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Abstract
We study classical and quantum maps on the torus phase space, in the presence
of noise. We focus on the spectral properties of the noisy evolution operator,
and prove that for any amount of noise, the quantum spectrum converges to
the classical one in the semiclassical limit. The small-noise behaviour of the
classical spectrum highly depends on the dynamics generated by the map.
For a chaotic dynamics, the outer spectrum consists of isolated eigenvalues
(‘resonances’) inside the unit circle, leading to an exponential damping of
correlations. In contrast, in the case of a regular map, part of the spectrum
accumulates along a one-dimensional ‘string’ connecting the origin with unity,
yielding a diffusive behaviour. We finally study the non-commutativity between
the semiclassical and small-noise limits, and illustrate this phenomenon by
computing (analytically and numerically) the classical and quantum spectra for
some maps.

Mathematics Subject Classification: 81Q50, 37D20, 37J35, 37C30, 81S30,
60J60

1. Introduction

Numerical studies of chaotic dynamical systems inevitably face the problem of rounding errors
due to finite computer precision. Indeed, the instability of the dynamics would require infinite
precision of the initial position, if one wants to compute the long-time evolution. Besides,
any deterministic model describing the evolution of some physical system is intrinsically
an approximation, which neglects unknown but presumably small interactions with the
‘environment’. A way to take this interaction into account is to introduce some randomness in
the deterministic equations, for instance through a term of Langevin type. Such a term induces
some diffusion, that is, some coarse-graining or smoothing of the phase space density. If the
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deterministic part of the dynamics is unstable, it has the opposite effect of transforming long-
wavelength fluctuations of the density into short-wavelength ones, so the interplay between
both components (deterministic versus random) of the dynamics is a priori not obvious.
Rigorous results on the behaviour of noisy chaotic systems have been obtained recently
[27, 6, 8]: they show that a usual property of deterministic chaos, namely the exponential
mixing, still holds in the presence of noise. Actually, introducing some noise provides a way
of computing the exponential decay rate (and the subsequent ‘resonances’) in a controlled
fashion [1, 26, 31, 35, 34].

In quantum mechanics, a (small) system is never perfectly isolated either, and is subject to
inevitable interaction with the environment, responsible for decoherence effects. The study of
decoherence has received a lot of attention recently, due to the (mostly theoretical) interest in
quantum computation [17] and precise experiments measuring decoherence. In some simple
cases, one can study the dynamics of the full system (small plus environment), and obtain the
effective dynamics of the small one [14]. Under suitable assumptions, this effective dynamics
results in a memoryless (super)operator acting on the quantum density of the small system.

A possible way to modellize this operator is by quantizing the ‘Langevin term’ used in
the classical framework, that is introduce a random noise in the quantum evolution equation
(for either continuous or discrete-time dynamics). Averaging over the noise yields, in the
continuous-time framework, a non-Hermitian ‘Lindblad operator’ [30], while in the discrete-
time case the evolution can be cast into the product of a unitary (deterministic) evolution
operator with a ‘quantum coarse-graining’ operator [7], this product being called from now on
the ‘coarse-grained evolution operator’. Similar operators have also appeared in the theoretical
study of spectral correlations for quantized maps [33], and in models of dissipative quantum
maps on the sphere [13].

Several recent studies have been devoted to noisy or coarse-grained quantum maps
[26, 31, 7] in the semiclassical limit, emphasizing the respective roles of regular versus chaotic
regions in the classical phase space. The aim was either to study the time evolution of an initial
density [7], or to compute the spectrum of the classical or quantum coarse-grained evolution
operators [26, 31]. A different type of quantum dissipation operator, originating from the theory
of super-radiance, was composed with a unitary quantum map on the sphere, and studied in
a series of papers by Braun [13]. The author computed a Gutzwiller-like semiclassical trace
formula for powers of the full (non-unitary) propagator, and showed their connection with
traces of the corresponding classical dissipative propagator.

In this paper, we present some results on the spectrum of coarse-grained propagators, for
maps defined on the two-dimensional torus (section 2). For the sake of simplicity, we restrict
ourselves to either fully chaotic or fully regular maps. In the limit of vanishing noise, the
spectrum of the classical coarse-grained evolution operator behaves differently in these two
(extreme) cases: for a chaotic map, the spectrum has a finite gap between unity and the next
largest eigenvalue, due to exponential decay of correlations [40, 8], while in the regular case
some eigenvalues come arbitrarily close to unity. To illustrate these results, we study in detail
some linear systems (either chaotic or integrable), for which the eigenvalues may be computed
analytically.

We then turn to the quantum version of these systems (section 4). After recalling the setting
of quantum maps on the torus, we define the quantum coarse-graining operator, and then prove
that for any classical map and a fixed finite noise, the spectrum of the quantum coarse-grained
evolution operator converges to the spectrum of the classical one in the semiclassical limit
(theorem 1).

We finally study in section 5 the non-commutativity of the semiclassical versus vanishing-
noise limits, using as examples the maps studied in the classical framework (section 5). As
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a byproduct, we show that one can obtain the resonances of a classical hyperbolic map from
the spectrum of an associated quantum operator (the quantum coarse-grained propagator),
provided the coarse-graining is set to decrease slowly enough in the semiclassical limit (we
conjecture a sufficient condition for the speed of convergence). In contrast, for an integrable
map the same limit yields a spectrum densely filling one-dimensional curves (‘strings’) in the
unit disc, one of them containing unity as a limit point.

2. Classical noisy evolution

The classical dynamical systems we will study are defined on a two-dimensional symplectic
and Riemannian manifold, the torus T

2 = R
2/Z

2. The maps are smooth (C∞), invertible
and leave the symplectic form dp ∧ dq (and therefore the volume element d2x = dq dp)
invariant: they are canonical diffeomorphisms of T

2. Such a map x = (q, p) �→ Mx

naturally induces a Perron–Frobenius operator P = PM acting on phase space densities
ρ(x) : [Pρ](x) = ρ(M−1x).

2.1. Spectral properties of the classical propagator

In this section we review the spectral properties of the Perron–Frobenius operator PM ,
depending on the map M and on the functional space on which the operator acts. The results
presented are not new, but allow us to fix some notation.

2.1.1. Spectrum on L2(T2). For any canonical diffeomorphism M and any p � 1, the
spectrum of PM on the Banach space Lp(T2) is a subset of the unit circle and admits ρ0(x) ≡ 1
as invariant density. In particular, P is unitary on L2(T2) and on its subspace L2

0(T
2) of

zero-mean densities.
One can relate some dynamical properties of the map M with the (unitary) spectrum of P

on L2
0(T

2) [18]. For instance, if the dynamics M leaves invariant a non-constant observable
H(x) ∈ C0(T2) (e.g. if M is the stroboscopic map of the Hamiltonian flow generated by H ),
then all observables of the type ρ(x) = f (H(x)) (with f a smooth function) are invariant as
well, so that the eigenvalue 1 of P is infinitely degenerate. The full spectrum of P will be
explicitly given for some integrable maps in section 3.2.

In contrast, the map M is ergodic iff P has no invariant density in L2
0 (i.e. if 1 is a simple

eigenvalue in L2). Stronger chaotic properties may be defined in terms of the correlation
function between two densities f, g ∈ L2:

Cfg(t)
def=

∫
T2

dx f (x)g(M−t x) = (f, P t g) (1)

(the time parameter t will always take integer values). The map M is said to be mixing iff for
any f, g, the correlation function behaves for large times as:

Cfg(t)
|t |→∞−→

∫
T2

dx f (x)

∫
T2

dx g(x). (2)

A slightly weaker property (weak mixing) is equivalent with the fact that PM has no eigenvalue
in L2

0(T
2).

2.1.2. Exponential mixing. For a certain class of maps (e.g. the Anosov maps defined
later), the convergence of mixing is exponentially fast, provided the observables f, g

are smooth enough. One speaks of exponential mixing with a decay rate γ > 0 if
|Cfg(t)−

∫
f dx

∫
g dx| � Kfge−γ |t | for a certain constant Kfg .
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This behaviour can sometimes be explained through the spectral analysis of the Perron–
Frobenius operator P acting on an ad hoc functional space B, with B �⊂ L2 (in general
B contains some distributions). One proves that the operator P on B is quasi-compact:
its spectrum consists of finitely many isolated eigenvalues {λi} (called Ruelle–Pollicott
resonances) situated in an annulus {r < λi < λ0 = 1} for some r > 0, plus a possible
essential spectrum inside the disc of radius r . In that case, assuming for simplicity that each λi

is a simple eigenvalue with spectral projector �i , the spectral decomposition of P on B leads
to the following asymptotic expansion for Cfg(t) in the limit t →∞:

Cfg(t) =
∑

i

λt
i〈f, �ig〉 + O(rt ). (3)

In the above expression, the brackets do not refer to a Hermitian structure, but represent the
integrals

∫
f (x)[�ig](x) dx. The first resonance λ0 = 1 corresponds to the unique invariant

density ρ0, and the decay rate (obviously independent of the observables f, g) is given by
γ = − log |λ1|, respectively, by − log r if there is no resonance other than unity.

This type of spectrum was first put in evidence in the case of uniformly hyperbolic maps
by using Markov partitions to translate the dynamics on the phase space into a simple symbolic
dynamics (namely a subshift of finite type) [40]. It was later extended to more general systems,
including non-uniformly hyperbolic ones [4]. In the next sections, we will introduce the
Anosov diffeomorphisms on the torus, which often serve as a ‘model’ for deterministic chaos.

2.1.3. Anosov diffeomorphism on the two-dimensional torus. In this section we recall
the definition and some properties of an Anosov diffeomorphism M on the torus T

2 [24].
The Anosov property means that at each point x ∈ T

2, the tangent space TxT
2 splits into

TxT
2 = Es

x ⊕ Eu
x , where E

u/s
x are the local stable and unstable subspaces. The tangent map

dxM sends E
u/s
x to E

u/s
M(x), and there exist constants A > 0, 0 < λs < 1 < λu (independent

on x) s.t.

∀t ∈ N, ‖(dxM
t)|Es

x
‖ � Aλt

s and ‖(dxM
−t )|Eu

x
‖ � Aλ−t

u . (4)

These inequalities describe the uniform hyperbolicity of M on T
2. The splitting of TxT

2 into
E

u/s
x has in general regularity C1+α for some 1 > α > 0, meaning that it is differentiable and

its derivatives are Hölder-continuous with coefficient α.
This uniform hyperbolicity implies that M is ergodic and exponentially mixing with

respect to the Lebesgue measure (see next section).
Simple examples of Anosov diffeomorphisms are provided by the linear hyperbolic

automorphisms of T
2, defined by matrices A ∈ SL(2, Z) with |trA| > 2. These maps

are sometimes referred to as ‘generalized cat maps’, in reference to Arnold’s ‘cat map’
AArnold = (

2 1
1 1) [3]. We will study in some detail these linear maps and their quantizations,

and obtain a rather explicit description of the associated coarse-grained propagators. One can
perturb the linear hyperbolic automorphism A with the stroboscopic map ϕ1

H generated by
some Hamiltonian H(x) on the torus: M

def= ϕ1
H ◦ A. If the Hamiltonian H is ‘small enough’,

the perturbed map M remains Anosov, and topologically conjugated with the linear map A.

