Sélection de modèles et sélection d'estimateurs pour l'Apprentissage statistique

Sylvain Arlot

 $^{1}CNRS$

²École Normale Supérieure (Paris), LIENS, Équipe SIERRA

Cours Peccot, Collège de France, 31/01/2011

Plan

- Lundi 10 : Apprentissage statistique et sélection d'estimateurs
- 2 Lundi 17 : Calibration de pénalités et pénalités minimales
- Undi 24 : Rééchantillonnage et pénalisation
- 4 Aujourd'hui : Validation croisée et pénalités reliées

Plan du cours

- Validation croisée
- 2 Sélection d'estimateurs par validation croisée
- 3 Détection de ruptures
- 4 Pénalisation V-fold
- Conclusion

Plan

Validation croisée

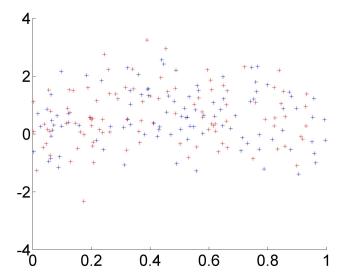
- Validation croisée
- 2 Sélection d'estimateurs par validation croisée
- Oétection de ruptures
- 4 Pénalisation V-fold
- Conclusion

Rappels

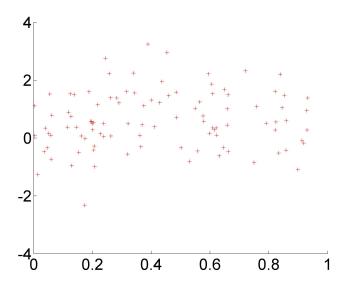
- Données : $D_n = (\xi_1, \dots, \xi_n) \in \Xi^n$, $D_n \sim P^{\otimes n}$
- Perte relative

$$\ell(s^{\star},t) = P\gamma(t) - P\gamma(s^{\star})$$

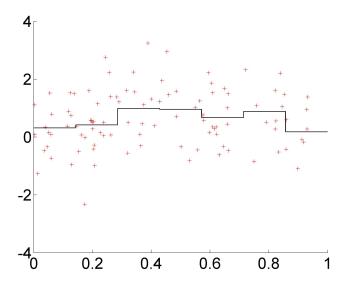
- Algorithmes statistiques : $\forall m \in \mathcal{M}_n$, $\mathcal{A}_m : \bigcup_{n \in \mathbb{N}} \Xi^n \mapsto \mathbb{S}$ $\mathcal{A}_m(D_n) = \widehat{s}_m(D_n) \in \mathbb{S}$ est un estimateur de s^*
- Objectif d'estimation/prédiction : trouver $\widehat{m}(D_n) \in \mathcal{M}$ tel que $\ell\left(s^{\star}, \widehat{s}_{\widehat{m}(D_n)}(D_n)\right)$ est minimale

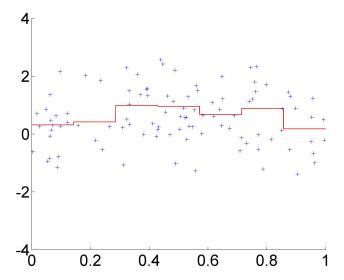


Validation: l'échantillon d'entraînement

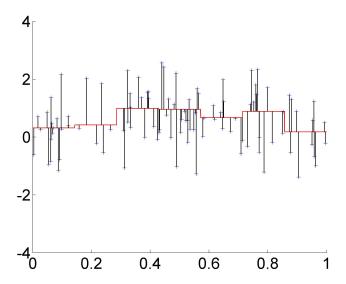


Validation: l'échantillon d'entraînement





Validation : l'échantillon de validation



0000000000000000

$$P_n^{(v)} = \frac{1}{n_v} \sum_{i \in I^{(v)}} \delta_{\xi_i} \qquad n_v := n - n_e$$

$$\Rightarrow \widehat{\mathcal{R}}^{\mathrm{val}}\left(\mathcal{A}_{m}; D_{n}; I^{(e)}\right) = P_{n}^{(v)} \gamma\left(\widehat{s}_{m}^{(e)}\right) = \frac{1}{n_{v}} \sum_{i \in I^{(v)}} \gamma\left(\mathcal{A}_{m}\left(D_{n}^{(e)}\right); \xi_{i}\right)$$

