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Relaxation Time of Quantized Toral Maps

Albert Fannjiang∗, Stéphane Nonnenmacher and Lech Wo�lowski

Abstract. We introduce the notion of relaxation time for noisy quantum maps on
the 2d-dimensional torus – generalization of previously studied dissipation time.
We show that the relaxation time is sensitive to the chaotic behavior of the cor-
responding classical system if one simultaneously considers the semiclassical limit
(� → 0) together with the limit of small noise strength (ε → 0).

Focusing on quantized smooth Anosov maps, we exhibit a semiclassical régime
� < εE � 1 (where E > 1) in which classical and quantum relaxation times share
the same asymptotics: in this régime, a quantized Anosov map relaxes to equilib-
rium fast, as the classical map does. As an intermediate result, we obtain rigorous
estimates of the quantum-classical correspondence for noisy maps on the torus, up
to times logarithmic in �−1. On the other hand, we show that in the “quantum
régime” ε � � � 1, quantum and classical relaxation times behave very differently.
In the special case of ergodic toral symplectomorphisms (generalized “Arnold’s cat”
maps), we obtain the exact asymptotics of the quantum relaxation time and precise
the régime of correspondence between quantum and classical relaxations.

1 Introduction

The notion of dissipation time for classical systems has been introduced in various
contexts in [21, 22, 23, 24] to study the speed at which a conservative dynami-
cal system converges to some equilibrium, when subjected to noise (e.g., due to
interactions with the ‘environment’).

In those references, the state of the system was represented by a probability
density function, and the distance of the system from equilibrium was measured
by the mean-square fluctuations of the density w.r.to the equilibrium density. The
term dissipation referred in those works to the process of the decay of density
fluctuations during the noisy evolution.

In the present work we generalize our results to the quantum-mechanical
setting and introduce the relaxation time, which in the context of the above men-
tioned papers exactly coincides with the dissipation time, and generalizes it to the
setting where relaxation of the system towards its equilibrium need not involve
an energy exchange. To uniformize the terminology, we will only use the term
relaxation time in the sequel.

The relaxation time τc will now refer both to the time scale after which
the density fluctuations are reduced by a fixed factor, and in general to the time
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scale on which the system finds itself in an intermediate state, roughly speaking,
‘half-way’ between the initial state and the final equilibrium.

The results obtained in [23, 24] yielded the information about the asymp-
totic behavior of the relaxation time (in the limit when the noise strength ε tends
to zero) for a particular type of dynamics, namely volume-preserving maps on a
d-dimensional torus phase space, for which the “natural” equilibrium density is
the constant function. Such torus maps constitute simple examples of dynamical
systems with proven chaotic behavior. Our main conclusion was that the asymp-
totic behavior of τc(ε) strongly depends on the ergodic properties of the underlying
noiseless map. We found that the relaxation toward the equilibrium occurs much
faster in the case of a chaotic dynamics, than for a “regular” one. More precisely,
the relaxation time displays two main behaviors in the small-ε limit:

Logarithmic-law τc ∼ ln(ε−1). In this case one speaks of fast relaxation (short
relaxation time). This behavior is characteristic of strongly chaotic systems, e.g.,
maps with exponential mixing, including uniformly expanding or hyperbolic sys-
tems [23]. When the map is an (irreducible) linear hyperbolic automorphism of the
torus, the constant in front of the logarithm (the “relaxation rate constant”) can
be computed explicitly, and is related with the Kolmogorov-Sinai (KS) entropy of
the map [24].

Power-law τc ∼ ε−β. One then speaks of slow relaxation (long relaxation
time). This behavior virtually concerns all non-weakly-mixing systems (non-ergo-
dic maps, Kronecker maps on the torus); it may also apply to systems with suffi-
ciently slow (power-law) decay of correlations, like intermittent maps [4].

One can intuitively understand these opposite asymptotics through the way
the noiseless dynamics connects different spatial scales (or “wavelengths”). A
chaotic map typically transforms modes of wavelength ≈ � into modes of wave-
length ≈ e±λ�, where λ is the (largest) Lyapounov exponent. By iteration, it
will transfer density fluctuations at scale � into fluctuations at scale �′ in a time
∼ | log(�/�′)|. On the other hand, a noise of “strength” ε strongly reduces fluctua-
tions at wavelengths ≤ ε, acting effectively as a ultraviolet cutoff. Therefore, | log ε|
is the minimal time needed for the system to bring fluctuations from all scales
1 ≥ � ≥ ε down to the scale ε, where they get damped. On longer time scales the
system can be thought of as in equilibrium. On the opposite, a non-weakly-mixing
system will mix different scales at a much smaller speed, so fluctuations at wave-
lengths �� ε will take a longer time to get damped. We believe that these various
behaviors of the relaxation time hold as well in the case of flows on compact phase
spaces (the noise then acts continuously in time, instead of “stroboscopically” for
the case of maps [37]).

In the present paper, we apply the notion of relaxation time to quantum
dynamical systems. To be able to use our “classical” results of [23], we will fo-
cus on the quantum systems corresponding to volume-preserving maps on the
torus, namely quantized maps on the torus. Besides being volume-preserving, the
maps need to be invertible and preserve the symplectic structure on the (neces-
sarily even-dimensional) torus, that is, be canonical. Quantum maps have been
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much studied in the last 25 years as convenient toy models of “quantum chaos”
[32, 31]. According to the “standard” quantization schemes, compactness of the
torus phase space leads to finite-dimensional quantum Hilbert spaces, where the
quantum maps takes the form of a unitary propagator. Such finite-dimensional op-
erators are obviously much easier to study numerically than Schrödinger operators
on L2(Rd). The semiclassical limit is recovered when the dimension N = (2π�)−1

of the Hilbert space diverges.
The influence of “noise” on an otherwise unitary quantum evolution has

already attracted much attention, both in the mathematical [38] and physics liter-
ature [13, 29, 44]. Noise can be due to interactions of the quantum system under
study with uncontrolled degrees of freedom, like those of the “environment” of
the system, or on the contrary internal degrees of freedom not accounted for. The
form of quantum noise we will consider is not the most general one, it is obtained
by quantizing the noise affecting the corresponding classical system (Section 2.3):
the quantum equilibrium state is then the fully mixed state with maximal Von
Neumann entropy. Several works have studied the problem of relaxation in the
framework of quantized maps, especially when the classical dynamics is chaotic
[12, 26, 40, 6]. The effect of noise can be measured through various ways (growth
of the Von Neumann entropy, decay of purity, decay of “fidelity” etc.). One can
also observe how the spectrum of the quantum noisy propagator departs from
unitarity [12, 40, 43, 27]; since the noisy propagator is a non-normal operator,
its spectral radius only influences the long-time evolution of the system. On the
opposite, the behavior for shorter times could possibly be analyzed through the
pseudospectrum of the propagator [17]. Our present study bypasses this spectral
approach, by directly estimating the “quantum relaxation time” τq: this quantity
indicates at which time the system has significantly relaxed to the equilibrium
state, uniformly over all possible initial conditions.

The problematic of quantum chaos (“where does a quantum system encode
the information that its classical limit is chaotic?”) yields another (more formal)
reason to study the quantum relaxation time. Indeed, the above-described di-
chotomy between the two possible small-noise behaviors of τc shows that the log-
arithmic-law is a decent indicator of chaotic dynamics. Therefore, it seems rea-
sonable to try using the small-ε behavior of the quantum relaxation time τq to
characterize a quantum chaotic system. Yet, we are now dealing with two limits :
on the one hand, one expects the quantum system to mimic the classical one only
in the semiclassical limit � → 0; on the other hand, to characterize the classi-
cal dynamics we also want to consider the small-noise limit ε → 0. The major
part of this article will study the interplay between these two limits, which do not
commute with each other.

In order to carry out this program rigorously, we will focus our attention on a
small subclass of the maps studied in [23], namely the smooth Anosov maps, which
include the hyperbolic linear symplectomorphisms (or generalized “Arnold’s cat”
maps). As mentioned above, for such systems one can understand the logarithmic
behavior of the classical relaxation time through the “mixing of scales” performed
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by the dynamics. Quantum mechanics contains an intrinsic scale, namely Planck’s
constant �: it gives the size of the “quantum mesh” on the torus which supports
the Hilbert space (see Section 2). This irreducible scale allows one to estimate the
breaking time for the quantum-classical correspondence, namely the time when
the evolution (through the noiseless dynamics) of quantum observable starts to
strongly deviate from the evolution of the corresponding classical observable (this
time is often called Ehrenfest time, and we will denote it by τE) [50, 14]. For a
hyperbolic system, this time also satisfies a logarithmic law τE ≈ ln(�−1)

λ , which
can be understood similarly as for τc(ε): τE is the shortest time needed for the
system to transfer all scales 1 ≥ � ≥ � down to the “quantum scale” �, where
classical and quantum dynamics depart from each other.

When switching on the noise, quantum and classical dynamics will also cor-
respond to each other at least until the Ehrenfest time τE , whatever the noise
strength ε. Therefore, if the classical system decays before the Ehrenfest time
(τc < τE), then the quantum system will decay around the same time: τq ≈ τc. This
situation is described in Proposition 5 and Corollary 1. This régime was already
studied in various semiclassical approaches to study convergence to equilibrium in
a quantum system subject to some type of noise (see, e.g., results regarding the
spectrum of noisy quantum propagators [12, 40, 43, 27], the rate of decoherence
[44, 6, 28] and its relation with quantum dynamical entropy [1, 2, 5]).

When one allows the noise strength to decrease together with Planck’s con-
stant, the correspondence τq ≈ τc ∼ ln(ε−1) remains valid as long as those times
are smaller than the breaking time τE . Such a “semiclassical régime” is partially
analyzed in Section 4.1 for the case of smooth Anosov maps: Theorem 2 identi-
fies a condition of the form ε > �1/E , which ensures that τq ≈ τc (the exponent
1/E < 1 depends on the expanding rates of the classical map). More precise esti-
mates are obtained in Section 4.2 for the case of Anosov linear automorphisms of
the torus. Theorem 3 and Corollary 3 state that the correspondence τq ≈ τc holds
under the milder condition ε ≥ C�. One can check in this linear case that this
condition ensures τc ≤ τE , which justifies the correspondence. The correspondence
between quantum and classical relaxation times includes the prefactor in front
of log(ε−1). As mentioned above, this constant is related to the KS entropy of
the classical map, which also coincides with various types of quantum dynamical
entropies introduced in the algebraic quantization schemes [2, 5].

In Section 3 we investigate the opposite situation (dubbed as the “quantum
limit”) where the classical relaxation time is longer than the Ehrenfest time. Be-
yond that time the quantum system will approach equilibrium much more slowly
than its classical counterpart, and rather independently of the noiseless dynamics.
Precisely, we show in Proposition 4 that under the condition ε/� � 1 (meaning
that the noise scale is smaller than the quantum scale), the quantum relaxation
time is bounded from below as τq ≥ f(�/ε), where the function f grows at a rate
only depending on the “shape” of the noise. In Remark 3, we notice that a slightly
stronger condition on the decay of ε/� ensures that τq � τc independently of the
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unitary quantum dynamics. In such a régime, the noise scale is much smaller than
the quantum mesh size, so the quantum evolution is insensitive to the noise, and
propagates almost unitarily. It is indeed irrelevant to cutoff fluctuations at a scale
ε when the smallest possible scale of the system is � � ε.