2.1.4. Ruelle resonances for Anosov diffeomorphisms. As announced above, Anosov
diffeomorphisms on T

2 are exponentially mixing, and their correlation functions satisfy
expansions of the type (3). Although the original proofs made use of Markov partitions [40],
we will rather describe a more recent approach due to Blank et al [8], which has the advantage
of providing spectral results for the coarse-grained propagator as well.
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The strategy of [8] is to define a Banach space B of densities on T
2 adapted to the map

M: the space B contains distributions which are smooth along the unstable direction of M but
possibly singular (dual of smooth) along the stable direction. In particular, these functions are
too singular to be in L2, which allows a non-unitary spectrum of P acting on B. The space B is
defined in terms of an arbitrary parameter 0 < β < 1, and satisfies the continuous one-to-one
embeddings: C1(T2)→ B → C1(T2)∗.

The space B depends on the map M , and also on the direction of time: the space BM−1

adapted to the map M−1 is different from BM . Although the map M on the torus is invertible,
the dynamics of the operator P on the space B is irreversible: its spectrum is qualitatively very
different from that of P−1.

The authors indeed show that P is quasi-compact in B, with essential spectral radius
ress bounded above by σ = max(λ−1

u , λ
β
s ) (see equation (4) for the definition of λu/s). For

any 1 > r > σ , the spectrum of P in the ring Rr
def= {r � |λ| � 1} consists of isolated

eigenvalues, the Ruelle–Pollicott resonances {λi}. Therefore, a spectral expansion similar
to (3) holds for any pair of observables f, g ∈ B, which includes in particular observables
in C1(T2) (the expansion might be slightly more complicated than (3) due to possible finite
degeneracies of the resonances).

A possible strategy to extend the results of [8] to maps and observables of regularity Ck

was discussed in the recent preprint [5]. Under stronger smoothness assumptions, namely
for real-analytic Anosov maps in two dimensions, Rugh [41] constructed a transfer operator
acting on observables real-analytic along the unstable direction, and ‘dual of analytic’ along
the stable one; he showed that this operator is compact, which means that the essential spectral
radius vanishes in that case.

2.2. Coarse-grained classical propagator

In this section we precisely define the operator representing the effect of ‘noise’ on the
deterministic evolution of M . This operator is of diffusion type, it realizes a coarse-graining
of the densities.

2.2.1. Classical diffusion operator. We consider a smooth probability density K(x) on R
2

with compact support. For simplicity, we also assume that K(x) = K(−x). From there, to
any ε > 0 corresponds a probability density on the torus, defined as

Kε(x) = 1

ε2

∑
n∈Z2

K
(x + n

ε

)
.

Due to the compact support of K , we see that for small enough ε and any x ∈ T
2 this sum

has at most one non-vanishing term (for x close to the origin). We define the coarse-graining
operator Dε on L2(T2) as the following convolution:

∀f ∈ L2(T2), [Dεf ](y) =
∫

T2
dx Kε(y − x) f (x). (5)

Dε is a self-adjoint compact operator on L2(T2), with discrete spectrum accumulating at the
origin.

We define the Fourier transform on the plane as

K̃(ξ) =
∫

R2
dx K(x)e2iπξ∧x

with the wedge product given by ξ ∧ x = ξ1p− ξ2q. From the assumptions on the density K ,
the function K̃(ξ) is real, even and smooth. It takes its maximum at ξ = 0 (where it behaves
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as K̃(ξ) = 1 −Q(ξ) + O(|ξ |4), with Q(·) a positive definite quadratic form), and decreases
fast for |ξ | → ∞.

The plane waves (or Fourier modes) on T
2 are accordingly defined as ρk(x)

def=
exp{2iπx ∧ k}, for k ∈ Z

2. They obviously form an orthonormal eigenbasis of the coarse-
graining operator:

∀ε > 0, ∀k ∈ Z
2, Dερk = K̃(εk)ρk. (6)

The fast decrease of the eigenvalues as |k| → ∞ implies that the operator Dε is not only
compact, but also trace-class. It kills the small-wavelength modes, effectively truncating the
Fourier decomposition of ρ(x) at a cut-off |k| ∼ ε−1. For some instances, we will actually
replace the smooth function K̃(ξ) by a sharp cut-off �(1 − |ξ |) (with � the Heaviside step
function).

2.2.2. Classical coarse-grained propagator. The noisy dynamics associated with the map M

is represented by the product of the deterministic evolution PM with the diffusion operator:

PM,ε
def= Dε ◦ PM. (7)

It may be more natural to define the noisy propagator as the more ‘symmetric’ Dε ◦PM ◦Dε , but
both definitions lead to the same spectral structure. PM,ε describes a Markov process defined
by the deterministic map M followed by a random jump on a scale ε.

We now give some general properties of this operator, independent of the particular map M .
Like the regularizing operator Dε , PM,ε maps distributions into smooth functions, and is
compact and trace-class on any functional space containing C∞(T2) as a dense subspace, with
a spectrum independent of the space. Its eigenvalues {λµ,ε}µ�0 are inside the unit disc (only
λ0,ε = 1 is exactly on the unit circle), they are of finite multiplicity and admit the origin as the
only accumulation point. The eigenvalue λ0,ε is simple, with unique eigenfunction ρ0. Pε maps
a real density to a real density, therefore its spectrum is symmetric with respect to the real axis.

In the next section we investigate in more detail the behaviour of these eigenvalues in the
limit of small noise, stressing the difference between chaotic versus regular maps.

3. Spectral properties of a classical coarse-grained propagator

We describe more precisely the spectrum of PM,ε , in the limit of small noise, and for different
classes of maps M . We start with the most chaotic maps, namely the Anosov diffeomorphisms
defined in section 2.1.3, the exponential mixing of which was described in section 2.1.4. In
the second part, we will then turn to the opposite case of ‘regular’ maps on T

2.

3.1. Anosov diffeomorphism

We use the same notation as in section 2.1.4 for M an Anosov map. It was proven in [8] that
the spectrum of PM,ε outside some neighbourhood of the origin converges to the resonance
spectrum of PM on the Banach space B.

More precisely, for M a smooth Anosov canonical diffeomorphism on T
2 with foliations

of Hölder regularity C1+α (0 < α < 1), one considers the ‘associated’ Banach space B = BM

defined in terms of a coefficient β < α, such that the essential radius of P on B has for
upper bound σ = max(λ−1

u , λ
β
s ). The authors then construct a ‘weak’ norm ‖ · ‖w on L(B),

such that ‖Pε − P‖w → 0 as ε → 0. As a consequence, for any 1 > r > σ , any λ

in the annulus Rr = {r � |λ| � 1} and any δ > 0 small enough, the spectral projector
�

(ε)

B(λ,δ) of Pε (respectively, �B(λ,δ) of P) in the disc B(λ, δ) = {z : |z − λ| � δ} satisfies
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‖�(ε)

B(λ,δ)−�B(λ,δ)‖w
ε→0→ 0. Both projectors therefore have the same rank for ε small enough,

this rank being zero if the disc contains no resonance λi .
This proves that the spectrum of Pε in the annulus Rr converges (with multiplicity) to the

set of resonances {λi} as ε → 0, and the eigenmodes of Pε weakly converge to corresponding
eigenmodes of P (since the latter are genuine distributions, the convergence can only hold in
a weak sense).

Remarks.

• These results also apply to the ‘symmetric’ coarse-graining Dε ◦ P ◦Dε .
• It is reasonable to conjecture that these results hold as well if the coarse-graining kernel

K(x) is not compactly supported on R
2, but decreases sufficiently fast, for instance if

one takes the Gaussian G(x)
def= e−π |x|2 , G̃(ξ) = e−π |ξ |2 , as was done in [1, 26]. As a

broader generalization, we will sometimes consider a coarse-graining defined by a sharp
cut-off in Fourier space, K̃(ξ) = �(1 − |ξ |), similar to the method used in [31]; a
finite-rank coarse-graining was also used in [34] for one-dimensional noisy maps.

• If the map M and the kernel K(x) are real-analytic, we conjecture that the eigenvalues of
Pε on any ring Rr with r > 0 converge to the resonances P in Rr (cf the remark at the
end of section 2.1.4).

The (discrete) spectrum of Pε is the same on any space S admitting C∞ as dense subspace,
in particular on L2, and this is the space we will consider from now on (more precisely,
its subspace L2

0). This spectrum drastically differs from the absolutely continuous unitary
spectrum of the ‘pure’ propagator P on that space (cf section 2.1). The unitary spectrum is
thus unstable upon the coarse-graining Dε : when switching on the noise, the spectral radius
of Pε on L2

0 suddenly collapses from 1 to |λ1| < 1. As we will see in the next sections,
this collapse is characteristic of chaotic maps. We first describe it explicitly for the case of
hyperbolic linear automorphisms.

3.1.1. Example of Anosov maps: the hyperbolic linear automorphisms. In this section we
review [18, 27] the spectral analysis of the (pure versus noisy) propagator when the map A is
a hyperbolic linear automorphism of T

2 (cf section 2.1.3). The unitary operator PA on L2
0 acts

very simply on the basis of Fourier modes ρk , k ∈ Z
2
∗ = Z

2\0, namely as a permutation:

[PAρk](x) = ρk(A
−1x) = ρAk(x). (8)

This evolution induces orbits on the Fourier lattice Z
2
∗, which we will denote by O(k0) = {Atk0,

t ∈ Z}. Due to the hyperbolicity of A, each orbit is infinite, so that the modes {ρAtk0 , t ∈ Z}
span an infinite-dimensional invariant subspace of L2

0, which we call Span O(k0). The spectral
measure of PA associated with this subspace is of Lebesgue type (as usual when the operator
acts as a shift [39]). The number of distinct orbits being infinite, the spectrum of PA on L2

0 is
Lebesgue with infinite multiplicity.

Now we consider the coarse-grained propagator Pε,A = Dε ◦ PA. Since the ρk are
eigenfunctions of Dε (cf equation (6)), Pε,A will also act as a permutation inside each orbit
O(k0), but now at each step the mode ρk is multiplied by K̃(εk). Therefore, the operator Pε,A

restricted to the invariant subspace Span O(k0) can be represented as follows (the notation (·, ·)
denotes the scalar product on L2

0):

Pε,A|O(k0) =
∑
t∈Z

K̃(εAt+1k0)(ρAtk0 , ·)ρAt+1k0 . (9)

Since |Atk0| → ∞ for t →±∞, the factors K̃(εAt+1k0) vanish in both limits. As a result, the
spectrum of Pε,A|O(k0) reduces to the single point {0} (which is not an eigenvalue, but essential
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spectrum) [39]. By taking all orbits into account, the spectrum of Pε,A on L2
0 also reduces

to {0}: for linear hyperbolic maps, the collapse of the Lebesgue unitary spectrum through
coarse-graining is ‘maximal’.

3.2. Coarse-graining of regular dynamics

In the previous sections we have considered classical propagators of Anosov diffeomorphisms
on T

2. We now describe the opposite case of an integrable map on T
2. The notion of

integrability for a map is not so clear as for a Hamiltonian flow. In view of the examples
below, the definition should include the stroboscopic map MH = ϕ1

H of the flow generated
by an autonomous Hamiltonian H(x) on T

2, but it should also encompass elliptic and
parabolic automorphisms, as well as rational translations. A required property is that the
phase space T

2 splits into a union of invariant one-dimensional (not necessarily connected)
closed submanifolds, with possible ‘critical energies’. Note that this condition excludes the
(un)stable manifolds of an Anosov map, which are open. A more or less equivalent condition for
integrability is that the map leaves invariant a nowhere constant smooth function H(x), the level
curves of which provide the above submanifolds. As a result, any density ρ(x) = f (H(x)) is
invariant through PM as well, so that PM has an infinite-dimensional eigenspace of invariant
densities on L2

0 (which we will call Vinv).
The rest of the spectrum of PM can be of various types, as we will see (it can be pure point

or absolutely continuous, be a mixture, etc). For this reason, a general statement concerning
the coarse-grained spectrum of these maps cannot be very precise.

