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Abstract We prove that for evolution problems with normally hyperbolic
trapping in phase space, correlations decay exponentially in time. Normally
hyperbolic trapping means that the trapped set is smooth and symplectic and
that the flow is hyperbolic in directions transversal to it. Flows with this struc-
ture include contact Anosov flows, classical flows in molecular dynamics, and
null geodesic flows for black holes metrics. The decay of correlations is a
consequence of the existence of resonance free strips for Green’s functions
(cut-off resolvents) and polynomial bounds on the growth of those functions
in the semiclassical parameter.

1 Statement of results

1.1 Introduction

We prove the existence of resonance free strips for general semiclassical prob-
lems with normally hyperbolic trapped sets. The width of the strip is related
to certain Lyapunov exponents and, for the spectral parameter in that strip, the
Green’s function (cut-off resolvent) is polynomially bounded. Such estimates
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346 S. Nonnenmacher, M. Zworski

are closely related to exponential decay of correlations in classical dynamics
and in scattering problems. The framework to which our result applies covers
both settings.

To illustrate the results consider

P = −h2�+ V (x), V ∈ C∞c (Rn;R). (1.1)

The classical flow ϕt : (x(0), ξ(0)) �→ (x(t), ξ(t)) is obtained by solving
Newton’s equations x ′(t)(t) = 2ξ(t), ξ ′(t) = −∇V (x(t)). The trapped set at

energy E , KE , is defined as the set of (x, ξ) such that p(x, ξ)
def= ξ2+V (x) =

E and ϕt (x, ξ) �→ ∞, as t →∞ and as t →−∞.
The flow ϕt is said to be normally hyperbolic near energy E , if for some

δ > 0,

K δ
def=

⋃

|E−E ′|<δ
KE ′ is a smooth symplectic manifold, and

the flow ϕt is hyperbolic in the directions transversal toK
δ, (1.2)

see (1.17) below for a precise definition, and [29] for physical motivation for
considering such dynamical setting. A simplest consequence of Theorems 2
and 6 is the following result about decay of correlations.

Theorem 1 Suppose that P is given by (1.1) and that (1.2) holds, that is
the classical flow is normally hyperbolic near energy E. Then for ψ ∈
C∞c ((E − δ/2, E + δ/2)), and any f, g ∈ L2(Rn), with ‖ f ‖L2 = ‖g‖L2 = 1,
supp f, supp g ⊂ B(0, R),

∣∣∣〈e−i t P/hψ(P) f, g〉L2(Rn)

∣∣∣ ≤ CR log(1/h)

h1+γ c0
e−γ t + CR,Nh

N , t > 0, (1.3)

for any γ < λ0/2 and for all N . Here λ0 and c0 are the same as in (1.18) and
CR, CR,N are constants depending on R and on R and N, respectively.

This means that the correlations decay rapidly in the semiclassical limit: we
start with a state localized in space (the support condition) and energy,ψ(P) f ,
propagate it, and test it against another spatially localized state g. The estimate
(1.3) is a consequence of the existence of a band without scattering resonances
and estimates on cut-off resolvent given in Theorem 2. When there is no
trapping, that is when KE = ∅, then the right hand side in (1.3) can be replaced
by O((h/t)∞), provided that t > TE , for some TE—see for instance [36,
Lemma 4.2]. On the other hand when strong trapping is present, for instance
when the potential has an interaction region separated from infinity by a barrier,
then the correlation does not decay—see [36] and references given there.
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Decay of correlations 347

More interesting quantitative results can be obtained for the wave equation
or for decay of classical correlations: see Sect. 1.2 for motivation and [54,
Theorem 3] and Corollary 5 below for examples. When the outgoing and
incoming sets at energy E ,

	±E
def= {(x, ξ) : p(x, ξ) = E, ϕt (x, ξ) �→ ∞, t →∓∞},

are sufficiently regular and of codimension one, Theorem 1 and Theorem 2
below (without the specific constant λ0) are already a consequence of earlier
work by Wunsch–Zworski [54, Theorem 2]1 and, in the case of closed trajec-
tories, Christianson [10,11]. For a survey of other recent results on resolvent
estimates in the presence of weak trapping we refer to [52].

When normal hyperbolicity is strengthened to r -normal hyperbolicity for
large r (which implies that	±E areCr manifolds) and provided a certain pinch-
ing condition on Lyapunov exponents is satisfied, much stronger results have
been obtained by Dyatlov [19]. In particular, [19] provides an asymptotic
counting law for scattering resonances below the band without resonances
given in Theorems 2, 4 and 6. It shows the optimality of the size of the band
in a large range of settings, for instance, for perturbations of Kerr–de Sitter
black holes.

Similar results on asymptotic counting laws in strips have been proved
by Faure–Tsujii in the case of Anosov diffeomorphisms [24], and recently
announced in the case of contact Anosov flows [25]. In the latter situation,
described in Theorem 4 below, the trapped set is a normally hyperbolic smooth
symplectic manifold, but the dependence of the stable and unstable subspaces
on points on the trapped set is typically nonsmooth, but C1 or Hölder con-
tinuous (see Remark 1.2 below). For compact manifolds of constant negative
curvature Dyatlov–Faure–Guillarmou [21] have provided a precise descrip-
tion of Pollicott–Ruelle resonances in terms of eigenvalues of the Riemannian
Laplacian acting on section of certain natural vector bundles.

In this paper we do not assume any regularity on 	±E and provide a quantita-
tive estimate on the resonance free strip. For operatorswith analytic coefficients
this result was already obtained by Gérard–Sjöstrand [27] with even weaker
assumptions on K δ . A new component here, aside from dropping the analyt-
icity assumption, is the polynomial bound on the Green’s function/resolvent
that allows applications to the decay of correlations.

The proof is given first for an operator with a complex absorbing poten-
tial. This allows very general assumptions which can then be specialized to
scattering and dynamical applications.

1 Recently Dyatlov [20] provided a much simpler proof of that result, including the optimal
size of the gap established in this paper and the optimal resolvent bound o(h−2), for smooth
and orientable stable and unstable manifolds.

123



348 S. Nonnenmacher, M. Zworski

Finally we comment on the comparison between the resonance free regions
in this paper and the results of [38,39] where the existence of a resonance
free strip was given for hyperbolic trapped sets, provided a certain pressure
condition was satisfied. In the setting of [38] the trapped set is typically very
irregular but, the assumptions of [38] also include the situation where K δ is a
smooth symplectic submanifold, and the flow is hyperbolic both transversely
to K δ and along each KE . In that case the resonance gap obtained in [38]
involves a topological pressure associated with the full (that is, longitudinal
and transverse) unstable Jacobian, namely

P
(
−1

2
(log J+‖ +log J+⊥ )

)
= sup

μ

(
H(μ)− 1

2

∫
(log J+‖ +log J+⊥ ) dμ

)
,

(1.4)

where the supremum is taken over all flow-invariant probability measures on
K δ and H(μ) is the Kolmogorov–Sinai entropy of the measure μwith respect
to the flow. The bound is nontrivial only if this pressure is negative. In the
case of mixing Anosov flows discussed in Sect. 9 the transverse and longitu-
dinal unstable Jacobians are equal to each other; the above pressure is then
equal to the pressure P(− log J+‖ ), equivalent with the pressure P(− log Ju)
of the Anosov flow, which is known to vanish [7, Proposition 4.4], and hence
gives only a trivial bound. For this situation, our spectral bound (Theorem 4)
is thus sharper than the pressure bound. On the other hand, one can construct
examples where the longitudinal and transverse unstable Jacobians are inde-
pendent of one another, and such that the pressure (1.4) is more negative -
hence sharper - than the value−λ0 given in (1.19), which may be expressed as

−λ0 = supμ
(
− 1

2

∫
log J+⊥ dμ

)
.

Notation. We use the following notation g = Ok( f )V means that ‖g‖V ≤
Ck f where the norm (or any seminorm) is in the space V , an theCk depends on
k. When either k or V are dropped then the constant is universal or the estimate
is scalar, respectively. When F = Ok( f )V→W then the operator F : V → W
has its norm bounded by Ck f .

1.2 Motivation

To motivate the problem we consider the following elementary example. Let

X = R and P = −∂2x . A wave evolution is given by U (t)
def= sin(

√
Pt)/

√
P .

Then for f, g ∈ C∞c (R) and any time t ∈ R we define the wave correlation
function as
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Decay of correlations 349

C( f, g)(t)
def=
∫

R

[U (t) f ](x) g(x) dx (1.5)

In this 1-dimensional setting, the correlation function becomes very simple for
large times. Indeed, for a certain T > 0 depending on the support of f and g,
it satisfies

∀t ≥ T, C( f, g)(t) = 1

2

∫

R

f (x)
∫

R

g(x) dx

This particular behaviour is due to the fact that the resolvent of P ,

R(λ)
def= (P − λ2)−1 : L2(R)→ L2(R), Im λ > 0,

continues meromorphically to C in λ as an operator L2
comp → L2

loc and has a
pole at λ = 0. In this basic case we see this from an explicit formula,

[R(λ) f ](x) = i

2λ

∫

R

eiλ|x−y| f (y)dy.

More generally, we can consider P = −∂2x +V (x), V ∈ L∞c (R), with V ≥ 0,
for simplicity. With the same definition ofU (t)we now have the Lax–Phillips
expansion generalizing (1.5):

C( f, g)(t) =
∫

R

U (t) f g dx

=
∑

Im λ j>−A

e−iλ j t
∫

R

f u j dx
∫

R

g u j dx +O(e−At ), (1.6)

where λ j are the poles of themeromorphic continuation of R(λ) = (P−λ2)−1

(for simplicity assumed to be simple), and u j are solutions to (P−λ2j )u j = 0

satisfying u j (x) = asgn xeiλ|x | for |x | � 1. Since u j are not in L2 their
normalization is a bit subtle: they appear in the residues of R(λ) at λ j .

The expansion (1.6) makes sense since the number of poles of R(λ) with
Im λ > −A is finite for any A. If we define C( f, g) to be 0 for t ≤ 0, the
Fourier transform of (1.6) gives (provided 0 is not a pole of R(λ)),
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350 S. Nonnenmacher, M. Zworski

Fig. 1 The effect of resonances on the Fourier transform of correlations as described in (1.7).
The resonances are computed using the code scatpot.m [4]

Ĉ( f, g)(−λ) =
∑

Im λ j>−A

c j
λ j − λ +O

(
1

A

)
,

c j
def= −i

∫

R

f u j dx
∫

R

gu j dx . (1.7)

The Lorentzians

| Im λ j |
|λ− λ j |2 = −2 Im

1

λ j − λ,

peak at λ = �λ j and are more pronounced for Im λ j small. This stronger
response in the spectrum of correlations is one of the reasons for calling λ j
(or λ2j ) scattering resonances (Fig. 1).

In more general situations, to have a finite expansion of type (1.6), modulo
some exponentially decaying errorO(e−γ t ), we need to know that the number
of poles of R(λ) is finite in a strip Im λ > −γ . Hence exponential decay of
correlations is closely related to resonance free strips.

This elementary example is related through our approach to recent results of
Dolgopyat [16], Liverani [35], and Tsujii [46,47] on the decay of correlations
in classical dynamics.

Let X be a compact contact manifold of (odd) dimension n, and let γt
be an Anosov flow on X preserving the contact structure—see Sect. 9 for
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details. The standard example is the geodesic flow on the cosphere bundle
X = S∗M , where (M, g) is a smooth negatively curved Riemannianmanifold.
Let U (t) : C∞(X)→ C∞(X) be defined by U (t) f = γ ∗t f = f ◦ γt and let
dx be the measure on X induced by the contact structure and normalized
so that vol(X) = 1. The results of [16,35] show that, for any test functions
f, g ∈ C∞(X), the correlation function satisfies the following asymptotical
behavior for large times:

C( f, g)(t)
def=
∫

X

[U (t) f ](x) g(x) dx=
∫

X

f dx
∫

X

g dx +O(e−	t ), t→∞,

(1.8)

and the exponent 	 is independent of f, g. In other words, the Anosov flow is
exponentially mixing with respect to the invariant measure dx .

From the microlocal point of view of Faure–Sjöstrand [23], this result is
related to a resonance free strip for the generator of the flow γt . The resonances
in this setting are called Pollicott–Ruelle resonances.

In this paper we consider general semiclassical operators modeled on
P given in (1.1), for which the classical flow has a normally hyperbolic
trapped set. Schrödinger operators for which (1.2) holds appear in molecu-
lar dynamics—see the recent review [29] for an introduction and references.
In particular, [29, Chapter 5] discusses the resonances in some model cases
and the relation between the size of the resonance free strip and the transverse
Lyapounov exponents. As reviewed in Sect. 9, the setting can be extended such
as to include the generator of the Anosov flow of (1.8), namely the operator
P(h) on X such that U (t) = γ ∗t = exp(−i t P/h).

1.3 Assumptions and the result

The general result, Theorem 2, is proved for operators modified using a com-
plex absorbing potential (CAP). Results about such operators can then be
used for different problems using resolvent gluing techniques ofDatchev–Vasy
[14]—see Theorems 3 and 4. The assumptions on the manifold X , operator
P , and the complex absorbing potential may seem unduly general, they are
justified by the broad range of applications.

Let X be a smooth compact manifold with a density dx and let

P = P(x, hD) ∈ �m(X), m > 0,

be an unbounded self-adjoint semiclassical pseudodifferential operator on
L2(X, dx) (see Sect. 3.1 and [55, §14.2] for background and notations), with
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352 S. Nonnenmacher, M. Zworski

principal symbol p(x, ξ) independent of h. Let

W = W (x, hD) ∈ �k(X), 0 ≤ k ≤ m, W ≥ 0,

be another operator, also self-adjoint and with h-independent principal symbol
w(x, ξ), which we call a (generalized) complex absorbing potential (CAP).
We should stress that W plays a purely auxiliary role and can be chosen quite
freely.

If the principal symbols p(x, ξ) ∈ Sm(T ∗X) and w(x, ξ) ∈ Sk(T ∗X), we
assume that, for some fixed C0 > 0 and for any phase space point (x, ξ) ∈
T ∗X ,

|p(x, ξ)− iw(x, ξ)| ≥ 〈ξ 〉m/C0 − C0, 1+ w(x, ξ) ≥ 〈ξ 〉k/C0,

exp(t Hp)(x, ξ) is defined for all t ∈ R. (1.9)

Here, for ξ ∈ T ∗x X we have denoted 〈ξ 〉2 = 1 + ‖ξ‖2x for some smoothly
varying metric on X , x �→ ‖ • ‖2x , and by Hp the Hamilton vector field of p.
The map exp(t Hp) : T ∗X → T ∗X is the corresponding flow at time t . This
flow will often be denoted by ϕt , the Hamiltonian p(x, ξ) being clear from the
context.

For technical reasons (see Lemma 10.4) we will need an additional smooth-
ness assumption on w:

|∂αw(x, ξ)| ≤ Cαw(x, ξ)
1−γ , 0 < γ <

1

2
, (1.10)

whenw(x, ξ) ≤ 1. This can be easily arranged and is invariant under changes
of variables.

We call the operator

P̃ = P − iW ∈ �m(X), (1.11)

the CAP-modified P . The condition (1.9) means that the CAP-modified P is
classically elliptic and that for any fixed z ∈ C

{(x, ξ) : p̃(x, ξ)− z = p(x, ξ)− iw(x, ξ)− z = 0} � T ∗X.

We define the trapped set at energy E as

KE
def= {ρ = (x, ξ) : ρ ∈ p−1(E), ϕR(ρ) ⊂ w−1(0)}. (1.12)

KE is compact and consists of points in p−1(E)which never reach the damping
region {ρ ∈ T ∗X : w(ρ) > 0} in backward or forward propagation by the
flow ϕt .
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We illustrate this setup with two simple examples:

Example 1 Suppose that P0 = −h2� + V , V ∈ C∞c (Rn;R), supp V �
B(0, R0). Define the torus X = R

n/(6R0Z)
n , and W ∈ C∞(X; [0,∞)),

satisfying

W (x) = 0, x ∈ B(0, R0), W (x) = 1, x ∈ X\B(0, 2R0),

∂αW = Oα(W 2/3),

(here we identified the balls in R
n with subsets of the torus). The last

condition can be arranged by taking W (x) = χ(|x |2 − R2
0)ψ(x) where

χ(x) = exp(−x−1)1R+(x), and ψ ∈ C∞(X, (0,∞)) is suitably chosen. The
power of W on the right hand side can be any number greater than 1

2 .

Because of the support properties of V , P
def= −h2� + V ∈ �2(X) and

P − iW satisfy all the properties above. The trapped set KE can be identified
with a subset of T ∗B(0,R0)

R
n and is then equal to the trapped set of scattering

theory:

KE = {(x, ξ) ∈ T ∗Rn : ξ2 + V (x) = E, x(t) �→ ∞, t →±∞}.
Remark 1.1 Normally hyperbolic trapped sets occur in the semiclassical the-
ory of chemical reaction dynamics, where they are usually called Normally
Hyperbolic Invariant Manifolds (NHIM). They are of fundamental impor-
tance to quantitatively understand the kinetics of the chemical reaction. See
for instance [48] for a description of the classical phase space structure, and
[29] and references given there for the adaptation to the quantum framework.
The focus there is on examples for which the Hamiltonian flow exhibits a

saddle× saddle× · · · × center · · · × center

fixed point: after an appropriate linear symplectic change of coordinates, the
quadratic expansion of the Hamiltonian p(x, ξ) near the fixed point (set at the
origin) reads as:

pquad(x, ξ) = 1

2

d−d⊥∑

i=1

(
ξ2i + ω2i x2i

)+
d∑

i=d−d⊥+1

1

2

(
ξ2i − λ2i x2i

)
.

For this quadratic model the NHIM at a positive energy E > 02, is given by

p−1(E) ∩ {ξd−d⊥+1 = xd−d⊥+1 = . . . = xd = ξd = 0
}

2 For the distribution of resonances at the fixed point energy E = 0 see [34,41].
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354 S. Nonnenmacher, M. Zworski

which is a 2d − 2d⊥ − 1-dimensional sphere. The stable/unstable distribu-
tions are d⊥-dimensional (see (1.17) below), and are generated by the vectors
{∂/∂ξi±λi∂/∂xi }di=d−d⊥+1. For this quadraticmodel the flow along theNHIM
is completely integrable. This implies that the latter is structurally stable to
perturbations (it is then r -normally hyperbolic for any r ∈ N), meaning that
for any given regularity r > 0, a small enough perturbation of pquad will still
lead to the presence of a NHIM of regularity Cr [31]. However, the flow on
the perturbed NHIM is generally not integrable. This situation occurs if one
considers the full Hamiltonian p with quadratic expansion pquad: for small
positive energies p will still exhibit a NHIM, which is a deformed sphere.

Physical systems featuring this type of fixed point are presented in the liter-
ature: for instance the isomerization of hydrogen cyanide [51] or the quantum
dynamics of the nitrogen-nitrogen exchange [29]. Strictly speaking the poten-
tials appearing in these physical models are more complicated than the ones
allowed here. However, the behaviour near the NHIM determines the phenom-
ena which are studied here and which are relevant in physics.

We conclude this remark by recalling that when d⊥ = 1 (most relevant from
the point of view of [29]) and when the system is r -normally hyperbolic for
sufficiently large r very precise results on the distribution of resonances have
been obtained by Dyatlov [19,20].

Example 2 Suppose that X is a compact manifold with a volume form dx and
a vector field � generating a volume preserving flow (L�dx = 0). Then P =
−ih� is a selfadjoint operator on L2(X, dx), and the correspondingpropagator
exp(−i t P/h) is the push-forward of the flow γt = exp(t�) generated by �
on functions f ∈ L2(X, dx): exp(−i t P/h) f = f ◦ γ−t .

To define the CAP in this setting we choose a Riemannian metric g on X ,
and a function

f ∈ C∞(R, [0,∞)), | f (k)(s)| ≤ Ck f (s)
1−γ , for some γ ∈ (0, 1/2),

f −1(0) = [−∞,M] for some M > 0, f (s) = √
s, s > 2M.

(1.13)

If �g is the corresponding Laplacian on X , we set W (x, hD) = f (−h2�g).
Then the operator P − iW ∈ �1(X) satisfies the assumptions above. The

principal symbols read p(x, ξ) = ξ(�x ),w(x, ξ) = f (‖ξ‖2x ), where the norm‖ • ‖x is associated with the metric g.
At a given energy E ∈ R, the trapped set is given by the points which never

enter the absorbing region:

KE = {(x, ξ) ∈ T ∗X : ξ(�x ) = E, ‖(γ−t )∗ξ‖g ≤ M, ∀t ∈ R}.
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Decay of correlations 355

At this stage the trapped set seems to depend on the choice ofM . Belowwewill
be concerned with exp(t�) being an Anosov flow, in which case this explicit
dependence will disappear, as long as we choose M large enough compared
with the energy E (see the second assumption (1.15) below).

Returning to general considerations we also define

K δ
def=

⋃

|E |≤δ
KE , (1.14)

which is a compact subset to T ∗X and assume that

dp�K δ �= 0, K δ ∩WFh(W ) = ∅. (1.15)

The first assumption implies that for |E | ≤ δ, the energy shell p−1(E) is
a smooth hypersurface close to w−1(0). The second assumption is consistent
with the definition (1.12) of KE . It implies that the latter is contained in the
interior of the region w−1(0), a property which is stable when enlarging KE
to K δ , or when slightly modifying the support of w.

We now make the following normal hyperbolicity assumption on K δ:

K δ is a smooth symplectic submanifold of T ∗X, (1.16)

and there exists a continuous distribution of linear subspaces

K δ � ρ �−→ E±ρ ⊂ Tρ(T
∗X),

invariant under the flow,

∀t ∈ R, (ϕt )∗E±ρ = E±ϕt (ρ),

and satisfying, for some λ > 0, C > 0 and any point ρ ∈ K δ ,

TρK
δ ∩ E±ρ = E+ρ ∩ E−ρ = {0}, dim E±ρ = d⊥,

Tρ(T
∗X) = TρK

δ ⊕ E+ρ ⊕ E−ρ ,
∀v ∈ E±ρ , ∀t > 0, ‖dϕ∓t (ρ)v‖ϕ∓t (ρ) ≤ Ce−λt‖v‖ρ. (1.17)

Here ρ �→ ‖ • ‖ρ is any smoothly varying norm on Tρ(T ∗X), ρ ∈ K δ . The
choice of norm may affect C but not λ.

Remark 1.2 A large class of examples for which the distributions ρ �→ E±ρ
are not smooth is provided by considering contact Anosov flows on compact
manifolds—see [23,47] and Sect. 9.1 below for the natural appearance of
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356 S. Nonnenmacher, M. Zworski

normally hyperbolic trapping for the flow lifted to the cotangent bundle of the
manifold. The regularity is inherited from the regularity of the stable and unsta-
ble distributions tangent to themanifold, which in general are only known to be
Hölder continuous [3]. More is known on the regularity of these distributions
when the manifold is 3-dimensional (and preserves a contact structure). In this
situation, Hurder-Katok showed [32] that there is a dichotomy (or “rigidity”):
either the stable/unstable distributions are C2−ε for any ε > 0 but not C2 (this
is due to a certain obstruction, namely theAnosov cocycle is not cohomologous
to zero), or the distributions are as smooth as the flow. If that 3-dimensional
flow is the geodesic flow on a surface of negative curvature, then following
Ghys [28] they show (Corollary. 3.7) that the latter case imposes a metric of
constant negative curvature. Hence, for the geodesic flow on a surface of non-
constant negative curvature, the stable/unstable distributions, and hence their
lifts E±ρ , are not C2.

We do not know of an example of a Schrödingier operator (that is of a
classicalHamiltonian of the form p(x, ξ) = |ξ |2+V (x)) forwhich the trapped
set is smooth—or sufficiently regular: as with all microlocal results a certain
high level of regularity, depending on the dimension, is sufficient—and the
distributions ρ �→ E±ρ are irregular. However there is no general result which
prevents that possibility. Interesting regular examples of E±ρ of any dimension
1 ≤ d⊥ ≤ d − 1 were discussed in Remark 1.1.

We also remark that higher dimensional distributions can lead to compli-
cated topological issues, which would make the global approach of [19,20,53]
difficult. This is visible already for flows on constant curvature manifolds for
which smooth foliations may have nontrivial topology [21, §2.2].

Except for the construction of the escape function, for which we need to use
[37,43], the analysis in Sects. 5 and 6 would not be simplified by a smoothness
assumption on the distributions.

We can now state our main result.

Theorem 2 Suppose that X is a smooth compact manifold and that P and
W satisfy the assumptions above. If the trapped set K δ given by (1.12),(1.14)
is normally hyperbolic, in the sense that (1.16) and (1.17) hold, then for any
ε0 > 0 there exists h0, c0, C1, such that for 0 < h < h0,

‖(P − iW − z)−1‖L2→L2 ≤ C1h
−1+c0 Im z/h log(1/h),

for z ∈ [−δ + ε0, δ − ε0] − ih[0, λ0/2− ε0], (1.18)

where λ0 > 0 is the minimal transverse unstable expanding rate:

λ0
def= lim inf

t→∞
1

t
inf
ρ∈K δ

log det
(
dϕt�E+ρ

)
. (1.19)
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Here det is taken using any fixed volume form on E+ρ , the value of λ0 > 0
being independent of the choice of volume forms.