As in the classical case, we believe that our results should extend to quantized
Anosov flows (for which exponential decay of correlations has been recently proven
in [39]), like for instance the Laplace operator on a compact manifold of negative
curvature.

To finish this section, we will compare our results on the relaxation time
with the related decay of fidelity, which has recently received much attention
in the physics literature. Fidelity measures the discrepancy between, on the one
hand, the “unperturbed” evolution of an initial state |ψo〉 under some quantum
dynamics (say, a quantum map UN , see Section 2.2), on the other hand, the evo-
lution of the same initial state, but under a “perturbed dynamics” (say, the map
UN e−i2πNεOpN (H)). The perturbing Hamiltonian H is chosen randomly, but is in-
dependent of time: this constitutes the major difference from our “noise”, which
is equivalent with a random perturbation changing at each time step. The fidelity
is then defined as

F (n) =
∣∣〈ψo|(UN e−i2πNεOpN (H))−n Un

N |ψo〉
∣∣2 .

This quantity was first introduced in [45], and several regimes of its decay have
been identified [34, 46, 49, 15], depending of the type of classical dynamics (chaotic
vs. regular), and of the relative values of the perturbation strength ε and Planck’s
constant � = (2πN)−1. In general, the fidelity starts to decay around a certain
“fidelity time” n ≈ τF , down to a saturation where it oscillates around values
O(�). We will recall below how τF depends on ε and � (when both are small),
in the case where the classical dynamics is an Anosov map on the 2-dimensional
torus, and the initial state |ψo〉 is a Gaussian wavepacket (coherent state) of width√

�. We were able to identify at least four régimes from the physics literature:

• for large enough perturbations, namely ε �
√

�, the fidelity decays instan-
taneously, τF = 1.

• in the range � � ε �
√

�, the fidelity starts to decay at the time τF ≈
2 log(ε−1)−(log �

−1)
2λ , which is comparable with our “log-time decay”.

• for �3/2 � ε� �, we are in the “Fermi golden rule régime”, and τF ∼
(

�

ε

)2.

• ε� �3/2 corresponds to the “perturbative régime”, where τF ∼
√

�

ε .

Subsequent régimes are connected through crossovers, some of which have been
analyzed [15]. The two last régimes of weak perturbations are analog with our
“quantum limit” for the relaxation time. In these régimes, the fidelity time is
much longer than the Ehrenfest time τE . Around τF , the initial wavepacket is
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then spread across the full torus, looking like a “random state”; the same decay
occurs if we take for |ψo〉 an arbitrary state.

In the first two régimes of strong perturbation, the fidelity time satisfies
τF � τE

2 ; therefore, an evolved coherent state is still localized in phase space around
τF . This shows that in these régimes, the decay of fidelity crucially depends on the
choice for |ψo〉 of an

√
�-localized wavepacket. The inequality τF ≤ τE

2 implies that
the quantum-classical correspondence still holds at the time τF : this time is thus
asymptotically equal to the “classical fidelity time”, which is the time when an
initial classical density of width

√
�, evolved by the perturbed classical dynamics,

departs from the same density evolved by the unperturbed dynamics. Because the
classical fidelity instantaneously decays for strong perturbations (as opposed to
the logarithmic law for the classical relaxation time), the quantum fidelity time
τF does so too, thus behaving differently from the quantum relaxation time τq.

2 Setup and notation

In all that follows, we use the following conventions to compare asymptotic behav-
iors of two quantities, for instance a(ε) and b(ε) in the limit ε→ 0:

• a(ε) � b(ε) iff a(ε)
b(ε) → 0.

• a(ε) � b(ε) iff there is a constant C > 0 such that a(ε)
b(ε) ≤ C.

• a(ε) ∼ b(ε) iff there are constants C ≥ c > 0 such that c ≤ a(ε)
b(ε) ≤ C.

• a(ε) ≈ b(ε) iff a(ε)
b(ε) → 1.

2.1 Quantization on the torus

The quantization on T2d presented below strictly follows that considered in [33]
and [19] in the d = 1 case. The generalization to arbitrary d is in most aspects
straightforward, and has been presented, in a slightly different notational setting,
in [51, 47, 9].

2.1.1 State space and observables

Let Tv = e
i
�

v∧Z denote the standard Weyl translation operators on L2(Rd), with
v = (q,p) ∈ R2d, Z = (Q,P ) and v ∧ Z = p · Q − q · P . Here Q = (Q1, . . . , Qd)
and P = (P1, . . . , Pd) denote the quantum position and momentum operators, i.e.,
Qjψ(x) = xjψ(x), Pjψ(x) = −i�∂xjψ(x).

To quantize the torus, one extends the domain of Tv to the space of tem-
pered distributions S′(Rd), and considers its action on the θ-quasiperiodic elements
(wavefunctions) of S′(Rd), that is distributions ψ(q) satisfying:

ψ(q + m1) = e2πiθp·m1ψ(q), (Fhψ)(p + m2) = e−2πiθq·m2(Fhψ)(p). (1)
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Here, the “Bloch angle” θ = (θq,θp) ∈ T2d is fixed, while m = (m1,m2) takes
any value in Z2d. Fh denotes the usual quantum Fourier transform

(Fhψ)(p) =
1

(2π�)d/2

∫
Rd

ψ(q)e−i q·p
� dq.

For any angle θ, the space of such quasiperiodic distributions is nontrivial iff
2π� = h = 1/N for a certain N ∈ Z+. From now on we only consider such values
of Planck’s constant. The corresponding space of wavefunctions will be denoted by
HN (θ). It forms a finite dimensional subspace of S′(Rd) and can be identified with
CNd

. The quasiperiodicity conditions (1) can be restated in terms of the action of
translation operators:

ψ ∈ HN (θ) ⇐⇒ ∀m ∈ Z2d, Tmψ = e2πi( N
2 m1·m2+m∧θ)ψ. (2)

That is, HN (θ) consists of simultaneous eigenstates of all translations on the Z2d

lattice.
A translation Tv acts inside HN (θ) iff v ∈ N−1Z2d, and a natural Hermitian

structure can be set on HN (θ) such that all these operators act unitarily. This
observation motivates the introduction of microscopic quantum translations on
HN (θ):

Wk = Wk(N,θ) := Tk/N |HN (θ) =
(
e2πik∧Z

)
|HN (θ)

.

The operators Wk are indexed by points k on the “Fourier” or “reciprocal” lattice
Z2d. Since they quantize the classical Fourier modes wk(x) = e2πik∧x, they can
be thought of as Quantum Fourier Modes. The canonical commutation relations
(CCR) take the form

WkWm = e
πi
N k∧mWk+m, WkWm = e

2πi
N k∧mWmWk. (3)

Furthermore, the quasiperiodicity of the elements of HN (θ) induces a quasiperiod-
icity of the Quantum Fourier Modes acting on that space. Namely, for any m ∈ Z2d

we have

Wk+Nm(N,θ) = e2πiα(k,m,θ)Wk(N,θ), (4)

with the phase

α(k,m,θ) =
1
2
k ∧ m +

N

2
m1 · m2 + m ∧ θ.

The algebra of observables on the quantum space HN (θ) is generated by the set of
operators {Wk(N,θ)}k∈Z2d and will be denoted by AN (θ). Due to quasiperiodicity,
AN (θ) is finite dimensional and can be identified (as a linear space) with the set
of matrices L(HN (θ)) ∼= MNd×Nd

∼= CN2d

.
We select a fundamental domain Z2d

N of the quantum Fourier lattice. The
choice centered around the origin seems to be the most natural one for our purposes
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(cf. [43]). Namely, we take for fundamental domain the set of lattice points k =
(k1, . . . , k2d) ∈ Z2d such that

∀j ∈ {1, . . . , 2d}, kj ∈
{
{−N/2 + 1, . . . , N/2}, for N even

{−(N − 1)/2 + 1, . . . , (N − 1)/2}, for N odd.

The set {Wk(N,θ), k ∈ Z2d
N } forms a basis for AN (θ). Using the tracial state

τ(A) := N−dTr(A) on this algebra of matrices, we induce the Hilbert-Schmidt
scalar product

〈A,B〉 = τ(A∗B), A,B ∈ AN (θ).

The corresponding norm will be denoted by ‖ · ‖HS . Equipped with this norm,
the above basis is orthonormal. One needs to keep in mind that ‖ · ‖HS does not
coincide with the standard operator norm, hence AN (θ) is not considered here as
a C∗-algebra.

We can now easily quantize classical observables on T2d. To any smooth
observable f ∈ C∞(T2d) with Fourier expansion f =

∑
k∈Z2d f̂(k)wk, corresponds

an element of AN (θ), called its Weyl quantization, denoted by OpN,θ(f), and
defined as:

OpN,θ(f) =
∑

k∈Z2d

f̂(k) Wk(N,θ) =

∑
k∈Z2d

N


 ∑

m∈Z2d

e2πiα(k,m,θ)f̂(k +Nm)


Wk(N,θ). (5)

This quantization can be extended to observables f ∈ L2(T2d) satisfying∑
k |f̂(k)| <∞.

The map OpN,θ : C∞(T2d) → AN (θ) is not injective. One can nevertheless
define an isometric embedding WP : AN (θ) �→ L2(T2d), which associates with
each quantum observable A ∈ AN (θ) its polynomial Weyl symbol [20]

A =
∑

k∈Z2d
N

ak Wk(N,θ) �→WP (A) =
∑

k∈Z2d
N

ak wk. (6)

The range of WP is the subspace IN = SpanC{wk, k ∈ Z2d
N }. The quantization

map OpN,θ restricted to IN is the inverse of WP .
The choice to work with the Hilbert structure on AN (θ) corresponds to the

choice made in the classical setting to measure classical observables through their
L2 norm, rather than their L∞ norm. With this choice, the notion of classical
relaxation (dissipation) time [23, 24] can be straightforwardly extended to the
quantum dynamics, and is suitable for semiclassical analysis.
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2.2 Quantization of toral maps

Let Φ denote a canonical map on T2d, more precisely a C∞ diffeomorphism pre-
serving the symplectic form

∑
j dpj ∧ dqj . Any such map can be decomposed into

the product of three maps:
Φ = F ◦ tv ◦ Φ1,

where F ∈ SL(2d,Z) is a linear automorphism of the torus, tv denotes the trans-
lation tv(x) = x + v, and the function Φ1(x) − x is periodic and has zero mean
on the torus.

We will assume that the canonical map Φ1 is the time-1 flow map associated
with a Hamiltonian function on T2d (this Hamiltonian may depend on time). In
the case d = 1, this assumption is automatically satisfied [16].

