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Let (M, g) be a compact Riemannian manifold with boundary and
denote by −∆g the Laplace-Beltrami operator. There are Dirichlet
eigenfunctions {uj}∞j=1 ⊂ L2(M) with eigenvalues 0 < λ1 ≤ λ2 ≤ ....
satisfying: −∆guj = λ2

j uj , uj |∂M = 0 and ‖uj‖L2 = 1.

Question
Describe the set of weak limits of the probability distributions
|uj |2(x)d volg as j →∞, i.e. measures ν such that for all ϕ ∈ C∞0 (M int),
limk→∞

∫
M
ϕ|ujk |2d volg =

∫
M
ϕdν for a subsequence jk .

Physically, the uj are pure quantum states (probabilities) and we
want to describe the high energy behaviour of the uj .
Quantum-classical correspondence: properties of the geodesic flow
are related to the quantum limits.
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Examples: on the square [0, 1]2 we have eigenfunctions
ujk = 2 sin(jπx) sin(kπy). Then |ujj |2dxdxy → dxdy ,
|uj1|2dxdy → 2 sin2(πy)dxdy . On the sphere S2 ⊂ R3: (normalised)
restriction of <(x + iy)m concentrates on the geodesic z = 0.

The billiard flow Φt is defined as Φt(x , v) = (γ(t), γ̇(t)), where
γ(0) = x , γ̇(t) = v is geodesic. At the boundary Φt respects the law
of refection. If ∂M piecewise smooth, defined on a set of full
(Liouville) measure of the phase space of unit vectors
SM = {(x , v) ∈ TM : |v |x = 1}.

Theorem (Quantum Ergodicity)

If the billiard flow is ergodic, then there a density one set S ⊂ N such that
{uj}j∈S converges weakly to the uniform measure (i.e. equidistributes).

Proved by: Gérard-Leichtnam (1993), Zelditch-Zworski (1995) in the
boundary case; Shnirelman (1974), Colin de Verdière (1985) and
Zelditch (1987) in the closed case.
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Quantum unique ergodicity conjecture (Rudnick-Sarnak): if (M, g)

has negative curvature, then all eigenfunctions equidistribute. known
for arithmetic surfaces (Lindenstrauss 2006). Recent significant
progress by Dyatlov-Jin-Nonnenmacher: if (M, g) is a negatively
curved surface, then weak limits have full support.

Hassell-Hillairet (2010): the Bunimovich stadium (ergodic) admits a
sequence of eigenfunctions that does not equidistribute, i.e. scarring
happens.

Mechanisms to obtain lower bounds on eigenfunctions: unique
continuation (depends on the eigenvalue) and geometric control.
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Assume M = P ⊂ Rn is a convex polyhedron. Denote by S ⊂ ∂P the set
of singularities of ∂P, i.e. the (n − 2)-skeleton of the boundary.

Theorem (C-Georgiev-Mukherjee 2020)

If U ⊂ P is an open set containing S, then there is a constant c(U) > 0
such that for all j ∈ N ∫

U

|uj |2dx ≥ c(U).

Figure: The singular set S and its neighbourhood U.
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Remarks:
First result for n > 2. Works also for Neumann eigenfunctions.
Dependence of c(U) on the size (width) of U not known.
U does not satisfy the geometric control condition.
Argument works also for billiards containing “periodic tubes”.

Previous results:
Burq-Zworski (2004, 2005): there is no concentration in the interior
rectangle of the Bunimovich stadium (and more).
Marzuola (2006): partially rectangular billiards.
Hillairet, Hasell, Marzuola (2008): prove the theorem for n = 2.
Marklof-Rudnick (2011): density 1 result for rational polygons.

Plan for the rest of the talk: study closed orbits of the billiard flow
on polyhedra and prove some control estimates.
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Consider (M, g) as before. Define hj := λ−1
j , so that

(−h2
j ∆g − 1)uj = 0.

For a ∈ C∞0 (T ∗M int) compactly supported in the cotangent space
of the interior of M, we may quantise it to Oph(a) = a(x , hD),
where D = −i∂ formally replaces ξ: a(x , hD) = F−1a(x , hξ)F.

Definition (Semiclassical Measure)

A measure µ on T ∗M int is called a semiclassical measure if there is a
subsequence {ujk}∞k=1, such that for all a ∈ C∞0 (T ∗M int)

〈Ophjk
(a)ujk , ujk 〉L2 →k→∞

∫
T∗M

adµ.

Microlocal limits or weak limits in phase space.
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Properties of semiclassical measures (at least when ∂M = ∅):
1. Existence (compactness).
2. suppµ ⊂ S∗M = {(x , ξ) ∈ T ∗M : |ξ| = 1} (ellipticity).
3. µ is invariant under the geodesic/billiard flow (propagation).

If a(x , ξ) = a(x), then we get
∫
M
a|ujk |2d volg →

∫
M
aπ∗dµ.