This theorem will be proved in Sect. 6 after preparation in Sects. 4, 5. The
bound log(1/h)/h on the real axis is optimal as shown in [5]. Using the
methods of [14] the estimate (1.18) almost immediately applies to the setting
of scattering theory. As an example we present an application to scattering on
asymptotically hyperbolic manifolds, which will be proved in Sect. 8:

Theorem 3 Suppose (Y, g) is a conformally compact n-manifold with even
power metric: Y is compact, ∂Y = {x = 0}, dx�∂Y �= 0, g = (dx2 + h)/x2

where h is a smooth 2-tensor on Y with only even powers of x appearing in
its Taylor expansion at x = 0. If the trapped set for the geodesic flow on Y is
normally hyperbolic, then the following resolvent estimate holds:

‖xk0(−�g − (n − 1)2/4− λ2 ± i0
)−1

xk0‖L2→L2 ≤ C0
log λ

λ
, λ > 1.

The next application is a rephrasing of a recent theorem of Tsujii [46,47]; it
will be proved in Sects. 9. We take the point of view of Faure–Sjöstrand [23],
see also [13].

Theorem 4 Suppose X is a compact manifold and γt : X → X a contact
Anosov flow on X. Let� be the vector field generating γt , and P = −ih� the
corresponding semiclassical operator, self-adjoint on L2(X, dx) for dx the
volume form derived from the contact structure.

Define the minimal asymptotic unstable expansion rate

λ0
def= lim inf

t→∞
1

t
inf
x∈X log det

(
dγt�Eu(x)

)
, (1.20)

with Eu(x) ⊂ Tx X the unstable subspace of the flow at x.
For any t > 0 there exists a Hilbert space, HtG (see (9.10)),

C∞(X) ⊂ HtG(X) ⊂ D′(X),

such that (P − z)−1 : HtG → HtG is meromorphic in the half-space
{ Im z > −th}.

Then for any small ε0, δ > 0, there exist h0, c0 > 0 and C1 > 0 such that,
taking any t > λ0/2 and any 0 < h < h0,

‖(P − z)−1‖HtG→HtG ≤ C1h
−1+c0 Im z/h log(1/h),

z ∈ [δ, δ−1] − ih[0, λ0/2− ε0]. (1.21)
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The Hilbert space HtG in the above theorem is not optimal as far as sharp
resolvent estimates are concerned3. It is obtained by applying a microlocal
weight etG

w
on L2, with a function G(x, ξ) vanishing in a fixed neighbourhood

of the trapped set. In [46] Tsujii constructed Hilbert spaces Bβ leading to
resolvent estimates ‖(P − z)−1‖Bβ ≤ C1 h−1 in the same region. A similar
resolvent estimate could be obtained in our framework, by further modifying
HtG using the “sharp” escape function G presented in Sect. 2 [see the estimate
(2.4)].

Under a pinching condition on the Lyapunov exponents, the recent results
announcedbyFaure–Tsujii [25] provide amuchmore precise description of the
spectrum of P = −ih� on HtG : the Ruelle–Pollicott resonances are localized
in horizontal strips below the real axis, and the number of resonances in each
strip satisfies a Weyl’s law asymptotics. That is analogous to the result proved
by Dyatlov [19], which was motivated by quasinormal modes for black holes.

Theorems 3 and 4 have applications to the decay of correlations, respectively
for the wave equation and for contact Anosov flows. As an example we state
a refinement of the decay of correlation result (1.8) of Dolgopyat [16] and
Liverani [35].

Corollary 5 Suppose that γt : X → X is a contact Anosov flow on a compact
manifold X (see Sect. 9.1 for the definitions) and that λ0 is given by (1.20).

Then there exist a sequence of complex numbers, μ j ,

0 > Im μ j ≥ Im μ j+1,

and of distributions u j,k, v j,k ∈ D ′(X), 0 ≤ k ≤ K j , such that, for any
ε0 > 0, there exists J (ε0) ∈ N such that for any f, g ∈ C∞(X),

∫

X

f (x) γ ∗t g(x) dx =
∫

X

f dx
∫

X

gdx +
J (ε0)∑

j=1

K j∑

k=1

tke−i tμ j u j,k( f )v j,k(g)

+O f,g(e
−t (λ0−ε0)/2), (1.22)

for t > 0. Here dx is the measure on X induced by the contact form and
normalized so that vol(X) = 1, and u( f ), u ∈ D′(X), f ∈ C∞(X) denotes
the distributional pairing.

The exponentialmixing estimate (1.22) has been obtained byTsujii [46, Corol-
lary 1.2] in the more general case of contact Anosov flows of regularity Cr .
We restate it here to stress its analogy with resonance expansions in wave
scattering, see for instance [45].

3 We are grateful to Frédéric Faure for this remark.
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For information about microlocal structure of the distributions u j,k and v j,k
the reader should consult [23]. Here we only mention that (with the standard
wave front set of [30])

WF(u j,k) ⊂ E∗s , WF(v j,k) ⊂ E∗u ,

where E∗• =
⋃

x∈X E∗• (x), and E∗•(x) ⊂ T ∗x X is the annihilator of R�x +
E•(x) ⊂ Tx X , • = u, s. The spaces E•(x) appear in the Anosov decomposi-
tion of the tangent space (9.2)

2 Outline of the proof of Theorem 2

The proof proceeds via the analysis of the propagator for the operator

P̃G
def= e−Gw(x,hD)(P − iW )eG

w(x,hD) ,

where the function G(x, ξ ; h) belongs to a certain exotic class of symbols.
Our G is closely related to the escape function constructed in [37], it depends
on an additional small parameter, h̃, which will be chosen independently of
h.

For a large t0, any fixed 	 > 0 and ε > 0, we can construct G so that,
for some constant C0, the following holds uniformly in 0 < h < h0, 0 < h̃
< h̃0:

G(ρ) = O(log(1/h)), G(ρ)− G(ϕ−t0(ρ)) ≥ −C0, ρ ∈ T ∗X,
G(ρ)−G(ϕ−t0(ρ))≥2	, ρ∈ p−1([−δ, δ]), d(ρ, K δ)>(h/h̃)

1
2 , w(ρ)<ε,

(2.1)

where d(•, •) is any given distance function in T ∗X .
The proof of Theorem 2 is based on the following estimate. For some

ε1 > 0, take an operator A ∈ �0(X) such that WFh(A) ⊂ p−1((−δ, δ)) ∩
w−1([0, ε1)). We will prove the following norm estimate: for any ε0 and M
there exists Mε0 and h̃0 > 0, h0 > 0 such that for any h̃ < h̃0, h < h0, we
have the estimate

‖ exp(−i t P̃G/h)A‖L2(X)→L2(X) ≤ e−t (λ0−ε0)/2,

uniformly for times Mε0 log
1

h̃
≤ t ≤ max(M,Mε0) log

1

h̃
. (2.2)
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As a result, for Im z > −(λ0 − 2ε0)/2,

(P̃G − z)
i

h

T∫

0

e−i t (P̃G−z)/h Adt = (I − e−iT (P̃G−z)/h)A

= A −O(e−T ε0)L2→L2 . (2.3)

Hence, by taking T large enough and using the ellipticity of P̃G− z away from
p−1((−δ, δ)) ∩ w−1([0, ε1)), we obtain

(P̃G − z)−1 = O(h−1)L2→L2, Im z > −(λ0 − 2ε0)/2. (2.4)

Since e±Gw = O(h−M0)L2→L2 from the growth condition onG, a polynomial
bound for (P − iW − z)−1 follows. The more precise bound (1.18) follows
from a semiclassical maximum principle.
To prove the estimate (2.2) we proceed in a number of steps:
Step 1. The most delicate part of the argument concerns the evolution near the
trapped set. For some fixed R > 1, we introduce a cut-off function χ ∈ S̃ 1

2
supported in the set

{ρ ∈ p−1((−δ, δ)) : d(ρ, K δ) ≤ 2R(h/h̃)
1
2 }.

This cut-off is quantized into an operator χw
def= χw(x, hD).

We then claim that for any ε0 > 0 and M > 0, there exists C > 0 such that,
for h̃ < h̃0 and h < h0(h̃),

‖χwe−i t P/hχw‖L2→L2 ≤ Ch̃−d⊥/2e−t (λ0−ε0/2)/2,

uniformly for 0 ≤ t ≤ M log
1

h̃
. (2.5)

The proof of this bound is provided in Sect. 5.
Step 2. For the weighted operator we obtain an improved estimate, now with a
fixed large time t0 related to the construction of G, and for χ which in addition
satisfies

χ(ρ) = 1 for d(ρ, K δ) ≤ R(h/h̃)
1
2 , |p(ρ)| ≤ δ/2.

Using Egorov’s theorem and (from (2.1)) the positivity of G − G ◦ ϕ−t0 on
the set supp(1− χ) ∩WFh(A), we get following the weighted estimate:

‖(1− χw)e−i t0 P̃G/h A‖ ≤ e−	, (2.6)
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When constructing the function G it is essential to choose 	 such that

	 >
t0λ0
2
.

We also show that

‖e−i t0 P̃G/h A‖ ≤ e2C0, (2.7)

for a constant C0 independent of h, h̃. Formally, these results follow from
Egorov’s theorem but care is needed as G is a symbol in an exotic class. To
obtain (2.6) and (2.7) we proceed as in the proof of [37, Proposition 3.11].
This is done in Sect. 6.
Step 3. The last step combines the two previous estimates, by decomposing

e−int0 P̃G/h = (UG,+ +UG,−)n,

UG,+
def= e−i t0 P̃G/hχw, UG,−

def= e−i t0 P̃G/h(1− χw).

In order to apply (2.5) we use the fact that

χwe−Gwe−i t (P−iW )/heGwχw = χwG,1e−i t P/hχwG,2 +O(h̃∞)+O(h 1
2 ),

where the symbols χG,i have the properties required in (2.5). A clever expan-
sion of (eint0 P̃G/h)n into terms involving UG,± and an application of Steps
1 and 2 lead to the estimate (2.2) for t = nt0. The argument is presented in
Sect. 7.

3 Preliminaries

In this section we will briefly recall basic concepts of semiclassical quantiza-
tion on manifolds with detailed references to previous papers.

3.1 Semiclassical quantization

The semiclassical pseudodifferential operators on a compact manifold X are
quantizations of functions belonging to the symbol classes Sm modeled on
symbol classes for R

n:

Sm(T ∗Rn) =
{
a ∈ C∞(T ∗Rn × (0, 1]h) :

∀α, β ∈ N
n, |∂αx ∂βξ a(x, ξ ; h)| ≤ Cαβ(1+ |ξ |)m−|β|

}
,
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362 S. Nonnenmacher, M. Zworski

see [55, §14.2.3]. The Weyl quantization, which we informally write as

Sm(T ∗X) � a(x, ξ) �−→ aw(x, hD) ∈ �m(X),

maps symbols to pseudodifferential operators. It ismodeled on the quantization
on R

n:

[awu](x) = aw(x, hD)u(x) = [Opwh (a)u](x)
def= 1

(2πh)d

∫ ∫
a
( x + y

2
, ξ
)
ei〈x−y,ξ〉/hu(y)dydξ, u ∈ S (Rn). (3.1)

The symbol map

σ : �m(X)→ Sm(T ∗X)/hSm−1(T ∗X),

is well defined as an equivalence class and its kernel is h�m−1(X)—see [55,
Theorem 14.3]. If σ(A) has a representative independent of h we call that
invariantly defined element of Sm(T ∗X) the principal symbol of A.

Following [12] we define the class of compactly microlocalized operators

�comp(X)
def= {aw(x, hD) : a ∈ (S0 ∩ C∞c )(T ∗X)} + h∞�−∞(X).

These operators have well defined semiclassical wave front sets:

�comp(X) � A �−→WFh(A) � T ∗X,

see [12, §3.1] and [55, §8.4].
Let u = u(h), ‖u(h)‖L2 = O(h−N ) (for some fixed N ) be a wavefunction

microlocalized in a compact set in T ∗X , in the sense that for some A ∈ �comp,
one has u = Au + OC∞(h∞). The semiclassical wavefront set of u is then
defined as:

WFh(u)=�
{
ρ∈T ∗X : ∃ a∈ S0(T ∗X), a(x, ξ)=1, ‖aw u‖L2=O(h∞)

}
.

(3.2)

When A ∈ �comp(X) we also define

WFh(I − A) :=
⋃

B∈�comp(X)

WFh(B(I − A)),
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and note that WFh(B) ∩WFh(A) is defined for any B ∈ �m(X) as

WFh(B) ∩WFh(A) :=WFh(CB) ∩WFh(A), C ∈ �comp,

WFh(I − C) ∩WFh(A) = ∅.

Semiclassical Sobolev spaces, Hs
h (X) are defined using the norms

‖u‖Hs
h (X)

= ‖(I − h2�g)
s/2u‖L2(X), (3.3)

for some choice of Riemannian metric g on X (notice that Hs
h (X) represents

the same vector space as the usual Sobolev space Hs(X)).

3.2 S 1
2
calculus with two parameter

Another standard space of symbols Sδ(R2n), 0 < δ ≤ 1/2, is defined by
demanding that ∂αa = O(h−|α|δ). The quantization procedure a �→ Opwh a
gives well defined operators and Opwh a ◦ Opwh b = Opwh c with c ∈ Sδ .

For 0 < δ < 1/2we still have a pseudodifferential calculus,with asymptotic
expansions in powers of h. However, for δ = 1/2 we are at the border of the
uncertaintly principle, and there is no asymptotic calculus—see [55, §4.4.1].
To obtain an asymptotic calculus the standard S 1

2
spaces is replaced by a

symbol space where a second asymptotic parameter is introduced:

S̃ 1
2
(R2n)

def=
{
a = a(ρ, h, h̃) ∈ C∞(R2n

ρ × (0, 1]h
×(0, 1]h̃) : |∂αρ a| ≤ Cα(h/h̃)

−|α|/2} .

Then the quantization a �→ aw(x, hD) ∈ �̃ 1
2
(Rn) is unitarily equivalent to

ã �→ ãw(x̃, h̃D) = Opw
h̃
(̃a), ã(ρ) = a((h/h̃)

1
2ρ). ã ∈ S(R2n), (3.4)

—see [55, §§4.1.1,4.7.2]. Hence, we now have expansions in powers of h̃, as in

the standard calculus, with better properties (powers of (hh̃)
1
2 ) when operators

in �̃ 1
2
and � are composed—see [43, Lemma 3.6].

For the case of manifolds we refer to [12, §5.1] which generalizes and
clarifies the presentations in [43, §3.3] and [54, §3.2]. The basic space of
symbols, and the only one needed here, is
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364 S. Nonnenmacher, M. Zworski

S̃comp
1
2

(T ∗X) =
{
a ∈ C∞c (T ∗X) : V1 · · · Vka = O((h/h̃)− k

2 ), ∀ k,

Vj ∈ C∞(T ∗X, T (T ∗X))
}
+ h∞S−∞(T ∗X).

The quantization procedure

S̃comp
1
2

(T ∗X) � a → Opwh (a) ∈ �̃comp
1
2

(X)

defines the class of operators �̃comp
1
2

(X)modulo h∞�−∞(X), and the symbol
map:

σ̃ : �̃comp
1
2

(X) −→ S̃comp
1
2

(T ∗X)/h
1
2 h̃

1
2 S̃comp

1
2

(T ∗X). (3.5)

The properties of the resulting calculus are listed in [12, Lemma 5.1] and we
will refer to those results later on.

When h̃ = 1 we use the notation Scomp
1
2

(T ∗X) for symbols and denote by

�
comp
1
2

(X) the corresponding class of pseudodifferential operators. The symbol
map

σ : �comp
1
2

(X) −→ Scomp
1
2

(T ∗X)/h
1
2 Scomp

1
2

(T ∗X),

is still well defined but the operators in this class do not enjoy a proper sym-
bol calculus in the sense that σ(AB) cannot be related to σ(A)σ (B). How-
ever, when A ∈ �comp

1
2

(X) and B ∈ �(X) then σ(AB) = σ(A)σ (B) +
O(h 1

2 )S 1
2
(T ∗X)—see [43, Lemma 3.6] or [12, Lemma 5.1].

3.3 Fourier integral operators

In this paperwewill consider Fourier integral operators associated to canonical
transformations. It will also be sufficient to consider operators which are com-
pactly microlocalized as we will always work near p−1([−2δ, 2δ])∩w−1(0)
which by assumption (1.9) is a compact subset of T ∗X .

Suppose thatY1, Y2 are two compact smoothmanifolds (Y j = X orY j = T
n

in what follows) and that, Uj ⊂ T ∗Y j are open subsets. Let

κ : U1 → U2,

	′κ
def= {(x, ξ, y,−η) : (x, ξ) = κ(y, η), (y, η) ∈ U1} ⊂ T ∗Y2 × T ∗Y1,
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be a symplectic transformation, for instance κ = ϕt , U1 = U2 = T ∗X . Here
	κ is the graph of κ and ′ denotes the twisting η �→ −η. This follows the
standard convention [30, Chapter 25].

Following [12, §5.2] we introduce the class of compactly microlocalized h-
Fourier integral operator quantizing κ , I comp

h (Y2×Y1, 	′κ). If T ∈ I comp
h (Y2×

Y1, 	′κ) then it has the following properties: T = O(1)L2(Y1)→L2(Y2); there
exist A j ∈ �comp(Y j ), WFh(A j ) � Uj such that

A2T = T +O(h∞)D′(Y1)→C∞(Y2), T A1 = T +O(h∞)D′(Y1)→C∞(Y2);

for any Bj ∈ �m(Y j ),

T B1 = C1T + hT1, σ (C1) = σ(B1) ◦ κ−1,

B2T = TC2 + hT2, σ (C2) = σ(B2) ◦ κ, Tj ∈ I comp
h (Y2 × Y1, 	

′
κ).

(3.6)

The last statement is a form of Egorov theorem.
When Bj ∈ �̃comp

1
2

(X) then an analogue of (3.6) still holds in a modified

form

T B1 = C1T + h
1
2 h̃

1
2 D1T1, σ (C1) = σ(B1) ◦ κ−1,

B2T = TC2 + h
1
2 h̃

1
2 T2D2, σ (C2) = σ(B2) ◦ κ,

Tj ∈ I comp
h (Y2 × Y1, 	

′
κ), C j , Dj ∈ �̃comp

1
2

(X), (3.7)

see Proposition 6.3 (applied with g ≡ 0).
An example is given by the operators

A e−i t P/h, e−i t P/h A ∈ I comp(X × X, 	′ϕt ), ifA ∈ �comp(X). (3.8)

In Sect. 5 we will also need a local representation of elements of I comp

as oscillatory integrals—see [1],[22, §3.2] and references given there. If
T ∈ I comp(Rn × R

n, 	′κ) is microlocalized to a sufficiently small neighbour-
hood κ(U )×U ⊂ T ∗Rn × T ∗Rn ([55, 8.4.5]) then

Tu(x)=(2πh)− k+n
2

∫

Rk

∫

Rn

e
i
hψ(x,y,θ)a(x, y, θ)u(y)dydθ+O(h∞)S‖u‖H−M , (3.9)

for any M . Here a ∈ C∞c (R2n×R
k),ψ ∈ C∞(R2n×R

k), and near κ(U )×U ,
the graph of κ is given by
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	κ = {((x, dxψ(x, y, θ)), (y,−dyψ(x, y, θ)) : (x, y, θ) ∈ Cψ },
Cψ

def= {(x, y, θ) : dθψ(x, y, θ) = 0, },
dx,y,θ (∂θ jψ), j = 1, . . . , k, are linearly independent, (3.10)

For given symplectic coordinates (x, ξ) and (y, η) in neighbourhoods of κ(U )
andU respectively, such a representation existswith an extra variable of dimen-
sion k, where 0 ≤ k ≤ n, and n + k is equal to the rank of the projection

	κ � ((x, ξ), (y, η)) �−→ (x, η),

assumed to be constant in the neighbourhood of κ(U )×U—see for instance
[55, Theorem 2.14]. Since 	κ in (3.10) is the graph of a symplectomorphism
it follows that for some y′ = (y j1, . . . , y jn−k ) ∈ R

n−k ,

Dψ(x, y, θ)
def= det

( ∂2ψ

∂xi∂y′j ′
,
∂2ψ

∂xi∂θ j

)
�= 0. (3.11)

For the use in Sect. 5 we record the following lemma, proved using standard
arguments (see for instance [1]):

Lemma 3.1 Suppose that T is given by (3.9) and that B ∈ �̃ 1
2
(Rn). Then for

any u ∈ L2 with ‖u‖L2 = 1,

BT u(x) = (2πh)− k+n
2

∫

Rk

∫

Rn

e
i
hψ(x,y,θ)a(x, y, θ)

×b(x, dxψ(x, y, θ))u(y)dydθ +O(h 1
2 h̃

1
2 )L2,

T Bu(x) = (2πh)− n+k
2

∫

Rk

∫

Rn

e
i
hψ(x,y,θ)a(x, y, θ)

×b(y,−dyψ(x, y, θ))u(y)dydθ +O(h 1
2 h̃

1
2 )L2,

where b = σ(B).

3.4 Fourier integral operators with operator valued symbols

In Sect. 5 we will also use a class of Fourier integral operators with operator
valued symbols. We present what we need in an abstract form in this section.
Only local aspects of the theory will be relevant to us and we opt for a direct
presentation.
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Suppose that H is a separable Hilbert space and Q is an (unbounded) self-
adjoint operator with domain D ⊂ H. We assume that Q : D → H is

invertible and we put D� def= Q−�H, for � ≥ 0. For � < 0, we define D� as the
completion of H with respect to the norm ‖Q�u‖H.

We define the following class of operator valued symbols:

Sδ(R2n × R
k,H,D), (3.12)

to consist of operator valued functions

R
n × R

n × R
k � (x, y, θ) �−→ N (x, y, θ) : D∞ −→ H

which satisfy the following estimates:

∂αx,y,θN (x, y, θ) = Oα,�(1) : D�+δ|α| −→ D�, (3.13)

for any multiindex α and � ∈ Z, uniformly in (x, y, θ). We note that this class
is closed under pointwise composition of the operators: if N j ∈ Sδ then N j
defines a family of operators D� → D�, hence so does their product N1N2;
the estimate (3.13) follows for the composition, since for |β| + |γ | = |α|,
∂βN1∂

γ N2=O(1)D�+δ|α|→D�+δ(|α|−|β|)O(1)D�+δ(|α|−|β|)→D�=O(1)D�+δ|α|−→D� .

Proposition 3.5 at the end of this section describes a class which will be used
in Sect. 5.

Suppose that ψ satisfies (3.10) and (3.11). We can assume that ψ is defined
on R

2n × R
k . For N ∈ Sδ and a ∈ C∞c (R2n × R

k) we define the operator

T : L2(Rn)⊗H −→ L2(Rn)⊗H, L2(Rn)⊗H � L2(Rn,H),

(the second identification is valid as H is separable [40, Theorem II.10] but it
is convenient in definitions to use the tensor product notation) by

T (u ⊗ v) def= (2πh)− n+k
2

∫

Rk

∫

Rn

e
i
hψ(x,y,θ)a(x, y, θ) (u(y)⊗ N (x, y, θ)v) dydθ. (3.14)

This operator is well-defined since a is compactly supported, but to obtain a
norm estimate which is uniform in h we need to assume that N ∈ S0:

Lemma 3.2 Suppose that N ∈ S0(R
2n+k,H,D) and that T is given by (3.14).

Then

‖T ‖L2(Rn)⊗H→L2(Rn)⊗H = max
Cψ

|a|‖N‖H→H√|Dψ |
+O(h), (3.15)
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where Cψ
def= {(x, y, θ) : ∂θψ = 0}, and Dψ is given by (3.11).

If N ∈ Sδ(R2n+k,H,D) then

T = O(1) : L2(Rn)⊗Dδmn+� −→ L2(Rn)⊗D�, (3.16)

where mn depends only on the dimension n.

Proof The estimate (3.15) follows from a standard argument based on consid-
ering T ∗T and from [55, Theorem 13.13]. The estimates (3.13) with δ = 0
and � = 0 show that the operators can be treated just as scalar symbols.

To obtain (3.16) we note that

∂αx,y,θ

(
Q−L N (x, y, θ)

)
= O(1) : H → H, for |α|δ ≤ L .

To obtain the norm estimate (3.15) we only need a finite number of derivatives,
Mn , depending only on the dimension. Taking mnδ ≥ L ≥ Mnδ, we can then
apply (3.15) to the operator Q−LT , which gives the bound (3.16) for T .  !

A special case of is given by κ = id. In that case we deal with pseudodif-
ferential operators with operator valued symbols. The following lemma sum-
marizes their basic properties:

Lemma 3.3 Suppose that N j ∈ Sδ j (R2n), j = 1, 2. For u ∈ S (Rn) and
v ∈ D∞ we define

Opwh (N j )(u ⊗ v) def= 1

(2πh)n

∫
e

i
h 〈x−y,ξ〉

[
N j

(
x + y

2
, ξ

)
v

]
u(y)dydξ.

These operators extend to

Opwh (N j ) = O(1) : L2(Rn)⊗D�+mnδ j → L2(Rn)⊗D�, (3.17)

and satisfy the following product formula:

Opwh (N1)Op
w
h (N2) = Opwh (N1N2)+ hR,

R = O(1) : L2(Rn)⊗D�+mn(δ1+δ2) → L2(Rn)⊗D�.
(3.18)

Here and in (3.17), � is arbitrary and mn depends only on the dimension n.

