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Abstract
We study the resonance eigenstates of a particular quantization of the open
baker map. For any admissible value of Planck’s constant, the corresponding
quantum map is a subunitary matrix, and the nonzero component of its spectrum
is contained inside an annulus in the complex plane, |zmin| � |z| � |zmax|. We
consider semiclassical sequences of eigenstates, such that the moduli of their
eigenvalues converge to a fixed radius r . We prove that if the moduli converge
to r = |zmax| then the sequence of eigenstates is associated with a fixed phase
space measure ρmax. The same holds for sequences with eigenvalue moduli
converging to |zmin|, with a different limit measure ρmin. Both these limiting
measures are supported on fractal sets, which are trapped sets of the classical
dynamics. For a general radius |zmin| < r < |zmax| there is no unique limit
measure, and we identify some families of eigenstates with precise self-similar
properties.

Mathematics Subject Classification: 35B34, 37D20, 81Q50, 81U15

1. Introduction

In the semiclassical limit, stationary states of quantum systems are in general expected to
concentrate on phase space structures that are invariant under the corresponding classical
dynamics [6, 43]. More precisely, any semiclassical sequence of eigenstates of energies ∼E is
associated with one or several semiclassical limit measures, which are probability measures on
the energy shell �E , invariant under the Hamiltonian flow. We will say that the semiclassical
sequence of eigenstates converges to one or several limit measures.

According to the quantum ergodicity theorem [11, 20, 40, 44], if the classical flow on some
energy shell �E is ergodic with respect to the Liouville measure, then in the semiclassical limit
almost all quantum eigenstates of energy ∼E become (in a weak sense) equidistributed on the
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energy shell; for a recent review, see for instance [45]. This means that almost all such
semiclassical sequences converge to the Liouville measure on �E .

Canonical maps on the two-dimensional torus, such as the baker map [2, 19, 36], the
cat map [18, 21] and their generalizations [22], can be quantized to give finite-dimensional
unitary matrices. Such quantum maps have been widely used as toy models in the context of
quantum chaos, because they possess several simplifying properties: two-dimensional torus
phase space instead of �E , simple symbolic dynamics, finite-dimensional quantum mechanics,
easy numerical implementation (see, for example, [13]). If the map is ergodic with respect to
the Liouville ( = Lebesgue) measure, then a quantum ergodicity theorem states that almost all
sequences of eigenstates of the quantized map become uniformly distributed on the torus in
the semiclassical limit [7, 12, 26, 25]. (Quantum ergodicity has also recently been established
for certain families of quantum graphs [3], but for other families it is known not to hold [4, 5].)

It is important to remark that, in general, a chaotic system admits many invariant measures
different from the Liouville measure, e.g. delta measures carried on periodic orbits, or fractal
measures. Even when the system is quantum ergodic, exceptional sequences of eigenstates
could converge to some of these invariant measures. Such exceptional eigenstates have been
constructed for several types of quantized ergodic maps on the torus [1, 9, 16]. On the other
hand, ergodic systems for which all sequences of eigenstates converge to the Liouville measure
are said to obey quantum unique ergodicity (QUE). This is obviously the case when there exist
no invariant measures other than the Liouville measure [30, 34]. Some ergodic systems carry
arithmetic structures (typically, a commuting family of ‘Hecke’ operators commuting with the
quantum dynamics), which lead one to consider joint (‘Hecke’) eigenstates. In that case, one
can sometimes prove that all the Hecke eigenstates semiclassically converge to the Liouville
measure, a property called arithmetic quantum unique ergodicity [24, 28, 35].

The corresponding properties of open (scattering) chaotic systems are currently not nearly
as well understood. The invariant properties of the classical open system are related to the
set of trapped trajectories, called the trapped set. For a chaotic system, this trapped set is
generally a fractal repeller. The statistical properties of the system can be associated with
conditionally invariant measures, or eigenmeasures of the propagator, which are only invariant
up to a constant (the decay rate of the measure). A recent review of the theory of classical
chaotic systems with openings can be found in [14]. In the quantum version of the problem
each resonant state has a specific decay rate. For the system studied here we show that a form of
QUE holds for extremal decay rates, whilst multiple limit measures exist in the bulk. Because
the notion of ergodicity is not clearly defined for the open system, it would be more correct
to use the phrase ‘quantum uniqueness’ rather than QUE, but the latter has the advantage of
connecting us with previous works on closed chaotic systems.

1.1. Open chaotic maps

Instead of dealing with a genuine scattering system (with infinite-volume phase space), it is
simpler to consider a discrete-time dynamical system (that is, a map) living on a compact
phase space, but with a ‘hole’ through which the particles escape, never to return (the map is
then said to be ‘open’). This compact phase space is a model for the ‘interaction region’ of a
realistic scattering system. Open maps may also be quantized, into subunitary matrices (see
below). One expects the spectrum of these quantum maps to (at least qualitatively) mimic the
properties of the resonances and the resonant states of scattering systems.

We focus here on a specific quantization of the open baker map, for which we prove
some conjectures pertaining to the semiclassical behaviour of (resonant) eigenstates [23, 31].



On the resonance eigenstates of an open quantum baker map 2593

Before stating our results, we describe the general construction of an open map on the
torus.

Consider an invertible canonical map U on the two-dimensional torus T (viewed as a
phase space). We assume that U is chaotic, in particular that it is ergodic with respect to the
Liouville measure on T . Let this map be ‘opened’ by identifying some region of phase space
with a ‘hole’ through which points escape, and denote the resulting open map by Ũ . The
ergodicity of U implies that almost all initial conditions escape the system when propagated
either forwards or backwards. The set of initial conditions that remain trapped for infinite times
when propagated to the future (respectively the past) is called the forward-trapped (respectively
backward-trapped) set and denoted by K− (respectively K+).

All invariant measures are supported on the intersection K0 = K+ ∩ K−, which is
the trapped set or the repeller. The sets K− and K+ are the stable and unstable manifolds
of the repeller, respectively. We denote the opening by O, and by Om = Um(O) its image
under the mth power of the closed map. The trapped sets are then defined as

K− = T \
∞⋃

m=0

O−m, K+ = T \
∞⋃

m=1

Om. (1)

1.2. Open quantum maps

We choose to quantize the torus using antiperiodic boundary conditions for the wavefunctions,
so that both position and momentum take values of the form (integer + 1/2)/N [18]. In the
position representation, quantum states are thus given by a ‘comb’ of delta functions supported
on the set

SN =
{
qj = j + 1/2

N
, 0 � j � N − 1

}
. (2)

These quantum states form a Hilbert space of dimension N , where N plays the role of an
effective Planck’s constant, h̄ = (2πN)−1. The quantization of the invertible canonical map
U is a unitary matrix U acting on this Hilbert space. Its eigenvalues therefore lie on the unit
circle.

We shall open our map by taking the hole to be a strip parallel to the momentum axis,
of the form O = I × [0, 1). At the quantum level, we call � the projector on the subspace
spanned by the positions in qj ∈ I . The complementary projector (1 − �) kills (at each
step of the dynamics) the states localized in the hole, and lets the others evolve through the
propagator U . Hence, the quantum version of the open map is given by the (nonunitary)
matrix Ũ = U(1 − �). The result of multiplying by 1 − � is to set to zero the columns of
U corresponding to the hole. The matrix Ũ is not normal, so we must distinguish between its
right and left eigenstates,

Ũ |�R
n 〉 = zn|�R

n 〉, 〈�L
n |Ũ = zn〈�L

n |. (3)

We shall assume the eigenstates to be normalized according to 〈�L
n |�L

n 〉 = 〈�R
n |�R

n 〉 = 1,
instead of the usual 〈�L

n |�R
m〉 = δnm. The eigenvalues zn of Ũ lie in the unit disc,

|zn|2 = e−�n � 1; �n � 0 is called the decay rate associated with the eigenstate |�R
n 〉.

The usual Weyl law for closed systems relates (in the semiclassical limit) the mean
eigenvalue density to the available phase space volume. For open chaotic systems the mean
density of resonances is believed to be determined by the fractal dimension of the repeller, a
property known as the fractal Weyl law [29]. This law was investigated numerically for two-
dimensional Hamiltonian scattering systems [17, 27, 29], for the baker map [32, 33] and for the
kicked rotator [39]. It has been proven for the Walsh-baker map [32, 33] (see below). Although
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a fractal upper bound on the number of resonances has been proven for Hamiltonian scattering
systems [41], the fractal Weyl law still stands as a conjecture for generic open systems. In [39]
a heuristic argument for this law was presented, based on the distinction between short-lived
and long-lived eigenstates. The short-lived states are associated with phase space regions that
escape in a short time (comparable to the Ehrenfest time), so that their decay rate satisfies
�n � 1. On the other hand, long-lived states remain in the system long enough to develop
strong diffraction and interference effects, leading to a finite decay rate �n = O(1). The latter
will be the main focus of our investigation.

1.3. Semiclassical limit of ‘resonant’ eigenstates

To further motivate this work, we summarize here some recent heuristic arguments and
numerical results. Eigenstates of open chaotic maps were studied in a general setting by
Keating et al in [23]. They were represented in phase space by using Husimi functions

Hψ(x) = 1

2πh̄
|〈x|ψ〉|2, (4)

where x is a point in phase space and |x〉 a standard Gaussian coherent state. It was shown
that, in the semiclassical limit, the phase space support of long-lived right (respectively left)
eigenstates must be a subset of the backward (respectively forward) trapped set, in the sense that

lim
h̄→0

H�R
n
(x) = 0 if x /∈ K+, respectively lim

h̄→0
H�L

n
(x) = 0 if x /∈ K−. (5)

For maps on the torus it was shown that if �1 = � is the projector onto the opening and �m+1

the projector onto the set of points which reach the opening after m steps but not earlier, then
within the semiclassical approximation one has �m+1 ≈ (Ũ†)m�1Ũ

m and therefore

〈�R
n |�m+1|�R

n 〉 ≈ |zn|2m(1 − |zn|2). (6)

The specific system studied numerically in [23] was the triadic baker map, defined by

U(q, p) =




(
3q,

p

3

)
if 0 � q <

1

3
,(

3q − 1,
p + 1

3

)
if

1

3
� q <

2

3
,(

3q − 2,
p + 2

3

)
if

2

3
� q < 1.

(7)

This map was opened by sending ‘to infinity’ points in the middle vertical strip; in this case,
K− is the product Can × [0, 1), where Can denotes the usual middle-third Cantor set, and
K+ = [0, 1) × Can. The closed baker map was quantized in [2, 19, 36]. Taking the opening
into account, one obtains the matrix [37]

Ũ = F
†
N




FN/3

0

FN/3


 . (8)

Here FN is the discrete Fourier transform on the set SN ,

(FN)nm = 1√
N

e− 2π i
N

(n+1/2)(m+1/2), n, m ∈ {0, . . . , N − 1}. (9)

The numerical computations in [23] were restricted to values of N = (2πh̄)−1 given by
N = 3k , such that the semiclassical limit corresponds to k → ∞. In figure 1 we plot the
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Figure 1. Left panel: the average of the Husimi functions (4) of the 100 longest-lived right
eigenstates of the baker map, for N = 37 (intensity increases from blue to red). Right panel: the
corresponding Wigner function average (in the white regions the function is nonpositive). Taken
from [23].

(This figure is in colour only in the electronic version)

Husimi function of right eigenstates, averaged over the 100 longest-living states, for the case
N = 37. This function is approximately concentrated on the backward-trapped set. The right
panel shows the averaged Wigner function [18], which resolves K+ with higher accuracy.

Nonnenmacher and Rubin considered eigenstates of the open quantum baker (8) in [31]
(in their case, FN is the discrete Fourier transform on the set {j/N, j = 0, . . . , N − 1}).
They showed, in particular, that if a point x is at a finite distance from K+ and from the set
of discontinuities of the classical map U , then in the semiclassical limit the property (5) is a
consequence of the stronger estimate

H�R
n
(x) = O(e−cN ), N → ∞. (10)

They also showed that for any semiclassical sequence of (right) eigenstates (�N)N→∞ such
that limN→∞ |zN |2 = e−� , the Husimi measures H�N

weak-∗ converge to one or several
probability measures on the torus: each of these limit measures is necessarily an eigenmeasure
(also called conditionally invariant measure) of the open map Ũ , with the eigenvalue e−� .
The semiclassical estimate (6) is then a consequence of the conditional invariance of limit
measures.

1.4. The Walsh-baker map

When N = 3k , an alternative quantization of the baker map (7) exists, which is based on a
modified Fourier transform, the Walsh–Fourier transform [32, 33]. The Walsh-baker map can
be solved exactly, with explicit expressions for the spectrum and the eigenstates. Its open
version is the only system for which a fractal Weyl law has been rigorously proven. In the
Walsh framework, the phase space distribution of eigenstates can be studied through a Walsh
version of the Husimi measure, called the Walsh–Husimi measure (see section 2.4). This
measure is defined on ‘quantum rectangles’ (also called ‘tiles’ [42]).

