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QUANTUM TRANSFER OPERATORS AND QUANTUM SCATTERING

STÉPHANE NONNENMACHER

1. Introduction and statement of the result

These notes present a new method, developed in collaboration with Johannes Sjöstrand
and Maciej Zworski, the aim of which is a better understanding of quantum scattering
systems, in situations where the set of classically trapped trajectories at some energy E > 0
is bounded, but can be a complicated fractal set. In particular, we are interested in the
situations where this trapped set is a “chaotic repeller” hosting a hyperbolic (Axiom A)
flow. Such a scattering system belongs to the realm of quantum chaos, namely the study
of wave or quantum systems, the classical limit of which enjoy chaotic properties. This
type of dynamics occurs for instance in the scattering by 3 or more disks in the Euclidean
plane [15], but also in scattering by a smooth potential (see fig 1). Chaotic scattering
systems are physically relevant: for instance, mesoscopic quantum dots are often modelled
by open chaotic billiards [17]; the ionization of atoms or molecules in presence of external
electric and/or magnetic fields also involves classical chaotic trajectories [2]; Open quantum
billiards can also be realized in microwave billiard expermiments [30].

The method we propose is a quantum version of the Poincaré section/Poincaré map
construction used to analyze the classical flow (see §1). Namely, around some scattering
energy E > 0 we will construct a quantum transfer operator (or quantum monodromy

operator), which contains the relevant information of the quantum dynamics at this energy,
in a much reduced form: this operator has finite rank (which increases in the semiclassical
limit), it allows to characterize the quantum resonances of the scattering system in the
vicinity of the energy E. The quantum transfer operator is very similar with the open

quantum maps studied as toy models for chaotic scattering [4, 19, 24].

Our main result (Theorem 1) will be stated in §1.2. In §2 and §3 we sketch the proof of
this result. We defer the details of the proofs, as well as some applications of the method,
to a forthcoming publication [18].

From flows to maps, and back. Let us recall some facts from classical dynamics. In
the theory of dynamical systems, the study of a flow Φt : Y → Y generated by some vector
field (or ODE) on a phase space Y (say, a smooth manifold) can obten be facilitated by
considering a Poincaré section of that flow, namely a family Σ = {Σi, i = 1, . . . , J} of
hypersurfaces of Y , which intersect the flow transversely. The successive intersections of
the flow with Σ define a first return (or Poincaré) map κ : Σ→ Σ (see fig. 1). This map,
defined on a phase space Σ of codimension 1, conveniently represents the flow on Y . Long
time properties of κ are often easier to analyze than the corresponding properties of the
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Figure 1. Left: a 3-bump potential, which admits a fractal hyperbolic
trapped set at intermediate energies [25, Appendix]. Right: schematic rep-
resentation of a Poincaré section.

flow. One can reconstruct the flow Φt from the knowledge of κ together with the return

time function τ : Σ → R+, which measures the time spanned between the intersections ρ
and κ(ρ). Below we will explain how transfer operators associated with κ can also help to
compute long time properties of the flow.

1.0.1. Hamiltonian scattering. The flows we consider are Hamiltonian flows defined on
the cotangent space T ∗Rn. A Hamiltonian (function) p ∈ C∞(T ∗Rn) defines a Hamilton
vector field Hp on phase space, which generates the flow Φt = exp(tHp). For our specific
choice (1.1), the flow is complete. It preserves the symplectic structure on T ∗Rn, and
leaves invariant each energy shell p−1(E), so it makes sense to study the dynamics on each
individual shell. A Poincaré section Σ ⊂ p−1(E) naturally inherits a symplectic structure,
which is preserved by the Poincaré map κ. Hence, the Poincaré maps we consider are
(local) symplectomorphisms on Σ.

We will specifically consider Hamiltonians of the form

(1.1) p(x, ξ) =
|ξ|2

2
+ V (x),

with a potential V ∈ C∞c (Rn) (say, supported in a ball B(0, R0) ⊂ Rn). Such a Hamiltonian
generates a scattering system: for any energy E > 0, particles can come from infinity, scatter
on the the potential, and be sent back towards infinity. Depending on the shape of V and of
the energy, some trajectories can also be trapped forever (in the past and/or in the future)
inside the ball B(0, R0). This leads to the definition of the trapped set at energy E:

(1.2) KE
def
= {ρ ∈ p−1(E) : exp(RHp)(ρ) is bounded},

which is a compact, flow-invariant subset of p−1(E). The interesting long time dynamics
takes place in the vicinity of KE , so the Poincaré section Σ need only represent correctly
the flow Φt restricted on KE , or on some neighbourhood of it. The Poincaré map κ will
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also be defined in some neighbourhood of the reduced trapped set TE
def
= KE ∩ Σ. We will

give a more precise description of Σ in §2.1.

1.0.2. Chaotic dynamics and transfer operators. Our Theorem 1 will be relevant to the case
where the flow on KE is uniformly hyperbolic (and satisfies Smale’s Axiom A). Such a flow
is, in a sense “maximally chaotic”. Hyperbolicity means that at each point ρ ∈ KE the
tangent space Tρp

−1(E) can be split between the flow direction, an unstable and a stable
subspaces:

(1.3) Tρp
−1(E) = RHp ⊕ E

+(ρ)⊕ E−(ρ) ,

where the (un)stable subspaces are defined by the long time properties of the tangent map:
there exist C, λ > 0 such that, for any ρ ∈ KE,

v ∈ E∓(ρ)⇐⇒ ‖dΦ±tv‖ ≤ C e−λt, t > 0 .