More precise versions of QE available in terms of semiclassical
measures: describe the set of all semiclassical measures associated
to {uj}∞j=1.
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Let P ⊂ Rn be a convex polyhedron. Set Γ := ∂P, TΓ := all inward
pointing unit tangent vectors and

TΓ1 := {x ∈ TΓ : the forward orbit of x never hits S}.

Then TΓ1 ⊂ TΓ has full measure and the first return map
f : TΓ1 → TΓ1 is well-defined.

Enumerate faces of P by 1, . . . , `. Obtain symbolic dynamics:
x ∈ TΓ1 =⇒ string w(x) in Σ+

` = {1, . . . , `}N. Set Σ+
P := all

possible strings; X (w) := {x ∈ TΓ1 : w(x) = w}.
Properties:

w(x) = w(y) =⇒ x and y are parallel.
X (w) is convex and y ∈ ∂X (w) comes arbitrarily close to S.
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A billiard trajectory γ defines an unfolding or corridor:
P∞ = P0,P1, . . . ,Pm, . . . obtained by reflecting in faces along γ.

σ := reflection in Rn. Define the double D := P t σP/ ∼ identifying
the points on ∂P. D0 := D \ S has a Euclidean structure.

Let U ⊂ Rn and F : U × R→ D0 a local isometry. A tube is the
image F (U × R) and U is its cross-section. A periodic tube satisfies
F (x , t +L) = F (Rx , t) for all x ∈ U, some R ∈ O(n− 1) and L > 0.
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Figure: Left: equilateral triangle and the periodic tube around the central orbit. Right:
Conway loop in a regular tetrahedron (central triangle has side length 1/10).

Periodic orbits can be “thickened” to periodic tubes.

The Conway loop corresponds to an irrational rotation and is stable
under perturbation (by the work of N. Bedaride).
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Theorem (Galperin-Krüger-Troubetzkoy)

Let w ∈ Σ+
P . Then:

1 If w is periodic with minimal period k , there exists x(w) ∈ X (w) so
that x(w) is periodic with minimal period k . The set X (w)

generates a periodic tube with a convex cross-section Ω ⊂ Rn−1 and
an associated isometry R0 ∈ O(n − 1) fixing Ω.

2 If w ∈ Σ+
P is non-periodic, then the closure of a trajectory generated

by x ∈ X (w) intersects the singular set S.

For the first part: look at the unfolding and apply the Brower’s fixed
point theorem to the convex set X (w).

Second part: more subtle, argue by contradiction.
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Extend uj to an eigenfunction on D0 by setting uj := −uj ◦ σ on σP.

Contradiction argument: assume (up to subsequence)

lim
j→∞

∫
U

|uj |2dx = 0.

Then, ∃ a semiclassical measure µ on T ∗D0 (item 1), such that
suppµ ⊂ S∗D0 (item 2) and µ invariant under geodesic flow (item
3).

It can be shown that: µ = 0 on S∗U0, where U0 := U \ S and µ is
a probability measure (by ellipticity). Then by flow invariance

µ = 0 on ∪t∈R Φt(S
∗U0).

GKT theorem =⇒ if (x , ξ) ∈ supp(µ), then the symbol generated
by (x , ξ) is periodic and its trajectory belongs to a periodic tube.
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Let F : Ω× R→ D0 be a periodic tube of length L and isometry
R ∈ O(n). Claim: singular points are uniformly recurrent:

Lemma

Denote by π1 : Rn−1 × R→ Rn−1 the projection. For every ε > 0, there
is an L(ε) > 0 depending on T , such that for every t ∈ R

π1

(
F−1(S) ∩ ∂Ω× [t, t + L(ε)]

)
is ε-dense in ∂Ω.

Step 1: show that π1
(
F−1(S)

)
= ∂Ω. Compactness + observation

about maximal tubes.

Step 2: use that R is an isometry and F (Ω× R) periodic.
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We say that U satisfies the finite tube condition, if there exist
periodic tubes T1, . . . ,TN such that any orbit avoiding U belongs
to some Ti .

Theorem (C-Georgiev-Mukherjee)

Any neighbourhood U of S satisfies the finite tube condition.

Proof: if not, take distinct tubes T1,T2, . . . generated by x1, x2, . . . .
Extract a limiting periodic tube T generated by x , xi → x .

By the previous lemma, singular points occur uniformly often. This
means that the unfolded tube T∞i will contain some of these points,
contradiction.

Possible to get a quantitative estimate relating lengths, rotations
and the number of these periodic tubes.
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To obtain a contradiction, need two estimates.

Say a subset A ⊂ (M, g) satisfies satisfies the geometric control
condition (GCC) if every geodesic in M hits A in finite time. If a
neighbourhood ω of ∂M satisfies the GCC, then there is a
C = C (gx , ω) > 0, such that for any s ∈ R and any v satisfying

(−∆g − s)v = g , v |∂M = 0,

with v ∈ H1
0 (M) and g ∈ H−1(M), we have the apriori estimate

‖v‖L2(M) ≤ C (‖g‖H−1(M) + ‖v |ω‖L2(ω)).