Let us recall the definition of a ‘rectangle’ in phase space. Let us denote by

q − 1

2N
= 0 · ε1ε2ε3 · · · (11)
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the number q − 1
2N

∈ [0, 1), the ternary decomposition of which is given by

q − 1

2N
=

∞∑

=1

ε
 3−
, ε
 ∈ {0, 1, 2}. (12)

For any b ∈ N, a sequence ε = ε1 · · · εb describes an interval of length 3−b in the position
axis, which we denote by [ε]. If, for some b′ ∈ N, [ε′ = ε′

1 · · · ε′
b′ ] describes a similar triadic

interval in the momentum axis, then the product of these two intervals, which is a rectangle of
area 3−b−b′

, will be denoted by [ε′
b′ · · · ε′

1 · ε1 · · · εb] (notice the inversion of indices for ε′).
In the following, we will often refer to the case where b = b′ = v, for some fixed v > 0,

which we will call a v-square and denote it by [ε′ · ε]v . A rectangle of size v × 0 will be
called vertical, and denoted by [·ε]v . If on the other hand b, b′ are related by b′ = k − b

(where k is the quantum parameter), then [ε′ ·ε] will be called a ‘quantum rectangle’. For each
b ∈ [0, k], the Walsh–Husimi measure Hb

� is defined by its weights on the rectangles of size
b×(k−b), denoted by Hb

�([ε′ ·ε]). One recovers the position (respectively Walsh-momentum)
representation by taking b = k (respectively b = 0):

Hk
�([·ε]) = |〈q|�〉|2 for q = 0.ε1 · · · εk +

1

2N
, (13)

H 0
�([ε′·]) = |〈p|�〉|2 for p = 0.ε′

1 · · · ε′
k +

1

2N
. (14)

We will need to compute the value of a Walsh–Husimi measure on ‘classical’ v-squares [ε′ ·ε]v ,
for which v is independent of k. We define this in the natural way, taking Hb

�([ε′ · ε]v) to be
the sum of the values of Hb

� over all quantum squares contained in [ε′ · ε]v (see (43)).
The Walsh quantization of the closed baker map was studied in [1]: the authors proved

quantum ergodicity but found several counterexamples to QUE. In particular, they constructed
semiclassical sequences of eigenstates along which the Walsh–Husimi measures converge to
(multi)fractal invariant measures.

In this work we focus on the Walsh quantization of the open baker, defined in [32, 33] and
further studied in [31]. The quantum propagator is given by the following matrix (N = 3k):

B = W
†
N




WN/3

0

WN/3


 , (15)

where WN is the Walsh–Fourier transform (see (24)). The nonzero part of the spectrum forms
a lattice inside the annulus {|zmin| � |z| � |zmax|}. We use a quantization slightly different
from the one used in [31]. In our case the eigenvalues at the ‘edges’ of the nontrivial spectrum
are given by

zmax = 1 and zmin = i√
3
,

both being nondegenerate. On the other hand, eigenvalues in the ‘bulk’ of the spectrum
{|zmin| < |z| < |zmax|} are (highly) degenerate. The kinematics of the map is such that the
position representation of right eigenstates is equal to the (Walsh-)momentum representation
of left eigenstates. We may therefore restrict our analysis to the study of the right eigenstates.

1.5. Statement of our results

We obtain precise results on the phase space distribution of long-living eigenstates of the open
Walsh-baker map, both for finite N = 3k and in the limit k → ∞. One question posed in [31]
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concerns the family of eigenmeasures one can obtain by taking weak-∗ semiclassical limits of
Husimi (or Walsh–Husimi) measures: for a given � � 0, which eigenmeasures of eigenvalue
e−� can be obtained as semiclassical limits? It was conjectured that the (right) eigenstates
of B near the ‘edges’ of the nontrivial spectrum, i.e. such that |z| → |zmax| (respectively
|z| → |zmin|), converge to a unique measure ρmax (respectively ρmin). In the theorem below
we prove this conjecture.

An important role is played here by the Cantor set and its generations. If we denote
by Cann the set of points in the interval [0, 1) such that the first n digits in their ternary
decomposition are all different from 1, the sequence (Cann)n�1 converges to the middle-third
Cantor set Can = Can∞. The ‘uniform measure’ on Can is defined as follows on triadic
intervals of length n:

∀ε = ε1 · · · εn, νCan([ε])
def=
{

2−n if all εi ∈ {0, 2},
0 otherwise.

(16)

Theorem 1. Let (�k)k→∞ be a sequence of right eigenstates of the open Walsh-baker B, such
that the associated eigenvalues semiclassically converge to the outer edge of the spectrum:

|zk| k→∞−→ 1. Then the corresponding Husimi measures (H
[k/2]
�k

) weak-∗ converge to a unique

invariant measure ρmax, supported on the repeller K0. This means that H
[k/2]
�k

([ε′ · ε]v)
k→∞−→

ρmax([ε′ · ε]v) for any v-square [ε′ · ε]v .
Similarly, if the eigenvalues of a sequence (�k)k→∞ of right eigenstates converge to the

inner edge, |zk| → 1/
√

3, then the Husimi measures H
[k/2]
�k

converge (in the above sense) to a
unique self-similar eigenmeasure ρmin supported on K+.

Both measures ρmax and ρmin can be factorized as ρ = νCan(dp) × νmax/min(dq), where
νCan is the uniform measure (16) on the Cantor set, νmax = νCan and νmin is a certain self-similar
measure on [0, 1) (see (85)).

ρmax is an invariant measure of the (closed) baker map U , localized on the trapped set
K0. Loosely speaking, it is the ‘uniform’ measure on K0. More precisely, it is the invariant
measure of maximal entropy (and at the same time the Gibbs measure associated with the
potential − log J u(x)) for the restriction of U to K0 (see [10] for the description of these
measures in a more general context).

Theorem 1 expresses a form of ‘quantum uniqueness’ at the edges of the nontrivial
spectrum of B. The next theorems apply to the ‘bulk’ of the nontrivial spectrum and show
that such a quantum uniqueness does not hold there. These theorems are concerned with a
particular eigenbasis for the nontrivial spectrum (see section 3.1).

The description of this particular eigenbasis uses binary sequences η = η1 · · · ηk of length
k, such that each symbol ηj ∈ {+, −}. If η is a periodic sequence of period 
, its orbit under the
cyclic shift (which we denote by [η]) consists of 
 different sequences. We can associate with
this orbit 
 different long-lived right eigenstates of B, denoted by �m

η (see (49) in section 3.1).
The respective eigenvalues are zδ,m/
 = zδ

min e2π im/
, where 0 � m � 
 − 1. The number
of times the symbol ‘+’ appears in η is called its degree and is denoted by d. The variable
δ ∈ [0, 1) is given by δ = d/k and called the relative degree of η.

For any 0 � b � k, we denote by Hb
�m

η
the Walsh–Husimi measure associated with this

eigenstate. Before dealing with these individual eigenstates, it is easier to average over the
phase index m, and define the averaged Husimi measure

Hb
[η]

def= 1





−1∑
m=0

Hb
�m

η
. (17)
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Figure 2. The position density function Hk
[η](q) for η = + + + + −.

Our understanding of these averaged measures is not only semiclassical, but already valid for
finite k.

Theorem 2. For any value of k � 1, any 0 � b � k, and any sequence η of length k and
degree d = δk, the averaged Walsh–Husimi measure Hb

[η] is equal to a certain eigenmeasure
ρ[η] with eigenvalue e−� = 3−δ , conditioned on the rectangles of size b×(k−b). This measure
is of the form

ρ[η] = νCan(dp) × ν[η](dq), (18)

where νCan is the uniform measure (16) on Can, and ν[η] is a certain probability measure on
the interval. ν[η] satisfies the following self-similarity properties:

(i) for any 0 � n � b and any sequence ε1 · · · εb such that ε1, ε2, . . . , εn ∈ {0, 2}, one has

ν[η]([ε1 · · · εn · · · εb]) = (2 × 3δ)−nν[η]([εn+1 · · · εb]). (19)

(ii) In particular, for any sequence ε ∈ {0, 2}n, the interval [ε] ⊂ Cann has weight
ν[η]([ε]) = (2 × 3δ)−n. In general, for any b-sequence ε containing n symbols εi �= 1, we
have the upper bound

ν[η]([ε]) � 1

2n

(
2

3

)b−n

. (20)

The last bound, together with the definition of νCan, restricts the concentration of ρ[η].
Adapting [31, proposition 8] to the present choice of Walsh quantization, we see that for

any fixed primitive sequence η0 of length k0, the measure ρ[η0] is the semiclassical limit of the
sequence of eigenstates

(
�m

(η0)
n

)
n→∞, where m ∈ {0, . . . , k0 − 1} can vary arbitrarily with n.

The above theorem shows that ρ[η0] already coincides, for finite k0, with the averaged Husimi
measure (17). In figure 2 we present as an example the spectral average Hk

[η] for N = 35 and
η = + + + + − (equivalently, the measure ν[η] conditioned on the intervals [ε1 · · · ε5]).

The next result, which requires much more effort, shows that the measures ρ[η] are also
relevant to describe the individual Husimi measures Hb

�m
η

.
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Theorem 3. Fix a v-square [ε′ · ε]v . Take any sequence η of length k, any m ∈ {0, . . . , k − 1}
and any b � v such that k − b � v. Then,

Hb
�m

η
([ε′ · ε]v) = ρ[η]([ε

′ · ε]v) + Ov(k
−1), k → ∞, (21)

where ρ[η] = νCan × ν[η] is the eigenmeasure described in theorem 2. The implied constant is
independent of η, m and b.

When considering sequences η of lengths k → ∞, any weak-∗ limit of the measures
(ρ[η]) will be of the form νCan(dp)×ν(dq) for some probability measure ν on the unit interval.
So far all the semiclassical measures we have encountered are of that form. One might wonder
whether this is the case for all semiclassical measures of the Walsh baker (15). Our last theorem
answers this question in the negative.

Theorem 4. For any z ∈ C in the bulk of the nontrivial spectrum (that is, 1/
√

3 < |z| < 1),
there exists an explicit sequence of eigenstates (�k)k→∞ with eigenvalues zk → z, converging
to a semiclassical measure ρ which is not of the form νCan(dp) × ν(dq).

Remark. In [33] it was noticed that the matrix (15) can also be interpreted as the ‘standard’
(Weyl-like) quantization of a multivalued symplectic map constructed ‘above’ the baker’s map
(7). Within this interpretation, the phase space properties of the eigenstates should be analysed
through the standard Husimi measures (4) instead of the Walsh–Husimi ones. These two
measures generally differ in the vertical (momentum) direction, but their projections π∗ρ on
the position axis are similar to each other. As a result, for a given sequence of eigenstates
(�k), the semiclassical measures ρstand obtained as limits of their ‘standard’ Husimi measures
will differ from the Walsh semiclassical measure ρWalsh described in the theorems above,
but their projections on the position axis will be identical. Notice that ρstand has to be an
eigenmeasure of the multivalued baker’s map, while ρWalsh is an eigenmeasure of the (single-
valued) open baker’s map. For a semiclassical sequence (�k) with eigenvalues |z| → |zmax|
(respectively |z| → |zmin|), it is not clear whether there is a unique semiclassical measure
ρstand, but in any case the projection π∗ρstand is unique, equal to νCan (respectively νmin).

Theorems 1–4 are our main results. The system we study is the first for which these
properties have been proved. It is natural to ask which, if any, of our results extend to quantum
chaotic scattering in general. At this stage, the answer to this question is far from being clear,
even heuristically, and we consider it to be an interesting avenue for future investigations.

This paper is organized as follows. In the next section we describe the Walsh-baker map
in more detail. We prove the exact version of (6), discuss the Walsh-coherent states and the
Walsh–Husimi measures. In section 3 we introduce the particular basis of eigenstates {�m

η } of
the nontrivial spectrum and prove theorems 2 and 3, which involve the study of ‘almost periodic’
binary sequences (the properties that we need are derived in the appendix). The eigenstates of
theorem 4 are exhibited and studied in section 4, while the ‘quantum uniqueness’ at the edges
of the spectrum (theorem 1) is proven in section 5.

2. Walsh quantization of the open baker map

2.1. Walsh kinematics and the open Walsh-baker

In what follows we restrict ourselves to the triadic baker map. A central object in our analysis
will be the Cantor set and its generations. Given the interval Can0 = [0, 1) the first such
generation is Can1 = [0, 1

3 ) ∪ [ 2
3 , 1), obtained by removing the middle third [ 1

3 , 2
3 ), which

contains all points of the interval such that their ternary decomposition starts with the digit ‘1’.
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Further generations Cann are obtained recursively, at each step removing the union of the
middle thirds of all the intervals. Therefore Cann contains all points for which the first n

digits in the ternary decomposition take value in {0, 2}. This process converges to a fractal of
Hausdorff dimension ln 2/ ln 3, known as the Cantor set, which we denote by Can = Can∞.
This set contains the points in [0, 1), the ternary decomposition of which is made only of the
symbols {0, 2}.

