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Resonance distribution in open quantum chaotic systems

S. Nonnenmacher and E. Schenck
Institut de Physique Théorique, CEA/DSM/IPhT, CEA-Saclay, 91191 Gif-sur-Yvette, France
(Received 7 March 2008; published 31 October 2008)

In order to study the resonance spectra of chaotic cavities subject to some damping (which can be due to
absorption or partial reflection at the boundaries), we use a model of damped quantum maps. In the high-
frequency limit, the distribution of (quantum) decay rates is shown to cluster near a “typical” value, which is
larger than the classical decay rate of the corresponding damped ray dynamics. The speed of this clustering
may be quite slow, which could explain why it has not been detected in previous numerical data.
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Recent experimental and theoretical studies have focused
on the dynamics of waves inside quasi-two-dimensional (2D)
cavities which are “partially open;” this partial opening may
be due to various physical phenomena. For instance, an
acoustic wave evolving in air or in a metallic slab will lose
intensity due to friction and heating. In a microwave cavity,
the dissipation mostly occurs at the boundary through Ohmic
losses. The light propagating inside a dielectric (micro)cavity
is partially reflected at the boundary, which can be described
as an “effective damping” at the boundary. In all these sys-
tems, the discrete stationary modes correspond to complex
eigenvalues (or resonances) of the form k,=w,—il,/2,
where T, is called the decay rate of the mode.

When the shape of the cavity induces a chaotic ray dy-
namics (e.g., the “stadium” shape), the eigenvalues {k,} can-
not be computed analytically, but methods of “quantum
chaos” can be applied to predict their statistical distribution
in the high-frequency limit w,— . Statistical studies of
resonances started in the 1960s with initial applications to
nuclear physics [1]. New applications emerged when experi-
ments on mesoscopic quantum dots [2], microwave cavities
[3] or optical fibers [4] allowed the construction of cavities
with prescribed geometries, and the study of the dependence
of the quantum dynamics with respect to this geometry. A
recent interest in dielectric microcavities comes from the po-
tential applications to microlasers: choosing the shape of the
cavity appropriately allows one to produce a strongly direc-
tional emission [5]. The first step to understanding the (non-
linear) lasing modes is to study the passive (resonant) modes
of the cavity.

Various dissipation effects have been taken into account
by adding to the self-adjoint Hamiltonian (representing the
dissipationless system) an effective imaginary part, which
describes the coupling between the internal cavity modes and
the external channels [6]. One analytical tool to study chaotic
cavities has been to replace the Hamiltonian (and sometimes
also the effective coupling) by some sort of random matrix:
this has led to theoretical distributions, which have been fa-
vorably compared with numerical or experimental spectra
[7.8].

In this Rapid Communication we focus on situations
where the coupling is strongly nonperturbative and is distrib-
uted over a large part of the cavity or of its boundary, so that
the number of coupled channels becomes macroscopic in the
high-frequency (semiclassical) limit. Using a nonrandom
model of damped quantum maps, we find that, in this limit,
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the distribution of quantum decay rates becomes asymptoti-
cally peaked at a “typical” value y,y,, which is the ergodic
mean of the local damping rate. This clustering does not
seem to appear if one replaces the unitary part of the quan-
tum map by a random unitary matrix, as is often done in the
quantum chaos literature [9,10]. Such a clustering has been
rigorously proved for damped waves on ergodic manifolds
[11]; we believe it to occur as well in the various types of
partially open quantum systems mentioned above. Yet the
width of the distribution may decay very slowly in the semi-
classical limit [<(In k)~"?], which could explain why this
semiclassical clustering is hardly visible in numerical com-
putations of chaotic dielectric cavities [12-14] or damped
quantum maps [9]; such a slow decay indeed occurs within a
solvable toy model we briefly describe at the end of this
paper.