The Poincaré map κ then inherits the Axiom A property.

To study the long time properties of such chaotic flow, it has proved convenient to use
transfer operators associated with κ [1]. Let us give an example of such operators. Given
any weight function f ∈ C(Σ,R), one define the transfer operator Lf by a weighted push-
forward on functions ϕ : Σ→ R:

Lf ϕ(ρ)
def
=

∑

ρ′:κ(ρ′)=ρ

ef(ρ′) ϕ(ρ′) .

Provided Lf is applied to some appropriate functional space1, its spectrum can deliver
relevant information about the long time dynamics of κ. For instance, the spectral radius
rsp(Lf) determines the topological pressure of κ associated with the weight f , which provides
statistical information on the long periodic orbits of κ:

log rsp(f) = P(κ, f)
def
= lim

T→∞

1

T
log

∑

|γ|≤T

e
R

γ f .

(here
∫

γ
f is the sum of values of f(ρ) along the periodic orbit γ). The topological pressure

of the flow Φt, associated with a weight F ∈ C(X), can also be computed through transfer

operators. One defines on Σ the function f(ρ) =
∫ τ(ρ)

0
F (Φt(ρ)), that is the accumulated

weight from ρ ∈ Σ to its next return κ(ρ), and considers the family {Lf−sτ , s ∈ R} of
transfer operators. The following relation then relates the pressures of κ and Φt:

s = P(Φt, F )⇐⇒ P(κ, f − sτ) = 0⇐⇒ rsp(Lf−sτ ) = 1 .

The decay of correlations for the Axiom A flow Φt is encoded in the Ruelle-Pollicott res-

onances, which are the poles of the Fourier transform of the correlation function [22].
Within some strip S ⊂ C, these resonances {zi} can be characterized by using the family
{Lf−zτ , z ∈ C} of complex weighted transfer operators: zi ∈ S is a resonance iff Lf−ziτ

1The functional space can be rather complicated, see e.g. [14] for the case of Anosov diffeomorphisms.
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has an eigenvalue equal to 1. This property can be written (abusively, because transfer
operators are usually not trace class) as

(1.4) z ∈ S is a Ruelle-Pollicott resonance⇐⇒ det(1− Lf−zτ ) = 0 .

1.1. A quantum scattering problem. Let us now introduce the quantum dynamics we
are interested in. The operator

P = P (h) = −
h2∆

2
+ V (x) , V ∈ C∞c (Rn) ,

generates the Schrödinger dynamics U(t) = exp(−itP (h)/h) on L2(Rn). P (h) is the h-
quantization of the classical Hamiltonian (1.1), so the semiclassical behaviour of the quan-
tum dynamics will be strongly influenced by the flow exp(tHp). We focus on the dynamics
around some positive energy E > 0, so the flow we need to understand is Φt↾ p−1(E). We
will assume that

• the flow on p−1(E) has no fixed point: dp↾p−1(E) 6= 0.
• the trapped set KE has topological dimension 1. Equivalently, the reduced trapped

set TE = KE ∩ Σ is totally disconnected.

These conditions are satisfied, for example, for a 3-bump potential at intermediate energies
(see fig. 1). The second condition was absent in previous studies of such systems [28, 20],
it is a technical constraint specific to the approach we develop below (as we explain after
Thm 1, the condition required for the method to work is actually weaker).

We are interested in the long time Schrödinger dynamics near energy E, so it is natural to
investigate the spectrum of P (h) near E. That operator is self-adjoint on L2(Rn), with do-
main H2(Rn); but, due to the bounded support of V (x), the spectrum of P (h) is absolutely
continuous on R+, without any embedded eigenvalue. Nevertheless, the truncated resol-
vent ψ(P (h)− z)−1ψ (with ψ ∈ C∞c (Rn)), well-defined in the quadrant {Re z >, Im z > 0},
can be meromorphically extended across the real axis into {Re z > 0, Im z < 0}. The
finite rank poles {zi} in this region are called its resonances (they do not depend on the
specific cutoff ψ). Resonances are often understood as “generalized eigenvalues”: they are
associated with metastable modes ui(x) which are not square-integrable, but satisfy the
differential equation P (h)ui = zi ui, so that they decay expontially in time, at a rate given
by | Im zi|/h.

One of our objectives is to better understand the distribution of these resonances in the
h-neighbourhood of the energy E, that is in disks D(E,Ch) (see fig. 2). More precisely,
we want to investigate:

• the number of resonances inD(E,Ch). So far fractal upper bounds have been proven
[28]. We wish to investigate whether similar lower bounds can be obtained, at least
for a generic system.
• the width of the resonance free strip in D(E,Ch). A lower bound for such a strip

has been expressed in terms of some topological pressure [15, 11, 20], but a recent
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Ch
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Figure 2. Schematic representation of the spectrum of P (h) and its reso-
nances near the energy E.

result of Petkov-Stoyanov (for obstacle scattering) shows that this lower bound is
in general not sharp [21].

1.2. Our result. Our main result is a “quantization” of the Poincaré section method
presented above.

Theorem 1. Assume that, for some energy E > 0, the trapped set KE for the flow exp(tHp)
is topologically one dimensional, and contains no fixed point.

