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Abstract: We analyze a simple model of quantum chaotic scattering system, namely
the quantized open baker’s map. This model provides a numerical confirmation of the
fractal Weyl law for the semiclassical density of quantum resonances. The fractal expo-
nent is related to the dimension of the classical repeller. We also consider a variant of this
model, for which the full resonance spectrum can be rigorously computed, and satisfies
the fractal Weyl law. For that model, we also compute the shot noise of the conductance
through the system, and obtain a value close to the prediction of random matrix theory.

1. Introduction

1.1. Statement of the results. In this paper we analyze simple models of classical chaotic
open systems and of their quantizations. They provide a numerical confirmation of the
fractal Weyl law for the density of quantum resonances of such systems. The exponent in
that law is related to the dimension of the classical repeller of the system. In a simplified
model, a rigorous argument gives the full resonance spectrum, which satisfies the fractal
Weyl law. Our model is similar to models recently studied in atomic and mesoscopic
physics (see §2.4 below). Before stating the main result we remark that in this paper we
use mathematicians’ notation h for what the physicists call �. That is partly to stress
that our h is a small parameter in asymptotic analysis, not necessarily interpreted as the
Planck constant.

Theorem 1. There exist families of symplectic relations, ˜B ⊂ T
2 × T

2, and of their
(subunitary) quantization, ˜Bh ∈ L(CN ), N = (2πh)−1, such that

#
{

λ ∈ Spec(˜Bh) : |λ| ≥ r
} = c(r) h−ν + o(h−ν),

r > 0, h = hk = (2πDk)−1 → 0, k →∞,

ν = dim
(

�−(˜B) ∩ W+(˜B)
)

, c(r) = (2π)−νχ[0,r0(˜B)](r), 0 < r0(˜B) < 1,
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where the integer parameter D > 1 depends on ˜B. The set �−(˜B) ⊂ T
2 is the forward

trapped set of ˜B and W+(˜B) is the unstable manifold of ˜B at any point of �−(˜B). The
eigenvalues are counted with multiplicities.

In the model discussed in detail we took D = 3. The asymptotics are actually much
more precise and include uniform angular distribution (see Prop. 5.5). The resonances
lie on a lattice, and some of this structure is also seen in numerically computed more
generic situations (some numerical results have been presented in [40, 38, 39]). Each
symplectic relation ˜B (or “multivalued symplectic map”) is defined together with the
probabilities, for any point, to be mapped to each of its images: ˜B thus represents a cer-
tain stochastic process. The quantizations ˜Bh quantize the relations together with their
jump probabilities in the precise sense given in §4.4.

In the models used in Theorem 1 we can compute the conductance and the shot noise
power (or the closely related Fano factor) — see §2.4.3 and references given there for
physics background and §6 for precise definitions.

Theorem 2. Suppose that the models in Theorem 1 have the openings consisting of two
“leads” of equal width (see §6.1 for a detailed description), so that each lead carries
the same number, M(h) ∼ h−1, of scattering channels. Then, the quantum conductance
(6.2) between the two leads satisfies

g(h) = 1

2
M(h)

(

1 + o(1)
)

, h = hk → 0. (1.1)

The Fano factor (6.3) is given by

F(h) = 11

80

M(h)ν

g(h)

(

1 + o(1)
)

, h = hk → 0, (1.2)

where the exponent ν is the same as in Theorem 1.

The theorem should be interpreted as follows. In (1.1) we see that for a model of
scattering through a chaotic cavity, approximately one half of the scattering channels get
transmitted from one lead to the other, the other half being reflected back (this is natural
and well known). Asymptotics in (1.2) are more interesting. We see that the fractal Weyl
law, h−ν , appears in the expression for the Fano factor. In the interpretation of the Fano
factor in terms of “shot noise” (see §2.4.3), 11/80 gives the average “shot noise” per
“nonclassical transmission channel”. This number is close to the random matrix theory
prediction for this quantity, namely 1/8 [26, 57]. In fact, had (1.2) come from a physical
experiment rather than an asymptotic computation, it would be regarded as being in a
very good agreement with random matrix theory1.

Much of the paper is devoted to rigorous definitions of the objects appearing in the
statements of the two theorems. In this section we give some general indications, with
detailed references to previous works appearing below.

We consider the two-torus T
2 = [0, 1) × [0, 1) as our classical phase (with coor-

dinates ρ = (q, p)). Classical observables are functions on T
2 and classical dynamics

is given in terms of relations, B ⊂ T
2 × T

2, which are unions of truncated graphs of
symplectic (area and orientation preserving) maps T

2 → T
2. An example is given by

the baker’s relation

(ρ′; ρ)=(q ′, p′; q, p) ∈ B⇐⇒
{

q ′ = 3q, p′ = p/3, 0 ≤ q ≤ 1/3
q ′ = 3q − 2, p′ =(p + 2)/3, 2/3 ≤ q < 1. (1.3)

1 We are grateful to Yan Fyodorov for this amusing comment.
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This is a “rectangular horseshoe” modeling a Poincaré map of a chaotic open system:
some points (here {ρ : 1/3 < q < 2/3}) are thrown out “to infinity” at each iteration.

For relations such as B we can define the forward and backward trapped sets (see
(2.4) for the definition in the case of flows):

ρ ∈ �− ⇔ ∃{ρ j }∞j=0, ρ0 = ρ, (ρ j ; ρ j−1) ∈ B, j > 0,

ρ ∈ �+ ⇔ ∃{ρ j }0j=−∞, ρ0 = ρ, (ρ j ; ρ j−1) ∈ B, j ≤ 0.

In the example (1.3), �− = C × [0, 1), �+ = [0, 1) × C , where C is the usual 1
3−

Cantor set.
We also define the trapped set K = �+ ∩ �− and, at points of K , the stable and

unstable manifolds, W±. In the case of the above baker’s relation,

ν = dim �− ∩ W+ = 1

2
dim K = dim �+ ∩ W− = log 2

log 3
,

but for general (possibly multivalued) relations these equalities do not hold.
A quantization (in the sense made rigorous in §4.5) of B is given by

Bh = F∗
N

⎛

⎝

FN/3 0 0
0 0 0
0 0 FN/3

⎞

⎠ , h = (2πN )−1, 3|N , (1.4)

where FM is the discrete Fourier transform on C
M .

Table 1. Number of eigenvalues of Bh in the regions {|λ| > r}, for 2πh = 1/N , N given by powers of 3.

N = 3k r = 0.1 r = 0.2 r = 0.3 r = 0.4 r = 0.5 r = 0.6 r = 0.7 r = 0.8

k = 1 5 5 5 5 5 4 3 3
k = 2 14 14 10 9 8 8 7 6
k = 3 32 26 23 19 16 16 14 5
k = 4 63 53 45 40 33 33 30 6
k = 5 124 103 85 78 71 65 63 11
k = 6 237 196 161 150 142 131 128 12

Table 2 shows the analogies between the eigenvalues of this subunitary quantum map
and the resonances of a Schrödinger operator for a scattering situation (see §2.1).

For Bh given by (1.4) we are unable to prove the fractal Weyl law presented in the last
line of Table 2, but numerical results strongly support its validity [40]. A striking illus-
tration is given by tripling N , in which case the number of eigenvalues approximately
doubles, in agreement with the fractal Weyl law — see Table 1.

The family of subunitary quantum maps in the main theorem is obtained by simpli-
fying Bh , and is described explicitly in (5.2). It is a quantization of a more complicated
multivalued relation for which �+ = T

2, �− = C × [0, 1), and �− ∩ W+ � C — see
Proposition 5.1. Theorem 1 follows from the more precise Proposition 5.4.
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1.2. Organization of the paper. In §2 we present related results from recent mathematical,
numerical, and physics literature. In particular, in §2.4.3 we give the physical motiva-
tion for the objects appearing in Theorem 2 above. Section 3 is devoted to the review of
classical dynamics used in our models, stressing the dynamics of open baker’s relations.

In §4 we first review the quantization of tori. We assume the knowledge of semiclas-
sical quantization in T ∗

R
n (pseudodifferential operators) but otherwise the presentation

is self contained. The definitions of Lagrangian states associated to smooth and singular
Lagrangian submanifolds is based on the ideas of Guillemin, Hörmander, Melrose, and
Uhlmann in microlocal analysis but, partly due to technical differences, we give direct
proofs of the properties we need in this paper. These properties are used to analyze the
quantizations of the baker’s relation coming from the work of Balazs, Voros, Saraceno
and Vallejos.

Numerical results for the (usual) quantization of the open baker’s relation have been
presented in [40], we briefly summarize them in §4.6. In §5 we discuss the toy model
˜Bh , with two different interpretations. That section contains the proof of Theorem 1.
Finally in Section 6 we give precise definitions of objects appearing in Theorem 2 and
in a lengthy computation we give its proof.

2. Motivation and Background

In this section we discuss motivating topics in mathematics and theoretical physics, and
survey related results.

2.1. Schrödinger operators. The original motivation comes from the study of reso-
nances in potential scattering. The simplest case is given by considering the following
quantum Hamiltonian:

H = −h2� + V (q), V ∈ C∞c (Rn;R). (2.1)

By assuming that the potential vanishes near infinity and that it is infinitely differen-
tiable, we eliminate the need for technical assumptions — see [22] and [53] for more
general settings, in the analytic and C∞ categories respectively. For instance, as noted
in [50, (c.32)–(c.33)] the theory of [22] applies to arbitrary homogeneous polynomial
potentials at nondegenerate energy levels.

Table 2. Analogies between Schrödinger propagators and open quantum maps.

h → 0 N = (2πh)−1 →∞
χ exp

(− i t (−h2� + V )/h
)

χ, t ≥ 0, χ a cut-off Bt
h , t = 0, 1, · · · Bh a subunitary matrix

on the interaction region
e−i t z/h , z a resonance of H = −h2� + V λt , λ an eigenvalue of Bh ∈ L(CN )
z ∈ [E − h, E + h] − i[0, γ h] 1 ≥ |λ| > r > 0
#{z ∈ [E − h, E + h] − i[0, γ h]} � C(γ ) h−μE #{λ, |λ| > r} � C(r) Nν

Before discussing open systems we recall the well known results for closed systems,
obtained for instance by considering H above on a bounded domain
 ⊂ R

n and impos-
ing a self-adjoint boundary condition at ∂
 (Dirichlet or Neumann). Then the spectrum,



Distribution of Resonances for Open Quantum Maps 315

Spec(H), of H is discrete and, at a non-degenerate energy level E its density is described
by the celebrated Weyl law:

# {Spec(H) ∩ [E − δ, E + δ]} = 1

(2πh)n

∫ ∫

|p2+V (q)−E |<δ
dq dp + O(h1−n), (2.2)

see [14, 25] and references given there. We note that this implies a precise upper bound

# {Spec(H) ∩ [E − Ch, E + Ch]} = O(h1−n), (2.3)

which can be improved further by making assumptions on the classical flow of the
Hamiltonian p2 + V (q) on 
, see [14, 25].

For open systems, with the simplest example given by the Hamiltonian in (2.1), real
eigenvalues are replaced by complex resonances. The simplest definition (easily made
rigorous in the case (2.1)) comes from considering the meromorphic continuation of the
resolvent. Defining the Green’s function G(z, q ′, q) for Im z > 0 through

(z − H)−1u(q ′) =
∫

Rn
G(z, q ′, q) u(q)dq, u ∈ C∞c (Rn),

then G(z, q ′, q) admits a meromorphic continuation in z across the real axis. Its poles
for Im z < 0 (which do not depend on (q ′, q)) are the quantum resonances of H .

Counting of resonances is affected by the dynamical structure of the scatterer much
more dramatically than counting of eigenvalues of closed systems. Since we are now
counting points in the complex plane we need to make geometric choices dictated by
dynamical and physical considerations. Here we consider scatterers and energies exhib-
iting a hyperbolic classical flow, and regions in the lower half-plane which lie at a
distance proportional to h from the real axis. This choice is motivated as follows. Quan-
tum mechanics interprets a resonance at z = E − iγ in terms of a metastable state,
which decays proportionally to exp(−tγ /h). Hence for γ � h the decay is so rapid
that the state is invisible. On the other hand, for many chaotic scatterers there are no
resonances with γ � h. One class for which this is known rigorously consists in the
Laplacian on co-compact quotients H

n/�, H = −h2�Hn/� , when the dimension of
the limit set satisfies δ(�) < (n − 1)/2. This follows from the work of Patterson and
Sullivan — see the discussion below and [37].

After a complex deformation (see [53] and references given there) the long living
quantum states should semiclassically concentrate on the set of phase space points which
do not escape to infinity, that is on the trapped set KE defined as follows: let 
H be the
Hamilton vector field of the Hamiltonian H(q, p) = p2/2 + V (q):


H =
n
∑

j=1

p j∂q j − ∂q j V (q)∂p j .

Then

KE
def= �+(E) ∩ �−(E), with the forward/backward trapped sets

�±(E)
def= {ρ ∈ �E : exp t 
H (ρ) �→ ∞, ∓t →∞}.

(2.4)
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Suppose that the flow generated by 
H is hyperbolic near KE ′ for E ′ close to a
non-degenerate energy E . That means that the field 
H does not vanish on the energy
surfaces�E ′ = {p2 + V (q) = E ′} ⊂ T ∗

R
n for E ′ ≈ E , and that for ρ ∈ �E ′ near KE ′ ,

Tρ�E ′ = R
H (ρ)⊕ E+(ρ)⊕ E−(ρ),
�E ′ � ρ �−→ E±(ρ) ⊂ Tρ�E ′ is continuous,

d(exp t 
H )(E±(ρ)) = E±(exp t 
H (ρ)),

‖d(exp t 
H )(X)‖ ≤ Ce±λt‖X‖, for all X ∈ E±(ρ), ∓t ≥ 0.

(2.5)

Weaker assumptions are possible — see [50, §5] and [53, §7].
Typically, the set KE has a fractal structure and in the semiclassical estimates the

Minkowski dimension naturally appears:

dim KE = 2n − 1 − sup

{

c : lim sup
ε→0

ε−cvol

× {ρ ∈ �E : dist(KE , ρ) < ε} <∞
}

.

We say that KE is of pure dimension if the supremum is attained. For simplicity of the
presentation we assume that this is the case.

Under these assumptions the estimate (2.3) has an analogue for chaotic open systems
[53]. For C0 > 0 there exists C1 such that

# {Res(H) ∩ {z : |z − E | < C0h}} ≤ C1h−μE , dim KE = 2μE + 1. (2.6)

We notice that for a closed system the trapped set is the entire energy surface, so that
in that case μE = n − 1, hence (2.6) is consistent with (2.3). In this note we use open
quantum maps to provide the first evidence that this precise estimate is optimal.

We should also mention that, as was already stressed in the work of Sjöstrand [50], the
estimates involving the dimension are only reasonable when the flow is strictly hyper-
bolic. In the case of more complicated flows the estimates should be stated in terms of
properties of escape or Lyapunov functions associated to the flow – see [50, 53]. For
expository reasons the estimates involving the dimension are however most persuasive.

2.2. Survey of related results. The first indication that fractal dimensions enter into
counting laws for quantum resonances of chaotic open systems appears in a result of
Sjöstrand [50]:

#
{

Res(H) ∩ {z : |z−E | < δ, Im z >−γ }}≤ C1δ

(

h

γ

)−n

γ−
1
2 m̃,

Ch ≤ γ ≤ 1/C, max(h
1
2 , h/γ ) ≤ δ ≤ 2/C,

(2.7)

where m̃ is any number greater than the dimension of the trapped set in the shell H−1(E−
1/C2, E + 1/C2). In a homogeneous situation, such as for instance obstacle scattering,
the dimension of KE , 2μE + 1, is independent of E , so that m̃ > 2(μE + 1).

The improvement in [53] quoted in (2.6) lies in providing a bound for the number of
resonances in a smaller region D(E,Ch) = {z ∈ C : |z − E | < Ch}. Heuristic argu-
ments suggesting that the estimate (2.7) should be optimal were given in [31] and [32].
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Another class of Hamiltonians with chaotic classical flows and fractal trapped sets
is given by Laplacians on convex co-compact quotients, H/�. Here � is a discrete
subgroup of isometries of the hyperbolic plane H, such that

• All elements γ ∈ � are hyperbolic, which means that their action on H can be
represented as

α ◦ γ ◦ α−1(x, y) = e�(γ )(x, y), (x, y) ∈ H � R+ × R, α ∈ Aut(H). (2.8)

• If π : H → H/�, and �(�) ⊂ ∂H is the limit set of �, that is the set of limit points
of {γ (z) : γ ∈ �}, z ∈ H, then π(convex hull �(�)) is compact.

The trapped set is determined by �(�): trapped trajectories are given by geodesics
connecting two points of �(�) at infinity, and

dim KE = 2δ� + 1, δ� = dim�(�).

The limit set is always of pure dimension, which coincides with its Hausdorff dimension.
A nice feature of this model is the exact correspondence between the resonances of

H = h2(−�H/� − 1/4),

and the zeros of the Selberg zeta function, Z�(s):2

z ∈ Res(H) ⇐⇒ Z�(s) = 0, z = h2(s(1 − s)− 1/4), Re s ≤ δ�, (2.9)

where the multiplicities of zeros and resonances agree. The Selberg zeta function is
defined by the analytic continuation of

Z�(s) =
∏

{γ }

∏

k≥0

(

1 − e−(s+k) �(γ )
)

, Re s > δ�,

where {γ } denotes a conjugacy class of a primitive element γ ∈ � (an element which is
not a power of another element), and we take a product over distinct primitive conjugacy
classes (each of which corresponds to a primitive closed orbit). The length �(γ ) of the
corresponding closed orbit appears in (2.8). The exact analogue of (2.6) is given by

# {s : Z�(s) = 0, Re s > −C0, r < Im s < r + C1} ≤ C2 r δ� , (2.10)

which is a consequence of an estimate established by Guillopé-Lin-Zworski [20] in a
more general setting of convex co-compact Schottky groups in any dimension,

|Z�(s)| ≤ CK eCK |s|δ� , Re s ≥ −K , for any K . (2.11)

This improved earlier estimates of [59], the proof of which was largely based on [50].
In the (non-quantum) context of rational maps on the complex plane, similar results

were obtained concerning the zeros of associated zeta functions [11, 54]. Take f a uni-
formly expanding rational map on C (for instance z �→ z2 + c, c < −2), and call f n its
n-fold composition. The zeta function associated with this map is given by

Z(s) = exp

⎛

⎝−
∞
∑

n=1

n−1
∑

f n(z)=z

|( f n)′(z)|−s |
1 − |( f n)′(z)|−1

⎞

⎠ . (2.12)

2 We refer to [42] for this and a general treatment. The term 1
4 in the definition of the Hamiltonian H comes

from requiring that the bottom of the spectrum of H is 0, so that Green’s function (H −λ2)−1 is meromorphic
in λ ∈ C.
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Then the number or resonances in a strip is also given by a law of the type (2.10), where
δ� is replaced by the dimension of the Julia set:

J =
⋃

n≥1

{z : f n(z) = z}.