11/64

Définition générale de la validation croisée

B ≥ 1 ensembles d'entraînement :

$$I_1^{(e)}, \ldots, I_B^{(e)} \subset \{1, \ldots, n\}$$

• Estimateur par validation croisée du risque de \mathcal{A}_m :

$$\widehat{\mathcal{R}}^{\mathrm{vc}}\left(\mathcal{A}_{m}; \mathcal{D}_{n}; \left(I_{j}^{(e)}\right)_{1 \leq j \leq B}\right) := \frac{1}{B} \sum_{i=1}^{B} \widehat{\mathcal{R}}^{\mathrm{val}}\left(\mathcal{A}_{m}; \mathcal{D}_{n}; I_{j}^{(e)}\right)$$

Algorithme choisi :

$$\widehat{m} \in \operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ \widehat{\mathcal{R}}^{\operatorname{vc}} \left(\mathcal{A}_m; D_n; \left(I_j^{(e)} \right)_{1 \leq j \leq B} \right) \right\}$$

• En général, $\forall j$, $Card(I_i^{(e)}) = n_e$

0000000000000000

 Leave-one-out (LOO), ou delete-one CV, ou validation croisée ordinaire :

$$n_e = n - 1$$
 $B = n$

(Stone, 1974; Allen, 1974; Geisser, 1975)

Leave-p-out (LPO), ou delete-p CV :

$$n_e = n - p$$
 $B = \begin{pmatrix} n \\ p \end{pmatrix}$

Exemples : découpages non-exhaustifs

• Validation croisée "V-fold" (VFCV, Geisser, 1975) : $\mathcal{B} = (B_j)_{1 \le j \le V}$ partition de $\{1, ..., n\}$

$$\widehat{\mathcal{R}}^{\mathrm{vf}}\left(\mathcal{A}_{m}; D_{n}; \mathcal{B}\right) = \frac{1}{V} \sum_{j=1}^{V} \widehat{\mathcal{R}}^{\mathrm{val}}\left(\mathcal{A}_{m}; D_{n}; B_{j}^{c}\right)$$

- Apprentissage-test répété (RLT, Breiman et al, 1984) : $I_1^{(e)}, \ldots, I_B^{(e)} \subset \{1, \ldots, n\}$ de cardinal n_e , aléatoires et tous différents
- Validation croisée Monte-Carlo (MCCV, Picard et Cook, 1984) : idem avec $I_1^{(e)}, \ldots, I_B^{(e)}$ i.i.d. uniformes parmi les sous-ensembles de taille n_e

Méthodes reliées

- Validation croisée généralisée (GCV): version invariante par rotation du LOO pour la régression linéaire, plus proche de C_p et C_L que de la validation croisée (Efron, 1986, 2004)
- Approximation analytique du leave-p-out (Shao, 1993)
- Leave-one-out bootstrap (Efron, 1983):
 version stabilisée du leave-one-out
 correction heuristique du biais ⇒ .632 bootstrap
 ⇒ .632+ bootstrap (Efron et Tibshirani, 1997)

• Cible : $P\gamma\left(\mathcal{A}_m(D_n)\right)$

Validation croisée

• Biais : si $\forall j$, $Card(I_j^{(e)}) = n_e$

Biais de l'estimateur validation croisée

- Cible : $P\gamma(A_m(D_n))$
- Biais : si $\forall j$, $Card(I_j^{(e)}) = n_e$

$$\mathbb{E}\left[\widehat{\mathcal{R}}^{\text{vc}}\left(\mathcal{A}_{m}; D_{n}; \left(I_{j}^{(e)}\right)_{1 \leq j \leq B}\right)\right] = \mathbb{E}\left[P\gamma\left(\mathcal{A}_{m}\left(D_{n_{e}}\right)\right)\right]$$

$$\Rightarrow$$
 biais $\mathbb{E}\left[P\gamma\left(\mathcal{A}_{m}\left(D_{n_{e}}\right)\right)\right] - \mathbb{E}\left[P\gamma\left(\mathcal{A}_{m}\left(D_{n}\right)\right)\right]$