As already mentioned, the allowed position values at the quantum level are of the form
qj = (j + 1/2)/N . We only consider the case N = 3k , so that each of the N positions can be
labelled by k symbols

qj − 1

2N
= 0 · ε1ε2 · · · εk if j =

k∑

=1

ε
 3k−
, j ∈ {0, . . . , N − 1}, ε
 ∈ {0, 1, 2}.

(22)

The point qj belongs to Cank iff all the ε
 �= 1. This ternary decomposition allows position
eigenstates |qj 〉 to be written formally as tensor products,

|qj 〉 = |ε1〉 ⊗ · · · ⊗ |εk〉, {|ε〉, ε = 0, 1, 2} being the standard basis in C
3. (23)

This expression takes advantage of the particular structure of the triadic baker map. It
is very convenient for addressing the generations of the Cantor set, and constructing the
eigenstates of B. The kernel of the Walsh–Fourier transform in the position basis is, for
any j, j ′ = 0, . . . , N − 1,

(WN)jj ′ = 3−k/2
k∏


=1

exp

(
−2iπ

3
(ε
(j) + 1/2)(εk+1−
(j

′) + 1/2)

)
. (24)

Equivalently, the action of this transform on tensor product states is given by [32, 33]

WN(v1 ⊗ · · · ⊗ vk) = F3vk ⊗ · · · ⊗ F3v1, (25)

where vi ∈ C
3 stand for any linear superposition of the basis {|ε〉, ε = 0, 1, 2}, and F3 is

the 3 × 3 matrix defined in (9). Mimicking the ‘standard’ quantization (8) of the open triadic
baker, one gets the matrix (15) as the Walsh quantization of that map. A similar quantization
for the closed baker map originally appeared in the context of quantum information [38]. More
recently, a wide variety of quantizations of the baker map have been systematically studied [15].

The matrices B, B† preserve the tensor product decomposition, acting as twisted shifts:

B(v1 ⊗ · · · ⊗ vk) = v2 ⊗ · · · ⊗ vk ⊗ F̃
†
3 v1, (26)

B†(v1 ⊗ · · · ⊗ vk) = F̃3vk ⊗ v1 ⊗ · · · ⊗ vk−1. (27)

Here F̃3 is the ‘open’ Fourier transform, obtained by setting to zero the middle row of F3.

2.2. Spectrum of the open Walsh-baker

The action of the kth iterate Bk is

Bk(v1 ⊗ · · · ⊗ vk) = F̃
†
3 v1 ⊗ · · · ⊗ F̃

†
3 vk, (28)

so we first need to diagonalize the 3 × 3 matrix F̃
†
3 . We call the right eigenvectors of F̃

†
3

|f−〉 = 1√
2
(1, 0, −1)T, |f+〉 = 1√

6
(1, 2, 1)T, |f0〉 = (0, 1, 0)T, (29)
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the subscripts being inspired by the last entry of the vector. An important property is the
orthogonality of |f−〉 and |f+〉, which is specific to the choice of antiperiodic boundary
conditions (the choice of periodic boundary conditions yields nonorthogonal vectors [31]).
The respective eigenvalues are

λ− = 1, λ+ = λ = i√
3
, λ0 = 0. (30)

The left eigenvectors of F̃
†
3 are

〈g−| = 1√
2
(1, 0, −1), 〈g+| = i√

2
(1, 0, 1), 〈g0| = i√

3
(1, −1, 1). (31)

Left and right eigenstates are related by

F3|f0〉 = |g0〉, F3|f−〉 = |g−〉, F3|f+〉 = |g+〉. (32)

In particular, we see that the position representation of left eigenstates is equivalent to the
momentum representation of right eigenstates. We may thus restrict our attention to right
eigenstates only.

The eigenvalues of Bk are obviously given by products of the eigenvalues in (30), and we
can make the following sharp distinction between short-lived and long-lived eigenstates:

Convention. Eigenstates of B corresponding to nonzero eigenvalues are called long-lived,
and the remaining ones short-lived.

The nontrivial spectrum of Bk is spanned by a subspace of dimension 2k . The k + 1
eigenvalues {λd : d = 0, . . . , k} are in general highly degenerate: the multiplicity of

λd is the binomial coefficient
(k
d

)
. The nonzero eigenvalues of B are then simply of the

form λd/ke2π im/k with 0 � m � k − 1. The largest one in modulus is zmax = 1, while
the smallest is zmin = λ = i/

√
3. The remaining ones form a lattice inside the annulus

{|zmin| = 1/
√

3 � |z| � zmax = 1}, which becomes circular symmetric in the limit k → ∞.
No Jordan block appears in the nontrivial spectrum of B.

As noticed in [32, 33], the number of nonzero eigenvalues of B (counted with
multiplicities) scales like N ln 2/ ln 3, which corresponds to the fractal Weyl law for this system
(ln 2/ ln 3 is half the dimension of the repeller K0).

2.3. Exact scaling properties of the eigenstates

Let us define the 3 × 3 ‘in’ and ‘out’ projectors

πI =




1

0

1


 , πO = 1 − πI =




0

1

0


 , (33)

and the tensor products

�n = πI ⊗ πI ⊗ · · · ⊗ πI︸ ︷︷ ︸
n−1

⊗πO ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
k−n

, 1 � n � k. (34)

We see that �1 is the projector onto the hole. Let us also define the set of points which fall
into the hole after n steps, but not earlier,

Rn = {x ∈ O−n, x /∈ O−m, 0 � m < n}, (35)
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with the convention that R0 = O. These sets can be written as Rn = (Cann \Cann+1)× [0, 1),
and are related by

U−1(Rn) \ O = Rn+1. (36)

With this definition the projector �n corresponds to the region Rn−1.
The semiclassical propagation of these projectors is exact up to the Ehrenfest time k, in

the sense that B†�nB = �n+1 for any n < k. Indeed, the left-hand side acts as follows on a
tensor product state v:

B† �n B v = (πI v1) ⊗ (πI v2) · · · (πI vn) ⊗ (πOvn+1) ⊗ · · · ⊗ vk = �n+1v. (37)

For any n � k we thus have �n = (B†)n−1�1B
n−1, and the fact that �1 = 1 − B†B leads to

the relation �n = (B†)n−1Bn−1 − (B†)nBn. Let |�〉 be a normalized right eigenstate of B

with eigenvalue z. This state then satisfies

∀n, 0 � n < k, 〈�|�n+1|�〉 = |z|2n(1 − |z|2), (38)

which is the exact version of the general semiclassical property (6).

2.4. Walsh-coherent states

In order to investigate the phase space distribution of the eigenstates of the Walsh quantized
open baker map, we use Walsh-coherent states [1, 42] and the associated Walsh–Husimi
representations of quantum states. While the usual coherent states are associated with
Gaussians in phase space, the ‘Walsh’ ones are associated with ‘quantum rectangles’.

We have been denoting position eigenstates by |qj 〉 = |ε1〉 ⊗ · · · ⊗ |εk〉. The action of
the Walsh–Fourier transform on these states yields the orthonormal basis of Walsh-momentum
eigenstates. Given a certain momentum pj = (j + 1/2)/N , with j = ε′

1ε
′
2 · · · ε′

k in ternary
notation, we associate with pj the state

|pj 〉 def= W
†
N |qj 〉 = F

†
3 |ε′

k〉 ⊗ F
†
3 |ε′

k−1〉 ⊗ · · · ⊗ F
†
3 |ε′

1〉. (39)

As explained in section 1.4, given an integer 0 � b � k, two sequences ε = ε1 · · · εb,
ε′ = ε′

1 · · · ε′
k−b define a ‘quantum rectangle’ [ε′ · ε] of size b × (k − b). To this rectangle we

associate the Walsh-coherent state |ε′ · ε〉b:

|ε′ · ε〉b def= |ε1〉 ⊗ · · · ⊗ |εb〉 ⊗ F
†
3 |ε′

k−b〉 ⊗ · · · ⊗ F
†
3 |ε′

1〉. (40)

In particular, for b = 0 we recover momentum eigenstates, while b = k corresponds to position
eigenstates.

For each choice of 0 � b � k, the family of coherent states {|ε′ ·ε〉b} forms an orthonormal
basis of the quantum Hilbert space. Once we select the parameter b, the Walsh–Husimi measure
associated with a normalized state |ψ〉 is a probability measure defined through its values on
the rectangles of size b × (k − b):

Hb
ψ([ε′ · ε]) = |〈ψ |ε′ · ε〉b|2. (41)

In the semiclassical limit a sequence of quantum rectangles can converge to a phase space point
only if the parameter b depends on k in such a way that b(k) → ∞ and k − b(k) → ∞. The
‘most isotropic’ choice consists in taking b = [k/2]. Under these conditions, any sequence
(H

b(k)

�(k))k→∞ admits one or several weak-∗ limit measures ρ on the torus, and ρ does not depend
on the precise choice of b [1].

To study the semiclassical limits, we need to compute the weights of H
b(k)

�(k) on fixed (that
is, k-independent) rectangles, for instance on the family of v-squares [ε′ · ε]v for some fixed
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v ∈ N (we will sometimes call these squares ‘classical’ to insist on the independence with
respect to k). Let �[ε′ ·ε]v denote the projector

�[ε′ ·ε]v = πε1 ⊗ · · · πεv
⊗ I · · · I ⊗ π̃ε′

v
⊗ · · · ⊗ π̃ε′

1
(42)

(where πε = |ε〉〈ε|, π̃ε = F
†
3 πεF3) associated with the square [ε′ · ε]v . For any parameter

b � v such that k − b � v, the value of the Husimi measure Hb
ψ on [ε′ · ε]v is defined to be

Hb
ψ([ε′ · ε]v) = 〈ψ |�[ε′ ·ε]v |ψ〉. (43)

Notice that this is actually independent of b.

Using the fact that F 2
3 = ( −1−1−1

)
, the Walsh–Fourier transform (24) acts as follows

on a coherent state:

WN |ε′ · ε〉b = |ε′
1〉 ⊗ · · · ⊗ |ε′

k−b〉 ⊗ F3|εb〉 ⊗ · · · ⊗ F3|ε1〉 = (−1)b |ε̄ · ε′〉k−b, (44)

where we defined ε̄j = 2 − εj for all j = 1, . . . , b. The interval indexed by the sequence ε̄ is
symmetrical (with respect to the origin) to the one indexed by ε. Thus, the rectangle [ε̄ · ε′] is
the image of the rectangle [ε′ ·ε] after a phase space rotation of π/2 around the origin. We have
recovered the Walsh analogue of the action of the Fourier transform FN on Gaussian coherent
states.

The operator B maps b-coherent states into (b − 1)-coherent states. Indeed, from (26) we
have (if b � 1)

B|(ε′
k−b · · · ε′

1) · (ε1 · · · εb)〉b = δε1 �=1|(ε′
k−b · · · ε′

1ε1) · (ε2 · · · εb)〉b−1. (45)

This action exactly corresponds to the action of the classical open baker map Ũ on the rectangles
[ε′ · ε]: a rectangle inside the hole (ε1 = 1) is ‘killed’, while a rectangle outside the hole is
transformed classically:

B|ε′ · ε〉b = δε1 �=1|U([ε′ · ε])〉b−1, and similarly

B†|ε′ · ε〉b = δε′
1 �=1|U−1([ε′ · ε])〉b+1.

Let |�〉 be a long-lived right eigenstate, with B|�〉 = z|�〉, z �= 0. Then for any rectangle
such that all ε′

j �= 1, we have

∀n � k − b, Hb
�([ε′ · ε]) = |z|−2n Hb+n

� (U−n([ε′ · ε])). (46)

If on the contrary one of the symbols ε′
j = 1, then Hb

�([ε′ · ε]) = 0. This is the case iff the
rectangle [ε′ · ε] escapes the system when propagated backwards. The Husimi measure Hb

�

is thus supported on [0, 1) × Cank−b, which can be seen as a coarse-grained version of the
backward-trapped set K+. The concentration of the Husimi function on K+ was discussed
in [8, 23, 31] for the semiclassical limit. The arguments above show that for this system a
precise localization already holds for finite k.