Let us now describe the model of damped quantum maps,
which has been introduced and numerically investigated in
[9] to mimic the resonance spectra of dieletric microcavities.
To motivate this model, we first briefly analyze the dynamics
of a few cavity wave systems. The first situation consists in a
smooth absorption inside the cavity, represented by the
damped wave equation [37—A+2b(x)d,]yix,1)=0. Here the
damping function b(x)=0 measures the local absorption
rate. A high-frequency wave packet evolving along a classi-
cal trajectory is continuously damped by a factor
~exp(—[ob[x(s)]ds). The classical limit of the dynamics
consists in the propagation of rays with decreasing intensity,
also called weighted ray dynamics [Fig. 1(a)]. When the dis-
sipation occurs at the boundary (e.g., through Ohmic losses),
an incident high-frequency wave packet hitting the boundary
will be reflected, with its amplitude reduced by a subunitary
factor a(q, ¢) [Fig. 1(b)]. The same phenomenon effectively
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FIG. 1. (Color online) (a) Weighted ray dynamics inside a cavity
with inhomogeneous absorption. (b) Absorption (or partial reflec-
tion) at the boundary. The ray intensity corresponds to its thickness.
Dashed lines correspond to refracted rays.
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occurs in the case of light scattering through a quasi-2D di-
electric microcavity of optical index n>1. The rays propa-
gating inside the cavity are partially reflected at the bound-
ary, the remaining part being refracted outside and never
returning provided the cavity is convex [dashed lines in Fig.
1(b)]. In the high-frequency limit, the reflection factor is
given by Fresnel’s coefficient, which depends on the light
polarization and on p=sin ¢. For instance, in the case of
transverse magnetic polarization, the coefficient is a simple
complex function ary(p) [9], which has unit modulus when
lp|=1/n (full reflection) and is minimal at apy(0)=(n
—-1)/(n+1).

To analyze a 2D classical billiard, it is convenient to re-
duce the flow to the bounce map «k:(g,p=sin ¢)—(q’,p’
=sin ¢’), which acts canonically on the boundary phase
space. At the quantum level, the spectrum of the closed cav-
ity can be obtained by studying a k-dependent integral op-
erator acting on the boundary, which effectively quantizes
the bounce map, with an effective Planck’s constant 7
=k"' [15].

This observation leads one to consider canonical maps
on simple two-dimensional phase spaces, and to quantize
them into unitary propagators (quantum maps) Uy(x) of fi-
nite dimension N~7#_j; [16]. A Gaussian wave packet |g,p)
localized at the phase space point (¢, p) is first transformed
unitarily into a deformed wave packet Uy|q,p), localized
near (g,p). To induce some damping, we then multiply this
state by a factor a(x(q,p)), which can be implemented by
applying to Uy|g,p) the operator d quantizing the damping
factor. The latter is generally complex valued. We will as-
sume that it satisfies the following bounds:

vV q.p. (1)

These two steps lead to the definition of the damped quan-
tum map

0< Amin = |a(q,p)| = Amax = 1’

def
My=My(a,k)=aUy(k).

The classical limit of the dynamics generated by M acts on
“weighted point particles:” a point at position (¢q,p) is moved
to k(g,p) and its weight is reduced by a factor |a(k(g,p))|>.
This is the discrete-time version of a weighted ray dynamics.
Compared with cavity systems, this model has two main ad-
vantages: one can easily engineer a map « with specific dy-
namical properties; and the spectrum of My(a, k) is easier to
study both numerically and analytically.

The spectrum {)\;N)}IS i<n of My(a, k) is the main object
of our study (eigenvalues are ordered by decreasing moduli).
To compare it with the resonance spectrum of a damped
cavity, one should extract from the latter an interval {|w,
—k| < 7} around the frequency k~ N. The distribution of the
decay rates {I',,:|w,—k| < 7} should parallel that of the decay
rates {yﬁN)=—2 ln|)\_§-N)|}lsjgN.

A similar model was introduced in [17,18] to mimic fully
open cavities: the damping factor a(z) was then vanishing
inside the opening. Such systems were characterized by a
fractal Weyl law [17-19]: the number of resonances in a strip
{lw,|<k,T,<T?} grew as k'*°, where <1 was given by the
fractal dimension of the trapped set. In contrast, the bounds
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TABLE 1. Values of the theoretical rates for x and the various
damping functions we use.

Yeap Yel Yiyp
a; 0.715 1.079 2.774
a; 0.734 1.079 3.070
a, —-0.523 0.521 0.633

(1) imply that for N large enough My is invertible, and its N
eigenvalues are contained inside the annulus {ammS|)\§N)|
<1}. Transposed to the case of an absorbing cavity, it im-
plies that all high-frequency resonances are contained in a
fixed strip {I', <T,,.}» and the number of modes N{k,:|w,]
<k} asymptotically grows like Ck?, thus satisfying a stan-
dard Weyl law [11]. The situation is more complicated for
dielectric cavities. Explicit solutions in the case of the circu-
lar cavity [20] suggest that resonances split between two
well-separated groups: inner resonances contained in a strip
{I',<T}, and outer resonances I',~ ) associated with
modes localized outside the cavity. Since our damped quan-
tum map only acts on states localized inside the torus, we
believe that the above Weyl asymptotics correctly counts the
inner resonances of dielectric cavities (the fractal Weyl law
recently observed in [14] is probably a finite-frequency arti-
fact).

