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Abstract
We analyse simple models of quantum chaotic scattering, namely quantized
open baker’s maps. We numerically compute the density of quantum
resonances in the semiclassical regime. This density satisfies a fractal Weyl
law, where the exponent is governed by the (fractal) dimension of the set of
trapped trajectories. This type of behaviour is also expected in the (physically
more relevant) case of Hamiltonian chaotic scattering. Within a simplified
model, we are able to rigorously prove this Weyl law and compute quantities
related to the ‘coherent transport’ through the system, namely the conductance
and ‘shot noise’. The latter is close to the prediction of random matrix theory.

PACS number: 05.45.Mt

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of resonances, or quasibound states, has a long tradition in theoretical, numerical and
experimental chaotic scattering—see, for instance, [7] and references therein. In this paper,
we discuss the laws for the density of resonances at high energies, or in the semiclassical limit,
and the closely related asymptotics of conductance, Fano factors and ‘shot noise’. Our models
are based on a quantization of open baker maps [1, 17, 18] and we focus on fractal Weyl laws
for the density of resonances. These laws have origins in the mathematical work on counting
resonances [27].

In section 2, we present the compact phase space models for chaotic scattering (open
baker’s maps) and their discrete quantizations. The numerical results on counting of quantum
resonances showing an agreement with fractal Weyl laws are given in section 3. In section 4,
we discuss a model which is simpler on the quantum level but more complicated on the
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Figure 1. A three-bump potential exhibiting hyperbolic dynamics on a certain energy range.

classical level (this model can also be interpreted as an alternative quantization of the original
baker’s map; see section 4.2). In that case, we can describe the distribution of resonances very
precisely (section 4.2), showing perfect agreement with the fractal Weyl law. We also find
asymptotic expressions for the conductance and the Fano factor (or the ‘shot noise’ factor).
The fractal Weyl law appears naturally in these asymptotics and an interesting comparison
with the random matrix theory is also made (section 4.3).

To put the fractal Weyl law in perspective, we review the usual Weyl law for the density of
states in the semiclassical limit. Let H(q, p) = p2 + V (q) be a Hamiltonian with a confining
potential V and let E be a nondegenerate energy level,

H(q, p) = E �⇒ ∇H(q, p) �= 0. (1.1)

Assume further that the union of periodic orbits of the Hamilton flow on the surface H−1(E)

has measure zero with respect to the Liouville measure. Then, the spectrum of the quantized
Hamiltonian,

Ĥ = −h̄2� + V (q), q ∈ R
n, (1.2)

near E satisfies

#{Spec(Ĥ ) ∩ [E − ρh̄, E + ρh̄]} = 2ρh̄

(2πh̄)n

∫
δ(H(q, p) − E) dq dp + o(h̄−n+1), (1.3)

see [9] for references to the mathematical literature on this subject.
Suppose now that V (q) is not confining. The most extreme case is given by V (q)

vanishing outside a compact set. An example of such a potential with q ∈ R
2 is given in

figure 1. In that case, the eigenvalues are replaced by quantum resonances which can be
defined as the poles of the meromorphic continuation of Green’s function, G(z; q ′, q), from
Im z > 0 to Im z � 0. By Green’s function we mean the integral kernel of the resolvent:

(z − Ĥ )−1u(q ′) =
∫

R
n

G(z; q ′, q)u(q) dq, u ∈ C∞
c (Rn). (1.4)

We denote the set of resonances by Res(Ĥ ). Near a nondegenerate energy level (1.1), we have
the following bound (compare with (1.3) for a closed system) [5]:

#{Res(Ĥ ) ∩ ([E − ρh̄, E + ρh̄] − i[0, γ h̄])} � C(ρ, γ )h̄−n+1. (1.5)
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When the interaction region is separated from infinity by a barrier, this bound is optimal since
resonances are well approximated by eigenvalues of a closed system. In that case, the classical
trapped set,

KE
def= {

(q, p) ∈ H−1(E) : �t
H (q, p) �→ ∞, t → ±∞}

, (1.6)

has a non-empty interior in H−1(E), so that its dimension is equal to 2n − 1.
Suppose now that the classical flow of the Hamiltonian H is hyperbolic on KE , as is the

case, for instance, in some energy range for the 2D potential represented in figure 1 [14, 23].
Following the original work of Sjöstrand [23], the general upper bound (1.5) is replaced by a
bound involving the upper Minkowski dimension of KE :

dim KE = 2n − 1 − sup{c : lim sup
ε→0

ε−cvol({ρ ∈ H−1(E) : dist(KE, ρ) < ε}) < ∞}.

We say that KE is of pure dimension if the supremum is attained. For simplicity, we assume
that this is the case. Then, under the assumption of hyperbolicity of the flow, we have [24]

#{Res(Ĥ ) ∩ ([E − ρh̄, E + ρh̄] − i[0, γ h̄])} � C(ρ, γ )h̄−µE , 2µE + 1 = dim KE.

(1.7)

This bound is expected to be optimal even though it is not clear what notion of dimension should
be used for the lower bounds. The best chance lies in cases in which KE has a particularly nice
structure. A class of Hamiltonians for which that happens is given by quotients of hyperbolic
space by convex co-compact discrete groups [8].

A fractal Weyl law for the density of resonances in larger regions is easier to verify and
more likely to hold in general:

#{Res(Ĥ ) ∩ ([E − δ, E + δ] − i[0, γ h̄])} ∼ C(δ, γ )h̄−µE−1, δ > 0 fixed. (1.8)

The precise meaning of ∼ is left vague in this conjectural statement. The exponent in
this relation has been investigated numerically in a variety of settings and the results are
encouraging [11].

