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Motivation: Why non-selfadjoint operators?

The spectral theory for selfadjoint operators on Hilbert spaces is quite con-
fortable. We have the resolvent estimate

(P =)~ = (dist(¢, o(P))) ',

and the spectral theorem also gives very good control over functions of self-
adjoint operators, so for instance if P is selfadjoint with o(P) C [Ao, +00),
then

le P < e t>0.
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Motivation: Why non-selfadjoint operators?

The spectral theory for selfadjoint operators on Hilbert spaces is quite con-
fortable. We have the resolvent estimate

(P =)~ = (dist(¢, o(P))) ',

and the spectral theorem also gives very good control over functions of self-
adjoint operators, so for instance if P is selfadjoint with o(P) C [Ao, +00),
then

le P < e t>0.

However, non-normal operators appear frequently in different problems; Scat-
tering poles, Convection-diffusion problems, Kramers-Fokker-Planck equa-
tion, damped wave equations, linearized operators in fluid dynamics. Typi-
cally, ||(P — ¢)™ || may be very large even when ( is far from the spectrum.
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The pseudo-spectrum

Let us consider the typical example
Py = —h*A+V(z), zcR%
The semiclassical pseudo-spectrum of P(h) is defined as

Alp) = {p(x,§) = & + V(x) : (z,8) € R, I(£, 0V (2)) # 0}.

Theorem (Davies, 1999; Zworski, 2001)

Suppose that V € C°(RY). Then, for any
Ce{E+V(x) : (z,6) € R®, J(£,0V (x)) # 0}, there exists (r) C L*(R?)
with the property

1P = O)nll L2 ggay = OB™) a2
Moreover, W Fy(¢r) = {(z0,&0)} for some (zo,&o) with p(xo,&0) = (.
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Idea of the proof

Take (x0,&0) € p (¢) with (€0, 0V (z0)) < 0. Then the submanifold
p~1(¢) € R?** has codimension two. The symplectic form restricted to this
submanifold is non-degenerate. One can then find a local canonical transfor-
mation k : (xo,&0) — (0,0) such that

K™ (€1 —iz1) = up,

for some smooth function u with u(zo, &) > 0, and a Fourier integral operator
T such that R
Py =T 'A(hD,, — iz1)T,

microlocally near ((zo, &0), (0,0)), where A is elliptic at (0,0). Then defining

1 _lx)?
2h

808(55) = We )

one can take ¢y = T 1oh.
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Estimates on the boundary of the pseudospectrum

Consider an operator

Py =O0p,(p), p=V+id, V,AecSYR*%R), A>o0.
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Estimates on the boundary of the pseudospectrum

Consider an operator
Py =O0p,(p), p=V+id, V,AecSYR*%R), A>o0.

Let zo € R?*® such that A(z0) =0, VA(z) = 0. Notice that {V, A}(z) = 0.
Assume the following finite-type condition:

(Xv(20),0%A(20) Xv (20)) > 0.
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= _ C
1(Ph = p(20)) Mlewey < 2370 B < ho.
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Estimates on the boundary of the pseudospectrum

Consider an operator
Py =O0p,(p), p=V+id, V,AecSYR*%R), A>o0.

Let zo € R?*® such that A(z0) =0, VA(z) = 0. Notice that {V, A}(z) = 0.
Assume the following finite-type condition:

(Xv(20),0%A(20) Xv (20)) > 0.

Theorem (Dencker, Sjostrand, Zworski, 2004)

=~ _ C
1(Ph = p(20)) Mlewey < 2370 B < ho.

Theorem (Sjostrand, 2009)

There ezists Co > 0 such that, YC1 > 0, if |p(z0) — ¢| < (C1hlog %)2/3 then

= _ C C
1B = ) e < g exb (L lotan) = G12) . 1< oo, C) >0,
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Quasimodes under finite-type dynamical conditions

Theorem (Dencker, Sjostrand, Zworski, 2004)

Let zo € R* such that {V, A}(z0) < 0. Then there exists a quasimode
(¥n,p(20)) for Pn of width O(h™) such that W Fy(¢n) = {z0}.
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Quasimodes under finite-type dynamical conditions

Theorem (Dencker, Sjostrand, Zworski, 2004)

Let zo € R* such that {V, A}(z0) < 0. Then there exists a quasimode
(¥n,p(20)) for Pn of width O(h™) such that W Fy(¢n) = {z0}.