Then, for h > 0 small enough, there exists a family of matrices {M(z, h), z ∈ D(0, Ch)}
holomorphic w.r.to z, such that the zeros of the function

(1.5) ζ(z, h)
def
= det(I −M(z, h))

give the resonances of (P (h)−E) in D(0, Ch), with correct multiplicities.

The matrices M(z, h) have the following structure. There exists a Poincaré section

Σ = ⊔J
i=1Σi and map κ : Σ → Σ, an h-Fourier integral operator M(z, h) : L2(Rn−1)J 	

quantizing κ, and a projector Πh of rank r(h) ≍ h−n+1, such that

M(z, h) = ΠhM(z, h) Πh +O(hN ) .

The remainder estimate holds in the operator norm on Cr(h). The exponent N can be

assumed arbitrary large.

Remark 1.1. The 1-dimensional condition we impose on KE is not strictly necessary.
What one needs is the existence of a Poincaré section Σ intersecting Φt↾ KE , such that
∂Σ ∩KE = ∅; in particular, we don’t need the flow to be hyperbolic on KE. Still, Axiom
A flows provide the most obvious example for which this condition is satisfied [5]; it holds
as well for the broken geodesic flow in the scattering by 3 disks satisfying a no-eclipse
condition [15].

This theorem shows that the dynamics generated by the Hamiltonian P (h) near E can
be “summarized” in the family of quantum transfer operators {M(z, h), z ∈ D(0, Ch)}.
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One reason for this terminology is that M(z, h) bears some resemblance with the transfer
operators Lf−zτ briefly described in §1.0.2. The equation (1.5) characterizing quantum
resonances is obviously the quantum analogue of the (generally formal) equation (1.4)
defining Ruelle-Pollicott resonances. Also, the notation ζ(z, h) in (1.5) hints at an analogy,
or relationship, between this spectral determinant and some form of semiclassical zeta

function (such functions have been mostly studied in the physics literature, see e.g. [7]).

The operators M(z, h) have the same semiclassical structure as open quantum maps

studied in the (mostly physical) literature as toy models of quantum scattering systems.
For instance, the distribution of resonances and resonant modes has proven to be much
easier to study numerically for open quantum maps, than for realistic flows [4, 24, 19, 16].
The novelty here, is that the operators M(z, h) allow to characterize a “physical” resonance
spectrum.

1.2.1. Historical remarks. Actually, a similar method has been introduced in the theoret-
ical physics literature devoted to “quantum chaos”. To the author’s knowledge, the first
such construction appeared in Bogomolny’s work [3] on multidimensional closed quantum
systems. In that work, a family of quantum transfer operators T (E) is constructed, which
are integral operators defined on a hypersurface in configuration space. The eigenvalues
of the bound Hamiltonian are then obtained, in the semiclassical limit, as roots of the
equation det(1 − T (E)) = 0. This work generated a lot of interest in the quantum chaos
community. Smilansky and co-workers derived a similar quantization condition for closed
Euclidean 2-dimensional billiards [9], replacing T (E) by a scattering matrix S(E) associ-
ated with the dual scattering problem. Bogomolny’s method was also extended to study
quantum scattering situations [12]. On the other hand, Prosen developed an “exact” (that
is, not necessarily semiclassical) quantum surface of section method to study certain closed
Hamiltonian systems [23].

In the mathematics literature similar operators appeared in the framework of obstacle
scattering [13, 15]: the scattering problem was analyzed through integral operators defined
on the obstacle boundaries, which also have the structure of Fourier integral operators
associated with the bounce map. More recently, a monodromy operator formalism has been
introduced in [27] to study the Schrödinger dynamics in the vicinity of a single isolated
periodic orbit. This approach has then been used to investigate concentration properties of
eigenmodes in the vicinity of such an orbit [6]. The construction we present below heavily
borrows from the techniques developed in [27]. It improves them on two aspects: first, our
invariant set KE is more complex than a single periodic orbit. Second, the connection we
establish between the operators (P (h)−E − z) and M(z, h) is deeper than previously.

2. Formal construction of the quantum transfer operator

The proof of Thm 1 proceeds in several steps. It uses many tools of h-pseudodifferential
calculus (we will use the notations of [8, 10]). We just recall a few of them:
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• a state u = u(h) ∈ L2 is microlocalized in a domain U ⋐ T ∗Rn iff, for any function
χ ∈ C∞c (T ∗Rn) with suppχ ∩ Ū = ∅, one has ‖χwu‖L2 = O(h∞)‖u‖L2. (here
χw = χw(x, hDx) denotes the h-Weyl quantization of χ).
• two states u, v are said microlocally equivalent in U ⋐ T ∗Rn iff, for any cutoff
χ ∈ C∞c (U), one has ‖χw(u− v)‖L2 = O(h∞).
• similarly, two operators A,B are said microlocally equivalent in V ×U (with U, V ⋐

T ∗Rn) iff, for any cutoffs χ1 ∈ C
∞
c (U), χ2 ∈ C

∞
c (V ), one has ‖χw

2 (A−B)χw
1 ‖L2→L2 =

O(h∞).
• an operator A is microlocally defined in V × U iff it is microlocally equivalent in
V × U to some globally defined operator. “Microlocally defined in U” will mean
“microlocally defined in U × U”.