Proof When δ1 = δ2 = 0 the proof is an immediate vector valued adaptation
of the standard arguments presented in [55, §§4.4,4.5] where we note that
only a finite number (depending on the dimension) of seminorms of symbols
is needed. In general, (3.13) gives

∂αx,ξQ
−L N j Q

−M = O(1) : D� → D�, |α|δ j ≤ L + M, (3.19)
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and the norm estimates (3.17) follows. To obtain the product formula we note
that, using (3.19), it applies to Q−MN1 and N2Q−M for M sufficiently large
depending on n. Hence

Opwh (N1)Op
w
h (N2) = QMOpwh (Q

−MN1)Op
w
h (N2Q

−M)QM

= QMOpwh (Q
−MN1N2Q

−M)QM

+QMO(h)L2⊗D p→L2⊗D p QM

= Opwh (N1N2)+O(h)L2⊗D p+M→L2⊗D p−M ,

which gives (3.18) provided mn(δ1 + δ2) ≥ 2M .  !
We can also factorize the operator T using the pseudodifferential opera-

tors described in Lemma 3.3, the proof being an adaptation of the standard
argument. When S : L2(Rn) → L2(Rn) we also write S for S ⊗ IH :
L2(Rn)⊗H → L2(Rn)⊗H.

Lemma 3.4 Suppose that T is given by (3.14) with N ∈ Sδ . Then

T = T ‖Opwh (N1)+ hR1 = Opwh (N2)T
‖ + hR2,

where

T ‖ ∈ I comp(Rn × R
n, 	′κ),

T ‖u(x) = (2πh)− k+n
2

∫

Rk

∫

Rn

e
i
hψ(x,y,θ)a(x, y, θ)u(y)dydθ,

N2(x, dxψ(x, y, θ)) = N1(y,−dyψ(x, y, θ)) = N (x, y, θ),

(x, y, θ) ∈ Cψ

R j = O(1) : L2(Rn)⊗Dδmn+� −→ L2(Rn)⊗D�. (3.20)

Here, N j ∈ Sδ(Rn × R
n,H,D), and

Opwh (N j ) = O(1) : L2(Rn)⊗Dδmn+� −→ L2(Rn)⊗D�.

In our applications we will have

H = L2(Rd⊥, d ỹ), Q = −h̃2�ỹ + ỹ2 + 1, (3.21)

so that D� are analogous to Sobolev spaces (see [55, §8.3]). In the rest of this
section (as well in Sect. 5), we will use the shorthand notations ρ‖ = (x, y, θ)
in order to shorten the expressions, and to differentiate between these variables
and the “transversal variables” (ỹ, η̃).
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We consider a specific class of metaplectic operators:

N (ρ‖)u(ỹ) = (2π h̃)−d⊥
∫

R
d⊥

∫

R
d⊥

(det ∂2ỹ,η̃qρ‖)
1
2 e

i
h̃
(qρ‖ (ỹ,η̃)−〈η̃,ỹ′〉)u(ỹ′)d ỹ′,

(3.22)

where qρ‖(ỹ, η̃) is a real quadratic form in the variables ỹ, η̃, with coefficients
depending on ρ‖, being in the class S(R2n+k), and the matrix of coefficients
∂2ỹ,η̃qρ‖ is assumed to be uniformly non-degenerate for all ρ‖. The definition
involves a choice of the branch of the square root—see Remark 5.8 for further
discussion of that. For any fixed ρ‖ these operators are unitary on H (see for
instance [55, Theorem 11.10]).

The next proposition shows that this class fits nicely into our framework:

Proposition 3.5 The operators N (ρ‖) given by (3.22) satisfy

∂αρ‖N (ρ‖) = Oα,�(h̃−|α|) : D|α|+� −→ D�, (3.23)

for all �, That means that (3.13) holds with δ = 1 (the loss in h̃ is considered
as dependence on α).

If χ̃ ∈ S (R2d⊥) is fixed, � > 1, and χ̃�(•) def= χ̃ (�−1•), then for any �
and k ≥ 0,

χ̃w�(ỹ, h̃Dỹ) = O�(�2k) : D� → D�+k, (3.24)

so that

∂αρ‖

(
χ̃w�(ỹ, h̃Dỹ)N (ρ‖)

)
= Oα,�(�2|α|h̃−|α|) : D� −→ D�,

∂αρ‖

(
N (ρ‖)χ̃w�(ỹ, h̃Dỹ)

)
= Oα,�(�2|α|h̃−|α|) : D� −→ D�.

(3.25)

Proof We see that ∂αρ‖N (ρ‖) is an operator of the same form as (3.22) but with
the amplitude multiplied by

∑

|β|≤2|α|
h̃−mβ ỹβ1(ỹ′)β2 η̃β3qβ(ρ‖), qβ ∈ S(R2n+k),

β=(β1, β2, β3)∈N
3d⊥, β j ∈ N

d⊥,

where mβ ≤ |α|. Hence to obtain (3.23), it is enough to prove that

Q� ỹβ1N (ρ‖)
(
(ỹ′)β2(h̃Dỹ′)

β3Q−�−|α|v(ỹ′)
)
= O(‖v‖H)H.
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Using the exact Egorov’s theorem for metaplectic operators (see for instance
[55, Theorem 11.9]) we see that the left hand side is equal to

N (ρ‖)
(
pwβ (ỹ

′, h̃Dỹ′)
(
K ∗
q Q
)�

Q−�−|α|v(ỹ′)
)
, Kq : (∂η̃q, η̃) �→ (ỹ, ∂ỹq),

q = qρ‖ and where pβ is a polynomial of degree less than or equal to |β|.
Since |β| ≤ 2|α|, the operator pwβ (K ∗

q Q)
�Q−�−|α| is bounded on H (see for

instance [55, Theorem 8.10]) so the unitarity of N gives the boundedness inH.
To obtain (3.24) we first note that χ̃� ∈ S(R2d⊥) uniformly in � > 1.

Hence Q−�χ̃w�Q� = O(1)H→H, uniformly in � (again, see [55, Theo-
rem 8.10]). This gives (3.24) for k = 0. For the general case we put
Q� = 1 + �−2((h̃Dỹ)

2 + ỹ2), and note that for any M , QM
� χ̃

w
� = χ̃w�,M ,

where χ̃�,M ∈ S(R2d⊥) uniformly in �. Hence it is bounded on L2(Rd⊥)
uniformly in � and h̃. We then write

Qk χ̃w�(ỹ, h̃Dỹ) = QkQ−k
� Qk

�χ̃
w
�(ỹ, h̃Dỹ)

= (1+ (h̃Dỹ)
2 + ỹ2)k(1+�−2(h̃Dỹ)

2 +�−2 ỹ2)−k χ̃w�,k(ỹ, h̃Dỹ)

= �2k(1+ (h̃Dỹ)
2 + ỹ2)k(�2 + (h̃Dỹ)

2 + ỹ2)−k χ̃w�,k(ỹ, h̃Dỹ)

= O(�2k)L2(Rd⊥ )→L2(Rd⊥ ),

completing the proof of (3.24).  !

4 Classical dynamics

In this section we will describe the consequences of the normal hyperbolicity
assumption (1.16), (1.17) needed in the proof of Theorem 2.

4.1 Stable and unstable distributions

Let K δ be the trapped set (1.14) and E±ρ ⊂ TρX , ρ ∈ K δ , the distributions

in (1.17). We recall our notation ϕt
def= exp t Hp for the Hamiltonian flow

generated by the function p(x, ξ).
We start with a simple

Lemma 4.1 If ω is the canonical symplectic form on T ∗X then

ωρ �E±ρ = 0, (4.1)

that is E±ρ are isotropic.
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Without loss of generality we can assume that the distributions E±ρ satisfy

E+ρ ⊕ E−ρ = (TρK δ)⊥, (4.2)

where V⊥ denotes the symplectic orthogonal of V .

Proof The property (4.1) follows from the fact that ϕt preserves the symplectic
structure (ϕ∗t ω = ω). For X, Y ∈ E±ρ ,

ωρ(X, Y ) = ωϕ∓t (ρ)((dϕ∓t )(ρ)X, dϕ∓t (ρ)Y )→ 0, t →+∞.

To see that we can assume (4.2) we note that the distribution {(TρK δ)⊥, ρ ∈
K δ} is invariant by the flow: dϕt (ρ) : TρK → Tϕt (ρ)K , and dϕt (ρ) is a
symplectic transformation. If πρ : Tρ(T ∗X) → (TρK δ)⊥ is the symplectic
projection, then πdϕt (ρ) ◦ dϕt (ρ) = dϕt (ρ) ◦ πρ . This means that we may
safely replace E±ρ with πρ(E±ρ ), without altering the properties (1.17).  !

4.2 Construction of the escape function

To construct the escape function near the trapped set we need a lemma con-
cerning invariant cones near K δ . To define them we introduce a Riemannian
metric on T ∗X and use the tubular neighbourhood theorem (see for instance
[30, Appendix C.5]) to make the identifications

neigh(K δ) � N∗K δ ∩ {(ρ, ζ ) ∈ T ∗(T ∗X) : ‖ζ‖ρ ≤ ε1}
� (T K δ)⊥ ∩ {(ρ, z) ∈ T (T ∗X) : ‖z‖ρ ≤ ε1}
� {(m, z) : m ∈ K δ, z ∈ R

2d⊥, ‖z‖ρ ≤ ε1}. (4.3)

Here (T K δ)⊥ denotes the symplectic orthogonal of T K δ ⊂ TK δ (T
∗X) ⊂

T (T ∗X). Since K δ is symplectic, the symplectic form identifies (T K δ)⊥ with
the conormal bundle N∗K δ . The norm ‖ • ‖ρ is a smoothly varying norm on
Tρ(T ∗X). Wewrite dρ(z, z′) = ‖z−z′‖ρ and introduce a distance function d :
neigh(K δ)×neigh(K δ)→ [0,∞) obtained by choosing a Riemannianmetric
on neigh(K δ). We have d((m, z), (m, z′)) ∼ dm(z, z′) and the notation a ∼ b,
here and below, means that there exists a constant C ≥ 1 (independendent of
other parameters) such that b/C ≤ a ≤ Cb.
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Assuming that E±ρ are chosen so that (4.2) holds we can define (closed)
cone fields by putting

C±
ρ

def= {z ∈ (TρK δ)⊥ : dρ(z, Eρ±) ≤ ε2‖z‖ρ, ‖z‖ρ ≤ ε1},
C± def=

⋃

ρ∈K δ
C±
ρ ⊂ neigh(K δ), (4.4)

whereweused the identification (4.3). Since themapsρ �→ E±ρ are continuous,
C± are closed.

The basic properties C± are given in the following

Lemma 4.2 There exists t0 > 0 and ε02 > 0 such that, for every t > t0
there exists ε01 such that if one chooses ε j < ε0j , j = 1, 2 in the definition of

neigh(K δ) and C±, then

ρ ∈ C±, ϕ±t (ρ) ∈ neigh(K δ) #⇒ ϕ±t (ρ) ∈ C±. (4.5)

In fact a stronger statement is true: for some constant λ1 > 0 and any t ≥ t0,

ρ, ϕ±t (ρ) ∈ neigh(K δ) #⇒ d(ϕ±t (ρ),C
±) ≤ e−λ1t d(ρ,C±). (4.6)

Finally,

d(ρ,C+)2 + d(ρ,C−)2 ∼ d(ρ, K δ)2. (4.7)

The conclusions (4.6) and (4.7) are similar to [37, Lemma 4.3] and [42, Lemma
5.2] but the proof does not use foliations by stable and unstable manifolds
which seem different under our assumptions.

Proof For ρ ∈ neigh(K δ) let (m, z), m ∈ K δ and z ∈ R
2d⊥ � (TmK δ)⊥

be local coordinates near ρ. Similarly let (m̃, z̃) be local coordinates near
ϕt (ρ) ∈ neigh(K δ) (by assumption in (4.5)). Then if for each m we put

d⊥ϕt (m)
def= dϕt (m)�(TmK δ)⊥ , the map ϕt can be written as,

ϕt (m, z)=
(
ϕt (m)+Ot (‖z‖2), d⊥ϕt (m)z +Ot (‖z‖2)

)

=(ϕt (m1), d⊥ϕt (m1)z +Ot (‖z‖2)
)
, m1=m+Ot (‖z‖2). (4.8)

(Herewe identify (TmK δ)⊥ withR
2d⊥ and consider d⊥ϕt (m) : R

2d⊥ → R
2d⊥ ,

with similar identification near ϕt (ρ). The norm ‖ • ‖ is now fixed in that
neighbourhood.)

Let z = z+ + z− be the decomposition of z corresponding to (Tm1K
δ)⊥ =

E+m1
⊕ E−m1

(we assumed without loss of generality that (4.2) holds). The
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continuity of ρ �→ E±ρ and the definition of C+
ρ show that if ε1 is small

enough depending on t (so that d(m,m1) = Ot (‖z‖2) is small)

z ∈ C+
m #⇒ ‖z−‖m1 ≤ 2ε2‖z+‖m1 . (4.9)

Since

d⊥ϕt (m1)z =
∑

±
d⊥ϕt (m1)z±, d⊥ϕt (m1)z± ∈ E±ϕt (m1)

,

normal hyperbolicity implies that for some C > 0 and λ1 > 0

‖d⊥ϕt (m1)z+‖ ≥ 1

C
e2λ1t‖z+‖,

‖d⊥ϕt (m1)z−‖ ≤ Ce−2λ1t‖z−‖,
(4.10)

for all positive times t .
If z ∈ C+

m , then this and (4.9) show

‖d⊥ϕt (m1)z−‖ ≤ 2C2 e−4λ1t ε2‖d⊥ϕt (m1)z+‖.
Let us take t0 such that 2C2 e−4λ1t0 < 1/2. For t ≥ t0 and ε1 small enough
depending on t this shows that

z ∈ C+
m and ‖z‖ ≤ ε1, ‖d⊥ϕt (m1)z‖ ≤ ε1

#⇒ d⊥ϕt (m1)z +Ot (‖z‖2) ∈ C+
ϕt (m1)

, (4.11)

which in view of (4.8) proves (4.5) in the + case with the − case being
essentially the same.

To obtain (4.6) we note that for (m, z) ∈ neigh(ρ, K δ),

d((m, z),C+)∼dm(z,C
+
m )∼‖z−‖(1−1C+

m
(z)), z= z+ + z−, z± ∈ E±m ,

where 1A is the characteristic function of a set A. (To see the first ∼ we need
to show that d((m, z),C+) ≤ c0dm(z,C+

m ) for some c0, which follows from
an argument by contradiction using pre-compactness of K δ .)

We also observe that if dϕt (m1)z ∈ neigh(K δ) then (4.11) gives, for ε1
small enough depending on t ,

1− 1C+
ϕt (m1)

(
d⊥ϕt (m1)z +Ot (‖z‖2)

) ≤ 1− 1C+
m
(z).

Hence, using (4.8) and (4.10), writing z = z− + z+ as before, and taking ε1
sufficiently small depending on t ≥ t0,
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d(ϕt (m, z),C
+) ∼ dϕt (m1)

(
d⊥ϕt (m1)z +Ot (‖z‖2),C+

ϕt (m1)

)

∼ ‖d⊥ϕt (m1)z−‖ (1+Ot (‖z−‖))
×(1− 1C+

ϕt (m1)
(d⊥ϕt (m1)z +Ot (‖z‖)2)

)

≤ Ce−2λ1t‖z−‖ (1+Ot (‖z−‖)) (1− 1C+
m1
(z))

≤ C ′e−2λ1t dm1(z,C
+
m1
) ∼ C ′e−2λ1t dm(z,C

+
m )

≤ e−λ1t d((m, z),C+).

Here in the second line we used the fact that ‖z‖ ≤ C‖z−‖ if the distance is
non zero (with C depending on ε2). In the fourth line we used the continuity
of the cone field, m �→ C+

m .
This proves (4.6). The last claim (4.7) is immediate from the construction

of C± and the fact that E+ρ ∩ E−ρ = {0}.  !
We now regularize d(ρ,C±)2 uniformly with respect to a parameter ε. It

will eventually be taken to be h/h̃, where h̃ is a small constant independent of
h. Lemma 4.2 and the arguments of [37, §4] and [43, §7] immediately give

Lemma 4.3 There exists t0 > 0 such that for any t > t0, there exists a
neighbourhood Vt of K 2δ and a constant C0 > 0 such that the following
holds.

For any small ε > 0 there exist functions γ± ∈ C∞(Vt ∪ ϕt (Vt )) such that
for ρ ∈ Vt ∩ p−1([−δ, δ]),

γ±(ρ) ∼ d(ρ,C±)2 + ε, γ±(ρ) ≥ ε,
± (γ±(ρ)− γ±(ϕt (ρ))+ C0ε ∼ γ±(ρ),
∂αγ±(ρ) = O(γ±(ρ)1−|α|/2),
γ+(ρ)+ γ−(ρ) ∼ d(ρ, K δ)2 + ε.

(4.12)

Following [37, §4] and [43, §7] again this gives us an escape function for a
small neighbourhood of the trapped set. We record this in

Proposition 4.4 Let γ± be the functions given in Lemma 4.3. For L � 1
independent of ε, define

G0
def= log(Lε + γ−)− log(Lε + γ+) (4.13)

on a neighbourhood V of the trapped set K 2δ .
For any t0 large enough, and L dependingon t0, we canfindaneighbourhood

of U1 � V of K 2δ and c1, c2,C1,C2, > 0, independent of L, such that

G0 = O(log(1/ε)), ∂αρG0 = O(min(γ+, γ−)−
|α|
2 ) = O(ε−

|α|
2 ), |α| ≥ 1,
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and such that for ρ ∈ U1 ∩ p−1([−δ, δ]),

∂αρ (G0(ϕt0(ρ))− G0(ρ)) = O(min(γ+, γ−)−
|α|
2 ) = O(ε−

|α|
2 ), |α| ≥ 0,

d(ρ, K δ)2 ≥ C1ε #⇒ G0(ϕt0(ρ))− G0(ρ) ≥ c1/L ,

d(ρ, K δ)2 ≤ c2Lε #⇒ |G(ρ)| ≤ C2. (4.14)

Remark 4.5 For the reader’s convenience we make some comments on the
constants in Proposition 4.4 referring to the proof of [37, Lemma 4.4] for
details. The constant L has to be large enough depending on the implicit con-
stants in (4.12). The constants C1,C2 have to be large enough, and constants
c1, c2 small enough, depending on the implicit constants in (4.12). In Sect. 6.2
it matters that we can take c2L > C1 which is certainly possible.

In the intermediate region between U1 and {x : w(x) > 0} we need an
escape function similar to the one constructed in [15, §4] and [26, Appendix].
We work here under the general assumptions of Sect. 1.3 and present a slightly
modified argument.

Lemma 4.6 Suppose that X is a compact smoothmanifold, p ∈ Sm(T ∗X;R),
w ∈ Sk(T ∗X; [0,∞)), k ≤ m, and that (1.9) holds. For any open neighbour-
hood V1 of K 3δ , there exists ε1 > 0 and a function G1 ∈ C∞c

(
p−1((−2δ, 2δ))

)

such that

G1(ρ) = 0 for ρ in some neighbourhood of K 3δ,

HpG1(ρ) ≥ 0 for ρ /∈ w−1((ε1,∞)),
HpG1(ρ) > 0 for ρ ∈ p−1([−δ, δ])\(V1 ∪ w−1((ε1,∞))

)
.

(4.15)

Proof Call U0
def= w−1((0,∞)) and suppose ρ ∈ p−1([−2δ, 2δ])\(V1 ∪U0).

We first claim that there exist T± = T±(ρ), T− < 0 < T+, such that

ϕT+(ρ) ∈ U0 or ϕT−(ρ) ∈ U0, (4.16)

ϕT±(ρ) ∈ V1 ∪U0. (4.17)

(Here and below we use the notation ϕA(ρ) = {ϕt (ρ) : t ∈ A}.)
To justify these claims we first note that since ρ /∈ K 2δ , ϕR(ρ) ∩ U0 �= ∅

which implies that

∃ T1, ϕT1(ρ) ∈ U0. (4.18)

Assuming that T1 < 0 we want to show that ϕT2(ρ) ∈ V1 ∪ U0 for some
T2 > 0. Suppose that this is not true, that is

ϕ(0,∞)(ρ) ∩ (V1 ∪U0) = ∅. (4.19)
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Then for any t j →∞,

ρ j
def= ϕt j (ρ) ∈ p−1([−2δ, 2δ])\(V1 ∪U0), ϕ[0,∞)(ρ j ) ∩ (V1 ∪U0) = ∅.

By (1.9) the set p−1([−2δ, 2δ])\(V1 ∪U0) is compact and hence, by passing
to a subsequence, we can assume that ρ j → ρ̄ /∈ V1 ∪U0. We have ϕt (ρ j )→
ϕt (ρ̄), as j →∞, uniformly for |t | ≤ T , and it follows that ϕ[0,∞)(ρ̄)∩ (V1∪
U0) = ∅. For t ≥ −t j ,

ϕt (ρ j ) = ϕt+t j (ρ) ⊂ ϕ[0,∞)(ρ) ⊂ p−1([−2δ, 2δ])\(V1 ∪U0),

which means that ϕt (ρ̄) /∈ V1 ∪U0 for t > −t j →−∞. We conclude that

ϕR(ρ̄) ∩ V1 ∪U0 = ∅ #⇒ ϕR(ρ̄) ∈ K 3δ.

This contradicts the property ρ̄ �∈ V1, and proves the existence of T2 > 0 such
that ϕT2(ρ) ∈ V1 ∪U0. We call T−(ρ) = T1, T+(ρ) = T2.

In the case T1 in (4.18) is positive, a similar argument shows the existence
of T2 < 0 such that ϕT2(ρ) ∈ (V1∪U0) �= ∅. In this case we call T−(ρ) = T2,
T+(ρ) = T1.

For each ρ ∈ p−1([−2δ, 2δ])we can find an open hypersuface	ρ , transver-
sal to Hp at ρ, such that, if ϕT±(ρ) ∈ U0, then for ρ′ ∈ 	ρ ,

ϕT±(ρ
′) ∈ U0, ϕT∓(ρ

′) ∈ V1 ∪U0.

Notice that the closure of the tube�ρ
def= ϕ(T−,T+)(	ρ) does not intersect K

3δ .
Using this tube, we construct a local escape functions gρ ∈ C∞c (�ρ), with the
following properties: for some ερ > 0, and an slightly smaller tube �′ρ ⊂ �ρ
containing ϕ(T−,T+)(ρ),

Hpgρ(ρ
′) ≥ 0, ρ′ /∈ w−1((ερ,∞)),

Hpgρ(ρ
′) > 0, ρ′ ∈ �′ρ\(w−1((ερ,∞)) ∪ V1). (4.20)

Here ερ is chosen so that if ϕT±(ρ) ∈ U0 then ϕT±(	ρ) ⊂ w−1((2ερ,∞)).
To construct gρ we take (t,m) ∈ (T−, T+) × 	ρ as local coordinates:

(t,m) �→ ϕt (m) ∈ �ρ . Suppose thatϕT−(ρ) ∈ U0, and thatϕ(T−,T−+γ )(	ρ) ⊂
w−1((ερ,∞)) and ϕ(T+−γ,T+)(	ρ) ⊂ V1 ∪ U0. Choose χρ ∈ C∞c ((T−, T+))
which is strictly increasing on (T−+γ, T+−γ ) and non-decreasing on (T+−
γ, T+). Also, choose ψρ ∈ C∞c (	ρ) with ψρ(ρ) = 1. Then put gρ(ϕt (m))

def=
χρ(t)ψρ(m). Since Hpgρ = χ ′ρ(t)ψρ(m), (4.20) holds. A similar construction
can be applied in the case where ϕT−(ρ) ∈ V1, ϕT+(ρ) ∈ U0.
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From the open cover

p−1([−δ, δ]) \ (V1 ∪U0) ⊂
⋃{

�ρ : ρ ∈ p−1([−δ, δ])\(V1 ∪U0)
}
,

one may extract a finite subcover
⋃L

j=1�ρ j . The closure of this cover does

not intersect K 3δ , so that the function G1(ρ)
def= ∑L

l=1 gρL (ρ) satisfies (4.15),
for ε0 = min j ερ j .  !

We conclude this section with a global escape function which combines the
ones in Proposition 4.4 and Lemma 4.6. The estimates will be needed to justify
the quantization of the escape function in Sect. 6. The proof is an immediate
adaptation of the proof of [37, Proposition 4.6] and is omitted.

Proposition 4.7 Let V , U1, G0 and t0 be as in Proposition 4.4, and let W1 be
a neighbourhood of K 2δ such that W1 � U1, W1 ∪ ϕt0(W1) � V .