Theorem (A.; 2020)

Let 20 € A™*(0), assume that VA(z) =0, and

<XV (Zo), 82A(2:0)XV (Zo)> > 0.

Then there exists a quasimode (Yn, Ar) for ﬁﬁ of width rr, = O(h*°) with
quasi-eigenvalue

B 1\ /3
Ar = V(20) + 0, R3¢ > B> (hlog ﬁ) ,

such that

W Fn(vn) = {20}
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Perturbations of the harmonic oscillator

Let us consider the harmonic oscillator

d
g .1
=3 Z (—h*0;, +23), h>0,

acting on L?(R%), where w = (w1, . ..,wq) € RE is called vector of frequencies.




Perturbations of the harmonic oscillator

Let us consider the harmonic oscillator

T

o 292 2
= 52 —n*03, +a3), h>0,

acting on L?(R%), where w = (w1, . ..,wq) € RE is called vector of frequencies.
We consider perturbations of the form:

Py = Hy + enVi + ihAy,
where the symbols A,V € S°(R%R) are real valued and bounded together

with all its derivatives. We assume that A > 0 and that h% < ey, < h® for
some 0 < a < 2.
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Asymptotics near the real axis

Consider sequences of (pseudo-)eigenvalues Ap = ap + ifif, such that
(an, Br) = (1,8), ash—0T,

and R
Popn = Anton + Ri,  ||¥n]|2 =1, 1)

where r;, = ||Ri|| 12 is the width of the quasimode, typically of order o(f).
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Asymptotics near the real axis

Consider sequences of (pseudo-)eigenvalues Ap = ap + ifif, such that
(an, Br) = (1,8), ash—0T,

and R
Popn = Anton + Ri,  ||¥n]|2 =1, 1)

where r;, = ||Ri|| 12 is the width of the quasimode, typically of order o(f).

If there exists a quasimode (¢r, An) for ﬁﬁ of with 75, then

~ 1
Pr—Xp) ! > —.
(P = An) " llezey = -
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Geometric control (I)

Let

d
Z §J +x3

l\')\H

For any a € C*°(R?*%), we define

T— 00

I H
@& = Jim £ [ a0 ol i
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Geometric control (I)

d
Z 53 +x3

l\')\H

For any a € C*°(R?*%), we define

T
@& = Jim £ [ a0 ol i

Proposition

Let N\, = o + ihBr be a sequence of quasi-eigenvalues for (1) with
rn = o(h). Then

Be[ min  (A)(z), max A)(z)}

(z,6)€H~ 1(1)< ( TzeH-1(1)

In particular, if (A) > ao > 0 (GC), then 8 > 0.
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Geometric control (II)

We assume that min, ¢cp-1(1)(A4)(z,£) = 0 but one still has a Weak Geo-
metric Control (WGC):

Vz=(2,6) e H'(1)N(A)"10), FHeR: (A ool (2)>0.
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Geometric control (II)

We assume that min, ¢cp-1(1)(A4)(z,£) = 0 but one still has a Weak Geo-
metric Control (WGC):

Vz=(2,6) e H'(1)N(A)10), FHeR: (A)oop!(2)>0

d=2, w=(1,1)
H(1)/St ~ §*
ag HY(1) — H71(1)/S!

———
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Some properties of the harmonic oscillator

The dimension of the minimal invariant tori by ¢ depends on the arithmetic
relations between components of the vector of frequencies w = (w1, ..., wq).

The resonant set A, = {k € Z% : k-w = 0} determines the maximal
dimension d., of the Kronecker tori reached by ¢f. Precisely,

do =d—1kA,.

In particular, in the case d., = d, conditions (GC) and (WGC) are equivalent.
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Some properties of the harmonic oscillator

The dimension of the minimal invariant tori by ¢ depends on the arithmetic
relations between components of the vector of frequencies w = (w1, ..., wq).

The resonant set A, = {k € Z% : k-w = 0} determines the maximal
dimension d., of the Kronecker tori reached by ¢f. Precisely,

do =d—1kA,.

In particular, in the case d., = d, conditions (GC) and (WGC) are equivalent.