The present section constructs the quantum transfer operators microlocally in a neighbour-
hood of the trapped set KE , without paying attention to the rest of the phase space. The
arguments making the construction globally well-defined will be presented in §3.

The microlocal construction being strongly tied to a Poincaré section, we start by de-
scribing the latter in some detail.

2.1. Description of the Poincaré section. According to the assumptions of the theo-
rem, the trapped set KE is a compact set of topological dimension unity. It is then possible
to construct a Poincaré section Σ = ⊔J

i=1Σi ⊂ p−1(E) with the following properties:

• each Σi is a (2n− 2)-dimensional topological disk, transverse to the flow.
• the maximal diameter of the Σi can be chosen arbitrary small.
• there exists a time τmax > 0 such that, for any ρ ∈ KE , the trajectory Φt(ρ)

intersects Σ at some time 0 < t ≤ τmax.
• the boundary ∂Σ = ⊔iΣi does not intersect KE.

If we restrict ourselves to points in the reduced trapped set TE
def
= KE ∩ Σ, the map

ρ 7→ ρ+(ρ) defines a bicontinuous bijection κ : T → T .

Each component of the reduced trapped set, Ti
def
= KE ∩ Σi, splits in two different ways:

Ti = ⊔jDji, where Dji = {ρ ∈ Ti, κ(ρ) ∈ Tj}(2.1)

Ti = ⊔jAij , where Aij = {ρ ∈ Ti, κ
−1(ρ) ∈ Tj}(2.2)

We will denote by J+(i) (resp. J−(i)) the set of indices in the “outflow” (resp. “inflow”) of
Ti, that is such that Dji and Aji (resp. Dij and Aij) are not empty. The map κ is the union
of components κij , which relate bijectively Dij with Aij . Since Ti lies in the interior of Σi,
the components Dji (resp. Aij) are disconnected from one another. Hence, each κij can be

extended to be a bijection κij : D̃ij → Ãij , where D̃ij , Ãij are open neighborhoods ofDij and

Aij , respectively in Σj and Σi. The extended map κij : D̃ij → Ãij is a symplectomorphism
(see fig. 3 for a sketch).
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2.2. Microlocal solutions. In this section we show that, for z ∈ D(0, Ch), any solution
to the equation (P (h)−E−z)u = 0, microlocally near some part of KE , can be “encoded”
by a transversal function w ∈ L2(Rn−1), which “lives” on one component Σi of the Poincaré
section.

Take such a component Σi. From the assumption dp↾p−1(E) 6= 0, there exists an open
neighbourhood Vi of Σi, and a set of symplectic coordinates (y1, . . . , yn; , η1, . . . , ηn) on Vi,
such that

• the Hamiltonian p(ρ) = E + η1 for any ρ ∈ Vi

• the section Σi is locally defined by {y1 = η1 = 0}, and the origin y = η = 0
corresponds to a point in Ti.

Equivalently, there exists a neighbourhood (0, 0) ∈ Ṽi ∈ T
∗Rn and a symplectomorphism

κ̃i : Ṽi → Vi, such that p ◦ κ̃i(y, η) = E + η1, etc.

The change of coordinates κ̃i can be h-quantized into an h-Fourier integral operator
Ui : L2(Rn)→ L2(Rn), microlocally defined and unitary near Vi × Ṽi, such that

(2.3) U∗
i (P (h)−E)Ui is microlocally equivalent with hDy1 in Ṽi × Ṽi.

This “quantum change of coordinates” allows one to easily characterize, for z ∈ D(0, Ch),
the microlocal solutions to the equation

(2.4) (P (h)− E − z)u = 0 microlocally in Vi .

Indeed, the equation

(2.5) (hDy1 − z)v = 0

is obviously solved by

(2.6) v(y1, y
′) = eizy1/h w(y′), w ∈ L2(Rn−1) ,

Stéphane Nonnenmacher
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that is by extending some “transversal data” w. We denote this extension by v = K(z)w.
Conversely, the solution v can easily be “projected” onto the data w: consider some mono-
tone χ ∈ C∞(Rn) such that χ(y) = 0 for y1 < ǫ, χ(y) = 1 for y1 > ǫ. Then, w can be
recovered from v through

w(y′) =

∫

R

e−izy1/h ∂y1χ(y) v(y) dy1 .

In a more compact form, we write w = K(z̄)∗χ′ v, with χ′ = i
h
[hDy1 , χ].

The solutions of (2.4) are then given by selecting some w ∈ L2(Rn−1) (microlocalized
near the origin), and take

(2.7) u = UiK(z)w
def
= Ki(z)w .

That is, the operator Ki(z) builds a microlocal solution of (2.4) near Σi, starting from
“transversal data” w ∈ L2(Rn−1). The latter can be interpreted as a quantum state living
in the reduced phase space Σi. The converse “projection” is given by

(2.8) w = K(z̄)∗χ′ U∗
i u = Ki(z̄)

∗χ′
i u

def
= R+i(z) u .

Here χi is the cutoff corresponding to χ near the section Σi. To get a consistent definition
for χi, we must assume that it jumps back down to 0 a little further along the flow,
but the precise position will be irrelevant. Indeed, the commutator i

h
[P (h), χw

i (x, hDx)] is
equal (microlocally near KE) to the sum of two pseudodifferential operators with disjoint
wavefront sets. The first one is microlocalized near Σi (in the region where χi jumps from
0 to 1), we will denote it by χ′

i = i
h
[P (h), χw

i (x, hDx)]i; the second component “lives” in
the region where χi decreases from 1 to 0, and will not play any role.