Take χ ∈ C∞c (V) equal to 1 in W1 ∪ ϕt0(W1), and let G1 be the escape
function constructed in Lemma 4.6 for V1 = W1. Then for any 	 > 1, G ∈
C∞c (T ∗X;R) defined by

G
def= χC3	G0 + C4 log(1/ε)G1 (4.21)

where C3 and C4 are sufficiently large, satisfies the following estimates

|G(ρ)| ≤ C6 log(1/ε), ∂αG = O(ε−|α|/2), |α| ≥ 1,

ρ ∈ W1 #⇒ G(ϕt0 (ρ))− G(ρ) ≥ −C7,

ρ ∈ W1 ∩ p−1([−δ, δ]), d(ρ, K δ)2 ≥ C1ε #⇒ G(ϕt0 (ρ))− G(ρ) ≥ 2	,

ρ ∈ p−1([−δ, δ]) \ (W1 ∪ w−1((ε1,∞))
) #⇒ G(ϕt0 (ρ))− G(ρ) ≥ C8 log(1/ε),

(4.22)

with C8 > 0.
In addition we have

expG(ρ)

expG(ρ′)
≤ C9

(
1+ d(ρ, ρ′)√

ε

)N1

, (4.23)

for some constants C9 and N1.
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5 Analysis near the trapped set

In this section we will analyse the cut-off propagator

χw exp(−i t P/h)χw, (5.1)

whereχw = Opwh (χ),χ ∈ C∞c ∩ S̃ 1
2
and suppχ ⊂ {ρ : d(ρ, K δ) < R(h/h̃)

1
2 }

for some R > 1 independent of h̃, h. We could take two different cut-offs on
both sides, as long as they share the above properties.

Our objective is to prove the following bound (announced in (2.5)):

Proposition 5.1 For any ε0 > 0 and M > 0, there exist C0 > 0, h̃0, and a
function h̃ �→ h0(h̃) > 0, such that for 0 < h̃ < h̃0 and 0 < h < h0(h̃),

‖χwe−i t P/hχw‖L2→L2 ≤ C0 h̃
−d⊥/2 exp

(
−1

2
t(λ0 − ε0)

)
,

0 ≤ t ≤ M log 1/h̃, (5.2)

where λ0 is given by (1.19).

Since e−i t P/h is unitary, the above bound is nontrivial only for

0 ≤ d⊥
λ0

log
1

h̃
≤ t ≤ M log

1

h̃
.

5.1 Darboux coordinate charts

We start by setting up an adapted atlas of Darboux coordinate charts near K δ ,
that is take a finite open cover

K δ ⊂
⋃

j∈J
U j ,

and symplectomorphisms κ j : Uj → Vj = neigh(0,R2d). The standard
symplectic coordinates on Vj then appear as a local symplectic coordinate
frame on Uj . We may choose the coordinates such that they split into

X = (x, y), � = (ξ, η), y, η ∈ R
d⊥, x, ξ ∈ R

d−d⊥,

such that the symplectic submanifold K δ∩Uj is identifiedwithK∩Vj ⊂ R
2d ,

where

K def= {y = η = 0} ⊂ R
2d .
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380 S. Nonnenmacher, M. Zworski

That is, (x, ξ) is a local coordinate frame on K δ , while (y, η) describes the
transversal directions.

We also assume that for each ρ ∈ K δ ∩ Uj , identified with some
(x, 0, ξ, 0) ∈ Vj , the subspace

{
(x, y, ξ, 0) , y ∈ R

d⊥
}
is ε-close to the

transversal unstable space dκ j (E+ρ ), while the subspace {(x0, 0, ξ0, η) ,
η ∈ R

d⊥
}
is ε-close to the transversal stable space dκ j (E−ρ ).

We want to describe the flow in the vicinity of K δ , using these local
coordinates. We choose a (large) time t0 > 0, and express the time-t0 flow
ϕt0 : Uj0 → Uj1 in the local coordinate frames, through the maps

κ j1 j0
def= κ j1 ◦ ϕt0 ◦ κ−1

j0
: Dj1 j0 → A j1 j0, (5.3)

where Dj1 j0 ⊂ Vj0 is the departure set, while A j1 j0 ⊂ Vj1 is the arrival set.
This is defined when ϕt0(Uj0) ∩ Uj1 �= ∅ and such a pair j1 j0 for which this
holds will be called physical.

Below we will also consider the maps κnj1 j0 representing the time-nt0 flow
in the charts Vj0 → Vj1—see Sect. 5.6.

5.2 Splitting e−i t0P/h into pieces

We want to use the fact that the propagator e−i t0P/h is a Fourier integral
operator on M associated with ϕt0 . To make this remark precise, we will use
a smooth partition of unity

(
π j ∈ C∞c (Uj , [0, 1])

)
such that each cut-off π j is

equal to unity near some Ũ j � Uj , and the quantized cut-offs�i
def= Opwh (πi )

satisfy the following quantum partition of unity:

�
def=

J∑

j=1

� j �
∗
j ≡ I microlocally in a neighbourhood of K δ. (5.4)

We will then split e−i t0P/h into the local propagators

T �j1 j0
def= �∗

j1e
−i t0P/h� j0, (5.5)

which can be represented by operators on L2(Rd) as follows. We define
Fourier integral operators U j : L2(X) → L2(Rd) quantizing the coordinate
changes κ j , and microlocally unitary in some subset of Vj × Uj containing
κ j (suppπ j )× suppπ j , so that

∀ j, � j�
∗
j = � jU∗

j U j�
∗
j +O(h∞), (5.6)
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The local propagators T �j1 j0 are then represented by

Tj1 j0
def= U j1�

∗
j1 e

−i t0P/h � j0U∗
j0 . (5.7)

Notice that for an unphysical pair j1 j0, Tj1 j0 = O(h∞)L2→L2 . For a phys-
ical pair j1 j0, Tj1 j0 is a Fourier integral operator associated with the local
symplectomorphism κ j1 j0 .

From the unitarity of e−i t0P/h we draw the following property of the oper-
ators Tj ′ j .

Lemma 5.2 The operator-valued matrix T
def= (Ti j )i, j=1,...,J , acting on the

space L2(Rd)J with the Hilbert norm ‖u‖2 =∑J
j=1 ‖u j‖2L2 , satisfies

‖T‖L2(Rd )J→L2(Rd )J = 1+O(h).

Proof From (5.6), the action of Tj1 j0 on L2(Rd) is (up to an error

O(h∞)L2→L2) unitarily equivalent with the action of T �j1 j0 on L2(X). Hence,

the action of T on L2(Rd)J is equivalent to the action of T � on L2(X)J , where
T � is the matrix of operators (5.5).

To obtain the norm estimate we follow [2, Lemma 6.5], put H def= L2(X),
U = e−i t0P/h , and define the rowvector of cut-off operatorsC = (�i )i=1,...,J .
The operator valued matrix T � can be written as T � = C∗(U ⊗ IJ )C . Its
operator norm on L(HJ ) satisfies

‖T �‖2L(HJ )
= ‖(T �)∗T �‖L(HJ ) = ‖C∗(U ⊗ IJ )CC

∗(U∗ ⊗ IJ )C‖L(HJ )

= ‖C∗(U�U∗ ⊗ IJ )C‖L(HJ ).

Egorov’s theorem (see (3.6)) and [55, Theorem 13.13] imply that �1 def=
U�U∗ is a positive semidefinite operator of norm 1 + O(h), with symbol
equal to 1 + O(h) near K δ , and its square root

√
�1, as well as the product√

�1�
√
�1, have the same properties. Hence,

‖T �‖2L(HJ )
= ‖

(
(
√
�1 ⊗ IJ )C

)∗
(
√
�1 ⊗ IJ )C‖L(HJ )

= ‖(
√
�1 ⊗ IJ )C

(
(
√
�1 ⊗ IJ )C

)∗ ‖L(H)
= ‖

√
�1�

√
�1‖L(H) = 1+O(h).

 !
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5.3 Iterated propagator

In this section we explain how to use the Tj ′ j to study our cut-off propagator
(5.1).

First of all, Egorov’s theorem (3.7) applied to T = U j�
∗
j , B2 = χw allows

us to write

U j �
∗
j χ
w = χwj U j �

∗
j +O(h 1

2 h̃
1
2 )L2→L2, j = 1, . . . , J, (5.8)

where the symbol χ j = χ ◦ κ−1
j ∈ S̃ 1

2
(T ∗Rd).

We start from a arbitrary normalized state u ∈ L2(X), and represent the
part of u microlocalized near K δ through the (column) vector of states

u
def= (u j ) j=1,...,J , u j

def= U j�
∗
j u,

‖u‖2 def=
∑

j

‖u j‖2 = 〈u,�u〉 +O(h∞)‖u‖2L2 .

The Eqs. (5.7) and (5.8) show that

�e−i t0P/hχw u=
∑

j

� j�
∗
j e
−i t0P/hχw u=

∑

j1, j0

� j1�
∗
j1e

−i t0P/h� j0�
∗
j0χ

w u

=
∑

j1, j0

� jU∗
j1U j1�

∗
j1e

−i t0P/h� j0U∗
j0U j0�

∗
j0χ

w u+O(h∞)L2→L2

=
∑

j1, j0

� j1 U∗
j1 Tj1 j0χ

w
j0u j0+O(h 1

2 h̃
1
2 )L2→L2 .

Similarly, for n ≥ 2 the propagator e−int0P/h can be represented by iteratively
applying the operator valuedmatrixT to the vectoru. By inserting the identities
(5.4), (5.6) n times in the expression πe−int0P/hχwu, we get the following

Lemma 5.3 For any n ∈ N (independent of h), we have

�e−int0P/h χwu=
∑

jn,..., j0

� jnU∗
jn Tjn jn−1 · · · Tj1 j0 χ

w
j0 u j0+On(h

1
2 h̃

1
2 )L2→L2

=
∑

jn, j0

� jnU∗
jn [(T )n] jn j0 χwj0 u j0 +On(h

1
2 h̃

1
2 )L2→L2, (5.9)

where the matrix of operators, T , was defined in Lemma 5.2.

123



Decay of correlations 383

5.3.1 Inserting nested cut-offs

In this section we modify the Fourier integral operators Tj ′ j , taking into
account that in the above expression their products are multiplied by narrow
cut-offs χwj .

By construction of χ j , there exists R0 > 0 (independent of h, h̃) such
that for any index j the cut-off χ j ∈ S̃ 1

2
is supported inside the microscopic

cylinder

BR0(h/h̃)1/2
def= {(x, y, ξ, η) : |y|, |η| ≤ R0(h/h̃)

1/2} ⊂ T ∗Rd . (5.10)

Fix some R1 ≥ 2R0, and choose a function χ̃0 ∈ C∞
0 (R

2d⊥, [0, 1]) equal to
unity in the ball {|ỹ|, |η̃| ≤ R1}, and supported in {|ỹ|, |η̃| ≤ 2R1}. Normal
hyperbolicity implies that there exists � > 2 such that the cylinders B• (see
(5.10)) satisfy

κ j ′ j (B2R(h/h̃)
1/2) � BR�(h/h̃)

1/2, (5.11)

for all 0 < R < 1 and any physical pair j ′ j .
We then define the families of nested4 cut-offs {χn}n∈N, {χ̃n}n∈N as follows:

∀n ∈ N, χ̃n(y, η)
def= χ̃0(y�−n, η�−n), (5.12)

χn(x, y, ξ, η)
def= χ̃n(y(h̃/h)1/2, η(h̃/h)1/2

) ∈ S̃ 1
2
(T ∗Rd).

(5.13)

We stress that the S̃ 1
2
(T ∗Rd) seminorms ofχn hold uniformly in n: the smooth-

ness of χn actually improves when n grows. From the assumption R1 > R0
we draw the nesting χ0 & χ j for any j = 1, . . . , J . Furthermore, the property
(5.11) implies that

for any physical pair j ′ j, χn+1 & χn ◦ κ j ′ j . (5.14)

From these nesting properties and from Egorov’s property (3.7) we easily
obtain the following

Lemma 5.4 For any j = 1, . . . , J we have

(χ0)wχwj = χwj +O(h̃∞)L2→L2, χwj (χ
0)w = χwj +O(h̃∞)L2→L2 .

(5.15)

4 Below we use the notation χ0 & χ for nested cut-offs, meaning that χ0 ≡ 1 near supp(χ).
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In addition, we have the estimate

Tj ′ j (χ
n)w = (χn+1)w Tj ′ j (χ

n)w +O(h̃∞)L2→L2, (5.16)

uniformly for all j, j ′ = 1, . . . , J and for all n independent of h.

We will actually only use n smaller than M log 1/h̃ for some M > 0 inde-
pendent of h̃, h, so our cut-offs χn will all be localized in microscopic neigh-
bourhoods of K when h → 0. Furthermore, for such a logarithmic time the
number of terms in the sum in the middle expression in (5.9) is bounded above
by Jn+1 ≤ h̃−N for some N > 0. As a result, taking into account the above
cut-off insertions, this sum can be rewritten as

�e−int0P/hχwu
=

∑

jn,..., j0

� jnU∗
jn Tjn jn−1(χ

n−1)w · · · Tj2 j1(χ
1)wTj1 j0(χ

0)wχ j0u j0

+O(h̃∞)L2→L2 . (5.17)

In the next section we will carefully analyze the kernels of the operators
Tj ′ j (χk)w.

5.4 Structure of the local phase function

To analyze the Fourier integral operators we will examine the structure of the
generating function for the symplectomorphism κ j1 j0 .

We start by studying the transverse linearization d⊥κ(ρ) of the map κ =
κ j1 j0 , for a point ρ ∈ K ∩ Dj1 j0 . In our symplectic coordinate frames, this
transverse map is represented by the symplectic matrix S j1 j0(ρ) = S(ρ) ∈
Sp(2d⊥,R) given by

S(ρ)
def= ∂(y1, η1)

∂(y0, η0)
(ρ), ρ ∈ K. (5.18)

The linear symplectomorphism S(ρ) admits a quadratic generating function
Qρ(y1, y0, θ ′), where θ ′ ∈ R

d⊥ is an auxiliary variable: the graph of the map
T(y0, η0) �→ T(y1, η1) = S(ρ)T(y0, η0) can be obtained by identifying the
critical set

CQρ =
{
(y1, y0, θ ′) : ∂θ ′Q(y1, y0, θ ′) = 0

} ⊂ R
3d⊥ .

This critical set is in bijection with the graph of S(ρ) through the rules

η1 = ∂y1Qρ(y1, y0, θ ′), η0 = −∂y0Qρ(y1, y0, θ ′), (y1, y0, θ ′) ∈ CQρ .
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More structure comes from taking the normal hyperbolicity into account.
Recall that our coordinates are chosen so that E+ and E− are ε-close to
{η = 0} and {y = 0}, respectively. (Here we identified E± with their images
under dκ j—see Sect. 5.1.) This implies the existence of a continuous family
of symplectic transformation

K ∩ Dj1 j0 � ρ �−→ R(ρ) ∈ Sp(2d⊥,R),

such that

R(ρ)({η=0})=E+ρ , R(ρ)({y=0})=E−ρ , R(ρ)= I+O(ε). (5.19)

Since d⊥κ(ρ) ≡ S(ρ) maps E±ρ to E±κ(ρ), the matrix

S̃(ρ)
def= R(κ(ρ))−1 S(ρ) R(ρ), ρ ∈ K ∩ Dj1 j0, (5.20)

is block-diagonal:

S̃(ρ) =
(
�(ρ) 0
0 T�(ρ)−1

)
. (5.21)

The normal hyperbolicity (1.17) implies that, provided t0 has been chosen
large enough5, the matrix �(ρ) is expanding, uniformly with respect to ρ:

∃ ν > 0, ∀ρ ∈ K, ‖�−1(ρ)‖ ≤ e−ν < 1. (5.22)

More precisely, for any small ε > 0, if t0 is chosen large enough the coefficient
ν can be taken of the form ν = t0(λmin − ε0), where λmin > 0 is the smallest
positive transverse Lyapunov exponent of ϕt near K δ .

Combining (5.19), (5.20) and (5.21) gives

S(ρ) =
(
�(ρ)+O(ε�) O(ε�)

O(ε�) O(ε2�+ T�(ρ)−1)

)
, ρ ∈ K. (5.23)

This explicit form, more precisely the fact that the upper left block is invert-
ible, allows to use a special type of quadratic generating function:

Lemma 5.5 If t0 is chosen large enough, for each ρ the generating function
Qρ(y1, y0, θ ′) can be chosen in the following form:

Qρ(y
1, y0, θ ′) = qρ(y

1, θ ′)− 〈y0, θ ′〉. (5.24)

5 Recall that κ represents ϕt0 .
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For any point (y1, y0, θ ′) on the critical set CQρ , the auxiliary variable θ
′ is

identified with η0 of the corresponding phase space point.

The specific form of the generating function corresponds to the geometric
fact that the graph of S(ρ) admits (y1, η0) as coordinates (that is, the graph of
S(ρ) projects bijectively onto the (y1, η0)-plane).
The function qρ(y1, η0) can be written in terms of a symmetric matrix

H(ρ):

qρ(y
1, η0) = 1

2
〈(y1, η0), T H(ρ)(y1, η0)〉, H(ρ) =

(
H11 H12
H21 H22

)
,

H12 invertible. (5.25)

The matrix S(ρ) is related to H(ρ) in the following way:

S(ρ) =
(

H−1
21 −H−1

21 H22

H11H
−1
21 H12 − H11H

−1
21 H22

)
. (5.26)

Comparing with (5.23) we see that

HT
12 = H21 = �(ρ)−1 +O(ε�(ρ)−1), H11 = O(ε), H22 = O(ε),

(5.27)

uniformly with respect to ρ. The quadratic phase function Qρ will be relevant
whenwe consider themetaplectic operatorM(ρ)quantizing S(ρ) in Sect. 5.5.4
[see also (3.22)].

From the study of the linearized flow in the transverse direction, we now
consider the dynamics of

κ̃ = κ̃ j1 j0 : Dj1 j0 ∩K −→ A j1 j0 ∩K. (5.28)

along the trapped set—see Fig. 2 in Sect. 5.6. When no confusion is likely to
arise we use the notation D• and A• for the corresponding subsets ofK. There
we have no assumptions on the flow, except for it being symplectic.

Possibly after refining the coversUj , eachmap κ̃ can be generated by a non-
degenerate phase function ψ = ψ j1 j0(x

1, x0, θ) defined in a neighbourhood
of the origin in R

d−d⊥ × R
d−d⊥ × R

k , where 0 ≤ k ≤ n—see Sect. 3.3.
Since the Uj have been chosen small, the map Cψ → 	κ̃ can be assumed

to be injective. Notice that the values of ψ away from Cψ are irrelevant.
We now want to extend ψ into a generating function of the map κ , at least

in a small neighbourhood of K. The intuitive idea is to “glue together” the
generating function ψ for κ̃ , with the quadratic generating functions Qρ for
the transverse dynamics d⊥κ(ρ).
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Vj0

Vj1

Vj′
1

Vj2

Aj1j0 Dj2j1

Aj2j′
1

Dj′
1j0

Dj1j0

Dj′
1j0

Dj2j1j0

Dj2j′
1j0

Aj2j1

Aj2j′
1

Aj2j1j0

Aj2j′
1j0

κ̃j1j0 κ̃j2j1

κ̃j′
1j0

κ̃j2j′
1

κ̃j2j1j0

κ̃j2j′
1j0

Fig. 2 Schematic representation of the departure and arrival sets for j of length 1 and 2.We show
two physical sequences j2 j1 j0 and j2 j

′
1 j0 and the corresponding maps (5.28). As remarked

there we use the same notation for the departure and arrival sets on K

Let us consider the following Ansatz for a generating function � for κ:

�(x1, x0, θ; y1, y0, θ ′) = ψ(x1, x0, θ)+ δ�(x1, x0, θ; y1, y0, θ ′),
(5.29)

with an additional auxiliary variable θ ′ ∈ R
d⊥ . To simplify notation we split

the variables into longitudinal and transversal ones:

ρ‖ = (x1, x0, θ), ρ⊥ = (y1, y0, θ ′). (5.30)

Lemma 5.6 Near any point ρ ∈ K, κ is generated by � of the form (5.29)
with the transversal correction, δ�(ρ‖, ρ⊥), satisfying

δ�(ρ‖, ρ⊥) = Qρ‖(ρ⊥)+O((y1, θ ′)3),

where Qρ‖(•) is a quadratic form of the same type as (5.24, 5.25), which
depends smoothly on ρ‖. If ρ‖ ∈ Cψ corresponds to the point (ρ1; ρ0) ∈ 	κ̃ ,
then Qρ‖ = Qρ0 .
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In other words, the quadratic forms Qρ‖ extend the forms Qρ to a neighbour-
hood of Cψ .

Proof SinceK is preserved by κ and carries themap κ̃ , wemay assume that for
any ρ‖, the function δ�(ρ‖, •) has no linear part in the variables ρ⊥. At each
point ρ‖ ∈ Cψ (identified with some ρ0 ∈ K), the quadratic part Qρ‖(ρ⊥)
generates the linear transverse deviation from κ̃ near the point ρ0, namely
d⊥κ(ρ0). This means that Qρ‖ = Qρ0 , which has the form (5.24). This form
corresponds to the geometric fact that the graph of d⊥κ(ρ0) admits (y1, η0)
as coordinates.

This projection property locally extends to the graph of κ: in some neigh-
bourhood of K, the points of 	κ can be represented by the coordinates
(ρ0 = (x0, ξ0) ∈ K; y1, η0), where y1, η0 ∈ neigh(0). This property shows
that δ� can be written in the form

δ�(ρ‖, ρ⊥) = δ�̃(ρ‖, y1, θ ′)− 〈y0, θ ′〉. (5.31)

As explained above, the quadratic part qρ‖(•) of δ�̃(ρ‖; •) must be equal,
for ρ‖ ∈ Cψ , to the corresponding qρ0 generating S(ρ0). The equations for
C� show that, if we fix small values (y1, θ ′ = η0), then value ρ‖ such that
(ρ‖, y1, y0, η0) ∈ C� is O((y1, η0)2)-close to Cψ .  !

5.5 Structure of the propagators Tj ′ j

From the above informations about the phase function� = � j ′ j , we can write
the integral kernel of T = Tj ′ j defined in (5.7) and quantizing the map κ j ′ j ,
as an oscillatory integral. The general theory of Fourier integral operators (see
Sect. 3.3) tells us that its kernel takes the form

T (x1, y1; x0, y0) =
∫

R
L+d⊥

dθ dθ ′

(2πh)(k+d⊥+d)/2
a(ρ‖, ρ⊥) e

i
h�(ρ‖,ρ⊥)

+O(h∞)L2→L2, (5.32)

where we use the notation (5.30). Let us group the variables (x, y) = X ,
(ξ, η) = �, (θ, θ ′) =  . We may assume that the symbol a(X1, X0, ) is
supported in a small neighbourhood of the critical set C� . In particular, for
small values of the transversal variables ρ⊥, a(•, ρ⊥) is supported near Cψ .
From (5.7), this Fourier integral operator ismicrolocally subunitary inVj ′×Vj .
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5.5.1 Using the cut-off near K

We now take into account the cut-offs (χk)w, and study the truncated propa-
gator T (χk)w appearing in (5.17).

Lemma 5.7 For any k ≥ 0 we have

T (χk)w = T χ
k +O(h̃∞)L2→L2, (5.33)

where the Schwartz kernel of the operator T χ
k
is given by

T χ
k
(x1, y1; x0, y0) def=

∫
dθ dη0

(2πh)(k+d⊥+d)/2
a(ρ‖, ρ⊥) χ!(k+1)(y1)

×χk(y0, η0) e
i
h�(ρ‖,ρ⊥), (5.34)

where χ!k
def= χk |η=0, with χk given in (5.12).

Proof As in (5.16), the nesting propertyχ!(k+1) & χk◦κ j ′ j and the uniformity
(in k) of the symbol estimates on χk imply that

(χ!(k+1))w T (χk)w = T (χk)w +O(h̃∞), (5.35)

uniformly for all k ≥ 0. (We recall that uniformity in k is due to (5.12) and
(5.13) and the uniform error estimate comes from (3.7).) The Fourier integral
operator calculus in the class S̃ 1

2
presented in Lemma 3.1 has the following

consequence:

(χ!(k+1))w T (χk)w = T χ
k +O(h 1

2 h̃
1
2 ),

which combined with (5.35) gives (5.33).  !
5.5.2 Rescaling the transversal coordinates

Sincewework at distances∼ (h/h̃) 12 from the trapped set, it will be convenient
to use the rescaled transversal variables

ỹ = (h̃/h) 12 y, η̃ = (h̃/h) 12 η. (5.36)

Our cut-offs χk , χ̃k defined in (5.12, 5.13) are then related by χ̃•(ỹ, η̃) =
χ•(y, η). This change of variables induces the following unitary rescaling
T : L2(dx dy)→ L2(dx d ỹ):

T u(x, ỹ)
def= (h/h̃)d⊥/2 u(x, (h/h̃)

1
2 ỹ) = (h/h̃)d⊥/2 u(x, y). (5.37)
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390 S. Nonnenmacher, M. Zworski

We recall (see for instance [55, (4.7.16)]) that

T aw(x, y, hDx , hDy)T ∗ = ãw(x, ỹ, hDx h̃Dỹ),

ã(x, ỹ, ξ, η̃)
def= a(x, y, ξ, η).

Through this rescaling, the operator T χ
k
is transformed into

T̃ χ
k def= T T χ

kT ∗ : L2(dxd ỹ) −→ L2(dxd ỹ),

with Schwartz kernel

T̃ χ
k
(x0, ỹ0, x1, ỹ1) =

∫

Rk

∫

R
d⊥

dθ

(2πh)
k+d−d⊥

2

dη̃0

(2π h̃)d⊥
a(ρ‖, (h/h̃)

1
2 ρ̃⊥)

× χ̃ !(k+1)(ỹ1) χ̃k(ỹ0, η̃0) e
i
hψ(ρ‖)+δ�(ρ‖;(h/h̃)

1
2 ρ̃⊥)

(5.38)

5.5.3 Transversal linearization

The factor χ̃ !(k+1)(ỹ1)χ̃k(ỹ0, η̃0) appearing in the integrand (5.38) allows
us to simplify the above kernel. Indeed, it implies that the variables ρ̃⊥ =
(ỹ1, ỹ0, η̃0) are integrated over a set of diameter∼ R1�

k . One can then Taylor
expand the amplitude and phase function δ� in (5.38):

a(ρ‖, (h/h̃)
1
2 ρ̃⊥) e

i
h δ�(ρ‖;(h/h̃)

1
2 ρ̃⊥)χ̃ !(k+1)(ỹ1)χ̃k(ỹ0, η̃0)

= (
a(ρ‖, 0)+Oh̃,k(h

1
2 )S(T ∗Rd )

)
e

i
h̃
Qρ‖ (ρ̃⊥) χ̃ !(k+1)(y1)χ̃k(ỹ0, η̃0).