Note that this set is also made of “trapped orbits”.

2.3. Survey of numerical results. The first model investigated numerically was perhaps
the hardest to give definitive results. Lin [30, 31] studied the semiclassical Schröding-
er Hamiltonian (2.1) with a potential made of 3 Gaussian “bumps”. The semiclassical
resonances were computed using the method of complex scaling and were counted in
boxes of type [E − δ, E + δ]− i[0, h] with δ fixed. The purpose was to verify optimality
of Sjöstrand’s estimate (2.7) with these parameters. The results were encouraging but
not conclusive. Since for small values of h the method of [30] required the use of large
matrices to discretize the Hamiltonians, the range of h’s was rather limited.

A different point of view was taken by Lu-Sridhar-Zworski [32] where resonances
for the three discs scatterer in the plane were computed using the semiclassical zeta
function of Eckhardt-Cvitanović, Gaspard, and others (see for instance [12, 18, 58] and
references therein). The zeta function is computed using the cycle expansion method
loosely based on the Ruelle theory of dynamical zeta functions. Although it is not rigor-
ously known if the resonances computed by this method approximate resonances of the
Dirichlet Laplacian in the exterior of the discs, or even if the semiclassical zeta func-
tion has an analytic continuation, proceeding this way is widely accepted in the physics
literature. Resonances z = h2 k2 were counted in regions

{k ∈ C : 1 ≤ Re k ≤ r, Im k ≥ −γ } , r →∞, (2.13)

which under semiclassical rescaling correspond to counting in [1/2, 2] − i[0, γ h/2],
h → 0. Let us denote the number of resonances (zeros of the semiclassical zeta func-
tion) in (2.13) by N (r, γ ). The fractal Weyl law corresponds to the claim that for γ large
enough,

N (r, γ ) ∼ C(γ ) rμ+1, r →∞, (2.14)

where 2μ + 1 is the dimension of the trapped set in the three dimensional energy shell
(for such homogeneous problems, all energy shells are equivalent). In [32] the prediction
(2.14) was tested by linear fitting of log N (r, γ ) as a function of log r :

log N (r, γ ) = (α(γ ) + 1) log r + O(1).
We found that the coefficient α(γ ) was independent of γ for γ large enough, and that it
agreed withμ. The counting was done for three different equilateral disc configurations,
parametrized by ρ = R/a, where a is the radius of each disc, and R the distance between
them. We also noticed that if γρ is the classical rate of decay for the ρ configuration, then

αρ(xγρ/2)

μρ

is essentially independent of ρ for 1 < x < 1.5. This corresponds to a numerical obser-
vation that for each ρ the distribution of resonance widths (imaginary parts) peaks near
γ = γρ/2.
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Encouraged by the results of [32], the cycle method was used in [20] to count the
zeros of the Selberg zeta function for a certain Schottky quotient, but the results were
not definitive. For the dynamical zeta function (2.12) with f (z) = z2 + c, c < −2, the
resonances were computed by Strain-Zworski [54], using a different method based on
the theory of the transfer operator on Hilbert spaces of holomorphic functions introduced
in [20]. The zeros were counted in a region of the same type as in (2.13),

{s : Re s > −K , 0 ≤ Im s ≤ r},
where real parts and imaginary parts exchange their meaning due to different conven-
tions3. By reaching very high values of r we saw a very good agreement of the log-log
fit with the fractal Weyl, with μ given by the dimension of the Julia set.

In the model considered in this paper, we can verify the optimality of the fractal Weyl
law on much smaller scales (see Table 1 and the numerics presented in [40, 38, 39]).
That could not be seen in the other approaches.

2.4. Related models in physics. The behaviour of quantum open systems has been re-
cently investigated in situations where the classical dynamics has chaotic features. The
physical motivation can originate from nuclear or atomic physics (study the lifetime sta-
tistics of metastable states, possibly leading to ionization), mesoscopic physics (study the
conductance, conductance fluctuations, shot noise in quantum dots or quantum wires),
and from waveguides (optical wave propagation in an optical fiber with some dissipation,
microwave propagation in an open microwave cavity).

2.4.1. Kicked rotator with absorbing boundaries. In [3, 7] a kicked rotator with absorp-
tion was used to model the process of ionization. The classical kicked rotator is Chiri-
kov’s standard map on the cylinder, which is a paradigmatic model for transitions from
regular to chaotic motion [9]. Quantizing the map on L2(T1) results in a unitary oper-
ator U , a first instance of quantum map. To model the ionization process which takes
place at some threshold momentum pion, the authors truncate the map U to the sub-
space Hion = span

{|p j 〉 : |p j | ≤ pion
}

: a particle reaching that threshold is ionized,
or equivalently “escapes to infinity”. Here the discrete values p j = 2πhj are the ei-
genvalues of the momentum operator on L2(T1); the space Hion is thus of dimension
N ≈ pion/πh. This projection leads to an open quantum map, namely the subuni-
tary propagator Uion = �ionU , where �ion is the orthogonal projector on Hion. For
the parameters used by [3], the classical dynamics is diffusive, meaning that a particle
starting from p = 0 will need many kicks to reach the ionization threshold.

The matrix Uion was numerically diagonalized for various values of h with pion fixed,
and the distribution of the N level widths γi = −2 ln |λi |, λi ∈ Spec(Uion) was found
approximately independent of h, such that the number of resonances

n(N , γ ) = #{γi ≤ γ }
scales like C(γ )N in this case. In subsequent works [47, 60, 17], this distribution was
shown to correspond to an ensemble of random subunitary random matrices, more pre-
cisely the ensemble formed by the [αN ] × [αN ] upper-left corner (0 < α < 1 fixed)
of a large N × N matrix drawn in the Circular Unitary Ensemble (that is, the set U (N )
equipped with Haar measure).

3 Although frustrating, the different conventions of semiclassical, obstacle, and hyperbolic scattering show
how the same phenomenon appears in historically different fields.



320 S. Nonnenmacher, M. Zworski

2.4.2. Quasi-bound states in an open quantum map. Recently, Schomerus and Two-
rzydło [49] have performed a similar study for the quantized kicked rotator on the torus
(obtained from the map of the former section by periodizing the momentum variable).
They also “opened” the map by assuming that particles reaching a certain position win-
dow q ∈ L “escape to infinity”. The quantum projector associated with these “escape
windows” is denoted by�L , so that the remaining subunitary quantum map reads Uop =
(I −�L)U . The main difference with the case studied in the previous section lies in the
strongly chaotic motion (as opposed to diffusive), due to a different choice of parame-
ters. The map has a positive Lyapunov exponent λ, and a typical trajectory will escape
after a few kicks: the average “dwell time”, called τD , is of order unity.

The eigenmodes associated with eigenvalues bounded away from zero are called
“quasi-bound states”, as opposed to the “instantaneous decay modes” associated with
very small eigenvalues. The authors provide numerical and heuristic evidence that, in
the semiclassical limit, the number of quasi-bound states grows like Neff = N 1−1/(λτD).
This shows that most eigenvalues of Uop are very close to zero, while only a small
fraction Neff/N remains bounded away from zero. The authors also plot the distribution
of the ∼ Neff quasi-bound eigenvalues: again, it resembles the spectrum of a random
subunitary matrix obtained by keeping the upper-right corner block of size Neff of a
[τD Neff ]-dimensional random unitary matrix.

The quantized baker’s relation we will study in §4.6–5 will be of similar nature. For
the map (4.38), the fractal dimension ν given in (3.7) can be shown to be close to the
formula 1 − 1/(λτD), in the limit when the dwell time τD is large compared to unity
(limit of small opening).

2.4.3. Conductance through an open chaotic cavity. The “scattering approach to semi-
classical quantization” [4, 15, 43, 41], consists in quantizing the return map on a Poincaré
surface of the section of the Hamiltonian system under study. Within this approach, the
scattering matrix of the open system can be expressed as a “multiple-scattering expan-
sion” in terms of the quantized return map.

Using that framework, Beenakker et al. [57] study the quantum kicked rotator defined
in the previous section, in order to understand the fluctuations of conductance through
a quantum dot. The evolution inside the closed dot is represented by the same unitary
matrix U as in the last subsection, and its opening L is split into two intervals, L2 and L1,
which represent the two “leads” bringing in and taking out the charge carriers from the
dot. The orthogonal projector corresponding to these openings reads�L = �L1 ⊕�L2 .
The conductance can then be analyzed from the scattering matrix of the dot:

S̃(ϑ) = �L{e−iϑ − U (1 −�L)}−1U�L . (2.15)

Here ϑ ∈ [0, 2π) is called the quasi-energy. In terms of this parameter, the “physical
half-plane” corresponds to Im ϑ > 0: the matrix S̃(ϑ) has no singularity in this region.
On the opposite, the resonances analyzed in the previous section, which are the poles of
S̃(ϑ), are situated in the region Im ϑ < 0.

While S̃(ϑ) is unitary, its subblock t
def= �L2 S̃(ϑ)�L1 describes the transmission

from the lead L1 to the lead L2. The dimensionless conductance (which depends on ϑ)
is given by the Landauer-Büttiker formula g = tr(t t∗). The eigenvalues of t t∗ (called
“transmission eigenvalues”) can be either close to 1 (corresponding to a total transmis-
sion), or close to 0 (corresponding to a total reflection), or inbetween. The last case
corresponds to genuinely quantum transmission eigenmodes, which are partly transmit-
ted, partly reflected, due to interference phenomena inside the dot. The “quantum shot
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noise” is due to these intermediate transmission eigenvalues. A simple measure of that
noise is given by the Fano factor [6] F = tr(t t∗(1 − t t∗))/trt t∗. Using similar arguments
as in the former section, the authors show that the number of intermediate transmission
eigenvalues also scales like Neff , and thereby estimate the Fano factor, by assuming that
these eigenvalues are distributed according to the prediction of random matrix theory.

In Section 6 we will analytically compute both the conductance and the Fano factor
in the case of the open quantum relation ˜Bh .

3. Classical Dynamics

3.1. Symplectic geometry on tori. We consider the simplest class of compact symplectic
manifolds, the tori,

T
2n def= R

2n/Z2n � (I × I)n, ω =
n
∑

�=1

dq� ∧ dp�, (q, p) ∈ T
2n .

Here and in what follows, we identify the interval I = [0, 1) with the circle T
1 = R/Z.

A Lagrangian (submanifold) � ⊂ T
2n is a n-dimensional embedded submanifold of

T
2n such that ω|� = 0. We recall the following well known fact (see for instance [24,

Theorem 21.3.2]):

Proposition 3.1. Suppose that�⊂T
2n is a Lagrangian submanifold, and that (q0, p0) ∈

�. Then, after a possible permutation of indices, there exists k, 0 ≤ k ≤ n, and a splitting
of coordinates:

q = (q ′, q ′′), p = (p′, p′′), q ′ = (q1, . . . qk), p′′ = (pk+1, . . . , pn),

such that the map

� � (q, p) �−→ (q ′′, p′) ∈ I
n−k × I

k

is bijective from a neighbourhood V of (q0, p0) to a neighbourhood W of (q ′′0 , p′0).
Consequently there exists a function, S = S(q ′′, p′) defined on W , such that � ∩ V is
generated by the function S, that is,

� ∩ V =
{(

dp′ S(q
′′, p′), q ′′; p′,−dq ′′ S(q

′′, p′)
)

, (q ′′, p′) ∈ W
}

.

In this paper we will also consider singular Lagrangian manifolds obtained by taking
finite unions of Lagrangians with piecewise smooth boundaries.

3.2. Symplectic relations

3.2.1. Symplectic maps. A symplectic (or “canonical”) diffeomorphism on the torus
T

2n is a diffeomorphism κ : T
2n → T

2n which leaves invariant the symplectic form
on T

2n : κ∗ω = ω. An equivalent characterization of such a map is through its graph �,
which is the 2n-dimensional embedded submanifold of T

2n × T
2n , defined as

�κ =
{

(ρ′; ρ) : ρ = (q, p) ∈ T
2n, ρ′ = κ(ρ)

}

.
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Using the identification I
n = R

n/Zn , we set up the reflection map I
n � p �→ −p ∈ I

n ,
and define the twisted graph [24, Section 25.2]

�′κ = {(q ′, q; p′,−p) : (q ′, p′; q, p) ∈ �κ} ⊂ T
4n . (3.1)

Then the diffeomorphism κ is symplectic iff �′κ is a Lagrangian submanifold of T
4n

(equipped with the symplectic form
∑n

j=1 dq ′j ∧ dp′j + dq j ∧ dp j ). For this reason, we
will sometimes denote �′κ by �κ .

The definition of the twisted graph is clearly dependent on the choice of the splitting
of variables (q, p), which will be related to a choice of polarization in the quantization
process.

More generally, one can consider invertible maps on T
2n which are smooth and sym-

plectic except on a negligible set of singularities (say, discontinuities on a hypersurface).
The twisted graph of such a map is then a singular Lagrangian submanifold of T

4n .

Example. The usual “baker’s map” is the following piecewise-linear transformation κ
on T

2:

κ(q, p)
def=
{

(2q, p/2) if 0 ≤ q < 1/2
(2q − 1, p/2 + 1/2) if 1/2 ≤ q < 1.

(3.2)

The twisted graph of κ:

�κ
def=
{

(q ′, q; p′,−p) : (q, p) ∈ T
2, (q ′, p′) = κ(q, p)

}

is a singular Lagrangian submanifold of T
4. It can be decomposed into�κ = �0 ∪�1,

with the components

� j =
{(

2q − j, q; p + j

2
,−p

)

: j/2 ≤ q < j/2 + 1/2, p ∈ I

}

= {(2q − j, q; p′,−2p′ + j) : j/2 ≤ q, p′ < j/2 + 1/2
}

.

Each� j is locally Lagrangian in T
4 and, as a manifold with corners, it is diffeomorphic

to a 2-dimensional square.

3.2.2. Multivalued symplectic maps. A canonical (or symplectic) relation is an arbitrary
subset � ⊂ T

2n × T
2n , such that

�′ = {(q ′, q; p′,−p) : (q ′, p′; q, p) ∈ �}

is a Lagrangian submanifold of T
4n .

We are interested in symplectic relations coming from multivalued symplectic maps.
A multivalued map is the union of finitely many components κ j , where κ j is a canonical
diffeomorphism κ j between an open subset S j with piecewise smooth boundary of T

2n

and its image S ′
j = κ j (S j ) ∈ T

2n . A priori, the sets S j (respectively S ′
j ) can overlap,

and their union can be a proper subset of T
2n .

Each map κ j is associated to its graph

� j =
{

(κ j (ρ); ρ) : ρ ∈ S j
}

,
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and the symplectic relation can now be defined through its graph

� =
⋃

j

� j ,

or equivalently its twisted graph�′ (defined from� as in (3.1)).�′ is a singular Lagrang-
ian in T

4n .
The inverse relation can be defined by

�−1 def= {

(ρ; ρ′) : (ρ′; ρ) ∈ �} =
⋃

j

{

(κ−1
j (ρ); ρ) : ρ ∈ S ′

j

}

,

and the composition of two relations by

˜� ◦ � def=
{

(ρ′′; ρ) ∈ T
4n : ∃ ρ′ ∈ T

2n, (ρ′; ρ) ∈ � and (ρ′′; ρ′) ∈ ˜�
}

.

Following [24, Theorem 21.2.4], we note that˜�◦� will be a (locally) smooth symplectic
relation if˜� × � ⊂ T

4n × T
4n intersects

{(ρ′′, ρ′, ρ′, ρ) : ρ′′, ρ′, ρ ∈ T
2n} ⊂ T

4n × T
4n

cleanly, that is the intersections of tangent spaces are the tangent spaces of intersections.
We can then iterate a relation �, defining a multivalued dynamical system {�n : n ∈

Z} on T
2n . In §3.4 we will give a stochastic interpretation to this system.

3.3. Open baker’s relation. The dynamics we will consider takes place on the 2-torus
phase space,

T
2 = {ρ = (q, p) : q, p ∈ I} .

On this phase space, we define two vertical strips S j ( j = 1, 2) from the data of four
real numbers D1, D2 > 1 and �1, �2 ≥ 0:

S j =
{

(q, p) : q ∈ I j , p ∈ I
}

, with I j =
(

� j

D j
,
� j + 1

D j

)

j = 1, 2. (3.3)

The strips are assumed to be disjoint, which is the case if we impose the conditions:

�1 + 1

D1
≤ �2

D2
and

�2 + 1

D2
≤ 1.

The corresponding baker’s relation is made of two components B j , j = 1, 2 associated
with linear symplectic maps defined on the two strips:

B j =
{

(ρ′; ρ) : (q ′, p′) =
(

D j q − � j ,
p + � j

D j

)

, ρ = (q, p) ∈ S j

}

. (3.4)

The baker’s relation is defined as the graph B = B1 ∪ B2. One clearly notices that
each component map is a hyperbolic diffeomorphism, with positive stretching expo-
nent log D1 (resp. log D2). At all points where the map is defined, the unstable (stable)
direction is the horizontal (vertical) one.
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Since the two strips are disjoint, each point ρ ∈ T
2 has at most one image. In the

notations of Proposition 3.1 (taking q ′′ = q, q ′ = q ′), each Lagrangian component B ′
j

can be generated by the function

S j (q, p′)=D j

(

q− � j

D j

)(

p′ − � j

D j

)

defined on the square
{

(q, p′) ∈ I j × I j
}

.

(3.5)
Let

πL , πR : T
2 × T

2 −→ T
2

be the projections on the left and right factors respectively. From the definition (3.4),
the set πR(B) = S1 ∪ S2 is made of points on ρ ∈ T

2 which have an image through
the relation B. Hence, a point ρ �∈ πR(B) is said to escape from the torus at time 1.
Similarly, a point ρ �∈ πL(B) = πR(B−1) is said to escape from T

2 at time −1. This
“escape” is the reason why we call this relation an “open” relation: the system is not
“closed” because it sends particles “to infinity”, both in the future and in the past.

We define

�±
def=

∞
⋂

n=1

πR
(

B∓n) (3.6)

the set of points which never escape from T
2 in the past, respectively in the future. One

checks that these subsets have the form

�− = C × I, �+ = I × C,

where C ⊂ I is a “cookie-cutter set” in the sense of [16]: if we consider the two con-
tracting maps on I,

f j (q) = q + � j

D j
, q ∈ I, j = 1, 2,

this closed set is defined as

C =
⋃

n∈N

{

q ∈ I : f j1 ◦ · · · ◦ f jn (q) = q for some sequence jm ∈ {1, 2}}.