We will say that w is partially Diophantine if

|k~w\2%, keZ'\ Ay, v>d,—1.
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Some results

Theorem (A., Riviere; 2018)

Assume (WGC) and ep, > h>.
Then, for every sequence A\, = an + thfBr satisfying (1) with
rn, <K hep,

lim inf & = +o00. (2)
h—0t Ep

As a consequence, for every R > 0, there exists dr > 0 s.t.

Im¢ < 1
h L2512 51277,5;3.

< Rep — H (P — g)”’
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Some results

Theorem (A., Riviere; 2018)

Assume (WGC) and ep, > h>.
Then, for every sequence A\, = an + thfBr satisfying (1) with
rn, <K hep,
lim inf & = +o00. (2)

h—0t €Ep

As a consequence, for every R > 0, there exists dr > 0 s.t.

1

Im¢ < .
L2512 — Orhen

R

<Ren = ||(Pi-0)7"|

Theorem (Asch, Lebeau, 2003; A., Riviere, 2018)

Let A, V be real analytic, and w partially Diophantine. Assume (WGC),
en > hand rp =0. Then

B > 0.

January 18, 2021 12 /30
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Construction of quasimodes

Question: Under the hypothesis of the second theorem, there exist quasi-
modes of width rr = o(exh) such that e, < Br — 07
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Construction of quasimodes

Question: Under the hypothesis of the second theorem, there exist quasi-
modes of width 7, = o(eph) such that e < B — 07

Theorem (A.; 2020)

Let e, = h. Assume that w is partially Diophantine, (WGC) and let To be a
minimal invariant torus for ¢ff such that (A)|7, = 0. Suppose also that

<X(V)(ZO),82<A>(ZO)X(V>(ZO)> > 07 zo € 76
Then there exists a quasimode (Y, Ar) for ﬁn of width rr, = O(h*°) with

quasi-etgenvalue

. 1)2%/3
A =1+ R8(V)(20) +ihBn, h*>7> Bn> (hlogﬁ) ,

such that

W Fr(¢n) = To.
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Strategy of proof

o We first conjugate the operator P, = Hy + hOp, (V) + ih Op,(A) into
a normal form

P! = Hy + hOp,((V)) + ih Op, ((A)) + O(h?).
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Strategy of proof

o We first conjugate the operator P, = Hy + hOp, (V) + ih Op,(A) into
a normal form

P! = Hy + hOp,((V)) + ih Op, ((A)) + O(h?).

e We next construct (following A., Macia 2020) a sequence of
eigenfunctions (¥, Ey)p, for Hy which concentrates on 7o of the form:

dH R
\I’h(m) = (ﬁ) / e ﬁt,Eﬁe 7 SOZ{{(ZO)(x)dt’
w 0

where Ep, — H(z0) =1, and

1 —le—wgl® . (,_=a
oh(x) = WE 2 ghto (e )’ 20 = (20, 60)-
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Strategy of proof

o We first conjugate the operator P, = Hy + hOp, (V) + ih Op,(A) into
a normal form

Pl = Hy 4+ hOp,((V)) 4+ ih Op,((A)) + O(h?).

e We next construct (following A., Macia 2020) a sequence of
eigenfunctions (¥, Ey)p, for Hy which concentrates on 7o of the form:

dH R
\I’h(m) = (ﬁ) / e ﬁt,Eﬁe 7 SOZ{{(ZO)(x)dt’
w 0

where Ep, — H(z0) =1, and

1 —le—=zg|® i, (. =g
o (z) = W - enbo (s ), 20 = (%o, &o)-

o We then average the eigenmode ¥y, also by the propagator of a suitable
polynomial approximation of Op,({V) + i(A)) near Ty to obtain our
quasimode .
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Propagation of wave-packets

Self-adjoint operators:
e Hagedorn (1985).
o De Bievre, Houard, Irac-Astaud (1992-1993).
Paul, Uribe (1993).
Combescure, Robert (1996).
o Eswarathasan, Nonnenmacher (2015).
A., Macia (2020).