The covariance (46) implies the following (Egorov-type) estimate on the weights of
v-squares. Assume k � 4v and take an arbitrary eigenstate � with eigenvalue z �= 0. Its
Husimi measure satisfies:

H
[k/2]
� ([ε′ · ε]v) = |z|−2v

(
v∏

i=1

δε′
i �=1

)
H

[k/2]
� ([·ε′ε]2v). (47)

Hence, to compute the weights of v-squares one only needs to know the weights of ‘vertical’
rectangles [·ε′ε] of size 2v × 0. For actual computations, it will prove convenient to use this
property.
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3. A particular family of long-lived eigenstates

Let us first describe the short-lived (right) eigenstates of B. From the action of B on tensor
products (26), we see that if v = v1 ⊗ · · · ⊗ vk with v1 = |f0〉 then Bv = 0. There are N/3
such degenerate states, and by taking their overlaps with coherent states we see that they are
supported in the hole R0. If v1 �= |f0〉 but v2 = |f0〉 then v is not annihilated by the action of
B, but we now have B2v = 0, so v is an eigenstate of B in a generalized sense. Since |f0〉
appears in the second position, the (Walsh–)Husimi function Hb

v of this state is localized in
the set R1. More generally, the Husimi function of a state v such that Bnv = 0 and Bmv �= 0
for 0 < m < n is supported on the set Rn−1 (provided this Husimi function is defined with a
parameter b � n).

Hence the short-lived states are supported on classical phase space regions that escape the
system before k steps (k corresponds to the Ehrenfest time). In the present system this escape
is perfectly deterministic and thus the short-lived states span the generalized kernel of B. For
more general systems some unavoidable leakage will lift this degeneracy and lead to small but
finite eigenvalues (see [39]).

In the rest of the paper we will focus on the long-lived eigenstates. Since the corresponding
eigenspaces are generally quite degenerate, we will choose a particular eigenbasis, which we
now describe.

3.1. Construction of the eigenstates �m
η

As explained in section 1.5, we denote by η = η1η2 · · · ηk , with ηj ∈ {+, −}, a binary
sequence of length k. The number of times the positive sign appears in the sequence η is

called its degree d . The ratio δ
def= d/k will be called the relative degree of η. With each

sequence η we associate the state

|η〉 = |fη1〉 ⊗ |fη2〉 ⊗ · · · ⊗ |fηk
〉, (48)

where |f±〉 are the eigenvectors of F̃
†
3 given in (29). The state |η〉 is a right eigenstate of Bk ,

with the eigenvalue λd .
Let τ denote the cyclic shift, such that τη = η2 · · · ηkη1. Each sequence has a minimal

period 1 � 
 � k under τ such that τ 
η = η. This period obviously divides k. The orbit of η

is the set [η] = {τ jη, 0 � j � 
−1} (if η, η′ belong to the same orbit, we will write η ≡ η′).
For a given pair 
, d there may exist more than one orbit. For example, for k = 5, d = 2 the
sequences ‘+ + − − −’ and ‘+ − + − −’ belong to different orbits, both of period 
 = 5.

The action of B on |η〉 can be written as B|η〉 = λη1 |τη〉. Each orbit [η] provides us
with a family of eigenstates of B. Let us select one representative η in this orbit. For any
0 � m � 
 − 1 we define zδ,m/
 = λδ e2π im/
 and construct the state

|�m
η 〉 = 1√

N


−1∑
j=0

Bj

z
j

δ,m/


|η〉 = 1√
N


−1∑
j=0

cjm|τ jη〉, (49)

where

cjm =
j∏

s=1

ληs

zδ,m/


, c0m = 1 (50)

and

N =

−1∑
j=0

|cjm|2. (51)
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This state is a (right) eigenstate of B with eigenvalue zδ,m/
. This can be verified by direct
inspection. Up to a global phase, it only depends on the orbit [η], so with some abuse we
may call it �m

[η]. Notice that |cjm| is independent of m, and so is N . Due to the orthogonality

between |f−〉 and |f+〉, the state �m
[η] is normalized, and two states �m

[η], �m′
[η] with m �= m′

are orthogonal to each other. In the same way, eigenstates constructed from different orbits
[η] �= [η′] are also orthogonal to each other. The family

{�m
[η], : [η], m = 0, . . . , 
(η) − 1}

thus forms an orthonormal basis of the nontrivial spectrum of B.
If m, 
 are coprime, the degeneracy of the eigenvalue zδ,m/
 is the number of different

orbits with length k, degree d and periods 
′ such that 
|
′ and 
′|k.

3.2. Spectral averages of Husimi measures

In this section we prove theorem 2, which describes spectral averages of Husimi functions of
the form (17). Using the eigenfunctions we have constructed, these averages take the form

Hb
[η]([ε

′ · ε]) = 1

N 



−1∑
m=0

∣∣∣∣∣∣

−1∑
j=0

cjm〈τ jη|ε′ · ε〉b

∣∣∣∣∣∣
2

. (52)

For any 0 � j, j ′ < 
, one has

1





−1∑
m=0

(z∗
δ,m/
)

−j (zδ,m/
)
−j ′ = δj,j ′ |λ|−2jδ, (53)

so that
∑
−1

m=0 cjm cj ′m = 0 if j �= j ′. Averaging over m thus cancels off-diagonal terms. For
any quantum rectangle [ε′ · ε] of size b × (k − b) we find

Hb
[η]([ε

′ · ε]) = N −1

−1∑
j=0

|cj0|2 |〈τ jη|ε′ · ε〉b|2. (54)

Each overlap on the right-hand side takes the value

|〈τ jη|ε′ · ε〉b|2 =
k−b∏
i=1

|〈ε′
i |gηj−i+1〉|2

b∏
i=1

|〈εi |fηi+j
〉|2 (55)

(the indices ηi+j are extended by periodicity). Let us first study the dependence of Hb
[η]([ε

′ ·ε])
with respect to the momentum coordinate (that is, the symbols ε′

i). From expressions (31) for
|g±〉, we immediately see that |〈ε′

i |gηj−i+1〉|2 = 1/2 if ε′
i �= 1, and that it vanishes otherwise,

independently of η or j . The momentum dependence can thus be factorized:

Hb
[η]([ε

′ · ε]) = νCan([ε
′]) ν[η]([ε]), (56)

where

ν[η]([ε]) = N −1

−1∑
j=0

|cj0|2
b∏

i=1

|〈εi |fηi+j
〉|2. (57)

Here νCan is the ‘uniform measure’ on Can defined in (16). If we extend formula (57) to
sequences ε of arbitrary length, it specifies a probability measure ν[η] on the unit interval,
and therefore also a probability measure ρ[η] = νCan(dp) ν[η](dq) on the torus. The averaged
Husimi measure Hb

[η] is equal to ρ[η], conditioned on the rectangles [ε′ · ε] of type b × (k − b).
This proves the first statement of theorem 2.
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From (54), we see that ν[η] is a convex combination of measures ντj η, where

ντj η([ε1 · · · εb]) =
b∏

i=1

|〈εi |fηi+j
〉|2 (58)

is a Bernoulli measure associated with the sequence τ jη. ρ[η] thus belongs to the class of
eigenmeasures studied in [31, proposition 8]; in particular, it is conditionally invariant through
the open map Ũ :

Ũ∗ ρ[η] = |λ|2δ ρ[η]. (59)

Inserting (59) in the decomposition (56), we obtain the scaling relation (19). Sequences
ε ∈ {0, 2}n correspond to intervals of Cann. The fact that (57) is independent of the choice of
the subsequence ε ∈ {0, 2}n shows that the measure ν[η] has the same shape in each connected
component of Cann. From expressions (29) we see that for any b-sequence ε such that exactly
n symbols satisfy εi �= 1, one has ντj η([ε]) � 1

2n

(
2
3

)b−n
. The same inequality obviously

applies to the convex combination ν[η], which proves (20). This ends the proof of theorem 2.
Through the scaling property (19), we see that the measure ν[η] can be specified by its

shape inside the hole (this is a general property of conditionally invariant measures with
e−� < 1 [14]). This shape depends on the specific orbit [η]. For instance, figure 2 shows
the weights ν[η]([ε]) for sequences ε of length 5. In that figure, another obvious property of
ν[η] is its symmetry with respect to the middle point q = 1/2. This property is easy to check
in terms of symbolic sequences. For any sequence ε, let ε̄ be the sequence obtained from
ε by replacing everywhere 0 by 2 and vice versa. The interval [ε̄] is exactly the symmetric
partner of [ε] with respect to the middle point. Then, one easily checks that for any sequence ε,
ν[η]([ε̄]) = ν[η]([ε]).

3.3. Husimi weights of ‘classical rectangles’

In the following sections we will compute Husimi weights of classical rectangles. Keeping
v > 0 fixed, we select for each k � 2v an eigenstate �m

η of the form (49). For convenience, we

will consider the ‘isotropic’ Husimi measures H� = H
[k/2]
� . As explained before, the sequence

(H�m
η
)k→∞ has a chance to converge to a semiclassical measure only if the sequences η = η(k)

are chosen such that their relative degrees δ(k) → δ.
If the periods 
 = 
(k) of the sequences η(k) are uniformly bounded, we may use the

results of [31] to classify the semiclassical measures. Indeed, if η̃ is a fixed, primitive sequence,
then the Husimi measures associated with the states �m

(η̃)k
′ (with k′ → ∞ and m = m(k′)

arbitrary) converge to the measure νCan(dp) × ν[η̃](dq) described in (56) and below. We will
thus concentrate here on sequences η(k) of periods 
(k) → ∞.

From the invariance property (47), we may restrict our investigation to the weights
of vertical rectangles [·ε]v = [·ε1 · · · εv]. For any primitive k-sequence η and any
m ∈ {0, . . . , k − 1}, the Husimi measure H�m

η
of such a vertical rectangle reads

H�m
η
([·ε]v) = N −1

k−1∑
j,j ′=0

cjm cj ′m〈τ jη|�[·ε]v |τ j ′
η〉. (60)

Each term (j, j ′) in the right-hand side of (60) contains the factor

k∏
i=v+1

〈fηi+j
|fηi+j ′ 〉. (61)
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From the orthogonality 〈f−|f+〉 = 0, this factor vanishes unless the sequences τ jη and τ j ′
η

coincide along the index set {v + 1, . . . , k} (the ‘v-bulk’), or equivalently, outside the set
{1, . . . , v} (the ‘v-box’).

If η is not primitive, that is if η = η̃n for some primitive η̃ and n > 1, then as soon
as k � 2v the v-bulk of τ jη will always contain a full sequence τ j η̃: this implies that the
terms 〈τ jη|�[·ε]v |τ j ′

η〉 vanish if j �= j ′ mod 
, and one has H�m
η
([·ε]v) = H[η]([·ε]v). For

this reason we will from now on restrict our attention to eigenstates constructed from long
primitive sequences η.

Definition. For v > 0 fixed, we take k � v and consider primitive sequences η = η1 · · · ηk .
If there exist two different integers j, j ′ ∈ {0, . . . , k − 1} such that the sequences τ jη and
τ j ′

η coincide on the v-bulk, then the sequence η is said to be (v-)admissible. The pair (j, j ′)
is then called an admissible pair for η, and we write j

v,η∼ j ′. Obviously, admissibility is a
property of the orbit [η].

The Husimi weight (60) can be decomposed into:

H�m
η
([·ε]v) = N −1

k−1∑
j=0

|cjm|2〈τ jη|�[·ε]v |τ jη〉 + N −1
∑
j

v,η∼ j ′

cjm cj ′m 〈τ jη|�[·ε]v |τ j ′
η〉. (62)

This weight is thus made of ‘diagonal’ and ‘off-diagonal’ terms. We have analysed the former
in the previous subsection. Our main task will now consist in estimating the contribution of
the latter in the cases where it is nontrivial (that is, when η is v-admissible).

3.4. Semiclassical measures of the individual eigenstates �m
η

Unlike in the last section, we now fix v > 0 and focus on the individual Husimi weights
H�m

η
([·ε]v) given in (62), in the limit k → ∞. The previous section described some properties

of the diagonal sum in (62). In this section (which strongly depends on the appendix), we
show that the off-diagonal sum in (62) is always negligible in the semiclassical limit, as long
as one considers the weights of ‘classical’ rectangles (that is, take v fixed and k → ∞).

Proposition 1. Fix v � 1 and take any vertical v-square [·ε]v . Then there exists a constant Cv

such that the following holds. For any k � 2v, take a primitive k-sequence η and an arbitrary
m ∈ {0, . . . , k − 1}. One has then:∣∣∣∣N (η)−1

∑
j

v,η∼ j ′

cjm cj ′m 〈τ jη|�[·ε]v |τ j ′
η〉
∣∣∣∣ � Cv k−1. (63)

Before proving this proposition, we briefly explain how it yields theorem 3. If the sequence
η appearing in theorem 3 is primitive, this is a bound on the off-diagonal sum in (62). As
already discussed, if η is not primitive and k � 2v the off-diagonal terms vanish. Besides, the
arguments in section 3.2 show that the diagonal terms in (62) yield ν[η]([·ε]v), so we get (21)
in the case of vertical v-rectangles. Finally, from the Egorov property (47) the same equation
holds if we replace a vertical 2v-rectangle by a v-square [ε′ · ε]v .