To obtain a more precise description, one needs to iterate
the dynamics, that is, study the time-n evolution MYy. Apply-
ing the quantum-classical correspondence (Egorov’s theo-
rem), we find that

[(My(a, k)" My(a, k)] = a,,, (2)

where the function a,,= (I, |a° «/|)!"" is the average damping
over trajectory stretches of length n. The approximation is
valid in the semiclassical limit N — .

Much can be drawn from the knowledge of the functions
—21na, in the long-time limit n> 1. Their ranges consist in
intervals I,(a) C1,_,(a), which converge to a limit interval
I.(a) when n— o, The above identity implies that the quan-
tum decay rates y(-N) must be contained in I,(a) for large
enough N [11]. Numerical [9] and analytical [21] studies
indicate that the “quantum ranges” J N(a):[y(lN), 'y]((,V)] gener-
ally remain strictly inside I,(a), in particular, they stay at
finite distance from zero. Adapting methods used to study
scattering systems [22,23], one finds that high-frequency de-
cay rates should be larger than y,,,=-2P,(In|a|-\"/2),
where P,(-) is the topological pressure associated with the
map « and the observable (In|a|-\“/2) [24], N“(z) being the
expansion rate of k along the unstable direction. The lower
bound 1,,, may be trivial (negative) when |a(z)| varies little
across the phase space (see the last line in Table I).

Since « is chaotic, the value distribution of =2 1n a,(z)
becomes peaked around its average yy,=-2/ In|a(z)|dz
when n— . The central limit theorem [25] shows that this
distribution is asymptotically a Gaussian of width o(a)/\n
around %,,. This distribution is semiclassically connected
with the spectral density of d,: denoting by {s MYy its

045202-2



RAPID COMMUNICATIONS

RESONANCE DISTRIBUTION IN OPEN QUANTUM... PHYSICAL REVIEW E 78, 045202(R) (2008)

Damping a;

Damping a;

Yel ==
Yiyp —

FIG. 2. (Color online) Spectra of My(«,a;)

for N=2100 and damping factors a; (a) and a,
(b). We plot {i ln()\}N ))} to mimic the spectrum of
a damped cavity near k~ N (the vertical coordi-
nates correspond to —7](.N )/ 2). The horizontal lines
indicate —v, /2 for the theoretical rates given in

eigenvalues and by V the volume on the torus, we have the
Weyl law

Ms™ < sy = NV(@, ({amin 1)) 3)

From (2), the left-hand side approximately counts the singu-
lar values of the matrix M}. Using the Weyl inequalities
[26], we obtain that most of the decay rates {7§-N < j<n sat-
isfy 'yﬁN )= Yyp— €

Applying the same argument to the inverse quantum map
M;,l ~M N(a_lok,K‘l), we eventually find that, in the semi-
classical limit, most decay rates cluster around 7,,, which
we thus call the typical decay rate. More precisely, the frac-
tion of the decay rates {y;N)} which are not in the interval
[Yyp—&: Yyp+€] goes to zero when N — .

By pushing the quantum-classical correspondence up to
its limit, namely the Ehrenfest time n~ C In N, we find that
the width of the decay rate distribution is at most of order
(In N)="2 (a rigorous proof will be given in [27]). Our nu-
merics (see Fig. 3) are compatible with this upper bound.
Such a slow decay could explain why this concentration has
not been detected in previous studies. For a solvable toy
model presented at the end of this paper, the distribution will
be shown to be indeed a Gaussian of width ~C(In N)~2.

Let us compare the quantum decay rates with the classical
decay rate 7y, of the corresponding weighted dynamics. The
latter, introduced in [28] in the framework of dielectric mi-
crocavities, is obtained by evolving an initial smooth distri-
bution of points through the weighted dynamics: for large
times n, the total weight of the distribution decays as We™ <1,
As in the case of fully open systems [22], v, can be ex-
pressed as the topological pressure yy=-P,(2 In|a]-\").
Convexity properties of the pressure allow us to compare this
classical decay rate with the two rates obtained above, Vg,
< Y4=< Viyp» and the inequalities are generally strict (see

—_
[=2)

Table 1.

Table I). The quantum ranges Jy(a) may or may not contain
the classical rate vy, (see Fig. 2).