In the following sections we consider some simple examples of integrable maps for which
(part of) the spectrum can be analysed in detail. We then discuss (mostly by hand-waving) the
general case.

3.2.1. Translations on the torus. The simplest nontrivial maps on T
2 are the translations

x �→ Tvx = x +v mod T
2, which do not derive from a Hamiltonian on the torus. A translation

is either ergodic (yet non-mixing) or integrable (see later).
The spectrum of the corresponding Perron–Frobenius operator Pv = PTv

on L2
0 is easy to

describe [18]: Pv admits the Fourier modes ρk as eigenstates, with eigenvalues e2iπk∧v . The
spectrum of Pv is therefore pure point, with possible degeneracies. The spectrum of the coarse-
grained propagator Pε,v = Dε ◦ Pv on L2

0 is also easy to describe: each Fourier mode ρk is an
eigenfunction with eigenvalue K̃(εk)e2iπk∧v inside the unit disc. From the small-ε expansion
K̃(εk) ∼ 1−ε2Q(k), the eigenvalues corresponding to long wavelengths (|k| � ε−1) are close
to the unit circle for small ε, while the short wavelength eigenvalues (|k| � ε−1) accumulate
near the origin. We now describe how the global aspect of the spectrum qualitatively depends
on the translation vector v.

• Tv is ergodic iff the coefficients v1, v2 as well as their ratio v1/v2 are irrational: in that
case, the equation k ∧ v ∈ Z has no solution for k �= 0. The spectrum of Pv forms a
dense subgroup of the unit circle, all eigenvalues being simple. In the limit ε → 0+, the
spectrum of Pε,v becomes ‘dense’ in the unit disc (a similar quantum spectrum is plotted
in figure 4, right).

• If one of the coefficients v1, v2, v1/v2 is rational, Tv leaves invariant a family of parallel
one-dimensional ‘affine’ submanifolds, and is therefore integrable according to our
definition. For instance, if we take v1 = r/s (with r, s coprime integers) and v2 irrational,
then for any q0 ∈ [0, 1], the union of vertical lines

⋃s−1
l=0 {q = q0 + l/s} is invariant (if

s > 1, this set is non-connected). The spectrum of Pv is still dense on the circle, but all
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eigenvalues are now infinitely degenerate: for any k0, the modes k = k0 + (0, js), j ∈ Z

share the eigenvalue e2iπk0∧v . The eigenvalues of Pε,v are at most finitely degenerate: to
each phase e2iπk0∧v corresponds a ‘string’ of eigenvalues of decreasing moduli, the largest
one being at a distance ∼ε2 from the unit circle. As in the previous case, the spectrum
densely fills the unit disc as ε → 0.

• If both v1, v2 are rational of the form r1/s, r2/s with gcd(r1, r2, s) = 1, each point of T
2

is periodic with period s, the map is integrable. The only eigenvalues of Pv are of the
phases e2iπj/s , all being infinitely degenerate. The eigenvalues of Pε,v are at most finitely
degenerate, they are grouped into s strings of phases e2iπj/s , j = 0, . . . , s−1. For small ε,
the eigenvalues become dense along these strings, the largest eigenvalue at a distance∼ε2

from the unit circle (this spectrum is similar to the quantum one plotted in figure 4, left).

Comparing the first and second cases, we see that the spectrum of Pε cannot unambiguously
differentiate an ergodic from an integrable map: both may have eigenvalues close to the unit
circle. On the other hand, the second and third cases both correspond to integrable maps. Yet,
their small-noise spectra look quite different from one another.

3.2.2. Non-hyperbolic linear automorphisms of the torus. Another class of non-mixing linear
maps on T

2 is provided by the non-hyperbolic linear automorphisms. These automorphisms
split into two classes (for notation, we refer to section 3.1.1):

• The elliptic transformations (|trA| < 2), such as for instance the π/2-rotation given
by the matrix J = (

0 −1
1 0 ). As opposed to the hyperbolic case, each Fourier orbit

O(k0) = {J jk0, j = 0, . . . , 3} is finite of period 4, and Span O(k0) splits into four
eigenspaces associated with the eigenvalues {il, l = 0, . . . , 3}. Switching on coarse-

graining, the eigenvalues of Pε,J read ilλk0 , with λk0 =
√
|K̃(εk0)K̃(εJ k0)|. The spectrum

of Pε,J on L2
0 therefore consist of four strings along the four half-axes, which become

dense in the limit ε → 0 (see figure 1 for the analogous quantum spectrum). Similarly,
an elliptic transformation of trace trA = 1 will satisfy A6 = 1, therefore the spectrum of
Pε,A forms six strings. An elliptic transformation of trace trA = −1 will lead to three
strings.

• The parabolic transformations (or parabolic shears), given by matrices of the type
S = (

1 s
0 1), s ∈ Z∗. The dynamics reads (q, p) �→ (q + sp, p), so any periodic function of

the momentum p is a conserved quantity. The Fourier vector k0 = (k1, k2) generates the
orbit O(k0) = {k0 + (jsk2, 0), j ∈ Z}: if k2 = 0, the mode ρk0 is invariant and the orbit is
a singleton; in contrast, if k2 �= 0, O(k0) is infinite, and leads to the Lebesgue spectrum for
PS|O(k0). The full spectrum of PS on L2

0 is therefore the union of the infinitely degenerate
eigenvalue 1 with a countable Lebesgue spectrum [18]. In the case k2 �= 0, the noisy
propagator Pε,S acts on Span O(k0) as in equation (9), upon replacing A by S. Since the
wavevectors |Stk0| diverge in both limits t → ±∞, the associated spectrum reduces to
the singleton {0}. In contrast, each mode ρ(l,0) is an eigenstate of Pε,S with eigenvalue
K̃(ε(l, 0)): these modes form a string along the real axis, which becomes dense as ε → 0.

3.2.3. Nonlinear shear. If we perturb the linear parabolic shear S (cf last section) with
the stroboscopic map of the flow generated by a Hamiltonian of the form F(p), we obtain a
nonlinear shear (q, p) �→ (q +sp+F ′(p), p). We assume that s > 0, and that the Hamiltonian
F satisfies s+F ′′(p) > 0 everywhere. This map still conserves momentum, so that any density
ρ(p) is invariant. Among these, the Fourier modes ρ(l,0) are eigenstates of Pε , with eigenvalues
K̃(ε(l, 0)): they form the same string of real eigenvalues as for the linear shear.
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For any n ∈ Z∗, P and Pε leave invariant the subspace Vn = Span {e2iπnqρ(p),
ρ ∈ L2(T1)}, and their spectra on this subspace can be partially described, at least if one takes
F ′ small enough and replaces the kernel K̃(ξ) by the sharp cut-off �(1 − |ξ1|)�(1 − |ξ2|)
(such that Dε projects to a finite-dimensional subspace). The spectrum of P on Vn is absolutely
continuous, while that of Pε is contained in a small neighbourhood of the origin, uniformly
with respect to n and ε (see appendix A.1 for details). The spectrum should be qualitatively the
same if K̃(ξ) is of fast decrease at infinity.

3.2.4. Stroboscopic map of the Harper Hamiltonian flow. As a last example of an integrable
map, we consider the Harper Hamiltonian on the torus

H(x) = cos(q) + cos(p) = 1
2 (ρ(1,0) + ρ(−1,0) + ρ(0,1) + ρ(0,−1))

and take its stroboscopic map M = ϕ1
H . The invariant densities are of the form ρ(x) =

f (H(x)). As opposed to what happened for the parabolic shear, Vinv is not invariant through
the diffusion operator Dε , so the spectrum of Pε is more complicated to analyse. Still, if
we take a coarse-graining kernel satisfying K̃(ξ) = k̃(|ξ1| + |ξ2|) along the axes of slopes
0,± 1

2 , ±1, ±2, ∞ then the invariant functions H(x), (H(x))2 − 1 and (H(x))3 − 9
4H(x)

are eigenstates of Dε and therefore of Pε , with respective eigenvalues k̃(ε), k̃(2ε) and k̃(3ε)

(if the kernel only satisfies K̃((0, ζ )) = K̃((ζ, 0)) together with even parity, then H(x) will
be an eigenstate of Pε with eigenvalue K̃((ε, 0))). These eigenvalues are real and approach
unity as ε → 0. Numerically, they are the first three elements (respectively, the first element)
of a string of real eigenvalues connecting unity to the origin, the further elements of the string
being mixtures of invariant and non-invariant densities (see figure 5, right, for a similar quantum
spectrum).

3.2.5. General behaviour for an integrable map. After these examples, we want to describe
the spectrum of PM,ε for M an integrable map, say the stroboscopic map of an autonomous
Hamiltonian H . As we already explained, the space Vinv of invariant densities is infinite-
dimensional, containing all densities f (H(x)). When applying the coarse-graining Dε , one
generally mixes these invariant densities with non-invariant ones (as opposed to what happens
for the linear maps described above). Using ideas of degenerate perturbation theory, we
conjecture the following behaviour, which is supported by numerical investigations [31, 26].

The invariant subspace Vinv contains modes ρlw with long-wavelength fluctuations (i.e.
densities for which the Fourier spectrum is concentrated in a finite region near k = 0). For ε

small, these modes are hardly modified by the coarse-graining operator: Dερlw−ρlw = O(ε2).
This suggests that Pε has an eigenstate of the type ρlw + O(ε2), of eigenvalue 1− O(ε2), this
eigenstate being close to an invariant state of P . In contrast, Vinv also contains highly fluctuating
modes, which will be very damped by Dε , and should lead to eigenstates of Pε close to the
origin. As a whole, the hybridization of invariant modes with non-invariant ones leads to a
string of eigenvalues connecting unity to the origin, this string being symmetrical with respect
to the real axis. Note that the projected operator �invPε�inv = �invDε�inv = (where �inv

is the orthogonal projector on the space Vinv) is self-adjoint, therefore its spectrum can be
estimated through the min–max method: for ε → 0 it consists in a dense string of eigenvalues
between unity and zero. I believe that the largest eigenstates (-values) of this projected operator
are close to eigenstates (-values) of Pε .

Conclusion: qualitatively different spectra. We have exhibited a qualitative difference of the
coarse-grained Perron–Frobenius spectra between, on the one hand, the chaotic maps (Anosov),
and on the other hand, non-mixing maps, including ergodic translations and integrable maps.
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In the latter case, the spectrum of Pε on the subspace L2
0(T

2) comes close to the unit
circle for small ε, either along one-dimensional strings ‘connecting’ the origin to infinitely
degenerate eigenvalues of P (among which unity), or by densely filling the unit disc (for ergodic
translations). A common feature is that any annulus {R < |λ| < 1} (or any open neighbourhood
of unity) contains more and more eigenvalues of Pε in the small-noise limit ε → 0.

In contrast, for an Anosov map the spectrum of Pε on L2
0 is contained inside a disc of radius

R < 1, uniformly for small enough ε. This spectrum consists in a finite number (possibly
zero) of finitely degenerate eigenvalues (asymptotically close to the Ruelle resonances) inside
an annulus {r < |λµ,ε | � R}, the remaining eigenvalues having moduli smaller than r .