Proof of the proposition. The results of section 3.3 show that the right-hand side in (63) can
be nonvanishing only if the k-sequence η is v-admissible. Among the full set of primitive
sequences of length k, admissible sequences constitute a very restricted set: even though
they are primitive, these sequences are almost periodic, and have a rich hierarchical structure,
described in the appendix. We now describe some features of this almost-periodic structure,
relevant for our aims.
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3.4.1. Hierarchical structure of admissible sequences. Fix v > 0 and k � v. The analysis
of the appendix classifies the family of v-admissible binary sequences (which are primitive of
length k) according to their rank, which is a positive integer n � log2 k. The rank describes
the number of levels used to encode the hierarchical structure of the sequence.

A v-admissible sequence of rank n will be a repetition of two ‘elementary strings’, which
we will denote by Rn and Dn. The letters R, D are for ‘Repeated’ versus ‘Defect’, while the
subscript n means that these strings correspond to the ‘nth level’ of η. The strings Dn, Rn

have lengths �v, and they cannot be of the form Rn = (η̃)m, Dn = (η̃)m
′
, that is repetitions

of a common string η̃. We believe that the strings Dn, Rn satisfy further constraints, but we
do not need to know these explicitly for our purposes.

To construct the full sequence η starting from the two strings Rn, Dn, one proceeds
iteratively from level n down to level 1. The construction is encoded by a sequence of n signed
integers

(σ1r1, σ2r2, . . . , rn), with ri � 2, σi ∈ {±}. (64)

Starting from j = n down to j = 1, we use the two level-j strings Dj, Rj to construct the
‘long’ and ‘short’ strings at level j − 1 by the following concatenations:(

Lj−1

Sj−1

)
def=
(

Dj R
rj

j

Dj R
rj −1
j

)
. (65)

One of these two level-(j − 1) strings will be the ‘defect’, the other one being the ‘repeated
string’; the choice depends on the sign σj :

∀j = 2, . . . , n,

{
Dj−1 = Lj−1, Rj−1 = Sj−1 if σj−1 = +,

Dj−1 = Sj−1, Rj−1 = Lj−1 if σj−1 = −.
(66)

Finally, the k-sequence η is given (up to a global shift) by

η ≡ D1 R
r1−1
1 .

The analysis of the appendix shows that, for each j � n − 1, the level-j strings Rj , Dj are
necessarily primitive.

3.4.2. Two properties of admissible sequences. To estimate the left-hand side of (63), our first

objective is to count the number of admissible pairs j
v,η∼ j ′ (we recall that j ∼ j ′ implies that

j �= j ′). This counting is done in appendix A.3.1 of the appendix, and leads to the following

Proposition 2. There exists C > 0 such that the following estimate holds. Fix v > 0. For any

length k > v and any primitive sequence η of length k, the number of admissible pairs j
v,η∼ j ′

is bounded from above by C v2.

The number of terms in (63) is thus uniformly bounded when k → ∞. It remains to
control the variations of the coefficients cjm(η) (defined in (51)), and the size of N (η). This
is done in appendix A.4 of the appendix, and leads to

Proposition 3. Call � = − log |λ| = 1
2 log 3. For any v-admissible sequence η of length

k > v, any m ∈ {0, . . . , k − 1} and any 
, the coefficients cjm(τ 
η) satisfy

− 3v� � log |cjm(τ 
η)| � 3v�, j = 1, . . . , k . (67)
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Notice that these bounds are not satisfied by all k-sequences (see for instance the sequences
used in section 4). They are a consequence of the almost-periodicity of η. These bounds
straightforwardly imply the following estimates for the normalization factor N (η):

|λ|6v k � N (η) � |λ|−6v k.

Using proposition 2 we get, for any v-admissible k-sequence (and thus, trivially, for any
primitive k-sequence):

N −1
∑
j

v,η∼ j ′

|cjm cj ′m 〈τ jη|�[·ε]v |τ j ′
η〉| � N −1

∑
j

v,η∼ j ′

|cjm cj ′m| � C v2 |λ|−12v k−1.

This ends the proof of proposition 1, and thus of theorem 3. �
This theorem strongly constrains the semiclassical measures one can obtain from a

family (�m
η )k→∞, where η = η(k) and m = m(k) are chosen arbitrarily. From [31]

we know that, if such a family converges to a semiclassical measure ρ with decay rate
e−� , then the corresponding eigenvalues |zδ(k),m/k| → e−�/2, which means that the relative
degrees of the sequences η(k) converge towards �

log 3 . The limit measure is then of the form
ρ = νCan(dp) × ν(dq), with ν being the limit of the measures ν[η(k)]. Although such limits ν

can be quite diverse, they will necessarily satisfy the properties of ν[η(k)] described in theorem 2.
In the following section we exhibit semiclassical measures which are not of the above type.

4. Combination of two eigenstates Ψm
η

In this section we prove theorem 4, that is we provide examples of semiclassical measures
which are not of the form νCan(dp) × ν(dq). These measures will be associated with linear
combinations of two particular degenerate eigenstates �m

η , �m
η′ .

Fix some complex number z with |λ| < |z| < 1. For any integer k > 1, we can choose a
degree d = d(k) ∈ {1, . . . , k − 1} and m = m(k) ∈ {0, . . . , k − 1}, such that the eigenvalues

zδ(k),m/k
k→∞−→ z, that is,

d(k)

k
→ δ(∞) = log |z|

log |λ| ,
m(k)

k
→ arg(z/λδ(∞))

2π
. (68)

For each k > 4, we then consider the two following k-sequences, which we choose to label by
indices −k + d + 1, . . . , d:

η = η−k+d+1 · · · ηd = (−)k−d(+)d, η′ = η′
−k+d+1 · · · η′

d = (−)k−d−1 + − (+)d−1. (69)

These sequences have the same relative degree, and are primitive.

Proposition 4. Consider the two eigenstates �m
η , �m

η′ constructed from the sequences (69),
satisfying the condition (68). Fix α, α′ ∈ C such that |α|2 + |α′|2 = 1.

Then, the sequence of eigenstates (α�m
η +α′�m

η′)k�1 converges to a semiclassical measure
µα,α′ . If �(ᾱα′) �= 0, this measure is not of the type νCan(dp) × ν(dq).

proof. Let us first study the limit measure of the sequence (�m
η ). One can easily check that

for d � 2v and k − d � 2v the sequence η is not v-admissible. Thus, from the results of the
previous sections, the Husimi weight of any v-square is given by

H�m
η
([ε′ · ε]v) = 1

N

d∑
j=−k+d+1

|cj0|2 〈τ jη|�[ε′ ·ε]v |τ jη〉 = νCan([ε
′]v) × ν[η]([ε]v). (70)

An explicit computation of the coefficients cj0(η) gives

(cj0(η))j=−k+d+1,...,d = (λ(k−d−1)δ, . . . , λ2δ, λδ, 1, λ(1−δ), λ2(1−δ), . . . , λd(1−δ)). (71)
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If we extend the sequence η in (69) to a bi-infinite sequence in ‘the obvious way’ (that is,
taking ηj = + for j > d and ηj = − for j < −k + d + 1), and similarly extend the coefficients
|cj0|2 using the two geometric progressions, then the extension of the sum in (70) to j ∈ Z

yields the weight of a certain measure ρδ(k) = νCan × νδ(k), which is an exact eigenmeasure
of U of eigenvalue |λ|2δ(k). Due to the geometric decrease, the difference between the two
measures is small:

νδ(k)([ε]v) = ν[η]([ε]v) + Ov(|λ|δ(1−δ)k), k → ∞.

In the limit δ(k) → δ(∞), the measure νδ(k) converges to the eigenmeasure νδ(∞).
A similar computation shows that the Husimi measure H�m

η′ is close to an eigenmeasure
ρ ′

δ(k) = νCan(dp) × ν ′
δ(k)(dq), which converges to ρ ′

δ(∞) when δ(k) → δ(∞).

Now, let us consider �k
def= α�m

η + α′�m
η , with |α|2 + |α′|2 = 1. In the equation

H�k
([ε′ · ε]v) = |α|2 H�m

η
([ε′ · ε]v) + |α′|2 H�m

η′ ([ε
′ · ε]v) + 2�(ᾱα′〈�m

η |�[ε′ ·ε]v |�m
η′ 〉),

we need to control the cross-term, which is a linear combination of overlaps 〈τ jη|�[ε′ ·ε]v |τ j ′
η′〉.

From the structures of η and η′ this overlap is nonvanishing only if j = j ′ ∈ {−v+1, . . . , v−1}.
Thus, the cross-term amounts to the finite sum

2√
N (η) N (η′)

�
(

ᾱα′
v−1∑

j=−v+1

cj0(η) cj0(η
′)〈τ jη|�[ε′ ·ε]v |τ jη′〉

)
.

From the geometric decay of the coefficients cj0, this sum takes the form µoff,δ(k)([ε′ · ε]v) +
O(|λ|δ(1−δ)k), where µoff,δ is a signed measure (that is, the difference between two positive
measures) which is conditionally invariant under Ũ . In the case of a square [ε′

1 · ε1]1, the above
sum reduces to a single term j = 0:

c00(η) c00(η
′)〈f+|ε1〉〈ε1|f−〉〈g−|ε′

1〉〈ε′
1|g+〉 =




−i/4
√

3, ε1 = ε′
1 ∈ {0, 2},

i/4
√

3, ε1 �= ε′
1 ∈ {0, 2},

0 otherwise.

Thus, if �(ᾱα′) �= 0, we see that the signed measure µoff,δ cannot be factorized into the form
νCan(dp) × νoff,δ(dq). Hence, the semiclassical measure µα,α′ = |α|2ρδ(∞) + |α′|2ρ ′

δ(∞) +
µoff,δ(∞) is not of that form either. �

5. QUE at the edges of the spectrum

In the preceding sections we considered semiclassical measures with eigenvalues in the ‘bulk’
of the nontrivial spectrum, |z|2 ∈ (1/3, 1). In this section, we restrict ourselves to eigenstates
of eigenvalues zδ,m situated close to the edges of the nontrivial spectrum, that is the circles
{|z| = 1} and {|z| = 1/

√
3}. Since the analysis of the two cases is very similar, we will mostly

focus on the outer edge, that is the vicinity of the unit circle. The eigenvalues zδ,m/
 satisfy
|zδ,m/
| = |λ|δ = 1 + O(δ), so they will approach the unit circle iff the relative degrees

δ(k) → 0 as k → ∞. (72)

The general eigenstate of zδ,m/
 is a linear combination of eigenstates �m
η constructed from

sequences η = η(k) of the same relative degree δ(k). Notice that the periods 
(k) of η(k)

satisfy 
 � δ−1, so they necessarily diverge when k → ∞.
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5.1. Individual states �m
η at the outer edge of the spectrum

As a first step towards the proof of theorem 1, we consider the semiclassical measures associated
with a family (�m

η )k→∞ satisfying (72). From proposition 1, we are reduced to studying the
limits of the associated measures ν[η].

Proposition 5. Consider sequences (η = η(k))k→∞ such that the relative degrees δ(k) → 0
and their associated measures ν[η(k)] (see (57)). Then, for any fixed subinterval [ε1 · · · εv],
we have

ν[η(k)]([ε]) = νCan([ε]) + Ov(δ(k)) ,

where νCan is the uniform measure on the Cantor set (see (16)).
As a consequence, the semiclassical measure associated with a family (�

m(k)

η(k) )k→∞ is
ρmax = νCan(dp) × νCan(dq).

