Eigenvalue spacings for 1D singular Schrodinger
operators

Luc Hillairet (Université d'Orléans)

Séminaire tournant, 2021

Joint work with J. Marzuola (UNC)



A general question

Consider a (self-adjoint) 1D semiclassical Schrodinger operator

Pyu = —h*u” + V(x)u, and E € spec Py,

dn(E) < inf{|E — E|, E € spec Py, E +# E}.

Q : Lower bounds on dp(E) ? uniform within a subset
Q C (0,400) x R of pairs (h,E)?

Old question, some regimes are well-known and can be extracted
from the literature on Sturm-Liouville problems and then
semiclassical analysis (Titchmarsch, Olver, Hérmander, Maslov ....
Helffer-Robert, Dimassi-Sjostrand, Zworski ....).



Non-critical energies

On the half-line [0, 400), Dir./Neu. b.c. at 0.
We set Q =]0, ho] x [a,b], 0 < ag < a < b < by and make the
following assumptions on V.
The potential V' is smooth, non-negative, V(0) =0,
liminfio V(x) > bo.
30" >0, Vx >0, V(x) € [ag, b)] = V'(x) =0



Spacing at non-critical energies

There exists hg,c > 0 such that

Vh < hg, VE € spec Py
(h,E)eQ = dy(E)>=c-h.

> Energy surface is connected (no tunnel effect).

> Q : uniformity of the constant c with respect to V' ?



Bottom of the well

On the half-line [0, 400), Dir./Neu. b.c. at 0. Assume
There exist a smooth W and v > 0 such that
V(x) = xYW(x), x > 0.
W is positive on [0, +00) and liminfi o V(x) > 0.
Fix M > 0 and set

Q% {(hE), h< hy, E<M-hi2},
Then there exists c, hg > 0 such that
Vh < hg, VE € spec Py,
(hE)eQ = dy(E)>c-ho.

Idea of proof : use a h dependent scaling.
(See Friedlander-Solomyak for a related result)



Some questions

> What about non-critical energies for singular potentials ?
» What about the intermediate regime ? Estimate dp(Ej) if

2
Ey =0, h 32E, = +oo.

» What about potentials of the form x — x7W/(x) on the
half-line [—-B, 4+00) ? This question is related to the adiabatic
Ansatz in a stadium billiard.



Uniform spacing

Theorem

Assume that v > 0 and W is smooth and positive on [0, +00). Let
V = x?W and P}, the Dirichlet or Neumann realization of —h%u"+V
on [0,400). If liminfy_ o V(x) > 0, there exist ¢, hg,c > 0 such
that

For all h < hg, spec P, N [0, €] is purely discrete,
For any h < ho and any E in spec P, N[0, ¢],

d(E) > ch-E= .
The proof follows from
> the spacing of order h at non-critical energies, uniformly w.r.t.
w,
> The bottom of the well computation,

> A contradiction argument.



Comments

—2
Uniform spacing : dn(E) > ch- E% .

P> The estimate is coherent with the non-critical energies and
the bottom of the well.

E, of order 1 = dy(Ep) of order h,

2 —2 2
En of order h72 =  dj(Ep) of order h*T372 = hvis.

> If v = 2 then the spacing is everywhere of order h. This is
coherent with the harmonic oscillator computation.



Comments

> Compared to h the spacing between low lying eigenvalues is
large if v < 2 and small if v > 2.

> We also prove Bohr-Sommerfeld rules for singular potentials
on a half-line (will be needed for the gluing case).

Other related works in the semiclassical literature :

» Semi-excited states (using Birkhoff Normal form techniques,
starting with Sjostrand).

» Diffraction by conormal potential (Gannot-Wunsch).

» Anharmonic oscillator (Voros)



Dealing with the intermediate regime

Choose a sequence (Ep, up)p=0 in the intermediate regime :
_ 2y
E, — 0, h +2E, — 4o0.

and perform a E-dependent scaling : V(+) = ﬁh(E%.)_

—hil 4+ (XYW(x)— E)iip= 0 —

2 _1_g~” : Ep\ .
—hE," "0 + (ZW(E) z) — E)v,, = 0.
h

1
» W(E, -) converges to the constant function W(0) (uniformly

on every compact set),

24y
def
> h < hE >’ tends to 0. New semiclassical parameter.