- Algorithme intelligent (Devroye, Györfi & Lugosi, 1996) : $n \mapsto \mathbb{E}\left[P\gamma\left(\mathcal{A}_m\left(D_n\right)\right)\right]$ décroissante \Rightarrow le biais est positif, minimal pour $n_e = n-1$
- Exemple : régressogramme :

$$\mathbb{E}\left[P\gamma(\widehat{s}_m(D_n))\right] \approx P\gamma(s_m^{\star}) + \frac{1}{n}\sum_{\lambda \in m} \sigma_{\lambda}^2$$

• Validation croisée V-fold corrigée (Burman, 1989, 1990) :

$$\widehat{\mathcal{R}}^{\mathrm{vf}}\left(\mathcal{A}_{m}; D_{n}; \mathcal{B}\right) + P_{n}\gamma\left(\mathcal{A}_{m}(D_{n})\right) - \frac{1}{V}\sum_{j=1}^{V} P_{n}\gamma\left(\mathcal{A}_{m}\left(D_{n}^{(-B_{j})}\right)\right)$$

- + idem pour apprentissage-test répété.
- Résultat asymptotique : biais = $\mathcal{O}(n^{-2})$ (Burman, 1989)

$$\operatorname{\mathsf{var}}\left[\widehat{\mathcal{R}}^{\operatorname{vc}}\left(\mathcal{A}_m; D_n; \left(I_j^{(e)}\right)_{1 \leq j \leq B}\right)\right]$$

Sources de variabilité :

Validation croisée

Variabilité de l'estimateur validation croisée

$$\operatorname{var}\left[\widehat{\mathcal{R}}^{\operatorname{vc}}\left(\mathcal{A}_m; D_n; \left(I_j^{(e)}\right)_{1 \leq j \leq B}\right)\right]$$

Sources de variabilité :

• (n_e, n_v) : cas du hold-out (Nadeau & Bengio, 2003)

$$\begin{aligned} &\operatorname{var}\left[\widehat{\mathcal{R}}^{\operatorname{val}}\left(\mathcal{A}_{m};D_{n};I^{(e)}\right)\right] \\ &= \mathbb{E}\left[\operatorname{var}\left(\left.P_{n}^{(v)}\gamma\left(\mathcal{A}_{m}(D_{n}^{(e)})\right)\right| \left.D_{n}^{(e)}\right)\right] + \operatorname{var}\left[\left.P\gamma\left(\mathcal{A}_{m}(D_{n_{e}})\right)\right] \\ &= \frac{1}{n_{v}}\mathbb{E}\left[\operatorname{var}\left(\gamma\left(\widehat{s},\xi\right)\right| \left.\widehat{s} = \mathcal{A}_{m}(D_{n}^{(e)})\right)\right] + \operatorname{var}\left[\left.P\gamma\left(\mathcal{A}_{m}(D_{n_{e}})\right)\right] \end{aligned}$$

Variabilité de l'estimateur validation croisée

$$\operatorname{var}\left[\widehat{\mathcal{R}}^{\operatorname{vc}}\left(\mathcal{A}_m; D_n; \left(I_j^{(e)}\right)_{1 \leq j \leq B}\right)\right]$$

Sources de variabilité :

