow from Lemma 2.15 (taking the sets V�
1,

V�
� in (2.83)) once we establish the Jacobian bounds

inf
V�−

v ∩S∗M
Ju
N0
≥ h−1/(6Λ),(4.93)

inf
V�+

Q ∩S∗M
Js
−n ≥ C−1h−τ .(4.94)

The estimate (4.93) follows immediately from (2.10) and the definitions (3.11) of N0

and (2.11) of Λ.

To show (4.94), take arbitrary ρ ∈ V�+
Q ∩ S∗M , then ρ ∈ V�+

q ∩ S∗M for some

q ∈ Q ⊂ Q′
n(w, e). Take some ρ̃ ∈ V+

q ∩ S∗M ⊂ V�+
q ∩ S∗M . We have

Js
−n(ρ) ≥ C−1Js

−n(ρ̃) ≥ C−1J +
q ≥ C−1h−τ

where the first inequality is proved similarly to (4.19) (using that the diameter of
each V�

q ∩ S∗M , q ∈ A , is less than ε0), the second one follows from the defini-

tion (4.15) of J +
q , and the third one follows from (4.63). �

Lemma 4.19 shows that each sufficiently short weak stable leaf centered at a
point in V−

v is contained in the slightly larger set V�−
v , and same is true for weak

unstable leaves and the sets V+
Q ,V�+

Q . It will be useful in approximating Ω± by the
sets studied in Lemma 4.18; see (4.105), (4.107). As in Lemma 2.1 we fix a distance
function d(•, •) on S∗M .

Lemma 4.19. There exists ε1 > 0 depending only on V1,V� such that for all
ρ, ρ̃ ∈ S∗M we have

d(ρ, ρ̃) ≤ ε1, ρ̃ ∈W0s(ρ), ρ ∈ V−
v =⇒ ρ̃ ∈ V�−

v ,(4.95)

d(ρ, ρ̃) ≤ ε1, ρ̃ ∈W0u(ρ), ρ ∈ V+
Q =⇒ ρ̃ ∈ V�+

Q .(4.96)

Proof. It suffices to show that there exists a constant C depending only on (M, g)
such that for all ε1 > 0 and ρ, ρ̃ ∈ S∗M

d(ρ, ρ̃) ≤ ε1, ρ̃ ∈W0s(ρ) =⇒ d(ϕt(ρ), ϕt(ρ̃)) ≤ Cε1 for all t ≥ 0;(4.97)

d(ρ, ρ̃) ≤ ε1, ρ̃ ∈W0u(ρ) =⇒ d(ϕt(ρ), ϕt(ρ̃)) ≤ Cε1 for all t ≤ 0.(4.98)

Indeed, to show (4.95) and (4.96) it suffices to take ε1 small enough so that the dis-
tance between Vq∩S∗M and S∗M \V�

q is larger than Cε1 for all q ∈ {1, 2, . . . , Q, �}
(which is possible since Vq ⊂ V�

q). Then ϕt(ρ) ∈ Vq∩S∗M and d(ϕt(ρ), ϕt(ρ̃)) ≤ Cε1
together imply that ϕt(ρ̃) ∈ V�

q and it remains to use the definitions (3.2), (4.81),
(4.91), (4.92).

We show (4.97), with (4.98) proved similarly. By the definition (2.13) of W0s(ρ)
we have ρ̃ = ϕr(ρ

′) for some ρ′ ∈ Ws(ρ) and r ∈ [−ε̃, ε̃]. Since stable leaves are
transversal to the flow lines of ϕt, we have

d(ρ′, ρ) + |r| ≤ Cε1.

By (2.20) there exists θ > 0 such that for all t ≥ 0

(4.99) d(ϕt(ρ), ϕt(ρ
′)) ≤ Ce−θtd(ρ, ρ′) ≤ Cε1.

On the other hand since ϕt(ρ̃) = ϕr(ϕt(ρ
′)) we have

(4.100) d(ϕt(ρ
′), ϕt(ρ̃)) ≤ C|r| ≤ Cε1.

Combining (4.99)–(4.100) we get (4.97). �
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Since the stable leaves, the unstable leaves, and the flow trajectories are transver-
sal to each other, if ρ, ρ̃ ∈ S∗M are sufficiently close to each other then the weak
stable leaf W0s(ρ) intersects the unstable leaf Wu(ρ̃), and same is true for the stable
leaf Ws(ρ) and the weak unstable leaf W0u(ρ̃) – see (2.24). This immediately gives

Lemma 4.20. There exist C2 ≥ 1, ε2 > 0 depending only on (M, g) such that for
each ρ, ρ̃ ∈ S∗M with d(ρ, ρ̃) ≤ ε2 there exist

ρ′ ∈Ws(ρ), ρ′′ ∈Wu(ρ̃), r ∈ R such that ρ′ = ϕr(ρ
′′);(4.101)

max
{
d(ρ1, ρ2) | ρ1, ρ2 ∈ {ρ, ρ̃, ρ′, ρ′′}

}
+ |r| ≤ C2d(ρ, ρ̃).(4.102)

We now define the sets Ω±
k from Lemmas 4.16–4.17. Let ε1, ε2, C2 be the con-

stants from Lemmas 4.19 and 4.20. Without loss of generality we may assume that
ε1 ≤ ε2. We will also assume that ε2 is small enough depending only on (M, g) in
the beginning of the proofs of Lemmas 4.22 and 4.23. Fix finitely many points

ρ1, . . . , ρR ∈W0u(ρ0),

with R depending only on (M, g) and ε1, such that each point in W0u(ρ0) is ε1
2C2

close to at least one of the points ρ1, . . . , ρR.

Lemma 4.21. We have Ω± ⊂ Ω±
1 ∪ · · · ∪ Ω±

R where for k = 1, . . . , R

Ω+
k := η1(κ(Σ

+
k )), Ω−

k := y1(κ(Σ
−
k ))

and the sets Σ±
k ⊂ V+

e ∩ S∗M are defined by

Σ+
k := {ρ ∈ V+

Q ∩ S∗M | d(ρ, ρk) ≤
ε1
C2
},

Σ−
k :=

{
ρ ∈ V−

v ∩ V+
e ∩ S∗M | d(ρ,W0u(ρ0)) ≤ C3h

1/6, d(ρ, ρk) ≤
ε1
C2

}
where C3 is a sufficiently large constant depending only on V1,V�, C0.

Proof. Recalling the definitions (4.86),(4.88) of Ω± we see that it suffices to show
the inclusions

V+
Q ∩ S∗M ⊂ Σ+

1 ∪ · · · ∪ Σ+
R,(4.103)

V−
v ∩ V+

e ∩ S∗M ∩ κ−1({|η1| ≤ h1/6}) ⊂ Σ−
1 ∪ · · · ∪ Σ−

R.(4.104)

We first take arbitrary ρ ∈ V+
Q∩S∗M . By (4.77) we have d(ρ,W0u(ρ0)) ≤ C0h

2/3 ≤
ε1
2C2

. Therefore there exists k ∈ {1, . . . , R} such that d(ρ, ρk) ≤ ε1
C2

. It follows that

ρ ∈ Σ+
k which gives (4.103).

We next take arbitrary ρ ∈ V−
v ∩ V+

e ∩ S∗M such that |η1(κ(ρ))| ≤ h1/6. Since
κ(W0u(ρ0) ∩ Uρ0

) = {η1 = 0, η2 = 1} ∩ Vρ0
, we have d(ρ,W0u(ρ0)) ≤ C3h

1/6 for
some constant C3. In particular d(ρ,W0u(ρ0)) ≤ ε1

2C2
, so there exists k ∈ {1, . . . , R}

such that d(ρ, ρk) ≤ ε1
C2

. It follows that ρ ∈ Σ−
k which gives (4.104). �

We are now ready to finish the proofs of Lemmas 4.16–4.17. Using Lemma 4.21
we see that Lemma 4.16 follows from

Lemma 4.22. Let ν > 0 be fixed in Lemma 4.18. Then for each k ∈ {1, . . . , R}
the set Ω+

k is ν
6 -porous on scales Chτ to C−1.
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ρk

ρ
ρ

Σ+
k

V +
Q

γs
k

W0u(ρ)

W0u(ρ0)

ε1/C2

Figure 10. An illustration of the proof of Lemma 4.22. We
use the coordinates provided by the diffeomorphism κ, with y1
the horizontal coordinate and η1 the vertical one; we restrict to
S∗M = {η2 = 1} and suppress the flow direction ∂y2

(thus ρ′, ρ′′

are mapped to the same point). The darker shaded set is Σ+
k and

the lighter shaded set is V�+
Q .

Proof. Without loss of generality we may assume that Σ+
k �= ∅. Then ρk lies in the

ε1
C2
≤ ε2 sized neighborhood of V+

e ∩ S∗M � Uρ0
. Let γs

k : [−Cε2, Cε2] → S∗M

be a stable interval (see Definition 2.13) such that γs
k(0) = ρk. Here C is chosen

large enough (depending only on (M, g)) so that every point ρ′ ∈ Ws(ρk) with
d(ρk, ρ

′) ≤ ε2 lies in γs
k. We may choose ε2 small enough so that γs

k ⊂ Uρ0
.

Since Es(ρk) ⊂ Tρk
(S∗M) is transversal to Tρk

W0u(ρ0) and (recalling that κ

maps S∗M to {η2 = 1} and W0u(ρ0) to {η1 = 0, η2 = 1})
dκ(ρk)(Tρk

(S∗M)) = {dη2 = 0}, dκ(ρk)(Tρk
W0u(ρ0)) = {dη1 = dη2 = 0}

we have d(η1 ◦ κ)(ρk)γ̇s
k(0) �= 0. Therefore if ε2 is small enough depending only on

(M, g) then the map

ψs
k := η1 ◦ κ ◦ γs

k : [−Cε2, Cε2]→ R

is a diffeomorphism onto its image. We extend ψs
k to a global diffeomorphism R→ R

so that it satisfies the derivative bounds (2.76) with some constant C1 depending
only on (M, g). Define

Ω̃+
k := ψs

k

(
(γs

k)
−1(V�+

Q )
)
= η1(κ(γ

s
k ∩ V

�+
Q )) ⊂ R.

Then by Lemmas 4.18 and 2.12 the set Ω̃+
k is ν

2 -porous on scales Chτ to C−1.
We now claim that

(4.105) Ω+
k ⊂ Ω̃+

k + [−Ch,Ch].

Indeed, take arbitrary ρ ∈ Σ+
k . Then d(ρ, ρk) ≤ ε1

C2
≤ ε2, so by Lemma 4.20 there

exist

ρ′ ∈Ws(ρk), ρ′′ ∈Wu(ρ), r ∈ [−ε1, ε1] such that ρ′ = ϕr(ρ
′′).

(See Figure 10.) By (4.102) we have d(ρk, ρ
′) ≤ ε1 ≤ ε2; thus ρ

′ ∈ γs
k. We also have

d(ρ, ρ′) ≤ ε1, ρ
′ ∈ W0u(ρ), and ρ ∈ V+

Q ∩ S∗M , which by Lemma 4.19 imply that

ρ′ ∈ V�+
Q . Therefore

(4.106) η1(κ(ρ
′)) ∈ Ω̃+

k .
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ρk
γu
k

W0s(ρ)

ρ

ρ

Σ−
k

V −
v

ε
1/C

2 Ch1/6

Figure 11. An illustration of the proof of Lemma 4.23, following
the same convention as Figure 10. The darker shaded set is Σ−

k

and the lighter shaded set is V�−
v .

On the other hand by Lemma 4.15 we have

|η1(κ(ρ))− η1(κ(ρ
′))| ≤ Ch.

Since Ω+
k = η1(κ(Σ

+
k )), together with (4.106) this gives (4.105).