2. Open baker maps and their quantizations

We consider T
2 = [0, 1) × [0, 1), the 2-torus, as our classical phase space. Classical

observables are functions on T
2 and the classical dynamics is given in terms of an ‘open

symplectic map’ B, that is a map defined on a subset D ⊂ T
2, which is invertible and canonical

(area and orientation preserving) from D to B(D). The points of T
2\D are interpreted as

‘falling in the hole’ or ‘escaping to infinity’.
Following a construction performed in [18], we will be concerned with open versions of

the baker’s map, obtained by restricting the ‘closed’ baker’s map to a subdomain of T
2, union

of vertical strips. As an example, if we restrict the 3-baker’s map A3

A3(q, p)
def= (q ′, p′) =


q ′ = 3q, p′ = p/3, if 0 � q < 1/3,

q ′ = 3q − 1, p′ = (p + 1)/3, if 1/3 � q < 2/3,

q ′ = 3q − 2, p′ = (p + 2)/3, if 2/3 � q < 1

(2.1)

to the domain D3 = T
2\{1/3 � q < 2/3}, we obtain the open 3-baker’s map B3:

∀(q, p) ∈ D3, B3(q, p) = (q ′, p′)

=
{
q ′ = 3q, p′ = p/3, if 0 � q < 1/3,

q ′ = 3q − 2, p′ = (p + 2)/3, if 2/3 � q < 1.
(2.2)
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Figure 2. We show, from left to right, approximations of the incoming/outgoing tails �−, �+ and
the trapped set K for the open 3-baker B3. On the left and central plots, each colour corresponds
to points escaping at the same time.

This open map admits an inverse B−1
3 , which is a canonical map from B3(D3) to D3. In this

paper, we will present numerical results for an open 5-baker’s map, defined as

B5(q, p) = (q ′, p′) def=
{
q ′ = 5q − 1, p′ = (p + 1)/5, if 1/5 � q < 2/5,

q ′ = 5q − 3, p′ = (p + 3)/5, if 3/5 � q < 4/5.

(2.3)

One can think of A3 as a model for a Poincaré map for a 2D closed Hamiltonian system.
Removing the domain {1/3 � q < 2/3} from the torus corresponds to opening the system:
the points in this domain will escape through the hole, that is, never come back to the
Poincaré section. In the context of mesoscopic quantum dots, such an opening is performed
by connecting a lead to the dot, through which electrons are able to escape (see section 4.3).

For open maps such as B = B3, we can define the incoming and outgoing tails, made of
points which never escape in the forward (resp. backward) evolution:

x ∈ �− ⊂ T
2 ⇐⇒ ∀n � 0, Bn(x) ∈ D,

x ∈ �+ ⇐⇒ ∀n � 0, B−n(x) ∈ B(D).

In the case of the map (2.2), �− = C3 × [0, 1), �+ = [0, 1) × C3, where C3 is the standard
1
3 -Cantor set on the interval (see figure 2).

In analogy with (1.6), we also define the trapped set K = �+ ∩ �− and, for any point
x ∈ K , its stable and unstable manifolds W±(x). In the case of the open 3-baker B3, we easily
check that

µ
def= dim �− ∩ W+ = dim �+ ∩ W− = 1

2
dim K = dim C3 = log 2

log 3
.

Because �± and K are ‘nice’ Cantor sets, several notions of dimension (Hausdorff, upper/lower
Minkowski, box counting) take the same value µ. We will therefore refer to µ as the ‘fractal
dimension’ of the considered sets. Note that for asymmetric open bakers, this fractal dimension
is different from the information dimension used in [7]3.

The quantization of the open map (2.2) is based on the quantization of the ‘closed’ baker’s
map A3. That, in an outline, is done as follows [1, 17]. To any N ∈ N, we associate a space
HN � C

N of quantum states on the torus. The components ψj , j ∈ ZN = {0, . . . , N − 1},
3 Recent numerical studies by M Rubin show that this fractal dimension also governs the Weyl law in the case of
asymmetric open bakers.
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of a state ψ ∈ HN are the amplitudes of ψ at the positions q = qj = (
j + 1

2

)/
N , and we

will sometimes use Dirac’s notation ψj = 〈qj |ψ〉. The choice of these ‘half-integer positions’
is justified by the parity symmetry q → 1 − q they satisfy [17] and is further explained in
section 3. The scalar product on HN is the standard one on C

N :

∀ψ, φ ∈ HN, 〈φ|ψ〉 =
N−1∑
j=0

φjψj . (2.4)

A classical observable depending on q ∈ R/Z only, f = f (q), is obviously quantized as the
multiplication operator

∀ψ ∈ HN, [OpN(f )ψ]j = f

(
j + 1/2

N

)
ψj .

The discrete Fourier transform

(GN)j,j ′ = N−1/2 e−2iπ(j+ 1
2 )(j

′+ 1
2 )/N , j, j ′ = 0, . . . , N − 1 (2.5)

transforms a ‘position vector’ ψj = 〈qj |ψ〉 into the corresponding ‘momentum vector’
〈pj |ψ〉 = (GNψ)j . The momenta are also quantized to values pj = (

j + 1
2

)/
N, j =

0, . . . , N − 1. Comparing definition (2.5) with the (standard) Fourier transform on R,

Fh̄u(p) = 1√
2πh̄

∫
R

e−ipq/h̄u(q) dq,

we see that the effective Planck’s constant in the discrete model is h̄ = (2πN)−1.
As a result, any observable g = g(p) can be quantized as

OpN(g)ψ = G∗
N diag(g((j + 1/2)/N))GNψ.

The Weyl quantization on the torus generalizes this map f �→ OpN(f ) to any classical
observable f , that is any (smooth) function on the torus, in such a way that a real observable
f is associated with self-adjoint operators, and

i

h̄
[OpN(f ), OpN(g)] = OpN({f, g}) + O(h̄2).

Let us now consider the following family of unitary operators on HN , where N is taken as a
multiple of 3:

Â3,pos = A3,N
def= G∗

N

GN/3 0 0
0 GN/3 0
0 0 GN/3

 . (2.6)

Since GN exchanges position and momentum, the mixed momentum–position representation
of Â3 is given by the matrix

Â3,mom−pos = GNA3,N =
GN/3 0 0

0 GN/3 0
0 0 GN/3

 .