The numerical results of [31, 26] go beyond this statement: the authors consider systems
with mixed dynamics (not to be mistaken with the ‘mixing’ property of Anosov maps), that
is systems for which the phase space splits into ‘regular islands’ embedded in a ‘chaotic sea’.
They study the spectrum of the coarse-grained Perron–Frobenius operator (the coarse-graining
is taken as a cut-off in Fourier space), and show the presence of eigenvalues close to the unit
circle, the eigendensities of which are supported on the regular islands; on the other hand, they
also find some eigenvalues inside the unit circle, which are associated with the chaotic part of
phase space, and therefore interpreted as (generalized) Ruelle resonances. Yet, the nature of
the ‘chaotic sea’ in such systems is not well understood at the mathematical level, so that a
rigorous spectral analysis of the propagator seems a quite distant goal.

4. Quantum coarse-grained evolution

After studying the effect of noise on classical propagators, we turn to noisy quantum maps,
obtained by quantizing the classical ones. Although we will restrict ourselves to maps on the
2-torus, the main result of this section (theorem 1) can be straightforwardly generalized to
quantum maps on any compact phase space, provided one adapts the definition of the coarse-
graining operator (see the discussion in section 4.2.3). We start by recalling the setting of
quantized maps on the 2-torus.

4.1. Quantum propagator on the torus

4.1.1. Quantum Hilbert space and observables. We briefly review the construction of
quantum mechanics on T

2, in order to fix notation. For any value of h̄ > 0, the Weyl–
Heisenberg group associates with each vector v = (v1, v2) ∈ R

2 the ‘quantum translation’
T̂v = exp{(i/h̄)(v2q̂ − v1p̂)} which acts unitarily on L2(R). These translations satisfy the
group relations T̂vT̂v′ = e−(i/2h̄)v∧v′ T̂v+v′ .

The ‘torus wavefunctions’ are then defined as distributions |ψ〉 ∈ S ′(R) satisfying
the periodicity conditions T̂(0,1)|ψ〉 = T̂(1,0)|ψ〉 = |ψ〉. Due to the group relations, such
distributions exist iff h̄ satisfies the condition (2πh̄)−1 = N ∈ N (such a value of h̄ will be
called admissible). In that case they form a space of dimension N , which will be denoted
HN [23]. A basis of this space is provided by the ‘Dirac combs’ {|qj 〉N }j=0,...,N−1 defined as:

〈q|qj 〉N =
∑
ν∈Z

δ(q − qj − ν), with qj = j

N
. (10)

By construction, |qj 〉N = |qj+N 〉N , so the index j must be understood modulo N .
For practical reasons, we will choose the following representatives of integers modulo
N : ZN = {−N/2 + 1, . . . , N/2} for N even, ZN = {−(N − 1)/2 + 1, . . . , (N − 1)/2} for
N odd.
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The quantum translation T̂v acts inside HN iff v is on the square lattice of side 1/N , that
is v = (V1/N, V2/N) with Vi ∈ Z. Besides, each translation with integer coefficients acts
on HN as a multiple of the identity. As a result, the set {T̂V/N , V ∈ Z

2
N } forms a basis of

the space of linear operators on HN , denoted by L(HN). This basis can be used to define
the Weyl quantization of smooth observables f ∈ C∞(T2). From the Fourier decomposition
f =∑

k∈Z2 f̃ (k)ρk , the Weyl quantization of the observable f is defined as

f̂ = OpN(f )
def=

∑
k∈Z2

f̃ (k)T̂k/N =
∑
k∈Z

2
N

T̂k/N

(∑
ν∈Z2

(−1)Nν1ν2+k∧ν f̃ (k + Nν)

)
. (11)

The ‘converse’ of Weyl quantization, that is the Weyl symbol (or Wigner function) WB̂(x) of an
operator B̂ ∈ L(HN) is also easily defined through its Fourier transform: for each k ∈ Z

2, its
Fourier coefficient W̃B̂(k) is given by W̃B̂(k) = (1/N)tr(T̂ †

k/N B̂). These Fourier coefficients
are N -periodic (up to a sign), so that the ‘function’ WB̂(x) is a periodic combination of Dirac
peaks on the lattice of side 1/2N [23]. Alternatively, a polynomial Weyl symbol was defined
in [19] as the finite sum

WP

B̂
(x) =

∑
k∈Z

2
N

W̃B̂(k)e2iπx∧k.

As opposed to the former symbol, the polynomial symbol depends on the specific choice
for the representative ZN (the choice we made, with maximum symmetry around the origin,
seems more natural in this respect). The polynomial symbol map together with OpN yield an
isometric isomorphism between the subspace IN

def= Span {ρk , k ∈ Z
2
N } of L2(T2) and the

space of observables on HN equipped with the Hilbert–Schmidt scalar product (B̂, Ĉ) =
(1/N)tr(B̂†Ĉ). Since the Hilbert–Schmidt norm differs from the usual operator norm on
L(HN), we will denote by L2

N the space of observables on HN (i.e. N ×N matrices) equipped
with the Hilbert–Schmidt norm.

4.1.2. Quantization of canonical maps. We briefly explain how one quantizes a canonical
map M on T

2. The aim is to define for each N ∈ N a unitary operator on HN (which we will
denote by M̂N or simply M̂) which satisfies prescribed semiclassical properties [42]. These
properties do not unambiguously define the sequence of unitary matrices, so a choice has to be
made (in [44], a Toeplitz quantization is proposed for symplectic maps on Kähler manifolds).
We present here another quantization prescription, which uses the following decomposition of
any canonical map M on T

2 [16]:

M = A ◦ Tv ◦ ϕ1
H . (12)

In this formula, the linear automorphism A ∈ SL(2, Z) and the translation Tv are uniquely
defined. In contrast, the last factor corresponds to the stroboscopic map of the flow of a
time-dependent periodic Hamiltonian H ∈ C∞(T2

x × Tt ); this Hamiltonian is not unique,
since two Hamiltonians H1 �= H2 may lead to the same stroboscopic map ϕ1

H1
= ϕ1

H2
. From

this decomposition, one can quantize M as follows [25]. First, one quantizes à la Weyl the
Hamiltonian H(x, t) into the operator Ĥ (t) on HN , then take for the quantization of ϕ1

H the
time-ordered exponential T e−i

∫ 1
0 dt Ĥ (t)/h̄. Second, one may quantize the translation Tv with

the quantum translation T̂v(N) , where the vector v(N) belongs to the 1/N -lattice and is close to
v, for instance take

v(N) = ([Nv1], [Nv2])

N

[32]. Third, provided A satisfies the condition A ≡ Id2 mod 2 or A ≡ σx mod 2, the linear
automorphism A is ‘naturally’ quantized into a unitary matrix ÂN [23] (this condition may
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be relaxed if one generalizes the quantum Hilbert space HN to arbitrary ‘Bloch angles’ [12]).
Finally, the map M is quantized on HN as the product:

M̂N = ÂN ◦ T̂v(N) ◦ T e−i2πN
∫ 1

0 dt Ĥ (t). (13)

This choice for the quantum map automatically satisfies the Egorov property [12,32]: for any
classical observable ρ ∈ C∞(T2),

M̂N OpN(ρ)M̂−1
N −OpN(ρ ◦M−1)

N→∞−→ 0. (14)

This means that the quantization and finite-time evolution of densities commute in the
semiclassical limit (the convergence holds for the operator norm in L(HN)).

In practice, the classical maps we consider are all defined as products of automorphisms,
translations and Hamiltonian maps, so they admit a ‘natural’ quantization.

4.1.3. Propagator of quantum densities. The quantum map M̂ propagates quantum states
|ψ〉 ∈ HN . A density matrix ρ̂ is an element of the space L2

N = HN ⊗H∗
N , and its evolution

through the quantum map reads ρ̂ �→ M̂ρ̂M̂−1 = ad(M̂)ρ̂. The operator P̂M
def= ad(M̂)

acting on the space L2
N is the quantum analogue of the Perron–Frobenius operator PM acting

on classical densities. P̂M is unitary, with eigenvalues {ei(θj−θi ); i, j = 1, . . . , N}, where
{eiθj } are the eigenvalues of the matrix M̂ . In contrast with its classical analogue, the space
of invariant densities through P̂M is at least N -dimensional, since it contains all the rank-1
projectors |φi〉〈φi |, where |φi〉 are the eigenstates of M̂ .

The operator P̂ acting on densities is called a super-operator, to contrast with an operator
acting on HN . Being the adjoint action of a unitary matrix, it conserves the purity of the density,
which means that a pure density ρ̂ = |ψ〉〈ψ | is mapped onto a pure density P̂ρ̂ = |ψ ′〉〈ψ ′|.
We notice that P̂ conserves the trace of the density, that is the quantum counterpart of the total
probability of the density ρ.

4.2. Quantum coarse-graining operator

As we remarked above, the spectrum of P̂ on L2
N is qualitatively different from that of P on

L2(T2): the former has at least N invariant eigenstates, while the latter may have only one if
the map M is ergodic. In section 2.1, we explained how the spectrum of P was sensitive to the
functional space on which P acts. This is no longer the case in the quantum framework, since
the propagator is a finite-dimensional matrix. Still, we showed in section 3 an alternative way
to obtain the (non-unitary) resonance spectrum of an Anosov map, namely by introducing some
noise and studying the spectrum of the noisy propagator Pε = Dε ◦ P on the space L2(T2).
This procedure can also be carried out at the quantum level, by first defining a ‘quantum
coarse-graining’ or ‘quantum diffusion’ (super)operator D̂ε , using it to construct a quantum
coarse-grained propagator P̂ε , then studying the spectrum of the latter on L2

N . To connect the
classical and quantum frameworks, we will consider the semiclassical limit N →∞.

4.2.1. Definition. We define the coarse-graining superoperator by analogy with the classical
one (equation (5)). The latter can be expressed as follows:

∀f ∈ L2(T2), (Dεf )(x) =
∫

T2
dv Kε(v)ρ(x − v) =

∫
T2

dv Kε(v)(Pvρ)(x) (15)

where Pv is the Perron–Frobenius operator for the translation Tv . Since Tv is quantized on HN

into the unitary matrix T̂v(N) , a natural way to define a quantum coarse-graining super-operator
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would be through the integral∫
T2

dv Kε(v)P̂v(N) .

For convenience, we prefer a slightly different definition. The map v �→ v(N) is constant on
squares of side 1/N , so the above integral reduces to a finite sum over V ∈ Z

2
N , with each

operator P̂V/N multiplied by the average of Kε over the corresponding square. Kε being a
smooth function, this average is semiclassically close to the value Kε(V/N), therefore for N

large the above integral is well approximated by the sum:

D̂ε = F(ε, N)

N2

∑
V∈Z

2
N

Kε

(
V

N

)
ad(T̂V/N). (16)

The prefactor F(ε, N) is needed to guarantee that D̂ε conserves the trace, that is D̂ερ̂0 = ρ̂0.
This factor is easily expressed in terms of the two-dimensional theta function:

θK(εN, ζ )
def=

∑
ν∈Z2

K̃(εN(ν + ζ )), ζ ∈ T
2. (17)

For Gaussian coarse-graining K(x) = G(x) = e−π |x|2 , this function reduces to the product of
two classical Jacobi one-dimensional theta functions. In the limit εN � 1, the function θK is
peaked around the point ζ = 0, due to the fast decrease of K̃(ξ). Now, one easily checks that
F(ε, N) = θK(εN, 0)−1 converges to K̃(0) = 1 in the limit εN →∞.