The Hausdorff dimension of C (which is equal to its Minkowski and box-counting
dimensions) is given by the unique 0 < ν < 1 solving

D−ν
1 + D−ν

2 = 1. (3.7)

The trapped set (or set of nonwandering points) is defined as the set of points which
never escape from T:

K = �+ ∩ �− = C × C, dim K = 2ν.

The baker’s relation is a hyperbolic invertible map on the set K , which is a “fractal
repeller”. This relation is a model of Smale’s horseshoe mechanism.
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The simplest case consists in considering a symmetric baker’s relation, with D1 =
D2 = D, � = �1 = D − �2 − 1:

�

D
< q <

� + 1

D
=⇒ (q ′, p′) =

(

Dq − �, p + �

D

)

,

�

D
< 1 − q <

� + 1

D
=⇒ (q ′, p′) =

(

D(q − 1) + � + 1,
p − �− 1

D
+ 1

)

.

(3.8)

Now C ⊂ I is a symmetric 1/D−Cantor set. Notice that if we take D = 2, �1 = 0,
�2 = 1, we obtain the usual (closed) baker’s map described in the example of Sect. 3.1,
for which the trapped set (= T

2) has dimension 2. The “3-baker” relation described in
(1.3) corresponds to D = 3, � = 0.

For such a symmetric baker’s relation, the analog of the fractal exponent of (2.6) is:

μE ←→ ν = log 2

log D
.

3.4. Weighted symplectic relations. To give a multivalued map � a physical meaning,
we assign Markovian weights Pj (ρ) to the different “jumps”, ρ �→ κ j (ρ). The associ-
ated dynamical system is then stochastic, each point ρ having finitely many images with
well-prescribed transition probabilities Pj (ρ). The sum of all the probabilities from ρ

must satisfy 0 ≤ P(ρ)
def= ∑

j Pj (ρ) ≤ 1, so that (1 − P(ρ)) is the probability that ρ
“escapes to infinity”.

The weights associated with the inverse relation �−1 are the same: each point ρ′
jumps back to κ−1

j (ρ′) with probability P ′
j (ρ

′) = Pj (κ
−1
j (ρ′)). Hence, the weights

must also satisfy 0 ≤∑ j P ′
j (ρ

′) ≤ 1.
Such a weighted relation (in geometric optics one would speak of a “ray-splitting”

map) induces a discrete-time evolution of “mass distributions”, which is in general dis-
sipative: the full mass decrease at each step, the system expelling part of the mass “to
infinity”.

In more mathematical terms, we assume that the symplectic relation � ⊂ T
2n ×

T
2n comes with a nonnegative measure (or weight) μ on �, which for any χα ∈

C∞(T2n, [0, 1]), α = L , R, satisfies

πα∗(π∗LχL π
∗
RχR μ) = gχLχR

α

ωn

n! , gχLχR
α ∈ C∞(T2n), 0 ≤ gχLχR

α ≤ 1, (3.9)

where πL , πR : � → T
2n are projections on left and right factors respectively, and ω is

the symplectic form on T
2n . The condition (3.9) implies that πα|� is a local bijection,

which forces � to be a piecewise smooth union of graphs of symplectic transformations,
as defined in §3.2.2. When � is singular, that is a union of smooth symplectic relations
with boundaries, we demand that

gχLχR
α ∈ C∞(T2n) if supp(π∗LχL π

∗
RχR) ∩ ∂� = ∅,

where ∂� is the union of the boundaries of the smooth components.
The reason for introducing the measure μ is to have a quantity independent of the

choice of coordinates on �. On T
2n , an obvious intrinsic measure is given by the sym-

plectic form, hence gχLχR
α are well defined. Building an atlas of the manifold � we can

use these functions to describe μ in local coordinates.
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We denote a weighted relation by (�, μ). As explained above, one can invert such a
relation, as well as compose them.

If (ρ′; ρ) ∈ � \ ∂�, the probability of a transition from ρ to ρ′ = κ j1(ρ) is obtained
by letting χR (resp. χL ) be supported in a sufficiently small neighbourhood of ρ (resp.
of ρ′), with χR(ρ) = 1, χL(ρ

′) = 1. This probability is then given by

Pj1(ρ) = gχL χR
R (ρ) = gχL χR

L (ρ′) = P ′
j1(ρ

′). (3.10)

Examples. The simplest example is given by a graph of a symplectic transformation
κ : T

2n → T
2n in which case the density μ is obtained by taking μ = π∗L(ωn/n!) =

π∗R(ωn/n!), where the equality follows from κ∗ω = ω. A slightly more complicated
example is given by taking a union of two non-intersecting graphs � j of κ j , j = 1, 2,
and putting

μ = (πR |�1)
∗(g1 ω

n/n!) + (πR |�2)
∗(g2 ω

n/n!),
where g j ∈ C∞(T2n; [0, 1]) satisfy g1 + g2 ≤ 1 and g1 ◦ κ−1

1 + g2 ◦ κ−1
2 ≤ 1. In this

case, g j (ρ) = Pj (ρ).
In the case of an open baker B defined in §3.3, for instance the symmetric 3-baker

(1.3), a natural μ comes from pulling back the Liouville measure ω to each component
B j given in (3.4). One obtains

πR∗ μ = 1lI1∪I2(q) dq dp, πL∗ μ = 1lI1∪I2(p
′) dq ′ dp′. (3.11)

These equations fully determine the measure μ on B.
A more interesting example, which will be relevant in §5, is given by the following

multivalued generalization of the symmetric 3-baker:

˜B =
2
⋃

�=0

(

B + (0, �/3; 0, 0)
) =

2
⋃

k=1

2
⋃

j=0

˜Bkj , where

˜Bkj =
{

(

3q, p+ j
3 ; q, p

) : q ∈ Ik, p ∈ I

}

, I1 = (0, 1/3), I2 = (2/3, 1).

(3.12)

Each point ρ ∈ S1 ∪ S2 = (I1 ∪ I2)× I has 3 images, and each point ρ′ ∈ T
2 has two

preimages.
The following measure on ˜B will arise in the quantum model studied in §5. We define

it explicitly on each component ˜Bkj , using the right projection on Sk :

πR∗ μ̃|˜B1 j
= sin2(πp)

9 sin2(π(p + j)/3)
1lI1(q) dq dp,

πR∗ μ̃|˜B2 j
= sin2(πp)

9 sin2(π(p + j − 2)/3)
1lI2(q) dq dp, j = 0, 1, 2.

(3.13)

The functions on the right-hand sides are the probabilities Pj (ρ). The sum of these
components reads

πR∗ μ̃ =
⎛

⎝

1

9

2
∑

j=0

sin2 πp

sin2 π(p/3 + j/3)

⎞

⎠ 1lI1∪I2(q) dq dp = 1lI1∪I2(q) dq dp.
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Here we used the fact4 that
∑D−1

j=0 sin2(Dx)/ sin2(x + jπ/D) = D2, with D = 3 and
x = πp/3. This right pushforward is identical to that of (3.11): in both cases, any point
ρ ∈ (S1 ∪ S2) has an empty escape probability, 1 − P(ρ) = 0.

On the opposite, the left pushforward of μ̃ is given by

πL∗ μ̃ = sin2 3πp′

9

(

1

sin2 πp′
+

1

sin2 π(p′ − 2/3)

)

dq ′ dp′.

Almost any point ρ′ ∈ T
2 has a nonzero escape probability through ˜B−1. This left

pushforward is obviously different from that of μ.

4. Quantized Maps and Relations

Before giving the definition of the quantized baker’s relation, we need to define the quan-
tum Hilbert space corresponding to T

2, as well as the algebra of quantum observables.

4.1. Quantized tori. The quantization of tori T
2n = R

2n/Z2n has a long tradition in
mathematical physics [21, 13, 5]. It can be considered as a special case of the Berezin-
Toeplitz quantization of compact symplectic Kähler manifolds — see [27] and references
given there. Here we will give a self-contained presentation of the simplest case from
the point of view of pseudodifferential operators.

We first recall from [14] the quantization of functions f ∈ C∞b (T ∗
R

n),

C∞b (T ∗
R

n)
def= { f ∈ C∞(T ∗

R
n) : ∀α, β ∈ N

n, sup
(q,p)∈T ∗Rn

|∂αq ∂βp f (q, p)| <∞}.

To any f ∈ S(T ∗
R

n)we associate its h-Weyl quantization, that is the operator f w(q, h D)
acting as follows on ψ ∈ S(Rn):

[ f w(q, h D) ψ](q) def= 1

(2πh)n

∫ ∫

f
(q + r

2
, p
)

e
i
h 〈q−r,p〉 ψ(r) dr dp. (4.1)

This operator clearly has the mapping properties

f w(q, h D) : S(Rn) −→ S(Rn), f w(q, h D) : S ′(Rn) −→ S ′(Rn).

It can be shown [14, Lemma 7.8] that f �→ f w(q, h D) can be extended to any f ∈
C∞b (T ∗

R
n), and that the resulting operator has the same mapping properties. Further-

more, f w(q, h D) is a bounded operator on L2(Rn).
We now introduce quantum spaces associated with the torus T

2n . For that aim, we
fix our notations for the semiclassical Fourier transform on S ′(Rn):

Fhψ(p)
def= 1

(2πh)n/2

∫

ψ(q) e−
i
h 〈q,p〉 dq,

4 The value of the sum at x = 0 is equal to D2, and the sum is invariant under translation x �→ x + kπ/D.
Fejér’s formula for the Cesàro mean of the Fourier series shows that the sum is a trigonometric polynomial of
degree D − 1 in x , hence it is constant.
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and as usual in quantum mechanics, Fhψ(p) is the “momentum representation” of the
state ψ . The torus quantum space is made of distributions ψ ∈ S ′(Rn) which are both
periodic in position and momentum:

ψ(q + �) = ψ(q), Fhψ(p + �) = Fhψ(p). (4.2)

Let us denote by Hn
h this space of distributions. We have the following elementary

Lemma 4.1. Hn
h �= {0} if and only if h = (2πN )−1 for some positive integer N, in

which case dim Hn
h = N n and Hn

h is generated by the following basis:

Hn
h = span

{

1√
N n

∑

�∈Zn

δ(q − �− j/N ) : j ∈ (Z/NZ)n

}

. (4.3)

The distributions elements of this basis will be denoted by

|Q j 〉, Q j = j
N ∈ I

n is the position on which that state is microlocalized. (4.4)

One can check that for such a value of h, the Fourier transform Fh maps Hn
h to itself. In

the above basis, it is represented by the discrete Fourier transform

(FN ) j j ′ = e−2iπ〈 j, j ′〉/N

N n/2 , j, j ′ ∈ (Z/NZ)n . (4.5)

It is also easy to check the following

Lemma 4.2. Suppose that f ∈ C∞b (Rn × R
n) satisfies f (q + �, p + m) = f (q, p) for

any �,m ∈ Z
n. Then the operator f w(q, h D) maps Hn

h to itself.

Identifying a function f ∈ C∞(T2n) with a periodic function on R
2n , we will write

Oph( f ) for the restriction of f w(q, h D) on Hn
h ,

C∞(T2n) � f �−→ Oph( f ) ∈ L(Hn
h).

We remark that Oph(1) = Id. The vector space Hn
h can be equipped with a natural

Hilbert structure.

Lemma 4.3. There exists a unique (up to a multiplicative constant) Hilbert structure on
Hn

h for which all Oph( f ) : Hn
h → Hn

h with f ∈ C∞(T2n;R) are self-adjoint.
One can choose the constant such that the basis in (4.3) is orthonormal. This implies

that the Fourier transform on Hn
h (represented by the unitary matrix (4.5)) is unitary.

Proof. Let 〈•, •〉0 be the inner product for which the basis in (4.3) is orthonormal. We
write the operator f w(q, h D) on Hn

h explicitly in that basis using the Fourier expansion
of its symbol:

f (q, p) =
∑

�,m∈Zn

f̂ (�,m) e2π i(〈�,q〉+〈m,p〉).

For that let L�,m(q, p) = 〈�, q〉 + 〈m, p〉, so that

f w(q, h D) =
∑

�,m∈Zn

f̂ (�,m) exp(2π i Lw�,m(q, h D)).
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Applying this operator to the distributions (4.4), we get

exp
(

2π i Lw�,m(q, h D)
) |Q j 〉 = exp

(π i

N
(2〈 j, �〉 − 〈m, �〉)

)

|Q j−m〉,

and consequently,

f w(q, h D) |Q j 〉 =
∑

m∈Zn/(NZ)n

Fmj |Qm〉,

Fmj =
∑

�,r∈Zn

f̂ (�, j − m − r N )(−1)〈r,�〉 exp
(π i

N
〈 j + m, �〉

)

.

Since

F̄jm =
∑

�,r∈Zn

ˆ̄f (−�, j − m + r N )(−1)〈r,�〉 exp
(

− π i

N
〈 j + m, �〉

)

=
∑

�,r∈Zn

ˆ̄f (�, j − m − r N )(−1)〈r,�〉 exp
(π i

N
〈 j + m, �〉

)

,

we see that for real f , f = f̄ , Fjm = F̄mj . This means that f w(q, h D) is self-adjoint
for the inner product 〈•, •〉0. We also see that the map f �→ (Fjm) j,m∈(Z/NZ)n is onto,
from C∞(T2n;R) to the space of Hermitian matrices.

Any other metric on Hn
h could be written as 〈u, v〉 = 〈Bu, v〉0 = 〈u, Bv〉0. If

〈 f wu, v〉 = 〈u, f wv〉 for all f ’s, then B f w = f wB for all f ’s, and hence for all
Hermitian matrices. That shows that B = c Id, as claimed. &'

This choice of normalization 〈•, •〉0 can be obtained in a natural way, if we use the
following periodization operator to construct Hn

h from S(Rn) [5]:

Lemma 4.4. For any h = (2πN )−1, the periodization operator PT2n : S(Rn) → Hn
h

defined below is surjective:

∀ψ ∈ S(Rn), [PT2n ψ](Q j )
def= 1

N n/2

∑

ν∈Zn

ψ(Q j − ν), j ∈ (Z/NZ)n . (4.6)

In the rest of this article we will always assume that h = (2πN )−1 for some N ∈ N,
so the semiclassical limit corresponds to N → ∞. The scalar product on Hn

h will be
〈•, •〉0. From now on we will omit the subscript 0, and also often use Dirac’s notation
〈•|•〉 for this product. For instance, the j th component of a state ψ ∈ Hn

h in the basis
(4.4) will be denoted byψ(Q j ) = 〈Q j |ψ〉. The Hilbert norm associated with 〈•, •〉will
simply be written ‖ • ‖.

4.2. Lagrangian states. We want to characterize the semiclassical localization in phase
space of sequences of states of the formψ = {ψh ∈ Hn

h}h→0. In general we will assume
that each element of this sequence is normalized, ‖ψh‖ = 1, but all definitions can be
extended to sequences such that the norms satisfy ‖ψh‖ = O(hK ) as h → 0, for some
fixed K ∈ R (the sequence ψ is then said to be tempered).
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The localization of this sequence is first characterized through its microsupport, or
wave front set, which is the following subset of T

2n :

WFh(ψ)=�
{

ρ ∈ T
2n : ∃ f ∈ C∞(T2n),

f (ρ) �= 0, ‖Oph( f )ψh‖=O(h∞)
}

, (4.7)

where � stands for the set theoretical complement. It is not hard to show [44, Prop.
IV-8′] that this definition is equivalent to the following: ρ �∈ WFh(ψ) if and only if
there exists a neighbourhood Wρ of ρ such that, for any f ∈ C∞(T2n) supported in Wρ ,
‖Oph( f )ψh‖ = O(h∞). This yields the following

Lemma 4.5. For any function f ∈ C∞(T2n) with f ≡ 0 in an open neighbourhood of
WFh(ψ), we have ‖Oph( f )ψh‖ = O(h∞). As a consequence, the microsupport of a
sequence ψ = {ψh}, ‖ψh‖ ) hK , cannot be empty.

Proof. The (compact) support of f can be covered by finitely many Wρi , and using
a partition of unity associated with these sets we can decompose it as f = ∑

i fi ,
with supp( fi ) ⊂ Wρi . We get the result by linearity, and using the second definition of
WFh(ψ). &'

We also make the following observation:

Lemma 4.6. Let ψ = {ψh ∈ Hn
h}h→0 be a tempered sequence. Considering ψh as

a N n-component vector in the basis (4.3), we define ψ̄h as the vector with complex
conjugate components. Then

WFh(ψ̄) = {(q,−p) : (q, p) ∈ WFh(ψ)}.
Proof. The definition (4.1) of Weyl’s quantization gives, for any function f ∈ C∞(T2n),

Oph( f ) ψ̄ = f w(q, h D) ψ̄ = f̄ w(q,−h D) ψ.

The lemma follows from the definition (4.7) of the wave front set. &'
Now let � ⊂ T

2n be a union of Lagrangian submanifolds of T
2n with piecewise

smooth boundaries.

Definition 4.7. A sequence of states ψ = {ψh ∈ Hn
h} is a Lagrangian state associated

to �, which we denote by ψ ∈ I (�), if for any M ∈ N and any sequence of functions,

f j ∈ C∞(T2n), 1 ≤ j ≤ M, f j |� = 0,

we have
‖Oph( fM ) ◦ · · · ◦ Oph( f1) ψh‖ = O(hM ) ‖ψh‖. (4.8)

From the definition (4.7) of the microsupport, we obtain that, if the sequence ψ is
tempered, then

ψ ∈ I (�) =⇒ WFh(ψ) ⊂ �. (4.9)

Indeed, suppose that ρ �∈ �. Then there exists f ∈ C∞(T2n) such that f |� = 0 and
f ≡ 1 in a neighbourhood of ρ. We can also find a ∈ C∞(T2n) such that f = 1
on a neighbourhood of the support of a, and a(ρ) �= 0. The symbol calculus (see
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[14, Chap. 7]) shows that for any M , Oph(a)Oph( f )M = Oph(a) + OM (h∞). On the
other hand ‖Oph( f )Mψh‖ = O(hM‖ψh‖), and as M is arbitrary and ψ tempered,
‖Oph(a) ψh‖ = O(h∞). In view of (4.7), this gives (4.9).

We stress that the opposite implication in (4.9) is not true in general. To see that
consider n = 1 and the Lagrangian � = {(0, p) : p ∈ I} ⊂ T

2. Let ψh ∈ H1
h be the

“torus coherent state at the origin”:

ψh(Q j ) =
( 2

N

)1/4 ∑

r∈Z

exp{−πN (Q j − r)2}, j = 0, . . . , N − 1.