To show that Ω+
k is ν

6 -porous on scales Chτ to C−1 it now remains to use (4.105),

Lemma 2.11, and the previously established porosity of Ω̃+
k . �

Finally, using Lemma 4.21 we see that Lemma 4.17 follows from

Lemma 4.23. Let ν > 0 be fixed in Lemma 4.18. Then for each k ∈ {1, . . . , R}
the set Ω−

k is ν
6 -porous on scales Ch1/(6Λ) to C−1.

Proof. Without loss of generality we may assume that Σ−
k �= ∅. Then ρk lies in the

ε1
C2
≤ ε2 sized neighborhood of V+

e ∩ S∗M � Uρ0
. Let γu

k : [−Cε2, Cε2]→ S∗M be

an unstable interval (see Definition 2.13) such that γu
k (0) = ρk. Here C is chosen

large enough (depending only on (M, g)) so that every point ρ′′ ∈ Wu(ρk) with
d(ρk, ρ

′′) ≤ ε2 lies in γu
k . We may choose ε2 small enough so that γu

k ⊂ Uρ0
.

Since κ is a symplectomorphism and p = η2◦κ by part (4) of Lemma 2.3, κ maps
the Hamiltonian field Hp into ∂y2

. Since Eu(ρk) is transversal to Hp and tangent to
W0u(ρ0), which is mapped by κ to {η1 = 0, η2 = 1}, we have d(y1◦κ)(ρk)γ̇u

k (0) �= 0.
Therefore if ε2 is small enough depending only on (M, g) then the map

ψu
k := y1 ◦ κ ◦ γu

k : [−Cε2, Cε2]→ R

is a diffeomorphism onto its image. We extend ψu
k to a global diffeomorphism

similarly to the proof of Lemma 4.22 and define

Ω̃−
k := ψu

k

(
(γu

k )
−1(V�−

v )
)
= y1(κ(γ

u
k ∩ V�−

v )) ⊂ R.

Then by Lemmas 4.18 and 2.12 the set Ω̃−
k is ν

2 -porous on scales Ch1/(6Λ) to C−1.
We now claim that

(4.107) Ω−
k ⊂ Ω̃−

k + [−Ch1/6, Ch1/6].
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Indeed, take arbitrary ρ ∈ Σ−
k . Then d(ρ, ρk) ≤ ε1

C2
≤ ε2, so by Lemma 4.20 there

exist

ρ′ ∈Ws(ρ), ρ′′ ∈Wu(ρk), r ∈ [−ε1, ε1] such that ρ′ = ϕr(ρ
′′).

(See Figure 11.) By (4.102) we have d(ρk, ρ
′′) ≤ ε1 ≤ ε2; thus ρ′′ ∈ γu

k . We also
have d(ρ, ρ′′) ≤ ε1, ρ

′′ ∈ W0s(ρ), and ρ ∈ V−
v ∩ S∗M , which by Lemma 4.19 imply

that ρ′′ ∈ V�−
v . Therefore

(4.108) y1(κ(ρ
′′)) ∈ Ω̃−

k .

Since d(ρ,W0u(ρ0)) ≤ C3h
1/6 and ρ′ ∈W0u(ρ0)∩Ws(ρ), we have d(ρ, ρ′) ≤ Ch1/6.

We also have y1(κ(ρ
′)) = y1(κ(ρ

′′)). It follows that

|y1(κ(ρ))− y1(κ(ρ
′′))| ≤ Ch1/6.

Since Ω−
k = y1(κ(Σ

−
k )), together with (4.108) this gives (4.107).

To show that Ω−
k is ν

6 -porous on scales Ch1/(6Λ) to C−1 it remains to use (4.107),

Lemma 2.11, and the previously established porosity of Ω̃−
k . �

4.6.3. Application of the fractal uncertainty principle. We now use the fractal un-
certainty principle (in the form given by Proposition 2.10) and the porosity state-
ments proved in Lemmas 4.16–4.17 to establish an uncertainty principle for neigh-
borhoods of the right-hand sides of (4.89)–(4.90). Recall the sets Ω± ⊂ R from
(4.86), (4.88). As before, denote by Ω±(α) := Ω± + [−α, α] the α-neighborhood
of Ω±.

Lemma 4.24. Define the following subsets of R2:

Υ+ :=
{
(η1, η2)

∣∣∣ 1
4
≤ η2 ≤ 4,

η1
η2
∈ Ω+(hτ )

}
,(4.109)

Υ− :=
{
(y1, y2) | y1 ∈ Ω−(h1/6)

}
.(4.110)

Then there exists β > 0 depending only on V1,V� such that

(4.111)
∥∥�Υ−(y)�Υ+(hDy)

∥∥
L2(R2)→L2(R2)

≤ Chβ.

Proof. (1) Put Ω̂− := Ω−(h1/6), Ω̂+ := Ω+(hτ ). We first show that
(4.112)∥∥�Υ−(y)�Υ+(hDy)

∥∥
L2(R2)→L2(R2)

≤ sup
η2∈[ 14 ,4]

‖�
̂Ω−(hDη1

)�−η2
̂Ω+(η1)‖L2(R)→L2(R).

Indeed, conjugating by the semiclassical Fourier transform we see that∥∥�Υ−(y)�Υ+(hDy)
∥∥
L2(R2)→L2(R2)

=
∥∥�Υ−(hDη)�Υ+(−η)

∥∥
L2(R2)→L2(R2)

.

Now take

f ∈ C∞
c (R2), g := �Υ−(hDη)�Υ+(−η)f.

For each η2 ∈ R define the functions fη2
, gη2

∈ L2(R) by fη2
(η1) := f(η1,−η2),

gη2
(η1) := g(η1,−η2). Then

gη2
=

{�
̂Ω−(hDη1

)�−η2
̂Ω+(η1)fη2

, η2 ∈ [ 14 , 4];

0, otherwise.

Writing ‖f‖2L2(R2) as the integral of ‖fη2
‖2L2(R) over η2, and same for the norm of g,

we obtain (4.112).
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(2) Fix η2 ∈ [ 14 , 4]. Denoting by Fh the one-dimensional unitary semiclassical
Fourier transform (see (2.60)), we have

(4.113) ‖�
̂Ω−(hDη1

)�−η2
̂Ω+(η1)‖L2(R)→L2(R) = ‖�̂Ω−Fh�−η2

̂Ω+‖L2(R)→L2(R).

Let Ω−
k , Ω

+
� be the sets defined in Lemmas 4.16–4.17; here |k|, |�| ≤ C. We put

Ω̂−
k := Ω−

k (h
1/6), Ω̂+

� := Ω+
� (h

τ ).

By Lemma 4.17 we have Ω̂− ⊂
⋃

k Ω̂
−
k , which means that �

̂Ω− =
∑

k b−�̂Ω−
k

for

some b− ∈ L∞(R), 0 ≤ b− ≤ 1. Similarly by Lemma 4.16 we may write �−η2
̂Ω+ =∑

� �−η2
̂Ω+

�
b+ where 0 ≤ b+ ≤ 1. This gives

(4.114) ‖�
̂Ω−Fh�−η2

̂Ω+‖L2(R)→L2(R) ≤
∑
k,�

‖�
̂Ω−

k
Fh�−η2

̂Ω+
�
‖L2(R)→L2(R).

By Lemma 4.16 each set Ω+
� is ν-porous on scales Chτ to C−1, where ν > 0 depends

only on V1,V�. By Lemma 2.11 the set Ω̂+
� is then ν

3 -porous on scales Chτ to C−1.

It follows from Definition 2.8 that −η2Ω̂+
� is ν

3 -porous on scales 4Chτ to (4C)−1.

Similarly, by Lemmas 4.17 and 2.11, each set Ω̂−
k is ν

3 -porous on scales Ch1/(6Λ)

to C−1.
We now apply Proposition 2.10 to the sets Ω̂−

k , −η2Ω̂
+
� . By the discussion in the

previous paragraph, for h small enough these sets are ν
3 -porous on scales hγ−

0 to

hγ−
1 and hγ+

0 to hγ+
1 respectively, where

γ−
0 =

1

6Λ
− ε, γ+

0 = τ − ε, γ−
1 = γ+

1 = ε :=
1

60Λ
.

Recalling from (4.61) that τ = 1− 1
10Λ , we compute

(4.115) γ := min(γ+
0 , 1− γ−

1 )−max(γ+
1 , 1− γ−

0 ) =
1

30Λ
> 0.

If β0 > 0 is the constant from Proposition 2.10 with ν replaced by ν
3 , then (2.74)

gives

(4.116) ‖�
̂Ω−

k
Fh�−η2

̂Ω+
�
‖L2(R)→L2(R) ≤ Chβ, β := γβ0 > 0.

Together (4.112)–(4.114) and (4.116) imply (4.111). �

4.6.4. Microlocal conjugation and the proof of Proposition 4.14. We now conjugate
the operators A−

v , A
+
Q by Fourier integral operators and give the proof of Proposi-

tion 4.14 using Lemma 4.24.
Let κ be the symplectomorphism defined in (4.80). As explained in §4.6.1 we

may assume that Lκ is generated by a single phase function. Then (see §2.3.3)
there exist Fourier integral operators

B = B(h) : L2(M)→ L2(R2), B ∈ Icomp
h (κ),

B′ = B′(h) : L2(R2)→ L2(M), B′ ∈ Icomp
h (κ−1)

which quantize κ near κ(V+
e ∩{ 14 ≤ |ξ|g ≤ 4})× (V+

e ∩{ 14 ≤ |ξ|g ≤ 4}) in the sense
of (2.54). In particular

(4.117) B′B = I +O(h∞) microlocally near V+
e ∩ {

1

4
≤ |ξ|g ≤ 4}.
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By Lemma 2.3 all derivatives of κ are bounded independently of the choice of
the base point ρ0 fixed in (4.79). Thus we may choose B,B′ which are bounded
uniformly in h, ρ0; that is, all derivatives of the corresponding phase functions and
amplitudes in the oscillatory integral representations (2.43) are bounded.

By Egorov’s theorem (2.37) and since WFh(Ae) ⊂ Ve ∩ { 14 < |ξ|g < 4} by (4.13)
and V+

e = ϕ1(Ve) by (3.2), we have

WFh(Ae(−1)) ⊂ V+
e ∩ {

1

4
< |ξ|g < 4}.

Fix a pseudodifferential cutoff Ze ∈ Ψ0
h(M) such that

(4.118) WFh(Ze) ⊂ V+
e ∩ {

1

4
< |ξ|g < 4}, WFh(I − Ze) ∩WFh(Ae(−1)) = ∅.

Since A+
Q is the sum of polynomially many in h terms of the form A+

q (see (3.9))
with the words q ∈ Q′

n(w, e) starting with the letter e (see (4.62)), we see from the
definition (3.3) of A+

q that

(4.119) A+
Q = ZeA

+
Q +O(h∞)L2(M)→L2(M).

Since WFh(Ze) ∩WFh(I − B′B) = ∅ by (4.117)–(4.118), we then have

(4.120) A−
vA

+
Q = A−

vZeB′BA+
Q +O(h∞)L2(M)→L2(M).

We also have norm bounds

‖A−
v ‖L2(M)→L2(M) ≤ 2,(4.121)

‖A+
Q‖L2(M)→L2(M) ≤ C log3(1/h).(4.122)

Here (4.121) follows from (3.15) and (4.122) follows from Lemma 4.5 and (4.63).
By the equivariance of pseudodifferential operators under conjugation by Fourier

integral operators (see (2.52)) the conjugated operators BA−
vZeB′ and BA+

QB′ for-
mally correspond to the symbols

(a−v σh(Ze)) ◦ κ−1, a+Q ◦ κ−1.