To quantize Φ, one first quantizes F , tv and Φ1 separately on HN (θ). The
quantization of Φ is then defined as a composition of corresponding quantum maps
U(Φ) = U(F )U(tv)U(Φ1) [36]. To each quantum map U(Φ) on HN (θ) there
corresponds a quantum Koopman operator U(Φ) = UN,θ(Φ) acting on AN (θ)
through the adjoint map

AN (θ) � A �→ U(Φ)A = ad(U(Φ))A = U(Φ)∗AU(Φ).

In the next subsections we describe the quantizations of F , tv and Φ1 in some
detail. The quantization procedure will ensure that the correspondence principle
holds. In our case this is expressed by the Egorov property, which states that
for every f ∈ C∞(T2d) there exists Cf > 0 such that for any angle θ and large
enough N ,

‖UN,θ(Φ)OpN,θ(f) −OpN,θ(f ◦ Φ)‖HS ≤ Cf

N
. (7)

A more explicit estimate of the remainder is given in Proposition 6.

2.2.1 Quantization of toral automorphisms

The symplectic map F ∈ SL(2d,Z) acts on the algebra of observables by means of
its Koopman operator KF f = f ◦F . In the basis {wk} of classical Fourier modes,
this operator acts as a permutation: KFwk = wF−1k. To define the quantum
counterpart of this dynamics, we will bypass the description of the quantum map
U(F ) on HN (θ), and directly construct the quantum Koopman operator UN,θ(F )
acting on AN (θ):

UN,θ(F )Wk = WF−1k. (8)

For the dynamics to be well defined, UN,θ(F ) has to be a ∗-automorphism of
AN (θ), i.e., its action must be consistent with the algebraic (CCR) and quasiperi-
odic structures. The map F is called quantizable, if for every N there exist θ such
that these consistency conditions are satisfied. The appropriate condition can be
formulated as follows (see [33, 19, 47, 9]):



170 A. Fannjiang, S. Nonnenmacher and L. Wo�lowski Ann. Henri Poincaré

Proposition 1 A toral automorphism F ∈ SL(2d,Z) is quantizable iff it is sym-
plectic, that is, F ∈ Sp(2d,Z). For any given N , an angle θ is admissible iff it
satisfies the following condition:

N

2

(
A · B
C ·D

)
+ Fθ = θ mod 1, (9)

where A,B,C,D denote block-matrix elements of F:

F =

[
A B

C D

]
.

and A ·B denotes the contraction of the two matrices into a (column) vector:

(A ·B)i =
∑

j

AijBij .

The existence of admissible angles is easy to establish. If N is even, one can simply
choose θ = 0. This solution can be chosen whenever all components of the vector
( A·B

C·D ) are even (’checkerboard’ condition [33]). Otherwise one considers two cases.
If F − I is invertible, then for any k ∈ Z2d the following angle is admissible:

θ = (F − I)−1

(
N

2

(
A ·B
C ·D

)
+ k

)
.

This leads to | det(F − I)| distinct admissible angles. If F − I is singular, one
can construct an appropriate θ by applying the above considerations to the non-
singular block. We finally remark that in view of the defining condition (8), the
Egorov property (7) is automatically satisfied (with no error term).

2.2.2 Quantization of a translation tv

As explained in Section 2.1.1, a translation tv is quantized on L2(Rd) through a
Weyl operator Tv. It was noticed that such a quantum translation acts inside the
algebra AN (θ) only if v ∈ N−1Z2d. In the opposite case, there are several possibil-
ities to quantize the translation [10]. We will choose the prescription given in [41]:
we take the vector v(N) ∈ N−1Z2d closest to v (in Euclidean distance), which can
be obtained by taking, for each j = 1, . . . , 2d, the component v(N)

j = [Nvj ]
N , where

[x] denotes the integer closest to x. One then quantizes tv on HN (θ) through the
restriction of Tv(N) on that space (this is the same operator as W[Nv](N,θ)). The
corresponding ∗-automorphism on AN (θ) is provided by UN,θ(tv) = ad(Tv(N)).
The Egorov property (7) holds for this quantization [41] (see also Appendix B.1).
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2.2.3 Quantization of time-1 flow maps of periodic Hamiltonians

Let Φ1 denote the time-1 flow map associated with the periodic Hamiltonian
H(z, t), meaning that Φt : T2d → T2d satisfies the Hamilton equations:

∂Φt(z)
∂t

= ∇⊥H(Φt(z), t), Φ0 = I.

To quantize Φ1, one applies the Weyl quantization to the Hamiltonian H(t), ob-
taining a time-dependent Hermitian operator OpN,θ(H(t)). From there, one con-
structs the time-1 quantum propagator on HN (θ) associated with the Schrödinger
equation of Hamiltonian OpN,θ(H(t)):

UN,θ(Φ1) := T e−2πiN
R 1
0 OpN,θ(H(t)) dt

(T represents the time ordering). As above, the corresponding ∗-automorphism
on AN (θ) is defined as U(Φ1)A = ad(U(Φ1))A. The Egorov property for such a
propagator is proven in Appendix B.1.

2.3 Quantum noise

We briefly review the construction and properties of convolution-type noise oper-
ators in the classical setting. For more detailed description we refer to [37, 4, 23].
The construction starts with a continuous, even-parity probability density g(x) ∈
L1(R2d) representing the “shape” of the noise. This function is sometimes assumed
to be of higher regularity, and/or localized in a compact neighbourhood of the ori-
gin, and we will also require that g(0) > 0. The noise strength (or magnitude)
is then adjusted through a single parameter ε > 0, namely by defining the noise
kernel using the rescaled density:

gε(x) :=
1
ε2d

g
(x

ε

)
on R2d, g̃ε(x) :=

∑
n∈Z2d

gε(x + n) on T2d.

In the sequel we use the following notation for the Fourier transform on R2d and
T2d:

∀ξ ∈ R2d, ĝ(ξ) :=
∫

R2d

g(x) e−2πiξ∧xdx (10)

∀k ∈ Z2d, ˆ̃g(k) :=
∫

T2d

g̃(x) e−2πik∧xdx = 〈wk, g̃〉. (11)

One obviously has ˆ̃gε(k) = ĝε(k) = ĝ(εk). Therefore, the Fourier expansion of g̃
reads

g̃ε(x) =
∑

k∈Z2d

ĝ(εk)wk(x). (12)
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The classical noise operator is defined on L2(R2d) � f as the convolution
Gεf := g̃ε ∗ f . The Fourier modes {wk, k ∈ Z2d} form a basis of eigenvectors
of Gε. The operator is compact, self-adjoint and admits the following spectral
decomposition

Gεf =
∑

k∈Z2d

ĝ(εk) f̂(k) wk. (13)

For any noise strength ε > 0, the operator Gε leaves invariant the constant density
(conservation of the total probability), but is strictly contracting on L2

0(T2d), the
subspace of L2(T2d) orthogonal to the constant functions. Using the parity of g,
we notice that Gε can be represented as:

Gεf =
∫

T2d

g̃ε(v)Kvf dv,

where, Kv is the Koopman operator associated with the translation tv.
Using this formula, we can easily quantize the noise operator on AN (θ) [43].

For this, we formally replace in the above integral the Koopman operator Kv by
its quantization UN,θ(tv) described in Subsection 2.2.2. Since UN,θ(tv) is constant
when v varies on a “cube” of edges of length 1

N , it is more convenient to adopt
a different definition, and replace the above integral by a discrete sum, therefore
defining the quantum noise operator as:

Gε,N,θ :=
1

N2d Z

∑
n∈Z2d

N

g̃ε

(n

N

)
UN,θ(tn/N )

=
1

N2d Z

∑
n∈Z2d

N

g̃ε

( n

N

)
ad(Wn(N,θ)).

We note that the assumption of continuity of g is used in the above formula
in an essential way. Indeed, the quantum noise operator depends only on a dis-
crete set of values of g (evaluated on the quantum lattice Z2d/N) and cannot be
unambiguously defined for a general L1 density.

The role of the prefactor 1
Z is to ensure that Gε,N,θ preserves the trace (the

quantum version of the classical conservation of probability). One can easily check
(see Appendix A.1) that Z = g̃εN (0), which cannot vanish from our assumption
g(0) > 0. The spectrum of Gε,N,θ is similar to that of its classical counterpart:

Proposition 2 Gε,N,θ admits as eigenstates the Quantum Fourier modes {Wk(N,θ),
k ∈ Z2d

N }, associated with the eigenvalues

γε,N(k) :=
∑

n∈Z2d gεN (n) e−2πik∧n/N∑
n∈Z2d gεN(n)

. (14)
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In the sequel we will often require higher regularity (g ∈ CM with M ≥ 1)
and fast decay properties of the noise generating density g. In such cases we will
often use the representation of γε,N obtained by applying the Poisson summation
formula:

γε,N (k) =
∑

m∈Z2d ĝεN

(
k
N + m

)∑
m∈Z2d ĝεN(m)

. (15)

The conservation of the trace is embodied in the fact that γε,N(0) = 1. Since
the eigenvalues do not depend on the angle θ, we will call the noise operator
Gε,N from now on. Let A0

N (θ) be the space of observables of vanishing trace,
that is the quantum version of L2

0(T2d). We then introduce the following norm
for operators acting on A0

N (θ) (these are sometimes called superoperators in the
physics literature):

‖Gε,N‖ := sup
A∈A0

N (θ), ‖A‖HS=1

‖Gε,NA‖HS . (16)

Since Gε,N is Hermitian, we get from its spectral decomposition

‖Gε,N‖ = max
0	=k∈Z2d

N

γε,N (k).

The explicit formula for γε,N(k), together with the fact that g(x) ≥ 0, show that
the quantum noise operator acts as a strict contraction on A0

N (θ) (if g is compactly
supported, strict contractivity is guaranteed only for large enough εN).

2.4 Noisy quantum evolution operator and its relaxation time

For a given quantizable map Φ of the torus, we define the noisy quantum propa-
gator by the composition [6, 28, 43]

Tε,N := Gε,N ◦ UN,θ(Φ).

This model assumes that noise is present at each step of the evolution, and acts
as a memoryless Markov process.

We will also consider the family of coarse-grained quantum propagators:

T̃ (n)
ε,N := Gε,N ◦ UN,θ(Φ)n ◦ Gε,N . (17)

The latter type of dynamics assumes that some uncertainty is present at the initial
and final steps (preparation and measurement of the system), but not during the
evolution. All these operators are trace-preserving, and are strictly contracting on
A0

N (θ) (except for the case mentioned at the end of Section 2.3), but in general
they are not normal (their eigenstates are not orthogonal to each other).
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We will study the action of these operators on the space A0
N (θ), using the

norm (16). Mimicking the classical setting, we introduce the notion of quantum
relaxation time associated with these two types of noisy dynamics:

τq(ε,N) := min{n ∈ Z+ : ‖T n
ε,N‖ < e−1},

τ̃q(ε,N) := min{n ∈ Z+ : ‖T̃ (n)
ε,N ‖ < e−1}.