• (n_e, n_v) : cas du hold-out (Nadeau & Bengio, 2003)

$$\begin{aligned} &\operatorname{var}\left[\widehat{\mathcal{R}}^{\operatorname{val}}\left(\mathcal{A}_{m};D_{n};I^{(e)}\right)\right] \\ &= \mathbb{E}\left[\operatorname{var}\left(P_{n}^{(v)}\gamma\left(\mathcal{A}_{m}(D_{n}^{(e)})\right) \middle| D_{n}^{(e)}\right)\right] + \operatorname{var}\left[P\gamma\left(\mathcal{A}_{m}(D_{n_{e}})\right)\right] \\ &= \frac{1}{n_{v}}\mathbb{E}\left[\operatorname{var}\left(\gamma\left(\widehat{s},\xi\right)\middle| \widehat{s} = \mathcal{A}_{m}(D_{n}^{(e)})\right)\right] + \operatorname{var}\left[P\gamma\left(\mathcal{A}_{m}(D_{n_{e}})\right)\right] \end{aligned}$$

- Stabilité de l'algorithme A_m (Bousquet & Elisseff, 2002)
- Nombre de découpages B
- Difficulté : B, n_e, n_v liés pour VFCV et LPO

Résultats sur la variabilité

• Régression linéaire, moindres carrés, cas particulier (Burman, 1989):

$$\frac{2\sigma^2}{n} + \frac{4\sigma^4}{n^2} \left[\frac{4 + \frac{4}{V - 1}}{V - 1} + \frac{2}{(V - 1)^2} + \frac{1}{(V - 1)^3} \right] + o(n^{-2})$$

Résultats sur la variabilité

Sélection d'estimateurs par VC

• Régression linéaire, moindres carrés, cas particulier (Burman, 1989):

$$\frac{2\sigma^2}{n} + \frac{4\sigma^4}{n^2} \left[4 + \frac{4}{V-1} + \frac{2}{(V-1)^2} + \frac{1}{(V-1)^3} \right] + o(n^{-2})$$

- Quantification explicite en régression (LPO) et estimation de densité (VFCV, LPO) : Celisse (2008)
- LOO très variable lorsque A_m est instable (e.g., k-NN ou CART), beaucoup moins lorsque A_m est stable (e.g., estimateur des moindres carrés; cf. Molinaro et al, 2005)
- Difficulté d'estimer la variabilité de la validation croisée : pas d'estimateur universellement non biaisé (RLT, Nadeau et Bengio, 2003; VFCV, Bengio et Grandvalet, 2004), plusieurs estimateurs proposés (ibid.; Markatou et al, 2005; Celisse et Robin, 2008)

- Validation croisée
- 2 Sélection d'estimateurs par validation croisée
- 3 Détection de ruptures
- 4 Pénalisation V-fold
- Conclusion

Lien entre estimation du risque et choix d'algorithme

- Principe d'estimation non biaisée du risque
 - ⇒ la quantité importante (asymptotiquement) est le biais
- Quel est le meilleur critère? En principe, le meilleur \widehat{m} est celui qui minimise le meilleur estimateur du risque.
- Situation parfois plus compliquée (Breiman et Spector, 1992) :
 - Seuls les m "proches" de l'oracle m^* comptent
 - Surpénalisation parfois nécessaire (beaucoup de modèles et/ou petit rapport signal-sur-bruit)

Lemme

Sur l'événement Ω où pour tout $m,m'\in\mathcal{M}_n$,

$$(\operatorname{crit}(m) - P\gamma(\widehat{s}_m(D_n))) - (\operatorname{crit}(m') - P\gamma(\widehat{s}_{m'}(D_n)))$$

 $\leq A(m) + B(m')$

$$on \ a \quad \forall \widehat{m} \in \operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ \operatorname{crit}(m) \right\}$$

$$\ell\left(s^{\star}, \widehat{s}_{\widehat{m}}(D_n)\right) - B(\widehat{m}) \leq \inf_{m \in \mathcal{M}_n} \left\{ \ell\left(s^{\star}, \widehat{s}_m(D_n)\right) + A(m) \right\}$$

Cadre de la régression linéaire (Shao, 1997) représentatif du comportement général de la validation croisée :