By (4.89)–(4.90) the supports of the above symbols satisfy

κ(supp a+Q) ⊂
{η1
η2
∈ Ω+

}
∩

{1

4
≤ η2 ≤ 4

}
,(4.123)

κ
(
supp(a−v σh(Ze))

)
∩

{∣∣∣η1
η2

∣∣∣ ≤ h1/6
}
⊂ {y1 ∈ Ω−}(4.124)

where the sets Ω± ⊂ R are defined in (4.86), (4.88). Here we denote points in T ∗R2

by (y, η) where y, η ∈ R2.
We now make two microlocalization statements which quantize the above con-

tainments. The first statement, proved using the results of §4.3.3 and §2.3.4, quan-
tizes (4.123):

Lemma 4.25. Assume that the constant ε0 in §4.2 is chosen small enough depend-
ing only on (M, g). Let Υ+ ⊂ R2 be defined in (4.109). Then

(4.125) BA+
Q = �Υ+(hDy)BA+

Q +O(h∞)L2(M)→L2(R2).

Proof. (1) By (4.119) it suffices to prove that �R2\Υ+(hDy)BZeA
+
Q =

O(h∞)L2(M)→L2(R2). Since Q has polynomially many in h elements, recalling the

definition (3.9) of A+
Q it suffices to show that uniformly in q ∈ Q

(4.126) �R2\Υ+(hDy)BZeA
+
q = O(h∞)L2(M)→L2(R2).
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We henceforth fix q ∈ Q. Recalling the definitions (4.86) and (4.81) of Ω+ and V+
Q

we see that Ω+
q ⊂ Ω+ where

(4.127) Ω+
q := η1(κ(V+

q ∩ S∗M)) ⊂ R.

Recalling the definition (4.109) of Υ+ we then have Υ+
q ⊂ Υ+ where

(4.128) Υ+
q :=

{
(η1, η2)

∣∣∣ 1
4
≤ η2 ≤ 4,

η1
η2
∈ Ω+

q (h
τ )

}
.

Moreover, we have A+
q = U+

q U(−n) where the cutoff propagator U+
q is defined

in (4.45). Since U(−n) is unitary, (4.126) follows from the bound

(4.129) �
R2\Υ+

q
(hDy)BZeU

+
q = O(h∞)L2(M)→L2(R2).

(2) Let Bq, B
′
q, q ∈ A , be the Fourier integral operators defined in (4.55). They

quantize the symplectomorphisms κq defined in (4.49). Since WFh(Aq) ⊂ Vq∩{ 14 <
|ξ|g < 4} we have

Aq = B′
qBqAq +O(h∞)L2(M)→L2(M)(4.130)

= B′
qBqAqB

′
qBq +O(h∞)L2(M)→L2(M).

Put Âq := BqAqB
′
q. By (2.52) and part (4) of Lemma 2.3 we have

Âq ∈ Ψ0
h(R

2), WFh(Âq) ⊂ κq(WFh(Aq)) � {1
4
< η2 < 4}.

Thus there exists an h-independent function χ ∈ C∞
c (R2) such that for all q ∈ A

suppχ ⊂ {1
4
< η2 < 4}, Âq = Âqχ(hDy) +O(h∞)L2(R2)→L2(R2).

Together with (4.130) this implies

Aq = AqB
′
qχ(hDy)Bq +O(h∞)L2(M)→L2(M).

We write q = q1 . . . qn, where q1 = e (see (4.62)). Recalling (4.45), we have

U+
q = U+

q B′
qnχ(hDy)Bqn +O(h∞)L2(M)→L2(M).

Thus (4.129) follows from the estimate

(4.131) �
R2\Υ+

q
(hDy)BZeU

+
q B′

qnχ(hDy) = O(h∞)L2(R2)→L2(R2)

and the L2-boundedness of Fourier integral operators.
Now, take arbitrary f ∈ L2(R2) such that ‖f‖L2 = 1. Following (4.56) define

Φθ(y) = 〈y, θ〉, y, θ ∈ R2. Using the Fourier inversion formula we write

(4.132) χ(hDy)f(y) = (2πh)−1

∫
R2

χ(θ)Fhf(θ)e
iΦθ(y)/h dθ

where Fhf(θ) = (2πh)−1f̂(θ/h) is the semiclassical Fourier transform of f , satisfy-
ing ‖Fhf‖L2(R2) = 1. Using Hölder’s inequality we bound

‖�
R2\Υ+

q
(hDy)BZeU

+
q B′

qnχ(hDy)f‖L2(R2)

≤ Ch−1 sup
θ∈suppχ

‖�
R2\Υ+

q
(hDy)BZeU

+
q B′

qn(e
iΦθ/h)‖L2(R2).
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Thus to prove (4.131) it is enough to show the following estimate on the propagated
Lagrangian distributions U+

q B′
qn(e

iΦθ/h):

(4.133) sup
θ∈suppχ

‖�
R2\Υ+

q
(hDy)BZeU

+
q B′

qn(e
iΦθ/h)‖L2(R2) = O(h∞).

(3) Henceforth we fix θ ∈ suppχ. In particular, 1
4 + ε ≤ θ2 ≤ 4− ε for some fixed

ε > 0. Let N > 0. Using Proposition 4.8 we write (recalling that q1 = e)

(4.134) U+
q B′

qn(e
iΦθ/h) = U(1)B′

e(e
iΦq,θ/haq,θ,N) +O(hN)L2(M).

Here Φq,θ is a generating function (in the sense of (2.42)) of the propagated La-

grangian L̂q,θ = κe(Lq,θ) defined in (4.50).

We now analyze the function BZeU(1)B′
e(e

iΦq,θ/haq,θ,N). By (4.47), the com-
position property (4) in §2.3.3, and the condition (4.118) on WFh(Ze) we have

BZeU(1)B′
e ∈ Icomp

h (κ̃), κ̃ := κ ◦ ϕ1 ◦ κ−1
e |κe(Ve).

Recall from (4.49) and (4.80) that κe = κρe
, κ = κρ0

are homogeneous sym-
plectomorphisms constructed using Lemma 2.3 and ρ0 ∈ ϕ1(Ve ∩ S∗M) (as as-
sumed in Proposition 4.14), ρe ∈ Ve ∩ S∗M , with the diameter of Ve ∩ S∗M
bounded above by ε0. In particular, dκe(ρe) maps the flow/stable/unstable spaces
E0(ρe), Es(ρe), Eu(ρe) to R∂y2

,R∂η1
,R∂y1

and a similar statement is true for
dκ(ρ0). Thus for ε0 small enough, the differential dκ̃(0, 0, 0, 1) maps the vertical
subspace ker dy to an almost vertical subspace. It follows that κ̃ has a generating
function in the sense of (2.47), and thus BZeU(1)B′

e can be written in the oscillatory
integral form (2.48). (See the proof of [NZ09, Lemma 4.4] for details.) Moreover,

by Lemma 4.7 the Lagrangian L̂q,θ is a graph in the y variables and its tangent
planes are O(ε0) close to horizontal. Thus for ε0 small enough the Lagrangian
submanifold

L̃ := κ̃(L̂q,θ) = κ
(
ϕn(κ

−1
qn (L̂θ)) ∩ V+

q

)
⊂ T ∗R2

is also a graph in the y variables, and thus can be written in the form (2.42):

L̃ = {(y, dΦ̃(y)) | y ∈ Ũ }.
From the properties of L̂q,θ in Lemma 4.7 we see that for every α

(4.135) sup
˜U

|∂αΦ̃| ≤ Cα

where the constant Cα depends only on (M, g) and α.
We now apply the method of stationary phase using (2.50), (2.45) and get

(4.136) BZeU(1)B′
e(e

iΦq,θ/haq,θ,N) = ei
˜Φ/hã+O(hN)L2(R2).

Here ã is given by the stationary phase expansion and depends on the symbol
aq,θ,N; see [NZ09, Lemma 4.1] for details. From the properties of the symbol aq,θ,N

in Proposition 4.8 we see that ã ∈ C∞
c (Ũ ) and for all α

(4.137) d(supp ã,R2 \ Ũ ) ≥ C−1, sup |∂αã| ≤ CN,α.

(4) Together (4.134) and (4.136) give

BZeU
+
q B′

qn(e
iΦθ/h) = ei

˜Φ/hã+O(hN)L2(R2).

Since N is chosen arbitrary, to prove (4.133) it suffices to show that

(4.138) ‖�
R2\Υ+

q
(hDy)(e

i˜Φ/hã)‖L2(R2) = O(hN).
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To do that we use Proposition 2.7 (which is a Fourier localization statement for

Lagrangian distributions) with h′ := hτ , U := Ũ , Φ := Φ̃, K := supp ã, and a := ã.
The assumptions (2.55) and (2.57) of that proposition are satisfied due to (4.135)
and (4.137). Next, define

Ω̃ := {dΦ̃(y) | y ∈ Ũ } ⊂ R2.

Then Ω̃ is the projection of L̃ onto the η variables. Since L̃ ⊂ κ(V+
q ∩ p−1(θ2)),

recalling the definition (4.127) of Ω+
q we have

Ω̃ ⊂ (θ2Ω
+
q )× {θ2}.

As explained in the paragraph preceding Lemma 4.15, the diameter of Ω+
q is

bounded above by Chτ . Then diam Ω̃ ≤ Chτ as well, giving the assumption (2.56).
Thus Proposition 2.7 applies, giving

‖�
R2\˜Ω( 1

8h
τ )(hDy)(e

i˜Φ/hã)‖L2(R2) ≤ CNhN.

Since the neighborhood Ω̃( 18h
τ ) lies inside Υ+

q by (4.128) and (4.87), this gives
(4.138), finishing the proof. �

Our second microlocalization statement quantizes (4.124):

Lemma 4.26. Let Υ− ⊂ R2 be defined in (4.110). Then there exists χ− ∈
C∞

c (R2; [0, 1]) such that suppχ− ⊂ Υ− and

(4.139) A−
vZeB′�Υ+(hDy) = A−

vZeB′χ−(y)�Υ+(hDy) +O(h2/3−)L2(R2)→L2(M).

Proof. By Lemma 3.1 (recalling that we suppressed the ‘−’ sign in the notation
there) and the product formula in the Ψcomp

1/6+ calculus we have

a−v ∈ Scomp
1/6+ (T ∗M), A−

vZe = Oph
(
a−v σh(Ze)

)
+O(h2/3−)L2(M)→L2(M).

Then by (4.117)–(4.118) we get

A−
vZe = B′BOph

(
a−v σh(Ze)

)
+O(h2/3−)L2(M)→L2(M).

Thus it suffices to show that there exists χ+ ∈ C∞
c (R2; [0, 1]) such that χ+ = 1 on

Υ+ and∥∥BOph
(
a−v σh(Ze)

)
B′(1− χ−(y))χ+(hDy)

∥∥
L2(R2)→L2(R2)

= O(h2/3−).

By (2.52) and since σh(BB′) = 1 on κ(WFh(Ze)) we have

BOph
(
a−v σh(Ze)

)
B′ = Oph

(
(a−v σh(Ze)) ◦ κ−1

)
+O(h2/3−)L2(R2)→L2(R2).

Thus it is enough to show the bound

(4.140)
∥∥Oph

(
(a−v σh(Ze))◦κ−1

)
(1−χ−(y))χ+(hDy)

∥∥
L2(R2)→L2(R2)

= O(h2/3−).

We now define the cutoff functions χ±, in a way that they lie in the symbol class
Scomp
1/6 (R2). By (4.87) and (4.109) we have

Υ+
( 1

10
h1/6

)
⊂

{∣∣∣η1
η2

∣∣∣ ≤ h1/6
}
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where Υ+(α) := Υ+ + B(0, α) denotes the α-neighborhood of Υ+. By [DZ16,
Lemma 3.3] there exists χ+ ∈ Scomp

1/6 (R2; [0, 1]) such that

suppχ+ ⊂
{∣∣∣η1

η2

∣∣∣ ≤ h1/6
}
, supp(1− χ+) ∩Υ+ = ∅.

Next, by (4.124) and (4.110) we have

Υ̃−(h1/6) ⊂ Υ− where Υ̃− := y
(
κ(supp(a−v σh(Ze))) ∩ {η ∈ suppχ+}

)
.

Thus by another application of [DZ16, Lemma 3.3] there exists χ− ∈ Scomp
1/6 (R2; [0, 1])

such that
suppχ− ⊂ Υ−, supp(1− χ−) ∩ Υ̃− = ∅.