The map we consider in our numerics is the three-baker’s-
map, which acts canonically on the two-dimensional torus
{(g,p)e[0,1)?}. It is given by «(q,p)=[3¢ modl,(p
+[3¢])/3], and generates a strongly chaotic dynamics. This
map is quantized as in [29], into a sequence of unitary ma-
trices

Gy
Uy= Gz_vl Gy s
Gns3

where (GM)jk=(l/\e"M) exp[—Qim/M)(j+1/2)(k+1/2)] is
the symmetrized discrete Fourier transform. We choose
damping factors of the form a(g), so their quantizations d are
simply diagonal matrices with entries a[(j+1/2)/N]. The
factor a,(g) has a plateau a,(q)=1 for ge[1/3,2/3], an-
other one a,(¢g)=0.1 for g €[0,1/6]U[5/6,1], and varies
smoothly in between. It approximates the piecewise constant
function a;(q) which takes values 0.1, 1, and 0.1, respec-
tively, on the intervals [0,1/3), [1/3,2/3), and [2/3,1).
Our second choice is the smoother function a,(g)=1
—sin(2g)?/2. Since we use a single map k, the damped
quantum maps will be abbreviated by My(a;).

We first notice that all these factors reach their extremal
values dp,,dmax On the fixed points (0,0) and (1/2,1/2) of
k. As a result, for each of them the asymptotic range I..(a) is
equal to [@piy,@max]. The theoretical rates Yo, Yo, and Yy,
for these three factors are given in Table I. In Fig. 2 we plot
the spectra of M(a;) for N=2100 (the theoretical bound 7,
for a, is negative, hence irrelevant). We check that all quan-
tum rates are larger than y,,,. In the case of My(a,), all
quantum rates are also larger than vy, while My(a,) admits a
few smaller decay rates.

The clustering of decay rates around vy, is already per-

(b)

I
%
)

1
(a) (Baker’s map
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Cumulative distribution

Width of the decay rate distribution

® A=337+7.5% ,B=0.81£55% a, @

a m
1 FIG. 3. (Color online) (a) Cumulative decay
rate distribution for My(k,a;). The vertical bars
indicate the rates yy,. (b) Widths of the decay
rate distributions, together with the best two-
parameter fits A(In N)~? and the asymptotic stan-
dard errors. The power-law fits A'NB' yield A’
=1.35%5%,B'=0.09=8% for My(a;) and A’

047 N=2100 —
02 N=1200 — 0.4} . .
- N=300 —c- A=0.42+20.3% , B=0.7416.5%
0 ‘ ‘ OWQ—%.—FQH
1 3 4 4 5
Decay Rate InN

5 =0.2+18%,B'=0.10%26.5% for My(as).
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ceptible in Fig. 2. To make it more quantitative, in Fig. 3(a)
we plot the cumulative distributions of decay rates. At first
glance, the widths of the distributions around 7, seem to
depend little on N. Enlarging the set of data, we plot these
widths on Fig. 3(b). They indeed decay with N. The two-

parameter power-law fits A’N~2 " lead to small exponents B’,
which seem to favor the logarithmic fits A(In N)~5; the latter
decay slightly faster than the theoretical upper bound
(In N)~ V2,

It is possible to construct a solvable quantization of the
baker’s map by taking the quantum parameter N=3%, k € N,
and replacing the discrete Fourier transform Gy by the Walsh
transform [ 18]. If we then select a damping factor which, like
a,, takes constant values @’ on the intervals ¢ e[j/3,(j
+1)/3), the quantum model remains solvable. The spectrum
of My relies on the eigenvalues {\;} of the 3 X3 matrix
diag(a’)G5'. Taking y;=-2 In|\;|, the N quantum decay rates
can be indexed by the sequences m=m;7, - 7, with 7;
e{1,2,3}: they are given by 7,,:(1/]()2’,‘”:17%. For in-
stance, in the case of the damping function a, the rates y;
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take the values (0.803, 3.801, 4.605). From this explicit ex-
pression, one easily draws that, in the limit k— oo, the distri-
bution of the {')/,7} converges to a Gaussian of average 7y,
=(21,7)/3 and variance (1/3K)=;_, (¥~ %y,)*=C(In N)~".
To summarize, we have studied the spectra and eigen-
modes of damped quantum chaotic maps, a toy model for
various types of partially open quantized chaotic cavities, in
a régime where the damping is both macroscopic and
strongly nonperturbative. We have shown that the quantum
decay rates remain inside a fixed interval, and that most of
them cluster around the mean damping rate 7,y,. These sta-
tistical properties seem to differ from those of non-Hermitian
random matrices used to represent such open systems.
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