4.2.2. Spectrum of the quantum coarse-graining operator. The spectrum of D̂ε on L2
N is as

easy to analyse as that of Dε (see equation (6)). Using the group relation

ad(T̂v)T̂v′ = e−i(v∧v′/h̄)T̂v′ (18)

we see that for any k ∈ Z
2
N , the quantum translation T̂k/N (=OpN(ρk)) is an eigenstate of D̂ε

with eigenvalue

d
(N)
ε,k =

F(ε, N)

N2

∑
V∈Z

2
N

Kε

(
V

N

)
e2iπk∧(V/N) = θK(εN, k/N)

θK(εN, 0)
. (19)

For fixed k and εN →∞, one has the asymptotics d
(N)
ε,k = K̃(εk) + O((εN)−α) for any power

α > 0, so that the eigenvalue of D̂ε associated with T̂k/N converges to the eigenvalue of Dε

associated with its symbol ρk . The estimate is sharper in the Gaussian case:

∀k ∈ Z
2
N, d

(N)
ε,k = e−πε2k2

+ O(e−π(εN)2/4) (20)

so that the relative deviations between classical and quantum eigenvalues are exponentially
small, uniformly on the modes k ∈ {|k1|, |k2| � (N/2)(1 − δ)} (with δ > 0 fixed). For the
Gaussian case, both classical and quantum spectra are strictly positive, which is not true in
general. The spectrum of D̂ε for a Gaussian noise is plotted in figure 1 (left).

If we replace K̃(ξ) by the sharp cut-off �(1−|ξ |), then d
(N)
ε,k = 1 for |k| < ε−1, d(N)

ε,k = 0
otherwise: the coarse-graining truncates the expansion (11), keeping only short wavevectors
(modulo N ). In other words, D̂ε truncates the Fourier series of the polynomial Weyl symbol
WP

ρ̂
, keeping only the coefficients |k| < ε−1.
A Fourier cut-off was also used as a definition for the quantum coarse-graining in [31],

but there the cut-off was applied to the Husimi function of ρ̂ instead of its polynomial Weyl
symbol.
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4.2.3. Probabilistic interpretation and generalizations of coarse-graining. In a different
physical framework (one-dimensional quantum spin chains), Prosen [38] recently defined a
similar quantum coarse-graining by truncating the densities on finite-dimensional spaces. In
this case, the quantum densities are decomposed into sums of spin operators acting on finite
sequences of spins (e.g. σ1(x)σ1(x + 1) · · · σ1(x + l)). The truncation consists in keeping only
those operators for which l � ε−1.

The right-hand side of equation (16) expresses the super-operator D̂ε in the Kraus
representation, i.e. as a sum

∑
j ad(Êj ), where the operators Êj on HN satisfy the condition∑

j Ê
†
j Êj = IdN . Kraus super-operators conserve the trace and the ‘complete positivity’ of

density matrices [17].
The right-hand side of equations (15) and (16) may be interpreted as a random global jump

for the density, which jumps at a distance v with a probability ∝Kε(v). Dερ and its quantum
counterpart represent the average over all these random jumps. Since Dε or D̂ε do not depend
on time, they therefore represent the classical and quantum versions of a memoryless Markov
process.

In a different scope, a super-operator similar to D̂ε was used in [33] to study the spectral
correlations of the quantum map M̂ in the semiclassical limit. Coarse-graining was there
interpreted as an average over a set of quantum maps close to identity. The phase space can
be an arbitrary (quantizable) symplectic manifold, and the classical and quantum averages are
generated by a finite set of Hamiltonians {Hj }j=1,...,f ; Kε is a smooth probability kernel in
f variables with compact support of scale ε around the origin. The classical and quantum
coarse-graining operators are defined as:

D
{Hj }
ε ρ(x) =

∫
R

df t Kε(t)ρ
(
ϕ−1∑

j tj Hj
(x)

)
,

D̂
{Hj }
ε ρ̂ =

∫
Rf

df t Kε(t)ad
(
e−i

∑
j Ĥj tj /h̄

)
ρ.

(21)

This scheme is more general than what we have done on the torus: one does not need any
group action on the phase space, but only a sufficient number of Hamiltonians. We recover
our previous definition on the torus if we take for ‘Hamiltonians’ the multivalued functions
H1 = p mod 1, H2 = −q mod 1 (these functions are not well defined on T

2, but their flows
are). The qualitative spectral features of the classical coarse-grained propagator D

{Hj }
ε for small

ε should not depend on the selected family of Hamiltonians {Hj }, as long as the second-order
operator

∑f

j=1(∇Hj
)2 is elliptic (in the above case on the torus, this is the Laplace operator

∂2/∂q2 + ∂2/∂p2, which is indeed elliptic) [27].
In the framework of quantum mechanics on the 2-sphere, a different type of dissipative

super-operator P̂τ = D̂τ ◦ ad(M̂) was considered in [13], where D̂τ is a quantum dissipation
operator obtained by integrating a quantum master equation during the time τ . This
dissipation operator first appeared in the study of super-radiance in atomic physics [10]. As
a main difference with our noisy propagator P̂ε , the (unique) invariant eigenmode of P̂τ is
different from ρ̂0. This corresponds to the fact that the corresponding classical propagator
Pτ (obtained from P̂τ by taking the semiclassical limit) does not leave invariant the uniform
density ρ0, but rather a more singular measure, which may be supported either on a discrete
set of points, or even on a more complicated ‘strange attractor’.

4.3. Quantum coarse-grained propagator

We will now study the quantum analogue of Pε , that is the coarse-grained quantum propagator
P̂ε = D̂ε ◦ P̂M . Similarly as the classical propagator, P̂ε maps a Hermitian density to a
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Hermitian density; as a result, its spectrum is symmetric with respect to the real axis. Like D̂ε ,
P̂ε is a Kraus super-operator, and therefore realizes a quantum Markov process: the quantum
density first evolves through the deterministic map ad(M̂), then performs a random quantum
jump through ad(T̂V/N), with a probability ∝Kε(V/N).

Linear combinations of quantum translations were considered in [7] as models for
decoherence on the quantum torus. The authors studied the evolution of densities through an
operator similar to P̂ε , by computing the time evolution of the ‘purity’ tr(ρ̂2). They took for M̂

the quantized baker’s map, which is fully chaotic, yet discontinuous on T
2. More recently,

similar computations were performed for smooth nonlinear perturbations of cat maps [21].
The author of [13] uses Gutzwiller-type trace formulae to estimate the traces of powers

of the dissipative quantum propagator tr(P̂n
τ ), in the regime of n fixed and h̄ → ∞; from

them he shows that each trace converges to the corresponding trace of the classical dissipative
propagator tr(Pn

τ ) (this trace being given by a sum over periodic orbits as well).
In the following I will not use any trace formula, but more basic semiclassical and operator-

theoretic techniques to compare quantum and classical coarse-grained propagators. P̂ε is
indeed spectrally similar to its classical counterpart Pε . It conserves the trace: P̂ε ρ̂0 = ρ̂0,
but in contrast with its noiseless version P̂ , it has for unique invariant density ρ̂0, all other
eigenvalues (in number N2 − 1) being inside the unit disc. As a non-classical property, P̂ε

destroys purity: the image of a pure state ρ̂ = |ψ〉〈ψ | is not a pure state.
The following theorem, which is the central result of this paper, relates more precisely the

spectra of P̂ε and Pε in the semiclassical limit: it states the ‘semiclassical spectral stability’ of
coarse-grained propagators.

Theorem 1. For any smooth map M on the torus and any fixed ε > 0, the spectrum of the
quantum coarse-grained propagator P̂ε = D̂ε ◦ P̂M on L2

N converges in the semiclassical
limit N →∞ to the spectrum of the classical coarse-grained propagator Pε = Dε ◦ PM on
L2(T2). For any r > 0, the convergence is uniform in the annulus Rr = {r � |λ| � 1}.

To compare the classical and quantum propagators, we use the isometry between the
subspace IN of L2(T2) and L2

N , induced by the Weyl quantization OpN and its inverse WP

(see section 4.1.1 for notation). P̂ε is then isometric to σN(P̂ε)
def= WP ◦ P̂ε ◦OpN ◦�IN

(�IN

projects orthogonally L2(T2) onto IN ). We therefore need to compare the operators σN(P̂ε)

and Pε on L2(T2). The crucial semiclassical estimate is the following lemma.

Lemma 1. The finite-rank operators σN(P̂ε) converge to Pε in the operator norm on L2(T2),
in the limit N →∞.

Proof. The key semiclassical ingredient is Egorov’s property (14). From the norm inequality

‖ρ̂‖2
HS =

1

N
tr(ρ̂†ρ̂) � ‖ρ̂‖2

L(HN ),

the convergence in (14) also holds for the Hilbert–Schmidt norm, that is on the space L2
N .

Using the symbol map WP and its inverse OpN on IN , we will convert operators on L2
N into

operators on L2(T2). We notice that for any k ∈ Z
2, ρk ∈ IN for large enough N . The evolved

density PMρk is in general not in IN , but it is smooth since M is so. Any smooth density ρ is
asymptotically equal to its projection on IN , so that

∀ρ ∈ C∞(T2), ‖WP ◦OpN(ρ)− ρ‖L2(T2)

N→∞−→ 0.

Using this fact, Egorov’s property can be recast into:

∀k ∈ Z
2, ‖σN(P̂M)ρk − PMρk‖L2(T2)

N→∞−→ 0.
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This means that the sequence of operators σN(P̂M) semiclassically converges to PM in the
strong topology on B(L2) (the bounded operators on L2(T2)). Now, a standard lemma in
functional analysis [11, lemma 2.8] states that if a sequence An of bounded operators on some
Banach space converges strongly to the operator A, then for any compact operator K , KAn

converges to KA in the operator norm. Since Dε is compact, this implies that Dε ◦ σN(P̂M)

converges to Pε,M in the operator norm. A simple comparison of the eigenvalues shows that
‖σN(D̂ε)−Dε‖B(L2) → 0 as N →∞, which achieves the proof of the lemma. �

End of proof of the theorem. From lemma 1, one applies standard methods to show that
the spectrum of σN(P̂ε) converges to that of Pε , as was done in section 3.1. Namely, for any
λ �= 0 and any small disc B(λ, δ) around it, the spectral projectors for σN(P̂ε) and Pε in that
disc satisfy ‖�(N)

B(λ,δ) −�B(λ,δ)‖ → 0 as N →∞. For small enough δ, the projector �B(λ,δ)

is independent of δ and of finite rank, equal to the multiplicity of λ in the spectrum of Pε . The
above convergence implies that �

(N)

B(λ,δ) has the same rank for N large enough, and that the
corresponding eigenspaces of Pε and σN(P̂ε) are close to each other. Finally, the spectrum of
P̂ε is identical with that of σN(P̂ε). �

This spectral stability was noticed numerically in [31] for the kicked rotator on the
2-sphere. In their case, the coarse-graining consists in a sharp truncation of the Fourier
expansion of the Husimi functions of the quantum densities, but the same arguments as
above can be applied to show the spectral stability of the coarse-grained propagator in the
semiclassical limit.

5. On the non-commutativity of the semiclassical versus small-noise limits

In the previous section we have described the semiclassical limit of the quantum coarse-grained
propagator P̂ε for a fixed coarse-graining width ε > 0. On the other hand, section 3 was dealing
with the small-noise limit ε → 0 for the classical propagator Pε .