Since we will restrict ourselves to values k ≤ M log 1/h̃, uniformly bounded
with respect to h, we may omit to indicate the k-dependence in the remainder.
As a result, up to a small error we may keep only the quadratic part of δ�,
namely consider the operator with the Schwartz kernel

∫

Rk

∫

Rd⊥

dθ

(2πh)
k+d−d⊥

2

dη̃0

(2π h̃)d⊥
a(ρ‖, 0) χ̃!(k+1)(ỹ1)χ̃k(ỹ0, η̃0) e

i
hψ(ρ‖) e

i
h̃
Qρ‖ (ρ̃⊥).
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Combining the above pointwise estimates with the fact that a ∈ S(T ∗R3d),
and with (5.35) and Lemma 5.7, gives

T̃ χ
k = T̃ (χ̃k)w(ỹ, h̃Dỹ)+O(h̃∞)L2→L2,

T̃ (x1, y1; x0, y0) =
∫

dθ

(2πh)(k+d−d⊥)/2
dη̃0

(2π h̃)d⊥
a(ρ‖, 0) e

i
hψ(ρ‖)e

i
h̃
Qρ‖ (ρ̃

⊥)

(5.39)

uniformly for k ≤ M log 1/h̃|.

5.5.4 Factoring out the transversal contribution

For each ρ‖ ∈ supp a(•, 0), the quadratic phase Qρ‖(•) generates a symplectic
transformation S(ρ‖) (which, in the case ρ‖ ∈ Cψ corresponds coincides with
the transformation S(ρ0) of (5.18)). As already shown in (3.22), this phase
allows to represent the metaplectic operator M(ρ‖) : L2(d ỹ) → L2(d ỹ)
which h̃-quantizes this symplectomorphism:

M(ρ‖)(ỹ1, ỹ0)
def= (2π h̃)−d⊥

∫

R
d⊥

det(H12(ρ‖))1/2 e
i
h̃
Qρ‖ (ρ̃⊥)dη̃0, (5.40)

where H12(ρ‖) is the blockmatrix appearing inQρ‖ , similarly as in (5.24, 5.25).

Remark 5.8 In the expression (5.40) we implicitly chose a sign for the square
root of det(H12(ρ‖)). Indeed, the metaplectic representation of the symplectic
group is 1-to-2, a given symplectic matrix S being quantized into two possible
operators±M . The relations (5.27) and the uniform expansion property (5.22)
show that det(H12(ρ‖)) does not vanish on the support of the amplitude a(•, 0)
(which is a small neighbourhood of Cψ × {ỹ0 = ỹ1 = η̃0 = 0}), so we may
fix the sign in each connected component of this support. This remark will be
relevant in Sect. 5.6.

Defining the symbol

ã(ρ‖)
def= a(ρ‖, 0)

det(H12(ρ‖))
1
2

,

we interpret the operator T̃ in (5.39) as a Fourier integral operator with an
operator valued symbol, M(ρ‖), where M is given by (5.40). That fits exactly
in the framework presented in Proposition 3.5:
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392 S. Nonnenmacher, M. Zworski

T̃ (u ⊗ v)(x1, ỹ1)
= (2πh)−(k+d−d⊥)/2

∫

Rk

∫

Rn

ã(ρ‖) [M(ρ‖)v](ỹ1) e i
hψ(ρ‖)u(x0)dx0dθ.

We now apply Lemma 3.4 to see that

T̃ = Opwh (M)T
‖ +Oh̃(h)Dm+�→D�, (5.41)

where m = md−d⊥ is defined in (3.7) and where the Schwartz kernel of T ‖ is
given by

T ‖(x0, x1) = (2πh)−k
∫

Rk

ã(ρ‖) e
i
hψ(ρ‖)dθ. (5.42)

The operator valued symbol M(ρ1) is the metaplectic operator h̃-quantizing
S(ρ0), where ρ1 = κ̃(ρ0) and S(ρ0) is given in (5.18). We summarize these
findings in the following

Proposition 5.9 Suppose that the Schwartz kernel of T is given by (5.32), χk ,
χ̃k are given in (5.12), and T is the unitary rescaling defined in (5.37).

Then for k ≤ K (h̃), where K (h̃) may depend on h̃ but not on h,

T
(
T (χk)w

)
T ∗ = Opwh (M)T

‖(χ̃k)w̃ +O(h̃∞)L2→L2 +Oh̃(h)L2→L2,

(5.43)

where T ‖ is given by (5.42) and M(x1, ξ1) given by (5.40)with ρ‖ ∈ Cψ deter-
mined by (x1, ξ1) = (x1, ∂x1ψ(ρ‖)). Here and below we use the abbreviation

(χ̃k)w̃
def= (χ̃k)w(ỹ, h̃Dỹ).

Proof Lemma 5.7, (5.39), and (5.41) give (5.43) with the remainder

O(h̃∞)L2(dxd ỹ)→L2(dxd ỹ) +Oh̃(h)L2(dx)⊗Dm→L2(dxd ỹ)(χ̃
k)w̃,

where m = md−d⊥ is given in (3.7). The definition of χ̃k in (5.12) and (3.24)
show that

(χ̃k)w̃ = O(�2mk) : L2(d ỹ) −→ Dm,

and that gives the remainder in (5.43).  !
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5.6 Back to the iterated propagator

We can now come back to (5.9) and (5.17), re-establishing the subscripts
jk+1 jk on the relevant objects. We rescale all the operators by conjugating
them through T . Fixing the limit indices j0, jn , we want to study the sum of
operators obtained by conjugation of terms in (5.17) by T :

T [Tn] jn j0(χ0)wT ∗ =T

⎛

⎝
∑

j

0∏

k=n−1
Tjk+1 jk (χ

k)w

⎞

⎠ T ∗+O(h̃∞)L2→L2

=
∑

j

T̃ jn jn−1(χ̃
n−1)w̃ · · · (χ̃1)w̃ T̃ j1 j0(χ̃

0)w̃+O(h̃∞)L2→L2

(5.44)

where the sum runs over all possible sequences j = jn−1 . . . j1. A sequence
(which could be thought of geometrically as a path) jn j j0 will be relevant only
if it is physical,meaning that there exists pointsρ ∈ K δ such thatϕkt0(ρ) ∈ Ujk
for all times k = 0, . . . , n (we say that the path jn j j0 contains the trajectory
of ρ). Any unphysical sequence leads to a term of order O(h∞). On the other
hand, for a given point ρ ∈ K δ there are usually many sequences j containing
its trajectory, since the neighbourhoods (Uj )’s overlap, and so do the cut-offs
(π j ).

For physical sequences jn j j0 we define the departure set Djn j j0 as the set
of points κ j0(ρ), ρ ∈ Uj0 = κ−1

j0
(Vj0) such that ϕ�t0(ρ) ∈ Uj� for 0 ≤ � ≤ n.

We then put

Dn
jn j0 =

⋃

j

Djn j j0 = κ j0
({ρ ∈ Uj0 ∩ K δ, ϕnt0(ρ) ∈ Ujn }

)
. (5.45)

We now simplify the expression (5.44), in the following way.

Lemma 5.10 In the notation of (5.9) and (5.44), and for n ≤ M log 1/h̃,

T [Tn] jn j0(χ0)wT ∗ = Opwh (M
n
jn j0)T

n‖
jn j0
(χ̃0)w̃ +O(h̃∞)L2→L2 . (5.46)

Here T n‖
jn j0

is a Fourier integral operator on L2(dx) quantizing the map
κ̃n : Vj0 → Vjn , defined on the departure set Dn

j0 jn
. For each ρ ∈ An

jn j0
=

κ̃n(Dn
jn j0
) (the arrival set) the operator valued symbol Mn

jn j0
(ρ) is a meta-

plectic operator quantizing the symplectic map

Snjn j0((κ̃
n)−1(ρ)) = d⊥κn((κ̃n)−1(ρ)).
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394 S. Nonnenmacher, M. Zworski

Proof If we insert the approximate factorizations (5.43) in a term j of the sum
in the left hand side of (5.44), this term becomes

Opwh (Mjn jn−1)T
‖
jn jn−1

(χ̃n−1)w̃ · · ·Opwh (Mj1 j0)T
‖
j1 j0
(χ̃0)w̃ +O(h̃∞)L2→L2 .

(5.47)

We now observe that just as we inserted the cut-offs χk to obtain (5.17) from
(5.9) we can remove them so that each term becomes

Opwh (Mjn jn−1)T
‖
jn jn−1

· · ·Opwh (Mj1 j0)T
‖
j1 j0
(χ̃0)w̃ +O(h̃∞)L2→L2 . (5.48)

We can now apply Lemmas 3.3, 3.4 and Proposition 3.5 to see that

Opwh (Mjn jn−1)T
‖
jn jn−1

· · ·Opwh (Mj1 j0)T
‖
j1 j0

= Op(Mjn jn−1··· j0)T
‖
jn j j0

+O(h̃−2md−d⊥nh)
L2(dx)⊗D2nmd−d⊥→L2,

(5.49)

where we use the shorthands

T ‖jn jn−1··· j0
def= T ‖jn jn−1

T ‖jn−1 jn−2
· · · T ‖j1 j0,

Mjn jn−1··· j0
def= (Mjn jn−1)(Mjn−1 jn−2 ◦ κ̃ jn−1 jn ) · · · (Mj2 j1 ◦ κ̃ j2··· jn )
(Mj1 j0 ◦ κ̃ j1··· jn ),

κ̃ jk jk−1··· j0
def= κ̃ jk jk−1 ◦ κ̃ jk−1 jk−2 · · · ◦ κ̃ j1 j0 .

These expressions only make sense for physical sequences jn j j0. The map
κ̃ jn j j0 is defined on the departure set Djn j j0 .

The metaplectic operator Mjn j j0(ρ) quantizes the symplectomorphism
S jn j j0(ρ

0), with ρ = κ̃n(ρ0) ∈ A jn j j0 . This symplectomorphism represents,
in the charts Vj0 → Vjn , the transverse linearization of the flow ϕnt0 at the
point κ−1

j0
(ρ0). As a consequence, the symplectic matrix S jn j j0(ρ

0) is iden-

tical for all sequences jn j j0 containing the trajectory of ρ0, and we call this
matrix Snjn j0(ρ

0). Hence, twometaplectic operatorsMjn j j0(ρ),Mjn j ′ j0(ρ) cor-
responding to two different allowed sequences can at most differ by a global
sign.

For all ρ in the arrival set

An
jn j0 =

⋃

j

A jn j j0 = κ jn
( {
ρ ∈ Ujn ∩ K δ, ϕ−nt0(ρ) ∈ Uj0

} )
,
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we choose the sign of the metaplectic operator Mn
jn j0
(ρ) quantizing Snjn j0(ρ

0),
such that Mn

jn j0
(ρ) depends smoothly on ρ on each connected component of

An
jn j0

(there is no obstruction to this fact, due to the property mentioned in
the Remark 5.8: the symplectomorphisms Snjn j0(ρ) also have the form (5.23)).
Hence, for each physical sequence jn j j0 we have

Mjn j j0(ρ) = ε jn j j0(ρ)Mn
jn j0(ρ), ρ ∈ Djn j j0, (5.50)

for some sign ε jn j j0(ρ) ∈ {±} constant on each connected component of
A jn j j0 . As before, the functions ρ �→ ε jn j j0(ρ), ρ �→ Mjn j j0(ρ) can be
smoothly extended outside A jn j j0 , into compactly supported symbols. Lemma
3.3 and the identity (5.50) give

Opwh (Mjn jn−1··· j0)T
‖
jn j j0

= Opwh (M
n
jn j0) (ε jn j j0)

w, T ‖jn j j0
+Oh̃(h)L2(dx)⊗Dmd⊥→L2 . (5.51)

When (χ̃0)w̃ is inserted in (5.49) and (5.51) we apply (3.24) to see that

O(h̃−2nmd−d⊥h)
L2(dx)⊗D2nmd−d⊥→L2(χ

0)w̃ = O(h̃−2nmd−d⊥h)L2→L2

= Oh̃(h)L2→L2,

and hence that error term can be absorbed into O(h̃∞).
Returning to (5.47) we see that the sum in the right hand side of (5.44) can

be factorized in the following way:

∑

j

T̃ jn jn−1(χ̃
n−1)w̃ · · · T̃ j1 j0(χ̃

0)w̃

= Opwh (M
n
jn j0)

⎛

⎝
∑

j

T ‖jn j j0 (ε jn j j0)
w

⎞

⎠ (χ̃0)w̃ +O(h̃∞)L2→L2,

(5.52)

with a uniform remainder for n ≤ M log 1/h̃. Let us put T n‖
jn j0

def=
∑

j T
‖
jn j j0

(ε jn j j0)
w, so that the above identity reads exactly like in the state-

ment of the Lemma. The operator T n‖
jn j0

is sum of Fourier integral operators

T ‖jn j j0 defined with different phase functionsψ jn j j0 , yet these phases generate
(on different parts of phase space) the same map κ̃n : Dn

jn j0
→ An

jn j0
. Hence,

T n‖
jn j0

is a Fourier integral operator quantizing κ̃n . This completes the proof

of (5.46).  !
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The next lemma shows that the Fourier integral operator T n‖
jn j0

is essentially
subunitary.

Lemma 5.11 Let M > 0. For any small h̃ > 0, there exists h0 = h0(h̃) such
that, for any sequence j of length n ≤ M log 1/h̃ and any h ≤ h0(h̃), the
operator T n‖

jn j0
satisfies the following norm estimate:

‖T n‖
jn j0

‖L2(dx)→L2(dx) ≤ 1+O(h̃). (5.53)

Proof We first note that we can bound the left hand side of (5.53) by h̃−CM ,
for some C—that follows from a trivial estimate of the terms T ‖jn j j0 in (5.52).

To prove (5.53) it is clearly enough to prove the bound
‖T n‖

jn j0
(χ̃0)w̃‖L2(dxd ỹ)→L2(dxd ỹ) ≤ 1 + O(h̃∞). From Lemma 5.2 we know

that ‖Tn‖(L2)J→(L2)J ≤ 1 + O(h), which implies that ‖[Tn] j0 jn‖L2→L2 ≤
1+O(h). Lemma 5.10 then shows that

‖Opwh (Mn
jn j0)T

n‖
jn j0
(χ̃0)w̃‖L2→L2 ≤ 1+O(h̃∞). (5.54)

The family of unitary metaplectic operators ρ �→ Mn
jn j0
(ρ)−1 is well defined

for ρ in the neighbourhood of the arrival set An
jn j0

, and T n‖
jn j0

is microlocalized
in any small neighbourhood of An

jn j0
× Dn

jn j0
⊂ Vjn × Vj0 . Lemma 3.3 and

(3.24) then show that

T n‖
jn j0
(χ̃0)w̃ = Opwh ((M

n
jn j0)

−1)Opwh (M
n
jn j0)T

n‖
jn j0
(χ̃0)w̃

+Oh̃(h‖T n‖
jn j0

‖)
L2(dx)⊗D2md−d⊥→L2(χ̃

0)w

= Opwh ((M
n
jn j0)

−1)Opwh (M
n
jn j0)T

n‖
jn j0
(χ̃0)w̃ +Oh̃(h)L2→L2 .

where we used the above a priori bound on ‖T n‖
jn j0

‖.
Just as before we can insert the cut-off χ̃n (see (5.12)) with a O(h̃∞) loss.

We also introduce a cut-off ψ = ψ(x, ξ) to a small neighbourhood of A jn j0 .

(It was not necessary before as T n‖
jn j0

provided the needed localization.) This
and (5.54) give the bound

‖T n‖
jn j0
(χ̃0)w̃‖ ≤ ‖Opwh ((Mn

jn j0)
−1ψ)(χ̃n)w̃‖‖Opwh (Mn

jn j0)T
n‖
jn j0
(χ̃0)w̃‖

+O(h̃∞)
≤ ‖Opwh ((Mn

jn j0)
−1ψ)(χ̃n)w̃‖(1+O(h̃∞))

+O(h̃∞).
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Since by Lemma 3.3 and (3.24)

[Opwh ((Mn
jn j0)

−1ψ)(χ̃n)w̃]∗Opwh ((Mn
jn j0)

−1ψ)(χ̃n)w̃

= [ψw]∗ψw[(χ̃n)w̃]∗(χ̃n)w̃ +Oh̃(h)L2→L2,

we have

‖Opwh ((Mn
jn j0)

−1ψ)(χ̃n)w̃‖ ≤ ‖ψw‖‖(χ̃n)w̃‖ +Oh̃(h) ≤ 1+O(h̃),

and the bound (5.53) follows.  !

5.7 Inserting the final cut-off

We now return to the operator χwe−i tn0P/hχw. From Lemma 5.3 we easily
obtain

χw e−int0P/h χwu =
∑

jn , j0

� jnU∗jnχwjn [(T )n] jn j0 χwj0 u j0 +O(h 1
2 h̃

1
2 )

=
∑

jn , j0

� jnU∗jnχwjn (χ0)w [(T )n] jn j0 (χ0)w χwj0 u j0+O(h̃∞),

(5.55)

where in the first line we used (5.8), while in the second line we used
(5.15). Hence our last step will consist in estimating the norm of the oper-
ator (χ0)w [Tn] jn j0 (χ0)w (or its conjugate through T ). To this aim we will
use Lemma 3.4, Proposition 3.5 and the factorization (5.46) to obtain

(χ̃0)w̃T [Tn] jn j0T ∗ (χ̃0)w̃ =(χ̃0)w̃ Opwh (M
n
jn j0
) T n‖

jn j0
(χ̃0)w̃+O(h̃∞)L2→L2

=T n‖
jn j0
(χ̃0)w̃ Opwh (N

n
jn j0
) (χ̃0)w̃+O(h̃∞)L2→L2 .

(5.56)

Here the operator valued symbol Nn
jn j0
(ρ) = Mn

jn j0
((̃κn)−1(ρ)), ρ ∈ Dn

jn j0
,

is a metaplectic operator quantizing the symplectic map Snjn j0(ρ) = d⊥κn(ρ).
(Having it on the right now makes the notation slightly less cumbersome.)

In Lemma 5.11 we control the norm of T n‖
jn j0

. There remains to control the

norm of the factor (χ̃0)w̃ Opwh (N
n
jn j0
) (χ̃0)w̃. For that it is enough to control

the operator-valued symbol Opw
h̃,ỹ
(χ̃0) Nn

jn j0
(ρ)Opw

h̃,ỹ
(χ̃0).
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5.7.1 Controlling the symbol

In (5.19)we defined, for each point ρ ∈ K∩Dj1 j0 , a symplectic transformation
R(ρ) ∈ Sp(2d⊥,R) which maps the y-space to E+ρ and the η̃-space to E−ρ .
This transformation is ε-close to the identity and in particular it is uniformly
bounded with respect to ρ.

By iteration of this property, for any ρ0 ∈ Dn
jn j0

, the map

S̃njn j0(ρ0)
def= R(ρn)

−1Snjn j0(ρ0)R(ρ0)

is block-diagonal in the basis (y, η):

S̃njn j0(ρ0) =
(
�n(ρ0) 0

0 T�n(ρ0)
−1

)
, (5.57)

where�n(ρ0) is expanding.Wemay quantize R(ρ) into metaplectic operators
A(ρ), and define

Ñ n
jn j0(ρ0)

def= A(ρn)
−1 Nn

jn j0(ρ0) A(ρ0)

which quantizes S̃njn j0(ρ0).
We can then rewrite

(χ̃0)w̃ Nn
jn j0(ρ) (χ̃

0)w̃=(χ̃0)w̃ A(ρn) Ñ
n
jn j0(ρ0) A(ρ0)

−1 (χ̃0)w̃. (5.58)

We are interested in the L2 → L2 norm of this operator. Since metaplectic
operators are unitary, and using the covariance of the Weyl quantization with
respect to metaplectic operators, this norm is equal to that of

(χ̃0
ρn
)w̃ (χ̃0

ρ0
◦ S̃njn j0(ρ0)−1)w̃, χ̃0

ρn

def= χ̃0 ◦ R(ρn), χ̃0
ρ0

def= χ̃0 ◦ R(ρ0).

The block diagonal form of S̃njn j0(ρ0) shows that

[
χ̃0
ρ0
◦ (S̃njn j0(ρ0))−1

]
(ỹ, η̃) = χ̃0

ρ0
(�n(ρ0)

−1 ỹ, T�n(ρ0)η̃). (5.59)

We may now invoke the following simple

Lemma 5.12 Suppose that A is a m × m real invertible matrix and that
χ1, χ2 ∈ S (R2m). Then

‖χw1 (x, h̃Dx )χ
w
2 (Ax,

TA−1h̃Dx )‖L2(Rm)→L2(Rm)≤C | det A| 12 h̃−m
2 , (5.60)
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where C depends on certain seminorms of χ1 and χ2, but not on A.

We remark that the upper bound becomes nontrivial only if | det A| ' h̃m/2.
When that holds one cannot apply the h̃-symbol calculus any longer because
the second factor is not the quantization of a symbol in the class S(R2m),
uniformly in h̃ and A. When applicable, the symbol calculus would give the
norm equal to maxx,ξ |χ1(x, ξ) χ2(Ax, T A−1ξ)| +O(h̃)—see [55, Theorem
13.13].

Proof If we put χ̂ j (x, Z)
def= ∫

Rm χ j (x, ξ)ei〈Z ,ξ〉dξ , then the kernel of the
operator in the lemma is given by

K (x, y) = 1

(2π h̃)2m

∫

R3m

χ1

(
x + z

2
, ξ

)
χ2

(
Az + Ay

2
, TA−1η

)

×ei〈x−z,ξ〉/h̃+i〈z−y,η〉/h̃dξ dη dz

= | det A|
(2π h̃)2m

∫

Rm

χ̂1

(
x + z

2
,
x − z

h̃

)
χ̂2

(
Az + Ay

2
,
Az − Ay

h̃

)
dz.

We will estimate the norm using Schur’s Lemma and hence we need to show
that

(
max
x∈Rm

∫
|K (x, y)|dy

)(
max
y∈Rm

∫
|K (x, y)|dx

)
≤ C2| det A| h̃−m .

(5.61)

Making a change of variables Z = (x − z)/h̃ and X = (x + z)/h̃ we obtain
∫
|K (x, y)|dx ≤ C1(max

R2m
|χ̂2|) | det A|h̃−m

∫∫
|χ̂1(X, Z)|dZdX

≤ C | det A| h̃−m .

To estimate the integral in y let

F(Z) = max
Rm

|χ̂1(•, Z)|, G(Y ) = max
Rm

|χ̂2(•, Y )|,

noting that our assumptions give F(Z) = O(〈Z〉−∞), G(Y ) = O(〈Y 〉−∞).
Changing variables to Z = (x − z)/h̃ and Y = (Az − Ay)/h̃ we obtain,

∫
|K (x, y)|dy ≤ C3

∫∫
F(Z)G(Y )dZdY ≤ C.

This proves the upper bound (5.60).  !
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Applying Lemma 5.12 to the product on the right hand side of (5.58) we
get the bound

‖(χ̃0)w̃ Nn
jn j0(ρ0) (χ̃

0)w̃‖L2(d ỹ)→L2(d ỹ) ≤ C(χ̃0
ρ0
, χ̃0
ρn
)| det�n(ρ0)|−1/2 h̃−d⊥/2.

Since the transformations R(ρ) are uniformly bounded, the prefactor
C(χ̃0

ρ0
, χ̃0
ρn
) is uniformly bounded with respect to ρ0. On the other hand, the

determinant of �n(ρ0)
−1 can be bounded as follows.

Lemma 5.13 Take ε0 > 0 arbitrary small. Then there exists Cε0 > 0 such
that,

∀n ≥ 1, ∀ρ0 ∈ Dn
jn j0, | det�n(ρ0)

−1| ≤ Cε0e
−(λ0−ε0)nt0,

whereλ0wasdefinedby (1.19), and t0 > 0 is chosen large enough, as explained
in the comment following (5.22).

Proof This follows fromwriting the definition of λ0 using the local coordinate
frames.  !

We have thus obtained the following upper bound:

‖(χ̃0)w̃ Nn
jn j0(ρ0) (χ̃

0)w̃‖L2(d ỹ)→L2(d ỹ) ≤ Cε h̃
−d⊥/2 e−(λ0−ε0)nt0, (5.62)

valid for any n ≥ 1 and any ρ0 ∈ Dn
jn j0

. In particular, the time nmay arbitrarily

depend on h̃.
When n ≤ M log 1/h̃, for M > 0 arbitrary large but independent of h̃ or h,

we combine this bound with (5.17), Lemma 5.11 and Lemma 5.10 to obtain
the estimate (5.2), which was the goal of this section.