Then one can check that ‖ψh‖ h→0−−−→ 1, that WFh(ψ) = {(0, 0)} ⊂ �. On the other
hand,

‖Oph

(

sin(2πq)
)

ψh‖ ∼ π
√

2h,

which shows that ψh /∈ I (�).
In the physics literature, Lagrangian states are usually called WKB states, and are

introduced as Ansätze for eigenstates of integrable systems, using Bohr-Sommerfeld
quantization formulae [28]. For instance, in the case n = 1, if � is generated by the
function S ∈ C∞(I):

�S =
{

(q,−S′(q)), q ∈ I
}

, (4.10)

then for any function a(q) ∈ C∞(I), the state ψh ∈ H1
h defined as

ψh(Q j ) = a(Q j )√
N

exp(−2iπN S(Q j )), j = 0, . . . , N − 1, (4.11)

is in I (�S). In the next proposition, we generalize this construction to any dimension.

Proposition 4.8. Let � ⊂ T
2n be an embedded Lagrangian manifold. Then for any

ρ0 ∈ � there exist Lagrangian states ψ ∈ I (�), such that ρ0 ∈ WFh(ψ).

Proof. We take ρ0 = (q0, p0) ∈ �, and assume that there exists a neighbourhood
V of ρ0, and a function S ∈ C∞(π(V )) (where π(q, p) = q), such that � ∩ V =
{(q;−dq S(q)), q ∈ π(V )}. This is a particular case of Proposition 3.1. The general
case of a generating function S(q ′′, p′) can be transformed to that of S = S(q) using the
symplectic rotation (q ′, p′) �→ (−p′, q ′). On the quantum mechanical side, this rota-
tion is performed through a partial Fourier transform in the variable q ′. Our construction
below can be transposed to this general case through this Fourier transform (which acts
covariantly on the Weyl quantization).

We also assume that the neighbourhood V is contained in the interior of I
2n , and we

identify π(V ) with a subset of I
n . We first construct a Lagrangian state in L2(Rn):

uh(q) = a(q) e−
i
h S(q), (4.12)

with a symbol a ∈ C∞(Rn) compactly supported inside π(V ), and such that a(q0) �= 0.
This state admits the norm ‖uh‖L2 = ‖a‖L2 . For any f ∈ C∞(T2n), we apply the oper-
ator f w(q, h D) to that state. Although we could do it directly using (4.1), we prefer to
reduce the problem to the case of S = 0 by conjugation with the unitary multiplication
operator

v(q) �−→ [e i
h Sw(q)v](q) = e

i
h S(q)v(q), (4.13)
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where we can assume that S ∈ C∞b (Rn). We then apply the operator

Gw(q, h D)
def= e

i
h Sw(q) f w(q, h D) e−

i
h Sw(q),

to the function a(q). The symbol calculus shows that G(q, p) admits an h-expansion,
with principal symbol g(q, p) = f (q, p + dq S(q)): if f vanishes on�, then g vanishes
on {(q, 0) : q ∈ π(V )}. We get

[ f w(q, h D) uh](q) = e−
i
h Sw(q) Gw(q, h D) a(q) = e−

i
h Sw(q) gw(q, h D) a(q) + O(h).

The explicit integral

[gw(q, h D) a](q) = 1

(2πh)n

∫ ∫

g
(q + r

2
, p
)

a(r) e
i
h 〈q−r,p〉 dr dp

can be evaluated through the stationary phase method. The derivative of the phase van-
ishes at r = q, p = 0, so the integral admits the following expansion [23, Section 7.7]
for q ∈ π(V ):

[gw(q, h D) a](q) = L0(g a)(q) + hL1(g a)(q) + O(h2). (4.14)

Here each function L j (g a) is obtained by applying a certain differential operator (in
(r, p)) on the function g((q+r)/2, p) a(r), taking the output at the point (r = q, p = 0).
The first term is simply L0(g a)(q) = g(q, 0) a(q). For q outside π(V ), the nonstation-
ary phase estimates show that

f w(q, h D) uh(q) = O
(

( h

h + dist(q, π(V ))

)∞)
. (4.15)

If f (ρ0) �= 0, then L0(g a) is nonzero in a neighbourhood W of q0, and we obtain

‖ f w(q, h D) uh‖L2(Rn) = ‖gw(q, h D) a‖L2(Rn) + O(h) ≥ ‖L0(g a)‖L2(W ) + O(h).
(4.16)

The left-hand side is thus bounded from below by a positive constant.
On the opposite, if f vanishes on�, then at each point q ∈ π(V )we get L0(g a)(q) =

0, which implies that ‖ f w(q, h D) uh‖L2(Rn) = O(h). The same procedure can be iter-
ated to show that, for any family of functions fi ∈ C∞(T2n) vanishing on�, the function

u(M)h (q)
def= h−M [ f wM ◦ · · · ◦ f w1 uh](q), (4.17)

is uniformly bounded and smooth on R
n , and very small outside π(V ), as in (4.15). As

a result,

‖ f wM (q, h D) ◦ · · · ◦ f w1 (q, h D)uh‖L2(Rn) = hM ‖u(M)h ‖ = O(hM ). (4.18)

We can now carry over the estimates (4.16,4.18) onto the state ψh = PT2n uh ∈ Hn
h ,

where PT2n is the periodizing operator (4.6). Since a(q)was supported insideπ(V ) ⊂ I
n ,

this state admits the following representation, which generalizes (4.10):

ψh(Q j ) = uh(Q j )

N n/2 = a(Q j )

N n/2 exp(−2iπN S(Q j )), j ∈ (Z/NZ)n . (4.19)
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The norm of this state is therefore the sum

‖ψh‖2 = N−n
∑

j∈(Z/NZ)n

|a(Q j )|2 =
∫

dq |a(q)|2 + O(h∞),

where we used the smoothness of a(q). Similarly, the projection on Hn
h of the function

u(M)h defined in (4.17) satisfies

PT2n u(M)h (Q j ) = u(M)h (Q j )

N n/2 + O(h∞), j ∈ (Z/NZ)n . (4.20)

From the smoothness of u(M)h , we obtain the “projected version” of (4.18):

‖Oph( fM ) ◦ · · · ◦ Oph( f1)ψh‖
= hM‖PT2n u(M)h ‖=hM‖u(M)h ‖L2(Rn)+O(h∞)=O(hM ).

On the other hand, if f (ρ0) �= 0, one easily deduces from (4.16) that

‖Oph( f )ψh‖=‖ f w(q, h D) uh‖L2(Rn) + O(h∞)≥C + O(h), C>0.

These estimates show that the family ψ ∈ I (�), and that ρ0 ∈ WFh(ψ). &'

Remark 4.1. The definition of I (�) mimicks the Hörmander-Melrose definition of
Lagrangian distributions [24, Def. 25.1.1] (see [1] for an adaptation to the standard
semiclassical setting). The requirement that � is Lagrangian reflects the uncertainty
principle, in the following sense. A Lagrangian submanifold is the lowest dimensional
submanifold for which the conclusion of Proposition 4.8 holds, that is, for any ρ ∈ �,
there exists a state ψ satisfying ψ ∈ I (�) and ρ ∈ WFh(ψ).

Indeed, let� be an embedded submanifold of T
2n . Let us assume that ψ ∈ I (�), so

(4.8) must hold for any family of functions f j |� = 0. From the identity

i

h
[Oph( fi ),Oph( f j )]
= Oph({ fi , f j }) + O(h),

we see that ‖Oph({ fi , f j }) ψh‖ = O(h). As in the proof of (4.9), we can show that if
{ fi , f j }(ρ) �= 0 for some ρ ∈ �, then ρ �∈ WFh(ψ). Hence, if we want the conclusion
of Proposition 4.8 to hold for �, then this submanifold must satisfy

∀ fi , f j ∈ C∞(T2n), fi |�, f j |� = 0 =⇒ { fi , f j }|� = 0.

This property means that � is co-isotropic, and must be of dimension ≥ n. Lagrangian
manifolds are co-isotropic manifolds of minimal dimension.
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4.2.1. Singular Lagrangian states. We now give an example where � is a union of
Lagrangians with piecewise smooth boundaries (in §3.2 we called such � a singular
Lagrangian). Let �S be given by (4.10) and ψh by (4.11). Let us truncate ψh to some
proper subinterval [Q, Q′] ⊂ I, that is, replace the symbol a(q) by the discontinuous
function ã(q) = a(q)1l[Q,Q′](q). That gives a state ψ̃h ∈ H1

h . One could expect ψ̃h to
be a Lagrangian state in I (�S) (as is ψh), or rather in I (�̃S), where

�̃S
def= �S ∩ ([Q, Q′] × I).

This is not the case: one needs to include in the Lagrangian the singularity set

�sing = {(Q, p) : p ∈ I} ∪ {(Q′, p) : p ∈ I},
which is the “periodized” conormal bundle of the boundary ∂�̃S . We will indeed prove
that ψ̃h ∈ I (�̃S ∪�sing), which can be considered as a semiclassical, discrete analogue
of singular Lagrangian distributions of Guillemin-Uhlmann [19] and Melrose-Uhlmann
[34]. We have the following

Lemma 4.9. Let us truncate the state (4.19) to a hypercube H ⊂ I
n, H =∏n

�=1[α�, β�] :

ψ̃h(Q j ) = a(Q j ) 1lH (Q j )

N n/2 exp(−2iπN S(Q j )), j ∈ (Z/NZ)n . (4.21)

Then ψ̃h is associated with the singular Lagrangian �̃S ∪ �sing, where
�̃S = {(q,−dq S(q)), q ∈ H} and

�sing=
n
⋃

�=1

({

(q, p) : q�=α�, p�∈I, qm ∈ [αm, βm] , pm =−dqm S(q),m �=�}

∪{(q, p) : q�=β�, p� ∈ I, qm ∈ [αm, βm] , pm =−dqm S(q),m �=�}) .
(4.22)

Remark. It would be tempting to generalize the lemma by replacing the hypercube H
by an arbitrary set S with smooth boundaries. However, if n = 2, S ≡ 0, a ≡ 1, and ∂S
does not contain a segment with rational slopes then

W Fh(ψ̃h) = (S × {0}) ∪ (∂S × I
2).

The second component being 3-dimensional, this set is certainly not contained in a finite
union of Lagrangians.

Proof. As in the proof of Proposition 4.8, we can, by conjugation with the operator
(4.13), reduce the proof to the case S = 0. We first consider states defined on R

n ,
localized on the hypercube H ⊂ R

n :

uh(q) = 1lH (q) a(q), a ∈ C∞(Rn). (4.23)

We use the following

Lemma 4.10. Let �̃0 = H ×{0} and�sing be as in Lemma 4.9. The ideal J of periodic
functions vanishing on the singular Lagrangian �̃0 ∪�sing is (infinitely) generated by

g j (p, q)
def= sin

(

π(q j − α j )
)

sin
(

π(q j − β j )
)

sin(πp j ),

gi j (q, p)
def= sin(πpi ) sin(πp j ) i �= j, 1 ≤ i, j ≤ n,

φ j (q, p) = φ(q j , p1, · · · , p j−1, p j+1, · · · , pn), where φ(q j , •) ≡ 0, α j ≤ q j ≤β j ,

ψ(q), where ψ ∈ C∞(In) vanishes on H.
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Proof. We only give the proof for the following model (n = 2), which contains all the
basic ingredients of the general case. Let us study the ideal of functions vanishing on

({q1 = p2 = 0} ∪ {q2 = p1 = 0} ∪ {p1 = p2 = 0}) ∩ {q1 ≥ 0, q2 ≥ 0}. (4.24)

The functions vanishing on the first factor in the intersection are generated by q1 p1 ,
q2 p2, and p1 p2. Writing an arbitrary function F(q, p) as

F(q1, q2, p1, p2) = F0(p1, p2) + q1 F1(q1, q2, p2) + q2 F2(q1, q2, p1)

+ q1 p1 F11(q1, q2, p1, p2) + q2 p2 F22(q1, q2, p1, p2),

we need to find conditions for q1 F1(q1, q2, p2) and q2 F2(q1, q2, p1) to vanish on (4.24).
We treat the first function by expanding it as

F1(q1, q2, p2) = F10(q1, q2) + p2 F12(q1, p2) + q2 p2 F122(q1, q2, p2).

This forces F10(q1, q2) to vanish identically in {q1, q2 ≥ 0} and F12(q1, p2) to vanish
identically in {q1 ≥ 0}.

The function F2(q1, q2, p1) is treated identically. Hence the functions vanishing
on (4.24) are generated by q1 p1, q2 p2, p1 p2, and all the smooth fuctions ψ(q1, q2),
φ1(q1, p2), φ2(q2, p1) vanishing on {q1, q2 ≥ 0}. The transposition to the torus setting
gives the lemma for that case. The general case can be proven similarly. &'

This lemma means that any F ∈ J can be decomposed as

F =
∑

j �=i

fi j gi j +
∑

j

( f j j g j + f j φ j + ψ),

where the functions f• are smooth and either periodic or antiperiodic in each variable,
so that f•g• are periodic in all variables.

The action of each term ( f g)w(q, h D) on the state (4.23) can be written

( f g)w uh = (( f a)w ◦ gw + h L( f, a, g)
)

1lH ,

where L( f, a, g) is a pseudodifferential operator of norm O(1). Therefore, we are re-
duced to study the action of the generators gw(q, h D), g = gi j , g j , φ j , ψ , on the
characteristic function 1lH (q).

We first note that ψ 1lH = φwj 1lH ≡ 0, so there is nothing to prove in this case.
For each j ∈ {1, . . . , n}, the generator g j contains a factor sin(πp j ). Up to an error

O(h), we first quantize this factor and apply it to 1lH :

sin(πh D j )1lH (q) = 1

2i

(

1lH (q j + πh, q ′)− 1lH (q j − πh, q ′)
) def= b j (q).

The function b j (q) is supported in the strips S j =
{|q j−α j |≤πh

}∪{|q j−β j | ≤ πh
}

,
where it takes values ±1. We now apply the remaining factors of g j : this amounts to
multiplying b j (q) by the product sin

(

π(q j −α j )
)

sin
(

π(q j −β j )
)

, and gives a function
O(h). Taking the error into account, we obtain ‖gwj 1lH‖L2(Rn) = O(h).

In the case of gi j , i �= j , we apply sin(πh Di ) to b j (q): the resulting function takes
values ±1 on its support Si ∩ S j , so that ‖gwi j 1lH‖L2(Rn) = O(h).

We have now proved that ‖Fw uh‖L2(Rn) = O(h) for any F ∈ J . The procedure
can be iterated to any finite product of functions Fi ∈ J , yielding the estimate (4.18).
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The proof is completed by the periodization argument as in the proof of
Proposition 4.8. The only slight difference lies in the fact that the analogues of the func-
tions u(M)h (q) of (4.17) may now have discontinuities near ∂D, so that ‖PT2n u(M)h ‖ −
‖u(M)h ‖L2(Rn) = O(h) instead of O(h∞). &'

4.3. Quantum relations. Suppose that � ⊂ T
2n × T

2n is a Lagrangian submanifold.
The basic example is given by the twisted graph �′κ of a symplectic diffeomorphism κ

on T
2n (see Sect. 3.2.1):

�′κ =
{

(q ′, q; p′,−p) : (q ′, p′) = κ(q, p), (q, p) ∈ T
2n
}

.

As we noticed in that section, the choice of change of sign depends on the choice of the
splitting of variables (q, p), which is itself related with the choice of a polarization in
the quantization a �→ Oph(a) [24, §25.2]. This somewhat cumbersome convention is
explained as follows.

Any state v ∈ Hn
h is naturally identified to a linear form fv ∈ (Hn

h)
∗ through

fv(w) = 〈v,w〉. In our notations5, this scalar product is antilinear in the first compo-
nent. To make the identification linear, we choose instead

v ∈ Hn
h =⇒ fv(•) = 〈v̄, •〉, (4.25)

where states v are written as vectors in the basis (4.3).
Let L(Hn

h) � Hn
h ⊗ (Hn

h)
∗ be the space of linear operators on Hn

h . The linear iden-
tification (4.25) of Hn

h with (Hn
h)
∗ gives the identification,

L(Hn
h) � H2n

h , through (u ⊗ v)(w) = u 〈v̄, w〉, u, v, w ∈ Hn
h . (4.26)

We observe that the norm on H2n
h is the same as the Hilbert-Schmidt norm on L(Hn

h):

‖T ‖H2n
h
= (trHn

h
(T ∗T ))

1
2 . (4.27)

It is related to the operator norm on L(Hn
h) as follows:

‖T ‖L(Hn
h)
≤ ‖T ‖H2n

h
≤ N n/2‖T ‖L(Hn

h)
. (4.28)

In particular, unitary operators have Hilbert-Schmidt norm N n/2 = (2πh)−n/2.
The identification (4.26) dictates the way an operator of the type A1 ⊗ A2 (with

Ai ∈ L(Hn
h)) acts on u ⊗ v ∈ H2n

h � L(Hn
h). Indeed, if we take any w ∈ Hn

h , we have

[(A1 ⊗ A2)(u ⊗ v)] (w) = [A1u ⊗ A2v] (w)

= A1u 〈A2v,w〉
= A1u 〈v̄, A′

2w〉
= [(A1u ⊗ v) ◦ A′

2

]

(w).

Here A′
2 is the transposed of the operator A2, written as a matrix in the basis (4.3). In

the case A1 = Oph(a), A2 = Oph(b) for some real functions a, b ∈ C∞(T2n), one

5 This is the physicists’ convention.
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checks that A′
2 = Oph(b̃), with the same twisted function as in the proof of Lemma 4.6:

b̃(q, p) = b(q,−p). By linearity, for any Ch ∈ H2n
h � L(Hn

h), we have

Oph(a ⊗ b)Ch = Oph(a) ◦ Ch ◦ Oph(b̃). (4.29)

The sign change in the tilting � � �′ parallels the transformation a(ρ′) b(ρ) �

a(ρ′) b̃(ρ).
We are now in position to quantize a symplectic map, more generally a symplectic

relation � as defined in Sect. 3.2.

Definition 4.11. A semiclassical sequence U = {Uh ∈ H2n
h

}

h→0 satisfying

‖Uh‖H2n
h
= O(hK ), for some fixed K ∈ R, (4.30)

is a quantum relation associated with the symplectic relation � if U is a Lagrangian
state in I (�′), in the sense of Definition 4.7.