In terms of the quantized positions qj and momenta pk , the entries of this matrix are given by

(Â3,mom−pos)kj = 〈pk|Â3|qj 〉 = 1√
2πh̄

exp

(
− i

h̄
(3qj − �)

(
pk − �

3

))
,

�

3
� qj <

� + 1

3
,

�

3
� pk <

� + 1

3
, � = 0, 1, 2,

and zero otherwise. One can then observe [1] that for � = 0, 1, 2, the function S�(p
′, q) =

(3q − �)(p′ − �/3) generates the canonical map (q, p) �→ (q ′, p′) = (3q − �, p/3 + �/3) on



10688 S Nonnenmacher and M Zworski

the domain {q, p′ ∈ [�/3, (� + 1)/3)}, that is, the map A3 (2.1) on this domain. The matrix
elements 〈pk|Â3|qj 〉 therefore exactly correspond to the Van Vleck semiclassical formula
associated with the map A3. For this reason (and the unitarity of Â3), the operator Â3 was
considered a good quantization of A3 by Balazs and Voros. A more precise description of the
correspondence between A3 and Â3, including the role played by the discontinuities of A3, is
explained in [15, section 4.4].

To quantize the open baker B3 (2.2), we truncate the unitary operator Â3 using the quantum

projector on the domain D,�D
def= OpN(1lD) [18]: in the position basis, we get

B̂3,pos = B3,N
def= A3,N�D = G∗

N

GN/3 0 0
0 0 0
0 0 GN/3

 , N ∈ 3N. (2.7)

This subunitary operator is a model for the quantization of a Poincaré map of an open chaotic
system [18]. Note that this type of open quantum map is genuinely different from the subunitary
‘superoperators’ associated with the classical baker’s map, defined as models of decoherence
[4, 12].

The semiclassical regime corresponds to the limit N → ∞. Similarly, the quantum open
map associated with the 5-baker B5 (2.3) is given by the sequence of matrices:

B5,N
def= G∗

N


0 0 0 0 0
0 GN/5 0 0 0
0 0 0 0 0
0 0 0 GN/5 0
0 0 0 0 0

 , N ∈ 5N. (2.8)

Let us now describe the correspondence between the resonances of a Schrödinger operator
Ĥ and the eigenvalues of our subunitary open quantum maps B3,N or B5,N (denoted generically
by BN ).

Since BN is obtained by truncating the unitary propagator AN , it is natural to consider
the family of truncated Schrödinger propagators χ e−itĤ /h̄χ , where χ(q) is a cut-off function
on some compact set supporting the scatterer. Although the precise eigenvalues of these
propagators depend nontrivially on both χ and the time t, these propagators admit a long-
time expansion in terms of the resonances zj of Ĥ and their associated ‘spectral projectors’
R̂j [6]. At an informal level, one may write

χ e−itĤ /h̄χ ∼
∑

zj ∈ Res(Ĥ )

e−itzj /h̄R̂j .

On the other hand, the iterated open quantum map (BN)n can obviously be expanded in terms
of the eigenvalues λj of BN . For this reason, it makes sense to model the exponentials e−izj /h̄

by the eigenvalues λj of our open quantum map BN .
Upon this identification, the boxes in which we count resonances in (1.7), [E − ρh̄, E +

ρh̄] − i[0, γ h̄], correspond to the regions

Ar,ϑ,ρ
def= {1 � |λ| � r, |arg(λ eiϑ)| � ρ}, r = exp(−γ ) ∈ (0, 1). (2.9)

These analogies induce a conjectural fractal Weyl law for the quantum open bakers (2.2) and
(2.3) which we now describe.

First of all, we consider the partial dimension of the trapped set of the open map B:

µ = dim K

2
= dim(�− ∩ W+).
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Then, for any r ∈ (0, 1), there should exist C(r) � 0 (a priori, depending on the map B) such
that, in the semiclassical limit, the number of eigenvalues of BN in the sectors (2.9) behaves
as

#{λ ∈ Spec(BN) ∩ Ar,ϑ,ρ} � ρ

2π
C(r)Nµ, N → ∞. (2.10)

The angular dependence ρ/(2π) on the rhs means that the distribution of eigenvalues is
expected to be asymptotically angular symmetric.

In [19], the quantum 2-baker A2,N was decomposed into the block

G∗
N

(
GN/2 0
0 0

)
and the complementary one. The spectral determinant for the unitary map, det(1 − zA2,N ),
was then expanded in terms of these blocks. Although the classical open map associated with
each block is quite simple (all points except a fixed one eventually escape), the spectrum of
each block was found to be rather complex and quite different from semiclassical predictions.

A scaling of the type (2.10) was conjectured in [22] for another chaotic map, namely
the open kicked rotator. This conjecture was then tested numerically and a good agreement
was observed. The scaling law Nµ was explained heuristically by counting the number of
quantum states in an h̄-neighbourhood of the incoming tail �− (so that 1 + µ is effectively the
Minkowski dimension of �−). For the kicked rotator, the fractal exponent µ was not known
analytically and the authors related it to the mean dwell time of the dynamics, that is, the
average time spent in the cavity before leaving it. The formula in [22] relating the fractal
exponent to τdwell is valid in the case of long dwell times, but can be modified for a map with
short dwell time like our open baker B3 (τdwell = 3) in order to yield the correct dimension4.

In section 3, we provide numerical evidence for the validity of (2.10) in the case of the
open 5-baker B5 (2.3), at least when taking N along geometric subsequences. In section 4.2,
we then construct a related quantum model, for which we can prove this Weyl law and calculate
C(r) explicitly for inverse Planck’s constants of the form N = 5k, k ∈ N.