To prove (4.140) it remains to use the product formula in the Ψ1/6+(R
2) calculus

(see e.g. [Zw12, Theorems 4.18 and 4.23]) and the identity(
(a−v σh(Ze)) ◦ κ−1

)
(1− χ−(y))χ+(η) ≡ 0

which follows from the fact that supp(1− χ−) ∩ Υ̃− = ∅. �

Armed with Lemmas 4.25–4.26 we are finally ready to give

Proof of Proposition 4.14. We have

A−
vA

+
Q = A−

vZeB′�Υ+(hDy)BA+
Q +O(h∞)L2(M)→L2(M)

= A−
vZeB′χ−(y)�Υ+(hDy)BA+

Q +O(h2/3−)L2(M)→L2(M)

where the first line follows from (4.120), Lemma 4.25, and (4.121); the second line
follows from Lemma 4.26 and (4.122).

Using the norm bounds (4.121)–(4.122) and the fact that Ze,B′,B are bounded
in L2 → L2 norm uniformly in h, we get

‖A−
vA

+
Q‖L2(M)→L2(M) ≤ C log3(1/h)‖�Υ−(y)�Υ+(hDy)‖L2(R2)→L2(R2) +O(h2/3−).

Using the uncertainty principle given by Lemma 4.24 we then have

‖A−
vA

+
Q‖L2(M)→L2(M) ≤ Chβ log3(1/h) +O(h2/3−).

This gives (4.78) (with a smaller value of β), finishing the proof. �

5. Propagation of observables up to local Ehrenfest time

In this section we prove Propositions 4.2 and 4.4 on the structure of the operators
A±

q when J±
q ≤ Ch−δ. We will focus on the operators A−

q , with A+
q handled the

same way (reversing the direction of propagation). Recall from (3.3) that

A−
q = Aqn−1

(n− 1) · · ·Aq0(0), q = q0 . . . qn−1

where the operators Aq ∈ Ψ−∞
h (M), q ∈ A = {1, . . . , Q}, are defined in §4.2. Here

we use the notation (2.35):

A(t) = U(−t)AU(t), U(t) = e−itP/h

where P ∈ Ψ−∞
h (M) is defined in (2.34).

To analyze A−
q we write it as a result of an iterative process, where at each

step we conjugate by U(1) and multiply by an operator Aq; see §5.1. We carefully
estimate the resulting symbols and the remainders at each step of the iteration,
using quantitative semiclassical expansions established in Appendix A. This largely
follows [Ri10, Section 7]; the estimates on the symbol of A−

q there are similar in



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CONTROL OF EIGENFUNCTIONS IN VARIABLE CURVATURE 443

spirit to those in [AN07a, Section 3.4]. Compared to [Ri10] we will obtain more
precise information on the propagated symbols in order to control the sums over
many operators A−

q which is needed in the proof of Proposition 4.4.

5.1. Iterative construction of the operators. Let q = q0 . . . qn−1 ∈ A • and
assume that n ≤ C0 log(1/h) for some constant C0. Define

(5.1) Âq,r := A−
qn−r...qn−1

, r = 1, . . . , n.

Then Âq,1 = Aqn−1
, A−

q = Âq,n, and we have the iterative formula

(5.2) Âq,r = U(−1)Âq,r−1U(1)Aqn−r
, r = 2, . . . , n.

The next statement gives the dependence of the full symbol of the operator Âq,r

on that of the operator Âq,r−1, with explicit remainders. We use the quantization
procedure Oph on M defined in (A.5).

Lemma 5.1. Assume that a ∈ C∞
c (T ∗M), supp a ⊂ { 14 ≤ |ξ|g ≤ 4}, and q ∈ A .

Then for each4 N ∈ N we have
(5.3)

U(−1)Oph(a)U(1)Aq = Oph

(N−1∑
j=0

hjLj,q(a ◦ ϕ1)

)
+O(‖a‖C2N+17hN)L2→L2 .

Here each Lj,q is a differential operator of order 2j on T ∗M . We have L0,q = aq.
Moreover, each Lj,q is supported in Vq ∩ { 14 < |ξ|g < 4}.

In addition to N, the constant in O(•) depends only on (M, g), the choice of the
coordinate charts and cutoffs in (A.5), and the choice of the operators A1, . . . , AQ.
The operators Lj,q depend only on the above data as well as on j, q.

Proof. From the construction of Aq in §4.2 we have for all N

(5.4) Aq = Oph

(N−1∑
j=0

hjaq,j

)
+O(hN)L2→L2

for some h-independent aq,j ∈ C∞
c (T ∗M) such that supp aq,j ⊂ Vq ∩{ 14 < |ξ|g < 4}

and aq,0 = aq. Now (5.3) follows by combining the precise versions of Egorov’s
theorem, Lemma A.7, and of the product formula, (A.16). �

Now, arguing by induction on r with (5.4) as the base and (5.2), (5.3) as the
inductive step, we write for each N ∈ N

(5.5) Âq,r = Oph

(N−1∑
k=0

hka(k)q,r

)
+R(N)

q,r , r = 1, . . . , n

where:

• a
(k)
q,1 = aqn−1,k where the latter function is defined in (5.4);

• for r ≥ 2, we have

(5.6) a(k)q,r =

k∑
j=0

Lj,qn−r
(a

(k−j)
q,r−1 ◦ ϕ1)

where Lj,q are the operators from (5.3);

4We use boldface N here to avoid confusion with the propagation time defined in (3.11).
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• the remainder R
(N)
q,r satisfies the norm bound

(5.7) ‖R(N)
q,r ‖L2→L2 ≤ CNhN

(
1 +

r−1∑
�=1

N−1∑
k=0

‖a(k)q,�‖C2(N−k)+17

)
for some constant CN independent of q, r.

Here the bound (5.7) is obtained from the iterative remainder bound

‖R(N)
q,r ‖L2→L2 ≤ ‖R(N)

q,r−1‖L2→L2 · ‖Aqn−r
‖L2→L2 + C ′

NhN
N−1∑
k=0

‖a(k)q,r−1‖C2(N−k)+17

using that ‖Aq‖L2→L2 ≤ 1 + Ch1/2 similarly to (4.14).

Here are some basic properties of the symbols a
(k)
q,r which follow immediately

from their construction, using the notation (3.1), (3.2):

• a
(k)
q,r ∈ C∞

c (T ∗M) and

(5.8) supp a(k)q,r ⊂ V−
qn−r...qn−1

∩ {1
4
< |ξ|g < 4};

• a
(0)
q,r = a−qn−r...qn−1

, in particular a
(0)
q,n = a−q .

The following is a key estimate on the symbols a
(k)
q,r and their derivatives, proved

in §5.2. Recall that for a word q ∈ A • its Jacobian J−
q was defined in (4.15).

Lemma 5.2. Assume that V−
q �= ∅. Then we have the following bounds for all

r, k,m:

(5.9) ‖a(k)q,r‖Cm ≤ Ckmr4k+2m(J−
qn−r...qn−1

)2k+m

where the constant Ckm depends on k,m but not on r,q.

Remark. We allow the factor r4k+2m in (5.9) to simplify the proof; it does not
matter for Proposition 4.2 since r = O(log(1/h)). It is quite possible that more
careful analysis can remove this factor.

Using Lemma 5.2 we now give

Proof of Proposition 4.2. We consider the case of A−
q , with A+

q handled similarly.

By (5.9), recalling that J−
q ≤ C0h

−δ and n ≤ C0 log(1/h), we have for all k,m

(5.10) max
1≤r≤n

‖a(k)q,r‖Cm ≤ C ′
kmh−(2k+m)δ(log(1/h))4k+2m.

This implies that hka
(k)
q,n = O(h(1−2δ)k−)Scomp

δ
. Using additionally that sup |a(0)q,n| ≤

1 we see that a
(0)
q,n = a−q = O(1)Scomp

δ+
.

By Borel’s Theorem [Zw12, Theorem 4.15] there exists a symbol a�−q ∈
Scomp
δ+ (T ∗M) such that a�−q ∼

∑
k≥0 h

ka
(k)
q,n in the following sense:

a�−q =

N−1∑
k=0

hka(k)q,n +ON(h(1−2δ)N−)Scomp
δ

for all N ∈ N.

From the basic properties of the symbols a
(k)
q,n listed above we see that

a�−q = a−q +O(h1−2δ−)Scomp
δ

, supp a�−q ⊂ V−
q ∩ {

1

4
≤ |ξ|g ≤ 4}.
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By (5.5) and the L2 boundedness of operators with symbols in Scomp
δ we have for

all N

(5.11) A−
q = Âq,n = Oph(a

�−
q ) +R(N)

q,n +O(h(1−2δ)N−)L2→L2 .

The remainder R
(N)
q,n is estimated using (5.7) and (5.10):

(5.12) ‖R(N)
q,n ‖L2→L2 ≤ CNhN−(2N+17)δ(log(1/h))4N+35.

Since N can be chosen arbitrarily large and δ < 1
2 , together (5.11) and (5.12) imply

that A−
q = Oph(a

�−
q ) +O(h∞)L2→L2 , finishing the proof. �

5.2. Estimating the iterated symbols. In this section we prove Lemma 5.2. To
do this we differentiate the inductive formulas (5.6) and represent the terms in the
resulting expressions by the edges of a directed graph G . We then iterate (5.6) to

write each derivative of a
(k)
q,r as the sum of many terms, each corresponding to a

path of length r− 1 in G – see (5.23). The reduced graph G̃ , obtained by removing
the loops from G , is acyclic, which implies that the number of paths of length r− 1
in G is bounded polynomially in r. We finally analyze the term corresponding to
each path, bounding it in terms of the Jacobian J−

qn−r...qn−1
.

5.2.1. Graph formalism. We first introduce some notation to keep track of the
derivatives of the symbols. We fix some affine connection ∇ on T ∗M . For each
function a ∈ C∞(T ∗M) and m ∈ N0, let ∇ma be the m-th covariant derivative
of a, which is a section of ⊗mT ∗(T ∗M), the m-th tensor power of the cotangent
bundle of T ∗M . We fix an inner product on the fibers of T ∗(T ∗M) which naturally
induces a norm on each ⊗mT ∗(T ∗M). When supp a ⊂ { 14 ≤ |ξ|g ≤ 4} we have for
some constant C

(5.13) C−1‖a‖Cm ≤ max
j≤m

sup
ρ∈T∗M

‖∇ja(ρ)‖ ≤ C‖a‖Cm .

Fix N0 ∈ N0. The objects below will depend on N0 but for the sake of brevity we
will suppress it in the notation. Denote

(5.14) V := {(k,m) | k,m ∈ N0, 2k +m ≤ N0}.
Henceforth we write α = (k,m). Define the vector bundle over T ∗M

E :=
⊕
α∈V

Eα, E(k,m) := ⊗mT ∗(T ∗M)

and its sections composed of the derivatives of the symbols a
(k)
q,r:

(5.15) Aq,r ∈ C∞(T ∗M ; E ), Aq,r := (∇ma(k)q,r)(k,m)∈V , r = 1, . . . , n.

That is, in the biindex (k,m), k is the power of h and m is the number of derivatives
taken. We denote by

ια : Eα → E , πα : E → Eα

the natural embedding and projection maps.
The iterative rules (5.6) together with the chain rule imply the relations

(5.16) Aq,r(ρ) = Mqn−r
(ρ)Aq,r−1(ϕ1(ρ)), r = 2, . . . , n, ρ ∈ T ∗M \ 0

where the coefficients of the operators Lj,q determine the homomorphisms

Mq ∈ C∞(T ∗M \ 0;Hom(ϕ∗
1E ; E )), q ∈ A .
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Figure 12. A subgraph Ĝ of the reduced graph G̃ for N0 = 6,
with edges (k,m)→ (k,m− 1) and (k,m)→ (k − 1,m+ 2). The

full graph G̃ is obtained as follows: there is an edge from α to α′

in G̃ if and only if there is a nontrivial path from α to α′ in Ĝ .