Proof. From the discussion in section 3.3, it is sufficient to prove the proposition for primitive
k-sequences η. A sequence η of relative degree δ(k) � 1 will contain many more minuses
than pluses. It thus makes sense to split the sum in (57) between the indices j such that the
v-box of τ jη contains only minuses, and the indices j for which the v-box contains at least
one plus. We write this decomposition as

ν[η]([ε]) = N −1
(−)∑
j

|cj0|2
v∏

i=1

|〈εi |f−〉|2 + N −1
(+)∑
j

|cj0|2
v∏

i=1

|〈εi |fηi+j
〉|2. (73)

Our aim is to show that the second term on the right hand side becomes small when k → ∞
and δ(k) → 0. This will result from two facts. Firstly, since there are δ(k)k pluses in η, the
number of terms in

∑(+) is bounded from above by v δ(k) k, which is much smaller than the
number of terms in

∑(−) (larger than k(1 − v δ(k))).
Then, we also need to control precisely the variations of the coefficients |cj0(η)| (which

we will denote by |cj | for short). These variations can be more easily visualized by considering
the logarithms

Bj(η)
def= log |cj (η)| =

j∑
s=1

log

∣∣∣∣ληs

λδ

∣∣∣∣. (74)

The sequence (Bj )j=0,...,k accomplishes a discrete path with endpoints at the origin and two
kinds of steps:

Bj+1(η) − Bj(η) =
{

δ� > 0 if ηj+1 = (−)

(δ − 1)� < 0 if ηj+1 = (+),
� = log |1/λ|. (75)

For δ � 1, the path will be made of many small ups and few steep downs. Let us call
{j1 < j2 < · · · < jd} the indices such that ηjr +1 = (+), and take 
r = jr − jr−1, so that ηjr +1

is preceded by a substring (−)
r−1. Grouping together |cjr
|2 with the coefficients along the

preceding substring, the normalization factor can be written as

N (η) =
d∑

r=1

Cr, Cr
def= |cjr

|2

r−1∑
m=0

|λ|2mδ = |cjr
|2 1 − |λ|2δ
r

1 − |λ|2δ
. (76)

We now split the above sum between the ‘long’ and ‘short’ 
r . We fix some ε ∈ (0, 1/4)

(independent of δ), and consider the subsets of indices

L def= {r ∈ [1, d] : 
r > ε/δ}, S def= [1, d] \ L.
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One sees from (75) that any index jmax at which Bj reaches its maximum is necessarily of the
form jmax = jr for some r ∈ L. Conversely, for any r ∈ L, the coefficient Bjr

is a ‘local
maximum’, in the sense that Bjr

> Bjr−1 and Bjr
> Bjr +1. We will show that the sum (76) is

controlled by the ‘long’ coefficients jr :

Lemma 1. Consider the same assumptions as in proposition 5, and fix some ε > 0. Then
there is a constant Cε > 0 such that, for δ small enough,

C−1
ε δ−1

∑
r∈L

|cjr
|2 � N (η) � Cε δ−1

∑
r∈L

|cjr
|2.

Proof. We first estimate the contribution of ‘long’ substrings to the sum (76):

∀r ∈ L, c′
ε δ−1 |cjr

|2 � |cjr
|2 1

1 − |λ|2δ
� Cr � |cjr

|2 1 − |λ|2ε

1 − |λ|2δ
� cε δ−1 |cjr

|2. (77)

From (50) we have that |cjr
| = |cjr−1 ||λ|1−δ
r . We then check that

∀r ∈ S, Cr � |cjr
|2 1 − |λ|2ε

1 − |λ|2δ
and |λ|1−δ � |cjr

|
|cjr−1 |

� |λ|1−ε. (78)

The set of indices S can be represented as a disjoint union of ‘discrete intervals’:

S =
⊔
s

Is, where Is = {j | rs � j � rs + ls − 1} and rs + ls < rs+1.

We are denoting by ls the length of the discrete interval Is and by rs its starting point. Using
the inequalities (78), we see that the contribution of each interval Is to

∑
r Cr is controlled by

jrs−1, which is the first ‘long’ index at the left of Is :∑
r∈Is

|cjr
|2 � |cjrs−1 |2 |λ|2(1−ε) 1 − |λ|2(1−ε)ls

1 − |λ|2(1−ε)
� C |cjrs−1 |2. (79)

Taking (77) into account, we see that the sum (76) is of the order of δ−1∑
r∈L |cjr

|2. �
Any index j in the sum �(+) is necessarily at distance � v from some index jr (because

the interval [j − v, j + v] necessarily contains a (+)), which implies |cj | � |λ|−v|cjr
|. We

thus get

(+)∑
j

|cj |2 � C

d∑
r=1

|cjr
|2 � C ′ ∑

r∈L
|cjr

|2.

We used equation (79) in the last inequality. Applying lemma 1, we obtain the following upper
bound for the second sum in (73):

N −1
(+)∑
j

|cj |2 = O(δ), δ → 0. (80)

This implies the following estimate for the complementary sum:

N −1
(−)∑
j

|cj |2 = 1 − N −1
(+)∑
j

|cj |2 = 1 + O(δ).

The proof of the proposition is achieved by noticing that
∏v

i=1 |〈εi |f−〉|2 = νCan([ε]). �
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5.2. General eigenstates at the outer edge of the spectrum

To prove the first part of theorem 1, we need to consider arbitrary eigenstates, which are linear
combinations of the states �m

η .
For z inside the unit disc, we call Ck(z) the set of orbits [η], such that η is a k-sequence

of relative degree δ, and there exists m ∈ {0, . . . , 
(η) − 1} such that zδ,m/
 = z (we will
only consider the case where Ck(z) is nonempty). We notice that the periods of two orbits
[η], [η′] ∈ Ck(z) may differ. On the other hand, with a given orbit [η] ∈ Ck(z) is associated a
single integer m ∈ {0, 1, . . . , 
 − 1} such that zδ,m/
 = z. The states {�m

η , [η] ∈ Ck(z)} form
an orthonormal basis of the z-eigenspace, so a general z-eigenstate will be written

|�〉 =
∑

[η]∈Ck(z)

dη|�m
η 〉, dη ∈ C,

∑
[η]∈Ck(z)

|dη|2 = 1.

For k � v, the Husimi measure of a vertical rectangle [·ε]v reads:

H�([·ε]v) =
∑

[η],[η′]∈Ck(z)

dη′ dη 〈�m′
η′ |�[·ε]v |�m

η 〉. (81)

The diagonal matrix elements can be estimated using proposition 5:∑
[η]∈Ck(z)

|dη|2H�m
η
([·ε]v) = ρmax([·ε]v) + Ov(δ), (82)

uniformly with respect to the normalized vector (dη).
We now want to estimate the off-diagonal terms in (81). For two orbits [η] �= [η′] in

Ck(z), we will write [η]
v∼ [η′] if there exists (j, j ′) ∈ Z/
Z × Z/
′

Z such that τ jη and τ j ′
η′

coincide in the v-bulk. This is possible only if the v-box of τ jη contains some pluses, and
τ j ′

η′ consists in a reshuffling of these pluses inside the box. For any k-orbit η, we call resh(η)

the set of k-sequences which coincide with η in the v-bulk and have the same degree as η.
Obviously, #resh(η) � v!.

We define the following Hermitian matrix, indexed by the orbits [η] ∈ Ck(z):

M[η′],[η]
def=
{

〈�m′
η′ |�[·ε]v |�m

η 〉, [η′] �= [η],

0, [η′] = [η].
(83)

Observe that off-diagonal elements vanish unless [η]
v∼ [η′]. Our aim is to estimate the

spectral radius of this matrix, rsp(M). If ‖v‖∞ = max[η] |v[η]| is the sup-norm in the vector
space of dimension #Ck(z), then the corresponding norm of the matrix M is given by

‖M‖∞ = max
[η]

M[η], where M[η] =
∑

[η′]∈Ck(z)

|M[η],[η′]|.

This norm ‖M‖∞ is necessarily greater than or equal to the spectral radius rsp(M). For each
[η], the sum M[η] takes the form

M[η] =
∑

[η′]
v∼[η]

|〈�m′
η′ |�[·ε]v |�m

η 〉| . (84)

Using the above remarks on the sequences [η′]
v∼ [η], and calling {jr} the indices such that

ηjr +1 = (+), we find

M[η] � N (η)−1/2
d∑

r=1

∑
j :|j−jr |�v

|cj (η)|
∑

η̃∈resh(τ j η)

N (η̃)−1/2 |c0(η̃)|.
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Any η̃ ∈ resh(τ jη) on the right hand side will belong to the orbit [η] or to some [η′]
v∼ [η].

Since τ jη and η̃ are identical outside the box, it is easy to see that

C̃−1
v � N (η)−1/2 |cj (η)|

N (η̃)−1/2 |c0(η̃)| � C̃v

for some uniform constant C̃v > 0. Using this estimate and lemma 1, we obtain the following
upper bound:

M[η] � v! C̃v N (η)−1
d∑

r=1

∑
|j−jr |�v

|cj (η)|2 � C ′
v N (η)−1

d∑
r=1

|cjr
(η)|2 = Ov(δ) .

This upper bound holds uniformly for all [η] ∈ Ck(z), so it also applies to ‖M‖∞ and thus to
rsp(M). Since M is Hermitian, the off-diagonal part in (81) satisfies

|d†Md| =
∣∣∣∣ ∑

[η′],[η]∈Ck(z)

dη′ M[η′],[η] dη

∣∣∣∣ � rsp(M) ‖d‖2 = O(δ).

This bound and (82) complete the proof of the first part of theorem 1 dealing with the outer
edge of the spectrum.

5.3. Inner edge of the spectrum

The second part of theorem 1 is proved in exactly the same way as the first part, except that the
sequences η now consist of many (+) and few (−). The Husimi measures of the corresponding
eigenstates all converge to a certain measure ρmin = νmin(dq) × νCan(dp), where νmin is the
self-similar measure defined as follows:

∀v-sequenceε, νmin([ε]) =
v∏

i=1

|〈εi |f+〉|2. (85)

This measure is supported on the full interval, so that supp ρmin = K+. One easily checks that
ρmin is conditionally invariant through Ũ with eigenvalue 1/3. It is a Bernoulli measure of the
type considered in [31]. �

Appendix. v-admissible sequences

We fix v � 1 and consider a primitive sequence η of length k � v, which is v-admissible.
Our aim is to analyse the structure of this sequence. We will proceed iteratively, from the
‘macroscopic scale’ (∼k) to the ‘microscopic scale’ (∼v). At each step, one needs to consider
several cases, so that the set of possible structures can be represented by a ‘tree’ organized
into ‘levels’. The structure of each admissible η will correspond to a ‘leaf’ of the tree situated
at a certain level n (the sequence η is then said to have ‘rank n’). Each rank-n leaf will be
characterized by a sequence of signed integers (64). To fully specify η (or rather its orbit [η]),
one further needs to give two ‘elementary strings’ Dn and Rn. The construction of η from
these data is explained in section 3.4.1.

We now start to analyse η. We will present in detail the analysis of the first two levels
of η, and sketch the inductive argument needed to get down to the ‘microscopic’ level n. Our

only assumption is the existence of an admissible pair j
v,η∼ j ′. Up to a global shift of η, we

may assume that j = 0 and 0 < j ′ � k/2. We designate k1 = j ′ and consider two cases,
k1 � v and k1 > v.

We recall the notation η ≡ η′ when both sequences belong to the same orbit [η]; by |η|
we denote the length of η. In all decompositions, curly brackets {· · ·} will indicate the part of
the sequence lying in the v-box.
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Appendix A.1. Case k1 � v: sequences of ‘rank 1’

Appendix A.1.1. Structure of the sequence. The assumption η ∼ τ−k1η (the fact that the two
sequences coincide in the v-bulk), with 0 < k1 � v, is equivalent to the following identity:

ηv+1 . . . ηk = ηv−k1+1 . . . ηk−k1 . (86)

(i) If k1 � k − v, which is possible only when k � 2v, the index sets {v + 1, . . . , k} and
{v − k1 + 1, . . . , k − k1} do not overlap. The sequence η can be written in terms of two
substrings η1, ηf :

η = {ηf η1} η1
1 . . . η1

k−v, with |η1| = k1, |ηf | = v − k1. (87)

The two substrings can be chosen independently (as long as they satisfy the condition that
η is primitive).

(ii) If instead we assume that k1 < k − v, which will be the case in the semiclassical limit, then
the two index sets in (86) do overlap. If we call η1 the k1-sequence η1 = ηv−k1+1 . . . ηv ,
then η is constructed from a ‘free’ initial part ηf of length v − k1 and the repetition of η1:

η = {ηf η1} (η1)q1−1 (η1
1 . . . η1

l1
) �⇒ τ−l1η = η̃f

(η1)q1 . (88)

Here we have applied the Euclidean division k − v = k1(q1 − 1) + l1, with 0 � l1 < k1,

and set η̃f def= η1
1 . . . η1

l1
ηf , which has length < v. In the nomenclature of section 3.4.1, the

sequence (88) has rank 1, with elementary blocks D1 = η̃f , R1 = η1, and its structure reads
(r1 = q1 + 1).

Remark. The string η1 may not be primitive. Assume η1 = (η̃1
)m for some m � 1, with η̃1

primitive of length k̃1 = k1/m. Take p, p′ maximal such that η̃f = (η̃1
)p η′ (η̃1

)p
′
, so that

η ≡ η′ (η̃1
)q̃1 , where q̃1 = mq1 + p + p′. (89)

The ‘defect’ η′ cannot be empty, otherwise η would be periodic.

Appendix A.1.2. Counting the admissible pairs j
v,η∼ j ′. We recall that j

v,η∼ j ′ means that
τ jη and τ j ′

η coincide in the v-bulk {v + 1, . . . , k}. To estimate the number of such pairs, we
address the following question: knowing the orbit [η] and the v-bulk of τ jη, what do we learn
about j?

We separately consider the two cases (87) and (88).

(i) The sequence (87) has length < 2v, so the number of pairs is < 4v2.
(ii) Let us consider the sequence (88), or its ‘irreducible form’ (89). To estimate the number

of admissible pairs, we identify a (short) substring of η which allows us to identify the
position of the defect along η.