6 Microlocal weights and estimates away from the trapped set

In this section we will justify the estimates described as Step 2 of the proof
in Sect. 2. That will involve a quantization of the escape function G given in

Proposition 4.7 with ε = (h/h̃)
1
2 . That means that we will use the calculus

described in Sect. 3.2.

6.1 Exponential weights

Suppose that g ∈ C∞c (T ∗X;R) satisfies the following estimates:

exp g(ρ)

exp g(ρ′)
≤C

(
1+ (h̃/h) 12 d(ρ, ρ′))N , ∂αρ g=O

(
(h/h̃)−|α|/2

)
, |α|>0,

(6.1)
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for some N and C , and for some distance function d(ρ, ρ′) on T ∗X × T ∗X
(since g is compactly supported, the estimate is independent of the choice
of d—we can d to be the distance function given by a Riemannian metric).

We note that G defined in Proposition 4.7 with ε = (h/h̃)
1
2 satisfies these

assumptions.
We first recall a variant of the Bony-Chemin theorem [6, Théorème 6.4],

[55, Theorem 8.6] in the form presented in [37, Proposition 3.5, (3.21), (3.22)]
(as usual gw = Opwh (g)):

Proposition 6.1 Suppose that g ∈ C∞c (T ∗X) satisfies (6.1). Then

exp(gw) = bw, (6.2)

where the symbol b(x, ξ) satisfies the bounds

|∂αb(ρ)| ≤ Cα e
g(ρ)(h/h̃

)−|α|/2
, (6.3)

in any local coordinates near the support of g.
If supp g � U, for an open U � T ∗X, then

∂αx ∂
β
ξ (b(x, ξ)− 1) = O(h∞〈ξ 〉−∞), (x, ξ) ∈ �U. (6.4)

Also, if A ∈ �comp(X), B ∈ �̃comp
1
2

(X) and C ∈ �comp
1
2

(X) then

eg
w
Ae−gw = A + i(hh̃)

1
2 A1, A1 ∈ �̃comp

1
2

(X), WFh(A1) ⊂WFh(A),

eg
w
Be−gw = B + i h̃B1, B1 ∈ �̃comp

1
2

(X), WFh(B1) ⊂ WFh(B),

eg
w
Ce−gw = C + i h̃

1
2C1, C1 ∈ �comp

1
2

(X), WFh(C1) ⊂ WFh(C).

(6.5)

The assumptions in (6.1) show that exp g is an order function for the S̃ 1
2

calculus—see [37, §3.3, (3.17), (3.18)]. Hence we can apply composition for-
mulae. In particular if g j , j = 1, 2 satisfy (6.1) then

exp(gw1 ) exp(g
w
2 ) = cw, |∂αc(ρ)| ≤ Cα exp(g1 + g2)

(
h/h̃

)−|α|/2
. (6.6)

Because of the compact supports of g j ’s and because of (6.3) derivatives can
be taken in any local coordinates.

The consequence of (6.6) useful to us here is given in the following Lemma.
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402 S. Nonnenmacher, M. Zworski

Lemma 6.2 Suppose that A ∈ �̃comp
1
2

(X) and that

σ̃ (A) = a +O
(
(hh̃)

1
2
)
S̃ 1
2

, a ∈ C∞c (T ∗X) ∩ S̃ 1
2
(T ∗X).

If Uh,h̃
def= {ρ ∈ T ∗X : d(ρ, supp a) < (h/h̃) 12 }, then

‖A eg
w
1 eg

w
2 ‖L2→L2= sup

T ∗X
(|a|eg1+g2)+O

(
h̃ sup
Uh,h̃

eg1+g2

)
+O

(
h

1
2 log(1/h)

)
.

(6.7)

Proof We first consider this statement in R
n . We apply the standard rescaling

(3.4) noting that (6.1) imply that m̃ j = exp g̃ j are order functions. If d is the
Euclidean distance and if we put

nN (ρ̃)
def= (1+ d(ρ̃, Ũ ))−N , Ũ

def= (h̃/h)
1
2Uh,h̃,

then nN is an order function for any N , and ã ∈ S(nN ) for all N . We have

A = Opwh (a + (hh̃)
1
2 a1), for some a1 ∈ S̃ 1

2
,

and hence, after rescaling,

Ã eOp
w

h̃
(g̃1)eOp

w

h̃
(g̃2) = Opw

h̃
(b̃)+ (hh̃) 12 Opw

h̃
(b̃1),

b̃ ∈ S(nN m̃1m̃2), b̃ − ãeg̃1+g̃2 ∈ h̃S(nN m̃1m̃2), b̃1 ∈ S(m̃1m̃2).

Put

M = M(h, h̃)
def= sup

R2n
nN m̃1m̃2 ≤ sup

ρ̃

((
1+ d(ρ̃, Ũ )

)−N
eg̃1(ρ̃)+g̃2(ρ̃)

)

≤
(
sup
Ũ

eg̃1+g̃2
)(

1+ sup
ρ̃

(1+ C1C2d(ρ̃, Ũ ))
−N+N1+N2

)

≤ C sup
Uh,h̃

eg1+g2,

where we took N ≥ N1 + N2, with N j , C j appearing in (6.1) for g j .
We now apply [55, Theorem 13.13] (with h replaced by h̃) to b̃/M ∈ S.

That gives

‖Opwh (b̃)‖ = sup |a|eg1+g2 +O(h̃) sup
Uh,h̃

eg1+g2 .
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Since m̃1m̃2 = O(log(1/h)), applying the same argument to b̃1/ log(1/h)
gives (6.7).

The calculus is invariant modulo O((hh̃) 12 ) terms (see (3.5) and [12,
§5.1],[54, §3.2]), so these local estimates on R

n imply similar estimates on
manifolds.  !

The next result is a version of (3.6) for exponentiated weights g. It is a
special case of [37, Proposition 3.14] which follows from globalization of
the local result [37, Proposition 3.11]. We state it using concepts recalled in
Sect. 3.3.

Proposition 6.3 Suppose that T ∈ I comp(X × X, 	′κ) where κ : U1 → U2,
U j ⊂ T ∗X, is a symplectomorphism, that g ∈ C∞c (T ∗X) satisfies (6.1), and
that A ∈ �̃comp

1
2

. Then

eg
w

AT = T e(κ
∗g)w B + h

1
2 h̃

1
2 T1e

(κ∗g)wC,

T1 ∈ I comp
h (X × X, 	′κ), B,C ∈ �̃ 1

2
(X), σ (B) = κ∗σ(A). (6.8)

6.2 Estimates away from the trapped set

We now provide precise versions of the estimates (2.6) and (2.7) described in
the Step 2 of the proof in Sect. 2.

For the escape function G constructed in Proposition 4.7 we define the
operator

Gw
def= Opwh (G) ∈ log(h̃/h)�̃comp

1
2

(X), σ̃ (G) = G +O
(
(hh̃)

1
2−)

S̃ 1
2

.

(6.9)

Since G satisfies (6.1), Proposition 6.1 describes the exponentiated operator
eG

w = eOp
w
h (G). We refer to Remark 4.5 for the requirements on the constants

in the definition of G. Intuitively, G is bounded (independently of h and h̃) in

a (h/h̃)
1
2 -neighbourhood ofK, and satisfies the growth condition G(ϕt0(ρ))−

G(ρ) ≥ 2	 outside of a smaller (h/h̃)
1
2 -neighbourhood of K.

The first lemma shows that the weights are bounded near the trapped set:

Lemma 6.4 Suppose that χ ∈ C∞c (T ∗X) ∩ S̃ 1
2
(T ∗X) has the property

suppχ ⊂
{
ρ ∈ T ∗X : d(ρ, K 2δ) < C0(h/h̃)

1
2

}
, (6.10)

for some constant C0 satisfying 0 < (C0 + 1)2 < c2L, in the notation of
(4.14).
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Then for some constants h0, h̃0,C1 > 0 we have for 0 < h < h0, 0 < h̃ <
h̃0,

‖χweGw‖ ≤ C1, ‖eGwχw‖ ≤ C1. (6.11)

Proof Since σ̃ (χw)=χ+O(h 1
2 h̃

1
2 )S̃ 1

2

, and |G(ρ)|≤C3	C2 for d(ρ, K 2δ) <

(C0+ 1)(h/h̃)
1
2 (see (4.14) and (4.21)), the estimates in (6.11) follow directly

from Lemma 6.2.  !
The main result of this section provides bounds for the conjugated propa-

gator. It relies heavily on the material about the propagator for the complex
absorbing potential (CAP) modified Hamiltonian, exp(−i t (P− iW )/h), pre-
sented in the Appendix.

Proposition 6.5 Suppose that Gw is given by (6.9) and that A ∈ �comp(X)
satisfies

WFh(A) ⊂ p−1((−δ, δ)) ∩ w−1([0, ε1)), (6.12)

for some ε1 > 0.
Then for some constants h0, h̃0,C1 > 0 we have for 0 < h < h0, 0 < h̃ <

h̃0,

‖e−Gwe−i t0(P−iW )/heGw A‖ ≤ e2C1 . (6.13)

If χ satisfies (6.10) and in addition

χ(ρ) ≡ 1 for d(ρ, K 2δ) <
1

2
C0(h/h̃)

1
2 , |p(ρ)| ≤ δ, (6.14)

where C0 is a large constant dependending on t0, then, if ‖A‖ ≤ 1,

‖(1− χw)e−Gwe−i t0(P−iW )/heGw A‖ < e−	, (6.15)

where 	 is the constant appearing in the definition (4.21) of G.

Proof Let A−G
def= eG

w
Ae−Gw . Then (6.5) in Proposition 6.1 shows that

A−G = A +OL2→L2(h
1
2 ) = O(1)L2→L2 and A−G = ÃA−G +O(h∞),

(6.16)
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where Ã satisfies (10.10). To prove (6.13) we use the notation of Proposition
10.3, and rewrite the operator on the right hand side as

e−Gwe−i t0(P−iW )/heGw A = e−Gwe−i t0P/heGwe−GwVÃ(t0)A−Ge
Gw

+O(h 1
2 )L2→L2

= e−Gwe−i t0P/heGwC(t0)+O(h 1
2 )L2→L2 ,

(6.17)

where using (6.5) and Proposition 10.3,

C(t0) ∈ �comp
1
2

(X), WFh(C(t0)) ⊂WFh(A) ∩ w−1(0).

Since

e±Gw = Be±Gw + (I − B)+O(h∞)L2→L2, for some B ∈ �comp(X),

Proposition 6.3 (applied with A ≡ I ) and (3.8) show that for some B0 ∈
�̃ 1

2
(X),

e−Gwe−i t0P/heGw = e−i t0P/he−(ϕ
∗
t0
G)w eG

w
(
I + h

1
2 h̃

1
2 B0

)
+O(h∞)L2→L2 .

From this and (6.17) we see that to prove (6.13) it is enough to show that

e−(ϕ
∗
t0
G)w eG

w

B1 = O(1)L2→L2, B1 ∈ �comp(X),

WFh(B1) ⊂ p−1((−δ, δ)) ∩ w−1([0, ε1)).
(6.18)

Lemma 6.2 applied with g1 = −ϕ∗t0G and g2 = G, and the property G −
ϕ∗t0G ≤ C7 in (4.22) which holds in a neighbourhood of WFh(B1), give (6.18)
and hence (6.13).

To obtain (6.15) we proceed similarly but applying the property ϕ∗t0G−G ≥
2	 which is valid outside a (h/h̃)

1
2 neighbourhood of K δ—see (4.22). In more

detail, Proposition 6.3 applied with A = 1− χw gives6

(1− χw)e−Gwe−i t0(P−iW )/heGw A
= (1− χw)e−Gwe−i t0P/heGwe−GwVÃ(t0)A−Ge

Gw +O(h 1
2 )L2→L2

= e−i t0P/he−(ϕ
∗
t0
G)w eG

w

(1− (ϕ∗t0χ)w)e−GwVÃ(t0)A−Ge
Gw +O(h 1

2 )L2→L2 ,

6 Strictly speaking 1 − χw /∈ �̃comp
1
2

but the operator A ∈ �comp provides the needed local-

ization: we can write A = A0A + O(h∞)L2→L2 where WFh(I − A0) ∩WFh(A) = ∅ and
apply Proposition 6.1 to A0.

123



406 S. Nonnenmacher, M. Zworski

where we used the boundedness established in (6.13) to control the lower order

terms. Defining χ1
def= ϕ∗t0χ , we have, by the invariance of K

δ under the flow,

χ1 ≡ 1 for d(ρ, K δ) ≤ C1(h/h̃)
1
2 , |p(ρ)| ≤ δ.

Let ψ ∈ C∞c (T ∗X) be equal to 1 in the set W1 of Proposition 4.7, and
suppψ ⊂ (w−1(0))◦.

Since (6.5) and Proposition 10.3 give

‖e−GwVÃ(t0)A−Ge
Gw‖≤‖e−GwVÃ(t0)e

Gw‖‖A‖≤‖A‖
(
‖ Ã‖ +OL2→L2(h̃

1
2 )
)

≤ 1+O(h̃ 1
2 ),

it is enough to show that

‖e−(ϕ∗t0G)weGw(1− χw1 )ψw‖ ≤ e−3	/2, (6.19)

‖e−(ϕ∗t0G)weGw(1− χw1 )(1− ψw)B‖ ≤ Ch
1
2 log(1/h) (6.20)

for B ∈ �comp(X) with WFh(B) ⊂ w−1([0, ε1/2]) ∩ p−1([−δ, δ]), is as in
Proposition 4.7. Both inequalities follow from Lemma 6.2 and properties of
G in (4.22). For (6.19) we apply (6.7). For (6.20) we note that

ϕ∗t0G − G ≥ C8 log(h̃/h), on supp(1− ψ) ∩WFh(B),

and (6.7) gives the estimate with the error dominating the leading term.  !

7 Proof of Theorem 2

We first prove (2.2) which we rewrite as follows

‖Un
G A‖L2(X)→L2(X) ≤ Ce−nt0(λ0−ε0)/2, Mε0 log

1

h̃
≤n≤M log

1

h̃
(7.1)

where

UG
def= exp

(−i t0 P̃G/h
)
A = e−Gwe−i t0(P−iW )/heGw,

with t0 chosen in previous sections, and

A ∈ �comp(X), WFh(A) ⊂ p−1((−δ, δ)). (7.2)
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To apply the estimates of the last two sections we first observe that Proposition
10.2 implies that for any r there exist Bj ∈ �comp, j = 1, . . . r , each satisfying
(7.2), such that

Ur
G A =

r∏

j=1

UGBj +O(h∞)L2→L2, Br = A, (7.3)

where the constants in the norm estimate O(h∞) depend on r . This means
that, for r independent of h but depending on h̃, Ur

G A can be replaced by the
product of operators UGBj , to which estimates of the previous section are
applicable.

We now want to decompose Un
G in such a way that the estimates obtained

in Sects. 5, 6 can be used. For that we define

UG = UG,+ +UG,−, UG,+
def= UGχ

w, UG,−
def= UG(1− χ)w. (7.4)

We note that Proposition 6.1 shows that

χwe−Gwe−i t (P−iW )/heGw = e−GweG
w

χwe−Gwe−i t (P−iW )/heGw

= e−Gwχwe−i t (P−iW )/heGw +O(h̃ 1
2 h

1
2 )L2→L2

= e−Gwχwe−i t (P−iW )/heit P/he−i t P/heGw

+O(h̃ 1
2 h

1
2 )L2→L2

= e−Gwχwt e−i t P/heGw +O(h̃ 1
2 h

1
2 )L2→L2,

(7.5)

where χwt
def= χwe−i t (P−iW )/heit P/h . We now use Proposition 10.3 applied

with P replaced by−P , A ∈ �comp satisfyingWFh(I−A)∩WFh(χw) = ∅. In
the notation of (10.12), χwt = χwVA(t)∗, VA(t)∗ ∈ �comp

γ (X). From (10.12)

σ(VA(t)) = exp

⎛

⎝−1

h

t∫

0

ϕ∗−sW

⎞

⎠ σ(A),

with a full expansion of the symbol in any coordinate chart given in Lemma

10.4. For ρ ∈ suppχ , d(ρ, K δ) = O(h 1
2 ), and as K δ is invariant under

the flow d(ϕ−s(ρ), K δ) = Os(h
1
2 ). But that means that on the support χ ,

ϕ∗−sW ≡ 0 for s ≤ t , where t is independent of h, as long as h is small
enough. This means that WFh(I − VA(t)∗) ∩WFh(χw) = ∅ and hence, for

all t , χt = χ +Ot (h
1
2 )S 1

2
.
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Returning to (7.5) this means that for t ≤ C log(1/h̃) (in fact for any time
bounded independently of h), we have

χwe−Gwe−i t (P−iW )/heGw = χwe−Gwe−i t P/heGw +Ot (h
1
2 )L2→L2,

e−Gwe−i t (P−iW )/heGwχw = e−Gwe−i t P/heGwχw +Ot (h
1
2 )L2→L2 .

(7.6)

Using the notation (7.4)

Un
G =

∑

εi=±
UG,εn · · ·UG,ε2UG,ε1

=
∑

ε∈"(n)
Uε, Uε

def= UG,εn · · ·UG,ε2UG,ε1, (7.7)

where we used the symbolic words ε = ε1 · · · εt ∈ "(n) = (±)n . Now, for
each word ε �= − − · · · − −, call nL(ε) ( nR(ε), respectively), the number of
consecutive (−) starting from the left (the right, respectively):

ε = − · · ·−︸ ︷︷ ︸
nL (ε)

+ ∗ ∗ · · · ∗ ∗ + − · · · −︸ ︷︷ ︸
nR(ε)

.

Given integers nL , nR , call "(n, nL , nR) the set of words ε ∈ "(n) such that
nL(ε) = nL and nR(ε) = nL . The decomposition (7.7) can be split into

Un
G = Un

G,− +
∑

nL ,nR

∑

ε∈"(n,nL ,nR)
Uε .

where the sum runs over nL , nR ≥ 0 such that nL + nR ≤ n − 1.
We make the following observations:

"(n, nL , nR) =
{
(−)nL+(−)nR} , if nL + nR = n − 1,

"(n, nL , nR) =
{
(−)nL+ε′+(−)nR : ε′ ∈ "(n − nL − nR − 2)

}
,

if nL + nR < n − 1.

Hence, the above sum can be recast into

Un
G = Un

G,− +
n−1∑

nL=0

(
UG,−

)nL UG,+
(
UG,−

)n−nL−1

+
∑

nL ,nR

(
UG,−

)nL UG,+ (UG)
n−nR−nL−2UG,+

(
UG,−

)nR (7.8)
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where the last sum runs over nL , nR ≥ 0 such that nL + nR ≤ n − 2.
The following lemma provides the estimate for terms in the last sum on the

right hand side of (7.8):

Lemma 7.1 For h̃ > h > 0 small enough, the following bound holds for
r0 ≤ r ≤ C0 log(1/h̃), r ∈ N,

∥∥UG,+Ur
G UG,+

∥∥
L2→L2 ≤ C h̃−d⊥/2 exp

(
−1

2
t0r(λ0 − ε)

)
, (7.9)

where the constant C is uniform with respect to h, h̃ and r.

Proof Lemma 6.4 shows that eG
w
χw, χwe−Gw = O(1)L2→L2 . Also, Lemma

6.2 shows that for χ1 ∈ S̃ 1
2
with the same properties as χ but equal to 1 on the

support of χ , we have

χwe−Gw = χwe−Gwχw1 +O(h̃∞)L2→L2, eG
w

χw = χw1 eG
w

χw

+O(h̃∞)L2→L2 .

Using (7.6) the operator on the left hand side of (7.9) can be rewritten as

UG χ
w (UG)

r+1 χw = UG χ
w e−Gw e−i(r+1)t0P/h eG

w

χw +O(h 1
2 )L2→L2

= UG
(
χwe−Gwχw1 +O(h̃∞)

)
e−i(r+1)t0P/h

×(χw1 eG
w

χw +O(h̃∞)
)+O(h 1

2 )L2→L2

Hence,
∥∥UG,+Ur

GUG,+
∥∥
L2→L2

≤ ‖UG‖
∥∥∥χwe−Gw

∥∥∥
∥∥∥χw1 e−i(r+1)t0P/hχw1

∥∥∥
∥∥∥eG

w

χw
∥∥∥+O(h̃∞)

≤ C
∥∥∥χw1 e−i(r+1)t0P/hχw1

∥∥∥ ,

where we used the fact that the operators UG , eG
w
χw and χwe−Gw are uni-

formly bounded on L2. We can now apply Proposition 5.1, replacing t by
(r + 1)t0 and χ by χ1.  !

Let us now take n = C0 log 1/h̃, withC0 � 1. We recall that 	 in (2.6) was
assumed to satisfy 	 > t0λ0/2. We will use the bounds (7.9), and Proposition
6.5:

∥∥UG,−A
∥∥ < e−	 .

Returning to the estimate for Un
G A we first observe that (7.3) and the esti-

mates (6.15) in Proposition 6.5 give

‖Um
G,−A‖ ≤ e−m	 +Or (h

1
2 ). (7.10)
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410 S. Nonnenmacher, M. Zworski

In (7.8), for each � = 1, . . . , n−2, we group together terms with nL+nR =
�, and apply Lemma 7.1 and (7.10):

‖Un
G A‖�e−n	 + n e−(n−1)	+h̃−d⊥/2

n−2∑

�=1

(�+1) e−�	 e−t0(n−�) λ0−ε2 +O(h 1
2 )

� n e−n	 + h̃−d⊥/2 e−t0n
λ0−ε
2

n−2∑

�=1

(�+ 1) e−�
(
	−t0

λ0−ε
2

)
+O(h 1

2 )

� h̃−d⊥/2 e−t0n
λ0−ε
2 .

By taking C0 = Mε � 1/ε we may absorb the prefactor h̃−d⊥/2 and obtain,
for h̃ > 0 small enough,

‖Un
G A‖ ≤ C exp

(− nt0
λ0 − 2ε

2

)
, n ≈ Mε log 1/h̃. (7.11)

We can now complete the proof of (1.18) following the outline in Sect. 2. We
first note that (7.11) gives (2.2), so that (see (2.3)) for

z ∈ [−δ/2, δ/2] − ih[0, (λ0 − 3ε0)/2] (7.12)

and A ∈ �comp(X) satisfying (7.2),

(P̃G − z)QA(z) = A − R(z), R(z) = O(h̃)L2→L2,

QA(z)
def= i

h

T (h̃)∫

0

e−i t (P̃G−z)/h Adt = O
(
T (h̃)

h

)

L2→L2

,

T (h̃) = Mε0 log 1/h̃.

We now apply this estimate with A ∈ �comp(X) such that σ(A) ≡ 1 in
p−1(−3δ/4, 3δ/4) ∩ w−1([0, ε1)). Then P̃G − z ∈ �̃m

1
2
(X) is elliptic outside

of WFh(A). Hence, using the �̃ 1
2
calculus of Sect. 3.2, there exists Q̃ A(z) ∈

�̃−m
1
2
(X) such that

(P̃G − z)Q̃ A(z) = I − A + R̃(z), R̃(z) = O(h̃)L2→L2 .

The Fredholm operator P̃G − z has index 0 since P̃G + i is invertible for small
h̃. It follows that for h̃ small enough and z satisfying (7.12)

(P̃G − z)−1 = (QA(z)+ Q̃ A(x))(I + R(z)+ R̃A(z))
−1 = O(1/h)
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Since e±Gw(x,hD) = O(h−M/2+1)L2→L2 for some M , it follows that

(P − iW − z)−1=O(h−M)L2→L2 z∈[−δ/2, δ/2] − ih[0, (λ0−3ε0)/2],
(P − iW − z)−1 = O(1/ Im z)L2→L2, Im z > 0,

where the second is immediate from non-negativity of W as an operator.
Wenowuse a semiclassicalmaximumprinciple [8, Lemma4.7],[44, Lemma

2] to obtain the bound for (P − iW − z)−1 in (1.18) (after adjusting δ and ε0).

Remark 7.2 Strictly speaking we proved (1.18) for z ∈ [−δ/2, δ/2] −
ih[0, λ0/2− ε1], for any ε1, provided that h is small enough.

8 The CAP reduction of scattering problems: Proof of Theorem 3

In this section we will prove a generalization of Theorem 3 which applies
to a variety of scattering problems. Our approach of reduction to estimates
for the Hamiltonian complex absorbing potential (CAP) is based on the work
Datchev–Vasy [14] (see also [22, §4.1]) but as the argument is simple and
elegant we reproduce it in our slightly modified setting.

Let (Y, g) be a complete Riemannian manifold and let

Pg = −h2�g + V, V ∈ C∞(Y ;R). (8.1)

We make general assumption on (Y, g) which will allow asymptotically
Euclidean and asymptotically hyperbolic infinities.