(18)

As in the classical case, the relaxation time provides an intermediate scale between
the initial stage of the evolution (where the conservative dynamics is little affected
by the noise) and the “final” stage when the noise has driven the system to its
equilibrium (an initial observable A evolves towards τ(A)I, which corresponds to
a totally mixed state in the Schrödinger picture).

In the remaining part of the paper we will analyze the behavior of the quan-
tum relaxation time in various régimes. To avoid any confusion we will reserve the
symbols Tε, T̃

(n)
ε , τc(ε), τ̃c(ε) for the corresponding propagators and times studied

in [24, 23].

3 Relaxation times in the “quantum limit”

The main goal of this section is the analysis of the relaxation time of noisy quantum
maps on the torus, for fixed Planck’s constant h = N−1 and small noise strength ε.
As we explained in Section 2.2, the quantum Koopman operator UN (Φ) on AN (θ)
associated with a canonical map Φ on the torus was constructed as the adjoint
action of a unitary map UN (Φ) on HN,θ:

UN (Φ)A = ad
(
UN (Φ)

)
= UN (Φ)∗AUN (Φ), A ∈ AN (θ).

The unitary matrix UN(Φ) admits an orthonormal basis of eigenfunctions ψ(N)
k ∈

HN (θ). Each projector |ψ(N)
k 〉〈ψ(N)

k | is invariant through UN (Ψ). Therefore:

Proposition 3 Any quantum Koopman operator UN on AN (θ) admits unity in
its spectrum, with a degeneracy at least Nd. As a consequence, for fixed N , the
dynamics generated by UN on AN (θ) is non-ergodic.

In [23, Corollary 3], we showed that the classical relaxation time behaves as a
power-law in ε if the Koopman operator KΦ has a nontrivial eigenfunction with a
modicum of Hölder regularity. Although in the quantum setting the corresponding
regularity assumption on eigenstates of UN (Φ) would be satisfied automatically
(every observable is expressible as a finite combination of Fourier modes), one
cannot apply this corollary directly here due to the different (discrete) nature
of the noise operator (cf. the remark ending this section). Nevertheless the main
argument leading to the slow relaxation result is still valid.

Proposition 4 Assume that the noise generating density g decays sufficiently fast
at infinity: ∃γ > 2d s.t. g(x) = O(|x|−γ) as |x| → ∞ (resp. g(x) = π−d exp(−x2),
resp. g has compact support).
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Then, for any angle θ, and for any ε, N , the quantum noise operator on
AN (θ) satisfies

‖1 − Gε,N‖ ≤ C (εN)γ , resp. ‖1 − Gε,N‖ ≤ C e
− 1

(εN)2 ,

resp. ‖1 − Gε,N‖ = 0 if εN < 1/C.
(19)

All these bounds are meaningful in the limit εN � 1. As a result, the quantum
relaxation time associated with any quantized map UN (Φ) is bounded as

τq(ε,N) ≥ C(εN)−γ , resp. C N2 e
1

(εN)2 ≥ τq(ε,N) ≥ c e
1

(εN)2 ,

resp. τq(ε,N) = ∞ if εN < 1/C.
(20)

The constants only depend on g, and are independent of the map Φ.
Furthermore, for all these types of noise, there is a constant c̃ > 0 such

that if εN < c̃, the coarse-grained quantum dynamics does not undergo relaxation:
τ̃q(ε,N) = ∞.

Proof. We use the RHS of the explicit expression (14) for the eigenvalues γε,N (k)
of Gε,N . From the decay assumption on g, we see that in the limit εN → 0,

∑
0	=n∈Z2d

g

(
n

εN

)
≤ C(εN)γ

∑
0	=n∈Z2d

1
|n|γ . (21)

The sum on the RHS converges because γ > 2d. Therefore, we get 0 ≤ 1−γε,N(k) ≤
C(εN)γ uniformly w.r.to k ∈ Z2d

N . Since Gε,N is Hermitian, this yields the estimate
(19).

This implies that the noisy propagators contract very slowly, independently
of the map Φ:

∀n ≥ 0, ‖T n
ε,N‖ ≥

(
min

k∈Z2d
N

γε,N (k)
)n ≥

(
1 − C(εN)γ

)n
,

‖T̃ (n)
ε,N ‖ ≥

(
1 − C(εN)γ

)2
.

These inequalities prove the lower bound on τq in the case of a power-law decay
of g. If g has compact support, the sum on the LHS of (21) clearly vanishes if εN
is small enough, so that Gε,N = 1 in this case.

The case of Gaussian noise is treated similarly, the LHS of Eq. 21 being clearly
bounded above by C e−1/(εN)2 . Besides, in that case the largest γε,N(k) (e.g., for
k = (1, 0, . . . , 0)) can be precisely estimated as 1 − C N−2 e−1/(εN)2 , yielding the
upper bound for τq(ε,N).

Remark. In the case of Gaussian noise, we proved in [23, Corollary 1] that the
classical relaxation time always satisfies the upper bound τc � ε−2, independently
of the map. Therefore, for this Gaussian noise, the bounds for τq obtained in the
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above proposition show that the quantum relaxation time is much larger than the
classical one, regardless of the dynamics, as long as εN ≤ c√

ln(ε−1)
for c < 1/

√
2.

In this régime, the noise width ε is smaller than the quantum mesh size ∼ �,
therefore the quantum dynamics does not feel the noise, and propagates (almost)
unitarily.

4 Semiclassical analysis of the relaxation time

To extract information about the classical dynamics from the quantum relaxation
time, one needs to consider a different régime from the one described in last sec-
tion: what we need is a semiclassical régime where Planck’s constant goes to zero
together with the noise strength (cf. a similar discussion on the spectrum of Tε,N

in [43, Section 5]).
The semiclassical analysis relates the quantum and classical propagators to

one another. Following the notation introduced in Section 2.1.1, for any N ∈ Z+

we denote by ΠI0
N

the orthogonal (Galerkin-type) projector of L2
0(T2d) onto its

subspace I0
N = Span{wk, k ∈ Z2d

N −0}. Using the fact thatOpN and its inverseWP

realize isometric bijections between I0
N and A0

N , to any operator TN ∈ B(A0
N (θ))

we associate the operator

σN (TN ) := WP TNOpNΠI0
N

acting on L2
0(T2d). This operator is trivial on (I0

N )⊥, and its restriction on I0
N is

isometric to TN . σN therefore defines an isometric embedding of the finite dimen-
sional algebra B(A0

N (θ)) into the infinite dimensional one B(L2
0(T2d)).

It has been shown in [43] (see Lemma 1 and its proof there) that for any
quantizable smooth map Φ and any fixed ε > 0, the operator σN (Tε,N ) (isometric to
Tε,N = Gε,NUN (Φ)) converges in the limit N → ∞ to the classical noisy propagator
Tε = Gε KΦ. This convergence holds in the norm of bounded operators on L2

0(T2d).
This implies in particular that for any fixed ε > 0 and n ∈ N the sequence σN (T n

ε,N)
converges to T n

ε in the semiclassical limit. The semiclassical convergence also holds
for the coarse-grained propagators σN (T̃ (n)

ε,N ). This convergence obviously implies
the following behavior of the quantum relaxation time:

Proposition 5 Let Φ be a smooth quantizable diffeomorphism on T2d, and g any
noise generating density. Then for any fixed noise strength ε > 0, the quantum
relaxation time τq(ε,N) (resp. τ̃q(ε,N)) converges to the classical one τc(ε) (resp.
τ̃c(ε)) in the semiclassical limit.

Using a standard diagonal argument, one obtains:

Corollary 1 Under the conditions of the proposition, there exists a régime ε → 0,
N(ε) → ∞ such that τq(ε,N(ε)) ≈ τc(ε) (resp. τ̃q(ε,N(ε)) ≈ τ̃c(ε)). Notice that
these times necessarily diverge in this limit (cf. Propositions 2 and 3 in [23]).
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Proof of the Proposition. We treat the case of the noisy relaxation times τc and τq.
For given ε > 0, one has by definition ‖T τc

ε ‖ < e−1, ‖T τc−2
ε ‖ > e−1 (the second

inequality is strict because Tε is strictly contracting on L2
0(T2d)). Therefore, the

semiclassical convergence of σN (T n
ε,N ) towards Tε implies the existence of an integer

N(ε) such that for any N ≥ N(ε), one has simultaneously ‖σN (T n
ε,N )τc‖ < e−1

and ‖σN (T n
ε,N)τc−2‖ > e−1. This means that for N ≥ N(ε), τq(ε,N) = τc(ε) or

τq(ε,N) = τc(ε) − 1.
The proof concerning the coarse-graining relaxation time is identical.

Despite its generality, the above statement gives no information about the
behavior of the quantum relaxation time unless the behavior of the classical one is
known. The latter has been investigated in [23] for area-preserving maps on T2d. In
particular, we have established logarithmic small-noise asymptotics τc(ε) ∼ ln(ε−1)
(resp. τ̃c(ε) ∼ ln(ε−1)) for a class of Anosov diffeomorphisms [23, Theorem 4].

Our aim in the next subsection is to apply these results and some of their
refinements to obtain quantitative estimates on the semiclassical régime for which
quantum and classical relaxation times are of the same order.

4.1 Uniform semiclassical régimes

In this section we derive an estimate on the growth of the function N(ε) for which
the classical-quantum correspondence of the relaxation times can be rigorously es-
tablished. To this end we derive and apply more precise Egorov estimates than the
one expressed in Eq. (7). The main idea was already outlined in the Introduction:
for a generic map Φ, the correspondence between classical and quantum (noiseless)
evolutions holds at least until the Ehrenfest time, the latter being of order | log �|
if the map Φ is chaotic. Therefore, if the classical relaxation takes place before this
Ehrenfest time, then the quantum relaxation should occur simultaneously with the
classical one.

We will restrict ourselves to the case of Anosov maps on T2d, which enjoy
strong mixing properties:

Theorem 1 (Gouëzel-Liverani, [30]) Let Φ be an Anosov C∞ diffeomorphism on
T2d, and let the noise generating function g be C∞ and compactly supported. Then,
for any pair of indices s, s∗ ∈ Z+ there exists 0 < σs,s∗ < 1 and C > 0, defining a
function Γ(n) = C σn

s,s∗ , such that for small enough ε > 0, the correlations between
any pair of smooth observables f , h with

∫
f = 0 decay as follows:

∀n > 0,
∣∣∣ ∫

T2d

f(x)h ◦ Φn(x) dx
∣∣∣ ≤ Γ(n) ‖f‖Cs∗ ‖h‖Cs,

∀n > 0,
∣∣∣ ∫

T2d

f(x)T n
ε h(x) dx

∣∣∣ ≤ Γ(n) ‖f‖Cs∗ ‖h‖Cs.

(22)

This classical mixing allows us to slightly generalize our results of [23]. In
particular, one does not need to assume any regularity condition on the invariant
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foliation of the map Φ. The condition of compact support for the noise generat-
ing kernel can probably be relaxed to functions g in the Schwartz space S(R2d)
(C. Liverani, private communication).