The same construction can be performed independently near each Σj , j = 1, . . . , J . We
will call wj the transversal data associated with the section Σj , and Kj(z), R+j(z) the
corresponding operators.

2.3. From one transversal parametrization the next. The the solution (2.7) is mi-
crolocalized in Vi, since Ui is only defined microlocally in Vi × Ṽi. However, this solution
can be extended in a forward cylinder ∪0≤t≤T ΦtΣi by using the propagator e−it(P−E−z)/h: if
u is a solution near ρ ∈ Σi, then e−it(P−E−z)/hu is the extension of this solution near Φt(ρ).

This way, we can extend u up to the vicinity of the sections Σj in the outflow of Σi. This
extended solution will still be denoted by u = Ki(z)wi. Near Σj , this solution can also be
parametrized by the “transversal” function wj = R+j u ∈ L

2(Rn−1). The map wi 7→ wj,
which amounts to changing the transversal parametrization for a single solution u, defines
our quantum Poincaré map:

(2.9) Mji(z, h)
def
= R+j(z)Ki(z) .

This operator is a Fourier integral operator quantizing the Poincaré map κji; it is microlo-

cally defined, and microlocally unitary, on D̃ji × Ãji.
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Let us see how the operators Mji(z) can be used. Assume E + z is a resonance of
P (h), with z ∈ D(0, Ch). Then, there exists a metastable state u ∈ L2

loc, global solution
to the equation (P − E − z)u = 0. The above procedure associates to this solution J
parametrizations wi = R+i(z)u, microlocally defined near Tj. For any i and j ∈ J+(i),
these parametrizations satisfy wj =Mji(z)wi: can be written in the compact form

(2.10) w =M(z)w ,

where w = (wi)i is the column vector of all J local parametrizations, and M(z) is the
operator valued matrix

(
Mij(z)

)
.

In the next subsections we prove that the converse statement holds as well: the existence
of a solution of (M(z)− Id)w = 0 microlocally near TE implies the existence of a solution
of (P − E − z)u = 0 microlocally near KE . To prove this we will set up a formal Grushin
problem, in which the operator (M(z)− I) will appear as the “effective Hamiltonian” for
the original operator (P −E − z).

2.4. Grushin problems. A Grushin problem for the family of operators2 {(P − E − z) :
H2

h(Rn) → L2(Rn), z ∈ D(0, Ch)} consists in the insertion of that operator inside an
operator valued matrix

(2.11) P(z) =

(
i
h
(P − E − z) R−(z)
R+(z) 0

)
: H2

h(Rn)×H → L2(Rn)×H ,

in a way such that P(z) is invertible (see e.g. [29] or [10, Appendix] for a general presen-
tation of this method). Ideally, the auxiliary space H is “much smaller” than L2 or H2

h (in
our final version, H will be finite dimensional). The inverse of P(z) is traditionally written
in the form

P(z)−1 =

(
E(z) E+(z)
E−(z) E−+(z)

)
.

The invertibility of (P−E−z) is then equivalent with that of the operator E−+(z): Schur’s
complement formula shows that
(2.12)
h

i
(P−E−z)−1 = E(z)−E+(z)E−+(z)−1E−(z) , E−+(z)−1 = −

h

i
R+(z)(P−E−z)−1R−(z) ,

so that dim ker(P −E− z) = dim kerE−+(z). For this reason, E−+(z) is called an effective

Hamiltonian associated with (P (h) − E − z). It has a smaller rank than P (h), but its
dependence in the spectral parameter z is nonlinear.

2H2
h(Rn) is the semiclassical Sobolev space of norm ‖u‖H2

h
=

∫
|ũ(ξ)|2(1 + |hξ|2)2 dξ, with ũ the Fourier

transform of u.
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2.5. Our formal Grushin problem. We will first build our Grushin problem microlo-
cally near KE (so we can identify H2

h with L2). Our auxiliary space H will contain lo-
cal “transversal data” wi ∈ L2(Rn−1), one for each section Σi, so we have formally H =
L2(Rn−1)J . The auxiliary operators are then vectors of operators: R+(z) = (R+1, . . . , R+J),
R−(z) = t(R−1, . . . , R−J), which will for now be defined only microlocally:

• R+i(z) is the “projector” (2.8) of L2(Rn) onto the parametrization wi living on Σi.

We will rebaptize χi
def
= χf

i (for forward) the cutoff used in the definition of R+i.
• on the opposite, R−i(z) takes the data wi ∈ L2(Rn−1) to produce a microlocal

solution, and cuts off this solution by applying the derivative of another cutoff χb
i :

(2.13) R−i(z) = χb′
i Ki(z) .

The cutoff χb
i (for backward) is similar with χf

i , and χb′
i is, as before, the component

of [ i
h
P (h), (χb

i)
w] microlocalized near Σi. We require that the jump of χb

i occurs

before that of χf
i , and that the whole family {χb

i , i = 1, . . . , J} satisfies a local
resolution of identity near KE :

(2.14)
∑

i

χb
i = 1 , in some neighbourhood of KE .