- Si $n_e \sim n$, optimalité asymptotique (CV $\sim C_p$)
- Si $n_e \sim \kappa n$, $\kappa \in]0,1[$, CV $\sim \text{GIC}_{1+\kappa^{-1}}$ (i.e., surpénalise d'un facteur $(1+\kappa^{-1})/2 \Rightarrow$ asymptotiquement sous-optimal)
- \Rightarrow valable pour LPO (Shao, 1997), RLT (si $B \gg n^2$, Zhang, 1993)

Sous-optimalité de la validation croisée "V-fold"

- $Y = X + \sigma \varepsilon$ avec ε borné et $\sigma > 0$
- $ullet \ \mathcal{M} = \mathcal{M}_n^{ ext{(reg)}} \ ext{(histogrammes réguliers sur } \mathcal{X} = [0,1])$
- \widehat{m} obtenu par validation croisée "V-fold" avec V fixe quand n grandit

Théorème (A. 2008)

Avec probabilité $1 - Ln^{-2}$,

$$\ell(s^{\star}, \widehat{s}_{\widehat{m}}) \geq (1 + \kappa(V)) \inf_{m \in \mathcal{M}_n} \{\ell(s^{\star}, \widehat{s}_m)\}$$

 $o\grave{u}$ $\kappa(V) > 0$

• Si $n_{\rm v} \to \infty$ suffisamment vite, il est "facile" de prouver que le hold-out fait au moins aussi bien que

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P\gamma \left(\mathcal{A}_m(D_{n_e}) \right) \right\}$$

 van der Laan, Dudoit et van der Vaart (2006): même propriété pour LPO, VFCV et MCCV dans un cadre assez général

Inégalités oracle pour la validation croisée

• Si $n_{\rm v} \to \infty$ suffisamment vite, il est "facile" de prouver que le hold-out fait au moins aussi bien que

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P\gamma \left(\mathcal{A}_m(D_{n_e}) \right) \right\}$$

- van der Laan, Dudoit et van der Vaart (2006): même propriété pour LPO, VFCV et MCCV dans un cadre assez général
- Régressogrammes : VFCV sous-optimale, mais s'adapte aux variations du niveau de bruit (à une constante C(V) > 1 près)
- LPO en régression et estimation de densité avec $p/n \in [a, b]$, 0 < a < b < 1 : Celisse (2008)

Inégalités oracle pour la validation croisée

• Si $n_{\rm v} \to \infty$ suffisamment vite, il est "facile" de prouver que le hold-out fait au moins aussi bien que

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P\gamma \left(\mathcal{A}_m(D_{n_e}) \right) \right\}$$

- van der Laan, Dudoit et van der Vaart (2006): même propriété pour LPO, VFCV et MCCV dans un cadre assez général
- Régressogrammes : VFCV sous-optimale, mais s'adapte aux variations du niveau de bruit (à une constante C(V) > 1 près)
- LPO en régression et estimation de densité avec p/n ∈ [a, b],
 0 < a < b < 1 : Celisse (2008)
- Question ouverte : comparaison théorique entre méthodes tenant compte de B (et donc de la variabilité de la validation croisée)

Validation croisée pour l'identification : problème

- Famille d'algorithmes $(A_m)_{m \in \mathcal{M}}$
- Objectif : sélectionner celui qui se comportera le mieux sur un nouvel échantillon de taille $n' \to \infty$

$$\mathit{m}_{0} \in \lim_{n' o \infty} \operatorname{argmin}_{\mathit{m} \in \mathcal{M}} \left\{ \mathbb{E} \left[\mathit{P}\gamma \left(\mathcal{A}_{\mathit{m}}(\mathit{D}'_{\mathit{n'}}) \right) \right] \right\}$$

• Consistance :

$$\mathbb{P}\left(\widehat{m}(D_n)=m_0\right)\xrightarrow[n\to\infty]{}1$$

- Exemples :
 - identification du vrai modèle en sélection de modèles
 - algorithme paramétrique ou non-paramétrique?
 - \hat{k} -ppv ou SVM?
 - ..