Proof of this fact: for bounded s < −ε integrate by parts; for s
bounded use the unique continuation principle and elliptic estimates
(i.e. the case ω = M). For large s argue by contradiction using
semiclassical measures.
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Theorem (C-Georgiev-Mukherjee)

Let ϕ : M → M be an isometry. Assume that
u ∈ H1

loc(M × R) ∩ C (R,H1(M)), such that u(x , t + L) = u(ϕ(x), t) for
all (x , t) ∈ M × R, for some L > 0. Define
Cϕ := M × [0, L]/(x , L) ∼ (ϕ(x), 0) to be the mapping torus determined
by ϕ, with the inherited Riemannian metric from M × R. Assume u

satisfies, for some s ∈ R

(−∆g − ∂2
t − s)u = f on M × R, u|∂M×R = 0,

where f ∈ H−1
loc (M × R) ∩ C (R,H−1(M)). Let ω ⊂ M be an open

neighbourhood of the boundary satisfying (GCC) and assume ω invariant
under ϕ. Denote the mapping torus over ω by ωϕ. Then there exists a
constant C = C (M, g , ω) > 0, such that the following observability
estimate holds:

‖u‖L2(Cϕ) ≤ C (‖f ‖H−1
x L2

t (Cϕ) + ‖u|ωϕ‖L2(ωϕ)).
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We prove this in the easy case first: ϕ = id. Then Cϕ = M × S1. Using
Fourier expansion in the circle ek(t) = 1√

2π
e itk :

u(x , t) =
∑
k∈Z

uk(x)ek(t), f (x , t) =
∑
k∈Z

fk(x)ek(t).

Then the equation becomes, for k ∈ Z:

(−∆g − (s − k2))uk(x) = fk(x).

Use Parseval’s identity and apply the control estimate for each k :

‖u‖2L2(M×S1) =
∑
k∈Z
‖uk‖2L2(M) ≤ C

(∑
k∈Z
‖fk‖2H−1(M) +

∑
k∈Z
‖uk |ω‖2L2(ω)

)
= C

(
‖f ‖2

H−1
x L2

t (M)
+ ‖u|ω×S1‖2L2(ω×S1)

)
.
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For the general case, use the same idea and some theory of almost
periodic functions. Studied by H. Bohr (1920). These are functions
f : R→ X to a Banach space, uniformly approximated by
trigonometric polynomials. If M(f ) = limT→∞

1
2T

∫ T

−T f (t)dt, the
the Fourier-Bohr transform is defined as:

a(λ; f ) := lim
T→∞

1
2T

∫ T

−T
f (t)e−iλtdt = M{f (t)e−iλt}.

Then there are countably many λk with ak = a(λk ; f ) 6= 0, and

f (t) ∼
∞∑
k=1

ake
iλk t .

A modified Parseval’s identity holds: M(‖f ‖2) =
∑
|ak |2.

Using that ϕ is an isometry, possible to show that
R 3 t 7→ u(t, •) ∈ H1

0 (M) ⊂ L2(M) is almost periodic.
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Assume U is the ε-neighbourhood of the singular set S. Recall: µ a
semiclassical (probability) measure on S∗D0, µ = 0 on S∗U0, and µ
supported on periodic directions. Let (x0, ξ0) ∈ suppµ generate a
periodic tube F : Ω× R→ D0, of length L and rotation R.

Pullback un and µ to T = Ω× R; these are invariant under
(x , t) 7→ (Rx , t + L). Define Ωr := the complement of
r -neighbourhood of ∂Ω.

By the Lemma, ∃ a symbol a(ξ) such that: a(ξ) supported in a
small cone Υ ⊂ Rn \ 0 around dt; all lines in the direction of Υ with
basepoint x ∈ Ωε/2−η \ Ωε/2+η hit F−1(Uε) in finite time; a = 1
near dt and a ◦R = a. Set Φn := Ophn(a).

Set wn := Φn(χun) ∈ C∞(CR). Apply the main estimate to:

(−∆Ω − ∂2
t − λ2

n)wn = −Φn((∆χ)un)− 2Φn(∇xχ · ∇xun).

=⇒ a2χ2µ = 0 =⇒ µ ≡ 0 near (x0, ξ0), contradiction.
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T

Ω

Ω ε
2 −η

Ω ε
2 +η

Ω ε
2Ωεχ = 1

χ = 0

L

µ = 0s

(p0, z0)

Υ

Figure: The periodic tube T of length L with disc cross-section Ω, point
(p0, z0) ∈ ∂Ω ε

2
, corresponding regions Ω ε

2 ±η , singular point s ∈ S and cone Υ. In
orange is the set where µ = 0.
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Which estimates are available on c(U) depending on U? Eg. if U is
an ε-neighbourhood of S, is it a function of ε?

What if P is non-convex?
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Thank you for your attention!
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