For such Anosov maps, we will exhibit a joint semiclassical régime and small-
noise régime, for which quantum and classical relaxation rates are similar.

Theorem 2 Let Φ be a quantizable Anosov C∞ diffeomorphism on T2d, and let the
noise generating function g be in the Schwartz space S(R2d), so that the classical
correlations decay as in the previous theorem.

Then there exists an exponent E = E(Φ) such that in the régime ε → 0,
N = N(ε) > ε−E, the quantum relaxation times satisfy the same bounds as their
classical counterparts:

I) There exist Γ̃ > 0, C̃ > 0 such that the quantum coarse-grained relaxation
time is bounded as:

1
Γ̃

ln(ε−1) − C̃ ≤ τ̃q(ε,N) ≤ 2d+ s+ s∗

| lnσs,s∗ | ln(ε−1) + C̃,

II) (Assume furthermore that the noise kernel g is compactly supported.) There
exists Γ > 0, C > 0 such that the quantum noisy relaxation time satisfies:

1
Γ

ln(ε−1) − C ≤ τq(ε,N) ≤ 2d+ s+ s∗

| lnσs,s∗ | ln(ε−1) + C

As mentioned above, the restriction to compactly-supported noise kernel in state-
ment (II) is probably unnecessary, so we put it between parentheses.

The semiclassical régime NεE > 1 of this theorem is quite distant from the
“quantum régime” (Nε � 1) described in Proposition 4. Inbetween we find a
“crossover range”

ε−1 � N ≤ ε−E (23)

for which we do not control the quantum relaxation rates. However, at the level
of characteristic times, this range corresponds to differences between prefactors,
as we summarize in the following corollary. There we define the “Ehrenfest time”
precisely as τE = ln(N)

Γ , where Γ is the largest expansion rate of the Anosov map
(see Lemma 1) instead of using the Lyapounov exponent λ (in general, λ and Γ
do not differ too much).

Corollary 2 Assume the conditions of Theorem 2.

i) In the semiclassical régime N ≥ ε−E, the Ehrenfest time is strictly larger
than the classical and quantum relaxation times:

τE =
ln(N)

Γ
≥ E ln(ε−1)

Γ
≥
{
K τc(ε)
K τq(ε,N)

,

with a constant K > 1.
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ii) In the quantum régime Nε� 1, we have on the contrary

τE ≤ ln(ε−1)
Γ

≤ τc(ε).

iii) For any γ > 0, the noise kernel g ∈ S(R2d) decays as |x|−γ . Then, in the
“deeply quantum” régime Nε� | ln ε|−1/γ one has

τE ≤ ln(ε−1)
Γ

≤ τc(ε) � τq(ε,N).

This corollary is easily proven by using the bounds in the above theorem as
well as in its classical counterpart [23, Th. 4 (II)], the explicit formulas (40, 42)
for the exponent E and Proposition 4. It confirms the argument presented in
the Introduction: the quantum relaxation behaves like the classical one if both
are shorter than the Ehrenfest time; on the opposite, quantum relaxation becomes
much slower than the classical one if the classical relaxation time is larger than τE .
Inbetween, the “crossover range” (23) corresponds to a situation where the classical
relaxation time is of the same order as the Ehrenfest time, but where we do not
precisely control the quantum relaxation time.

Remark. The above theorem does only specify a régime for which the quantum and
classical relaxation times are of the same order, τq(ε,N(ε)) ∼ τc(ε) ∼ ln(ε−1). For
a general Anosov map Φ we are unable to exhibit a régime for which τq(ε,N(ε)) ≈
τc(ε), that is for which the relaxation times are asymptotic to each other (cf.
Corollary 1). The reason for this failure resides in our insufficient knowledge of

the observables which maximize the norms ‖T n
ε f‖
‖f‖ (or ‖T̃ (n)

ε f‖
‖f‖ ). These observables

become quite singular when n becomes large, so we do not know whether the
quantum-classical correspondences stated in Propositions 6–7 are helpful when
applied to these “maximizing” observables, if n is close to the classical relaxation
time.

More precise estimates will be obtained in Section 4.2 in the special case of
linear Anosov diffeomorphisms of the torus.

Proof of Theorem 2. The proof will proceed in several steps. We start with re-
finements of the Egorov property (7) for general maps Φ. Then, we prove lower
bounds for the quantum relaxation times in the case of an expansive map, and
upper bounds if the map is mixing, so that both bounds can be applied if Φ is
Anosov.

4.1.1 Egorov estimates

The two following estimates (proven in Appendix B.1) are obtained by adapting
the methods of [11] to quantum mechanics on T2d. To alleviate the notations we
omit to indicate the dependence on the angle θ.
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Proposition 6 Let Φ be a smooth quantizable map on T2d, and UN (Φ) its quanti-
zation on AN . Then there exists a constant C > 0 such that for any N > 0, any
classical observable f ∈ C∞(T2d) and any n ∈ N, one has

‖UN (Φ)nOpN (f) −OpN (f ◦ Φn)‖HS ≤ C

N

n−1∑
m=0

‖f ◦ Φm‖C2d+3. (24)

For a generic map Φ, the norm on the RHS will grow exponentially, with a
rate eΓn where Γ depends on the local hyperbolicity of the map. For more “regular”
maps, the derivatives may grow as a power law (cf. the discussion on the differential
DΦn in [23, Section 4]).

We will also need the following noisy version of the classical-quantum corre-
spondence (proven in Appendix B.2):

Proposition 7 Assume that for some power M ≥ 2d + 1, the noise generating
function g ∈ CM (R2d) and all its derivatives up to order M decay fast at infinity.

Let Φ be a quantizable map and Tε, Tε,N the associated classical and quantum
noisy propagators. Then there exists C̃ > 0 such that, for any f ∈ C∞(T2d) and
any n ≥ 0,

‖T n
ε,N OpN (f) −OpN (T n

ε f)‖HS ≤ C̃
( n−1∑

m=0

‖Tm
ε f‖C2d+3

N

)
+ C̃

‖T n
ε f‖CM

(εN)M
. (25)

Using these two propositions, we will now to adapt the proofs given in [23]
for lower and upper bounds of the classical relaxation times, to the quantum
framework.

4.1.2 Lower bounds for expansive maps

The lower bounds for the noisy relaxation time τc(ε) rely on the following identity
[23, Section 4]. Let f be an arbitrary function in C1

0 (T2d), e.g., the Fourier mode
f = wk for k = (1, 0, . . . , 0). For g decaying fast at infinity, we showed that for a
certain C > 0,

‖T n
ε wk‖L2

0
≥ 1 − Cε

n∑
m=1

‖∇(Tm
ε wk)‖L2

0
≥ 1 − Cε‖∇wk‖C0

n∑
m=1

‖DΦ‖m
C0 .

We will now use this formula to get a lower bound on the corresponding quantum
quantity, ‖T n

ε,NWk‖HS . Indeed, from Eq. (25), we have for M ≥ 2d+ 3:

‖T n
ε,NWk‖HS ≥ 1−Cε‖∇wk‖C0

n∑
m=1

‖DΦ‖m
C0 −

C

min
(
N, (εN)M

) n∑
m=0

‖T n
ε wk‖CM .

(26)

We need to control the higher derivatives of Tm
ε wk. This can be done quite easily

applying the chain rule (see [11, Lemma 2.2] and Appendix A.2):
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Lemma 1 For any C∞ diffeomorphism Φ, denote by Γ = ln
(
supx ‖DΦ|x‖

)
the local

expansion parameter of Φ. Then for any index M ∈ N0, there exists a constant
CM > 0 such that

∀f ∈ C∞(T2d), ∀n ≥ 1, ‖f ◦ Φn‖CM ≤ CM enMΓ ‖f‖CM .

Furthermore, for any ε > 0, the noisy evolution is also under control:

∀n ≥ 1, ‖T n
ε f‖CM ≤ CM enMΓ ‖f‖CM .

We will only consider the generic case of an expansive map, for which Γ > 0. The
inequality (26) yields, for M ≥ 2d+ 3, the lower bound

‖T n
ε,N‖ ≥ 1 − CM

(
εenΓ +

(
N−1 + (εN)−M

)
enMΓ

)
. (27)

The same lower bound can be obtained for the coarse-grained evolution.
Indeed,

T̃ (n)
ε,NWk = γε,N(k) G̃ε,NUn

NWk.

Using the Egorov estimate in Proposition 6 and the bound (66), the norm of the
RHS is bounded from below by

|γε,N(k)|
(
‖Gεwk ◦ Φn‖L2

0
− CenMΓ(N−1 + (εN)−M )

)
.

Since g decays fast, the classical lower bound [23, Eq. (36)] yields:

‖T̃ (n)
ε,N ‖ ≥ 1 − Cε‖DΦn‖C0 − CenMΓ(N−1 + (εN)−M ), (28)

which is of the same type as the lower bound (27). We assume that the derivative
of Φn grows with a rate Γ̃ > 0 (with Γ̃ ≤ Γ): there is a constant A > 0 such that
for all n > 0, ‖DΦn‖C0 ≤ AenΓ̃.

Proposition 8 Assume that the noise generating function g ∈ CM with M ≥
2d + 3, and all its derivatives decay fast at infinity. For any smooth expansive
diffeomorphism Φ, we have in the joint limit ε→ 0, εN → ∞, the following lower
bounds for the quantum relaxation times:

τq(ε,N) ≥ min
( ln(ε−1)

Γ
,

lnN
MΓ

,
ln(εN)

Γ

)
+ C (29)

τ̃q(ε,N) ≥ min
( ln(ε−1)

Γ̃
,

lnN
MΓ

,
ln(εN)

Γ

)
+ C (30)

Since M > 2, we conclude that in a régime satisfying N > ε−M (and respectively
N > ε−

Γ
Γ̃

M ), the above lower bounds for the quantum relaxation times are identical
with the ones obtained for the classical relaxation times.
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4.1.3 Upper bounds for mixing maps

In the classical framework [23, Section 5], we used the Fourier decomposition to get
an upper bound on ‖T n

ε f‖ for all possible f ∈ L2
0, and then applied the classical

mixing (which holds for differentiable observables) to the individual Fourier modes.
Since our estimates of the quantum-classical correspondence (Props 6, 7) apply to
observables with some degree of differentiability, this Fourier decomposition is well
adapted to the generalization to the quantum framework.

Consider an arbitrary quantum observable A ∈ A0
N , ‖A‖ = 1 with Fourier

coefficients {ak}. Using Fourier decomposition, we easily get for the coarse-grained
evolution:

T̃ (n)
ε,N A =

∑
0	=j∈Z2d

N

∑
0	=k∈Z2d

N

ak γε,N (j)γε,N (k)〈Wj ,Un
N (Φ)Wk〉Wj (31)

=⇒ ‖T̃ (n)
ε,NA‖2

HS ≤ ‖A‖2
HS

∑
0	=j,k∈Z2d

N

|γε,N(j)γε,N(k)|2 |〈Wj ,Un
N (Φ)Wk〉|2 (32)

The overlaps 〈Wj ,Un
N (Φ)Wk〉 can be seen as quantum correlation functions. From

the Egorov estimate of Proposition 6, this correlation can be related to the classical
correlation function 〈wj , wk ◦ Φn〉:

〈Wj ,Un
N (Φ)Wk〉 = 〈Wj , OpN (wk ◦ Φn)〉 + O

( 1
N

n−1∑
m=0

‖wk ◦ Φm‖C2d+3

)

= 〈wj , wk ◦Φn〉+
∑

0	=m∈Z2d

(±)〈wj+Nm, wk ◦Φn〉+O
( 1
N

n−1∑
m=0

‖wk ◦Φm‖C2d+3

)
.

