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A general question

Consider a (self-adjoint) 1D semiclassical Schrödinger operator

Phu = −h2u′′ + V (x)u, and E ∈ specPh.

dh(E )
def
= inf{|E − Ẽ |, Ẽ ∈ specPh, Ẽ 6= E}.

Q : Lower bounds on dh(E ) ? uniform within a subset
Ω ⊂ (0,+∞)× R of pairs (h,E ) ?

Old question, some regimes are well-known and can be extracted
from the literature on Sturm-Liouville problems and then
semiclassical analysis (Titchmarsch, Olver, Hörmander, Maslov ....
Helffer-Robert, Dimassi-Sjöstrand, Zworski ....).



Non-critical energies

On the half-line [0,+∞), Dir./Neu. b.c. at 0.
We set Ω =]0, h0]× [a, b], 0 < a0 < a < b < b0 and make the
following assumptions on V .

1 The potential V is smooth, non-negative, V (0) = 0,
lim inf+∞ V (x) > b0.

2 ∃δ′ > 0, ∀x > 0, V (x) ∈ [a0, b0] =⇒ V ′(x) > δ′.



Spacing at non-critical energies

There exists h0, c > 0 such that

∀h 6 h0, ∀E ∈ specPh

(h,E ) ∈ Ω =⇒ dh(E ) > c · h.

I Energy surface is connected (no tunnel effect).

I Q : uniformity of the constant c with respect to V ?



Bottom of the well

On the half-line [0,+∞), Dir./Neu. b.c. at 0. Assume

1 There exist a smooth W and γ > 0 such that
V (x) = xγW (x), x > 0.

2 W is positive on [0,+∞) and lim inf+∞ V (x) > 0.

Fix M > 0 and set

Ω
def
=
{(

h,E ), h 6 h0, E 6 M · h
2γ
γ+2 }.

Then there exists c, h0 > 0 such that

∀h 6 h0, ∀E ∈ specPh

(h,E ) ∈ Ω =⇒ dh(E ) > c · h
2γ
γ+2 .

Idea of proof : use a h dependent scaling.
(See Friedlander-Solomyak for a related result)



Some questions

I What about non-critical energies for singular potentials ?

I What about the intermediate regime ? Estimate dh(Eh) if

Eh → 0, h−
2γ
γ+2Eh → +∞.

I What about potentials of the form x 7→ xγW (x) on the
half-line [−B,+∞) ? This question is related to the adiabatic
Ansatz in a stadium billiard.



Uniform spacing

Theorem

Assume that γ > 0 and W is smooth and positive on [0,+∞). Let
V = xγW and Ph the Dirichlet or Neumann realization of−h2u′′+V
on [0,+∞). If lim infx→+∞ V (x) > 0, there exist ε, h0, c > 0 such
that

1 For all h 6 h0, specPh ∩ [0, ε] is purely discrete,

2 For any h 6 h0 and any E in specPh ∩ [0, ε],

dh(E ) > ch · E
γ−2
2γ .

The proof follows from

I the spacing of order h at non-critical energies, uniformly w.r.t.
W ,

I The bottom of the well computation,

I A contradiction argument.



Comments

Uniform spacing : dh(E ) > ch · E
γ−2
2γ .

I The estimate is coherent with the non-critical energies and
the bottom of the well.

Eh of order 1 =⇒ dh(Eh) of order h,

Eh of order h
2γ
γ+2 =⇒ dh(Eh) of order h1+

γ−2
γ+2 = h

2γ
γ+2 .

I If γ = 2 then the spacing is everywhere of order h. This is
coherent with the harmonic oscillator computation.



Comments

I Compared to h the spacing between low lying eigenvalues is
large if γ < 2 and small if γ > 2.

I We also prove Bohr-Sommerfeld rules for singular potentials
on a half-line (will be needed for the gluing case).

Other related works in the semiclassical literature :

I Semi-excited states (using Birkhoff Normal form techniques,
starting with Sjöstrand).

I Diffraction by conormal potential (Gannot-Wunsch).

I Anharmonic oscillator (Voros)



Dealing with the intermediate regime

Choose a sequence (Eh, uh)h>0 in the intermediate regime :

Eh → 0, h−
2γ
γ+2Eh → +∞.

and perform a E -dependent scaling : ṽh(·) = ũh(E
1
γ ·).

−h2ũ′′h + (xγW (x)− Ẽ )ũh = 0 ⇐⇒

−h2E
−1− 2

γ

h ṽ ′′h +
(
zγW (E

1
γ

h z)− Ẽh

Eh

)
ṽh = 0.