3. Numerical results

We numerically computed the spectra of several open baker’s maps; in [15, section 5], we
showed the numerical results concerning the 3-baker B3 (2.2). For a change, we will discuss
here the open 5-baker (2.3), quantized in (2.8). For this open map, the partial dimension of the
repeller is µ = log 2/log 5 = 0.4306765 . . . . Compared to the 3-baker, this smaller exponent
implies that the spectrum of B̂5 is expected to be much sparser than that of B̂3. For this reason,
we will represent the spectra using a logarithmic scale (see figure 4) and consider regions
Ar,ϑ,ρ for values of r ranging from r = 0.5 down to about r = 0.001.

Let us now briefly explain the choice of ‘half-integer quantization’ for the quantum
positions and momenta [17]. The open map B5 is symmetric with respect to the parity
transformation �(q, p) = (1 − q, 1 − p) : � ◦ B5 = B5 ◦ �. The choice of quantization is
made so that the associated quantum map B̂5 also possess this symmetry, that is, it commutes
with the quantum parity operator �̂ defined as �̂|qj 〉 = −|1 − qj 〉 = −|qN−1−j 〉. We can
then separately diagonalize the even and odd parts

B̂5,ev = B̂5 ◦ (1 + �̂)/2 and B̂5,odd = B̂5 ◦ (1 − �̂)/2.

Both these operators have rank N/5: together, they give the full nontrivial spectrum of B̂5. We
checked that the odd spectrum has the same characteristics as the even one, so we only describe

4 We thank one of the referees for this remark.
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Table 1. Number of even-parity eigenvalues of B5,N in {|λ| > r}, for N along the sequence
{20 × 5k}.
N = 20 × 5k r = 0.5 r = 0.1 r = 0.05 r = 0.01 r = 0.005 r = 0.001

k = 0 4 10 10 13 14 16
k = 1 7 19 19 25 27 35
k = 2 15 36 36 48 55 122
k = 3 30 69 69 104 216 402

the properties of the latter. It is expected to satisfy the following fractal law (consequence of
(2.10):

n(N, r)
def= #{Spec(B5,N,ev) ∩ Ar} � C(r)(N/5)log 2/ log 5, Ar = {|λ| > r}, N → ∞.

(3.1)

The simplest set of N’s to test this fractal Weyl law is given by geometric sequences of the type
{N0 × 5k, k = 0, 1, . . .}: the law (3.1) means that the number of eigenvalues doubles when
k → k+1. In table 1, we give some of the numbers n(N, r) along the sequence N ∈ {5k ×20},
for some selected values of r. Along each column with r � 0.01, the numbers approximately
double at each step k → k + 1, which seems to confirm the law (3.1). The fact that this law
fails for the small radii r = 0.005, 0.001 may be explained as follows: according to (3.1),
when N is large the huge majority of the N/5 eigenvalues of B5,N,ev must be contained within
an asymptotically small neighbourhood of the origin; if Ar intersects this neighbourhood, the
law (3.1) necessarily fails, since the counting function is proportional to N instead of Nµ. For
the values of N listed in the table, this small region seems to be of radius �0.005, explaining
the departure from the fractal law in the last two columns. To further test the validity of the
fractal law (3.1), we choose a set of values of r and study the N-dependence of n(N, r), for N
taken along several geometric sequences, generalizing the above table. In figure 3, we plot this
dependence in logarithmic scale for r = 0.3 (full lines), r = 0.1 (dashed lines) and r = 0.015
(dot-dashed lines). Different geometric sequences are represented by different colours5. For
all pairs (N0, r) but one, the points corresponding to different values of k are almost aligned
and the slope is in very good agreement with the conjectured one, µ = log 2/ log 5. The less
convincing data are the ones related to r = 0.3: for this radius, the numbers n(N, r) are still
quite small, so that fluctuations are much more visible than for the smaller radii. We expect
this effect to disappear for larger values of N.

Now, the height of the curves does not only depend on r, but also on the sequence {N0 × 5k}
considered (especially for r = 0.3), which contradicts (3.1). To investigate this unexpected
dependence, we plot in figure 4 the even spectra of B5,N along three different geometric
sequences. These plots suggest that, along a given geometric sequence, the eigenvalue density
increases with N uniformly with respect to φ = arg λ, but very nonuniformly with respect to
|λ|. We see that some regions {r0 < |λ| < r1} remain empty even for large values of N. The
presence of gaps was already noticeable when comparing the second and third columns of
table 1: obviously, for N = 20 × 5k , there were no eigenvalues in the annulus {0.05 < |λ| <

0.1}, which is confirmed visually in figure 4 (bottom). This non-uniform dependence on |λ|
implies that the profile function C(r) is nontrivial.

5 Although the respective geometric sequences are difficult to distinguish in the black-and-white version, the
important information is still visible there (namely, the universal slope of the curves and the fact that their heights
depend on both r and N0).
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r=0.3
r=0.1
r=0.015
N=20x5^k
N=25x5^k
N=40x5^k
N=60x5^k
N=80x5^k
conject. slope
slope=1

5-baker along geometric sequences
Even-parity states, logarithmic scale

Figure 3. Checking the N-dependence of n(N, r) for three selected values of r (different line
styles), taking N along five geometric sequences {N = N0 × 5k} (different colours). We also
show (thick solid line) the conjectured slope log 2/ log 5 and give for comparison the slope 1 (thick
dashed line).

The spectra for the two other geometric sequences also show the presence of gaps, but the
gaps differ from one geometric sequence to the other. This observation also contradicts the
law (3.1). In spite of these problems, we nevertheless attempt to compute the profile function
C(r) appearing in (3.1). Figure 5 (left) shows n(N, r) as functions of r ∈ (0, 1), for N along
the same three geometric sequences (each one corresponding to a given colour/width). We
then rescale the vertical coordinate of each curve by the factor (N/5)−log 2/log 5 and plot the
rescaled curves in figure 5 (right). From far away, these rescaled curves are fairly superposed
on each other, which shows that the conjectured scaling (3.1) is approximately correct. Yet, a
closer inspection shows that a much better convergence to a single function occurs along each
individual geometric sequence. For instance, the curves for N = 8 × 5k ‘pointwise’ converge
to the last one along this sequence (N/5 = 5000), which has a plateaux on {0.2 � r � 0.4}
corresponding to a spectral gap. The curves of the two other sequences seem to converge as
well, with plateaux on different intervals.