(33)

To write the second line, we used the explicit expression (5) for OpN (f). From the
smoothness of wk◦Φn, the sum over m �= 0 on the RHS is an O(N−M ‖wk◦Φn‖CM )
for any M > 2d. Therefore,

〈Wj ,Un
N (Φ)Wk〉 = 〈wj , wk ◦ Φn〉 + O

( 1
N

n∑
m=0

‖wk ◦ Φm‖C2d+3

)
.

We can then use classical information on the derivatives of wk ◦ Φm and the
correlation functions 〈wj , wk ◦ Φn〉. The former are estimated in Lemma 1, while
the latter depend on the dynamics generated by Φ.

We now use the fact that the map Φ is mixing, both with and without noise,
in a way stated in Eqs. (22) (for a moment we do not need to precise that Γ(n)
decays exponentially fast). Applied to the Fourier modes, Eqs. (22) read (with C
depending only on the indices s, s∗):
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∀j,k ∈ Z2d − 0, ∀n ∈ N, |〈wj , wk ◦ Φn〉| ≤ C |j|s |k|s∗Γ(n),
(34)

for any small enough ε > 0 and any n ∈ N, |〈wj , T
n
ε wk〉| ≤ C |j|s |k|s∗Γ(n).

(35)

From this classical mixing, the quantum correlation functions are bounded
from above as:

|〈Wj ,Un
N (Φ)Wk〉| ≤ C |j|s |k|s∗Γ(n) + C

(
enΓ |k|

)2d+3

N
. (36)

We are now in a position to estimate the two sums in the RHS of Eq. (32). From
the estimate (67) and the fast decay at infinity of g, we can approximate sums
over the quantum noise eigenvalues by integrals [23, Lemma 4]:

∑
0	=j∈Z2d

N

|γε,N (j)|2 |j|2s =

1
ε2s+2d

(∫
|ĝ(ξ)|2 |ξ|2s dξ + O(ε) + O

(
(εN)2d+2s−2D

))
. (37)

The exponent D is related to the smoothness of g, and should satisfy D ≥ 2d+ 1.
We will also assume that D > d+s to make the last remainder small. The estimate
(37) can be used to control the other terms appearing when combining Eqs (32)
and (36). The index s will be replaced by s∗, 0 and 2d + 3 respectively. In all
cases, we will assume that D > d + index. The same methods can be applied to
estimate the norm of the noisy evolution Tε,N (assuming a classical mixing of the
type (35)).

Proposition 9 Assume that the noiseless and noisy dynamics generated by the
map Φ are mixing, as in Eqs. (22). Then the quantum coarse-grained and noisy
propagators satisfy the following bounds, in the joint limits ε→ 0, εN → ∞:

‖T̃ (n)
ε,N ‖2 � Γ(n)2

ε2(2d+s+s∗)
+
e2n(2d+3)Γ

N2 ε8d+6
, (38)

‖T n
ε,N‖2 � Γ(n)2

ε2(2d+s+s∗)
+
e2n(2d+3)Γ

N2 ε8d+6
+

e2nMΓ

N2M ε4d+4M
. (39)

In the second line, the upper bound holds for any exponent M ≥ 2d+ 1.

The first term in the RHS of those two equations is of purely classical origin, it is
identical to the classical upper bounds [23, Th. 3] (remember that the dimension
of the phase space is now 2d). This term decreases according to the function Γ(n),
that is, according to the speed of mixing. On the opposite, the remaining terms,
due to quantum effects, grow exponentially in time.
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End of the proof of the Theorem. We are now in position to combine our results
for lower and upper bounds, in the case of a smooth Anosov diffeomorphism. Such
a diffeomorphism is expansive, therefore it admits positive expansion parameters
Γ ≥ Γ̃ > 0, as defined in Lemma 1 and before Proposition 8. From that proposition,
the constant

E1 := (2d+ 3)
Γ
Γ̃

(40)

is such that in the régime N > ε−E1 , the lower bounds for the quantum and
classical times are identical (in case of fully noisy dynamics it suffices to take
E1 := 2d+ 3).

On the other hand, from Theorem 1 the classical mixing is exponential, with
a rate σs,s∗ < 1. As a result, this theorem and the analysis of [23] imply that the
classical relaxation times τ̃c(ε) and τc(ε) are bounded from above by

τc(ε), τ̃c(ε) ≤ 2d+ s+ s∗

| lnσs,s∗ | ln(ε−1) + const. (41)

We set M = 2d+3 in Proposition 9, and insert the upper bound (41) in the second
and third terms in the RHS of Eqs. (38, 39): these terms are then of respective
orders O

(
(N εE2)−2

)
and O

(
(N εE3)−2(2d+3)

)
, where

E2 = Γ
(2d+ 3)(2d+ s+ s∗)

| lnσs,s∗ | + 3 + 4d, E3 = Γ
2d+ s+ s∗

| lnσs,s∗ | + 2 +
2d

2d+ 3
. (42)

The second exponent is clearly smaller than the first one. Therefore, in the régime
N � ε−E2 � ε−E3 , these two terms are � 1 when n is smaller than the classical
relaxation times. Therefore in this régime the quantum relaxation times τ̃q(ε,N),
τq(ε,N) are also bounded from above by the RHS of Eq. (41).

Finally, for any power E > max(E1, E3), the condition N > ε−E provides the
“semiclassical régime”. Note that the exponent E is defined from purely classical
quantities related to the map Φ.

4.2 Relaxation time of quantum toral symplectomorphisms

In this section we analyze the quantum relaxation times when the map Φ is a
quantizable symplectomorphism F of the torus T2d (see Subsection 2.2.1). We
will only restrict ourselves to the case where the matrix F is ergodic (none of its
eigenvalues is a root of unity), and diagonalizable. Let us remind some notations
we used in the classical setting [24]. Diagonalizability of F implies that there
exists a rational basis of R2d where F takes the form diag(A1, . . . , Ar), where each
block Aj is a dj × dj rational matrix, the characteristic polynomial of which is
irreducible over Q. The eigenvalues of Aj are denoted by {λj,k, k = 1, . . . , dj}.
We call hj =

∑
|λj,k|>1 log |λj,k| the Kolmogorov-Sinai (K-S) entropy of the block

Aj , and ĥj = hj

dj
its “dimensionally-averaged K-S entropy”. Finally, we associate
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to the full matrix F the “minimal dimensionally-averaged K-S entropy”

ĥ = min
j=1,...,r

ĥj. (43)

Due to the simple action of the map UN (F ) on the quantum Fourier modes
(Eq. (8)), many computations can be carried out explicitly, and yield precise as-
ymptotics of the quantum relaxation times.

To focus attention and avoid unnecessary notational and computational com-
plications, we restrict the considerations of this subsection to an isotropic Gaussian
noise ĝ(k) = e−|k|2 (in [24] a slightly more general noise was considered, given by
α-stable laws).

From the exact Egorov property (8) and the fact that the quantum Fourier
modes Wk(N,θ) are eigenstates of the quantum noise operator (cf. Proposition 2),
one easily proves that any A ∈ A0

N (θ) with Fourier coefficients {ak} (cf. Eq. (6))
evolves into

T n
ε,NA =

∑
0	=k∈Z2d

N

ak

( n∏
l=1

γεN(F−lk)
)
WF−nk.

Orthogonality of the {Wk} then induces the exact expression:

‖T n
ε,N‖ = max

0	=k∈Z2d
N

( n∏
l=1

γεN(F−lk)
)

= max
0	=k∈Z2d

N

( n∏
l=1

γεN(F lk)
)
, (44)

Similarly, in the coarse grained case we have

‖T̃ (n)
ε,N ‖ = max

0	=k∈Z2d
N

(
γεN (k)γεN (Fnk)

)
. (45)

Using these exact formulas, we can precisely estimate the quantum relaxation
times.

Theorem 3 Let F ∈ Sp(2d,Z) be ergodic and diagonalizable, and for all N ∈ N we
select an admissible angle θ for which F may be quantized on HN,θ. The noise is
assumed to be Gaussian. Then the quantum relaxation times associated with the
quantum dynamics satisfy the following estimates:

I) For any ε > 0 and N ∈ Z+,

τq(ε,N) ≥ τc(ε), τ̃q(ε,N) ≥ τ̃c(ε).

II) There exists M > 0 (made explicit in Eq. (50)) such that in the joint limit
ε→ 0, N > Mε−1,

τq(ε,N) ≈ τc(ε) ≈ 1

ĥ(F )
ln(ε−1).
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III) Let µ = max(‖F‖, ‖F−1‖). For any coefficient β > ln µ

2ĥ(F )
+ 1, one has in the

joint limit ε→ 0, N > ε−β:

τ̃q(ε,N) ≈ τ̃c(ε) ≈ 1

ĥ(F )
ln(ε−1).

Here ĥ(F ) is the minimal dimensionally averaged K-S entropy of F , Eq. (43).

As a direct corollary of the above theorem (and using Proposition 4), we
obtain the following relations between, on one side, the “spatial” scales (namely ε
for the noise, � for the scale of the “quantum mesh”), and on the other side the
“time scales” (namely the relaxation and Ehrenfest times), for the case of linear
ergodic (diagonalizable) symplectomorphisms. As in Corollary 2, we take for the
Ehrenfest time τE = ln N

Γ , with now Γ = ln(‖F‖).

Corollary 3 Under the assumptions of Theorem 3 the following relations hold
between the noisy quantum relaxation time and the Ehrenfest time τE, in the joint
limit ε→ 0, N → ∞, depending on the behavior of the product εN :

i) If N � ε−1, then
τE � τc(ε) ≈ τq(ε,N).

The first � can be replaced by ≥ if N � ε−Γ/ĥ(F ).
ii) There exists M > 0 (see (50)) such that, for any finite M ′ > M ,

if εN →M ′ then τc(ε) ≈ τq(ε,N) ∼ τE .

iii) If εN ≤ 1−δ√
ln ln(ε−1)

for some δ > 0, then

τE ≤ τc(ε) � τq(ε,N).

The form of the “deeply quantum régime” iii) is due to the Gaussian noise (com-
pare with Corollary 2 iii) for a more general noise). For linear automorphisms, the
“crossover range” is much thinner than for a nonlinear Anosov map (see Corol-
lary 2): here this crossover takes place when Planck’s constant N crosses a window
[ ε−1√

ln ln(ε−1)
,Mε−1], to be compared with a window [ ε−1√

ln ln(ε−1)
, ε−E] for a general

Anosov map with Gaussian noise.