2.5.1. Homogeneous problem. Let us now try to invert the matrix P(z) we have just defined,
at least microlocally nearKE×

∏
i Ti. First we consider arbitrary transversal data w = (wi),

and try to solve (in u ∈ L2(Rn), u− ∈ L
2(Rn−1)J) the system

i

h
(P − E − z)u+

J∑

i=1

R−i(z)u−i = 0(2.15)

R+i(z)u = wi, i = 1, . . . , J .(2.16)

Eq. (2.16) suggests that u could be a microlocal solution parametrized by wi, at least in

the region where χf
j jumps from 0 to 1. Since χb

i ≡ 1 in this region, we take the Ansatz

(2.17) u =

J∑

i=1

(χb
i)

wKi(z)wi
def
=

∑

i

E+i(z)wi .

Injecting this Ansatz in (2.15), we obtain

(2.18)

J∑

i=1

i

h
[P, (χb

i)
w]Ki(z)wi +

J∑

i=1

R−i(z)u−i = 0 ,

which we want to solve in (u−i). Each commutator i
h
[P, (χb

i)
w] is the sum of a component

χb′
i = i

h
[P, (χb

i)
w]i microlocalized near Σi, and of components i

h
[P, (χb

i)
w]j microlocalized

near Ãji ⊂ Σj , for each index j ∈ J+(i). The resolution of identity (2.14) shows that near we
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have Hpχ
b′
i +Hpχ

b′
j = 0, the quantum version of which reads i

h
[P, (χb

i)
w]j + i

h
[P, (χb

j)
w]j = 0

microlocally near Ãji. As a result (2.18) can be rewritten as

J∑

i=1

χb′
i Ki(z)wi −

J∑

i=1

∑

j∈J+(i)

χb′
j Ki(z)wi +

J∑

i=1

R−i(z)u−i = 0 .

Near each Σj , j ∈ J+(i) we have Ki(z)wi = Kj(z)Mji(z)wi. For each i we can group
together the terms localized near Σi, and get:

R−i(z)wi −
∑

i∈J+(j)

R−i(z)Mij(z)wj +R−i(z)u−i = 0 .

This leads to the microlocal solution

(2.19) u−i = −wi +
∑

i∈J+(j)

Mij(z)wj
def
=

∑

j

E−+ij(z)wj .

We have thus solved the system (2.15,2.16) microlocally near KE ×
∏

i Ti, and provided
explicit expressions for the operators E+(z) and E−+(z) = M(z) − Id, microlocally near
the trapped set.

2.5.2. Nonhomogeneous problem. To complete the microlocal inversion of P(z), we now
take v ∈ L2(Rn) microlocalized near KE , and try to solve (in u, u−, microlocally near KE)

(2.20)
i

h
(P − E − z)u +

J∑

i=1

R−i(z)u−i = v .

Let us first assume that v is microlocalized inside the region {χb
i(ρ) = 1} for some index

i. We then take the truncated parametrix Ẽ(z) =
∫ T

0
e−it(P−E−z)/h dt, with T large enough

so that e−iTP/hv is microlocalized beyond suppχb
i , and define the Ansatz u = (χb

i)
w Ẽ(z) v.

The latter satisfies
i

h
(P − E − z)u = v +

i

h
[P, (χb

i)
w]Ẽ(z) v dt(2.21)

= v + χb′
i Ẽ(z)v −

∑

j∈J+(i)

χb′
j Ẽ(z)v .(2.22)

(we have used the splitting of the commutator explained above). Now, provided T is not

too large, the state Ẽ(z)v is microlocalized away from Σi so that χb′
i Ẽ(z)v = O(h∞) On

the opposite, for each j ∈ J+(i) that state is a microlocal solution of (P −E− z)u− 0 near

Ãji, which can then be written as Kj(z)u−j with u−j = R+jẼ(z)v. The above equality
becomes

i

h
(P −E − z) u = v −

∑

j∈J+(i)

R−ju−j ,

and solves (2.20) microlocally.
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If v is microlocalized near Σi, we cutoff Ẽ(z)v by (
∑

j∈J−(i) χ
b
j +χb

i)
w, which is equivalent

to identity near Ti, and take as above u−j = R+jẼ(z)v, j ∈ J+(i).

We have now fully inverted P(z) microlocally nearKE×
∏

i Ti, and the norm of the inverse
can be shown to be of order unity. The effective Hamiltonian reads E−+(z) =M(z)− Id.
Hence, as anticipated above, the existence of a nontrivial state w satisfying w = M(z)w
is equivalent with that of a microlocal solution to (P −E − z)u = 0 near KE.

To prove Thm 1, we must define our Grushin problem globally, that is properly define
the auxiliary space H and the operators R±, in such a way that P(z) is invertible. One
then says that the Grushin problem is well-posed.

3. From the formal to the well-posed Grushin problem

In order to make our Grushin problem well-posed, we will first “deform” the original
Schrödinger operator P (h) in order to transform its resonances zi into bona fide L2 eigen-
functions of the deformed operator Pθ(h). This deformation is performed through a “com-
plex scaling” of P (h) far away from the scattering region. The operator (Pθ(h) − E) will
now be elliptic outside a large ball B(0, R). In order to enlarge this zone of ellipticity
to the complement of a smaller neighbourhood of KE, we will then modify the Hilbert
structure of our auxiliary states, using an appropriate escape function G(x, ξ). After these
two modifications, we will be able to complete the construction of a well-posed Grushin
problem, with finite dimensional auxiliary spaces.