Non-selfadjoint operators:

Graefe, Schubert (2011, 2012).

e Dietert, Keller, Troppmann (2016).
o Lasser, Schubert, Troppmann (2018).
e Pravda-Starov (2018).
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Beginning of the proof. Propagation of wave-packets

Let us consider a wave packet centered at zo = (z0,&o) and with Lagrangian
frame Zo = (Po, Qo) = (iIdg4,1d,) € C2¥x4:

det I T R DO
20, 2l(e) = SV et osoro o o)
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Beginning of the proof. Propagation of wave-packets

Let us consider a wave packet centered at zo = (z0,&o) and with Lagrangian
frame Zo = (Po, Qo) = (iIdg4,1d,) € C2¥x4:

det B PN U R
20, 2l(e) = SV et osoro o o)

itPp ~
When we apply the propagator e ® of Py to gog[Zo,zo], the center of
the wave-packet evolves approximately according to the evolution equation
(Graefe-Schubert, 2011):

4= —QVV(z) — Gy 'VA(z),
G = GiQI*V (2¢) — BV (2)QG: — B> A(ze) — G A(2:) QG

This system is well-posed for z;|t=0 = 20, Go = Id2q, 0 <t < T.

Victor Arnaiz January 18, 202 16 / 30



Evolution by quadratic Hamiltonian

We split p(z) = p2(t, z) + R(t, z), where

p2(t, z) = p(z) + (2 — 21) - Vp(ze) + %(Z — 2) - 0%p(2e) (2 — 21),

1

R(t, z) = Z |—/8"(7; - zt)ﬁ/ (1 =) DPp(z + s(z — 21))ds.
s P 0

The evolution of Hagedorn wave packets (and more generally excited states)

by the propagator of Opy,(p2(t, z)) has been characterized by Lasser, Schiibert

and Troppmann (2018). We also need to estimate the contribution of the

remainder term R(t, z).
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Hagedorn wave-packets

A matrix Z = (Q, P) € C24%4 ig called normalized Lagrangian frame if:
770z =, %Z*QZ =1d4.

If Z is a normalized Lagrangian frame, then L = range Z is a positive La-
grangian space, meaning that

L={(PQ 'z,x) : z€C}, S(PQ")>0.

With Z one can associate ladder operators:

A[Z,z]:\/%Z-Q(é—z), ANZA) = ——=Z -0 - 2).

The set of states:

1
V!

defines an orthonormal basis of L?(R%).

k12, 2)(2) = —=AL[Z, 2|w5[Z, 2| (2), k€N
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Quadratic evolution (selfadjoint case)

In the selfadjoint case the evolution of a Hagedorn excites state is determined
by the system of differential equations

4 = —QVp(2r), Zt|t=0 = 20,
S = 0p(21) Sk, So=1d.
We have:

itPy

e pk[Zo, z0)(x) = eF VL Z,, 2](2), k€N,

where Z; = S;Zy and

Ae(z0) = — /Ot (% —p(z5)> ds.
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Quadratic evolution (selfadjoint case)

In the selfadjoint case the evolution of a Hagedorn excites state is determined
by the system of differential equations

4 = —QVp(2r), Zt|t=0 = 20,
S = 0p(21) Sk, So=1d.
We have:

itPy

e pk[Zo, z0)(x) = eF VL Z,, 2](2), k€N,

where Z; = S;Zy and

Ae(z0) = — /Ot (% —p(z5)> ds.

In this case, the metric Gy, given by Gy = S;7S; ', satisfies the Ricatti
equation

G = GiQI°p(z) — 8°p(2)QG,
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Quadratic evolution (non-selfadjoint case)

Let S be the complex symplectic matrix satisfying:
Sy = Q0%p(2¢) S¢,  So = Ida,
and define
1 —1/2
Nt = (Z(Stz())*Q(StZ())) .

Theorem (Lasser, Schubert, Troppmann (2018))

e b pr[Zo,20)(z) = eRAt(o)ter Z bi(t) @l [Ze, 2], 0<t<T,
[tI<]|k]|

where Zy = St ZoN¢ is a normalized Lagrangian frame, and

Ai(z0) = ,/U (% fp(zs)> ds,

t
0t = —i/ Tr (G;162A(zs))ds.
0
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An infinite-matrix equation

We look at the equation:

ihdhen(t, @) + Papn(t, ) = 0, n(0,) = @5[Zo, 20] (). 3)
Making the ansatz
Lph(t l‘) = Z Ck(t7 h)SOZ [Zt, Zt](‘r)v
keNd

equation (3) can be viewed as an equation on the coefficients:

. ihe d

ér(t,h) = Z e + 0t +pra(t) +ra(t,h) ) alt,h), keN

leNd

The coefficients pxi(t) correspond to the quadratic part pa(t, z), while the
coefficients 7y (t, h) correspond to the remainder term R(t, z).