In the case of the open kicked rotator studied in [22], the rescaled curves n(N, r) are
more or less superposed, therefore defining a profile function C(r). The authors claim that
this function corresponds reasonably well with a prediction of random matrix theory [28].
Our results for the 5-baker’s map contradict this universality: there does not seem to be a
global profile function C(r), but a family of such functions, which depend on the geometric
sequence {N0 × 5k}, which could be denoted by C(N0, r). The law (3.1) needs to be adapted
by restricting N to geometric sequences, which yields the following empirical scaling law.

For any N0 > 0 and r ∈ (0, 1), there exists C(N0, r) � 0 such that, for N along {N0 ×5k}
and k → ∞,
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Figure 4. Even-parity spectra of the quantum baker’s maps B5,N , along geometric sequences
N = N0 × 5k . The eigenvalues are represented on a logarithmic scale (arg λ/2π against log |λ|).
The dimensions indicated correspond to N/5.
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Figure 5. On the left, we plot n(N, r) as functions of r ∈ (0, 1). The numbers in the legend are
N/5. On the right, we have multiplied n(N, r) by the factor (N/5)−log 2/log 5.

#{λ ∈ Spec(BN) ∩ Ar,ϑ,ρ} � ρ

2π
C(N0, r)N

µ, (3.2)

where Ar,ϑ,ρ is given by (2.9). In figure 5, the different profile functions are uniformly
bounded, C1(r) � C(N0, r) � C2(r), for some envelope functions 0 � C1(r) � C2(r).

This weakening of (2.10) to geometric sequences makes sense for baker’s maps of the
form B3, B5, where each has a uniform integer expansion factor, leading to number-theoretic
properties. In the case of a nonlinear open chaotic map (as the open kicked rotator of [22]),
there is no reason for geometric sequences to play any role, so we expect (2.10) to hold in that
case.

4. A computable model

Because we are unable to analyse the spectra of the quantum bakers BN rigorously, we
introduce simplified models. In the case of the 3-baker, we observe (see figure 6, left) that the
largest matrix elements are maximal along the ‘tilted diagonals’

(n,m) = (3l + ε, l + �N/3), with l ∈ {0, . . . , N/3 − 1}, � ∈ {0, 2}, ε ∈ {0, 1, 2}.
(4.1)

These ‘diagonals’ correspond to a discretization of the map B3 projected on the position axis.
Away from them, the coefficients do not decrease very fast due to the Gibbs phenomenon
(diffraction). The elements on the ‘diagonals’ have moduli 1/

√
3 + O(1/N) and their phases

only depend on �, ε in the above parametrization. Our simplified model is obtained by keeping
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Figure 6. Matrix B3,27 (left) and its toy model B̃3,27 (right). The grey scale represents the modulus
of the matrix elements (white = 0, black = 1).

only the elements on the ‘diagonals’ (see figure 6, right), set their moduli to 1/
√

3 and shift
their phases by π/2 (for convenience). Using the parametrization (4.1), we get

(B̃3,N )nm = 1√
3

exp

(
2iπ

3
(ε + 1/2)(� + 1/2)

)
. (4.2)

For N = 9 and using ω = e2π i/3, the matrix reads

B̃3,9 = ω1/4

√
3



1 0 0 0 0 0 ω 0 0
ω1/2 0 0 0 0 0 ω1/2 0 0
ω 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 ω 0
0 ω1/2 0 0 0 0 0 ω1/2 0
0 ω 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 ω

0 0 ω1/2 0 0 0 0 0 ω1/2

0 0 ω 0 0 0 0 0 1


.

The matrix B̃3,N can obviously not be considered as a ‘small perturbation’ of B3,N , since
we removed many non-negligible ‘off-diagonal’ elements. Actually, by acting with B̃3,N on
Gaussian coherent states, one realizes that these matrices do not quantize the open 3-baker B3

(2.2), but rather a more complicated multivalued map B̃3, built upon B3 as follows:

∀(q, p) ∈ D3, B̃3(q, p) =
1⋃

j=−1

{B3(q, p) + (0, j/3)}. (4.3)

We refer to [15, proposition 6.1] for a precise statement. As opposed to B3, the multivalued
map (4.3) is no longer obtained by truncating a canonical transformation, but it comes from
three different transformations. B̃3 can be considered as a model of propagation with ray
splitting. Another interpretation is given by considering a Markov process with probabilities
P(x ′, x) being allocated at each step to the image points x ′ of x. Explicitly, the probabilities
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take the form

P(x ′, x) = f

(
3p′ − [3q] − 1/2

3

)
, f (t) =

(
sin(3πt)

3 sin(πt)

)2

,

x = (q, p), x ′ = (q ′, p′),

so that for each x ∈ D3, the sum of the weights associated with the three images of x is
indeed 1.

Some of the characteristics of the dynamics remain the same as for B3. The local dynamics
of each branch is the same and B̃3 sends all points in T

2\D3 to infinity. One can define incoming
and outgoing tails for B̃3 (see section 2). As opposed to the case of B3, these tails are no longer
symmetrical: �− = C3 × [0, 1), �+ = T

2. Yet, these formulae are slightly misleading. The
second one comes from the fact that any point x ∈ T

2 has two preimages through B̃3, namely
x0 = (q/3, 3p), x2 = ((q+2)/3, 3p), so no point ever escapes to infinity in the past. However,
to these preimages are associated the respective weights P(x, x0), P (x, x2), the sum of which
is generally <1: there is thus a loss of probability through B̃−1

3 , which is not accounted for by
the definition of �+.

In the next section, we will show that the matrices B̃3,N can nonetheless be interpreted as
quantizations of the original open baker B3, as long as one switches to a different notion of
quantization, derived from a different type of Fourier transform (the Walsh–Fourier transform).