Validation croisée avec vote (Yang, 2006)

Deux algorithmes A_1 et A_2

• Pour m = 1, 2

$$\left(\widehat{\mathcal{R}}^{\mathrm{val}}\left(\mathcal{A}_{m};D_{n};I_{j}^{(e)}\right)\right)_{1\leq j\leq B}$$

⇒ vote majoritaire

$$\mathcal{V}_1(D_n) = \operatorname{Card}\left\{j \text{ t.q. } \widehat{\mathcal{R}}^{\operatorname{val}}\left(\mathcal{A}_1; D_n; I_j^{(\mathbf{e})}\right) < \widehat{\mathcal{R}}^{\operatorname{val}}\left(\mathcal{A}_2; D_n; I_j^{(\mathbf{e})}\right)\right\}$$

$$\widehat{m} = \begin{cases} 1 & \text{si} \quad \mathcal{V}_1(D_n) > n/2 \\ 2 & \text{sinon} \end{cases}$$

 Validation croisée classique : moyenne sur les découpages puis comparaison

Validation croisée pour l'identification : régression

- "Paradoxe de la validation croisée" (Yang, 2007)
- ullet $r_{n,m}$: asymptotique de $\mathbb{E}\|\mathcal{A}_m(D_n)-s^\star\|_2$
- But : retrouver $\operatorname{argmin}_{m \in \mathcal{M}} r_{n,m}$
- Hypothèse : différence d'au moins une constante C>1 entre $r_{n,1}$ et $r_{n,2}$

Validation croisée pour l'identification : régression

- "Paradoxe de la validation croisée" (Yang, 2007)
- ullet $r_{n,m}$: asymptotique de $\mathbb{E}\|\mathcal{A}_m(D_n)-s^\star\|_2$
- But : retrouver $\operatorname{argmin}_{m \in \mathcal{M}} r_{n,m}$
- Hypothèse : différence d'au moins une constante C>1 entre $r_{n,1}$ et $r_{n,2}$
- VFCV, RLT, LPO (avec vote) sont consistantes si

$$n_{\mathrm{v}}, n_{\mathrm{e}}
ightarrow \infty \quad \mathrm{et} \quad \sqrt{n_{\mathrm{v}}} \max_{m \in \mathcal{M}} r_{n_{\mathrm{e}}, m}
ightarrow \infty$$

sous des conditions sur $(\|A_m(D_n) - s^*\|_p)_{p=2,4,\infty}$

- Paramétrique vs. paramétrique $(r_{n,m} \propto n^{-1/2})$ \Rightarrow la condition devient $n_v \gg n_e \to \infty$
- Non-paramétrique vs. (non-)paramétrique ($\max_{m \in \mathcal{M}} r_{n,m} \gg n^{-1/2}$) \Rightarrow il suffit d'avoir $n_e/n_v = \mathcal{O}(1)$, et on peut avoir $n_e \sim n$ (mais pas trop proche)
- Intuition :
 - risques estimés avec une précision $\propto n_{\rm v}^{-1/2}$
 - différence des risques de l'ordre de max_{m∈M} r_{ne,m}
 ⇒ plus facile de distinguer des algorithmes avec n_e petit car l'écart entre risques est plus grand (discutable en pratique)

- Implémentation naïve : complexité proportionnelle à B
 - \Rightarrow LPO inutilisable, LOO parfois
 - ⇒ VFCV, RLT et MCCV souvent préférables

Validation croisée en pratique : temps de calcul

- Implémentation naïve : complexité proportionnelle à B
 - \Rightarrow LPO inutilisable, LOO parfois
 - ⇒ VFCV, RLT et MCCV souvent préférables
- Formules closes pour le LPO en estimation de densité (moindres carrés) et en régression (estimateurs par projection, par noyau) : Celisse et Robin (2008), Celisse (2008)
 ⇒ utilisable par exemple en détection de runtures (avec
 - \Rightarrow utilisable par exemple en détection de ruptures (avec programmation dynamique)
- Validation croisée généralisée : généralise une formule pour le LOO en régression linéaire