That is, Mq(ρ) is a linear map E (ϕ1(ρ)) → E (ρ) depending smoothly on ρ ∈
T ∗M \ 0.

Define the directed graph5 G with the set of vertices V , which has an edge from
α = (k,m) to α′ = (k′,m′) if and only if

(5.17) 2k′ +m′ ≤ 2k +m, k′ ≤ k.

If (5.17) holds then we write

α→ α′.

The homomorphisms Mq are subordinate to the graph G in the following sense: we
may write them in the ‘block matrix’ form

(5.18) Mq =
∑
α→α′

ιαMq,α,α′πα′

where

(5.19) Mq,α,α′ := παMqια′ ∈ C∞(T ∗M \ 0;Hom(ϕ∗
1Eα′ ; Eα)).

That is, if ∇ma
(k)
q,r(ρ) depends on ∇m′

a
(k′)
q,r−1(ϕ1(ρ)) in (5.6), then (5.17) holds. This

is straightforward to see using (5.6) and the chain rule.
It will be important for our analysis to separate out the ‘diagonal’ part of Mq,

consisting of the homomorphisms ιαMq,α,απα corresponding to the loops α→ α in

5A directed graph is a pair (V,E) where V is a finite set of vertices and E ⊂ V × V is the set
of edges. There is an edge going from the vertex v1 to the vertex v2 if and only if (v1, v2) ∈ E.
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the graph G . Using (5.6) (recalling that L0,q = aq) and the chain rule we compute

(5.20) Mq,α,α(ρ) = aq(ρ) · (dϕ1(ρ)
T )⊗m, α = (k,m).

The remaining components of Mq correspond to the reduced graph G̃ , obtained by
removing all the loops α→ α from G ; see Figure 12.

5.2.2. Long paths and end of the proof. We now restrict to the case r = n in
Lemma 5.2, proving the bounds

(5.21) ‖a(k̃)q,n‖Cm̃ ≤ Ck̃m̃n4k̃+2m̃(J−
q )2k̃+m̃, k̃, m̃ ∈ N0.

The general case follows from here by replacing q with qn−r . . . qn−1.
By (5.13) and the support property (5.8) see that (5.21) follows from

(5.22) sup
ρ∈V−

q ∩{ 1
4≤|ξ|g≤4}

‖Aq,n(ρ)‖ ≤ CN0
n2N0(J−

q )N0 .

Here N0 was the natural number used in (5.14) and thus in the definition (5.15) of

Aq,n. To obtain (5.21) we put N0 := 2k̃ + m̃.
In the rest of this section we prove (5.22). Iterating (5.16) we get the following

formula for Aq,n:

(5.23) Aq,n(ρ) = Mq0(ρ)Mq1(ϕ1(ρ)) · · ·Mqn−2
(ϕn−2(ρ))Aq,1(ϕn−1(ρ)).

Using the decomposition (5.18) we write

(5.24) Aq,n(ρ) =
∑
�α∈P

ια1
Mq,�α(ρ)παn

Aq,1(ϕn−1(ρ))

where

(5.25) P := {�α = α1 . . . αn ∈ V n | αj → αj+1 for all j = 1, . . . , n− 1}
is the set of paths of length n− 1 in the graph G and

(5.26) Mq,�α(ρ) := Mq0,α1,α2
(ρ)Mq1,α2,α3

(ϕ1(ρ)) · · ·Mqn−2,αn−1,αn
(ϕn−2(ρ)).

Since supT∗M ‖Aq,1‖ ≤ C, using the triangle inequality in (5.24) we get for all
ρ ∈ T ∗M

(5.27) ‖Aq,n(ρ)‖ ≤ C
∑
�α∈P

‖Mq,�α(ρ)‖ ≤ C#(P) ·max
�α∈P

‖Mq,�α(ρ)‖.

Thus to show (5.22) (and thus finish the proof of Lemma 5.2) it remains to prove
the following

Lemma 5.3. There exists a constant C depending on N0 but not on n,q such that

#(P) ≤ Cn2N0 ,(5.28)

max
�α∈P

sup
ρ∈V−

q ∩{ 1
4≤|ξ|g≤4}

‖Mq,�α(ρ)‖ ≤ C(J−
q )N0 .(5.29)

Proof. (1) For each path �α ∈P we define the corresponding reduced path

R(�α) = β1 . . . β�+1 ∈ V �+1, βj �= βj+1 for all j

obtained by removing all the loops in �α: that is, �α has the form

(5.30) �α = β
s(1)−s(0)
1 β

s(2)−s(1)
2 . . . β

s(�+1)−s(�)
�+1
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β1 . . . β1 β2 . . . β2 β . . . β β +1 . . . β +1. . .

s(0) s(1) s(2) s( ) s( +1). . .

β1 β2 β β +1

. . .

Yq,1 Yq,2 Yq Yq +1

Zq,1 Zq,2 Zq −1 Zq

Figure 13. Top: the decomposition (5.30) of a path in G , with
the indices s(j) marked. Bottom: a representation of this decom-
position as a combination of loops and a path in the reduced graph

G̃ , with the homomorphisms in the right-hand side of (5.31).

where βs = ββ . . . β is the path obtained by repeating β ∈ V for s times and (s(j))
is a sequence such that

0 = s(0) < s(1) < s(2) < . . . < s(�) < s(�+1) = n.

See Figure 13.

For every �α ∈ P, R(�α) is a path in the reduced graph G̃ . The latter graph is
acyclic; indeed if (5.17) holds and (k,m) �= (k′,m′), then 3k′ +m′ < 3k+m. Since
0 ≤ 3k +m ≤ 3N0

2 ≤ 2N0 for all (k,m) ∈ V , we see that the length � of any path

in G̃ is bounded above by 2N0.

Now, the size of the range of R is bounded above by the number of paths in G̃ ,

which is finite (since G̃ is acyclic) and depends only on N0. On the other hand, if �β

is a fixed path in G̃ then elements of R−1(�β) are determined by s(1), . . . , s(�); thus
they are in one to one correspondence with size � subsets of {1, . . . , n − 1}. Thus

R−1(�β) has
(
n−1
�

)
≤ n2N0 elements. Together these two statements give (5.28).

(2) Take ρ ∈ V−
q ∩ { 14 ≤ |ξ|g ≤ 4} and �α ∈ P. Writing �α in the form (5.30), we

have

(5.31) Mq,�α(ρ) = Yq,1(ρ)Zq,1(ρ) · · ·Yq,�(ρ)Zq,�(ρ)Yq,�+1(ρ)

where

Yq,j(ρ) := Mqs(j−1)
,βj ,βj

(ϕs(j−1)
(ρ)) · · ·Mqs(j)−2,βj ,βj

(ϕs(j)−2(ρ)),

Zq,j(ρ) := Mqs(j)−1,βj ,βj+1
(ϕs(j)−1(ρ)).

That is, the factors Yq,j correspond to loops in the path �α and the factors Zq,j , to
‘true jumps’ between the loops. See Figure 13.

Using the formula (5.20) for the ‘diagonal terms’ Mq,α,α we compute

(5.32) Yq,j(ρ) =

( s(j)−2∏
r=s(j−1)

aqr(ϕr(ρ))

)
· (dϕs(j)−1−s(j−1)

(ϕs(j−1)
(ρ))T )⊗mj

where βj = (kj ,mj). Define the words

qj := qs(j−1)
. . . qs(j)−1, j = 1, . . . , �+ 1,

and note that q can be written as the concatenation

(5.33) q = q1q2 . . .q�+1.
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Since sup |aq| ≤ 1 and ϕs(j−1)
(ρ) ∈ V−

qj
∩ { 14 ≤ |ξ|g ≤ 4}, we obtain from (4.20)

‖Yq,j(ρ)‖ ≤ C‖dϕs(j)−s(j−1)
(ϕs(j−1)

(ρ))‖mj ≤ C(J−
qj
)mj ≤ C(J−

qj
)N0 .

We have ‖Zq,j(ρ)‖ ≤ C and the product (5.31) has 2� + 1 ≤ 4N0 + 1 elements.
Therefore by (4.25) and (5.33)

(5.34) ‖Mq,�α(ρ)‖ ≤ C(J−
q1
· · · J−

q�+1
)N0 ≤ C(J−

q )N0

giving (5.29). �

5.3. Summing over many words. We finally give the proof of Proposition 4.4.
By (4.16) for h small enough we have the following bound on the length of words
with Jacobians less than C0h

−δ ≤ h−1/2:

J−
p ≤ C0h

−δ, J +
r ≤ C0h

−δ =⇒ |p|, |r| ≤ C1 log(1/h), C1 :=
1

2Λ0
.

We now split the operator AF from (4.40) into pieces by the length of the words
involved:

AF =
∑

n−,n+≤C1 log(1/h)

AFn−,n+
, Fn−,n+

(p, r) :=

{
F (p, r) if p ∈ A n− , r ∈ A n+ ;

0, otherwise.

Using the triangle inequality we see that Proposition 4.4 follows from

Proposition 5.4. Let n± ≤ C1 log(1/h), fix δ ∈ [0, 1
2 ) and C0 > 0, and define

A ±
δ := {q ∈ A n± | J±

q ≤ C0h
−δ}.

Assume that

F : A −
δ ×A +

δ → C, sup |F | ≤ 1.

Then there exists a constant C depending only on δ, C0, A1, . . . , AQ such that

‖AF ‖L2→L2 ≤ C where AF :=
∑

(p,r)∈A −
δ ×A +

δ

F (p, r)A−
pA

+
r .

Proof. The proof proceeds by writing AF as a pseudodifferential operator and esti-
mating its full symbol. The complications arising from the fact that AF is the sum
over polynomially many in h terms are handled similarly to the proof of Lemma 3.1.

(1) Let p ∈ A −
δ , r ∈ A +

δ and fix N ∈ N to be chosen at the end of the proof
in (5.47). Following the analysis in §§5.1–5.2 (and its immediate analog for the
operators A+) we write similarly to (5.5) and (5.12)

(5.35)

A−
p = Oph

(N−1∑
k=0

hka
(k)
p,−

)
+O(hN−(2N+17)δ−)L2→L2 ,

A+
r = Oph

(N−1∑
k=0

hka
(k)
r,+

)
+O(hN−(2N+17)δ−)L2→L2

where (note we put a
(k)
p,− := a

(k)
p,n− in the notation of §5.1):

• a
(k)
p,−, a

(k)
r,+ ∈ C∞

c (T ∗M) satisfy the support conditions

(5.36) supp a
(k)
p,− ⊂ V−

p ∩ {
1

4
< |ξ|g < 4}, supp a

(k)
r,+ ⊂ V+

r ∩ {
1

4
< |ξ|g < 4}
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and the derivative bounds similar to (5.10)

(5.37) ‖a(k)p,−‖Cm , ‖a(k)r,+‖Cm = O(h−(2k+m)δ−);

• if we fix N± ≤ 2N and denote similarly to (5.15)

(5.38) A−
p := (∇ma

(k)
p,−)(k,m)∈V− , A+

r := (∇ma
(k)
r,+)(k,m)∈V+

,

where V± := {(k,m) | k,m ∈ N0, 2k +m ≤ N±}, then for each ρ ∈ T ∗M \ 0
we have similarly to (5.27)

(5.39) ‖A−
p (ρ)‖ ≤ C

∑
�α∈P−

‖M−
p,�α(ρ)‖, ‖A+

r (ρ)‖ ≤ C
∑

�α∈P+

‖M+
r,�α(ρ)‖

where P± are the sets of paths of length n± − 1 in the corresponding graphs
(see (5.25));
• the homomorphisms M−

p,�α(ρ), M
+
r,�α(ρ) are defined similarly to (5.26): if �α± =

α±
1 . . . α±

n± ∈P± then

M−
p,�α−(ρ) = M−

p0,α
−
1 ,α−

2

(ρ)M−
p1,α

−
2 ,α−

3

(ϕ1(ρ)) · · ·M−
pn−−2,α

−
n−−1,α

−
n−

(ϕn−−2(ρ)),

M+
r,�α+(ρ) = M+

r1,α
+
1 ,α+

2

(ρ)M+

r2,α
+
2 ,α+

3

(ϕ−1(ρ)) · · ·M+

rn+−1,α
+
n+−1,α

+
n+

(ϕ−(n+−2)(ρ));

• finally, the homomorphisms

M±
q,α,α′ ∈ C∞(T ∗M \ 0;Hom(ϕ∗

∓1Eα′ ; Eα)), q ∈ A , α, α′ ∈ V±, α→ α′

are defined similarly to (5.19); in particular we have similarly to (5.20)

M−
q,α,α(ρ) = aq(ρ) · (dϕ1(ρ)

T )⊗m,

M+
q,α,α(ρ) = aq(ϕ−1(ρ)) · (dϕ−1(ρ)

T )⊗m

where α = (k,m).
(2) Using (5.35)–(5.37) together with the precise version of the product formula,
Lemma A.6, we obtain

A−
pA

+
r =

Oph

( ∑
k±,i≥0

k−+k++i<N

hk−+k++iLi(a
(k−)
p,− ⊗ a

(k+)
r,+ )|Diag

)
+O(hN−(2N+17)δ−)L2→L2

where each Li is a differential operator of order 2i on T ∗M × T ∗M . Recalling that
A = {1, . . . , Q}, we have

#(A ±
δ ) ≤ h−C2 where C2 := C1 logQ.