Victor Arnaiz
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Matrix elements

Lemma

The matriz elements pri(t) corresponding with the quadratic part satisfy
po(t) =0, VieN,

pri(t) =0, if [k—1]>2,

sup |pri(t)| < C|k|.
0<t<T

The matriz elements rii(t, h) = h™ (P} Zs, 2], Opp, (R(t)) 0l [ Zs, 24]) satisfy

sup_|rina(t, 1)) < CVR(L+ K2, Il <N

0<t<T

V‘k7k+l(t, h) =0, |l‘ > N.
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Propagation of coefficients (I)

Let us consider the Banach spaces:

BN == () : €, = 3 lele™™ < 400
keNd

Given the two evolution equations

4 et) = (i ; @t) &) + (e (D)212),

1) 2
M) e h
d iA .
@ a0 = (S 8) 0+ (uat) + rate. et
there exist propagators satisfying, for 0 < s < t < T small enough

Uj(t,s) - €Y (NY) — € (N, j=1,2.

January 18, 2021
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Propagation of the coefficients (II)

This allows us to compare the coefficients of the whole solution with those
of the quadratic evolution; by Duhamel’s principle:

t
Ui(t,s) — Us(t, s) = / Us(t, 7)(rei (7, h))UL (7, 8)dr = O(Vh).
Therefore, given &(0) := (1,0,...) € Zf,V(Nd), we obtain, for 0 <t < T,
co(t,h) = eh ™+ (1 4+ O(VR)),

er(t, ) = ko0 (Ve m ) s,
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Averaging

We define our quasimode as:

itAp

() = \/CTL/Rxﬁ(t)e*Tgoh(t,x)dt

VG Y /R (e T et b2, 2] (2)dt,

keNd
where x5, € CZ°(R) satisfies
suppxn C { —h'/® <t <K'/37%Y,
supp xh C {—h"? <t < —h*(1 =)y U{RY3(h° —¢) <t < AM/*7%Y,

and \p = V(Z()) + iﬁh.
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Normalization

We compute, for a € C°(R??):

<¢fu Opﬁ(a)wﬁ>Lz (RD)

:Cﬁ/ / X ()X () e F R IIW [on (8), ()] (2)al2)dzdtdt .
R2 ]RZd.

The cross-Wigner functions Wi [} [Ze, 2], ¢}/ [Zy/, 2] can be computed ex-
plicitely. Using a stationary-phase argument near |t —t'| = 0, and expanding
by Taylor in ¢ near ¢ = 0, we obtain the leading term:

CL h1/2 1 e +3
<wh,0ph(a)zph>L2(Rd> ~ %a(zo)/xdt)?en (2t8— < )dt,
R

where
co = <Xv(2:0)782A(Z())Xv(Z())> > 0.
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Leading term

Making the change t = h1/33, we get

Cr/Th/® 13 \2 28 se
<¢ﬁ’0pﬁ(a)wh>L2(Rd) ~ W@(zo)/Rxh (77 S) en2/37 3 (s,




With of the quasimode

N
We take Cp, := % and S, so that the above integral converges to a(zo).
We obtain

2/3
(CNhlog %) < Bn < B Ve 0.

Similarly, applying ]3;” integrating by parts in ¢, and repeating the argument,
we obtain

~ 1 _c t3
(0 P gy = Ml + o [ xhepen(treh (=) a
R

= Mnllvnl? + ORY).

Therefore, we get a quasimode of width O(A™).
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What with Hérmander-bracket-condition?

Assuming that Ao = {4, V}(20) < 0, we obtain the leading term:
172 \2 28n _5%x
/Xh (FL / s) enl/2 2 a(zo)ds.
R

Then it is sufficient to take 85 = 0 to obtain a quasimode of with O(h™).

Victor Arnaiz January 18, 2021



Thank you for your attention!
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