Explicitly, for any M ∈ N and any sequence of functions

g j ∈ C∞(T2n × T
2n), g j |�′ = 0, 1 ≤ j ≤ M,

we must have

‖Oph(gM ) ◦ · · · ◦ Oph(g1)Uh‖H2n
h
= O(hM ) ‖Uh‖H2n

h
. (4.31)

The assumption that Uh is tempered in the sense of (4.30) (which also implies tem-
peredness in the operator norm) is necessary to assure that composing Uh with residual
(O(h∞)) terms produces residual terms. That is a standard assumption in C∞ semiclas-
sical calculi — see [1, 51], and will be used in the proof of Prop. 4.12. The quantum
weighted relations defined in §4.4 will naturally be tempered, having norms ‖Uh‖H2n

h
=

O(h−n/2).
If a function g ∈ C∞(T4n) vanishes on �′, then the function g̃ defined as

g̃(q ′, p′; q, p) = g(q ′, p′; q,−p) vanishes on �. The condition g j |�′ = 0 can thus
be written g̃ j |� = 0.

We also note that (4.31) entails a version of Egorov’s theorem. If fL , fR ∈ C∞(T2n)

satisfy

(ρ′, ρ) ∈ � =⇒ fL(ρ
′) = fR(ρ),

then we have
‖Oph( fL)Uh − UhOph( fR)‖H2n

h
= O(h) ‖Uh‖H2n

h
. (4.32)

Indeed, the function f
def= fL ⊗ 1− 1⊗ fR vanishes on �, so that f̃ vanishes on �′. We

then simply apply the definition (4.31) with g1 = f̃ and use (4.29). When � is a graph
of a symplectic transformation, fR is the pullback of fL , and we get a statement similar
with the standard Egorov’s theorem.

Remark 4.2. Following Sect. 4.2, in the case when �′ is a Lagrangian with boundaries
projecting on a hypercube, it is useful to include in the definition sequences U = {Uh}
in the (larger) space I (�′ ∪ �sing); the quantum baker’s relation we define in the next
section will belong to such an enlarged space.
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Through the identification (4.26), Uh is an operator on Hn
h . We now show that this

operator “classically transports” the microsupport of a sequence w = {wh ∈ Hn
h

}

.

Proposition 4.12. Take U = {

Uh ∈ H2n
h � L(Hn

h)
}

a quantum relation U ∈ I (�′).
Then for any sequence w = {

wh ∈ Hn
h

}

, ‖wh‖ ) 1, the microsupport of the image
sequence U (w) = {Uh(wh)} satisfies:

WFh(U (w)) ⊂ �
(

WFh(w)
)

=
{

ρ′ ∈ T
2n : ∃ ρ ∈ WFh(w), (ρ′, ρ) ∈ �

}

.

Proof. Assume that ρ′0 �∈ �(WFh(w)), which means that �−1(ρ′0) ∩ WFh(w) = ∅.
Then there exists a function f ∈ C∞(T2n) with f ≡ 1 near ρ′0 but with supp( f ) suffi-
ciently small so that �−1(supp( f )) � �WFh(w). Consequently, there exists a function
g ∈ C∞(T2n) with g ≡ 1 near WFh(w) but g ≡ 0 on �−1(supp( f )). The function
f ⊗ g̃ ∈ C∞(T4n) then automatically vanishes on �′.

Our aim is to show that ρ′0 �∈ WFh(U (w)). For this, we introduce one further function
a ∈ C∞(T2n) such that a(ρ′0) > 0 and f ≡ 1 on supp(a). As in the proof of (4.9) we
see that for any M ∈ N, Oph(a)Oph( f )M = Oph(a) + O(h∞). Hence

‖Oph(a)Uhwh‖ = ‖Oph(a)Oph( f )MUhwh‖ + O(h∞)
≤ ‖Oph(a)Oph( f )M UhOph(g)

M wh‖
+‖Oph(a)Oph( f )MUh (1 − Oph(g)

M ) wh‖ + O(h∞).
To bound the second term on the right-hand side, we notice that the function (1 − gM )

vanishes near WFh(w), so from Lemma 4.5 we get ‖(1 − Oph(g)
M ) wh‖ = O(h∞);

from the temperedness of Uh , the second term is thus residual.
The first term on the right-hand side is estimated using the identity

Oph( f )M Uh Oph(g)
M

= Oph( f ⊗ g̃)M Uh .

Because f ⊗ g̃ vanishes on �′, the Hilbert-Schmidt norm of that operator is O(hM+K ),
where K comes from the temperedness of Uh , (4.30). Using (4.28), we thus get
‖Oph(a)Uh wh‖=O(hM+K ) for an arbitrary M ∈ N, which shows thatρ′0 �∈WFh(U (w)).
&'

4.4. Quantized weighted relations. In Sect. 3.4 we equipped a symplectic relation �
with a measure, or weight μ. In order to associate to the weighted relation (�, μ) a
sequence of operators Uh ∈ H2n

h , we need to elaborate on Definition 4.11, thereby
defining a subfamily I (�′, μ) � I (�′).

In the standard microlocal context [24, Sect. 25.1], a Lagrangian state ψ ∈ I (�)
has a well defined amplitude, or symbol, which is a section of the Maslov half density
bundle over the Lagrangian submanifold — see [24, Theorem 25.1.9]. The local aspects
of this procedure have recently been adapted to the semiclassical case [1], and a similar
approach can be used in the case of T

4n .
Although one could characterize the operators quantizing (�, μ) in terms of their

symbols (grossly speaking, the absolute square of the symbol should equal the weight
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μ), we won’t do it here, in order to avoid technical issues involved in the description
of the symbol map. Instead, in the definition below we use bilinear expressions in Uh ,
which allows us to avoid introducing symbols.

Definition 4.13. Let (�, μ) be a weighted piecewise smooth relation as defined in §3.4
and let U ∈ I (�′ ∪ �sing), in the sense of Definition 4.11 and Remark 4.2. For any
χα ∈ C∞(T2n; [0, 1]), α = L , R, we define

UχLχR

def= Oph(χL) Uh Oph(χR).

We say that U quantizes the weighted relation (�, μ) if for all χL , χR with sufficiently
small supports satisfying supp(χL ⊗ χR) ∩�′

sing = ∅,

UχLχR U∗
χLχR

= Oph(g
χLχR
L ) + O(h)

U∗
χLχR

UχLχR = Oph(g
χLχR
R ) + O(h), (4.33)

where gχLχR
α are the functions given in (3.9), and the remainder is O(h) in the operator

norm on L(Hn
h). We then write

U = {Uh} ∈ I (�′ ∪�sing, μ).

The conditions on the smallness of supports ofχα guarantee that the operators appear-
ing on the left in (4.33) are of the form Oph( f ), f ∈ C∞(T2n). That follows from the
fact that � is locally a graph — see §3.4.

If� is the graph of a symplectic diffeomorphismκ andμ = π∗L(ωn/n!) = π∗R(ωn/n!),
then Uh is unitary to leading order:

U∗
h Uh = I + Ch, UhU∗

h = I + Dh, ‖Ch‖L(Hn
h)
= O(h), ‖Dh‖L(Hn

h)
= O(h).

For h small, (I +Ch)
− 1

2 , (I +Dh)
− 1

2 exist, therefore a possibility to make the quantization

strictly unitary is to replace Uh by Uh(I + Ch)
− 1

2 or (I + Dh)
− 1

2 Uh .
The condition (4.33) can be interpreted as follows. Suppose that ψ ∈ Hn

h , ‖ψ‖ = 1,
is microlocalized at a single “regular” point ρ0:

WFh(ψ) = {ρ0} ⊂ T
2n \ πR(�

′
sing),

and �(ρ0) = ∪J
j=1ρ

′
j , ρ

′
j = κ j (ρ0). Then,

Uhψ =
J
∑

j=1

ψ j + O(h∞),

‖ψ j‖2 = Pj (ρ0) + O(h), WFh(ψ j ) ⊂
{

ρ′j
}

.

From Lemma 4.5, if Pj (ρ0) �= 0 then WFh(ψ j ) =
{

ρ′j
}

. A similar statement holds for

U∗
h .
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Indeed, if for each j = 0, · · · , J we take χ j ∈ C∞(T2n; [0, 1]) supported in a
small neighbourhood of ρ0, resp. ρ′j , and equal to 1 near that point, (3.10) shows that

g
χ jχ0
R (ρ0) = Pj (ρ0) for j = 1, . . . , J . On the other hand, Proposition 4.12 gives

Uhψ = UhOph(χ0)ψ + O(h∞) =
J
∑

j=1
Uχ jχ0 ψ + O(h∞),

WFh(Uχ jχ0ψ) ⊂
{

ρ′j
}

.

(4.34)

If we take ψ j
def= Uχ jχ0ψ then

‖ψ j‖2 = 〈U∗
χ jχ0

Uχ jχ0ψ,ψ〉 = 〈Oph(g
χ jχ0
R )ψ,ψ〉 + O(h) = Pj (ρ0) + O(h).

Example. We now consider a special case of quantum relations Uh , of the form

〈Q j |Uh |Qk〉 = N−n/2a(Q j , Qk) exp
(

2π i N S(Q j , Qk)
)

, (4.35)

where a, S ∈ C∞(T2n × T
2n) and the generating function S(q ′, q) satisfies the nonde-

generacy condition det(∂2
q ′ q S) �= 0 near the support of a(q ′, q). Using Definition 4.11 we

see that Uh is associated to the graph �S of the symplectic transformation (q,−∂q S) �→
(q ′, ∂q ′ S). To be more precise,

Uh ∈ I (�′S, μS), for μS
def= |a(q ′, q)|2 dq ′ dq, (4.36)

where we used the coordinates (q ′, q) on �S . Projecting this measure on the left and
right tori, we get:

πL∗ μS =
⎛

⎝

∑

q ′: p=−∂q S(q ′,q)
|a(q ′, q)|2 | det(∂2

q ′ q S)|−1

⎞

⎠ dq dp,

πR∗ μS =
⎛

⎝

∑

q : p′=∂q′ S(q ′,q)
|a(q ′, q)|2 | det(∂2

q ′ q S)|−1

⎞

⎠ dq ′ dp′.

(4.37)

The above sums are always finite. This example will be used to analyze the quantum
baker’s relations studied in the next sections.

4.5. Quantized baker’s relation. We explicitly construct quantum relations Bh ∈ L(H1
h)

associated with the “open baker’s maps” described in Sect. 3.3. For simplicity, we will
assume that the coefficients D j and � j are integers. Besides, we will only consider the
subsequence of Planck’s constants of the form h = (2πN )−1 such that N/D1 = M1 ∈ N

and N/D2 = M2 ∈ N (that is, N is a multiple of lcm(D1, D2)).
Restricting ourselves to this subsequence, we define the quantization of the baker’s

relation (3.4) as the following operators (written as N × N matrices in the bases (4.3)):

Bh
def= F∗

N ◦
⎛

⎜

⎝

0 0 0 0 0
0 FM1 0 0 0
0 0 0 FM2 0
0 0 0 0 0

⎞

⎟

⎠
= B1,h + B2,h . (4.38)



Distribution of Resonances for Open Quantum Maps 341

The numbers of columns in successive blocks are respectively given by

�1 M1, M1, �2 M2 − (�1 + 1)M1, M2, (D2 − �2 − 1)M2,

and FM is the discrete Fourier transform given in (4.5). These matrices obviously gen-
eralize the unitary matrices associated with the closed baker’s map [2].

We now check that the matrices (4.38) satisfy Definition 4.13 if we select the appro-
priate Lagrangian surface on T

4, namely by adjoining a singularity set �sing to the
twisted graph B ′ (see Remark 4.2), and equip B with the weight μ described in (3.11).
By linearity, we can separately consider the two blocks B j,h . Let us study the left block
B1,h . Since the classical relation B1 is generated by the function S1(q, p′) of (3.5), it
is natural to express the operator B1,h in the mixed representation (p′, q), that is by
a matrix from the basis

{|Q j 〉
}

to the basis {|Pk〉}. Since the change of basis matrix,
(|Pk〉〈Q j |) j,k=0,...,N−1, equals FN , the operator A1,h defined as the matrix

(〈Qk |A1,h |Q j 〉) j,k=0,...,N−1
def= (〈Pk |B1,h |Q j 〉) j,k=0,...,N−1 = FN ◦ B1,h

is given by the Fourier block FM1 at the same position as in (4.38), and zeros everywhere
else.

The following lemma reduces finding the (weighted) Lagrangian relation associated
to B1,h to finding the (weighted) Lagrangian associated to A1,h . We denote by F the fol-
lowing transformation of T

2n : F(q, p) = (p,−q). It means we rotate by −π/2 around
the origin in each plane (qi , pi ). We denote by FL the transformation of T

4n acting
through F on the left coordinates (q ′, p′) and leaving the right coordinates unchanged.

Lemma 4.14. Suppose that Uh ∈ L(Hn
h) � H2n

h and that Vh
def= FN ◦ Uh. Then, for

any (possibly singular) Lagrangian C′ ∈ T
4n,

Uh ∈ I (C′) ⇐⇒ Vh ∈ I (D′),

where

D′ = FL(C′), equivalently D = FL(C) = {(p′,−q ′; q, p) : (q ′, p′; q, p) ∈ C}.
Furthermore,

Uh ∈ I (C′, μ) ⇐⇒ Vh ∈ I (D′, ν), with ν = FL∗ μ.

Proof. The transformation C → D results from a general composition formula which
can be proved by mimicking the semiclassical proof in [1]. Here it follows from the
covariance properties of Weyl quantization with respect to the Fourier transform: for
any a ∈ C∞(T2n),

F−1
h Oph(a) ◦ Fh = Oph(a ◦ F). (4.39)

As a result, for any f ∈ C∞(T4n),

Oph( f )(Fh ◦ Uh) = Fh ◦ Oph( f ◦ FL)(Uh).

This identity proves the first assertion.
Using (4.39), we notice that for any χL , χR ∈ C∞(T2n; [0, 1]), the cutoff propagator

VχL χR satisfies

V ∗
χL χR

VχL χR = U∗
χL◦F χR

UχL◦F χR = Oph(g
χL◦F χR
R ) + O(h),

VχL χR V ∗
χL χR

= Fh UχL◦F χR U∗
χL◦F χR

F∗
h = Oph(g

χL◦F χR
L ◦ F−1) + O(h).
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Using the pushforward of functions FL∗ f = f ◦ F−1
L and the fact that πR ◦ FL = πR ,

we get

gχL◦F χR
R = πR∗(π∗L(F

−1
L∗ χL) π

∗
RχR μ) = πR∗(π∗LχL π

∗
RχR FL∗μ),

gχL◦F χR
L ◦ F−1 = πL∗FL∗(π∗L(F

−1
L∗ χL) π

∗
RχR μ) = πL∗(π∗LχL π

∗
RχR FL∗μ).

This proves that Vh is associated with the weight ν = FL∗ μ on D′. &'
Let us now describe the weighted Lagrangian associated with the operator A1,h .

The kernel of that operator vanishes outside the square H = I1 × I1, where I1 =
[�1/D1, �1+1/D1], and on H it takes the values

〈

Qk |A1,h |Q j
〉= 〈Pk |B1,h |Q j

〉=
√

D1

N
1lH (Qk, Q j ) exp

(−2iπN S1(Qk, Q j )
)

.

(4.40)
The operator A1,h has the same form as in (4.35), with the (obviously nondegenerate)
generating function S = −S1 and symbol a(q ′, q) = √

D1 1lH (q ′, q). If we forget (for
a moment) the discontinuities of the symbol, we find that A1,h is associated with the
graph

�S1 =
{(

q ′,−(D1q − �1); q, (D1q ′ − �1)
) : q, q ′ ∈ I1

}

,

equipped with the weight

μS1 = D1 1lH (q
′, q) dq ′ dq.

From Lemma 4.14, the operator B1,h = F∗
N ◦ A1,h is associated with the graph

F−1
L (�S1) =

{(

(D1q − �1), q ′; q, (D1q ′ − �1)
) : q, q ′ ∈ I1

} = B1

and the weight

μ1
def= F−1

L∗ μS1 = D1 1lH (p
′, q) dp′ dq,

which can be expressed as

πR∗ μ1 = 1lI1(q) dq dp, πL∗ μ1 = 1lI1(p
′) dq ′ dp′.

It represents the half part of the weight (3.11).
Let us now take the discontinuities of a(q ′, q) into account. Since they occur at the

boundary of the square H , they have the same consequences as in Lemma 4.9. Namely,
we must add to the Lagrangian �′S1

a “singular” Lagrangian, which is the union of 4
pieces, each piece sitting above a side of H . This Lagrangian should then be rotated
through F−1

L as well.
For instance, the side {q ′ ∈ I1, q = �1/D1} leads (after rotation) to the singular

Lagrangian

�sing,1 =
{(

q ′ = 0, q = �1

D1
; p′, p

)

: p′ ∈ I1, p ∈ I

}

,

which contains the corresponding side of ∂B ′
1. Similar Lagrangians �sing,i , i = 2, 3, 4,

contain the other sides of ∂B ′
1.

The same analysis applies to B2,h and hence we have proved the
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Proposition 4.15. The sequence of matrices {Bh} given in (4.38) quantizes the classi-
cal baker’s relation B = B1 ∪ B2 of (3.4), in the sense of Definitions 4.11, 4.13, and
Remark 4.2:

Bh ∈ I

⎛

⎝B ′ ∪
8
⋃

j=1

�sing,j, μ

⎞

⎠ ,

where the weight μ is given by (3.11).

This quantization of the baker’s relation is very close to the “quantum horseshoe”
defined by Saraceno-Vallejos in [45]. The operator Bh is contracting, and its eigenstates
can be seen as “metastable states”, “decaying states” or “resonances”. This contraction
mirrors the decay of a classical probability density evolved through the open map B (due
to the “escape” of particles to infinity). This classical decay can be analyzed in terms of
a “conditionally invariant measure” on T

2 [8], which decays according to the classical
decay rate γcl = − log(D−1

1 + D−1
2 ).

4.6. Numerical check of the Weyl law for the baker’s relation. We have numerically
computed the spectra of the quantum baker relations for various symmetric and non-
symmetric baker’s relations. Results for the symmetric “3-baker” (D = 3, � = 0) were
presented in [38] (see also Table 1), some for the “5-baker” (D = 5, � = 1) were given
in [40], while a nonsymmetric map (D1 = 32, D2 = 3/2) was studied in [39]. In the
symmetric cases, the trapped set is a pure Cantor set of dimension 2d = 2 log 2

log D , so that
for any 1 > r > 0, the number of resonances in the annulus {|λ| > r} is expected to
scale as

#{λ ∈ Spec(Bh) : |λ| ≥ r} ∼ C(r) N
log 2
log D

in the limit N → ∞. Our numerics for both maps shows that this scaling is roughly
satisfied along any sequence N → ∞; much better fits are obtained for N taken along
geometric sequences of the type N = No Dk , with No fixed and k →∞ (as in Table 1),
which lead us to the following weaker conjecture for the symmetric maps:

#{λ ∈ Spec(Bh) : |λ| ≥ r} ∼ C(No, r) N
log 2
log D , (2πh)−1 = N = No Dk, k →∞.