Summing over (p, r), we get

(5.40) AF = Oph

( ∑
k±,i≥0

k−+k++i<N

hk−+k++iak−,k+,i

)
+O(hN−(2N+17)δ−2C2−)L2→L2

where

ak−,k+,i :=
∑

(p,r)∈A −
δ ×A +

δ

F (p, r)Li(a
(k−)
p,− ⊗ a

(k+)
r,+ )|Diag.
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(3) We now estimate the derivatives of the symbols ak−,k+,i. We first compute

the principal term a0,0,0, using that a
(0)
p,− = a−p , a

(0)
r,+ = a+r similarly to the line

following (5.8):

a0,0,0 =
∑
p,r

F (p, r)a−p a
+
r

which, recalling that sup |F | ≤ 1, a1, . . . , aQ ≥ 0, and a1 + · · ·+ aQ ≤ 1, implies

(5.41) sup |a0,0,0| ≤ 1.

To estimate the higher derivatives of a0,0,0, as well as the other symbols ak−,k+,i,
we argue similarly to Lemma 5.3, handling the sum over words similarly to the
proof of Lemma 3.1. By the triangle inequality and since sup |F | ≤ 1 we have for
any m
(5.42)

‖ak−,k+,i‖Cm ≤ C sup
ρ∈{ 1

4≤|ξ|g≤4}
max
m±≥0

m−+m+≤m+2i

∑
p,r

(
‖∇m−a

(k−)
p,− (ρ)‖ · ‖∇m+a

(k+)
r,+ (ρ)‖

)
.

Fix m± ≥ 0 such that m− +m+ ≤ m+ 2i and put

N± := 2k± +m±, N− +N+ ≤ 2(k− + k+ + i) +m.

By (5.39) we then have for each ρ ∈ { 14 ≤ |ξ|g ≤ 4}

(5.43)

‖∇m−a
(k−)
p,− (ρ)‖ · ‖∇m+a

(k+)
r,+ (ρ)‖ ≤ C‖A−

p (ρ)‖ · ‖A+
r (ρ)‖

≤ C
∑

�α±∈P±

(
‖M−

p,�α−(ρ)‖ · ‖M+
r,�α+(ρ)‖

)
.

Fix two paths �α± ∈P± and write them in the form (5.30):

�α± = β
s±
(1)

−s±
(0)

1,± β
s±
(2)

−s±
(1)

2,± . . . β
s±
(�±+1)

−s±
(�±)

�±+1,±

for some sequences 0 = s±(0) < s±(1) < · · · < s±(�±) < s±(�±+1) = n±. Define

S−
�α− := {s−(1) − 1, . . . , s−(�−+1) − 1}, S+

�α+ := {s+(1), . . . , s
+
(�++1)}.

Arguing similarly to (5.34), but keeping track of the symbols aqr in (5.32) (rather
than simply using the inequalities |aq| ≤ 1) and recalling the support proper-

ties (5.36) we get for all ρ ∈ supp a
(k−)
p,− ∩ supp a

(k+)
r,+ ⊂ V−

p ∩ V+
r ∩ { 14 < |ξ|g < 4}

‖M−
p,�α−(ρ)‖ ≤ C(J−

p )N− ã−p,�α−(ρ), ‖M+
r,�α+(ρ)‖ ≤ C(J+

r )N+ ã+r,�α+(ρ)

where we define the nonnegative functions ã−p,�α− , ã
+
r,�α+ by removing certain factors

in the definitions (3.1) of a−p , a
+
r (denoting p = p0 . . . pn−−1, r = r1 . . . rn+

):

ã−p,�α− :=
∏

0≤j<n−, j /∈S−
	α−

(apj
◦ ϕj), ã+r,�α+ :=

∏
1≤j≤n+, j /∈S+

	α+

(arj ◦ ϕ−j).

Since J−
p ,J +

r ≤ C0h
−δ, we have for all ρ ∈ supp a

(k−)
p,− ∩ supp a

(k+)
r,+

‖M−
p,�α−(ρ)‖ · ‖M+

r,�α+(ρ)‖ ≤ Ch−(2(k−+k++i)+m)δã−p,�α−(ρ)ã
+
r,�α+(ρ).

Combining this with (5.42)–(5.43) we obtain
(5.44)

‖ak−,k+,i‖Cm ≤ Ch−(2(k−+k++i)+m)δ sup
ρ∈{ 1

4≤|ξ|g≤4}

∑
�α±∈P±

∑
p,r

(
ã−p,�α−(ρ)ã

+
r,�α+(ρ)

)
.
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Now, we have for all �α± and ρ

(5.45)
∑

(p,r)∈A n−×A n+

(
ã−p,�α−(ρ)ã

+
r,�α+(ρ)

)
≤ Q4(k−+k++i)+2m+2 ≤ C.

Indeed, we write the left-hand side as the product of sums over the individual digits
pj− , rj+ . Since a1+· · ·+aQ ≤ 1, each such sum is bounded by Q when j± ∈ S±

�α± and
by 1 otherwise. It remains to recall from Step (1) of the proof of Lemma 5.3 that
�± ≤ 2N± and thus #(S−

�α−)+#(S+
�α+) ≤ 2N−+2N++2 ≤ 4(k−+k++ i)+2m+2.

Substituting (5.45) into (5.44) and using the bound (5.28) on #(P±), we finally
get the bound

(5.46) ‖ak−,k+,i‖Cm = O(h−(2(k−+k++i)+m)δ−).

(4) The bounds (5.41) and (5.46) give

a0,0,0 = O(1)Scomp
δ+

, ak−,k+,i = O(h−2(k−+k++i)δ−)Scomp
δ

.

From the L2 boundedness of pseudodifferential operators with symbols in Scomp
δ we

see that the first term on the right-hand side of (5.40) is bounded by a constant in
L2 → L2 norm. The remainder in (5.40) is also bounded by a constant if we choose
N large enough so that

(5.47) N(1− 2δ) > 17δ + 2C2.

Thus ‖AF ‖L2→L2 ≤ C, finishing the proof. �

Appendix A. Semiclassical calculus on a surface

In this appendix we provide versions of several standard statements from semi-
classical analysis (product and commutator rules, Egorov’s theorem) with explicit
expressions for the resulting symbols and for the L2 → L2 norms of the remainders.
These are used in the proofs of Egorov’s theorems up to minimal Ehrenfest time
(Lemma 2.5) and local Ehrenfest time (§5).

We restrict to the case of dimension n = 2. The statements below apply in the
general case but the number of derivatives needed to get an O(hN) remainder6 will
take the form 2N + Cn where Cn is a constant depending only on the dimension.
The precise values of the constants Cn (which we compute for n = 2) are not
important. We do not attempt to prove optimal bounds. This is already evident in
the case of Lemma A.1 which does not recover boundedness of pseudodifferential
operators in Ψcomp

δ (R2).
To shorten the formulas below, we introduce the following notation:

Dk
•a

denotes the result of applying some differential operator of order k to a. The specific
operator varies from place to place, with coefficients depending on the objects listed
in ‘•’ but not on h or a. Next, for an operator A on L2 we write

A = O•(h
N)

to mean ‖A‖L2→L2 ≤ ChN where the constant C depends on the objects listed in
‘•’.

6As in §5, we use boldface N here to avoid confusion with (3.11).
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A.1. Operators on R2. We first discuss pseudodifferential calculus on R2. We
use the standard quantization given by

(A.1) Op0h(a)f(x) = (2πh)−2

∫
R4

e
i
h 〈x−y,ξ〉a(x, ξ)f(y) dydξ, a ∈ S (T ∗R2).

We start with a quantitative version of the basic L2 boundedness statement which
follows from the proof of [Zw12, Theorem 4.21]:

Lemma A.1. We have for some global constant C and all a ∈ S (T ∗R2)

‖Op0h(a)‖L2(R2)→L2(R2) ≤ C max
|α|,|β|≤3

sup |ξα∂β
ξ a|.

The next statement is a quantitative version of the product formula. To prove
it we write Op0h(a)Op0h(b) = Op0h(a#b), where a#b is determined by oscillatory
testing [Zw12, Theorem 4.19] and estimated via quadratic stationary phase [Zw12,
Theorem 3.13], and apply Lemma A.1.

Lemma A.2. Let N ∈ N0, R > 0. Then for all a, b ∈ C∞
c (T ∗R2), supp a∪supp b ⊂

B(0, R), we have
(A.2)

Op0h(a)Op0h(b) = Op0h

( ∑
|α|<N

(−ih)|α|
α!

∂α
ξ a ∂

α
x b

)
+ON,R(‖a‖CN+6‖b‖CN+6hN).

Remark. It is also useful to discuss composition of pseudodifferential operators
with multiplication operators. Assume that a ∈ C∞

c (T ∗R2), b ∈ C∞
c (R2), and

supp a ⊂ BT∗R2(0, R), supp b ⊂ BR2(0, R). Denote by Op0h(b) the multiplication
operator by b. From (A.1) we see that Op0h(b)Op0h(a) = Op0h(ab). Moreover,
Lemma A.2 still applies with the same proof.

We finally give a quantitative version of the change of variables formula. We
follow [DZ19, §E.1.6]. The statement below is proved by following the proof
of [DZ19, Proposition E.10] using the method of stationary phase with explicit
remainder [Zw12, Theorem 3.16] and applying Lemma A.1. We use the notation

(A.3) ϕ−∗ := (ϕ−1)∗, ϕ−∗f = f ◦ ϕ−1.

Lemma A.3. Assume that ϕ : U → V is a diffeomorphism where U, V ⊂ R2 are
open sets and χ1, χ2 ∈ C∞

c (U). Put

(A.4) ϕ̃ : T ∗U → T ∗V, ϕ̃(x, ξ) = (ϕ(x), (dϕ(x))−Tξ).

Let N ∈ N, R > 0. Then for all a ∈ C∞
c (T ∗R2), supp a ⊂ B(0, R), we have

χ1ϕ
∗Op0h(a)ϕ

−∗χ2 = Op0h

(
χ1

(
χ2 +

N−1∑
j=1

hjD2j
ϕ,χ2

)
(a ◦ ϕ̃)

)
+ON,R,ϕ,χ1,χ2

(‖a‖C2N+12hN).