Lemma 2. The string η̃1 η′ η̃1 occurs only once along the sequence η ≡ η′ (η̃1
)q̃1 . As a

consequence, the string η1 η̃f η1 occurs only once as well.

Proof. If q̃1 = 2, the statement is equivalent to the fact that η is primitive. When q̃1 � 3, a fit
of η̃1 η′ η̃1 with a different substring of η automatically implies that η̃1 is not primitive, which
contradicts our assumption. �

As a consequence, if the string η1 η̃f η1 lies in the v-bulk of τ jη, the shift j can be

uniquely identified. On the other hand, if j
v,η∼ j ′ the string η1 η̃f η1 cannot be fully included

in the v-bulk of both partners, but it must intersect the v-box. This string has length � 3v, so
both indices j, j ′ must belong to the same interval of length 4v. Hence, the total number of

admissible pairs j
v,η∼ j ′ is less than 16v2.
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Appendix A.2. Case k1 > v

In this subsection we assume that v < k1 � k/2, then decompose k − v = (q1 − 1)k1 + l1,
with 0 � l1 < k1. The assumption η ∼ τ−k1η is equivalent to

ηv+1 . . . ηk = ηk+v−k1+1 . . . ηkη1 . . . ηk−k1 . (90)

This identity implies that η is determined by the subsequence ηv+1 . . . ηv+k1 , which we baptize
η1 = η1

1 . . . η1
k1

:

η = {η1
k1−v+1 . . . η1

k1
}(η1)q1−1 (η1

1 . . . η1
l1
). (91)

If k1 and l1 +v were equal, we would have k = q1k1, and the sequence η would be k1-periodic,
which is excluded by assumption. Notice that k1 is strictly smaller than k/2.

By inserting the above expression for η into (90), we obtain a constraint on η1:

η1
1 . . . η1

k1−v = η1
l1+v+1 . . . η1

l1
, equivalently (η1)i = (τ l1+vη1)i, i = 1, . . . , k1 − v.

(92)

This constraint is similar to (86). To compare the two situations, we also need to know whether
η1 is primitive.

Lemma 3. If k1 < 2v and η1 = (η̃1
)m with m > 1, where η̃1 is primitive of length

k̃1 = k1/m < v, then we are back to the situation of appendix A.1: η is of rank 1, and
there exists an admissible pair j ∼ j ′ with |j − j ′| = k̃1.

If k1 � 2v, the string η1 is necessarily primitive.

Proof. Because η is assumed primitive, we do not want l1 + v to be a period of η1. If
k̃1 � k1 − v, the constraint (92) and the periodicity of η1 imply that this would be the case.
In the opposite case k̃1 > k1 − v, which can occur only if k1 < 2v, it is possible to realize the
constraint (92) for η1 = (η̃1

)m, with l1 + v = m′k̃1 + k2, 0 < k2 < k̃1: this requires the identity
η̃1

1 . . . η̃1
k1−v = η̃1

1+k2
. . . η̃1

k1+k2−v . In that case, η ≡ η̃ = (η̃1
)q̃1 η̃1

1 . . . η̃1
k2

, which is of the same

form as in (89), and forms an admissible pair with τ−k̃1 η̃. �

In the rest of this section we will assume that η1 is primitive, and separately consider the
cases k1 ≷ v + l1.

Appendix A.2.1. Case k1 > v with v + l1 > k1. We may write v + l1 = k1 + k2, with,
necessarily, k2 < v.

(i) In the case k2 � k1 − v
def= l2 (which can occur only when k1 < 2v), we are in a situation

similar to that of appendix A.1, i: the condition (92) does not constrain η1 very much,
since the index sets {1, . . . , l2} and {1 + k2, . . . , l2 + k2} do not overlap. In that case,

η1 = η2 η2
1 . . . η2

l2
ηf = η2 η̃f

, with |η2| = k2, |ηf | = v − k2, (93)

the strings η2, ηf being independent of one another. We must have η̃f �= η2, otherwise
η would be k2- periodic.

(ii) In the opposite case k2 < k1 − v, the situation is similar to that in appendix A.1, ii. We
divide k1 − v = (q2 − 1)k2 + l2, 0 � l2 < k2, q2 � 2. The constraint (92) implies that the
sequence η1 can be written as

η1 = (η2)q2 η2
1 . . . η2

l2
ηf = (η2)q2 η̃f

, |η2| = k2, |ηf | = v − k2, (94)
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where the sequences η2 and ηf are independent. Notice that the sequence (93) has the
same form, with q2 = 1. Inserting this expression in (91), we find

η = {η2
l2+1 . . . η2

l2
ηf }((η2)q2 η̃f

)q1−1 (η2)q2 η2
1 . . . η2

l2
, (95)

≡ η̃f
(η2)q2+1 (η̃f

(η2)q2)q1−1. (96)

In the terminology of section 3.4.1, this sequence is of ‘rank 2’, with the structure
(+q1, q2 + 1), and the elementary blocks D2 = η̃f , R2 = η2.

The sequence η2 is not necessarily primitive: it could be of the form η2 = (η̃2
)n with η̃2

primitive of length k̃2, and n > 1. If we take p, p′ � 0 maximal such that η̃f = (η̃2
)p η′ (η̃2

)p
′
,

calling q̃2 = nq2 + p + p′, we have

η ≡ η′ (η̃2
)q̃2+n (η′ (η̃2

)q̃2)q1−1. (97)

Notice that η′ cannot be empty: it is a ‘true defect’. The following lemma is proven in a similar
way to lemma 2:

Lemma 4. Assume η1 is primitive. Then the string η̃2 η′ η̃2 appears exactly q1 times along η

of (97). As a consequence, the string η2 η̃f η2 also appears q1 times along η.

Appendix A.2.2. Case k1 > v with l1 + v < k1. In this case, the right-hand side in the first
equation of (92) reads η1

l1+v+1 . . . η1
k1

η1
1 . . . η1

l1
. We define

k2
def= min(l1 + v, k1 − (l1 + v)).

In the three subcases below we will use the decomposition k1−v = (q2−1)k2 +l2, 0 � l2 < k2.

Subcase v + l1 = k1 − k2 with 0 < k2 � v. In this case we have necessarily q1 − 1 � 2.
Condition (92) implies that

η1 = (η2)q2−1 η2
1 . . . η2

l2
ηf η2 = (η2)q2−1 η̃f η2, |η2| = k2, |ηf | = v − k2. (98)

Notice the similarity to (94). The full sequence reads

η = {ηf η2} ((η2)q2−1 η̃f η2)q1−1 (η2)q2−2 η2
1 . . . η2

l2
(99)

≡ (η̃f
(η2)q2−1) (η̃f

(η2)q2)q1−1. (100)

This sequence is of rank 2, with the structure (−q1, q2) and the elementary blocks D2 = η̃f ,
R2 = η2. Lemma 4 also applies here: the string η2 η̃f η2 occurs exactly q1 times inside η.

Subcase v + l1 = k2 > v. From condition (92), we may write

η1 = (η2)q2−1 (η2
1 . . . η2

l2
)(η2

l2+1 . . . η2
l2+v), |η2| = k2. (101)

η2 satisfies some constraint of the form (92), depending on v + l2 ≷ k2.

Subcase v + l1 = k1 − k2 with k1/2 � k2 > v. Condition (92) imposes that η1 can be
expressed as

η1 = (η2)q2−1 (η2
1 . . . η2

l2
) (η2

k2−v+1 . . . η2
k2

), |η2| = k2. (102)

η2 satisfies some constraint of the form (92), depending on v + l2 ≷ k2.
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Appendix A.3. Iterating the analysis

In the last two subcases of appendix A.2 (k1 > v and k2 > v), the level-2 strings η2 in (101)
or (102) satisfy constraints similar to (90) (for η) or (92) (for η1). The analysis we have
performed successively on η and η1 can be applied to η2 and further iterated if necessary. At

each step, we find that the sequence ηj−1 def= Rj−1 (of length kj−1) is composed of a ‘repeated

string’ ηj def= Rj of length kj , and a ‘defect’ Dj , as indicated in (65), (66). This step determines
the signed integer σj rj .

Since kj � kj−1/2, the lengths k1, k2, . . . decay geometrically with j : for some n � log2 k,
we end up with a string ηn = Rn of length kn � v, and possibly some extra string ηf of length
< v, which ends the iteration. In general, the level-n defect η̃f = Dn is obtained by adjoining
to ηf a strict substring of ηn. Dn and Rn are the ‘elementary strings’ of η. The latter has
rank n, structure (σ1r1, σ2r2, . . . , rn), and can be reconstructed from Dn, Rn as explained
in section 3.4.1.

By applying lemma 3 at each step, we find that the intermediate sequences η1, . . . , ηn−1

are primitive. (The blocks Dn and Rn can be nonprimitive, see the remark around (89) and the
discussion around (97)).

Appendix A.3.1. Counting admissible pairs j
v,η∼ j ′ for admissible sequences of rank n. In

this section we prove proposition 2, which estimates the number of admissible pairs j
v,η∼ j ′ for

an arbitrary v-admissible sequence η. This counting has already been done for the sequences
of rank 1 in appendix A.1.2. Below, the notation S
 will stand for any of the two level-

strings R
, D
.

We give ourselves a sequence η described by its structure (σj rj ) and elementary strings

Dn, Rn. We want to characterize the admissible pairs j
v,η∼ j ′, that is, such that τ jη and

τ j ′
η coincide outside the v-box. In order to constrain those pairs, we will exhibit proper

substrings of η which are ‘identifiable’, or ‘recognizable’ if they are contained in the v-bulk.
For instance, extending lemmas 2 and 4 to sequences of rank n, we see that the string Rn Dn Rn

is recognizable. As a result, a defect Dn can be recognized if its ‘neighbourhood’ Rn Dn Rn is
contained in the bulk.

The lower level strings S
 can also be recognized if a certain ‘neighbourhood’ lies in
the bulk.

Lemma 5. For any 
 � n − 1 and any level-
 string S
 = R
/D
 of η, we consider
the following ‘neighbourhood’ Ŝ
: from the left end of S
, take |Rn| steps on the left, and
|S
| + |S
+1| + · · · + |Sn−1| + 2|Rn| + |Dn| steps on the right (here Si is the short level-i string).

Ŝ
 automatically contains S
. If Ŝ
 is contained in the bulk, then the string S
 it contains
can be recognized.

A string which cannot be recognized is said to be ‘hidden’ by the v-box.

Proof. Consider the level n: to recognize a string Sn−1 = DnR
rn(−1)
n , we need to see the defects

Rn Dn Rn adjacent to it, that is, the bulk should contain the string Rn Sn−1 Dn Rn: from the left
end of Sn−1, there are |Rn| steps on the left, and |Sn−1| + |Dn| + |Rn| � |Sn−1| + 2|Rn| + |Dn|
steps on the right.

In order to recognize Sn−2 (respectively Ln−2) we need to identify Dn−1 R
rn−1−1
n−1 Dn−1

(respectively Dn−1 R
rn−1

n−1), therefore Rn Sn−2 Dn−1 Dn Rn (respectively Rn Sn−2 Rn−1 Dn Rn)
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must be in the bulk. Whatever the value of σn−1, the necessary distance on the right is at most
|Sn−2| + |Sn−1| + 2|Rn| + |Dn|, while the distance on the left is always |Rn|.

The proof for the lower levels proceeds by iteration. �

The identification of a level-
 sequence S
 in the bulk of τ jη implies that the same sequence
can be identified at the same site in the bulk of τ j ′

η.
If the level-1 defect D1 were identifiable, we would have j = j ′, which contradicts the

assumption j ∼ j ′. Thus its neighbourhood D̂1 must intersect the v-box. This provides a first
restriction on j, j ′.

To identify D1, it would actually be sufficient to identify the two strings D2 adjacent to it.
To avoid this, the box must intersect one of the two neighbourhoods D̂2 adjacent to D1.

The lengths |S
| decay geometrically, |S
+1| < |S
|/2, so that |D̂2| is bounded from above
by |S2| + 2|S3| + 4v. On the other hand, |D2R2| = 2|S2| + |R3| � 2|S2| + |S3|. Let us assume
that |S2| > 20v. We then draw

|D2R2| − |D̂2| � |S2| − |S3| − 4v > |S2|/2 − 4v > 6v.

As a result, the box can intersect at most a single one of the r1 neighbourhoods D̂2, the other
r1 − 1 strings D̂2 sitting in the bulks of τ jη and τ j ′

η. This implies that

j ′ = j + k1 if the hidden D2 is on the left of D1,

respectively j ′ = j − k1 if the hidden D2 is on the right of D1.

In the two cases, the two partners correspond to an exchange (a ‘flip’) of two level-1 strings:

R1D1 → D1R1, respectively D1R1 → R1D1.