We assume that Y is the interior of a compact manifold Y with a C∞ bound-
ary, ∂Y �= ∅. We choose a defining function of ∂Y :

ρ ∈ C∞(Y ; [0,∞)), {ρ = 0} = ∂Y, dρ|∂Y �= 0. (8.2)

Let pg = |ξ |2g + V (x) be the principal symbol of Pg and let

(x(t), ξ(t)) = exp t Hpg (x(0), ξ(0)),

be the Hamiltonian flow (geodesic flow lifted to T ∗Y when V ≡ 0. The first
assumption on (Y, g) we make is a non-trapping (convexity) assumption near
infinity formulated using ρ with properties (8.2):

ρ(x(t)) ∈ (0, ε1), d

dt
ρ(x(t)) = 0 #⇒ d2

dt2
ρ(x(t)) < 0. (8.3)

The trapped set at energy E ∈ [−δ, δ] is defined as
(x, ξ) ∈ KE ⇐⇒ pg(x, ξ) = Eand exp(RHpg )(x, ξ) is compact in T ∗Y.
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412 S. Nonnenmacher, M. Zworski

We assume that the trapped set at energies |E | ≤ δ, (see (1.15)),

K δ is normally hyperbolic in the sense of (1.17). (8.4)

We now make analytic assumptions on P . For that we first assume that Pg
can be modified inside a compact part of Y , to obtain an operator

P∞ = −h2�g + Ṽ , Ṽ ∈ C∞(Y ), Ṽ�ρ<ε1= V�ρ<ε1,

with the following properties: for some s0 > 0 and C0 > 0,

‖ρs0(P∞ − E − i0)−1ρs0‖L2(Y )→L2(Y ) ≤
C0

h
, |E | ≤ δ, (8.5)

and

u = (P∞ − E − i0)−1 f, f ∈ C∞c (Y ) #⇒
WFh(u) \WFh( f ) ⊂ exp([0,∞)H�p∞)

(
WFh( f ) ∩ p−1∞ (E)

)
,

(8.6)

where p∞
def= |ξ |2g + Ṽ .

We note that these assumptions do not require that the resolvent of P∞ has a
meromorphic continuation from Im z > 0 to the lower half-plane. A stronger
conclusion will be possible when we make that assumption: more precisely,
for χ ∈ C∞c (Y ), we assume that the resolvent (P∞ − z)−1 continues from
Im z > 0 analytically to [−δ, δ] − ih[0,C0], for some C0 > 0, and that for
some N , the following resolvent estimate holds:

χ(P∞ − z)−1χ = OL2→L2(h−N ), z ∈ [−δ, δ] − ih[0,C0]. (8.7)

When P∞ is chosen to be selfadjoint, interpolation [8, Lemma4.7],[44,Lemma
2] shows that (8.7) improves to

χ(P∞ − z)−1χ = OL2→L2(h−1+c1 Im z/h log(1/h)),

z ∈ [−δ, δ] − ih[0,C0]. (8.8)

We can now state a more general version of Theorem 3:

Theorem 6 Suppose that the Riemannian manifold (Y, g) and the potential V
satisfy the assumptions (8.3), (8.4), (8.5) and (8.6). In particular, the trapped
set for the operator P = −h2�g + V is normally hyperbolic.
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Then, for some constant C1 (and s0 in (8.5)), we have

‖ρs0(Pg − E − i0)−1ρs0‖L2(Y )→L2(Y ) ≤ C1
log(1/h)

h
, |E | ≤ δ. (8.9)

If in addition (8.7) holds then, for any ε0 > 0, χ(Pg− z)−1χ can be continued
analytically to [−δ/2, δ/2] − ih[0,min(C0, λ0/2 − ε0)], with λ0 given by
(1.19), and

χ(Pg − z)−1χ = OL2→L2(h−N ),

z ∈ [−δ/2, δ/2] − ih[0,min(C0, λ0/2− ε0)], (8.10)

with the improved estimate (1.18) if (8.8) holds.

Before the proofwepresent two classesmanifoldswhich satisfy our assump-
tions. We say (Y, g) is asymptotically Euclidean if

g = ρ−4dρ2 + ρ−2g0(ρ), near∂Y,

where g0(ρ) is a family of metrics on ∂Y depending smoothly on ρ up to
ρ = 0. We say (Y, g) is evenly asymptotically hyperbolic if

g = ρ−2dρ2 + ρ−2g0(ρ), near∂Y,

where ρ is as before but this time g0(ρ) is a family of metrics on ∂Y depending
smoothly on ρ2 (hence even) up to ρ = 0.

In both cases the non-trapping assumption near infinity (8.3) is valid: see [14,
Proof ofLemma4.1] for the asymptotically hyperbolic case; the asymptotically
Euclidean case follows from the same proof,with the fourth displayed equation
of the proof replaced by [49, (4.3)].

For asymptotically Euclidean manifolds (8.5) and (8.6) follow from the
results of [49]. The modification of V can be done in any way which produces
a non-trapping classical flow: for instance we can choose Ṽ = V +Vint where
Vint is a smooth, large non-negative potential (a barrier) supported in {ρ > ε1}.

To obtain (8.7) more care is needed but, under additional assumptions one
can use an adaptation of the method of complex scaling of Aguilar-Combes,
Balslev-Combes and Simon—see [53] for the case of manifolds and for refer-
ences. The simplest example for which this is valid was considered in Theorem
1. For even asymptotically hyperbolicmanifolds the properties (8.5), (8.6), and
(8.7) all follow from the recent work of Vasy [50].

As long we are not interested in analytic continuation properties, the weaker
assumptions (8.5) and (8.6) may hold in the generality considered by Cardoso-
Vodev [9].
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414 S. Nonnenmacher, M. Zworski

Proof of Theorem 6 To show how Theorem 6 follows from Theorem 2 we
use the parametrix construction of [14, §3]. For that we first have to relate the
situation in this section to the set-up in Theorem 2. It will be convenient to
rescale ρ so that in (8.3) we can take ε1 = 4.

Let X be any compact manifold without boundary such that Y ⊂ X is a
smooth embedding: for example, we may take X to be the double of Y . We
then extend ρ to ρ ∈ L∞(X) to be identically 0 on X \ Y . Let P ∈ �2(X) be
any selfadjoint semiclassical differential operator satisfying

P|ρ>1 = Pg|ρ>1, P = −h2�gX + VX ,

where gX is a Riemannian metric on X and VX ∈ C∞(X;R).
We then take W ∈ C∞(X; [0,∞)) such that

W (x) =
{
0 for ρ(x) > 1;
1 for ρ(x) < 1

2 .

Let Ṽ ∈ C∞(Y ) be a potential for which (8.5) and (8.6) hold. We notice that
one possibility to obtain the required properties for P∞ is to take a complex
potential Ṽ = V − iW∞ where, W∞ ∈ C∞(Y ; [0,∞)) (see Fig. 3)

W∞(x) =
{
0 for ρ(x) < 4,

1 for ρ(x) > 5,
.

Using the convexity property (8.3) it is easy to check that this operator satisfies
(8.5) and (8.6). Then for Im z > 0, |�z| ≤ δ, define the followingholomorphic
families of operators

RX (z) = (P − iW − z)−1, R∞(z) = (P∞ − z)−1.

Due to the compactness of X , the family of operators RX (z) : L2(X)→ L2(X)
is meromorphic for z ∈ C. The resolvent RX (z) is estimated in Theorem 2. For
the moment we only assume that R∞(z) : L2(Y ) → L2(Y ) is holomorphic
for Im z > 0 and satisfies (8.5), (8.6).

Now take a cutoff function χX ∈ C∞(R, [0, 1]) with

suppχX ⊂ (2,∞), supp(1− χX ) ⊂ (−∞, 3).

We put and χ∞ = 1− χX .
Our first Ansatz for the inverse of (Pg − z) is the operator

F(z) = χX (ρ(•)+ 1)RX (z)χX (ρ(•))+ χ∞(ρ(•)− 1)R∞(z)χ∞(ρ(•)).
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suppW∞
ρ 1 2 3 4 5
suppW

χX(ρ

= 0

+ 1) χ∞(ρ − 1)χX(ρ) χ∞(ρ)

Fig. 3 Schematic representation of the cut-offs used in the proof of Theorem 6 as functions of
ρ(x). The spatial infinity is represented by ρ(x) = 0 and X \ Y corresponds to ρ(x) ≤ 0

Note that F(z) : L2(Y )→ L2(Y ) for Im z > 0 since all the cut-off functions
are supported away from X \ Y . Also, the support properties of W , W∞ and
χX show that

(Pg−z)χX (ρ(•)+1)=χX (ρ(•)+1)(P−iW−z)+[χX (ρ(•)+1), h2�g],
(Pg−z)χ∞(ρ(•)−1)=χ∞(ρ(•)−1)(P∞ − z)+[χ∞(ρ(•)− 1), h2�g].

Hence

(Pg − z)F(z) = I + AX (z)+ A∞(z),

where

AX (z) = [χX (ρ(•)+ 1), h2�g]RX (z)χX (ρ(•)),
A∞(z) = [χ∞(ρ(•)− 1), h2�g]R∞(z)χ∞(ρ(•)).

Note that AX (z)2 = A∞(z)2 = 0, due to the support properties

supp d (χX (ρ(•)+ 1)) ∩ suppχX (ρ(•)) = ∅,
supp d (χ∞(ρ(•)− 1)) ∩ suppχ∞(ρ(•)) = ∅. (8.11)

Moreover, thanks to assumptions (8.3) and (8.6) [see [14, Lemma 3.1]],

‖A∞(z)AX (z)‖L2(Y )→L2(Y ) = O(h∞), uniformly for Im z > 0, |Re z| ≤ δ.
(8.12)

Consequently

(Pg − z)F(z)
(
(I − AX (z)− A∞(z)+ AX (z)A∞(z)

) = I − E(z),

where E(z) = A∞(z)AX (z)− A∞(z)AX (z)A∞(z).
(8.13)
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Using (8.12) we see that E(z) = O(h∞)L2(Y )→L2(Y ), uniformly for Im z > 0,
|�z| ≤ δ. This allows to write an explicit expression for (Pg − z)−1:

(Pg − z)−1 = F(z)(I − AX (z)− A∞(z)+ AX (z)A∞(z))
∞∑

n=0

E(z)n.

We now want to estimate ‖ρs0(Pg− z)−1ρs0‖L2(Y )→L2(Y ). For this we expand
the above identity using the expression of F(z) (some terms vanish due to the
support properties (8.11)). Denoting aX = ‖RX (z)‖, a∞ = ‖ρs0R∞(z)ρs0‖,
we get the bound

‖ρs0(Pg − z)−1ρs0‖ ≤ C
(
a∞ + aX + ha∞aX + h2a2∞aX

)

+O(h∞). (8.14)

Finally, we use the bounds (8.5) for a∞, the bound (1.18) for aX (with Im z ≥
0), and obtain the desired estimate (8.9).

When the assumption (8.7) holds, the construction shows that for χ ∈
C∞c (Y ) equal to 1 on a sufficiently large set,

χ(Pg−z)−1χ=χF(z)χ(I−AX (z)−A∞(z)+AX A∞(z)
)
χ

∞∑

n=0

(E(z)χ)n,

continues analytically to the same region as both RX (z) and χR∞(z)χ . The
same expansion as above allows to bound from above ‖χ(Pg − z)−1χ‖ by
the same expression as in (8.14), now using aX = ‖χRX (z)χ‖, a∞ =
‖χR∞(z)χ‖. By using (1.18) for aX , resp. (8.7) for a∞ (with now Im z taking
negative values), we obtain (8.10).  !

For completeness we conclude this section with the proof of Theorem 1.
The conclusion is valid under more general assumptions of Theorem 6.

Proof of Theorem 1 In the notation of Theorem 6, (1.3) is equivalent to the
estimate

‖χψ(Pg)e−i t Pg/hχ‖L2(Y )→L2(Y ) ≤ C
log 1/h

h1+c0γ
e−γ t +O(h∞),

γ = 1

2
(λ0 − ε), (8.15)

valid (with different constants) for any χ ∈ C∞c (Y ). Let ψ̃ ∈ C∞c (C) be
an almost analytic extension of ψ , that is a function with the property that
ψ̃ �R= ψ and ∂̄zψ̃(z) = O(| Im z|∞) (see for instance [55, Theorem 3.6]).
We can construct ψ̃ so that supp ψ̃ ⊂ [−δ/2, δ/2] − i[−δ, δ]). We start with
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Stone’s formula

χψ(Pg)e
−i t Pg/hχ = 1

2π i

∫

R

ψ(λ)e−iλtχ
(
(Pg − λ− i0)−1

−(Pg − λ+ i0)−1)χ dλ.

We now write R−(z) = (Pg − z)−1, for the resolvent in Im z < 0 (that is for
the analytic continuation of (Pg − (z− i0))−1 from Im z < 0) and R+(z) for
the meromorphic continuation of the resolvent from Im z > 0 to the lower
half-plane. We then apply Green’s formula to obtain, for 0 ≤ γ < λ0/2,

χψ(Pg)e
−i t Pg/hχ = 1

2π i

∫

Im z=−γ h
e−i t z/hχ(R+(z)− R−(z))χψ̃(z)dz

+ 1

π

∫∫

−γ h≤ Im z≤0
e−i t z/hχ(R+(z)− R−(z))χ∂̄zψ̃(z)dm(z),

(8.16)

where dm(z) is the Lebesgue measure on C. From (1.18) (see Theorem 6) we
get

‖χR+(z)χ‖L2→L2 ≤ Ch−(1+c0γ ) log(1/h),

‖χR−(z)χ‖L2→L2 ≤ C/| Im z|,

for −γ h ≤ Im z ≤ 0. Inserting these bounds in (8.16) gives (8.15) and that
proves (a generalized version of) Theorem 1.  !

9 Decay of correlations for contact Anosov flows: Proof of Theorem 4

Most of this section is devoted to the proof of Theorem 4. This proof will be
obtained by adapting the proof of Theorem 2, after reviewing the geometric
point of view of Tsujii [47] and Faure–Sjöstrand [23] (see also [13]). At the
end of the section we deduce Corollary 5 on the decay of correlations.

9.1 Geometric structure

Let X be a smooth compact manifold of dimension d = 2k − 1, k ≥ 2. We
assume that X is equipped with a contact 1-form α, that is, a form such that
(dα)∧(k−1) ∧ α is non-degenerate. The Reeb vector field, �, is defined as the
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unique vector field satisfying

�x ∈ ker dαx , αx (�x ) = 1, x ∈ X.

We assume that

γt
def= exp t� defines an Anosov flow on X . (9.1)

That means that at each point x ∈ X , the tangent space has a γt -invariant
decomposition into neutral (one dimensional), stable and unstable subspaces
(each (k − 1)-dimensional):

Tx X = E0(x)⊕ Es(x)⊕ Eu(x), E0(x) = R�x . (9.2)

We note that Eu(x)⊕ Es(x) span the kernel of αx .
The dual decomposition is obtained by taking E∗0(x) to be the annihilator

of Es(x)⊕ Eu(x), E∗u(x) the annihillator of Eu(x)⊕ E0(x), and similarly for
E∗s (x). That makes E∗s (x) dual to Eu(x), E∗u(x) dual to Es(x), and E∗0(x) dual
to E0(x). The fiber of the cotangent bundle then decomposes as

T ∗x X = E∗0(x)⊕ E∗s (x)⊕ E∗u(x). (9.3)

The distributions E∗s (x) and E∗u(x) have only Hölder regularity, but E∗0(x) and
E∗s (x)⊕ E∗u (x) are smooth, and E∗0(x) = Rαx ⊂ T ∗x X .
The approach of [23] highlights the analogy between this dynamical set-

ting and the scattering theory for the Schrödinger equation. The role of
the Schrödinger operator is played by the (rescaled) generator of the flow
γt = exp t�:

γ ∗t u = eit P/hu, u ∈ C∞(X), P = −ih�. (9.4)

The principal symbol of P simply reads p(x, ξ) = ξ(�x ).
The flow γt can be lifted to a Hamiltonian flow ϕt on T ∗X :

ϕt : (x, ξ) �−→ (γt (x),
t dγt (x)

−1ξ),

which is generated by p(x, ξ): ϕt = exp t Hp.
For each energy E ∈ R, the energy shell p−1(E) is a union of affine

subspaces:

p−1(E) =
⋃

x∈X
{(x, ξ) : αx (ξ) = E} =

⋃

x∈X
(Eαx + E∗u(x)+ E∗s (x)).
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We note that each of these energy shells has infinite volume; as opposed to the
scattering theory setting, infinity occurs here in the momentum direction (the
fibers), while the spatial direction is compact.

The Anosov assumption implies that for t > 0,

|ϕt (x, ξ)| ≤ Ce−λt |ξ |, ξ ∈ E∗s (x), |ϕ−t (x, ξ)| ≤ Ce−λt |ξ |,
ξ ∈ E∗u(x), (9.5)

where | • | = | • |y denotes a norm on T ∗y X , and we consider ϕt (x, ξ) ∈
T ∗π(ϕt (x,ξ))X . Since the action of ϕt inside each fiber T

∗
x X is linear, we see that

the only trapped points in T ∗X must be on the line E∗0(x). More precisely, the
trapped set at energy E ∈ R is given by

KE =
⋃

x∈X

(
E∗0(x) ∩ p−1(E)

) =
⋃

x∈X
Eαx ,

that is KE is the image of the section Eα in T ∗X .
Stacking together energies E ∈ (1 − δ, 1 + δ), 0 < δ < 1, we obtain the

trapped set

K δ = K =
⋃

|E−1|<δ
KE = {Eαx , x ∈ X, |E − 1| < δ} ⊂ T ∗X.

This trapped set is normally hyperbolic in the sense of (1.17).
Indeed, we first note that K δ is a symplectic submanifold of T ∗X of dimen-

sion d + 1 = 2k. Indeed, using (x, E), x ∈ X , as coordinates on K δ ,
(x, E) �→ Eαx , we have

ω�K δ= d(Eα) = dE ∧ α + E dα.

This form is nondegenerate for E �= 0 since α is a contact form.
The tangent space to K δ is given by the image of the differential of

X × R � (x, E) �→ Eαx
def= (x, ξ = Eβ(x)),

where we see β(x) as the vector in R
d representing αx . Hence,

TEαx K
δ=E(dα)x (Tx X, •)+Rαx={(v, E dβ(x)v+sβ(x)) : v∈Tx X, s∈R}

⊂ Tx X ⊕ T ∗x X ≡ TEαx (T
∗X). (9.6)

Here dβ(x) can be interpreted as the Jacobian matrix ∂β/∂x on R
d .
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For each x ∈ X , the symplectic orthogonal to TEαx K
δ , denoted (TEαx K

δ)⊥,
can be obtained by lifting the vectors in ker αx as follows:

v ∈ ker αx �→ L⊥E (v)
def= (v, E t(dβ(x))v) ∈ Tx X ⊕ T ∗x X ≡ TEαx (T

∗X),

where t(dβ(x)) denotes the transpose of dβ(x). This subspace (TEαx K
δ)⊥ is

symplectic and transverse to K δ:

TρK
δ ⊕ (TρK δ)⊥ = Tρ(T

∗X), ∀ρ = Eαx ∈ K δ.

Since ker αx = Eu(x)⊕Es(x), we can naturally split the orthogonal subspace
into

(TρK
δ)⊥ = E+ρ ⊕ E−ρ , E+ρ = L⊥E (Eu(x)), E−ρ = L⊥E (Es(x)),

ρ = Eαx ∈ K δ.

The distributions E±Eαx are transverse to each other and flow-invariant. E+Eαx
is a particular subspace of the global unstable subspace Eu(x) ⊕ E∗u(x) ⊂
TEαx (T

∗X), and similarly for E−Eαx . Hence, in the present setting, the sub-
spaces E±ρ exactly correspond to the subspaces described in Lemma 4.1.

9.2 Microlocally weighted spaces and the definition of resonances

Following [13]we now review the construction [23] ofHilbert spaces onwhich
P − z (with P given in (9.4)) is a Fredholm operator for Im z > −βh, for
some arbitrary β > 0.

The key to the definition of these Hilbert spaces is a construction of a weight
function which we quote from [23, Lemma 1.2] and [13, Lemma 3.1]. We use
the notation E∗• =

⋃
x∈X E∗•(x) ⊂ T ∗X .

Lemma 9.1 Let U0,U ′
0 be conic neighbourhoods of E∗0 , with U0 � U ′

0 and
U ′
0 ∩ (E∗u ∪ E∗s ) = ∅. There exist real-valued functions m ∈ S0(T ∗X), f0 ∈

S1(T ∗X) such that

(1) m is positively homogeneous of degree 0 for |ξ | ≥ 1/2, equal to −1, 0, 1
near the intersection of {|ξ | ≥ 1/2} with E∗u , E∗0 , E∗s , respectively, and

Hpm < 0 near (U ′
0 \U0) ∩ {|ξ | > 1/2}, Hpm ≤ 0 on {|ξ | > 1/2};

(9.7)

(2) 〈ξ 〉−1 f0 ≥ c > 0 for some constant c;
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(3) the function G def= m log f0 satisfies

HpG ≤ −2 on {|ξ | ≥ 1/2} \U0, HpG ≤ 0 on {|ξ | ≥ 1/2}. (9.8)

The function G also satisfies derivative bounds

G=O(log〈ξ 〉), ∂αx ∂βξ Hk
pG=O

(
〈ξ 〉−|β|+ε

)
, |α| + |β| + k ≥ 1, (9.9)

for any ε > 0.
As in [13, §3] we define

HtG(X)
def= e−tGwL2(X, dx), (9.10)

where t > 0 is a positive parameter.
The domain of P acting on HtG is defined as

DtG
def= {u ∈ D′(X) : u, Pu ∈ HtG}. (9.11)

The action of P on HtG is equivalent to the action of the operator PtG on L2:

PtG
def= etG

w

Pe−tGw = exp(t adGw)P

=
N∑

k=0

tk

k! ad
k
Gw P + RN (x, hD), RN ∈ hN+1S−N+ε, ∀ ε > 0.

(9.12)

The validity of (9.12) follows from the fact that the operators e±tGw are
pseudodifferential operators [55, Theorem 8.6], hence the pseudodifferential
calculus applies directly [55, Theorem 9.5, Theorem 14.1]. This expansion
and the arguments in [23, §3] give

Proposition 9.2 For PtG defined by (9.12), we have

i.) the operator PtG− z : D(PtG)→ L2 is Fredholm of index zero for Im z >
−th. Here D(PtG) is the domain of PtG .

ii.) for C > 0 large enough, (PtG − z) is invertible on { Im z > Ch}.
In [23] the above construction was performed, replacing the h-quantization
by the h = 1 quantization. It lead to the construction of HtG,1(X) =
e−tGw(x,D)L2(X) equal, as vector space, to the above h-dependent space
HtG(X). The norms of these two spaces are equivalent with one another, but
in an h-dependent way:

hN‖u‖HtG,1(X)/C0 ≤ ‖u‖HtG(X) ≤ C0h
−N ‖u‖HtG,1(X), (9.13)
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—see [13, §3]. As a consequence, if we call P1 = −i�, Theorem 4 translates

into the fact that PtG,1
def= etG

w(x,D)P1e−tGw(x,D) is Fredholm in the strip
{ Im λ > −t}, admits finitely many eigenvalues in the strip { Im λ ≥ −λ0/2+
ε0}, and satisfies the resolvent estimate

‖(PtG,1 − λ)−1‖L2→L2=O(λN0), Im λ ≥ −λ0/2+ ε0, |Re λ| ≥ C.

(9.14)

9.3 Reduction to Theorem 2

In order to prove Theorem 4, we proceed as in the proof of Theorem 6 in
§8, by constructing two operators which microlocally agree with PtG (up to
negligible error terms) on different subsets of T ∗X .

Let W ∈ �1(X) be as in Example 2 of Sect. 1.3. The trapped set defined
in Sect. 1.3 agrees with the trapped set in Sect. 9.1 and, as shown in (9.5), it
satisfies, the assumptions of normal hyperbolicity. Hence Theorem 2 applies
to P̃ = P − iW . If A ∈ �comp(X) satisfies

WFh(A) � (G−1(0))◦, WFh(A) ∩ {(x, ξ) : |ξ |gx ≥ M} = ∅, (9.15)

(where M is the one appearing in the definition of W—see (1.13)) then

AP̃ = APtG +O(h∞)D′→C∞ . (9.16)

We now introduce an operator which has better global properties and agrees
with PtG near infinity. For that we proceed as in the proof of Theorem 6, and
take W∞ ∈ �comp(X) such that

WFh(W∞) � (G−1(0))◦, WFh(I −W∞) ⊂ �K δ,
WFh(W ) ∩WFh(W∞) = ∅. (9.17)

We then put

P∞ = PtG − iW∞.

Then for any B with WFh(I − B) ⊂ �WFh(W∞),

(I − B)P∞ = (I − B)PtG +O(h∞)D′→C∞ . (9.18)

Properties of the operator P∞ are listed in the following
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|ξ| → ∞
WFh(W∞)

WFh(W )
suppG

A1 B1A0 B0

Fig. 4 Schematic representation of pseudodifferential cut-offs used in the proof of Theorem
4. The horizontal axis corresponds to |ξ |, the cotangent variable. Infinity in |ξ | plays the role
of ρ = 0 in Fig. 3. The asymmetry is intentional, to stress that there is no need for an auxiliary
manifold, as opposed to the proof of Theorem 6 illustrated in Fig. 3

Lemma 9.3 Fix β > 0 and let t be large enough so that PtG− z is a Fredholm
operator for Im z > −βh. Then, there exists N0 and h0 such that, for 0 <
h < h0,

‖(P∞ − z)−1‖L2→L2 ≤ h−N0, z ∈ [1− δ/2, 1+ δ/2] − ih[0, β].
In addition the analogue of (8.6) holds for P∞: in the same range of z,

u = (P∞ − z)−1 f, f ∈ C∞(X) #⇒
WFh(u) \WFh( f ) ⊂ exp([0,∞)Hp)

(
WFh( f ) ∩ p−1(Re z)

)
.

(9.19)

Proof The first part follows from the now standard non-trapping estimates (see
[43, §4]). In the setting of Anosov flows the details are presented in the proof
of [13, Lemma 5.1] (only the escape function constructed in Lemma 4.6 above
is needed).