These two limits do not commute. Indeed, for fixed N ∈ N the coarse-graining operator D̂ε

is a finite matrix, the N2 eigenvalues of which converge to unity as ε → 0 (see equation (19)).
Therefore, in this limit ‖D̂ε − IdL2

N
‖ → 0. For K(x) of compact support, we even have

D̂ε = IdL2
N

as soon as the rescaled support (εN)Supp(K) has no intersection with Z
2
∗. This

shows that for N fixed and ε decreasing to zero, P̂ε is close to unitary on L2
N , uniformly with

respect to the map M:

∀ρ̂ ∈ L2
N s.t. ‖ρ̂‖HS = 1, (1− ‖D̂ε − IdL2

N
‖) � ‖P̂ε ρ̂‖HS � 1. (22)

In contrast, there should exist a regime where N → ∞ (semiclassical) and simultaneously
ε = ε(N) → 0 (vanishing noise) slowly enough, such that the eigenvalues of P̂ε(N) stay
close to the eigenvalues of Pε(N), and therefore behave differently according to the classical
properties of M . For an Anosov map, the ‘outer’ eigenvalues (say, in some annulus Rr ) will
converge to the Ruelle resonances, while for an integrable map they will form dense strings
touching the unit circle. Equation (22) shows that a necessary condition for P̂ε to possess
eigenvalues close to the origin (like Pε) is that the coarse-graining operator D̂ε itself has small
eigenvalues. The smallest eigenvalues of D̂ε correspond to the largest wave vectors in Z

2
N ,

namely |k| ∼ N/2. From the explicit expression (19), this implies the condition

Nε(N)� 1. (23)

This condition is quite obvious: it means that the scale of coarse-graining ε(N) must be
larger than the ‘quantum scale’ 1/N = 2πh̄, that is the distance between two nearby position
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Figure 1. Spectrum of the quantum coarse-graining operator D̂ε for the Gaussian noise (left);
spectrum of the coarse-grained π/2-rotation P̂ε,J (right). Parameters are N = 40, ε = N−1/2 (◦).
The large concentric circles are only shown for clarity.

states |qj 〉N . One may wonder if this condition is sufficient, or if ε(N) should decrease more
slowly to get the desired convergence. We have so far no definite answer to this question for
a general map.

In the next two subsections, we will compare the spectra of P̂ε and Pε for the various maps
treated classically in sections 3.1.1 and 3.2. We know no nonlinear Anosov map for which
Ruelle resonances can be computed analytically, so for this case we rely on numerical studies
for the perturbed cat map [1].

We plot some numerically computed spectra, always using Gaussian noise and selecting
two different h̄-dependences for the noise width ε(N). We consider either a ‘slow decrease’
ε(N) = N−1/2, for which the convergence to classical eigenvalues is checked even for relatively
small values of N (the largest value of N we considered is N = 40). To test the finer
condition (26), we also consider a ‘fast decrease’ of the noise width ε(N) = log(N)/N , the
convergence to classical eigenvalues then being harder to verify numerically.

We start by plotting in figure 1 (left) the spectrum of the quantum coarse-graining
operator D̂ε .

5.1. Quantum linear automorphisms

In this section, we will only consider linear maps A satisfying the ‘checkerboard condition’
given in section 4.1.2, necessary for their quantization on HN . Then, the quantized linear
automorphism Â satisfies the exact Egorov property [23]:

∀k ∈ Z
2, Â T̂k/N Â−1 = T̂Ak/N ⇐⇒ P̂A OpN(ρk) = OpN(PAρk) = OpN(ρAk).

The quantum propagator therefore acts as a permutation on the quantum translations, like the
classical propagator on plane waves (cf equation (8)). In a first step, we treat any linear map,
regardless of the nature of its dynamics.

The main difference between the quantum and classical frameworks comes from the fact
that Weyl quantization OpN is not one-to-one: OpN(ρk+Nk′) ∝ OpN(ρk) for any k′ ∈ Z

2. As a
result, each orbit O(k) = {Atk, t ∈ Z} has to be taken modulo Z

2
N in the quantum case, yielding

a ‘quantum orbit’ ON(k) which is necessarily finite. Through a rescaling of 1/N , ON(k) is
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identified with a periodic orbit of the map A on the torus, situated on the ‘quantum lattice’
((1/N)Z)2. The period TN,k of this orbit is the smallest t > 0 such that Atk ≡ k mod Z

2
N . To

compute the spectrum of PA and Pε,A we need to analyse these quantum orbits.
The quantum orbits form a partition of Z

2
N , therefore a partition of the basis {T̂k/N , k ∈ Z

2
N }

of L2
N . To each ON(k) corresponds the TN,k-dimensional subspace Span ON(k), invariant

through both P̂A and D̂ε . The quantum propagator P̂A satisfies (we abbreviate TN,k with T )

P̂T
AOpN(ρk) = OpN(ρAT k) = OpN(ρk+NV ) = (−1)γ OpN(ρk) (24)

for some V ∈ Z
2, and γ = k ∧ V + NV1V2. This implies that the eigenvalues of P̂A on

Span ON(k) are the phases {exp((2iπ/T )(r + γ /2)), r = 0, . . . , T − 1}. By switching on
the noise, the equation (24) is modified by inserting the action of D̂ε on the successive modes
T̂At k/N . As a result,

P̂T
ε,AT̂k/N = (−1)γ d

(N)

ε,O(k)T̂k/N

with

d
(N)

ε,O(k)

def=
T−1∏
t=0

d
(N)

ε,At k.

The spectrum of P̂ε on Span ON(k) thus consists in T regularly spaced points on the circle of
radius |d(N)

ε,O(k)|1/T . To estimate this radius, we take its logarithm

1

T
log |d(N)

ε,O(k)| =
1

T

∑
k′∈ON (k)

log |d(N)
ε,k′ |. (25)

According to equation (19), this quantity is the average over the periodic orbit (1/N)ON(k)

of the function

fK(εN, ζ )
def= log

∣∣∣∣θK(εN, ζ )

θK(εN, 0)

∣∣∣∣ .
This function is smooth in ζ except at possible logarithmic singularities if θK vanishes. In the
Gaussian case G(x) = e−π |x|2 , fG has no singularities and admits for εN � 1 the asymptotic
behaviour fG(εN, ζ ) ∼ −π(εNζ)2 in the square {|ζ1| � 1

2 , |ζ2| � 1
2 }.

We have obtained an explicit relationship between the spectrum of P̂ε,A and the structure
of periodic orbits of A on the quantum lattice. The latter drastically differs between chaotic
and integrable automorphisms, which leads to qualitatively different quantum spectra. Below,
we sketch the description of these quantum orbits, respectively, for the elliptic, parabolic and
hyperbolic maps. We use the notation and results of sections 3.1.1 and 3.2.2.

5.1.1. Elliptic transformation J . The quantization of the π/2-rotation J yields the finite
Fourier transform Ĵ . The classical orbits O(k) are of period 4. In general, the successive
J jk are not congruent modN , so that the quantum orbit ON(k) also has period 4. The only
exception occurs forN even, k = (N/2, N/2) (period 1) or k = (0, N/2) (period 2). Assuming
that the coarse-graining kernel has the symmetry K̃(ξ) = K̃(J ξ), the eigenvalues of P̂ε,J on
a four-dimensional Span ON(k) are {ild(N)

ε,k , l = 0, . . . , 3}. Taking all quantum orbits into
account, the spectrum forms four strings as in the classical case (see figure 1, right). For
a Gaussian noise, equation (20) shows that these eigenvalues are exponentially close to the
corresponding classical eigenvalues.
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5.1.2. Parabolic linear shear S. We can quantize on HN the parabolic shear S described
in section 3.2.2 if the integer s is even. Quantizing the space of PS-invariants Vinv =
Span {ρ(l,0), l ∈ Z} leads to the P̂S-invariants Vinv,N = Span {T̂(l/N,0), l ∈ ZN }. Each T̂(l/N,0) is
an eigenstate of P̂ε with eigenvalue d

(N)

ε,(0,l), which is close to the classical eigenvalue K̃(ε(0, l))

for εN � 1; these eigenvalues then form a string connecting unity to the origin.
Now we study the spectrum of P̂ε on the orthogonal of the invariant space, V ⊥

inv,N . For
k = (k1, k2) with k2 �≡ 0 mod N , the infinite orbit O(k) = {k + (jsk2, 0), j ∈ Z} projects

modulo N onto a finite orbit ON(k) whose period depends on the ‘step’ g
def= gcd(N, sk2):

ON(k) = {(k1 + jg mod N, k2) |j = 0, . . . , N/g − 1}. For a fixed k2 ∈ Z∗, the step
g stays bounded in the limit of large N , so that the sum (25) behaves as the integral∫ 1

0 dt fK(εN, (t, k2/N)); for the Gaussian noise, the latter yields −πε2(N2/12 + k2
2) + O(1).

For a general value of k2 ∈ ZN\0, the step g may be of order N , in which case the sum (25)
is not well-approximated by an integral; still, one can (for Gaussian noise) prove the uniform
upper bound:

1

TN,k

log |d(N)

ε,O(k)| � −C(εN)2

with C = π min{1/s2, 1
16 }. The eigenvalues of P̂ε on V ⊥

inv,N are therefore situated on circles of
radii �e−C(εN)2

, so they uniformly converge to zero as εN →∞ (we recall that the spectrum
of Pε,S restricted to V ⊥

inv reduces to {0}).
In figure 2 we show the spectra of P̂ε,S2 for the linear shear S2 = (

1 2
0 1) and a ‘fast decreasing

noise’, together with the eigenvalues {d(N)

ε,(j,0)}Nj=0. The ‘non-invariant spectrum’ converges
slowly to the origin, while the ‘invariant spectrum’ becomes dense on the interval [0, 1]. Had
we chosen a larger noise width, the non-invariant spectrum would be contained in a smaller
disc for the same values of N .

5.1.3. Hyperbolic transformations. The space of invariant densities for a hyperbolic
automorphism A reduces to Vinv = Cρ0. Its orthogonal V ⊥

inv = L2
0 is quantized into the

space L2
0,N of traceless densities. We recall (cf section 3.1.1) that the spectrum of Pε,A on this

subspace reduces to {0}, for any ε > 0.

Figure 2. Spectrum of P̂ε,S2 for the linear shear S2 (◦) and values {d(N)
ε,(j,0)}Nj=0 (�). Parameters

are N = 20 (left), N = 40 (right) and in both cases ε = log(N)/N .
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The periodic orbits of a hyperbolic automorphism A were thoroughly studied in [37]; the
authors classified the orbits according to the 1/N sublattice they belong to. Yet, they gave no
equidistribution estimate on long periodic orbits. Our aim is to estimate the right-hand side of
equation (25) for all quantum orbits, at least for large enough N (we will restrict ourselves to
the Gaussian coarse-graining). For any Anosov map, the long periodic orbits equidistribute in
the statistical sense (averaging over all orbits of a given period) in the limit of long periods [36].
For a certain class of hyperbolic automorphisms, semiclassical equidistribution of all quantum
orbits was obtained for an infinite subsequence of values of N [19]. Equidistribution morally
implies that the sum (25) behaves as the integral∫

T2
dx fG(εN, x) ≈ π(εN)2

6
.

One can indeed show that for N in this subsequence, any eigenvalue λ of P̂ε,A on the subspace
L2

0,N satisfies

|λ| � exp

{
−π(εN)2

6
+ O(ε2N3/2)

}
.