Here the operators D2j
ϕ,χ2

are supported in suppχ2.
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A.2. Operators on a compact surface. We now study operators on a compact
Riemannian surface (M, g). We define a (non-canonical) quantization procedure
similarly to [DZ19, Proposition E.15]:

(A.5) Oph(a) =
∑
�

χ′
�ϕ

∗
� Op0h

(
(χ′

�a) ◦ ϕ̃−1
�

)
ϕ−∗
� χ�

where we use the notation (A.3), Op0h(•) on the right-hand side is defined by (A.1),
ϕ� : U� → V�, U� ⊂ M , V� ⊂ R2, is a finite collection of coordinate charts with
M =

⋃
� U�, the cutoff functions χ�, χ

′
� ∈ C∞

c (U�) satisfy

(A.6) 1 =
∑
�

χ�, suppχ� ∩ supp(1− χ′
�) = ∅,

and ϕ̃� : T ∗U� → T ∗V� is defined by (A.4). To simplify the formulas below we
denote

Ξ := {(M, g)} ∪ {(ϕ�, χ�, χ
′
�)}�.

For each j ∈ N0 we fix some norm ‖ • ‖Cj on functions on T ∗M supported in
{|ξ|g ≤ 10}.

We first give an L2 boundedness and pseudolocality statement:

Lemma A.4. Assume that a ∈ C∞
c (T ∗M) and supp a ⊂ {|ξ|g ≤ 10}. Then

(A.7) Oph(a) = OΞ(‖a‖C3).

Moreover, if χ1, χ2 ∈ C∞(M) and suppχ1 ∩ suppχ2 = ∅, then for every N ∈ N0

(A.8) χ1 Oph(a)χ2 = ON,Ξ,χ1,χ2
(‖a‖CN+6hN).

Proof. The bound (A.7) follows immediately from (A.5) and Lemma A.1. The
bound (A.8) for the quantization Op0h on R2 and χ1, χ2 ∈ C∞

c (R2) follows from the
remark following Lemma A.2; for the quantization Oph it then follows from (A.5).

�

We next give an auxiliary statement used in the proof of Lemma A.6. We
introduce the following notation: for a ∈ C∞

c (T ∗M)

(A.9) Op�h(a) := Op0h
(
(χ′

�a) ◦ ϕ̃−1
�

)
: L2(R2)→ L2(R2).

Lemma A.5. Assume that

(A.10) A =
∑
r

χ′
rϕ

∗
r Oprh(ar)ϕ

−∗
r χr : L2(M)→ L2(M)

for some ar ∈ C∞
c (T ∗M) such that supp ar ⊂ {|ξ|g ≤ 10}. Put

(A.11) A� := ϕ−∗
� χ′

�Aχ′
�ϕ

∗
� : L2(R2)→ L2(R2).
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Then for every N ∈ N we have

A� = Op�h

( ∑
r

(
χ′
�χr +

N−1∑
j=1

hjD2j
�,r,Ξ

)
χ′
rar

)
+ON,Ξ

(
max

r
‖ar‖C2N+12hN

)
,

(A.12)

A =
∑
�

χ′
�ϕ

∗
�A�ϕ

−∗
� χ� +ON,Ξ

(
max

r
‖ar‖CN+6hN

)
,

(A.13)

A = Oph

( ∑
r

(
χr +

N−1∑
j=1

hjD2j
r,Ξ

)
ar

)
+ON,Ξ

(
max

r
‖ar‖C2N+12hN

)
.

(A.14)

Here the operators D2j
�,r,Ξ from (A.12) and D2j

r,Ξ from (A.14) are supported in
suppχr.

Remark. The expression (A.10) is the general form of a pseudodifferential operator
on M , with Oph(a) obtained by putting ar := a for all r. The operator A� is the
localization of A to the �-th coordinate chart. The statement (A.12) shows that
each localization is a pseudodifferential operator on R2; (A.13) reconstructs A from
its localizations; and (A.14) writes a general pseudodifferential operator in the form
Oph(a) for some a.

Proof. The expansion (A.12) follows immediately from Lemma A.3, with ϕ :=
ϕr ◦ ϕ−1

� , χ1 := (χ′
�χ

′
r) ◦ ϕ−1

� , χ2 := (χ′
�χr) ◦ ϕ−1

� , and a := (χ′
rar) ◦ ϕ̃−1

r .
To show (A.13) we write by (A.6)

A−
∑
�

χ′
�ϕ

∗
�A�ϕ

−∗
� χ� =

∑
�

(1− (χ′
�)

2)Aχ�

and estimate the right-hand side similarly to (A.8).
To show (A.14), we introduce a bit more notation. For a vector of symbols

a = {ar}r indexed by the coordinate charts used in (A.5), let Op′h(a) be the
operator defined in (A.10). Next, put

ι(a) = {a}r, π(a) =
∑
r

χrar.

Recalling (A.5), we have for any a ∈ C∞
c (T ∗M)

Oph(a) = Op′h(ι(a)).

Therefore, for each vector a = {ar}r with ar ∈ C∞
c (T ∗M), supp ar ⊂ {|ξ|g ≤ 10},

we have Op′h(a)− Oph(π(a)) = Op′h(b) where b := a − ι(π(a)). We apply (A.12)
and (A.13) to this operator to write it in the form Op′h(c) for some vector of
symbols c (modulo a remainder); note that by (A.12) the leading term of c is zero
since π(b) = 0. This implies

(A.15) Op′h(a) = Oph(π(a)) + Op′h

(N−1∑
j=1

hjD2j
Ξ a

)
+ON,Ξ(‖a‖C2N+12hN)

where the differential operators D2j
Ξ act on vectors of symbols. We iteratively

apply (A.15) to the second term on the right-hand side and obtain (A.14). �
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We can now give the product and commutator formulas for the quantization
on M :

Lemma A.6. Assume that a, b ∈ C∞
c (T ∗M) and supp a ∪ supp b ⊂ {|ξ|g ≤ 10}.

Then for every N ∈ N we have

Oph(a)Oph(b) = Oph

(
ab+

N−1∑
j=1

hjD2j−2
Ξ (d1a⊗ d1b)|Diag

)
+ON,Ξ(‖a⊗ b‖C2N+15hN),

(A.16)

[Oph(a),Oph(b)] = Oph

(
− ih{a, b}+

N−1∑
j=2

hjD2j−4
Ξ (d2a⊗ d2b)|Diag

)
+ON,Ξ(‖a⊗ b‖C2N+15hN),

(A.17)

where a ⊗ b ∈ C∞
c (T ∗M × T ∗M) is defined by (a ⊗ b)(ρ, ρ′) = a(ρ)b(ρ′), Diag ⊂

T ∗M × T ∗M denotes the diagonal, and dkb denotes the vector (∂αb)|α|≤k.

Remarks.

(1) The expression D2j−2(d1a⊗d1b)|Diag in (A.16) is a linear combination of prod-
ucts ∂αa ∂βb where |α| + |β| ≤ 2j and |α|, |β| ≤ 2j − 1. That is, the symbol in
product formula does not feature terms of the form hj(D2ja)b or hja(D2jb). This
is not obvious; in fact the proof needs us to use the same quantization procedures
Oph on both sides of (A.16).

Here is an informal explanation: in a fixed coordinate chart we have Oph(a) =

Op0h(ã), Oph(b) = Op0h(b̃), Oph(ab) = Op0h(c̃), where ã = a +
∑

j≥1 h
jLja, b̃ =

b+
∑

j≥1 h
jLjb, and c̃ = ab+

∑
j≥1 h

jLj(ab); here each Lj is a differential operator

of order 2j (depending on the chart chosen). Denote by ã#b̃ the Moyal product
from (A.2). If we denote by ‘. . . ’ terms of the form hjD2j−2(d1a⊗ d1b)|Diag, then

ã#b̃ = ãb̃ + · · · = ab +
∑

j≥1 h
j((Lja)b + a(Ljb)) + . . . and Leibniz’s Rule shows

that c̃ = ab+
∑

j≥1 h
j((Lja)b+ a(Ljb)) + . . . as well.

Similarly in the commutator formula (A.17) the expression D2j−4(d2a⊗d2b)|Diag

consists of products ∂αa ∂αb where |α|+ |β| ≤ 2j and |α|, |β| ≤ 2j − 2.
(2) We immediately deduce from (A.17) the formula (2.40) used in the proof of
Egorov’s theorem up to global Ehrenfest time: it suffices to take b ∈ Scomp

0 (T ∗M)
such that P = Oph(b) + O(h∞) and choose N large enough so that (1 − 2δ)N >
2 + 13δ. Note that hjD2j−4(d2a ⊗ d2b)|Diag ∈ h1+(j−1)(1−2δ)Scomp

δ (T ∗M) when
a ∈ Scomp

δ (T ∗M). The expansion (A.17) is crucial in the proof of the precise
version of Egorov’s theorem in Lemma A.7.

Proof. (1) Fix cutoff functions

χ′′
� ∈ C∞

c (U�), suppχ� ∩ supp(1− χ′′
� ) = suppχ′′

� ∩ supp(1− χ′
�) = ∅.
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We write

Oph(a)Oph(b) =
∑
�

(χ′
�)

2 Oph(a)χ
′′
� Oph(b)χ�

+
∑
�

(1− (χ′
�)

2)Oph(a)χ
′′
� Oph(b)χ�

+
∑
�

Oph(a)(1− χ′′
� )Oph(b)χ�,

(A.18)

Oph(ab) =
∑
�

(χ′
�)

2Oph(ab)χ� +
∑
�

(1− (χ′
�)

2)Oph(ab)χ�.(A.19)

The last two terms on the right-hand side of (A.18) and the last term on the right-
hand side of (A.19) are estimated using (A.7) and (A.8). Rewriting the first terms
on the right-hand sides of (A.18)–(A.19), we get

(A.20)
Oph(a)Oph(b)−Oph(ab) =

∑
�

χ′
�ϕ

∗
� (A�B� − C�)ϕ

−∗
� χ�

+ON,Ξ(‖a⊗ b‖CN+9hN),

where (note we use the notation A� in a slightly different way than Lemma A.5)

A� := ϕ−∗
� χ′

� Oph(a)χ
′′
�ϕ

∗
� , B� := ϕ−∗

� χ′
� Oph(b)χ

′′
�ϕ

∗
� , C� := ϕ−∗

� χ′
� Oph(ab)χ

′′
�ϕ

∗
� .

(2) Similarly to (A.12) we write for every N using the notation (A.9)

(A.21) A� = Op�h

(N−1∑
j=0

hjLj,�a

)
+ON,Ξ(‖a‖C2N+12hN)

where each Lj,� is a differential operator of order 2j supported in suppχ′′
� and

L0,� = χ′′
� . Same is true for B�, C�, with the same operators Lj,�.

Using (A.21) and the bound (A.7) we get

(A.22) A�B� =
∑
j,k≥0

j+k<N

hj+k Op�h(Lj,�a)Op�h(Lk,�b) +ON,Ξ(‖a⊗ b‖C2N+15hN).

We next use the product formula for the standard quantization (Lemma A.2) and
the fact that Lj,�a, Lk,�b are supported in suppχ′′

� which does not intersect supp(1−
χ′
�), to write

(A.23)

Op�h(Lj,�a)Op�h(Lk,�b) = Op�h

(
(Lj,�a)(Lk,�b) +

N−j−k−1∑
s=1

hsDs,s
�,Ξ(Lj,�a⊗ Lk,�b)|Diag

)
+ON,Ξ(‖a⊗ b‖C2N+12hN−j−k).