Here, the “profile function” C(No, r) may (slightly) depend on the “root” of the geo-
metric sequence. The special role played by geometric sequences is probably due to the
strong relationship between the symmetric D-baker and the D-nary decomposition.

On the opposite, for the nonsymmetric map the fractal Weyl law seems accurate for
an “arbitrary” sequence N → ∞ [39], which was also the case for the nonlinear map
studied by [49].

5. A Toy Model

Let us explicitly compute the matrix elements of the two vertical blocks B1,h , B2,h in
(4.38), for the symmetric 3-baker. Both are matrices N × N/3, which we index by
0 ≤ k ≤ N − 1, 0 ≤ l ≤ N/3 − 1:
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(B1,h)k l =
{√

3(1 − e2iπ k−3l
N )−1(1 − ωk

3)/N if k �= 3l,
1/
√

3 if k = 3l,
,

(B2,h)k l = ω2k
3 (B1,h)k l , where ω3 = e2iπ/3.

(5.1)

The largest matrix elements are near the “tilted diagonals” k ≈ 3l, and decay as
1/|k − 3l| away from them (see Fig. 6 in [40]).

Being unable to rigorously analyze the spectrum of Bh , we replace this matrix by the
following simplified model:

˜Bh = ˜BN = [˜B1,h, 0, ˜B2,h],

(˜B1,h)k l =
{

1/
√

3 if l = +k/3,
0 if l �= +k/3, , (˜B2,h)k l = ω2k

3 (˜B1,h)k l ,
(5.2)

where +x, denotes the integer part of x . For N = 9, this gives

˜BN=9 = 1√
3

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 ω2

3 0 0
1 0 0 0 0 0 ω3 0 0
0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 ω2

3 0
0 1 0 0 0 0 0 ω3 0
0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 ω2

3
0 0 1 0 0 0 0 0 ω3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, ω3 = e2π i/3. (5.3)

The model has been obtained “by hand”, by replacing “lower order” terms in the
matrix Bh by 0, keeping only nonzero elements on the “tilted diagonals”, and replacing
(1 − e2π i(±1)/3)/(N (1 − e2iπ(±1)/N )) by 1.

The new matrix ˜Bh retains some qualitative features of Bh but there is no immediate
connection between their spectra: the “lower order” terms are not small enough for that,
and Bh cannot be considered as a “small perturbation” of ˜Bh .

The simplicity of the matrices ˜Bh will allow us to prove (in the case N = 3k , k ∈ N)
the fractal Weyl law which we could numerically observe for Bh (see Sect. 5.2). It is
interesting to notice that the simplified operator ˜Bh is in fact not associated with the
same classical relation as Bh :

Proposition 5.1. In the notations of Sect. 4.2, the quantum relation {˜Bh} is associated
with the weighted relation (˜B, μ̃) given by (3.12) and (3.13):

˜Bh ∈ I (˜B ′ ∪ ˜�sing, μ̃), where

˜�sing =
2
⋃

j=0

˜�sing,j, ˜�sing,j =
{(

q ′ = 0, q = j/3 ; p′, p
)

, p′, p ∈ I
}

.

Proof. In place of ˜Bh we will consider ˜Ah = FN ◦ ˜Bh , and apply Lemma 4.14. From
the structure of ˜Bh , the operator ˜Ah can obviously be split into ˜A1,h + ˜A2,h . We will
analyze the first component in detail, the analysis for the second one being similar. The
matrix 〈Qk |˜A1,h |Q j 〉 is nonzero in the vertical strip I1 × I, with I1 = [0, 1/3):

〈Qk |˜A1,h |Q j 〉 = 1lI1(Q j )√
3N

(

2
∑

�=0

e−2iπQk�

)

exp(−6iπN Qk Q j ).
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Like A1,h (see §4.5), this operator is of the form (4.35), with generating function
S(q ′, q) = −S1(q ′, q) = −3q ′q and discontinuous symbol

a(q ′, q) = 1lI1(q)
e−2iπq ′
√

3

sin(3πq ′)
sin(πq ′)

.

Forgetting about discontinuities, ˜A1,h is therefore associated with the graph

˜�S1 =
{

(q ′, p′ = −3q; q, p = −3q ′), : q ′ ∈ I, q ∈ I1
}

,

and the weight

μS1 = |a(q ′, q)|2 dq ′ dq = 1lI1(q)
sin2(3πq ′)
3 sin2(πq ′)

dq ′ dq.

After applying the transformation of Lemma 4.14, this leads to the graph

F−1
L (˜�S1) =

{

(q ′ = 3q, q ; p′, p = 3p′), : q ∈ I1, p′ ∈ I
} =

2
⋃

j=0

˜B1 j ,

and the weight

F−1
L∗ μS1 = 1lI1(q)

sin2(3πp′)
3 sin2(πp′)

dp′ dq.

Through the change of variable (q, p′) �→ (q, p), we see that this is the weight (3.13)
on the component ˜B1.

The discontinuities of a(q ′, q) only occur along the two segments {(q ′ ∈ I, q = 0)},
{(q ′ ∈ I, q = 1/3)}: they generate the singular Lagrangian

Dsing, j =
{

(

q ′ = 0, q = j

3
; p′ ∈ I, p ∈ I

)

}

, j = 0, 1,

which transforms under F−1
L into the components ˜�sing,0, ˜�sing,1.

Similarly, the second part of the matrix, ˜B2,h , is associated to the twisted graph ˜B ′
2

with weight μ̃|˜B2
and the two singular components ˜�sing,2, ˜�sing,0. &'

As explained in Sect. 3.4, the graph ˜B can be obtained by adjoining to each point
(ρ′; ρ) ∈ B the points (ρ′ + (0, 1/3); ρ) and (ρ′ + (0, 2/3); ρ). This “aliasing” is due to
the diffraction created by the sharp cutoff in the matrix ˜Bh , as opposed to the “smooth”
decay of coefficients in Bh . A similar aliasing was observed in [56] for the graph asso-
ciated with the unitary matrices A2k defined in (5.9): instead of quantizing the standard
2-baker (3.2), they are associated with a multivalued map obtained from it by aliasing.
This observation was obtained using the propagation of coherent states.

Both B and ˜B share the same forward trapped set˜�− = �− = C×I (see Section 3.3),
but the backwards trapped set of ˜B is easily shown to be ˜�+ = T

2, which drastically
differs from �+. This asymmetry between˜�− and˜�+ reflects the fact that, unlike B, the
relation ˜B is not time reversal symmetric.

The fact that ˜Bh is not associated with the relation B should not bother us too much
though. In the next section, we will give a more “formal” construction of the matrix ˜Bh ,
in the case where N is a power of 3 (this construction will also hold for any symmetric
D-baker, for N a power of D). We will show that this matrix naturally appears through
a “nonstandard” (Walsh) quantization of the open 3-baker relation B.
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5.1. Walsh quantization of the baker’s relation. The Walsh model of harmonic analysis
has been originally devoted to fast signal processing [29]. It has been used recently in
mathematics to obtain simpler (and provable) versions of statements of the usual har-
monic analysis — see [36] for an application in scattering theory and for pointers to
the recent literature. The major advantage of Walsh harmonic analysis is the possibility
to completely localize a wavepacket both in position and momentum: for our problem,
this has the effect of avoiding diffraction problems due to the discontinuities of the map,
which spoil the usual semiclassics [46]. Closer to our context, Meenakshisundaram
and Lakshminarayan recently used the Hadamard Fourier transform (which is related
with the Walsh transform we give below) to analyze the multifractal structure of some
eigenstates of the (unitary) quantum 2-baker Bh [33].

5.1.1. The quantum torus as a system of quantum Dits. We first fix the coefficient D ∈ N

(D ≥ 2) of the symmetric baker’s relation (3.8), and will consider in this section only
the inverse Planck’s constants of the form N = Dk for some k ∈ N. In this case, inte-
gers j ∈ ZDk = {0, . . . , Dk − 1} are in one-to-one correspondence with the words
ε = ε1ε2 · · · εk made of symbols (or “Dits”) ε� ∈ ZD:

ZDk � j =
k
∑

�=1

ε� Dk−�. (5.4)

The natural order for j ∈ ZDk corresponds to the lexicographic order for the symbolic
words {ε ∈ (ZD)

k}. This way, each position eigenstate |Q j 〉 of the basis (4.3) can be
associated with the unique symbolic sequence ε1ε2 · · · εk which gives its Dnary expan-
sion

Q j = j

N
= 0 · ε1ε2 · · · εk . (5.5)

Let us denote the canonical basis of C
D by {e0, e1, . . . , eD−1}. Then, each |Q j 〉 can be

written as
|Q j 〉 = eε1 ⊗ eε2 ⊗ · · · ⊗ eεk . (5.6)

Following [48], we denote each |Q j 〉 by |ε〉 = |ε1ε2 · · · εk〉 to emphasize the above
tensor product decomposition. This way, the quantum space H1

h is naturally identified
with the tensor product of k spaces C

D:

H1
h = (CD)1 ⊗ (CD)2 ⊗ · · · ⊗ (CD)k .

In the quantum computating framework, each space (CD)� is interpreted as a “quantum
Dit”, or “ quDit”, and the basis {|ε〉} is called the computational basis [35]. Viewed in
our toral phase space, the quDit (CD)� is associated with the scale D−� in the position
variable, so (CD)1 is called the “most significant quDit”.

5.1.2. Walsh Fourier transform. The discrete Fourier transform of (4.5) (with n = 1,
N = Dk) is the Fourier transform (in the sense of abstract harmonic analysis) on
the group ZDk . More explicitly, each row of FDk corresponds to the character j ′ �→
exp
(

− 2iπ j j ′/Dk
)

of ZDk . Using (5.4), the matrix elements can be factorized:

(FDk ) j j ′ = D−k/2 exp
(

− 2iπ
j j ′

Dk

)

= D−k/2
k
∏

�=1

exp
(

− 2iπ
ε�( j j ′)

D�

)

. (5.7)
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Notice that each εm( j j ′) can be easily expressed in terms of the symbols of j and j ′:

εm( j j ′) =
∑

�+�′=k+m

ε�( j) ε�′( j ′).

The Walsh Fourier transform is the Fourier transform on the group (ZD)
k . It can be

defined by keeping only the first factor on the right-hand side of (5.7): one obtains the
matrix

(Wk) j j ′ = D−k/2 exp
(

− 2iπ
ε1( j j ′)

D

)

=
k
∏

�=1

D−1/2 ω
−ε�( j)εk+1−�( j ′)
D , ωD = e2iπ/D .

(5.8)
Using the identification H1

h � (CD)⊗k , this definition can be recast as follows.

Lemma 5.2. The Walsh Fourier transform Wk acts simply on tensor product states:

Wk(v1 ⊗ · · · ⊗ vk) = FDvk ⊗ · · · ⊗ FDv1, v� ∈ C
D, � = 1, . . . , k.

Here FD = W1 is the discrete Fourier transform on C
D. As a result, Wk is a unitary

tranformation on H1
h.

The proof consists in a straightforward algebraic check.
As opposed to the discrete Fourier transform, the Walsh Fourier transform does not

entangle the different quDits: a tensor product state is sent to another tensor product
state.

Example. To illustrate this simple lemma we take D = 2, and consider the following
2k × 2k matrix, k ≥ 1:

A2k =[A0,2k , A1,2k

]

, (A j,2k )0≤n≤2k−1, 0≤m≤2k−1−1=
{

(−1) jn/
√

2, m= +n/2,
0, m �= +n/2,.

(5.9)
For instance when k = 2 we get

A22 = 1√
2

⎛

⎜

⎝

1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1

⎞

⎟

⎠
.

This sequence of matrices has been obtained as the “extreme” possibility among a family
of different quantizations of the (closed) 2-baker’s map [48]6, and its semiclassical prop-
erties were further studied in [56]. In a different context, this (unitary) matrix belongs
to the family of transfer matrices associated with the de Bruijn graph with 2k vertices
[55].

The transformation A2k acts as follows on tensor product states:

v1 ⊗ · · · ⊗ vk �−→ v2 ⊗ · · · ⊗ vk ⊗ F2v1.

6 We thank M. Saraceno for pointing out this interpretation to us.
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This implies that this matrix can be easily expressed in terms of the Walsh Fourier
transform (for D = 2):

A2k = Wk

(

Wk−1 0
0 Wk−1

)

, (5.10)

where the 2 × 2 block structure corresponds to the most significant (leftmost) qubit.
This expression exactly parallels the one defining the Balazs-Voros (unitary) quantum
baker [2]. Compared to this “usual” quantum baker, A2k is thus obtained by replacing
the discrete Fourier matrices F2k , F2k−1 by their Walsh analogues Wk , Wk−1.

The matrix A2k is unitary; as we will see in the next section, our toy model ˜Bh for
the quantum open 3-baker (see Eq. (5.2)) is its subunitary analogue.

5.2. Resonances for the Walsh quantization of the open baker relation. In this section
we set D = 3, and concentrate on the symmetric 3-baker (1.3). By analogy with the
example in the last section, we modify the quantization (4.38,5.1), in the case N = 3k , by
replacing the discrete Fourier matrices by their Walsh analogues. The resulting operator
exactly coincides with the toy model (5.2) introduced in the beginning of this section:

Lemma 5.3. In the case N = 3k , the matrix ˜Bh defined in (5.2) can be rewritten in terms
of the Walsh Fourier transforms as follows:

˜Bh = W ∗
k

⎛

⎝

Wk−1 0 0
0 0 0
0 0 Wk−1

⎞

⎠ .

We omit the simple algebraic proof. If we define the “truncated” inverse Fourier
matrix

˜F∗
3

def= 1√
3

⎛

⎝

1 0 1
1 0 ω2

3
1 0 ω3

⎞

⎠, (5.11)

the toy model ˜Bh acts as follows on tensor product states:

˜Bh(v1 ⊗ · · · ⊗ vk) = v2 ⊗ v3 ⊗ · · · ⊗ ˜F∗
3 v1. (5.12)

This form is particularly nice to compute the spectrum of ˜Bh . We start by computing
the spectrum of its power (˜Bh)

k , which is enough to obtain the radial distribution of
resonances (that is, the distribution of resonance widths).

Proposition 5.4. Let λ±, |λ−| < |λ+|, be the eigenvalues of the matrix


3 = 1√
3

(

1 1
1 ω3

)

.

The non-zero eigenvalues of (˜Bh)
k (for N = (2πh)−1 = 3k) are given by λk−p

+ λ
p
−,

0 ≤ p ≤ k, each occurring with multiplicity
(k

p

)

. From this we get the radial distribution

of the eigenvalues of ˜Bh (counted with multiplicities):

∀ r ∈ [0, 1], 1
2k #

{

λ ∈ Spec(˜Bh) : |λ| ≥ r
} k→∞−−−→ C(r),

C(r) =
{

1, r < | det
3| 1
2

0, r > | det
3| 1
2 .

(5.13)
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Hence the nontrivial resonances accumulate near the circle of radiusr0(˜B) = | det
3| 1
2 .

This proposition gives Theorem 1, where ˜B is the baker’s relation described in Prop-
osition 5.1, ˜Bh the matrices (5.2), and Planck’s constants are taken along the sequence
{hk = (2π × 3k)−1, k ∈ N}.
Proof. From the expression (5.12), we see that

(˜Bh)
k(v1 ⊗ · · · ⊗ vk) = ˜F∗

3 v1 ⊗ · · · ⊗ ˜F∗
3 vk .

That means that (˜Bh)
k = (˜F∗

3 )
⊗k , so one eigenbasis is obtained by taking the tensor

products of eigenstates of ˜F∗
3 , and the eigenvalues of (˜Bh)

k are the corresponding prod-
ucts of eigenvalues of ˜F∗

3 . The nonzero eigenvalues λ+, λ− of ˜F∗
3 are the eigenvalues

of 
3, so the first part of the proposition follows. To prove the second part, notice that
each eigenvalue λk−p

+ λ
p
− of ˜Bk

h corresponds to an eigenvalue (possibly in the generalized

sense) of modulus |λ1−p/k
+ λ

p/k
− | of ˜Bh . Therefore, we are able to count eigenvalues of

˜Bh (with multiplicities) in a given annulus.
Let H(t) denote the Heaviside function, H(t) = 0 for t < 0, and H(t) = 1 otherwise.

Then, for any 0 < r < 1,

#
{

λ ∈ Spec(˜Bh) : |λ| ≥ r
} =

k
∑

p=0

H(|λ+|1−p/k |λ−|p/k − r)

(

k

p

)

=
k
∑

p=0

H(−p/k + 1/2 + ρ)

(

k

p

)

, ρ = log(|λ−λ+| 1
2 /r)

log(|λ+|/|λ−|) .

Using Stirling’s formula, one easily gets in the limit k →∞:

1

2k

k
∑

p=0

H(−p/k + 1/2 + ρ)

(

k

p

)

∼
√

2k

π

∫ ρ

−∞
e−2kx2

dx → H(ρ).

This expression shows that the distribution of resonances is semiclassically dominated
by the degrees |p − k/2| = O(k1/2), and proves the second part of the proposition. &'

The explicit eigenvalues are λ± = 1+i
√

3
4
√

3
±
√

11−i3
√

3
24 , with approximate values

λ+ ≈ 0.8390 + i0.0942, |λ+| ≈ 0.8443, λ− ≈ −0.5504 + i4058, |λ−| ≈ 0.6838.

The geometric mean of their moduli is r0(˜Bh) = |λ−λ+|1/2 = √| det
3| = 3−1/4.
We need to analyze the spectrum of ˜Bh more precisely to show that the distribution

of resonances is asymptotically uniform with respect to the angular variable.

Proposition 5.5. Let h = (2π3k)−1. As a set, the nontrivial spectrum of ˜Bh is given by

{λ+} ∪ {λ−} ∪
⋃

ωk=1

{ωλ1−p/k
+ λ

p/k
− : 1 ≤ p ≤ k − 1}.
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For each p �= 0, k, the k eigenvalues asymptotically have the same degeneracy 1
k

(k
p

)

,
which shows that their distribution is uniform in the angular variable. Therefore, for
any continuous function f ∈ C(D(0, 1)) we have (counting multiplicities in the LHS):

1

2k

∑

0 �=λ∈Spec(˜Bh)

f (λ)
k→∞−−−→

∫ 2π

0
f (|λ−λ+| 1

2 , θ)
dθ

2π
.