There also exist arbitrary large values of N for which the period T (N) of A modulo N

is as small as 2 log N/λ + O(1), where λ > 0 is the Lyapounov exponent of A [37]. All
quantum orbits ON(k) have periods dividing T (N). Starting from k0 = (0, 1), the linear
dynamics shows that the point Atk0/N remains close to the origin (i.e. at a distance �1)
along the unstable direction until the time ≈(log N)/λ, when it reaches the boundary of the
square {|ζ1| � 1

2 , |ζ2| � 1
2 }; it is then straight away ‘captured’ by the stable manifold,

which brings it back to the origin during the remaining ≈(log N)/λ steps. This orbit thus
achieves an ‘optimally short’ homoclinic excursion from the unstable origin, and is far from
being equidistributed. The average of fG along this orbit is of order −C(εN)2/log N , so the
eigenvalues of P̂ε,A on Span ON(k0) have a radius≈ exp(−C(εN)2/log N). These eigenvalues
will therefore semiclassically converge to zero under the condition

εN√
log N

→∞. (26)

We believe that these particular values of N represent the ‘worst case’ as far as equidistribution
of long orbits is concerned, and that condition (26) suffices for the spectra of P̂ε,A|L2

0,N
to

semiclassically converge to zero for the full sequence N ∈ N. In figure 3 we show the
spectrum of P̂ε,A0 for the quantization of the cat map A0 = (

2 1
3 2), with fast decreasing noise

width.

Remark. For both the parabolic and the hyperbolic automorphisms, the spectrum of P̂ε on
V ⊥

inv,N reduces to {0} if the coarse-graining consists in a sharp truncation in Fourier space, and
ε−1 grows as ε−1 ≈ cN with c a finite but small constant (depending on the classical map).
Any non-trivial quantum orbit ON(k0) then contains an element k s.t. |k| > ε−1, such that the
corresponding mode T̂k/N is killed by D̂ε .

5.1.4. Quantum translations. As we mentioned in section 4.1.2, any classical translation
Tv with v ∈ T

2 can be quantized on HN by the quantum translation T̂v(N) , where v(N) is
the ‘closest’ point to v on the quantum lattice. This quantization was shown [32] to satisfy
Egorov’s property (14).

From equation (18), the quantum propagator P̂v(N) = ad(T̂v(N) ) admits any quantum
translation T̂k/N = OpN(ρk) as an eigenstate, with eigenvalue e−2iπv(N)∧k . All eigenvalues
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Figure 3. Spectrum of P̂ε,A0 for the cat map A0. Parameters are N = 30 (left), N = 40 (right)
and in both cases ε = log(N)/N . N = 30 corresponds to a ‘short quantum period’ T (30) = 6,
which is clearly visible in the shape of the spectrum.

are N th roots or unity, and are at least N -degenerate; in the case the classical translation Tv

is ergodic, these degeneracies contrast with the non-degenerate (but dense) spectrum of Pv .
In contrast, for a rational translation (the classical eigenvalues form a finite set), the quantum
eigenvalues may take values in all N th roots of unity, in the case N and v(N) are coprime. The
spectra of Pv and P̂v(N) may thus be qualitatively very different.

This difference disappears when one switches on the noise. Each T̂k/N is also an
eigenstate of the coarse-grained propagator P̂ε,v = D̂εP̂v(N) , associated with the eigenvalue
e2iπk∧v(N)

d
(N)
ε,k . In the semiclassical limit, the deviation from the corresponding classical

eigenvalue e2iπk∧vK̃(εk) (cf section 3.2.1) depends on both the wavevector k and the difference
v − v(N).

To give an example, the rational translation vector v = (0, 1
3 ) leads to three eigenvalues

e2iπl/3 for the classical propagator Pv , and three (infinite) strings for the spectrum of Pv,ε .
Quantum-mechanically, if N is a multiple of 3 one takes v(N) = v, and the eigenvalues of
P̂v,ε are exponentially close to the classical ones (figure 4, left). In the case N = 3n + 1, the
quantum translation vector will be v(N) = (0, n/(3n + 1)), so that the classical and quantum
noiseless eigenvalues for the mode ρk deviate by an angle 2πk ∧ (v− v(N)) = 2πk1/3N : this
deviation can be as large as π/3 for wavevectors |k1| ≈ N/2. After switching on the noise, the
classical and quantum eigenvalues for k ∈ Z

2
N can deviate by at most O(1/εN), the maximal

deviations occurring for wavevectors |k1| � ε−1, k2 = O(1) (figure 4, centre).

5.2. Examples of quantized nonlinear maps

In this section we shortly review the spectrum of quantized coarse-grained propagators for
three nonlinear maps: we first treat the nonlinear parabolic shear of section 3.2.3 and the
stroboscopic map of the Harper Hamiltonian (section 3.2.4), for which we have some analytic
handle. We then consider a perturbation of the cat map A0 and compare the numerically
computed eigenvalues of P̂ε to the spectrum of Pε obtained in [1].

(a) The nonlinear shear described in section 3.2.3 is quantized by taking the product of the
quantum linear shear Ŝ (see section 5.1.2) with the matrix e−iF̂ /h̄. Since F(p) is a function of
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the impulsion only, its Weyl quantization F̂ acts diagonally on the impulsion basis {|pj 〉}. As
a result, the perturbation ad(e−iF̂ /h̄) acts trivially on any projector |pj 〉〈pj |, and therefore on
any translation T̂(0,m)/N . As a result, the spectrum of the noisy nonlinear propagator on Vinv,N

forms the same string as for the linear shear.
The action of P̂ on V ⊥

inv,N can be studied as in the classical case: the propagator acts

inside each subspace Vn,N = Span {T̂(n,m)/N , m ∈ ZN }, as a unitary N × N Toeplitz matrix
P̂ (n) (instead of a simple permutation). In appendix A.2 we study the non-unitary spectrum of
P̂ (n)

ε when taking for K̃(ξ) a sharp cut-off: P̂ (n)
ε is then the truncation of P̂ (n) to the subspace

{|m| � ε−1}. We compare this truncated propagator with the corresponding classical one,
and show that if εN � 1, both spectra belong to the same union of one-dimensional strings
contained in a fixed ‘small’ disc around the origin, the size of which depends on the strength
of the perturbation F ′. The spectrum of P̂ for the quantized nonlinear shear e−iF̂ /h̄Ŝ2 with
F̂ = (0.25/2π) cos(2πp̂) is shown in figure 5 (left) for N = 40 and ε = log(N)/N , together
with the values {d(N)

ε,(j,0)}Nj=0.
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Figure 4. Spectrum of P̂ε,v for the translations v = (0, 1
3 ) (left: N = 30, centre: N = 37) and

v = (1/
√

2, 1/
√

5) (right: N = 37). The noise strength is ε = N−1/2. For the rational translation,
the eigenvalues are either exactly on the classical axes (for N a multiple of 3), or semiclassically
converge to it. For the irrational one, the eigenvalues become dense in the full disc.
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Figure 5. Spectrum of P̂ε for the nonlinear shear e−iF̂ /h̄Ŝ2 (left: N = 40, ε = log(N)/N ) and

the Harper map e−iĤ /h̄ (right: N = 40, ε = N−1/2). In both cases we also plotted some values
d

(N)
ε,(j,0) (�).
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Figure 6. Spectrum of P̂ε for the quantum perturbed cat map Ânl (◦) together with the largest
seven classical resonances (�). Left: N = 40, ε = N−1/2. Right: N = 40, ε = log(N)/N .

(b) The quantization of the stroboscopic map ϕ1
H for the Harper flow, i.e. the unitary matrix

e−iĤ /h̄, leads to the propagator P̂H leaving invariant any density of the type Ĥ n. Under the
same conditions for the coarse-graining kernel K̃(ξ) as in the classical case (see section 3.2.4),
P̂H,ε may admit for eigenstates Ĥ , (Ĥ 2 − Id) and (Ĥ 3 − (7 + 2 cos(2π/N)/4)Ĥ ), and
the associated eigenvalues {d(N)

ε,(j,0)}3j=1 converge to the classical eigenvalues {k̃(jε)}3j=1 if

εN → ∞. The spectrum of P̂H,ε for N = 40 and ε = N−1/2 is shown in figure 5 (right),
together with the values {d(N)

ε,(j,0)}4j=0. For the Gaussian kernel used there, only Ĥ is an eigenstate

of D̂ε , so the subsequent eigenvalues are hybridized by the coarse-graining. A ‘string’ of
eigenvalues along the positive real axis is clearly visible on the plot.

(c) We consider the quantization of the perturbed cat map studied in [1], that is the map

Anl :

(
q

p

)
�→

(
2q + p

3q + 2p + κ(cos(2πq)− cos(4πq))

)
.

We selected the perturbation κ = 0.5/2π in order to compare the quantum spectrum with the
classical resonance spectrum described in [1, figure 2]. In figure 6 we plot the spectrum of P̂ε

for N = 40 together with the seven ‘outer’ resonances whose values are given in [1, table 1].
In the ‘large noise’ regime (left), the largest quantum eigenvalues are indeed close to these
resonances, and the rest of the spectrum is inside a smaller disc. The small-noise regime
(right) does not uncover the classical resonances, however the non-invariant spectrum is already
contained in a relatively small disc around the origin, of radius comparable with the largest
resonance.

5.3. Concluding remarks

In spite of the relatively low values of N used in the numerical plots, one can already clearly
distinguish two different types of behaviour of the quantum spectra, depending on the classical
motion, especially for the slow noise decrease ε = N−1/2. For the integrable maps, the largest
non-trivial eigenvalue of the noisy quantum propagator P̂ε is at a distance ε2 from unity, and
this eigenvalue is the first one of a string of eigenvalues connecting unity with a neighbourhood
of zero. In contrast, for the two chaotic maps we studied (linear and perturbed cat maps), the
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spectrum already shows a finite gap for these values of N , even in the fast-decreasing noise
regime ε = log(N)/N ; however, for the relatively low values of N shown in the plots, the gap is
governed by the classical resonances only in the regime of larger noise ε = N−1/2. I conjecture
that the quantum spectrum also converges to the classical spectrum (in any annulus Rr ) in the
regime ε = log(N)/N , this being visible only for much higher values of N .

6. General conclusion

In this paper we have shown the connection between the spectra of coarse-grained quantum
and classical propagators for maps on the two-dimensional torus. I claim that theorem 1 can
be straightforwardly extended to maps on any compact phase space, like the 2-sphere S2 used
in [31, 26]. Using our knowledge of the spectrum of the classical noisy map, one infers the
presence or the absence of a finite gap between the (trivial) eigenvalue unity on the one hand,
the rest of the spectrum on the other hand, taking both the semiclassical (h̄ → 0) and small-
noise (ε → 0) limits in a well-defined way. The presence of this gap in the classical noisy
propagator is related to the ergodic properties of the map. At one extreme, corresponding to
integrable maps with infinitely many invariant densities, there is no gap in the small-noise limit,
and the spectrum contains a dense ‘string’ of eigenvalues connecting unity with the interior of
the disc: the long-time evolution is therefore governed by the eigenmodes associated with these
large eigenvalues, and is typically of diffusive type. At the opposite extreme, for an Anosov
map (‘strongly chaotic’), the spectrum exhibits a finite gap, responsible for the (classical)
exponential mixing. The case of maps with less chaotic behaviour is far from being settled.
The example of irrational translations shows that ergodicity does not imply the presence of a
gap. Exponential mixing was recently proven for some non-uniformly or partially hyperbolic
maps (see [4] for a review of recent results), which should (?) imply a gap in the spectrum of
Pε . Maps with subexponential mixing would also deserve to be studied from this point of view.
The more general case of maps with mixed dynamics (where the phase space can be divided
between ‘regular islands’ and a ‘chaotic sea’) was mostly investigated numerically [26, 31];
one found the presence of both ‘dense strings’ of eigenvalues and isolated resonances in the
spectrum of Pε . This (physically relevant) type of dynamics certainly deserves further study.