I W (E
1
γ

h ·) converges to the constant function W (0) (uniformly
on every compact set),

I h̄
def
= hE

− 2+γ
2γ

h tends to 0. New semiclassical parameter.



−h̄2ṽ ′′h + (zγW̃h(z)− Ẽh

Eh
)ṽh = 0.

Ẽh

Eh
−→ 1.

We now work near the energy 1 which is non-critical. Spacing of
order h at non-critical energies + uniformity w.r.t. potential will
imply ∣∣ Ẽh

Eh
− 1
∣∣ > ch̄ =⇒ |Ẽh − Eh| > ch · E

γ−2
2γ



Spacing of order h : a general strategy

For any h > 0, there is a unique function Gh(· ; E ) such that

(Ph − E )Gh(· ; E ) = 0∫ +∞

0
|Gh(x ; E )|2 dx = 1,

∀x > c , Gh(x ; E ) > 0.

The spacing is obtained by showing that if |Eh − Ẽh| = o(h) then
Gh(· ; Eh) and Gh(· ; Ẽh) cannot be orthogonal.



Spacing of order h : classical tools

I (Non-)concentration estimates, semiclassical measures.

I Exponential estimates in the classically not-allowed region.

I WKB expansions in classically allowed region.

I Dealing with the turning point : Maslov Ansatz, Airy
approximations.

Revisit these techniques to gain uniformity w.r.t. the energy and
the potential.



Global assumptions

We fix γ > 0, 0 < b < c < d , K a compact set in C∞([0, d ])
equipped with its Fréchet topology and K a compact set in
(0,+∞). We denote by V the set of potentials such that

I There exists W smooth and positive on [0,∞) such that
∀x > 0, V (x) = xγW (x).

I ∀x > d , V (x) > V (d).

I ∀x ∈ (0, d ], V ′(x) > 0.

I The restriction of W to [0, d ] belongs to K.

I The following estimates hold

∀(V ,E ) ∈ V × K , ∀x ∈ [0, b], E − V (x) > 0.

∀(V ,E ) ∈ V × K , ∀x ∈ [c , d ], V (x)− E > 0.



Uniform bounds

For any (V ,E ) ∈ V × K , the assumptions imply

I There is a unique solution xE to the equation V (xE ) = E (the
turning point).

I [0, b] is in the classically allowed region and (E − V ) is
uniformly bounded below on it.

I [c ,+∞) is in the classically not allowed region.

I The turning point xE always belong to [b, c]. Since, on [b, c],
V ′ is uniformly bounded below, it is non-degenerate.

I Finally, for any `, W (`) is, uniformly on [0, d ], bounded above
by some C`.

I If γ is an integer, W (`) can be replaced by V (`) in the latter
statement.



Semiclassical measures for families of potential

Let (Vh,Eh)h>0 be a family in V × K , then up to extracting a
subsequence, there exists (V0,E0) and a measure µ such that for
any smooth function with compact support in (0, d)× R,

〈Oph(a)Gh,Gh〉 →
∫

a(x , ξ) dµ.

Then the semiclassical measure is supported by
{ξ2 + V0(x) = E0} and is invariant under the hamiltonian flow.

Moral : The estimates that are obtained using semiclassical
measures and the standard contradiction argument are uniform
when the potential varies in a compact set.



Sketch of Proof of the invariance

We first extract a subsequence so that Wh converges in C∞([0, d ])
to W0, and Eh to E0.

h

i
〈Oph({p0, a})Gh,Gh〉 = 〈[P0,Oph(a)]Gh,Gh〉

= 〈[Ph,Oph(a)]Gh,Gh〉
+ 〈[Vh − V0,Oph(a)]Gh,Gh〉

=
h

i
〈Oph({Vh − V0, a})Gh,Gh〉.

We now use the fact that the norm of a pseudodifferential operator
on L2 depends on the uniform norm of a finite number of
derivatives of the symbol and that {Vh − V0, a} and all its
derivatives converge uniformly to 0 on the support of a.

I In dimension 1, µ is thus determined up to a factor. This gives
a way to address the turning point.



Dealing with the turning point

Lemma

∀ε > 0, ∃η, h0 > 0 ∀(V ,E ) ∈ V × K , ∀h 6 h0,∫ xE+η

xE−η
|Gh(x ; E )|2 dx 6 ε

∫ b

0
|Gh(x ; E )|2 dx .