Proof of Theorem 3. To prove the theorem we will need the following estimates
(proven in Appendix A.3), which relate the eigenvalues of the classical and quan-
tum noise operators. We remind that here and below, ĝσ(ξ) = e−|σξ|2 .

Lemma 2 For any N ∈ N0 and ξ ∈ R2d, we denote by ξN the unique vector in
R2d s.t. all its components satisfy ξN

j ≡ ξj mod N and ξN
j ∈ (−N/2, N/2].

Then for any ε > 0, N ∈ N0 and all ξ ∈ R2d,

ĝε(ξ) ≤ ĝε(ξN ) ≤ γε,N (ξ) ≤ ĝε(ξN )
g̃εN(0)

+ 4d e−
(εN)2

4 ≤ ĝε(ξN ) + 4d e−
(εN)2

4 . (46)
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Besides, we will need the following integer programming result [24], which
measures the “minimal extension” of an F -trajectory on the Fourier lattice:

Proposition 10 Let F ∈ SL(2d,Z) be ergodic and diagonalizable. For any (small)
δ > 0, there exists n(δ) > 0 s.t. for any n ≥ n(δ), we have:

e2(1−δ)ĥ(F )n < min
0	=k∈Z2d

(
|k|2 + |Fnk|2

)
< min

0	=k∈Z2d

n∑
l=0

|F lk|2 < e2(1+δ)ĥ(F )n (47)

As above, ĥ(F ) is the minimal dimensionally-averaged entropy (43).

We start to prove the statement I) of the Theorem. According to the explicit
equations (44, 45) and their classical counterparts [24], the norms of the noisy and
coarse-grained propagators are given in terms of products of coefficients γε,N (k)
(resp. coefficients ĝε(k) for the classical propagators). Lemma 2 shows that for any
k ∈ Z2d, γε,N(k) ≥ ĝε(k). Applying this inequality factor by factor in the explicit
expressions for classical and quantum norms yields:

∀n ≥ 1, ‖T n
ε,N‖ ≥ ‖T n

ε ‖, ‖T̃ (n)
ε,N ‖ ≥ ‖T̃ (n)

ε ‖,

which yield the statement I).

The lower bounds of statements II) and III) follow from the general inequal-
ities established in point I), together with small-noise results obtained in the clas-
sical setting [24].

To prove the upper bound of statement III), we bound from above the RHS
of Eq. (45). Given a coefficient β as in the statement, we fix some (arbitrarily
small) δ > 0 satisfying β − 1 > ln µ

2(1−δ)ĥ
(from here on, we abbreviate ĥ(F ) by ĥ).

In the régime εβN > 1, for sufficiently small ε > 0 there exist integers n in the
interval

1
(1 − δ)ĥ

ln(2ε−1) < n < n+ 1 <
1

(1 − δ)ĥ+ 1
2 lnµ

ln(N/2). (48)

We take ε small enough such that the LHS of this equation is larger than the
threshold n(δ) defined in Proposition 10. We want to control the product γεN(k0)
γεN (Fnk0) for integers n in this interval, uniformly for all 0 �= k0 ∈ Z2d

N . We need
to consider two cases.

• If both k0 and Fnk0 belong to the “fundamental cell” Z2d
N , then from Propo-

sition 10, we have

|k0|2 + |Fnk0|2 ≥ min
0	=k∈Z2d

(|k|2 + |Fnk|2) > e2(1−δ)ĥn. (49)
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Thus for any such k0, max
(
|k0|, |Fnk0|

)
> 1√

2
e(1−δ)ĥn. Using (46) and the

fact that all γε,N (k) < 1, we obtain:

γε,N(k0)γε,N (Fnk0) < min
(
γε,N (k0), γε,N(Fnk0)

)
≤ exp

{
− ε2

2
e2(1−δ)ĥn

}
+ C e−

(εN)2

4 .

From the left inequality in (48), the argument of the exponential in the above
RHS is smaller than −2. Since εN > ε1−β � 1, the product on the LHS is
< e−1.

• assume the opposite situation: k0 ∈ Z2d
N but its image Fnk0 �∈ Z2d

N . In that
case, we may assume that the set S0 = {k0, Fk0, . . . , F

l0−1k0} ⊂ Z2d
N , while

F l0k0 �∈ Z2d
N . Consider also kn = (Fnk0)N the representative of Fnk0 in the

fundamental cell, and assume that Sn = {kn, F
−1kn, . . . , F

−ln+1kn} ⊂ Z2d
N ,

while F−lnkn �∈ Z2d
N . Obviously, the sets S0, Sn have no common point

(this would let the full trajectory {F jk0}n
j=0 be contained in Z2d

N ), so that
l0 + ln ≤ n+ 1. The vectors k0, kn satisfy the obvious inequalities

N

2
≤ |F l0k0| ≤ ‖F‖l0 |k0| ≤ µl0 |k0|,

N

2
≤ |F−lnkn| ≤ ‖F−1‖ln |kn| ≤ µln |kn|.

Since min(l0, ln) ≤ n+1
2 , either |k0| or |kn| is bounded from below by N

2

µ−n+1
2 , and, from the right inequality in (48), also by e(1−δ)ĥn. We are back

to the lower bound of the previous case, leading to the same conclusion.

We have therefore proven that for sufficiently small ε > 0 and N > ε−β, any
integer n in the (nonempty) interval (48) satisfies ‖T̃ (n)

ε,N ‖ < e−1, and is therefore
≥ τ̃q(ε,N). As a result,

1

(1 − δ)ĥ
ln(2ε−1) + 1 ≥ τ̃q(ε,N).

Since δ can be taken arbitrarily small, we obtain the statement III) of the Theorem.

The upper bounds of statement II) is proven with similar methods. We want
to bound from above the product (44). Let C denote the constant of the RHS
of (46), and take M = M(F ) a constant such that both conditions below are
satisfied:

Ce−
M2
4 < e−2,

1
ĥ

ln
(

M

4 ‖F‖

)
> 2. (50)

Let us fix some 0 < δ′ < δ < 1/2. If εN > M , the second condition implies the
existence of an integer n such that

1
(1 − δ)ĥ

ln(2 ε−1) < n− 1 <
1

(1 − δ)ĥ
ln
(

N

2‖F‖

)
. (51)
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We take ε small enough so that any n in the above interval is larger than the
threshold n(δ′) of Proposition 10, and also satisfies e2(δ−δ′)ĥn > n. For such an
n, we can then estimate the products

∏n−1
l=0 γεN(F lk0), considering two cases for

0 �= k0 ∈ Z2d
N :

• Assume that F lk0 ∈ Z2d
N for all l = 0, . . . , n − 1. From Proposition 10 and

the assumptions on n, we have

n−1∑
l=0

|F lk0|2 ≥ min
0	=k∈Z2d

n−1∑
l=0

|F lk|2 > e2(1−δ′)ĥ(n−1) > ne2(1−δ)ĥ(n−1). (52)

Thus for any such k0, there exists l0 ∈ {0, . . . , n − 1} such that |F l0k0| >
e(1−δ)ĥ(n−1).

• Assume there exists 0 ≤ l0 ≤ n − 1 such that {k0, . . . , F
l0k0} ∈ Z2d

N , while
F l0+1k0 �∈ Z2d

N . Using the RHS of (51), we necessarily have |F l0k0| ≥ N
2 ‖F‖ >

e(1−δ)ĥ(n−1).

Gluing together both cases and using (46), we infer that for any 0 �= k0 ∈ Z2d
N ,

there is an index 0 ≤ l0 ≤ n− 1 such that

γε,N(F l0k) ≤ exp
{
− ε2 e2(1−δ)ĥ(n−1)

}
+ Ce−

(εN)2

4 < e−4 + Ce−
M2
4 .

From the first condition in (50), the RHS is < e−1, so that n ≥ τq(ε,N). This
holds for any n satisfying (51). We have proven that in the régime εN > M , one
has τq(ε,N) ≤ ln(2 ε−1)

(1−δ)ĥ
+ 2. This is true for any δ > 0 and sufficiently small ε,

which ends the proof of II).

A Proofs of some elementary facts

A.1 Proof of Proposition 2

The value of the normalization constant is computed as follows

Z =
∑

n∈Z2d
N

g̃ε(N−1n) =
∑

n∈Z2d

gε(N−1n) = N2d
∑

n∈Z2d

gεN(n) = N2dg̃εN (0).

Using the periodicity ad(Wn+Nm) = ad(Wn), the quantum noise operator can be
expressed as:

Gε,N =
1
Z

∑
n∈Z2d

N

g̃ε

( n

N

)
ad(Wn) =

1
N2dg̃εN(0)

∑
n∈Z2d

gε

( n

N

)
ad(Wn)

=
1

g̃εN(0)

∑
n∈Z2d

gεN (n) ad(Wn).
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Applying the commutation relations (3), Gε,N acts on Wk as follows

Gε,NWk =
1

g̃εN(0)

∑
n∈Z2d

gεN (n) e
2πi
N k∧nWk.

A.2 Proof of Lemma 1

The first assertion can be proven along the lines of [11, Lemma 2.2], by an induction
argument over the degree k of differentiation (the only difference is that our map
is defined for discrete times).

Our induction hypothesis: for any 0 ≤ k′ < k there exists C̃k′ such that for
any multiindex |γ| = k′, |∂γΦt| ≤ C̃k′ eΓk′t. The case k = 1 is obvious: ‖Φt(x)‖ ≤ C
uniformly in time.

We now take a multiindex α, |α| = k, and apply the chain rule:

∂α(Φ ◦ Φt) =
2d∑

j=1

(∂jΦ) ◦ Φt × ∂α(Φt)j +
∑

γ≤α,|γ|>1

(∂γΦ) ◦ Φt × Bα,γ(φt).

Here Bα,γ(φt) is a sum of products of derivatives of Φt of order < k; using the
induction hypothesis, each product is ≤ C eΓkt. Now we use the discrete-time
version of [11, Lemma 2.3]. Namely, for a given point x, the above equation may
be written

X(t+ 1) = M(t)X(t) + Y (t),

where X(t) = ∂α(Φt)(x) is “unknown”, the matrix M(t) = DΦ(Φt(x)) satisfies
‖M(t)‖ ≤ eΓ for all times, and we checked above that ‖Y (t)‖ ≤ C eΓkt. From the
explicit expression

X(t+ 1) =
( t∏

s=1

M(s)
)
X(1) +

( t∏
s=2

M(s)
)
Y (1) +

( t∏
s=3

M(s)
)
Y (2) + · · · + Y (t),

one easily checks that ‖X(t)‖ ≤ C̃k e
Γkt for a certain constant C̃k, which proves

the induction at the order k. Composing Φt with an observable f , we easily get
the first assertion of the lemma.