Here Ds,s denotes a differential operator of order 2s on T ∗M × T ∗M which has no
more than s differentiations in either component of the product. This implies
(A.24)

A�B� − C� = Op�h

(
χ′′
� (χ

′′
� − 1)ab+

N−1∑
j=1

hj
(
(χ′′

� a)(Lj,�b) + (Lj,�a)(χ
′′
� b)− Lj,�(ab)

)
+

N−1∑
j=1

hjD2j−2
�,Ξ (d1a⊗ d1b)|Diag

)
+ON,Ξ(‖a⊗ b‖C2N+15hN)
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where the second line includes all the terms in (A.23) such that s ≥ 1 or j · k > 0.
Using Leibniz’s Rule for the operators Lj,�, j ≥ 1,

Lj,�(ab) = a(Lj,�b) + (Lj,�a)b+D2j−2
j,�,Ξ (d

1a⊗ d1b)|Diag

we see that the restriction of the first line on the right-hand side of (A.24) to

T ∗M \ supp(1−χ′′
� ) ⊃ suppχ� has the form

∑N−1
j=1 hjD2j−2

�,Ξ (d1a⊗ d1b)|Diag. From

here and (A.14) (using that the operators D2j
Ξ,r there are supported in suppχr) we

get the product formula (A.16).
(3) To obtain the commutator formula (A.17) we write similarly to (A.20)

[Oph(a),Oph(b)] + ihOph({a, b}) =
∑
�

χ′
�ϕ

∗
� ([A�, B�]− E�)ϕ

−∗
� χ�

+ON,Ξ(‖a⊗ b‖CN+9hN),

E� := ϕ−∗
� χ′

� Oph(−ih{a, b})χ′′
�ϕ

∗
� .

Similarly to (A.22) we get

[A�, B�] =
∑
j,k≥0

j+k<N

hj+k[Op�h(Lj,�a),Op�h(Lk,�b)] +ON,Ξ(‖a⊗ b‖C2N+15hN).

By Lemma A.2 we have the following analog of (A.23):

[Op�h(Lj,�a),Op�h(Lk,�b)]

= Op�h

(
− ih{Lj,�a, Lk,�b}+

N−j−k−1∑
s=2

hsDs,s
�,Ξ(Lj,�a⊗ Lk,�b)|Diag

)
+ON,Ξ(‖a⊗ b‖C2N+12hN−j−k).

This gives the following analog of (A.24):

[A�, B�]− E� = Op�h

(
ih

(
χ′′
� {a, b} − {χ′′

� a, χ
′′
� b}

)
+

N−2∑
j=1

ihj+1
(
Lj,�{a, b} − {χ′′

� a, Lj,�b} − {Lj,�a, χ
′′
� b}

)
+

N−1∑
j=2

hjD2j−4
�,Ξ (d2a⊗ d2b)|Diag

)
+ON,Ξ(‖a⊗ b‖C2N+15hN)

where the third line includes all terms such that s ≥ 2 or j · k > 0. To get (A.17)
it remains to argue as at the end of Step (2) using the following Leibniz’s rule for
the Poisson bracket:

Lj,�{a, b} = {a, Lj,�b}+ {Lj,�a, b}+D2j−2
�,Ξ (d2a⊗ d2b)|Diag. �

A.3. Egorov’s theorem. We finally give a quantitative version of Egorov’s the-
orem (2.36). The proof below applies to more general situations but we restrict
ourselves to the case of the propagator U(t) = exp(−itP/h), where P is defined
in (2.34), and the flow ϕt defined in (2.2).
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Lemma A.7. Assume that a ∈ C∞
c (T ∗M) and supp a ⊂ { 14 ≤ |ξ|g ≤ 4}. Then we

have for all N ∈ N and 0 ≤ t ≤ 1

(A.25) U(−t)Oph(a)U(t) = Oph

((
a+

N−1∑
j=1

hjD2j
t,Ξa

)
◦ϕt

)
+ON,Ξ

(
‖a‖C2N+17hN

)
.

Proof. (1) We first recall from (2.33) and (2.34) that

P = Oph(p0 + hp′) +O(h∞)L2→L2 , p0 = p on {1
4
≤ |ξ|g ≤ 4}

where p0, p
′ are classical symbols on T ∗M supported inside { 15 < |ξ|g < 5}. Here

p(x, ξ) = |ξ|g and ϕt = exp(tHp).
By the commutator formula (A.17), for any ã ∈ C∞

c (T ∗M), supp ã ⊂ { 14 ≤
|ξ|g ≤ 4},

i

h
[P,Oph(ã)] = Oph

(
Hpã+

N−1∑
j=1

hjD2j
Ξ ã

)
+ON,Ξ(‖ã‖C2N+17hN).

Here we use that p′ is classical, i.e. has an expansion in powers of h, and incorporate
the terms in that expansion into the operators D2j

Ξ .
Therefore, for any family of symbols at ∈ C∞

c (T ∗M) depending smoothly on t ∈
[0, 1] and such that supp at ⊂ { 14 ≤ |ξ|g ≤ 4}, and for any N ∈ N

(A.26)
∂t Oph(at ◦ ϕt)−

i

h
[P,Oph(at ◦ ϕt)] = Oph

((
∂tat −

N−1∑
j=1

hjLj,tat

)
◦ ϕt

)
+ON,Ξ(‖at‖C2N+17hN)

where each Lj,t is a differential operator of order 2j on T ∗M with coefficients
depending on t,Ξ.

(2) We now construct t-dependent families of symbols a
(j)
t ∈ C∞

c (T ∗M), t ∈ [0, 1],
j = 0, . . . ,N− 1, using the following iterative procedure:

a
(0)
t := a; a

(j)
t :=

j−1∑
k=0

∫ t

0

Lj−k,sa
(k)
s ds, j = 1, . . . ,N− 1.

Note that a
(j)
t has the form D2j

t,Ξa. Put

ã
(N)
t :=

N−1∑
j=0

hja
(j)
t ,

then (A.26) implies

(A.27) ∂t Oph(ã
(N)
t ◦ ϕt)−

i

h
[P,Oph(ã

(N)
t ◦ ϕt)] = ON,Ξ(‖a‖C2N+17hN).

(3) From (A.27) and the unitarity of U(t) we obtain for t ∈ [0, 1]

∂t
(
U(t)Oph(ã

(N)
t ◦ ϕt)U(−t)

)
= ON,Ξ(‖a‖C2N+17hN).

Integrating this and using that ã
(N)
0 = a we have

U(t)Oph(ã
(N)
t ◦ ϕt)U(−t) = Oph(a) +ON,Ξ(‖a‖C2N+17hN).

Conjugating this by U(t) we get (A.25). �
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Appendix B. Fourier localization of Lagrangian states

In this appendix we prove Proposition 2.7. We use the following interpolation
inequality in the classes Ck. It is standard (see for instance [HöI, Lemma 7.7.2] for
a special case) but we provide a proof for the reader’s convenience.

Lemma B.1. Assume that U ⊂ Rn is an open set, K ⊂ U , d(K,Rn \U) > r0 > 0,
and f ∈ C∞(U). Denote

‖f‖m := max
|α|≤m

sup
U
|∂αf |, m ∈ N0.

Let 0 < � < m. Then there exists a constant C depending only on m, r0 such that

(B.1) max
|α|≤�

sup
K
|∂αf | ≤ C‖f‖1−�/m

0 ‖f‖�/mm .

Proof. Since ‖f‖0 ≤ ‖f‖m it suffices to show (B.1) for |α| = �. Then (B.1) holds
once we prove the following inequality for all x0 ∈ K:

(B.2) max
|α|=�

|∂αf(x0)| ≤ CR
1−�/m
0 R�/m

m , Rk := max
|α|≤k

sup
B(x0,r0)

|∂αf |.

By Taylor’s inequality we have for all y ∈ B(0, r0) and some constant Cm depending
only on m∣∣∣∣f(x0 + y)−

m−1∑
�=0

P�(y)

∣∣∣∣ ≤ CmRm |y|m, P�(y) :=
∑
|α|=�

∂αf(x0)

α!
yα.

Substituting

y :=
( R0

Rm

)1/m

rθ, θ ∈ Sn−1, 0 ≤ r ≤ r0

and using that |f(x0 + y)| ≤ R0 we get

sup
r∈[0,r0]

∣∣∣∣m−1∑
�=0

( R0

Rm

)�/m

P�(θ)r
�

∣∣∣∣ ≤ (1 + Cmrm0 )R0.

The expression on the left-hand side is the sup-norm on the interval [0, r0] of a
polynomial of degree m − 1 in r. Using this sup-norm to estimate the coefficients
of this polynomial, we obtain

sup
θ∈Sn−1

|P�(θ)| ≤ Cm,r0R
1−�/m
0 R�/m

m for all � = 0, . . . ,m− 1

where the constant Cm,r0 depends only on m, r0. This implies (B.2). �

We are now ready to give

Proof of Proposition 2.7. We show the following stronger estimate:

(B.3) |û(ξ/h)| ≤ C ′
NhN+n/2 〈ξ〉−n, ξ ∈ Rn \ ΩΦ(C

−1
0 h′).

Take arbitrary ξ ∈ Rn \ ΩΦ(C
−1
0 h′) and put

s := d(ξ,ΩΦ) ≥ C−1
0 h′.

We have

(B.4) û(ξ/h) =

∫
U

eiΦξ(x)/ha(x) dx, Φξ(x) := Φ(x)− 〈x, ξ〉.
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In the rest of the proof we put

N0 :=

⌈
2N + n

1− τ

⌉
, N ′ := N0 + 1

and denote by C constants which depend only on τ, n,N,C0, CN ′ , whose precise
value might change from place to place.

We integrate by parts in (B.4) using the differential operator L defined by

Lf(x) =
n∑

j=1

bj(x)∂jf(x), bj(x) := −i
∂jΦξ(x)

|dΦξ(x)|2
.

Integrating by parts N0 times and using that hLeiΦξ(x)/h = eiΦξ(x)/h we get

(B.5)
∣∣û(ξ/h)∣∣ = ∣∣∣∣ ∫

U

eiΦξ(x)/h(hLt)N0a(x) dx

∣∣∣∣ ≤ C0h
N0 sup

K

∣∣(Lt)N0a
∣∣

where Lt is the transpose operator:

Ltf(x) = −
n∑

j=1

∂j
(
bj(x)f(x)

)
.

To estimate the function (Lt)N0a we bound the derivatives of Φξ. Since diamΩΦ ≤
C0h

′ ≤ C2
0s we have

s ≤ |dΦξ(x)| ≤ Cs for all x ∈ U.

By Lemma B.1 applied to the first derivatives of Φξ we obtain the derivative bounds
for 0 ≤ � ≤ N0

(B.6) max
|α|=�+1

sup
K
|∂αΦξ| ≤ Cs1−�/N0 ≤ Csh−(1−τ)�/2

where in the last inequality we used the definition of N0 and the fact that s ≥
C−1

0 hτ ≥ C−1
0 h. This implies the derivative bounds for 0 ≤ � ≤ N0

(B.7) max
|α|=�

sup
K
|∂αbj | ≤ Cs−1h−(1−τ)�/2.

This gives an estimate on the right-hand side of (B.5), implying

(B.8) |û(ξ/h)| ≤ Ch(1+τ)N0/2s−N0 .

We have s ≥ C−1hτ , thus (using again the definition of N0)

|û(ξ/h)| ≤ Ch(1−τ)N0/2 ≤ ChN+n/2.

This gives (B.3) for |ξ| ≤ C. On the other hand, if ξ is large enough then s ≥ 〈ξ〉/2
in which case (B.3) follows from (B.8) as well since N0 ≥ n. �
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[DS99] Mouez Dimassi and Johannes Sjöstrand, Spectral asymptotics in the semi-classical
limit, London Mathematical Society Lecture Note Series, vol. 268, Cambridge Uni-
versity Press, Cambridge, 1999, DOI 10.1017/CBO9780511662195. MR1735654

[Dy15] Semyon Dyatlov, Resonance projectors and asymptotics for r-normally hyperbolic
trapped sets, J. Amer. Math. Soc. 28 (2015), no. 2, 311–381, DOI 10.1090/S0894-0347-
2014-00822-5. MR3300697

[Dy17] Semyon Dyatlov, Control of eigenfunctions on hyperbolic surfaces: an application of
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[HöIII] Lars Hörmander, The analysis of linear partial differential operators. III, Classics in
Mathematics, Springer, Berlin, 2007. Pseudo-differential operators; Reprint of the 1994
edition, DOI 10.1007/978-3-540-49938-1. MR2304165
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