—P2U + (D Wh(z) — =10 = 0
Ep
En
Fh 1.

We now work near the energy 1 which is non-critical. Spacing of
order h at non-critical energies + uniformity w.r.t. potential will

imply .
E; - ~ =2
|E—1‘ >ch = |Ep—Ep| > ch-E™

h



Spacing of order h : a general strategy

For any h > 0, there is a unique function Gp(-; E) such that
(Pn—E)Gh(-; E) =0
[ 6t e =1
OVX > ¢, Gp(x; E) > 0.

The spacing is obtained by showing that if [Ej — Ep| = o(h) then
Gh(-; En) and Gp(-; Ep) cannot be orthogonal.



Spacing of order h : classical tools

> (Non-)concentration estimates, semiclassical measures.
> Exponential estimates in the classically not-allowed region.
> WKB expansions in classically allowed region.

P Dealing with the turning point : Maslov Ansatz, Airy
approximations.
Revisit these techniques to gain uniformity w.r.t. the energy and
the potential.



Global assumptions

We fix v > 0,0 < b < ¢ < d, K a compact set in C*([0, d])
equipped with its Fréchet topology and K a compact set in
(0, 4+00). We denote by V the set of potentials such that

> There exists W smooth and positive on [0, c0) such that
Vx >0, V(x)=x"W(x).

> Vx >d, V(x) > V(d).

» Vx € (0,d], V'(x)>0.

» The restriction of W to [0, d] belongs to K.

> The following estimates hold

V(V,E) eV x K, ¥x €[0,b], E—V(x) > 0.
Y(V,E) eV x K, ¥x € [¢,d], V(x)— E > 0.



Uniform bounds

For any (V,E) € V x K, the assumptions imply

>

| 2

There is a unique solution xg to the equation V(xg) = E (the
turning point).

[0, b] is in the classically allowed region and (E — V) is
uniformly bounded below on it.

[c, +00) is in the classically not allowed region.

The turning point xg always belong to [b, c|. Since, on [b, ],
V' is uniformly bounded below, it is non-degenerate.

Finally, for any £, W is, uniformly on [0, d], bounded above
by some (.

If v is an integer, W can be replaced by V() in the latter
statement.



Semiclassical measures for families of potential

Let (Vh, Ep)r>0 be a family in V x K, then up to extracting a
subsequence, there exists (Vo, Eg) and a measure p such that for
any smooth function with compact support in (0, d) x R,

(Oph(a) G, Gn) —>/a(x,§) dp.

Then the semiclassical measure is supported by
{€2 + Vo(x) = Ep} and is invariant under the hamiltonian flow.

Moral : The estimates that are obtained using semiclassical
measures and the standard contradiction argument are uniform
when the potential varies in a compact set.



Sketch of Proof of the invariance

We first extract a subsequence so that W}, converges in C*°([0, d])
to Wp, and Ej, to Ey.

2 (0p4({po: 21) G Gr) = {[Po, Op4(3)] G Gl

= ([Ph, Op4(a)]Gh, Gp)
+ ([Vh — Vo, Opx(a)]Gh, G)

= ?(Oph({Vh — Vo, a})Gp, Gp).

We now use the fact that the norm of a pseudodifferential operator
on L? depends on the uniform norm of a finite number of
derivatives of the symbol and that {V}, — Vg, a} and all its
derivatives converge uniformly to 0 on the support of a.

> In dimension 1, u is thus determined up to a factor. This gives
a way to address the turning point.



Dealing with the turning point

Lemma

Ve >0, In,ho >0VY(V,E) eV x K, Vh < hy,

XE+n b
/ |Gh(x; E)?dx < 5/ |Gh(x; E)? dx.
XE—1 0

Sketch of proof : take a cutoff that is localized near the turning
point and use the invariance to relate it to a cutoff in the
classically allowed region.