Families of unitary matrices Ã2,N with a structure similar to B̃3,N have already been
proposed as an alternative quantization of the 2-baker’s map A2 [20]. These matrices can
also be closely related with the ‘semiquantum bakers’ introduced in [19]6. In the context
of quantum graphs (a recently popular model for quantum chaos), unitary matrices similar
to Ã2,N (but with random phases) occur as ‘unitary transfer matrices’ associated with binary
graphs [25] or with more general graphs generated from maps on the interval [16]. In this
framework, the matrix Ã2,N would correspond to a graph with very degenerate bond lengths.
In this framework, the matrix B̃3,N is directly related with a classical transfer matrix defined by
(B3,N )jj ′ = |(B̃3,N )jj ′ |2, which represents the classical Markov process on the graph. In our
case, this transfer matrix is the discretized version of the transfer (Perron–Frobenius) operator
associated with the open map B3.

4.1. The Walsh model interpretation of B̃3,N

In this section, we represent the matrices B̃3,N in a way suitable for their spectral analysis.
This can be done only in the case where N is a power of 3. This representation is connected
with the Walsh model of harmonic analysis.

The latter originally appeared in the context of fast signal processing [10]. The major
advantage of Walsh harmonic analysis (compared with the usual Fourier analysis) is the
possibility to strictly localize wave packets simultaneously in position and in momentum. For
our problem, this has the effect of removing the diffraction problems due to the discontinuities
of the classical map, which spoil the usual semiclassics [19].

A recent preprint [13] analyses some special eigenstates of the ‘standard’ quantum
2-baker, using the Walsh–Hadamard transform (which slightly differs from the Walsh
transform we give below) as a ‘filter’. We are doing something different here by constructing
our simplified model B̃3,N from the Walsh transform, as B3,N was constructed from the discrete
Fourier transform (see section 2).

We first select the expanding coefficient of the baker’s map, which we denote by D ∈ N

(the map (2.2) is associated with D = 3, the map (2.3) with D = 5). Once this is done, we

6 M Saraceno, private communication.
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will restrict ourselves to the values of N along the geometric sequence {N = Dk, k ∈ N}. In
this case, the Hilbert space can be naturally decomposed as a tensor product of k spaces C

D:

HN = (CD)1 ⊗ (CD)2 ⊗ · · · ⊗ (CD)k. (4.4)

This decomposition appears naturally in the context of quantum computation, where each C
D

represents a ‘quantum D-git’, that is, a quantum system with D levels. Here, we realize this
decomposition using the basis of position eigenstates |qj 〉 of HN (see [20] for the case D = 2).
Indeed, each quantum position qj = (j + 1/2)/N, j ∈ ZDk = {0, . . . , N −1}, is in one-to-one
correspondence with a word ε = ε1ε2 · · · εk made of symbols (D-gits) ε� = ε�(j) ∈ ZD:

j =
k∑

�=1

ε�D
k−�. (4.5)

The usual order for j ∈ ZDk corresponds to the lexicographic order for the symbolic words
ε ∈ (ZD)k . Associating to each D-git a D-dimensional vector space (CD)� with canonical
basis {e0, e1, . . . , eD−1}, the position eigenstate |qj 〉 ∈ HN can be decomposed as

|qj 〉 = eε1 ⊗ eε2 ⊗ · · · ⊗ eεk
. (4.6)

This identification realizes the tensor product decomposition (4.4).
The Fourier transforms GN (2.5) and the simpler one without the 1/2 shift

(FN)jj ′ = e−2iπjj ′/N
√

N
, j, j ′ ∈ ZN, N = Dk (4.7)

are defined by applying the exponential function x �→ e−2iπx to the products

jj ′

Dk
=

k∑
m=2−k

D−mε̃m(jj ′), where ε̃m(jj ′) =
∑

�+�′=m+k

ε�(j)ε�′(j ′).

If we replace in (4.7) the exponential e−2iπx by the piecewise constant function eD(x) =
exp(−2iπ [Dx]/D) and replace each ε̃m(jj ′) by its value εm(jj ′) modulo D, we obtain the
matrix element

(Vk)jj ′
def= D−k/2eD

(
k∑

m=2−k

D−mεm(jj ′)

)
= D−k/2 exp

(
−2iπ

D
ε1(jj

′)
)

=
k∏

�=1

D−1/2 exp

(
−2iπ

D
ε�(j)εk+1−�(j

′)
)

. (4.8)

The matrix Vk defines the Walsh transform in dimension Dk .
Because we have used the ‘half-integer’ Fourier transform (2.5) to define our quantum

baker’s map, we will need a slightly different version of Walsh transform, namely

(Wk)jj ′
def=

k∏
�=1

D−1/2 exp

(
−2iπ

D
(ε�(j) + 1/2)(εk+1−�(j

′) + 1/2)

)
.

Both Vk and Wk preserve the tensor product structure (4.4): for any v1, . . . , vn ∈ C
D ,

Vk(v1 ⊗ · · · ⊗ vk) = FDvk ⊗ · · · ⊗ FDv1, Wk(v1 ⊗ · · · ⊗ vk) = GDvk ⊗ · · · ⊗ GDv1.

(4.9)

These expressions show that Vk and Wk are unitary.
Specializing the computations to D = 3, we are now in a position to define the toy model

B̃3,N (in the case N = 3k) as the ‘Walsh quantization’ of the 3-baker (2.2) (as opposed to
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Figure 7. Eigenvalues of the matrices B̃3,N for N = 310 (triangles) and for N = 315 (crosses),
forming lattices in a logarithmic scale. The two horizontal lines correspond to the spectral radius
|z| = 1 (thin line) and the ‘peak multiplicity’ |z| = 3−1/4 (thick line). Note the difference of
vertical scale compared with the spectra of figure 4.

the ‘standard’ quantization of the multivalued map B̃3 (4.3). Indeed, one can check that the
matrix (4.2) can be expressed as

B̃3,N = W∗
k

Wk−1 0 0
0 0 0
0 0 Wk−1

 . (4.10)

This formula is clearly the Walsh analogue of definition (2.7) of the ‘standard’ quantum open
baker B3,N . From this definition and (4.9), we see the action of B3,N on tensor products:

B̃3,N (v1 ⊗ · · · ⊗ vk) = v2 ⊗ · · · ⊗ vk ⊗ G∗
3π0,2v1, vj ∈ C

3, (4.11)

where π0,2 is the orthogonal projector (in C
3) on Ce0 ⊕ Ce2.