As in the classical framework, the presence of a gap in the spectrum of the quantum
noisy propagator allows us to describe the long-time dynamics of densities induced by
this propagator: ρ̂(t) = (P̂ε)

t ρ̂(0). This dynamics is a possible model for a dissipative
perturbation of the unitary evolution ρ �→ M̂tρM̂−t , the dissipation being induced by the
interaction with the environment [7]. One measure of the decoherence occurring through
this evolution is the ‘purity’ tr(ρ̂(t))2. For an Anosov map M , the long-time evolution
of this quantity will be governed by the largest non-trivial eigenvalues of P̂ε , which are
semiclassically close to the classical resonances. This very evolution was recently studied
for perturbed quantum cat maps, providing an estimate of the largest eigenvalues of P̂ε for
large values of N [21]. Another way to characterize the time evolution of Pε is through the
dissipation time tdiss = inf{t ∈ N/‖P t

ε‖B(L2
0)

< e−1}. In the case of linear automorphisms
on the d-dimensional torus, the small-noise behaviour of tdiss has been shown to qualitatively
depend on the dynamics [20]. The same conclusion should apply to nonlinear maps as well.

Our noise operator consists in an average over random translations in phase space. To
diagonalize this operator, we have used the fact that the classical (respectively, quantum)
propagators for translations Pv (respectively, P̂v) form a commutative algebra, and admit as
eigenfunctions the Fourier modes. We obtained explicit expressions for the spectrum of Pε,M

for the class of linear maps M , because these maps acted simply on these Fourier modes.
However, as noticed in section 4.2.3, one may be interested in a more general type of diffusion
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operator, like the one defined in equation (21). The spectrum of D
{Hj }
ε ◦PM for a given map M

should be qualitatively independent of the family of Hamiltonians {Hj }, as long as the operator

D
{Hj }
ε has the same characteristics as the coarse-graining Dε , namely it leaves almost invariant

some ‘soft modes’, while killing fast-oscillating modes. In particular, for M an Anosov map,
the outer spectrum of D

{Hj }
ε ◦ PM should converge to the set of resonances {λi}, and the rest

is contained in a smaller disc, in the limit ε → 0. For an integrable map, the eigenvalues will
not pointwise converge to those of D̂εP̂M , but they should also accumulate along a ‘string’
touching unity.

Our choice for the super-operator D̂ε was inspired by its classical analogue, as well as its
relevance to modellize the ‘quantum noise’. However, in some quantum systems experiencing
(weak) interaction with the environment, the effective ‘noise’ or ‘decoherence’ superoperator
may have no obvious classical analogue; this seems to be the case for instance in nuclear
magnetic resonance experiments aiming at realizing a ‘quantum computer’ [15]. The quantum
Hilbert space is composed of a sequence of n spins, so it is isomorphic with the torus
Hilbert space HN for N = 2n (each spin corresponds to a binary digit of the position qj ).
The decoherence operator acting on such a system (for a small number of spins) has been
experimentally measured, it resembles the product of operators acting independently on the
individual spins, and therefore does not enter in the family of diffusion operators described
in this paper; in particular, such a decoherence operator seems to have no obvious classical
counterpart. Conjugating this type of decoherence operator with a unitary evolution (typically,
the finite Fourier transform Ĵ ) may lead to a drastically different spectrum from the one shown
in figure 1 (right), not excluding the presence of a gap.
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Appendix A

Appendix A.1. Classical nonlinear shear: spectrum of truncated Toeplitz matrices

This appendix describes the spectrum of the noisy classical propagator for a nonlinear shear
(section 3.2.3). In each invariant subspace Vn = {e2iπnq ρ(p)} (n ∈ Z

∗), the Perron–Frobenius
operator P acts as a multiplication of the function ρ(p) on the circle T

1 � t = e2iπp by

an(e
2iπp)

def= e−2iπn(sp+F ′(p)) =
∑
m∈Z

ãn(m)e2iπmp. (27)

Note that an(t) = (a1(t))
n. In the Fourier basis, this multiplication has the form of an infinite

Laurent matrix L(an), with entries L(an)ij = ãn(i − j). From standard results, the spectrum
of P|Vn

is absolutely continuous, with support in the range of the function an(t) (here, the unit
circle).

We consider the coarse-graining consisting in a sharp truncation in Fourier space:
K̃(ξ) = �(ξ1)�(ξ2). The noisy propagator Pε then acts on Vn as the matrix L(an) truncated
to the block {|m|, |m′| � ε−1}, or equivalently as {1 � m, m′ � 2ε−1 + 1}. We assume that
the smooth function an(t) on T

1 can be continued to an analytic (or meromorphic) function
on C

∗ (for the linear shear, one has an(z) = z−sn). Then, for any r > 0 and any ε > 0,
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the spectrum of this truncated matrix is contained in the convex hull of the curve an(rT
1)

[11, proposition 2.17 and section 5.8]. For the linear shear, these curves are the circles centred
at the origin, so the spectrum reduces to {0}, as expected. If the perturbation F ′ is small,
these curves are deformations of circles, some of which remain in a small neighbourhood of
the origin. As a concrete example, the perturbation F(p) = (α/2π) cos(2πp) leads to the
function a−1(z) = zs exp{πα(1/z− z)}. The curves a−1(rT

1) satisfy

∀r > 0, |z| = r  ⇒ |a−1(z)| � rs exp

(
πα

∣∣∣∣1

r
− r

∣∣∣∣
)

.

We assume that s > 0. For a small perturbation (α � 1), the function on the right-hand side
has a minimum of value amin(α) � (παe/s)s. This implies that for any n, the spectrum of
Pε|Vn

is contained in the disc of radius (amin(α))|n| for any ε > 0 (we have used the symmetry
a−n = ān).

For a more general perturbation 2πF ′(t) = ∑
m�1 fmtm + c.c. one can use the bound

2π |!F ′(rt)| � sup(g(r), g(1/r)) with g(r)
def= ∑

m�1 |fm|rm. If g(r) is ‘small’, then the
function rs exp(g(1/r)) has a minimum amin � 1 on R

∗
+. This implies that the spectrum of

Pε|Vn
is contained, for any ε, in the disc around the origin of radius a

|n|
min.

Appendix A.2. Quantum nonlinear shear

The results of the previous appendix can be easily adapted to the quantized nonlinear shear.
The latter is defined as the composition of the quantum linear shear Ŝ with the Floquet operator
corresponding to the Hamiltonian F̂ (see section 3.2.3): the quantum map reads Ŝe−2iπNF̂ . Its
action is diagonal in the impulsion basis {|pj 〉N } of HN (pj = j/N , with j ∈ ZN ):

Ŝe−iF̂ /h̄|pj 〉N = e−2iπN((s/2)p2
j +F(pj ))|pj 〉N.

Since s is even, this expression is well defined for any j ∈ ZN . As we now show, it
allows us to express the action of the propagator P̂ on the quantum translations T̂k/N . Taking
k = (m, n) ∈ Z

2
N , this translation can be decomposed as

T̂k/N =
∑
j∈ZN

|pj+n〉〈pj |e−2iπm(pj +n/2N).

P̂ acts inside each subspace Vn,N = Span {T̂(m,n)/N , m ∈ ZN } = Span {|pj+n〉〈pj |, j ∈ ZN }.
The propagator P̂ indeed multiplies each |pj+n〉〈pj | by the phase An,N(e2iπ(pj +n/2N)), with the
function An,N on T

1 defined as:

An,N(e2iπp)
def= e−2iπsnpe−2iπN [F(p+n/2N)−F(p−n/2N)] =

∑
m∈Z

Ãn,N (m)e2iπmp.

An,N(t) uniformly converges to the function an(t) of equation (27) in the limit N →∞. For
our example F(p) = (α/2π) cos(2πp), it takes the concise form

An,N(e2iπp) = e−2iπn(sp−αn,N sin(2πp))

with

αn,N = α
N

πn
sin

(πn

N

)
= α

(
1 + O

(( n

N

)2
))

.

From there, we can express the action of P̂ on the quantum translations:

P̂T̂(m,n)/N =
∑
l∈Z

T̂(m−l,n)/N Ãn,N (l) =
∑
l∈ZN

T̂(l,n)/N Ã′n,N (m− l)
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where Ã′n,N (m) =∑
ν∈Z

(−1)nνÃn,N (m + νN). Therefore, P̂ acts on Vn,N through the N ×N

Toeplitz matrix with coefficients Ã′n,N (m). If we truncate this matrix to the size {|l|, |l′| � ε−1}
with ε−1 � N , we only take into account the coefficients with |m| � 2ε−1. Since An,N is
a smooth function, each of these coefficients is the sum of a ‘dominant’ term Ãn,N (m) and
a ‘remainder’. For our example, the classical coefficients are given by Bessel functions:
ãn(m) = Jm+sn(2πnα), and the same for Ãn,N (m), replacing α by αn,N . These coefficients
therefore satisfy |Ãn,N (m)| � C((nα)|m+ns|/|m + ns|!), so that the remainder is uniformly
bounded above by (C ′α/εN)N/2 for large N . If we call P̂�

ε|Vn,N
the truncated Toeplitz matrix

with coefficients Ãn,N (m), we get the estimate:

‖P̂ε|Vn,N
− P̂�

ε|Vn,N
‖ � (2ε−1 + 1)

(
C ′α
εN

)N/2

.

This estimate implies that the spectra of both matrices cannot be at a distance larger than
O((εN)−εN/4). The matrix P̂�

ε|Vn,N
may be analysed along the same lines as Pε|Vn

in the
previous appendix. Its spectrum is contained for any ε > 0 and any r > 0 in the convex hull
of An,N(rT

1), which converges to the convex hull of an(rT
1) when N →∞.
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[34] Ostruszka A and Życkzkowski K 2001 Spectrum of the Frobenius–Perron operator for systems with stochastic

perturbation Phys. Lett. A 289 306–12
[35] Palla G, Vattay G, Voros A, Søndergaard N and Dettmann C-P 2001 Noise corrections to stochastic trace formulas

Found. Phys. 31 641–57
[36] Parry W and Pollicott M 1990 Zeta functions and the periodic orbit structure of hyperbolic dynamics Astérisque

vol 187–8, Société mathématique de France, Paris
[37] Percival I and Vivaldi F 1987 Arithmetical properties of strongly chaotic motions Physica D 25 105–30
[38] Prosen T 2002 Chaotic resonances in quantum many-body dynamics Preprint
[39] Reed M and Simon B 1972 Methods of Modern Mathematical Physics, I: Functional Analysis (New York:

Academic)
[40] Ruelle D 1986 Locating resonances for axiom A dynamical systems J. Stat. Phys. 44 281–92

Ruelle D 1987 One-dimensional Gibbs states and axiom-A diffeomorphisms J. Diff. Geom. 25 117–37
[41] Rugh H H 1992 The correlation spectrum for hyperbolic analytic maps Nonlinearity 5 1237–63

Rugh H H 1996 Generalized Fredholm determinants and Selberg zeta functions for axiom A dynamical systems
Ergod. Theory Dyn. Syst. 16 805–19

[42] Tabor M 1983 A semiclassical quantization of area-preserving maps Physica D 6 195–210
[43] Takahashi K 1989 Distribution in classical and quantum mechanics Prog. Theor. Phys. Suppl. 98 109–56
[44] Zelditch S 1997 Index and dynamics of quantized contact transformations Ann. Inst. Fourier 47 305–65