3.1. Complex scaling. Here we use the fact that outside a ball B(0, R0) ⋑ supp V , one

has P (h) = −h2

2

∑n
k=1

∂2

∂x2
i
. In that region that operator can be holomorphically exended

into P̃ = −h2

2

∑n
k=1

∂2

∂z2
i
, acting on functions on Cn. For θ > 0 small, we deform Rn ⊂ Cn

into a smooth contour Γθ ⊂ Cn:

Γθ ∩BCn(0, R0) = BRn(0, R0) ,

Γθ ∩C
n \BCn(0, 2R0) = eiθ

R
n ∩ C

n \BCn(0, 2R0) .

We then define the operator Pθ(h) acting on u ∈ C∞c (Γθ), by Pθu = P̃ (ũ)↾Γθ
, where ũ is an

almost analytic extension of u. Through the identification Γθ ∋ x←→ (sin θ)−1 Re x ∈ Rn,

the operator Pθ can considered as acting on functions in C∞c (Rn), with the action −e−2iθ h2∆
2

outside B(0, 2R0). One can then show [26] that the resolvent (Pθ − z)−1 : L2 → H2
h is

meromorphic in the region {arg(z) > −2θ}. The L2 spectrum of Pθ(h) in that region is
discrete, independent of θ and R, and consists of the resonances of the initial operator
P (h).

Since Pθ(h) = P (h) inside the ball B(0, R0) ⊃ πKE, our formal Grushin problem remains
unchanged if we replace P (h) by Pθ(h).

Below we will take values of θ of the form θ ∼ C h log(1/h), C > 0 fixed.
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3.2. Finite dimensional auxiliary spaces. We have built in §2.5 a Grushin problem
which is invertible microlocally near the trapped set. To make that Grushin problem well-
posed, we need to make definite choices for the auxiliary spaces, that is for each i = 1, . . . , J
define a subspace of Hi ⊂ L2(Rn−1) containing the transversal data. This subspace should
contain states microlocalized in some neighbourhood Si of Ti, small enough to lie in the

domain ∪j∈J+(i)Ãji where κ is defined. To construct this subspace explicitly, we may define
the neighbourhood Si as Si = {qi(ρ) < 0}, for a well-chosen qi ∈ C

∞(Rn−1) satisfying
lim infρ→∞ qi(ρ) > 0. The subspace Hi can then be defined as the range of the spectral
projector

(3.1) Πi
def
= 1lR−

(qw
i (y, hDy)) .

According to Weyl’s law, for h small enough the space Hi has a finite dimension of the
order of vol(Si) h

−n+1.

One can then consider the Grushin problem (2.11), with P replaced by Pθ, the auxiliary
space H =

⊕
iHi and the operators

(3.2) R+i(z)
def
= ΠiK

∗
i (z̄)χ

b′
i , R−i

def
= χb′

i Ki(z)Πi .

Unfortunately, when trying to solve this new Grushin problem, that is invert P(z), one
encouters difficulties. Some of them are due to the fact that κ does not leave the neigh-
bourhoods Si invariant (see fig. 3). As a result, an initial datum wi ∈ Hi is propagated
through Mji(z) into a state Mji(z)wi which, in general, is not microlocalized in Sj, and
thus cannot belong to Hj . Brutally applying the projector Πj to Mji(z)wi produces an
extra term (1− Πj)Mjiwi, which is difficult to solve away. Another difficulty arises when
trying to solve the unhomogeneous problem (2.20) for data v microlocalized at some dis-
tance from KE .

3.3. Escape functions and modified norms. These difficulties can be tackled by mod-
ifying the Hilbert norms on H2

h(Rn) and the auxiliary space L2(Rn−1)J . The new norms
will be defined in terms of well-chosen escape functions G ∈ C∞c (T ∗Rn), Gi ∈ C∞c (T ∗Rn−1).
Using these new norms, the problems mentioned above will disappear, because the states
microlocalized away from KE will become easily solvable.

Let us describe the escape function. For some small δ > 0, we consider the thickened

energy shell p̂−1(E) =
⋃

|s|≤δ p
−1(E + s) and trapped set K̂E =

⋃
|s|≤δ KE+s. It is shown

in [28, §§4.1,4.2,7.3] and [20, §6.1] that, for any small δ0 > 0 and large R > 0, and any

neighbourhoods U ⊂ U ⊂ V of K̂E , one can construct a function G0 ∈ C
∞
c (T ∗Rn) such

that

G0 = 0 on U , HpG0 ≥ 0 on T ∗
B(0,3R)R

n,(3.3)

HpG0 ≥ 1 on T ∗
B(0,3R)R

n ∩ (p̂−1(E) \ V ), HpG0 ≥ −δ0 on T ∗
R

n .(3.4)
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It is convenient3 to slightly modify this function in the neighbourhood of the sets Si ⊂ Σi.
Namely, we consider open neighbourhoods W̃i ⋐ Wi of Si in T ∗Rn, and modify G0 into a

functionG1, such thatHpG1 = 0 in W̃i whileHpG1 ≥ 1 on T ∗
B(0,3R)R

n∩(p̂−1(E)\(V ∪
⋃

iWi).