4.2. Distribution of resonances

Using (4.11), we can explicitly describe the spectrum of B̃3,N for N = 3k . The computation is
identical with [15, section 6.2], so we only give the results. The generalized kernel of B̃3,N is
spanned by the position states |qj 〉 such that ε�(j) = 1 for at least one index 1 � � � k. This
corresponds to positions qj ‘far’ from the Cantor set C3, so that the classical points (qj , p) are
sent to infinity at a time n � k. This kernel has dimension 3k − 2k = N − N log 2/ log 3.

The nonzero eigenvalues of B̃3,N are given by the set (see figure 7)

{λ+} ∪ {λ−} ∪
k−1⋃
�=0

k−1⋃
p=1

{
e2iπ�/kλ

1−p/k
+ λ

p/k
−

}
, where λ+ = 1, λ− = i√

3
.

For each p ∈ {1, . . . , k − 1}, the k eigenvalues of modulus |λ−|p/k = 3−p/2k asymptotically
have the same degeneracy

(
k

p

)/
k as k → ∞ (semiclassical limit), which shows that their

distribution is circular symmetric. Taking these multiplicities into account, we obtain the
following Weyl law for the eigenvalues of B̃3,N inside a region (2.9), along the sequence
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Figure 8. Closed and open chaotic cavities. On the left, a (bounded) trajectory is schematically
associated with a power of the unitary quantum propagator (n represents the number of bounces).
On the right, a ‘transmitting’ trajectory is associated with a term of the matrix (4.13).

N ∈ {3k}, k → ∞:

#{Spec(B̃3,N ) ∩ Ar,ϑ,ρ} = ρ

2π
Nµ(C(1, r) + o(1))

(4.12)

µ = dim(�− ∩ W+) = log 2

log 3
, C(1, r) = 1l(0,3−1/4](r).

The values λ−, λ+ in (4.12) are the nonzero eigenvalues of the matrix G∗
3 ◦ π0,2 appearing in

(4.11). We used the notation C(1, r) for the profile function to be consistent with our notations
in (3.2), that is, to emphasize that this estimate is valid only along the sequence N ∈ {1 × 3k}.

We note that the spectrum of the classical transfer matrix B3,N defined at the end of
section 4 is drastically different: this matrix admits one simple nontrivial eigenvalue λ = 2/3
(interpreted as the classical escape rate), the rest of the spectrum lying in the generalized kernel.
Therefore, the features of the quantum spectrum are intimately related with the oscillatory
phases of B̃3,N along the ‘diagonals’.

4.3. Conductance and shot noise

In this section, we consider an open baker’s map as a model of quantum transport through a
‘chaotic quantum dot’, that is a two-dimensional cavity connected to the outside world through
a certain number of ‘leads’ carrying the current (see, for instance, the reviews [3] on shot noise
and connections with random matrix theory in phase-coherent transport through mesoscopic
cavities). Each lead is connected to the cavity along a segment Lj of the boundary (see
figure 8) and the connection is assumed to be ‘perfect’: a particle inside the cavity which hits
the boundary along q ∈ Lj is completely evacuated to the lead. Therefore, the phase space
domain Lj × [0, 1) above this segment is a part of the ‘hole’, in the terminology of section 2,
whereas the remaining set I = [0, 1)\(∪Lj) represents the boundary of the quantum dot,
which lifts to the phase space domain D = I × [0, 1).

In the previous sections, we have studied the open quantum map obtained by projecting
a unitary quantum dynamics (called generically UN ) onto a subdomain D of the phase space:
resonances were defined as the eigenvalues of UN�D. These resonances are supposed to
represent the metastable quantum states inside the open quantum dot, after it has been opened.
In the present section, we want to study another aspect of the open system, namely the
‘transport’ through the dot, using the formalism of [26]. We will focus on the case where the
opening L splits into two segments L = L1 ∪ L2, and we study the transmission matrix from
the lead L1 to the lead L2 (see figure 9 for a schematic representation). Once we are given, on
one side, the quantum map UN associated with the closed dynamics inside the ‘cavity’ and, on
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Figure 9. The 4-baker’s map modelling the chaotic cavity. The leftmost and rightmost vertical
strips correspond to the two openings (‘leads’).

the other side, the projectors on the leads �Li
and on the ‘interior’ �I = �D, the transmission

matrix (from L1 to L2) is defined as the block

t (ϑ) =
∑
n�1

einϑ�L2UN(�IUN)n−1�L1 . (4.13)

The parameter ϑ ∈ [0, 2π) is the ‘quasi-energy’ of the particles. According to Landauer’s
theory of coherent transport, each eigenvalue Ti(ϑ) of the matrix t (ϑ)t∗(ϑ) corresponds to a
‘transmission channel’. The dimensionless conductance of the system is then given by

g(ϑ) = tr(t (ϑ)t∗(ϑ)). (4.14)

A transmission channel is ‘classical’ if the eigenvalue Ti is very close to unity (perfect
transmission) or close to zero (perfect reflection). The intermediate values characterize
‘nonclassical channels’ (governed by strong interference effects). The number of the latter
can be estimated by the noise power

P(ϑ) = tr(t (ϑ)t∗(ϑ)(Id − t (ϑ)t∗(ϑ)d)), (4.15)

or equivalently, the Fano factor F = P/g. It is sometimes necessary to perform an ensemble
averaging over ϑ to obtain significant results [26]. However, for the model we study here,
these quantities will depend very little on ϑ . The closed quantum dot will be modelled by the
following quantum map: we consider the 4-baker’s map A4 and quantize it using the Walsh
transform Vk (4.8) with D = 4. In dimension N = 4k , our unitary propagator is therefore

UN = Ã4,N = V∗
k


Vk−1 0 0 0

0 Vk−1 0 0
0 0 Vk−1 0
0 0 0 Vk−1

 .