Let us consider the first alternative (j ′ = j + k1), and zoom on the string D̂2 which intersects
the box. Actually, to identify the D2 it contains, it would be sufficient to identify both level-3
strings D3 adjacent to it. The box must thus intersect at least one of the neighbourhoods D̂3.
Once more, if |S3| > 20v, only one of these neighbourhoods can be hidden. The choice of the
hidden D3 depends on σ1. Assume for instance σ1 = −, so that the defect D1 = L1 = D2 R

r2
2 .

The flip R1D1 → D1R1 then reads

D2 R
r2−1
2 D2 R2 R

r2−1
2 → D2 R

r2−1
2 R2 D2 R

r2−1
2 ,

which involves the level-2 flip D2 R2 → R2 D2. This shows that it is the string D3 situated
at the right of D2, that is the one at the junction D2 R2, which should be hidden. Iterating
to higher levels, we see that, as long as k
 � v, the exchange τ jη → τ j+k1η involves either
the flip D
 R
 → R
 D
 or the opposite one, and the string D
+1 at the junction must be
hidden: the box must intersect the corresponding neighbourhood D̂
+1. The iteration stops
when |S
| � 20v. At this stage, the intersection of the box with D
 implies that j must be
contained in some interval of length � 42v around the corresponding D
. Since its partner j ′

is uniquely fixed by j , this proves the estimate in proposition 2. �

Appendix A.4. Variations of the coefficients cjm(η) for admissible sequences

In this section we will prove proposition 3, that is we show that, for a sequence η admitting

partners j
v,η∼ j ′, all coefficients |cjm| are approximately of the same size.
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Appendix A.4.1. An alternative description of level-
 strings. We will represent rank-n
admissible sequences η in a slightly different manner than in section 3.4.1. Instead of
characterizing, at each level 
, the strings D
 and R
 by their lengths (‘long’ versus ‘short’),
we will rather distinguish them by the relative number of elementary strings Rn, Dn they are
composed of. That is, we will label differently the branches and leaves of the tree representing
the possible admissible structures.

By convention, let us call ‘positive’ (respectively ‘negative’) the elementary strings:

Pn
def= Dn = η̃f

, Nn
def= Rn = ηn.

The two level-(n − 1) strings are now called as follows:

Nn−1 = Pn Nrn

n , Pn−1 = Pn Nrn−1
n . (103)

Obviously, Nn−1 is the string containing more repetitions of Nn.
The construction of the lower levels proceeds by an iteration which is different but similar

to the one in (65) and (66). Starting from strings N
, P
 at level 
 < n, we define a ‘positive’
and a ‘negative’ string at level 
 − 1 by the following rule: P
−1 is the string with the highest
number of P
 or the lowest number of N
. The explicit form of N
−1 and P
−1 depends on a
signed integer ς
r
, where r
 is the same as in (64):(

N
−1

P
−1

)
=
(

N
r



 P


N
r
−1

 P


)
(ς
 = +) versus

(
N
−1

P
−1

)
=
(

N
 P
r
−1



N
 P
r





)
(ς
 = −).

(104)

Except at level n, we always place the N
 to the left of the P
, so the above sequences are
generally equal to D
 or R
 only up to appropriate shifts. The sign ς
 ∈ {±} indicates whether
the defect D
 is (up to a shift) equal to P
 or N
. The string N
 is a shift of either L
 or S
, the
choice depending on the signs {σn−1, . . . , σ
+1}, or equivalently {ςn−1, . . . , ς
+1}.

To be more synthetic, we call P
 = S+

 and N
 = S−


 . The iteration (104) means that the
sequence Sςj

j is the level-j defect, while S−ςj

j is repeated rj or rj − 1 times in S±
j−1. The first

integer (−r1 versus +r1) corresponds to the global (lowest-level) structure of η: for a certain
shift η̃ ≡ η one has

η̃ = N
r1−1
1 P1 (ς1 = +) versus η̃ = N1 P

r1−1
1 (ς1 = −),

in short η̃ ≡ (S−ς1
1 )r1−1 (Sς1

1 ). (105)

We notice that η contains more sequences Nn = Rn than Pn = Dn.

Appendix A.4.2. Variations of the |cjm(η)|. Let η be the sequence described above, with
relative degree δ = d/k. We first consider coefficients |cjm(η̃)| associated with the particular
shift η̃ of η described in (105). The logarithms of the coefficients |cjm(η̃)| (as in (74)) can be
expressed in terms of a single (δ-dependent) function

B :
⊔
n�0

{+, −}n −→ R

α = α1 · · · αn �−→ B(α) =
n∑

s=1

log

∣∣∣∣λαs

λδ

∣∣∣∣,
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where we recall that λ− = 1, λ+ = λ = i/
√

3. We then have log |cjm(η̃)| = B(η̃1 · · · η̃j ). As
noticed in section 5.1, these coefficients form a discrete path made of a succession of ‘ups’ δ�

and ‘downs’ (δ − 1)�, with � = − log |λ|.
For any n-string α we have the obvious bound

|B(α1 · · · αn)| � n �. (106)

In the previous paragraph we have decomposed η̃ into substrings, starting at the highest level
with the string Pn which initiates η̃, and Nn which follows it. We renormalize the function B

by defining

b(•)
def= B(•)

B(Pn)
.

Equivalently, this function is defined as the unique function on
⊔

n�0{+, −}n, such that

b(Pn) = 1, b(η̃) = 0 and b(αβ) = b(α) + b(β).

Since |Pn| � v, the bound (106) shows that |B(Pn)| � �v. To prove proposition 3 we will
control the variations of the sequence

{b(η̃1 · · · η̃n), 0 � n � k}. (107)

Since η̃ contains more strings Nn than Pn and b(η̃) = 0, we have

−1 < b(Nn) < 0 < b(Pn) = 1.

Inspecting the alternative (104), we see that at each level 1 � 
 < n, we have again

− 1 < b(N
) < 0 < b(P
) < 1. (108)

This property reflects the name ‘positive’ versus ‘negative’. We can further constrain the
values b(N
), b(P
).

Let us call #±

 the number of level-
 strings S±


 contained in the rank-n sequence η̃. The
following lemma relates this cardinal to the values of b(S±


 ).

Lemma 6. There exists a real number c > 0 such that, at each level 1 � 
 � n, one has

b(N
) = − c #+

 , b(P
) = c #−


 or concisely b(S±

 ) = ± c #∓


 . (109)

The normalization condition b(Pn) = 1 implies that c = (#−
n )−1.

Proof. We reason by recurrence on increasing 
. From (105) we have at level 
 = 1:

0 = b(η̃) = (r1 − 1) b(S−ς1
1 ) + b(Sς1

1 ) and #−ς1
1 = r1 − 1, #ς1

1 = 1.

This means that there exists a real number c such that

b(Sς1
1 ) = ς1 c (r1 − 1) = ς1 c #−ς1

1 , b(S−ς1
1 ) = −ς1 c = −ς1 c #ς1

1 .

From (108) we must have c > 0. Let us now assume the property (109) for some 
 − 1 � 1,
and first treat the case ς
 = +, so that the numbers of sequences of level 
 are

#+

 = #+


−1 + #−

−1

#−

 = (r
 − 1)#+


−1 + r
 #−

−1.

At the same time, we easily extract the coefficients b(S±

 ):{

r
 b(N
) + b(P
) = −c #+

−1

(r
 − 1) b(N
) + b(P
) = c #−

−1

⇐⇒
{

b(N
) = −c (#+

−1 + #−


−1) = −c #+



b(P
) = c ((r
 − 1)#+

−1 + r
 #−


−1) = c #−

 .

This proves the property at level 
. The case ς
 = − is similar. �
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Lemma 7. Take η̃ admissible of rank n. Then, the values of b on the defects Sς



 satisfy

Sum(η̃)
def=

n−1∑

=1

|b(Sς



 )| =
n−1∑

=1

ς
 b(Sς



 ) < 1 .

Proof. From (109), the above sum reads Sum(η̃) = 1
#−

n

∑n−1

=1 #−ς



 . On the other hand, if we

call #
 = #+

 + #−


 the total number of level-
 strings, we check by recurrence that

∀
 � n − 1, #
 = 1 +

∑

l=1

#−ςl

l .

Indeed, we already have #1 = #ς1
1 + #−ς1

1 = 1 + (r1 − 1). Assuming the above equality at level

 − 1, the number of 
-defects #ς



 is equal to the number #
−1 of level-(
 − 1) strings (one
defect for each string), so that

#
−1 + #−ς



 = #ς



 + #−ς



 = #
.

This proves the recurrence. Thus, taking 
 = n − 1 we get

Sum(η̃) = #n−1 − 1

#−
n

= #+
n − 1

#−
n

.

Finally, #+
n < #−

n (these are respectively the numbers of strings Pn and Nn). �

We can now finish the proof of proposition 3. For any level 1 � 
 � n, we call b
 the
‘sampling’ of the sequence (107) obtained by keeping only the successions of blocks of level

, starting from b(∅) = 0, b(N
), and finally reaching b(η̃) = 0. The sequence b
+1 is thus a
‘refinement’ of b
.

We first describe the level 
 = 1. If ς1 = −, we have b1 def=
(0, b(N1), b(N1P1), . . . , b(N1P

r1−1
1 ) = 0). Its smallest value b(N1) is reached after a ‘steep

drop’, then the sequence increases at a slower rate to finally reach 0 again. In the opposite
case ς1 = +, the sequence b1 = (0, b(N1), b(N2

1 ), . . . , 0) first slowly decays until it reaches
b(N

r1−1
1 ), then it makes its largest (positive) variation b(P1) to jump back to 0. Its smallest

value is b(N
r1−1
1 ) = −b(P1). In both cases, the minimal value of b1 is −|b(Sς1

1 )|.
Let us now study the variations of b at the level 2 < n. First assume ς1 = ς2 = −, so the

sequence b2 = (0, b(N2), b(N2P2), . . . , b(N1), . . . , 0). It first has a big negative jump b(N2),
followed by r2 − 1 small positive jumps to reach b(N1) < 0, the smallest value of b1. Then
starts the level-2 string composing P1 = N2P

r2
2 . From b(N1) we have a steep negative jump to

b(N1N2), then r2 smaller positive jumps to reach b(N1P1) > b(N1). The following negative
jumps in b2 will never bring it as low as the value b(N1N2) = b(N1) + b(N2), which is hence
its smallest value. On the other hand, all elements of b2 (but the first and last) are negative.

If ς1 = −, ς2 = +, we first have r2 small negative jumps to reach b(N
r2
2 ), followed by

a larger positive jump of b(P2) to reach b(N1) < 0. Then, we have again r2 − 1 negative
jumps to b(N1N

r2−1
2 ), and a following positive jump of b(P2) to get b(N1P1) > b(N1). The

following values will consist of adding b(P1) to already existing values, so they cannot get
smaller. The smallest value of b2 for this case is thus b(N

r2
2 ) = b(N1) − b(P2).

The case ς1 = + is equivalent to the ‘time reversal’ of the sequences b2 described above.
In all cases, the minimum of b2 occurs one step after or before the minimum of b1, and its
value is given by

min b2 = min b1 − |b(Sς2
2 )| = −|b(Sς1

1 )| − |b(Sς2
2 )|.
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The reasoning can be pursued to find that at any level 
 � n − 1, the minimum of the
sequence b
 is given by min b
 = −∑


l=1 |b(Sςl

l )|, and that b
 takes negative values except
at its start and end. At level 
 = n − 1, we thus get min bn−1 = −Sum(η̃). Once we know
bn−1 = (0, b(Nn−1), . . .), the sequence bn starts with b(Pn) = 1, followed by rn − 1 decays
until it reaches b(Nn−1) < 0. Since all values of bn−1 are negative, we have bn−1

i + b(Pn) � 1
for any index i. On the other hand, the value of bn never becomes smaller than min bn−1. As
a result, using lemma 7 we find that all the elements of bn are bounded by

−1 < −Sum(η̃) � bn
i � 1, 0 � i � #n.

By multiplying these inequalities by B(Pn), we find that the components of the rescaled
sequence Bn satisfy |Bn

i | � �v. Finally, each string η̃1 . . . η̃j is at most at ‘distance’ [v/2] from
some string at level n, so using (106) we get the bound |B(η̃1 · · · η̃i )| = log |cim(η̃)| � 3�v/2
for any 0 � i � k.

Finally, the cocycle property cjm(τ 
η̃) = c(j+
)m(η̃)

c
m(η̃)
proves proposition 3 for an arbitrary

shift η of η̃. �

Acknowledgments

This work was supported by EPSRC. S N was partially supported by the Agence Nationale
de la Recherche, under the grant ANR-05-JCJC-0107-01. He is grateful to Jens Marklof for
organizing a session at the School of Mathematics in Bristol, during which this collaboration
was initiated.

References

[1] Anantharaman N and Nonnenmacher S 2007 Entropy of semiclassical measures of the Walsh-quantized baker’s
map Ann. Henri Poincaré 8 37
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