Proof. To classify the nontrivial spectrum of ˜Bh , we will use the eigenvectors v± of ˜F∗
3

associated with the eigenvalues λ±. Call

{η = η1η2 · · · ηk : η� ∈ {±}} � (Z2)
k

the set of binary sequences of length k. The number of symbols η� = − in the sequence
η is called the degree of η. The cyclic shift τ acts on these sequences as τ(η1 · · · ηk) =
η2 · · · ηkη1. The shift allows us to partition (Z2)

k into periodic orbits, each orbit O =
{

η, τ (η), . . . , τ �O−1(η)
}

being of (primitive) period �O = �η. Since τ k = id, the prim-
itive period must divide k. We call deg(O) the common degree of the elements of O and
observe that

k | �O deg(O). (5.14)

To each sequence η we associate the state |η〉 def= vη1 ⊗ vη2 ⊗ · · · ⊗ vηk , which is

obviously an eigenstate of (˜Bh)
k , with eigenvalue λk−deg(η)

+ λ
deg(η)
− . These 2k states form

an independent family, which span the nontrivial eigenspaces of ˜Bh . This operator acts
very simply on these states:

∀η ∈ (Z2)
k, ˜Bh |η〉 = λη1 |τ(η)〉.

Hence, for any orbit O, ˜Bh leaves invariant the �O-dimensional subspace VO
def= span {|η〉, η ∈ O} . To compute the spectrum of ˜Bh |VO we first observe that it is

contained in the set of kth roots of λk−deg(O)
+ λ

deg(O)
− , which in view of (5.14) is equal to

SO
def=
{

ω
j
�O λ

1−deg(O)/k
+ λ

deg(O)/k
− , j = 0, . . . , �O − 1

}

.

We claim that Spec(˜Bh |VO ) = SO (clearly with no degeneracies). In fact, let 
O :
VO → VO be defined by 
O|τ �(η)〉 = ω−��O |τ �(η)〉, for a choice of η ∈ O. This
operator is invertible on VO. By a verification on basis elements,

˜Bh |VO ◦ 
O = ω�O 
O ◦ ˜Bh |VO ,

and hence if λ ∈ Spec(˜Bh |VO ) then ω j
�Oλ ∈ Spec(˜Bh |VO ) for any j .

Since O �= O′ =⇒ VO ∩VO′ = {0}, enumerating the orbits decomposition of (Z2)
k

yields the full nontrivial spectrum of ˜Bh . In spite of the large degeneracies, this nontrivial
spectrum does not contain any Jordan block.

The degree p = 0 corresponds to the unique orbit O = {η = + + · · ·+}, so the
eigenvalue λ+ is simple. Similarly, the degree p = k leads to the simple eigenvalue λ−.

For any degree 1 ≤ p ≤ k − 1, call g = gcd(k, p). The sequences of degree p
will take all possible periods �η = k/�, where � ∈ N, �|g. We show below that, in the
semiclassical limit, the huge majority of the sequences of any degree p �= 0, k have
primitive period k.
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Lemma 5.6. There exists C > 0, K > 0 s.t., for any k ≥ K and any degree 1 ≤ p ≤
k − 1,

#
{

η ∈ (Z2)
k : deg(η) = p, �η < k

}

#
{

η ∈ (Z2)k : deg(η) = p
} ≤ C

log k

k
.

Proof. We still use g = gcd(k, p).
If g = 1, then all orbits of degree p are of primitive period k.
If g > 1, there exists � > 1, �|g. For any P prime divisor of �, any sequence of prim-

itive period �η = k/� is also of (nonnecessarily primitive) period k/P . Any sequence of
degree p and (nonnecessarily primitive) period k/P can be seen as the P repetitions of
a sequence of k/P bits, among which p/P take the value (−). Therefore, the number
of such sequences is exactly

(k/P
p/P

)

. As a consequence, we have

#
{

η ∈ (Z2)
k : deg(η) = p, �η < k

}

#
{

η ∈ (Z2)k : deg(η) = p
} ≤

∑

P prime, P|g

(k/P
p/P

)

(k
p

)
. (5.15)

We will now estimate each term in the above sum. From the symmetry
(k

p

) = ( k
k−p

)

, we

can assume p ≤ k/2. Expanding the coefficient
(k

p

)

into

(

k

p

)

= k(k − 1) · · · (k − p + 1)

p(p − 1) · · · 1 ,

we notice that both the numerator and the denominator contain exactly p/P factors
which are multiples of P . Their ratio gives

(k/P
p/P

)

, while the ratio of the remaining
factors is

(k
p

)

(k/P
p/P

)
= (k − 1) · · · (k − P + 1)(k − P − 1) · · · (k − p + 1)

(p − 1) · · · (p − P + 1)(p − P − 1) · · · 1

≥ k − p + 1

1
≥ k

2
+ 1.

Here we used the fact that each factor (k − m)/(p −m) > 1, 0 ≤ m ≤ p − 2, and only
kept explicit the last factor. The last inequality comes from p ≤ k/2.

We have obtained a uniform upper bound for each term in the sum of (5.15). By
standard arguments, there exists K , ˜C > 0 s.t. the number of prime factors of any
k ≥ K is ≤ ˜C log k, so the number of terms in the sum is ≤ ˜C log k. As a result, (5.15)
is bounded from above by ˜C log k/(k + 2), which proves the lemma. &'

This lemma shows that the orbits of period �O < k have a negligible contri-
bution to the asymptotic density of resonances. We can therefore act as if, for any
1 ≤ p ≤ k − 1, each orbit of degree p had period k, leading to the k eigenvalues
{

ω
j
k λ

1−p/k
+ λ

p/k
− , j = 0, . . . , k − 1

}

. In the semiclassical limit, these k eigenvalues are

uniformly distributed on the circle of radius |λ1−p/k
+ λ

p/k
− |, and each of them has multi-

plicity 1
k

(k
p

)

. This shows that the asymptotic resonance distribution is circular-symmetric,
with the radial distribution described in Proposition 5.4. &'
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Remark 5.1. Several features of the (nontrivial) spectrum of ˜Bh are very different from
what one expects for a random subunitary matrix of size 2k × 2k : the (logarithms of the)
resonances form a regular lattice, most eigenvalues are highly degenerate, and the radial
density is a delta function at r0(˜B). Actually, the only generic feature seems to be the
global fractal scaling of the Weyl law, and the uniform angular distribution.

Remark 5.2. The radial density of resonances is governed by r0(˜B) = √| det
3|, which
seems to depend on the subtleties of the quantization. As an example of this fact, in
Section 6 we will consider the open baker’s map with D = 4, which we call B, obtained
by keeping only the second and third strips. It has Lyapounov exponent log 4, and the
Cantor set C (see §3.3) has dimension ν = log 2/log 4 = 1/2. The open map B ′ obtained
by removing the first and third strips has the same characteristics. However, if we Walsh-
quantize these two maps, the spectra of ˜Bh and ˜B ′

h are very different. These spectra are
obtained from the eigenvalues of different 2 × 2 blocks of the inverse Fourier matrix
F∗

4 . The first map leads to the block


4 = 1

2

(

i −1
−1 1

)

,

with two nonzero eigenvalues λ± of different moduli, so the spectrum of ˜Bh will satisfy
the fractal Weyl law, and be concentrated around the circle of radius

r0(˜B) =
√| det
4| = 2−3/4.

In an opposite way, the second map leads to the singular block


′
4 =

1

2

(

1 1
1 1

)

.

The nontrivial spectrum of ˜B ′
h then reduces to a simple eigenvalue λ+ = 1. In that case,

the Weyl law is singular, corresponding to the profile function C(r) ≡ 0. This qualitative
difference between both spectra cannot be explained from the classical maps, but is due
to the phases in the matrix elements of the quantum maps.

6. Conductance in the Walsh Model

6.1. Quantum transport. In this section, we consider open baker’s relations for which
the “opening” consists in two disjoint intervals, which are supposed to represent two
“leads” connecting a quantum dot to the outside world. We will prove Theorem 2 in this
setting: (1.1) in §6.2 and (1.2) in §6.3.

The baker’s relations defined in §3.3 can all be seen as truncations of invertible maps
on T

2. More precisely there exists an invertible baker’s map, κ : T
2 → T

2, such that
the graph B = B1 ∪ B2 of the open baker’s map is

B = �κ ∩ {(q, p) : q ∈ I1 ∪ I2 = I, p ∈ I} .
For admissible values of N , one can quantize the closed map κ into a unitary transforma-
tion Uh = Uκ,h on H1

h by straightforwardly generalizing the method of [2]. Multiplying
this unitary operator by the quantum projector �I = ∑Q j∈I |Q j 〉〈Q j |, we obtain the
quantum open baker’s map (4.38)

Bh = Uκ,h �I .
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To obtain an agreement with the notations of §2.4.3, we can interpret the set I = I1 ∪ I2
as the “wall” of the quantum dot, while the complementary interval L = I\ I represents
the “openings” of the dot, perfectly connected with the “leads”. In the previous sections,
we studied the resonances, that is, the eigenvalues of Bh = Uκ,h�I (or of ˜Bh when
choosing the Walsh quantization). Now, we want to study the “transport” through the
dot, using the formalism presented in §2.4.3. We assume that the opening L splits into
two disjoint “leads” L = L1 ∪ L2, and we study the transmission matrix from lead L1
to lead L2 (for simplicity, both leads will have the same width). This matrix is obtained
by decomposing the scattering matrix (2.15)

S̃(ϑ) = �L

∑

n≥0

(

eiϑ Uh �I
)n

eiϑUh �L

into 4 blocks, according to the decomposition �L = �L1 ⊕ �L2 . The transmission
matrix from L1 to L2 is defined as the block

t (ϑ) =
∑

n≥1

einϑ �L2 Uh (�I Uh)
n−1�L1

def=
∑

n≥1

einϑ tn . (6.1)

Because �L1 and �L2 have the same rank M = N |L1|, t (ϑ) is a square matrix of
size M . According to Landauer’s theory of coherent transport, each eigenvalue Ti (ϑ)

of the matrix t∗(ϑ)t (ϑ) corresponds to a “transmission channel”. The dimensionless
conductance of the system is then given by the sum over these transmission eigenvalues:

g(ϑ) = tr
(

t∗(ϑ)t (ϑ)
)

. (6.2)

A transmission channel is “classical” if the eigenvalue Ti is very close to unity (perfect
transmission) or close to zero (perfect reflection). The intermediate values correspond
to the “nonclassical channels”, the importance of which is reflected in the noise power

P(ϑ) = tr
(

t∗t (ϑ)
(

I d − t∗t (ϑ)
)

)

, or the Fano factor F(ϑ) = P(ϑ)

g(ϑ)
. (6.3)

In general it may be necessary to perform the “ensemble averaging” (averaging over
ϑ) to obtain significant results [57]. However, for the model we will study below, both
conductance and noise power will depend very little on ϑ , so this averaging will not be
necessary. To alleviate notations we will suppress the dependence in ϑ in the transmis-
sion matrix t .

Our model. In the remainder of this section, we will compute the quantities character-
izing the transport through the “dot” when Uh is a Walsh-quantized baker’s map similar
to the operator (5.9), but with D = 4 instead of D = 2. The sequence of values of h
consequently is given by

2πhk = 4−k, k = 1, 2, · · · .
We will choose the two leads L1 = [0, 1/4] and L2 = [3/4, 1]: this way, the projectors
�Li and �I = I d −�L1 −�L2 can be represented as tensor product operators:

�L1 = π0 ⊗ I d4 ⊗ · · · ⊗ I d4,

�L2 = π3 ⊗ I d4 ⊗ · · · ⊗ I d4,

�I = πI ⊗ I d4 ⊗ · · · ⊗ I d4,
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where πi = |ei 〉 〈ei | is a rank-1 orthogonal projector acting on C
4, and we note πI =

π1 ⊕ π2.
The “inside” propagator for this model, namely ˜Bh = Uh�I , is the first one among the

two quantum maps mentioned in Remark 5.2: its nontrivial spectrum satisfies the fractal
Weyl law with exponent ν = 1

2 , and is concentrated near the radius r0(˜B) = 2−3/4.
The number of scattering channels in each lead is the rank of �L1 (equal to that of

�L2 ). It is given by 1
4 of the total dimension, and we denote it by

M(h) = 1

4
(2πh)−1 = 4k−1, h ∈ {hk}. (6.4)

The number of channels is “macroscopic”, and each channel is “fully coupled” to the
leads. We are therefore in a very nonperturbative régime, where resonances have no
memory at all of the eigenvalues of the closed (unitary) system.

6.2. Conductance. We will crucially use the fact that all operators under consideration
act nicely on the tensor product structure H1

h = (C4)⊗k , that is, they do not entangle the
quDits. It is then suitable to compute the trace of t∗t in a basis adapted to this tensor
product, and we naturally choose the computational (or position) basis. The conductance
is then given by

tr(t∗t) =
∑

Q j∈L1

〈Q j |t∗t |Q j 〉 =
4k−1−1
∑

j=0

‖t |Q j 〉‖2.

Let us consider an arbitrary j = ε1ε2 · · · εk with ε1 = 0, so that 0 ≤ j ≤ 4k−1 − 1.
Using (6.1) we write

t |Q j 〉 =
∑

n≥1

einϑ �L2 Uh (�I Uh)
n−1�L1 |Q j 〉 =

∑

n≥1

einϑ tn|Q j 〉, (6.5)

so that

‖t |Q j 〉‖2 =
∑

m,n≥0

ei(n−m)ϑ 〈Q j |t∗m tn|Q j 〉.

From now on, we replace the notation |Q j 〉, j ∈ [0, 4k−1 −1], by the symbolic notation
|ε〉, where the sequence ε = 0 ε2 · · · εk corresponds to j .

6.2.1. Classical transmission channels. To understand the action of tn on |ε〉 we notice
that �I Uh acts on tensor products as

�I Uh(v1 ⊗ · · · ⊗ vk) = πI v2 ⊗ · · · ⊗ vk ⊗ F∗
4 v1.

If n < k, we obtain

tn|ε〉 = π3eεn+1 ⊗ eεn+2 ⊗ · · · ek ⊗ F∗
4 e0 ⊗ F∗

4πI eε2 ⊗ · · · ⊗ F∗
4πI eεn , (6.6)

frow which we draw the
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Lemma 6.1. Consider a sequence ε = 0 ε2ε3 · · · εk , and assume that there exists an
index 2 ≤ � ≤ k such that ε� ∈ {0, 3}. Let �0 be the smallest such index. Then

‖t |ε〉‖ =
{

0 if ε�0 = 0,
1 if ε�0 = 3.

This shows that |ε〉 is a classical transmission channel.

Proof. For any 1 ≤ n ≤ �0−2, εn+1 ∈ {1, 2} by assumption. Hence the first quDit on the
right-hand side of (6.6) vanishes and tn|ε〉 = 0. Furthermore, the state (�I Uh)

�0−1|ε〉
admits as first quDit πI eε�0 = 0, so that tn|ε〉 = 0 for any n ≥ �0. The only remaining
term in (6.5) is t�0−1|ε〉:
• if ε�0 = 0, the first quDit of that term is π3eε�0 = 0, so t�0−1|ε〉 = t |ε〉 = 0.
• if ε� = 3, t�0−1|ε〉 = eε3 ⊗ eε�0+1 ⊗ · · · ⊗ F∗

4 e0 ⊗ F∗
4 eε2 ⊗ · · ·F∗

4 eε�0−1 . Since F∗
4

is unitary, ‖t�0−1|ε〉‖ = ‖t |ε〉‖ = 1. &'
The number of classical channels discussed in Lemma 6.1 is easy to compute: it is
obtained by removing from the set [0, 4k−1 − 1] ≡ {ε2 · · · εk ∈ (Z4)

k−1
}

the sequences
such that ε� ∈ {1, 2} for all 2 ≤ � ≤ k (these will be called “nonclassical sequences”).
The number of the latter is 2k−1, so the number of classical channels is 4k−1 − 2k−1.
Among them, half are fully reflected, t |ε〉 = 0, and half are fully transmitted, ‖t |ε〉‖ = 1.
Hence the conductance through these classical channels is

trcl(t
∗t) = 4k−1 − 2k−1

2
.

Remark 6.1. Such classical channels are mentioned in the analysis of [57] for the
transmission through an open kicked rotator. They sit in the phase space regions above
the lead L1 which are either sent back to L1, or sent to L2 through the classical dynamics,
in a time smaller than the Ehrenfest time TEhr = log N/(log 4) = k. For our baker’s
map B, these regions are vertical strips of widths 4−�, � = 2, . . . , k which exit to L1 or
L2 at time �. The particularity of the Walsh quantization is the exact full transmission
(or reflection) through these channels.

6.2.2. Nonclassical transmission channels. The nonclassical channels are necessarily
combinations of the position states |ε〉 with ε� ∈ {1, 2} for all 2 ≤ � ≤ k (“nonclassical”
sequences or states). The associated positions 4Q j = 0 · ε2ε3 · · · εk lie close to the
Cantor set C , such that �− = C × I is the set of points never escaping through B or ˜B
(see Eq. (3.6)).

For such a state |ε〉, the term (6.6) vanishes for all n < k, due to the first quDit
πI eεn+1 = 0. That state therefore accomplishes k “unitary bounces” inside the cavity,
before it starts to decay out of it. We first consider the terms tk+m |ε〉 for 0 ≤ m < k:

tk |ε〉 = (e3/2)⊗ F∗
4 eε2 ⊗ F∗

4 eε3 · · · F∗
4 eεk , while for 0 < m < k,

tk+m |ε〉 = π3F∗
4 eεm+1 ⊗ F∗

4 eεm+2 · · · F∗
4 eεk ⊗ F∗

4 (e3/2)⊗F∗
4πI F∗

4 eε2 · · ·F∗
4πI F∗

4 eεm .

(6.7)

An explicit computation shows that

‖π3F∗
4 e j‖2 = 1

4
, ‖πI F∗

4 e j‖2 = 1

2
, j = 0, · · · , 3,
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so that

‖tk+m |ε〉‖2 = 1

4 × 2m
, 0 ≤ m ≤ k − 1. (6.8)

For larger times n = pk + m, p > 1, m ∈ [0, k − 1], the state tn|ε〉 is obtained from
(6.7) by inserting the operator (πI F∗

4 )
p−1 in front of each quDit eε� . Since πI F∗

4 has
a spectral radius |λ+| < 1, the norms of these states will decay exponentially fast as
n →∞. This argument gives the following

Lemma 6.2. For any 0 < � < 1, there exists C > 0 such that, for any k ≥ 1 and any
nonclassical state |ε〉, we have

∑

m>+�k,
‖tk+m |ε〉‖ ≤ C 2−�k/2.

Neglecting errors of order O(2−�k/2), we just need to compute ‖∑+�k,
m=0 tk+m |ε〉‖2.