Sketch of proof : take a cutoff that is localized near the turning
point and use the invariance to relate it to a cutoff in the
classically allowed region.

I It can also be proved using Airy approximation near the
turning point (e.g. Yafaev ’11).

I Using this estimate, we are able to compute
〈Gh(·, E ),Gh(·, Ẽ )〉 by looking only in the classically allowed
region where we have standard WKB expansions.



Uniform spacing for smooth potential

I Perform WKB expansion on [0, xE − η].

I Prove that any solution admits such a WKB expansion, and
thus also Gh(· ; E ). (still 2 degrees of freedom).

I Reduce to 1 degree of freedom by using the Maslov Ansatz
and a Wronskian argument to pass above the turning point.

∃ch 6= 0, ∀x ∈ [0, xE − η],

Gh(x ; E ) =

ch(E − V (x))−
1
4 cos

[
1

h

∫ +∞

x
(E − V (y))

1
2
+dy −

π

4

]
+ O(h)



I This yields the estimate

c−1h G (x ; h)− c̃−1h G (x ; Ẽ ) = O(
E − Ẽ

h
) + O(h).

I Estimate ch by the mass and compute the needed scalar
product

I It follows that this scalar product cannot be 0 when E−Ẽ
h is

too small.



For non-integer γ

We need to make sure that all the mass does not concentrate at
the origin. We will match the WKB expansion to a boundary layer
near 0.
Recall the WKB Ansatz on Ih = [ah, b] :

uh(x) ∼ exp(
i

h
S(x))

∑
k>0

hkAk(x).

The method leads to

I The eikonal equation :

∀x ∈ Ih, S
′(x)2 = E − V (x).

I The homogeneous transport equation :

∀x ∈ Ih, 2S ′(x)A′0(x) + S ′′(x)A0(x) = 0.

I The inhomogeneous transport equations :

∀k > 0, 2S ′A′k+1 + S ′′Ak+1 = iA′′k .



Estimates for WKB

The eikonal and the transport equations can be solved on Ih
because E −V is positive on Ih. We choose the following solution :

∀x ∈ Ih,

S ′(x) =
√
E − V (x),

A0(x) = [S ′(x)]−
1
2 = [E − V (x)]−

1
4 ,

∀k > 0, Ak+1(x) = − i

2
A0(x) ·

∫ b

x
A′′k(y)A0(y) dy .

We see that for large k , Ak will involve high order derivatives of A0

that blow-up when x goes to 0. We need to track this behaviour in
the construction to determine α such that WKB approximation
holds on [hα, b]



Generalized Taylor expansions

Let A be a discrete set of exponents. We consider the smooth
functions on (0, b] that admits, near 0 an asymptotic expansion∑

α∈A
aαx

α

We prove that for any k, `, A
(`)
k admits such an expansion with

Ak,0 = {mγ + n − k , m > 1, n > 0} ∪ {0}
Ak,` = {mγ + n − k − `, m > 1, n > 0}, ` > 1.

It follows that WKB expansions hold on [hα, b] for any α < 1.



The matching region

On [0, hβ], we solve

−h2u′′h + (xγW (x)− E )uh = 0,

by treating the term xγW (x)uh as a inhomogeneous term.
Applying the variation of constants leads to a system of equations
that can be solved by a Banach-Picard iteration scheme provided
that

β >
1

γ + 1
.

I If β > 1
γ+1 and β < α < 1 then the intervals [0, hβ] and

[hα, b] overlap.



Performing the matching

We can implement the Banach-Picard iteration scheme and
understand how the Cauchy data at 0 and at hα are related. Using
WKB, we understand how the Cauchy data at hα and at b are
related.
The Cauchy data at b is well understood using the Maslov Ansatz
that allows to go beyond the turning point.
In the end, we are able to write an asymptotic expansion for the
Cauchy data at 0 of Gh(· ; E ).

I We can then estimate the mass near 0 and obtain the spacing
by the same method as above.

I We can also write down Bohr-Sommerfeld rules for singular
potentials on the half-line [0,+∞).



The Gluing problem

I When the halfline is [−B,+∞) then we have to write a
collinearity equation for the Cauchy data at 0 of the function
G (· ; E ) that we have constructed on [0,+∞) and the explicit
solution on [−B, 0].

I New regimes appear. E.g. for the potential x2+ there are
eigenvalues of order h2, whereas on [0,+∞), the lowest
energy is of order h.