> It can also be proved using Airy approximation near the
turning point (e.g. Yafaev '11).

> Using this estimate, we are able to compute
(Gh(-, E), Gp(+, E)) by looking only in the classically allowed
region where we have standard WKB expansions.




Uniform spacing for smooth potential

> Perform WKB expansion on [0, xg — 7].
> Prove that any solution admits such a WKB expansion, and
thus also Gp(-; E). (still 2 degrees of freedom).

> Reduce to 1 degree of freedom by using the Maslov Ansatz
and a Wronskian argument to pass above the turning point.

Jep # 0, Vx € [0,xg — 1),
Gn(x; E) =

ch(E — V(x))*% cos H /X+oo

(E~V()idy — 5| + O(h)



P This yields the estimate

- E-E
¢ tG(x; h)—E1G(x; E) = O(T) + O(h).
> Estimate ¢, by the mass and compute the needed scalar
product
> It follows that this scalar product cannot be 0 when # is
too small.



For non-integer ~

We need to make sure that all the mass does not concentrate at

the origin. We will match the WKB expansion to a boundary layer
near 0.

Recall the WKB Ansatz on I, = [ap, b] :

un(x )Nexp( 5 (x)) > A AL(x).

k=0
The method leads to
» The eikonal equation :

Vx € Iy, S'(x)* = E - V(x).
P The homogeneous transport equation :
Vx € Ip, 25'(x)Ag(x) + S"(x)Ao(x) = 0.
> The inhomogeneous transport equations :

Vk >0, 25'Al 1 + S"Aks = AL



Estimates for WKB

The eikonal and the transport equations can be solved on I
because E — V is positive on I,. We choose the following solution :

Vx € Ip,

S'(x) = VE = V(x),

Ao(x) = [S'(3)] 77 = [E— V(x| 7,

Yk >0, Aia(x) = 5 Ao(x)- / ") Aoly) dy.

We see that for large k, Ax will involve high order derivatives of Ag
that blow-up when x goes to 0. We need to track this behaviour in
the construction to determine « such that WKB approximation
holds on [h“, b]



Generalized Taylor expansions

Let A be a discrete set of exponents. We consider the smooth
functions on (0, b] that admits, near 0 an asymptotic expansion

E EN'S

acA
We prove that for any k, /, As(e) admits such an expansion with

Ako = {my+n—k, m>1n>0}U{0}
Ae ={my+n—k—¢, m>1,n=>0}, (>1.

It follows that WKB expansions hold on [h“, b] for any o < 1.



The matching region

On [0, h?], we solve
—hu] + (XTW(x) = E)up, = 0,

by treating the term x7W/(x)up, as a inhomogeneous term.
Applying the variation of constants leads to a system of equations
that can be solved by a Banach-Picard iteration scheme provided

that 1
> —F.
& v+1
> f 5> ﬁ and B < a < 1 then the intervals [0, A°] and

[h®, b] overlap.



Performing the matching

We can implement the Banach-Picard iteration scheme and
understand how the Cauchy data at 0 and at h® are related. Using
WKB, we understand how the Cauchy data at h™ and at b are
related.

The Cauchy data at b is well understood using the Maslov Ansatz
that allows to go beyond the turning point.

In the end, we are able to write an asymptotic expansion for the
Cauchy data at 0 of Gp(-; E).

> We can then estimate the mass near 0 and obtain the spacing
by the same method as above.

> We can also write down Bohr-Sommerfeld rules for singular
potentials on the half-line [0, +00).



The Gluing problem

» When the halfline is [-B, +00) then we have to write a
collinearity equation for the Cauchy data at 0 of the function
G(-; E) that we have constructed on [0, +00) and the explicit
solution on [—B, 0].

> New regimes appear. E.g. for the potential Xer there are
eigenvalues of order h?, whereas on [0, +-00), the lowest
energy is of order h.