We then set G
def
= Nh log(1/h)G1, with N > 0 fixed but arbitrary large. The exponential

exp(Gw(x, hD)/h) is a pseudodifferential operator in some mildly exotic class, bounded
and of bounded inverse on L2, with norms O(h−CN ). We call HG the vector space H2

h(Rn)
equipped with the Hilbert norm

(3.5) ‖u‖HG

def
= ‖ exp(−Gw(x, hDx)/h)u‖H2

h
.

Similarly, we consider functions Gi ∈ C∞c (T ∗Rn−1) such that (using the coordinate change
κ̃i near Σi) G

i(y′, η′) = G ◦ κ̃i(0, y
′; 0, η′) in some neighbourhood of Si, and modify the

Hilbert norms on the space L2(Rn−1) attached to the section Σi by

(3.6) ‖wi‖HGi

def
= ‖e−(Gi)w(y′,hDy′)/hwi‖L2(Rn−1) .

3.4. How these norms resolve our problems. Let us explain how this change of norm
helps us. The action of Pθ(h) on the Hilbert space HG is equivalent to the action of

Pθ,G(h)
def
= e−Gw/h Pθ(h) e

Gw/h on H2
h(Rn), which is a pseudodifferential operator with sym-

bol

pθ,G(ρ) = p(ρ)− iNh log(1/h)HpG1(ρ) +O(h2 log2(1/h)) , ρ ∈ T ∗
B(0,R)R

n .

Provided we have chosen a dilation angle θ ≪ δ0Nh log(1/h), the properties of G1 show
that

(3.7) ∀ρ 6∈ (V ∪
⋃

i

Wi), |Re pθ,G(ρ)−E| ≤ δ/2 =⇒ Im pθ,G ≤ −θ/C ,

This shows that, for any z ∈ D(0, Ch), the symbol (pθ,G − E − z) is invertible outside
V ∪

⋃
iWi, with inverse of order (h log h−1)−1. Hence, for any v ∈ L2 microlocalized

outside V ∪
⋃

iWi, the equation (Pθ,G − E − z)u = v can be solved up to O(h∞), with
a solution u microlocalized outside V ∪

⋃
iWi. This remark basically tackles the second

problem mentioned at the end of §3.2.

The first problem (the fact that κji(Si) is not contained in Sj) is also resolved through
this change of norms. Indeed, the escape function G1 can be chosen such that it uniformly

increases (say, by some 2C > 0) along all trajectories of the form ρ ∈ Si 7→ κji(ρ) ∈ Σj\ ∈

Sj , so that e−G(κji(ρ))/h

e−G(ρ)/h ≤ h2NC . This implies that, for any state wi microlocalized near such
a point ρ, one gets (taking the definition (2.8) for R+j)

(3.8) ‖R+j(z)Ki(z)wi‖H
Gj

= O(hNC) ‖wi‖HGi
.

3The role of this modification is to ultimately keep the norms ‖R+i(z)‖HG→Hi
, ‖R−i(z)‖Hj→HG

,

‖Mji(z)‖Hi→Hj
uniformly bounded
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We then need to modify the finite rank projectors (3.1) defining our auxiliary states, such
as to make them orthogonal w.r.to the new norms (otherwise ‖Πi‖H

Gi→H
Gi

could be very
large). This modification only amounts to adding a subprincipal (complex valued) term to
the function qi, such that qw

i becomes selfadjoint on HGi , and the spectral projector (3.1)

orthogonal. The space Hi
def
= ΠiHGi is still made of states microlocalized in Si, and has

dimension ∼ vol(Si)h
−n+1. Our operators R±i will be defined by (3.2).

Let us reconsider the homogeneous problem §2.5.1 with data wi ∈ Hi in our new Grushin
problem. For j ∈ J+(i), the state Mji(z)wi does not a priori belong to Hj. However,,
the estimate (3.8) shows that the component ofMji(z)wi microlocalized outside Sj has an
HGj -norm of order O(hNC). As a result, defining the finite rank operators

(3.9) Mji(z)
def
= ΠjMji(z) : Hi →Hj ,

we find that

u−i
def
= −wi +

∑

j∈J+(i)

Mij(z)wj ∈ Hi

provides a solution to the homogeneous problem, up to an error O(hNC)(
∑

i ‖wi‖Hi
).

The nonhomogeneous problem (2.20) can be solved as well, up to a comparable error
(see [18] for details).

To summarize, our globally defined Grushin problem has an approximate inverse E(z):

P(z)E(z) = I +R(z), ‖R(z)‖L2×H→L2×H = O(hNC) ,

where we insist on the fact that N can be chosen arbitrary large (it comes from the factor
in front of the escape function G). Hence, for h small enough this operator has the exact
inverse Ẽ(z) = E(z)(I+R(z))−1 = E(z)+OL2×H→H2

h×H(hNC). In particular, the lower-right

entry of Ẽ(z) (that is, the exact effective Hamiltonian) reads

Ẽ−+(z) = I −M(z) +OH→H(hNC) ,

where M(z) is the matrix composed of the finite dimensional operators (3.9).

As explained in §2.4, this exact inversion implies that the eigenvalues {zi} of (Pθ − E)
in D(0, Ch) coincide (with multiplicities) with the zeros of det(E−+(z)). �
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[7] P. Cvitanović, P. Rosenquist, G. Vattay and H.H. Rugh, A Fredholm determinant for semiclassical

quantization, CHAOS 3 (1993) 619–636
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