From (6.8) we already know the diagonal terms:

+�k,
∑

m=0

‖tk+m |ε〉‖2 = 1

2
+ O(2−�k). (6.9)

In the next lemma we will show that the contribution to the conductance of the nondi-
agonal terms is negligible in the semiclassical limit.

Lemma 6.3. Let 0 < � ≤ 1/5. There exists C = C(�) > 0 such that for any k ≥ 1,

#
{

nonclassical ε, ∃m,m′ ∈ [0,�k], 〈ε|t∗k+mtk+m′ |ε〉 �= 0
}

# {nonclassical ε} ≤ C 2−k/2.

In other words, in the semiclassical limit, a “generic” nonclassical state |ε〉will satisfy

∀m,m′ ∈ [0,�k], m �= m′ =⇒ 〈ε|t∗k+mtk+m′ |ε〉 = 0.

Proof. Take an arbitrary nonclassical state |ε〉, and any m,m′ ∈ [0,�k], m > m′. From
(6.7), the first (k − m) quDits of the states tk+m |ε〉 and tk+m′ |ε〉) are respectively

π3F∗
4 eεm+1 ⊗ F∗

4 eεm+2 ⊗ · · · ⊗ F∗
4 eεk ,

π3F∗
4 eεm′+1

⊗ F∗
4 eεm′+2

⊗ · · · ⊗ F∗
4 eεk+m′−m

.

Due to the unitarity of F∗
4 and the fact that the ei form an orthonormal basis of C

4,
the two states tk+m |ε〉, tk+m′ |ε〉 will be orthogonal if the sequences εm+2 · · · εk and
εm′+2 · · · εk+m′−m are not equal. Since we took m < �k, these two sequences are subse-
quences of length (k −m − 1) ≥ (1−�)k of the sequence ε, shifted from one another
by (m − m′) steps.

If the two subsequences are equal, then all subsequences

εk−(p+1)�+1 · · · εk−p�, p = 0, · · · , R,

�
def= (m − m′), R

def=
[k − m − 1

�

]

,

have to be equal to each other. Hence ε contains a subsequence of length (R +1)�which
is periodic with period �.
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Let us count the number of such sequences ε. Once we have fixed the � bits
εk−�+1 · · · εk , the remaining free bits are ε2 · · · εk−(R+1)�. The number #(m,m′) of
such sequences is therefore 2� × 2k−(R+1)�−1. From the definition of R, we get

#(m,m′) < 22m−m′ ≤ 22�k .

Taking into account all possible pairs (m,m′), we obtain the following bound for the
number of nongeneric nonclassical channels:

#
{

nonclassical ε, ∃m,m′, 0 ≤ m′ < m ≤ �k, 〈ε|t∗k+mtk+m′ |ε〉 �= 0
} ≤ (�k)2 22�k .

Since # {nonclassical ε} = 2k−1 and 2� ≤ 2/5, we have proven the lemma. &'
From Lemma 6.2 and Eq. (6.9), a generic nonclassical sequence ε will satisfy

‖t |ε〉‖2 = 1
2 + O(2−�k/2). For a nongeneric nonclassical sequence ε, we use the simple

bound ‖t |ε〉‖2 ≤ 1. As a result, we get the following estimate for the “nonclassical
conductance”:

trnoncl(t
∗t) =

∑

nonclassical
generic

‖t |ε〉‖2 +
∑

nonclassical
nongeneric

‖t |ε〉‖2 = 2k−1

2

(

1 + O(2−�k/2)
)

. (6.10)

Adding this to the “classical conductance”, we get the full conductance

g(ϑ) = tr(t∗t (ϑ)) = 4k−1

2
+ O(2(1−�/2)k). (6.11)

The implied constant is independent of ϑ ∈ [0, 2π) and 0 < � ≤ 1/5. The number of
scattering channels in our model is given by M(h) = 4k−1, see (6.4), so we have proven
(1.1) in Theorem 2.

6.3. Noise power. The conductance corresponds to the first moment of the distribution
of transmission eigenvalues. It can not distinguish between a purely classical transport
(Ti ∈ {0, 1}) and a quantum one (some Ti take intermediate values). To do so, we need
to compute the second moment of these eigenvalues, that is, the trace

tr((t∗t)2) =
∑

Q j∈L1

‖t∗t |Q j 〉‖2,

or equivalently the noise power (6.3). As in the previous section, we split the sum on
the right-hand side between the classical and nonclassical states |Q j 〉 =|ε〉.

Lemma 6.1 shows that half the classical states are in the kernel of t∗t , half in the
eigenspace of t∗t associated with the eigenvalue 1 (full transmission). As a consequence,
the trace over the classical states takes the value

trcl((t
∗t)2) = 4k−1 − 2k−1

2
.

Obviously, the classical states are noiseless.
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The contribution of the nonclassical states is more delicate. According to Lemma 6.2,
for any nonclassical state |ε〉 we have (for any 0 < � < 1)

t |ε〉 =
+�k,
∑

m=0

einϑ tk+m |ε〉 + O(2−�k/2).

We now apply to each state tk+m |ε〉, m ≤ �k, the adjoint operator

t∗ =
∑

n≥0

e−inϑ t∗n . (6.12)

According to (6.7), the state tk+m |ε〉 has the form

tk+m |ε〉 = e3 ⊗ F∗
4πIw2 ⊗ · · · ⊗ F∗

4πIwk,

for some explicit set of quDits w� ∈ C
4, 2 ≤ � ≤ k. From the expressions

t∗n = �L1 U∗
h (�I U∗

h )
n−1�L2 ,

�I U∗
h (v1 ⊗ · · · ⊗ vk) = πI F4vk ⊗ v1 ⊗ · · · ⊗ vk−1,

we can easily write the action of the operators t∗n on tk+m |ε〉:
if n < k, then t∗n tk+m |ε〉 = π0πIwk−n+1 ⊗ . . . = 0.

The first non-trivial case of n = k is given by

t∗k tk+m |ε〉 = π0F4e3 ⊗ πIw2 ⊗ · · ·πIwk,

while for any 1 ≤ m′ ≤ k − 1, we have

|ψm′,m(ε)〉 def= t∗k+m′ tk+m |ε〉
= π0F4πIwk−m′+1 ⊗ πI F4πIwk−m′+2 ⊗ · · ·πI F4πIwk ⊗ πI F4e3

⊗πIw2 ⊗ · · ·πIwk−m′ .

The above state is obtained by first evolving |ε〉 k +m times through the “inside propaga-
tor” Uh�I , then projecting on the “output lead” L2, then evolving backwards (through
�I U∗

h ) k + m′ times, and finally projecting on the “input lead” L1.
As for the case of the operator t , we see that by increasing m′ we increase the number

of quDits on which we apply the operator πI F4. Therefore, for any index m, the norm
of |ψm′,m(ε)〉 will decrease exponentially fast with m′. As in Lemma 6.2, we truncate
the expansion (6.12) to the range m′ ≤ �k, thereby omitting a remainder O(2−�k/2).

We now replace the quDits w� by their explicit values, which depend on the index
m. We introduce the following notations for operators on C

4:

Pαβ def= παF4πβF∗
4 , with α, β ∈ {0, I, 3}.

The explicit decomposition of |ψm′,m(ε)〉 depends on the sign of �
def= m − m′, and on

whether m,m′ = 0 or not (we will often omit to indicate the dependence in ε):
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• for m′ = m,

|ψ0,0〉 = P03e0 ⊗ eε2 ⊗ · · · eεk ,

|ψm,m〉 = P0I e0 ⊗ PI I eε2 ⊗ · · ·PI I eεm ⊗ PI 3eεm+1 ⊗ eεm+2 ⊗ · · · eεk . (6.13)

• for m = m′ +�, � > 0,

|ψ0,�〉 =P03eε�+1⊗ eε�+2 ⊗· · · · · · eεk ⊗ πI F∗
4 e0⊗ πI F∗

4 eε2⊗ · · ·πI F∗
4 eε�,

|ψm′,m′+�〉 = P0I eε�+1 ⊗ PI I eε�+2 ⊗ · · ·PI I eε�+m′ ⊗ PI 3eε�+m′+1

⊗eε�+m′+2
⊗ · · · eεk ⊗ πI F∗

4 e0 ⊗ πI F∗
4 eε2 ⊗ · · ·πI F∗

4 eε�. (6.14)

• for m = m′ +�, � < 0,

|ψ|�|,0〉 = π0F4eεk−|�|+1⊗πI F4eεk−|�|+2⊗· · ·πI F4eεk ⊗PI 3e0⊗ eε2⊗· · · eεk−|�| ,

|ψm+|�|,m〉 = π0F4eεk−|�|+1 ⊗ πI F4eεk−|�|+2 ⊗ · · ·πI F4eεk ⊗ PI I e0

⊗PI I eε2 ⊗ · · · ⊗ PI I eεm ⊗ PI 3eεm+1 ⊗ eεm+2 ⊗ · · · eεk−|�| . (6.15)

We notice that each of these states contains subfactors eεm+2 ⊗ · · · ⊗ eεk if m ≥ m′,
and eεm+2 ⊗ · · · ⊗ eεk+m−m′ if m < m′. Compared to its position in the tensor product
expansion of |ε〉, this subfactor is shifted by m′ −m = −� steps. From this remark, and
using similar methods as for Lemma 6.3, we can easily prove the following

Lemma 6.4. Let 0 < � < 1/6 and for any pair of indices (m,m′), denote� = m−m′.
There exists C = C(�) > 0 such that

#
{

nonclass.ε :∃m1,m′
1,m2,m′

2∈ [0,�k], �1 �=�2,〈ψm′
1,m1

|ψm′
2,m2

〉 �=0
}

# {nonclass.ε} ≤C2−Ck .

In other words, for a generic nonclassical sequence ε, any two states |ψm′
1,m1

(ε)〉,
|ψm′

2,m2
(ε)〉 with mi , m′

i ≤ �k will be orthogonal to each other if �1 �= �2, that is, if
the shifts between their respective forward and backward evolution times are different.

From now on we assume that ε is a generic nonclassical sequence in the sense of the
above lemma. If we group the states |ψm+�,m(ε)〉 into

|��(ε)〉 def=
∑

0≤m,m′≤�k
m=m′+�

|ψm+�,m(ε)〉,

then genericity implies that 〈��(ε)|��′(ε)〉 = 0 if� �= �′. The square-norm of t∗t |ε〉
is then given by

‖t∗t |ε〉‖2 =
∑

|�|≤�k

‖��(ε)‖2 + O(2−�k/2). (6.16)

As we will see, no further simplification occurs in this expression, meaning that two
different states |ψm′,m〉 with the same � will generally interfere with each other. Our
remaining task consists in computing each square norm on the right-hand side of (6.16).
We will use the explicit tensor decompositions (6.13-6.15), and notice that the overlap
between two states |ψm′,m〉 is the product of the overlaps of their tensor factors. We split
the lengthy, yet straightforward computation according to the value of �.
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6.3.1. Norm of �0. We have

‖�0‖2 =
∑

m≤�k

‖ψm,m‖2 + 2
∑

0≤m<n≤�k

Re〈ψm,m |ψn,n〉. (6.17)

The successive diagonal terms take the values

‖ψ0,0‖2 = ‖P03e0‖2 = 1

16
, while for m ≥ 1,

‖ψm,m‖2 = ‖P0I e0‖2

(

m
∏

�=2

‖PI I eε�‖2

)

‖PI 3eεm+1‖2 = 1

4

(

3

8

)m−1 1

8
.

The sum over the diagonal terms is therefore

∑

m≤�k

‖ψm,m‖2 = 9

80
+ O((3/8)�k).

The nondiagonal terms read, for any 0 < n ≤ �k,

〈ψ0,0|ψn,n〉 = 〈P03e0,P0I e0〉
(

n
∏

�=2

〈eε� ,PI I eε�〉
)

〈eεn+1 ,PI 3eεn+1〉 =
1

8

(

1

2

)n−1 1

4
,

and for 0 < m < n ≤ �k, one similarly gets

〈ψm,m |ψn,n〉 = 1

4

(

3

8

)m−1 1 ± i

16

(

1

2

)n−m−1 1

4
.

The sign is + if εm+1 = 1, and − if εm+1 = 2. Adding up the real parts of these
off-diagonal terms, we obtain

2
∑

0≤m<n≤�k

Re〈ψm,m |ψn,n〉 = 3

20
+ O(2−�k).

We notice that this contribution is of the same order as the diagonal one. Summing the
diagonal and nondiagonal parts yields the norm

‖�0‖2 = 21

80
+ O(2−�k). (6.18)

6.3.2. Norm of �� with � > 0. From Eq. (6.14) we notice that all states |ψm,m+�〉,
0 ≤ m ≤ �k −� share the same � last quDits, which results in a common factor

�
∏

�=1

‖πI F∗
4 eε�‖2 = 1

2�
in the norm ‖��‖2.

To avoid taking this factor into account at all steps, we rather consider the states |ψ ′
m,m+�〉

obtained by removing these last � quDits from |ψm,m+�〉.
We first compute the square-norm ‖ψ ′

0,�‖2 = 1
16 .
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For all m > 0, the first quDit of |ψ ′
m,m+�〉 is P0I eε�+1 . From the explicit expression

of P0I , this quDit vanishes if ε�+1 = 2, so that

if ε�+1 = 2, ‖��(ε)‖2 = 1

16

1

2�
for all 1 ≤ � ≤ �k. (6.19)

In the opposite case ε�+1 = 1, the states |ψ ′
m,m+�〉 are nontrivial:

for any 0 < m ≤ �k −�, ‖ψ ′
m,m+�‖2 = 1

8
(
3

8
)m−1 1

8
,

so that
[�k]−�
∑

m=0

‖ψ ′
m,m+�‖2 = 7

80
+ O((3/8)�k−�)

)

. (6.20)

We then compute the off-diagonal terms:

〈ψ ′
0,�|ψ ′

m,m+�〉 =
−1 − i

16

1

2m−1

1

4
for 0 < m ≤ �k − |�|,

〈ψ ′
m,m+�|ψ ′

n,n+�〉 =
1

8
(
3

8
)m−1 1 ± i

16

1

2n−m−1

1

4
for 1 ≤ m < n ≤ �k − |�|

(the sign ± in the last line depends on ε�+m+1). Summing up the real parts yields:

2
∑

0≤m<n≤�k−�
Re〈ψ ′

m,m+�|ψ ′
n,n+�〉 = − 1

20
+ O(2−�k+�).

Adding this to the diagonal terms (6.20), restoring the factor 2−�, and using (6.19)
results in the following norm (which explicitly depends on ε):

‖��(ε)‖2= 1

2�
( 3

80
δε�+1=1+

1

16
δε�+1=2

)

+O(2−�k) for any 1 ≤ � ≤ �k. (6.21)

6.3.3. Norm of �� with � < 0. As in the previous case, we notice from (6.15) that all
components of �� share the same |�| first quDits, which contribute a factor

‖π0F4eεk−|�|+1‖2

⎛

⎝

|�|
∏

�=2

‖πI F4eεk−|�|+�‖2

⎞

⎠ = 1

4

1

2|�|−1 . (6.22)

We call ψ ′
m+|�|,m the states with these |�| quDits removed. They have the norms

‖ψ ′|�|,0‖2 = 1

8
, and for m ≥ 1, ‖ψ ′

m+|�|,m‖2 = 1

8

(

3

8

)m−1 1

8
.

Hence, the diagonal contribution reads

+�k,−|�|
∑

m=0

‖ψ ′
m+|�|,m‖2 = 3

20
+ O

(

(3/8)�k−|�|) .
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The nondiagonal terms take the values

〈ψ ′|�|,0|ψ ′
n+|�|,n〉 =

−1 + i

16

1

2n−1

1

4
for 0 < n ≤ �k − |�|,

〈ψ ′
m+|�|,m |ψ ′

n+|�|,n〉 =
1

8

(

3

8

)m−1 1 ± i

16

1

2n−m−1

1

4
for 1 ≤ m < n ≤ �k − |�|.

These contributions sum up to

2
∑

0≤m<n≤�k−|�|
Re〈ψ ′

m+|�|,m |ψ ′
n+|�|,n〉 = − 1

20
+ O(2−�k+|�|).

Putting together this with the diagonal contributions and restoring the factor (6.22),
yields

‖��‖2 = 1

20

1

2|�|
+ O(2−�k), −�k ≤ � ≤ −1. (6.23)

6.3.4. Summing up. We can now sum over all shifts �, |�| ≤ �k for a given generic
nonclassical sequence ε. The sum over the shifts � ≤ 0 is simple, and independent on
the sequence ε:

∑

−�k≤�≤0

‖��(ε)‖2 = 25

80
+ O(k 2−�k).

The sum over the shifts � > 0 is slightly more delicate, since the norm of |��(ε)〉
depends on ε — see Eq. (6.21). However, we notice that the set of generic nonclassical
sequences can be partitioned into “mirror pairs” (ε, ε) such that

∀� ∈ [2, k], ε� = 1 ⇐⇒ ε� = 2.

Summing the norms over a “mirror pair” is easy:

for 1 ≤ � ≤ �k, ‖��(ε)‖2 + ‖��(ε)‖2 = 1

2�
1

10
+ O(2−�k).

This contribution is identical (up to the remainder) with ‖�−�(ε)‖2 + ‖�−�(ε)‖2,
which shows a sort of symmetry between positive and negative shifts. Summing over all
|�| ≤ �k, we get, for any mirror pair (ε, ε) of generic nonclassical sequences:

‖t∗t |ε〉‖2 + ‖t∗t |ε〉‖2 = 58

80
+ O(2−�k/2).

Using Lemma 6.4, we obtain the trace over the nonclassical states:

trnoncl((t
∗t)2) = 2k−2

(

58

80
+ O(2−Ck) + O(2−�k/2)

)

.

Subtracting this expression from the “nonclassical conductance” (6.10), and calling
˜C = min(C, 1

2�), we finally obtain the noise power:

P = tr(t∗t − (t∗t)2) = trnoncl(t
∗t − (t∗t)2)

= 2k−1
(11

80
+ O(2−˜Ck)

)

.
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This proves (1.2) in Theorem 2. As remarked in §1.1, the factor 11/80 is close to the
random-matrix prediction for this quantity, namely 1/8 [26, 57]. This is in contrast with
our remark 5.1 that the semiclassical resonance spectrum of the propagator inside the
dot, ˜Bh = Uh�I , is quite different from that of a random subunitary matrix. Somehow,
the matrix t , obtained by summing iterates of ˜Bh , has acquired some “genericity”, as far
as the distribution of its singular values is concerned. It would be interesting (but quite
cumbersome) to compute the higher moments of that distribution.
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