We attach the leads on the intervals L1 = [0, 1/4] and L2 = [3/4, 1]: this way, the projectors
�Li

as well as the projector �I = Id − �L1 − �L2 can be represented as tensor product
operators:

�L1 = π0 ⊗ Id4 ⊗ Id4 ⊗ · · · , �L2 = π3 ⊗ Id4 ⊗ · · · , �I = πI ⊗ Id4 ⊗ · · · .
Here πi is the orthogonal projector on the basis state ei of C

4 and πI = π1 ⊕ π2. This
tensor action, together with the action of Ã4,N (analogous to (4.11), allows us to compute all
quantities explicitly.

The spectrum of the ‘inside’ propagator for this model, B̃4,N = Ã4,N�I , satisfies a fractal
Weyl law of the type (4.12) along the sequence N = 4k , with exponent µ = log 2/ log 4 = 1/2
and profile C(1, r) = 1l[0,2−3/4](r).

For this model and in the semiclassical limit k → ∞, we could compute the dimensionless
conductance (4.14). The computation [15, section 7.2] requires to control the time evolution
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up to n = Ck for some 1 < C < 2: this is of the order of the Ehrenfest time τE = k for the
system. For any ϑ , we obtain

g(N = 4k, ϑ) = 4k−1

2
(1 + o(2−k)) = N/4

2
(1 + o(1)), k → ∞. (4.16)

Here, N/4 is the number of transmission channels from L1 to L2, that is the rank of the matrix
t (ϑ). We see that, as could be expected, approximately one half of the scattering channels get
transmitted from one lead to the other, the other half being reflected back.

Asymptotics for the shot noise (4.15) (which counts the ‘nonclassical’ transmission
channels’) are more interesting and again independent of ϑ :

P(N = 4k, ϑ) = 2k−1
(

11
80 + O(e−Ck)

) = 11
80 (N/4)µ(1 + o(1)), k → ∞. (4.17)

Here µ = 1/2 is the dimension appearing in the fractal Weyl law for the resonances. A
similar fractal law for the shot noise had been observed in [26] in the case of the quantum
kicked rotator; the power law Nµ for the number of nonclassical channels was explained there
through a study of the dynamics up to the Ehrenfest time.

The constant 11/80 in (4.17) gives the average ‘shot noise’ per nonclassical transmission
channel. This number is close to the random matrix theory prediction for this quantity, namely
1/8 [2, 26]. The precise number 11/80 certainly depends on which baker’s map one starts from
and which quantization one uses. For instance, we did not check whether the ‘half-integer’
Walsh quantization of the 4-baker leads to the same prefactor, but we expect the result to be
close to it. It would be interesting to actually check the full distribution for the transmission
eigenvalues Ti and compare it with the prediction of random matrix theory [2].

The near agreement with random matrix theory is in contrast with the fact that the
semiclassical resonance spectrum of the propagator B̃4,N inside the dot is very different from
that of a random subunitary matrix. Somehow, the matrix t (ϑ), obtained by summing iterates
of B̃4,N , has acquired some ‘randomness’, as far as the distribution of its singular values is
concerned.

The transport properties of chaotic cavities have also been studied within the framework
of quantum graphs. The shot noise (4.15) could be semiclassically estimated in the case of
a ‘star graph’, by summing over transmitting trajectories on the graph [21] (they studied the
case of ‘small openings’). The authors show that one needs to take into account the ‘action
correlations’ between different trajectories, in order to reproduce the random matrix result.
As mentioned before, the matrix Ã4,N can be interpreted as the unitary transfer matrix for a
different type of graph [25], with bonds having degenerate lengths. Somehow, our use of the
tensor product structure implicitly takes into account the action correlations for this particular
graph.

5. Conclusions

Quantum open baker’s maps provide a simple and elegant model for the study of quantum
resonances of open chaotic systems. The numerical investigation of these models is easily
accessible and, as shown in section 3, gives a good agreement with the fractal Weyl law on
‘small energy scales’, which is (1.7) in the case of Hamiltonian flows. Only larger energy
scales (1.8) were considered previously. It would be interesting to investigate the spectrum
of the model operator (2.7) for higher values of N ∼ h̄−1. The naı̈ve numerical approach we
took (full diagonalization of the matrices BN ) only allowed us to reach values N � 5000. It
would make more sense to use an algorithm allowing us to extract only the largest eigenvalues
(which are the ones we are interested in), instead of the full spectrum.
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By modifying the standard quantum baker’s map, in a way which still fits in the framework
of quantization of chaotic dynamics, we obtained a model for which the fractal Weyl law
(4.12) can be rigorously proven. Since the spectrum of this model is explicitly computable
(and forms a lattice), it is forcibly nongeneric. However, the explicit computation of other
physical quantities associated with our model, namely the conductance and the ‘shot noise’,
shows more generic properties. The fractal Weyl law is also present in the calculation of the
‘shot noise’ and the prefactor is (unexpectedly) close to random matrix predictions.

Acknowledgments

The first author thanks Marcos Saraceno for his insights and comments on the various types of
quantum bakers. He is also grateful to UC Berkeley for the hospitality in April 2004. Generous
support to both authors by the National Science Foundation under the grant DMS-0200732 is
also gratefully acknowledged.

References

[1] Balazs N L and Voros A 1989 The quantized baker’s transformation Ann. Phys., NY 190 1–31
[2] Baranger H U and Mello P A 1994 Phys. Rev. Lett. 73 142

Jalabert R A, Pichard J-L and Beenakker C W J 1994 Universal quantum signatures of chaos in ballistic transport
Europhys. Lett. 27 255–60

[3] Beenakker C W J 1997 Random-matrix theory of quantum transport Phys. Rep. 69 731–808
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