The propagation result is a real principal type propagation result [55, Theo-
rem12.5]which holdswhen the imaginary part of the symbol is non-positive—
see Lemma 10.1 below for a dynamical version.  !

Proof of Theorem 4 The proof is a repetition of the proof of Theorem 3
with RX replaced by (P̃ − z)−1 and R∞ by (P∞ − z)−1. The spatial cut-off
functions are replaced by pseudodifferential operators (Fig. 4): χX (ρ(x)) is
replaced by A0 ∈ �comp(X), satisfying

WFh(A0) ∩ {(x, ξ) : |ξ |gx ≥ M} = ∅, WFh(I − A0) ∩WFh(W∞) = ∅,
whereM is given in the definition ofW , see (1.13). The function χX (ρ(x)+1)
is replaced by A1 ∈ �comp(X), where

WFh(I − A1) ∩WFh(A0) = ∅, WFh(A1) ∩ {(x, ξ) : |ξ |gx ≥ M} = ∅,
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χ∞(ρ(x)) is replaced by B0
def= I − A0 ∈ �0(X), and finally χ∞(ρ(x)− 1)

by B1 ∈ �0(X) , where

WFh(W∞) ∩WFh(B1) = ∅, WFh(I − B1) ∩WFh(B0) = ∅.

We also require that

WFh(A1),WFh(I − B1) ⊂ (G−1(0))◦.

The parametrix is now obtained by putting

F(z) = A1(P − iW − z)−1A0 + B1(PtG − iW∞ − z)−1B0.

Using (9.16), (9.18) and Lemma 9.3 we obtain the theorem by proceeding as
in the proof of Theorem 3 in Sect. 8.  !

Proof of Corollary 5We will use the nonsemiclassical operator P1 = −i�.
It is selfadjoint on L2(X)—see [23, Appendix A]—hence, by Stone’s formula,
we get for any f, g ∈ C∞(X)

∫

X

γ ∗−t f g dx = 〈e−i t P1 f, ḡ〉

= 1

2π i

∫

R

e−iλt
(〈(P1 − λ− i0)−1 f, ḡ〉 − 〈(P1 − λ+ i0)−1 f, ḡ〉) dλ

= 1

2π i

∑

±
∓
∫

R

e−iλt (λ+ i)−k〈(P1 − λ± i0)−1(P1 + i)k f, ḡ〉dλ.

Here the brackets 〈•, •〉 represent L2(X) scalar products.
For t > 0 we can deform the contour in the integral corresponding to +i0

(λ approaching the real axis from below), where ‖(P1 − λ)−1‖ ≤ | Im λ|−1,
so that for k > 1 the integral is bounded as

− 1

2π i

∫

R−i A
e−iλt (λ+ i)−k〈(P1 − λ)−1(P1 + i)k f, ḡ〉dλ

= O(e−t A‖ f ‖Hk‖g‖L2).
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Thus,
∫

X

γ ∗t f g dx = 1

2π i

∫

R

e−iλt (λ+ i)−k〈(P1 − λ− i0)−1(P1 + i)k f, ḡ〉

+O f,g(e
−t A),

for any A, with the bounds depending on seminorms of f and g in C∞. We
now use the nonsemiclassical weights Gw(x, D) constructed in Sect. 9.2 to
conjugate P1, and write
∫

X

γ ∗t f g dx

= 1

2π i

∫

R

e−iλt (λ+ i)−k〈(PtG,1 − λ− i0)−1(PtG,1 + i)ketG
w(x,D) f,

e−tGw(x,D)ḡ〉 +O f,g(e
−t A).

The nonsemiclassical analogue (9.14) of Theorem 4 shows that, by taking k >
N0+1, wemay deform the contour of integration down to Im λ = −λ0/2+ε,
collecting finitely many poles μ j , to finally obtain the expansion (1.22).  !
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Appendix: Evolution for the CAP-modified Hamiltonian

In the appendix we show some properties of the CAP-modified Hamiltonian,
that is the Hamiltonian modified by adding a complex absorbing potential. At
first we work under the general assumptions (1.9).

The semigroup exp(−i t (P − iW )/h) : L2(X)→ L2(X) is defined using
the Hille-Yosida theorem: for h small P− iW − i is invertible as its symbol is
elliptic in the semiclassical sense (see (1.11) and [55, Theorem 4.29]). Ellip-
ticity assumption for large values of ξ also shows that P − iW is a Fredholm
operator, and the comment about invertibility shows that it has index 0. The
estimate

‖(P − iW − z)u‖‖u‖ ≥ − Im 〈(P − iW − z)u, u〉
≥ Im z‖u‖2, u ∈ Hm

h (X),
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then shows invertibility for Im z > 0, with the bound

‖(P − iW − z)−1‖L2→L2 ≤ 1

Im z
, Im z > 0.

Since the domain of P − iW is given by Hm(X) which is dense in L2, the
hypotheses of the Hille-Yosida theorem are satisfied, and

‖e−i t (P−iW )/h‖L2→L2 ≤ 1, t ≥ 0,

e−i t (P−iW )/he−is(P−iW )/h = e−i(t+s)(P−iW )/h, t, s ≥ 0.
(10.1)

Alternativelywe can show the existence of the semigroup exp(−i t (P−iW )/h)
using energy estimates, just as is done in the proof of [55, Theorem 10.3]. We
get that for any T > 0,

e−i t (P−iW )/h ∈C([0, T ];L(Hs
h (X), H

s
h (X))

) ∩ C1([0, T ];L(Hs
h , H

s−m
h )

)
.

(10.2)

Our final estimates will all be given for L2 only and that is sufficient for our
purposes.

The first result we state concerns propagation of semiclassical wave front
sets.We recall the notation ϕt = exp(t Hp) for the Hamiltonian flow generated
by p(x, ξ).

Lemma 10.1 Suppose that A ∈ �comp(X). Then for any T independent of h
there exists a smooth family of operators

[0, T ] � t �−→ Q(t) ∈ �comp(X), WFh(I − Q(t)) ∩ ϕt (WFh(A)) = ∅,
(10.3)

such that

(I − Q(t)) e−i t (P−iW )/h A = O(h∞)L2→L2 . (10.4)

In addition if WFh(A) ⊂ w−1([ε1,∞)), ε1 > 0, then for any fixed t > 0,

e−i t (P−iW )/h A = O(h∞)L2→L2, A e−i t (P−iW )/h = O(h∞)L2→L2 .

(10.5)

Proof We first construct Q(t) using a semiclassical adaptation of a standard
microlocal procedure—see [30, §23.1]. For that, let Q(0) ∈ �comp(X) be an
operator satisfying WFh(I − Q(0)) ∩WFh(A) = ∅, and with the principal
symbol, q0(0), independent of h. Using the fact that the flow ϕt is defined
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for all t we put q0(t)
def= ϕ∗−t q0(0). In terms of the Poisson bracket on the

extended phase space T ∗(Rt × X) � (t, x, τ, ξ), this means that the function
q0(t) satisfies the identity {τ + p, q0(t)} = 0. Consequently, at the quantum
level we have

[hDt + P,Opwh (q0(t)] = hR1(t), R1(t) ∈ �comp(X),

Opwh (q0(0))− Q(0) = hE1, E1 ∈ �comp(X),

and the principal symbols of R1, E1, r1, e1 ∈ C∞c (T ∗X), are independent of
h. If p1 = σ((P − Opwh (p))/h, we then solve (in the unknown q1(t)) the
equation

{τ + p, q1(t)} = r1 − {p1, q0(t)}, q1(0) = e1.

By iteration of this procedure we obtain q� ∈ C∞(T ∗X) such that

[hDt + P,
N−1∑

�=0

h jOpwh (q�(t))] = hN RN (t), RN (t) ∈ �comp(X),

N−1∑

�=1

h�Opwh (q�(0))− Q(0) = hN EN , EN ∈ �comp(X).

By a standard Borel resummation we may construct Q(t) ∈ �comp(X) such
that Q(t) ∼∑

�≥0 h jOpwh (q�(t)).
For any N > 0we can iteratively construct a sequence of auxiliary operators

Q j (t) = Q j (t)∗ ∈ �comp(X), 0 ≤ j ≤ N , satisfying

WFh(I − Q j+1(t)) ∩WFh(Q j (t)) =WFh(I − Q j (t)) ∩ ϕt (WFh(A))

=WFh(I − Q(t)) ∩WFh(Q j (t)) = ∅,
[Q j (t), hDt + P] ∈ C∞

([0, T ]; h∞�comp(X)
)
. (10.6)

(These assumptions imply that ϕt (WFh(A)) ⊂ WF(Q j (t))
⊂WF(Q j+1(t)) ⊂WF(Q(t)).)

Let v(t)
def= e−i t (P−iW )/h Au, ‖u‖L2 = 1. Our aim is to prove the following

property:

w j (t)
def= (I − Q j (t))v(t) = O(h j/2)L2, for j = 0, . . . , N , 0 ≤ t ≤ T .

(10.7)

Since A ∈ �comp, (10.2) shows that this property holds for j = 0. Let us now
prove that, if true at the level j , it then holds at the level j + 1.
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Noting that

w j+1 = (I − Q j+1)w j +O(h∞)C∞, (10.8)

we have

(hDt + P − iW )w j+1 = (I − Q j+1(t))(hDt + P − iW )w j

−i[W, Q j+1]w j +O(h∞)L2

Dividing by h/ i , taking the inner product with w j+1, taking real parts and
integrating gives

‖w j+1(t)‖2L2 − ‖w j+1(0)‖2L2 + 2

t∫

0

〈Ww j+1(s), w j+1(s)〉ds

= 2

h

t∫

0

Re〈[W, Q j+1(s)]w j (s), w j+1(s)〉ds +O(h∞), (10.9)

Now,

(I − Q j+1(s))[W, (I − Q j+1(s))] = ihB j+1(s)+ h2C j+1(s),

Bj+1(s),C j+1(s) ∈ �comp(X), Bj+1(s) = Bj+1(s)
∗.

Hence, using (10.8) and the induction hypothesis (10.7), the right hand side
of (10.9) becomes

2h

t∫

0

Re〈C j+1(s)w j (s), w j (s)〉ds +O(h∞) = O(h j+1).

Returning to (10.9) and using the non-negativity of W , we see that

‖w j+1(t)‖2L2 ≤ ‖w j+1(0)‖2L2 + Ch j+1.

Since

w j+1(0) = (I − Q j+1)Au = O(h∞)L2,

we have established (10.7) with j replaced by j + 1.
The estimate (10.4) then follows from

(I − Q(t))v(t) = (I − Q(t))w j (t)+OL2(h∞),
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the estimate (10.7) at the level j = N , and the fact that N could be taken
arbitrary large.

To see (10.5) we note that if A ∈ �comp(X) then

WFh(A) ⊂ w−1([ε1,∞) #⇒ ϕt (WFh(A)) ⊂ w−1([ε1/2,∞) for 0≤ t≤δ.
Hence, by (10.4),

WFh(v(t)) ⊂ w−1([ε1/2,∞), v(t) def= e−i t (P−iW )/h Au,
‖u‖L2 = 1, 0 ≤ t ≤ δ.

This means that we can modify W into W1, so that

σ(W1)(x, ξ) ≥ 〈ξ 〉k/C, W1 ≥ c0, for 0 < h < h0,

while we have

0 = (hDt + P − iW )v(t) = (hDt + P − iW1)v(t)+O(h∞)C∞
uniformly for 0 ≤ t ≤ δ.

Taking the imaginary part of the inner product of the above expression with
v(t) gives

h

2
∂t‖v(t)‖2L2 = −〈W1v(t), v(t)〉 +O(h∞) ≤ −c0‖v(t)‖2 +O(h∞),

and hence

‖v(t)‖2L2 = O(h∞) uniformly for δ/2 ≤ t ≤ δ.
This proves the first part of (10.5). The second part follows by taking a con-
jugate: A e−i t (P−iW )/h = (

e−i t (−P−iW )/h A∗
)∗
, and all the arguments remain

valid for P replaced by −P .  !
The next lemma is needed in Sect. 7 and follows immediately from Lemma

10.1:

Proposition 10.2 Suppose that A ∈ �comp(X) satisfies

WFh(A) ⊂ p−1((−δ, δ)) ∩ w−1([0, ε1)), (10.10)

for some ε1 > 0 and that T is independent of h.
Then there exists B ∈ �comp(X) for which (10.10) holds with B in place of

A, and

123



430 S. Nonnenmacher, M. Zworski

e−i t (P−iW )/h A= Be−i t (P−iW )/h A +O(h∞)L2→L2, 0 ≤ t ≤ T . (10.11)

Proof Using again the operator Q(t) constructed in the proof of Lemma 10.1,
we take a compact set L containing WFh(Q(t)) for all 0 ≤ t ≤ T . By taking
WFh(Q(0)) ⊂ p−1((−δ, δ)) (which is possible due the assumptions on A) we
see that we can assume L ⊂ p−1((−δ, δ)).We can now choose B ∈ �comp(X)
such that

WFh(I − B) ∩ L ∩ w−1([0, ε1/3]) = ∅,
WFh(B) ⊂ p−1((−δ, δ)) ∩ w−1([0, ε1/2).

This implies that (I−B)Q(t) = C(t), whereWFh(C(t)) ⊂ w−1([ε1/3,∞)),
and hence, by (10.4) and (10.5),

(I − B)e−i t (P−iW )/h A =(
C(t)+ (I − B)(I − Q(t)

)
e−i t (P−iW )/h A = O(h∞)L2→L2,

proving (10.11).  !
Finally we present a modification of [38, Lemma A.1]. The modification

lies in slightly different assumptions on P and W , and the proof also corrects
a mistake in the proof given in [38]. From now on we work under the extra
assumption (1.10) on the CAP.We remark that in [38] we only needed Lemma
10.1 and hence the assumption (1.10) was not required.

Proposition 10.3 Suppose that X is a compact manifold, P is a self-adjoint
operator, P ∈ �m(X), W ∈ �k(X), W ≥ 0, and that (1.9) and (1.10) hold.
Then for any t independent of h, for A ∈ �comp(X) satisfying (10.10), we may
write

eit P/he−i t (P−iW )/h A = VA(t)+O(h∞)L2→L2,

where

VA(t) ∈ �comp
γ (X), WFh(VA(t)) ⊂

⋂

0≤s≤t
(ϕ−s(w

−1(0))) ∩WFh(A),

σ (VA(t)) = exp

⎛

⎝−1

h

t∫

0

ϕ∗s Wds

⎞

⎠ σ(A). (10.12)

The class of operators �comp
γ was introduced in Sect. 3.2.

The proof is based on the following lemma inspired by the pseudodifferen-
tial approach to constructing parametrices for parabolic equations presented
in [33].
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Lemma 10.4 Suppose that t �→ p(t, z, h), p(t, •, h) ∈ C∞c (R2n;R), is a
family of functions satisfying

∂kt ∂
α
z p(t, z, h) = Ok,α(1), p ≥ −Ch, 0 < h < h0,

|∂αz p(t, z, h)| = Oα(p1−δ), 0 < δ <
1

2
. (10.13)

Then, for 0 ≤ s ≤ t there exists E(t, s) ∈ �δ(Rn) such that

(h∂t + pw(t, x, hDx , h))E(t, s) = 0, t ≥ s ≥ 0, E(s, s) = I.

Moreover, E(t, s) = ew(t, s, x, hDx , h) where e(t, s) ∈ Sδ(R2n) has an
explicit expansion given in (10.27) below.

Proof Replacing p by p+ (C+1)h, gives p ≥ h and p(t, •, h) ∈ (C+1)h+
C∞c (R2n

z ). The multiplicative factor e(C+1)(t−s) in the evolution equation is
irrelevant to our estimates.

For any N ≥ 0 we try to approximate the symbol e(t, s, x, ξ, h) by an
expansion of the form

fN (t, s, z, h)
def=

N∑

j=0

h je j (t, s, z, h). (10.14)

The symbol of the operator h∂t f wN + pw f wN can be expanded using the
standard notation aw ◦bw = (a#b)w and the product formula (see for instance
[55, Theorem 4.12]):

h∂t fN (t, s)+ [p(t)# fN (t, s)]

=
N∑

j=0

h j

⎛

⎝h∂t e j (t, s)

+
N− j−1∑

k=0

1

k!
(
1

2
ihω(Dz, Dw)

)k

p(t, z)e j (t, s, w)|z=w + hN− j rN , j

⎞

⎠

=
N∑

j=0

h j

⎛

⎝(h∂t + p(t))e j (t, s)

+
j−1∑

�=0

1

( j − �)!
(
1

2
iω(Dz, Dw)

) j−�
p(t, z)e�(t, s, w)|z=w

⎞

⎠+ hNrN (t, s, z),

rN (t, s, z)
def=

N−1∑

j=0

rN , j (t, s, z). (10.15)
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The remainders satisfy the following bounds (see for instance [43, (3.12)]):

sup
z
|∂αz rN , j (t, s, z)|

≤ Cα,N , j
∑

α1+α2=α
sup
z,w

sup
|β|≤M,β∈N4n

∣∣∣(h
1
2 ∂z,w)

β(σ (Dz, Dw))
N− j∂α1z p(z)∂α2w e j (w)

∣∣∣ .

(10.16)

The standard strategy is now to iteratively construct the symbols e j so that
each term in the above expansion vanishes. The term j = 0 simply reads
(h∂t + p)e0 = 0. From the initial condition e0(s, s) ≡ 1, it is solved by

e0(t, s, z, h) = exp

⎛

⎝−1

h

t∫

s

p(s′, z, h)ds′
⎞

⎠ . (10.17)

For j ≥ 1, the symbol e j is obtained iteratively by solving

e j (t, s, z)
def= 1

h

t∫

s

e0(t, s
′, z)q j (s

′, s, z)ds′,

e j (t, s, •) ∈ C∞c (R2n),

q j (t, s, z)
def=

−
j−1∑

�=0

1

( j − �)!
(
1

2
iω(Dz, Dw)

) j−�
p(t, z)e�(t, s, w)|z=w ∈ C∞c (R2n

z ).

(10.18)

This construction formally leads to an approximate solution:

h∂t fN (t, s, z)+ [p(t, •)# fN (t, s, •)] (z) = hNrN (t, s, z). (10.19)

To make the approximation effective, we now need to check that the sum
(10.14) is indeed an expansion in power of h. We thus need to estimate the
e j ’s and thereby the remainders rN , j ’s.

We will prove the following estimate by induction:

|∂αz e j (t, s, z)|≤Cα, j h
−2δ j−δ|α|

⎛

⎜⎝1+
⎛

⎝1

h

t∫

s

p(s′, z)ds′
⎞

⎠
2 j+|α|⎞

⎟⎠ e0(t, s, z).

(10.20)
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For that we first note that, as p ≥ h, and |∂α p| ≤ Cα p1−δ , we have

|∂α p| ≤ Cαh
−δ p. (10.21)

Consequently, for j = 0 we have

|∂αz e0(t, s, z)| ≤
∑

∑k
�=1 α�=α

k∏

�=1

⎛

⎝1

h

t∫

s

|∂α� p(s′, z)|ds′
⎞

⎠ e0(t, s, z)

≤ Cα
∑

∑k
�=1 α�=α

k∏

�=1

⎛

⎝h−δ 1
h

t∫

s

p(s′, z)ds′
⎞

⎠ e0(t, s, z)

≤ C ′
αh

−δ|α|

⎛

⎜⎝1+
⎛

⎝1

h

t∫

s

p(s′, z)ds′
⎞

⎠
|α|⎞
⎟⎠ e0(t, s, z), (10.22)

Here we used the fact that k ≤ |α| and that

Ak ≤ cα(1+ A|α|), A = 1

h

t∫

s

p(s′, z)ds′ ≥ 0.

This gives (10.20) for j = 0.
To proceed with the induction we put

a j,α(t, s, z)
def= ∂αz e j (t, s, z)/e0(t, s, z),

b j,α(t, s, z)
def= ∂αz q j (t, s, z)/e0(t, s, z),

noting that, for some coefficients, c•,

b j,α(t, s, z) =
j−1∑

�=0

∑

β1+β2=α
cβ1,β2,�, jω(Dz, Dw)

j−�∂β1z p(t, z)a�,β2(t, s, w)|z=w,

a j,α(t, s, z) = 1

h

∑

β1+β2=α
cβ1,β2, j

t∫

s

a0,β1(t, s
′, z)b j,β2(s

′, s)ds′, (10.23)

where the last equality follows from e0(t, s′, z)e0(s′, s, z) = e0(t, s, z), s ≤
s′ ≤ t .
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Our aim is to show

|b j,α(t, s, z)|≤Cα, j h
−2δ j−δ|α| p(t, z)

⎛

⎜⎝1+
⎛

⎝1

h

t∫

s

p(s′, z)ds′
⎞

⎠
2 j+|α|−1

⎞

⎟⎠ ,

(10.24)

and

|a j,α(t, s, z)| ≤ C ′
α, j h

−2δ j−δ|α|

⎛

⎜⎝1+
⎛

⎝1

h

t∫

s

p(s′, z)ds′
⎞

⎠
2 j+|α|⎞

⎟⎠ ,

(10.25)

assuming the statements are true for j replaced by smaller values.
Wenote that the case of j = 0 has been shown in (10.22), and sinceb0,α ≡ 0.
Thefirst estimate (10.24) follows immediately from the inductive hypothesis

on a�,α , 0 ≤ � ≤ j −1 and the estimates on p in (10.21). The second estimate
(10.25) follows from (10.22), (10.24) and the obvious fact that

∫ s2
s1

p(s′)ds′ ≤∫ t
s p(s′)ds′, s ≤ s1 ≤ s2 ≤ t .
We note that (10.20) and the definition of e0 given in (10.17) imply that

∂αz e j (t, s, z) = O(h−δ|α|−2δ j ), j ≥ 0.

so from (10.14) we see that the symbol fN (t, s) ∈ Sδ(R2n).
The bounds (10.16) then show that the remainders satisfy

|∂αrN (t, s, z)| ≤ CN ,αh
−2δN−δ|α|.

Going back to (10.19) we get the expression

E(t, s) = f wN (t, s, x, hDx )+ hN−1

t∫

s

E(t, s′)rwN (s′, s, x, hDx ). (10.26)

(We note that, since pw(t, x, hDx ) ≥ −Ch by the sharp Gårding inequality
[55, Theorem 4.32], and since pw is bounded on L2, the operator E(t, s) exists
and is bounded on L2, uniformly in h.) Since operators in �δ are uniformly
bounded on L2 [55, Theorem 4.23], it follows that

E(t, s) = f wN (t, s, x, hDx )+O(h(1−2δ)N )L2→L2 .
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To show that E(t, s) − ew0 (s, t, x, hDx ) ∈ �comp
δ (Rn), we use (10.26) and

Beals’s lemma in the form given in [43, Lemma 3.5, h̃ = 1]: � j are linear
functions on R

2n , �wj = �wj (x, hD), then
ad�w1 · · · ad�wJ E(s, t)

= ad�w1 · · · ad�wJ f wN (s, t, x, hDx )+ hN−1
∫ t
s ad�w1 · · · ad�wJ(

E(s, s′)rwN (s′, s, x, hDx )
)
ds′

= O(h(1−2δ)J )L2→L2 +O(h(1−2δ)N )L2→L2 = O(h(1−2δ)J )L2→L2,

if N is large enough. Here we used the fact that fN , rN ∈ Sδ and that
ad�w1 · · · ad�wJ E(s, t) = O(1)L2→L2 , which follows from considering the evo-
lutions equation for the operator on the left hand side.

In conclusion we have shown that E(t, s) = ew(t, s, x, hDx ), where e ∈
Sδ(Rn) admits the expansion

e(t, s, z, h) ∼
∑

j≥0
h je j (t, s, z, h), e j (t, s) ∈ h−2δ j Scomp

δ (R2n), j ≥ 1,

(10.27)

with e0 given by (10.17).  !
Proof of Proposition 10.3 We first observe that Lemma 10.1 (applied both

to propagators for P− iW and for P) shows that for B ∈ �comp(X) satisfying
WFh(I − B) ∩WFh(A) = ∅,

eit P/he−i t (P−iW )/h A = Beit P/he−i t (P−iW )/h A +O(h∞)L2→L2 .

We can choose B = B∗. Since

h∂t
(
Beit P/he−i t (P−iW )/h A

)
= −Beit P/hWe−i t P/heit P/he−i t (P−iW )/h A

= −
(
Beit P/hWe−i t P/h B

)

×
(
Beit P/he−i t (P−iW )/h A

)
+O(h∞)L2→L2,

it follows that

B eit P/he−i t (P−iW )/h A = V B(t)+O(h∞)L2→L2, (10.28)

where

h∂t V
B(t) = −WB(t)V

B(t), WB(t)
def= Beit P/hWe−i t P/h B. (10.29)
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We note thatWB(t) ∈ �comp(X),WFh(WB(t)) ⊂WFh(B), and thatWB(t) ≥
0. Hence V B(t) = O(1)L2→L2 and (10.28) follows from Duhamel’s formula.

By decomposing A as a sum of operators, we can assume that WFh(A) is
supported in a neighbourhood of a fiber of a point in X . Hence, by choosing B
with a sufficiently small wave front set, we only need to prove that V B(t) ∈ �δ
for X = R

n; that follows fromLemma10.4, since the symbol ofWB(t) satisfies
the assumptions (10.13). The second and third properties in (10.12) follows
from (10.5) and (10.27).  !
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