To get the second assertion, we notice that the noise operator consists in
averaging over maps of the type Φt

{vj} = tvt
Φtvt−1Φ · · · tv1Φ. Now, one can easily

adapt the above proof to show that each of those maps satisfies, for |α| = k,

|∂α(f ◦ Φt
{vj})| ≤ C̃k ‖f‖Ck eΓkt,

with C̃k independent of the realization {vj}. Averaging over the realizations does
not harm the upper bound, yielding the second assertion.
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A.3 Proof of Lemma 2

Since the 2d-dimensional Gaussian e−|ξ|2 factorizes into
∏

i e
−ξ2

i , it is natural to
first treat the one-dimensional case, that is consider the periodized Gaussian (a
Jacobi theta function)

θσ(ξ) =
∑
ν∈Z

e−σ2(ξ+ν)2 , θ̃σ(ξ) =
∑

0	=ν∈Z

e−σ2(ξ+ν)2 .

If we assume that ξ ∈ (−1/2, 1/2], one has ν + ξ > ν − 1/2 for ν > 0 and
ν + ξ < ν + 1/2 for ν < 0. From the monotonicity of the Gaussian on R±, this
implies

θ̃σ(ξ) ≤ θσ(1/2) = 2 e−σ2/4
∑
ν≥0

e−σ2ν(ν+1) ≤ 2 e−σ2/4 θσ(0). (53)

We will also use the lower bound:

θσ(ξ) = e−σ2ξ2(
1 +

∑
ν>0

2 cosh(2σ2νξ) e−σ2ν2) ≥ e−σ2ξ2
θσ(0). (54)

We can now pass the the 2d-dimensional case and consider ξ, with all components
in (−1/2, 1/2]. An easy bookkeeping shows that

θσ(ξ) :=
2d∏

i=1

θσ(ξi) = e−σ2|ξ|2 + θ̃σ(ξ1)
2d∏

i=2

θσ(ξi) + e−σ2ξ2
1 θ̃σ(ξ2)

2d∏
i=3

θσ(ξi)

+ e−σ2(ξ2
1+ξ2

2)θ̃σ(ξ3)
2d∏

i=4

θσ(ξi) + · · · + e−σ2(ξ2
1+···+ξ2

2d−1)θ̃σ(ξ2d). (55)

Using the bound (53) and the fact that the maximum of θσ is θσ(0) > 1, we obtain:

θσ(ξ) ≤ e−σ2|ξ|2 + 4d e−σ2/4 θσ(0)2d = e−σ2|ξ|2 + 4d e−σ2/4 θσ(0). (56)

The quantum eigenvalues are expressed in terms of the function

γε,N(ξ) = γε,N(ξN ) =
θεN (ξN/N)
θεN(0)

.

From the estimates (54, 56), this function satisfies

e−ε2|ξN |2 ≤ γε,N(ξN ) ≤ e−ε2|ξN |2

θεN (0)
+ 4d e−(εN)2/4 ≤ e−ε2|ξN |2 + 4d e−(εN)2/4.
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B Egorov estimates

B.1 Proof of Proposition 6

We need to prove the statement for one iterate of the map (n = 1). As explained
in Section 2.2, Φ is a combination of a linear automorphism F , a translation tv
and the time-1 flow map Φ1: Φ = F ◦ tv ◦ Φ1. The quantum propagator on AN is
given by the (contravariant) product:

U(Φ) = U(Φ1)U(tv)U(F ). (57)

We estimate the quantum-classical discrepancy of each component separately. The
estimate will be valid for either the operator norm on HN,θ, or the Hilbert-Schmidt
norm.

As explained in Section 2.2.1, the correspondence is exact for the linear au-
tomorphism:

U(F )Op(f) = Op(f ◦ F ). (58)

The translation tv is quantized by a quantum translation of vector v(N),
which is at a distance |v−v(N)| ≤ CN−1: U(v)Op(f) = Op(f ◦tv(N)). If we Fourier
decompose f =

∑
k f̂(k)wk, we have trivially f ◦ tv =

∑
k e

2iπk∧v f(k)wk. As a
result, since for our norms ‖Wk‖ = 1, we simply get

‖U(v)Op(f) −Op(f ◦ tv)‖ ≤
∑

k

|f(k)| |e2iπk∧v(N) − e2iπk∧v|.

The last factor in the RHS is an O
( |k|

N

)
. Since the Fourier coefficients decay as

|f̂(k)| ≤ CM
‖f‖

CM

(1+|k|)M for any M > 0, we can take M = 2d + 2, which makes the
sum over k finite, and we obtain

‖UN(v)OpN (f) −OpN (f ◦ tv)‖ ≤ C
‖f‖C2d+2

N
. (59)

The quantum-classical discrepancy due to the nonlinear map Φ1 is computed
along the lines of [11]. Φ1 is time-1 map generated by the flow of Hamiltonian
H(t). We want to compare Op(f ◦ Φ1) with the quantum-mechanically evolved
observable U(Φ1)Op(f). To do so, we compare the infinitesimal evolutions. Let
us call U(t, s) = ad

(
T e−

i
�

R
t
s

Op(H(r))dr
)

the quantum propagator between times
s < t, and K(t, s) the corresponding classical propagator. Duhamel’s principle lies
in the following observation: from the identities

d

dt
U(t, s)A = i�−1U(t, s)[Op(H(t)), A],

d

ds
K(t, s)f = −{H(s),K(t, s)f},

one constructs the following total derivative:

d

dt

(
U(t, 0)Op(K(1, t)f)

)
= U(t, 0)

{
i�−1

[
Op(H(t)), Op(K(1, t)f)

]
−Op

(
{H(t),K(1, t)f}

)}
. (60)
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Integrating over t ∈ [0, 1] and taking the norm, using the unitarity of U(t, 0), one
gets:

‖U(Φ1)Op(f) −Op(K(1, 0)f)‖ ≤∫ 1

0

dt ‖i�−1[Op(H(t)), Op(K(1, t)f)] −Op
(
{H(t),K(1, t)f}

)
‖. (61)

We can easily estimate the norm of (60), using the Fourier decomposition of H(t)
and K(1, t)f : we write H(t) =

∑
k Ĥ(k, t)wk, K(1, t)f =

∑
m f̂(m, t)wm, and

expand. The CCR (3) and their corresponding Poisson brackets read

[Wk,Wm] = 2i sin(πk ∧ m/N)Wk+m, {wk, wm} = −4π2k ∧ mwk+m.

This gives us for the operator in the above integral:∑
k,m

Ĥ(k, t) f̂(m, t) 4π
{
πk ∧ m −N sin(πk ∧ m/N)

}
Wk+m.

The term in the curly brackets is an O
( (|k||m|)2

N

)
, while the product of Fourier

coefficients decays like (|k| |m|)−M for any M > 0, due to the smoothness of H(t)
and f . To be able to sum over k, m we need to take M ≥ 2d+ 3, and get for any
t ∈ [0, 1]:

‖i�−1[Op(H(t)), Op(K(1, t)f)] −Op
(
{H(t),K(1, t)f}

)
‖

≤ C
‖H(t)‖CM‖K(1, t)f‖CM

N
. (62)

Due to the smoothness ofH(t), the norm ‖K(1, t)f‖CM can only differ from ‖f‖CM

by a finite factor independent of f [11]. We therefore get for any smooth f :

‖U(Φ1)Op(f) −Op(f ◦ Φ1)‖ ≤ C
‖f‖C2d+3

N
. (63)

We now control the quantum-classical discrepancy stepwise. We use the dis-
crete-time Duhamel principle to control the discrepancy for the full map (57):

‖U(Φ)Op(f) −Op(f ◦ Φ)‖ ≤ ‖U(F )Op(f) −Op(f ◦ F )‖ +

+‖U(tv)Op(f ◦F )−Op(f ◦F ◦ tv)‖+‖U(Φ1)Op(f ◦F ◦ tv)−Op(f ◦F ◦ tv ◦Φ1)‖,
(64)

and for its iterates:

‖U(Φ)nOp(f) −Op(f ◦ Φn)‖ ≤
n−1∑
j=0

‖U(Φ)Op(f ◦ Φj) −Op(f ◦ Φj+1)‖. (65)

Putting together the estimates (58, 59, 63) we get the statement of the proposition,
with either norm ‖ · ‖B(HN ) or ‖ · ‖HS .
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B.2 Proof of Proposition 7

Compared with the previous appendix, we now also need to control the discrepancy
between classical and quantum noise operators. This is quite easy to do in Fourier
space: for any f ∈ C∞(T2d), we have:

‖Gε,NOp(f) −Op(Gεf)‖ ≤
∑

k∈Z2d

|γε,N(k) − ĝε(k)| |f̂(k)|. (66)

Let us assume that the Fourier transform of g decays as |ĝ(ξ)| ≤ C
(1+|ξ|)D as ξ → ∞,

with D ≥ 2d+ 1. From the explicit expression (15), we easily get the estimate (in
the limit εN → ∞):

γε,N(k) =
ĝε(k) +

∑
m	=0 O

(
(εN |m|)−D

)
ĝε(0) +

∑
m	=0 O

(
(εN |m|)−D

) = ĝε(k) + O
(
(εN)−D

)
, (67)

and the estimate is uniform for k ∈ Z2d
N . For k outside Z2d

N , we simply bound the
difference by

|γε,N (k) − ĝε(k)| ≤ 2.

Therefore, for any f ∈ C∞
0 (T2d), one has:

‖Gε,NOp(f) −Op(Gεf)‖ ≤
∑

k∈Z2d
N −0

C

(εN)D
|f̂(k)| + 2

∑
k∈Z2d\Z2d

N

|f̂(k)| ≤ C
‖f‖CD

(εN)D
.

(68)

From the previous appendix we control the quantum-classical discrepancy of
the unitary step U(Φ). Both yield:

‖Tε,NOp(f) −Op(Tεf)‖
≤ ‖Gε,N

(
U(Φ)Op(f) −Op(KΦf)

)
‖ + ‖Gε,NOp(KΦf) −Op(GεKΦf)‖

≤ ‖U(Φ)Op(f) −Op(KΦf)‖ + ‖Gε,NOp(KΦf) −Op(GεKΦf)‖

≤ C
‖f‖C2d+3

N
+ C

‖f‖CD

(εN)D
,

valid for any D ≥ 2d + 1. To obtain the proposition, we apply an obvious gener-
alization of Duhamel’s principle, using the fact that Tε,N is contracting on A0

N .
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entropy and decoherence rate, J. Phys A 37, 5157–5172 (2004).

[3] V.I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics, The Math-
ematical Physics Monograph Series, W.A. Benjamin, 1968.

[4] V. Baladi, Positive Transfer Operators and Decay of Correlations, Advanced
Series in Nonlinear Dynamics vol. 16, World Scientific, 2000.

[5] F. Benatti, V. Cappellini, M. De Cock, M. Fannes and D. Vanpeteghem,
Classical Limit of Quantum Dynamical Entropies, Rev. Math. Phys. 15, no. 8,
847–875 (2003).

[6] P. Bianucci, J.P. Paz and M. Saraceno, Decoherence for classically chaotic
quantum maps, Phys. Rev. E 65, 046226 (2002).

[7] M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for
Anosov maps, Nonlinearity 15, 1905–1973 (2002).
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