- Implémentation naïve : complexité proportionnelle à B
 - ⇒ LPO inutilisable, LOO parfois
 - ⇒ VFCV, RLT et MCCV souvent préférables
- Formules closes pour le LPO en estimation de densité (moindres carrés) et en régression (estimateurs par projection, par noyau): Celisse et Robin (2008), Celisse (2008) ⇒ utilisable par exemple en détection de ruptures (avec programmation dynamique)
- Validation croisée généralisée : généralise une formule pour le LOO en régression linéaire
- En l'absence de formules closes, algorithmes intelligents pour le LOO (analyse discriminante linéaire, Ripley, 1996; k-ppv, Daudin et Mary-Huard, 2008) : utilise les résultats obtenus pour les découpages précédents pour éviter de refaire une partie des calculs

Choix d'une méthode de validation croisée

Compromis entre biais, variabilité et temps de calcul :

- Biais : d'autant plus grand que n_e éloigné de n (sauf pour les méthodes avec correction du biais) SNR grand : le biais doit être minimal SNR petit : un peu de biais peut être préférable ($\Rightarrow n_e = \kappa n$ pour un certain $\kappa \in [0,1[$)
- Variabilité : en général, décroît avec B et avec n_v , mais cela dépend de la nature des algorithmes considérés (stabilité)
- Temps de calcul : proportionnel à B, sauf cas particuliers

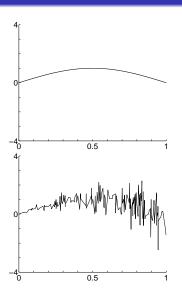
VFCV : B et n_e reliés à $V \Rightarrow$ situation complexe (V = 10 n'est pas toujours un bon choix)

Choix des échantillons d'entraînement

- Recommandation usuelle : tenir compte de la structure des données, par exemple :
 - répartition des X_i dans l'espace en régression
 - \bullet répartition des Y_i dans les classes en classification
 - ...

mais pas de résultat théorique très clair (simulations de Breiman et Spector, 1992 : différence non-significative).

Dépendance entre les I_j^(e) ?
 Intuitivement, mieux vaut donner à toutes les données des rôles similaires dans les tâches d'entraînement et de validation ⇒ VFCV
 Mais pas de résultat clair comparant VFCV (forte dépendance), RLT (faible dépendance) et MCCV (indépendance).



Modèles : $\mathcal{M}_n = \mathcal{M}_n^{(\text{reg},1/2)}$

$$\frac{\mathbb{E}\left[\ell\left(s^{\star},\widehat{s}_{\widehat{m}}\right)\right]}{\mathbb{E}\left[\inf_{m\in\mathcal{M}_{n}}\left\{\ell\left(s^{\star},\widehat{s}_{m}\right)\right\}\right]}$$

calculé avec N = 1000 échantillons

Mallows	3.69 ± 0.07
2-fold	2.54 ± 0.05
5-fold	2.58 ± 0.06
10-fold	2.60 ± 0.06 2.58 ± 0.06
20-fold	2.58 ± 0.06
leave-one-out	2.59 ± 0.06

Universalité de la validation croisée?

- Heuristique quasi universelle (données i.i.d., pas d'autre hypothèse explicite)
- Mais $D_n \mapsto \mathcal{A}_{\widehat{m}(D_n)}$ reste un algorithme d'apprentissage \Rightarrow concerné par les "No Free Lunch Theorems"
- Hypothèses implicites de la validation croisée :
 - on estime bien l'erreur de généralisation à partir d'un nombre fini $n_{\rm v}$ de points
 - le comportement d'un algorithme avec ne points est représentatif de son comportement avec n points
 - + les hypothèses de l'estimation sans biais du risque

- non valable a priori (données non i.i.d.)
- Processus de Markov stationnaire ⇒ CV fonctionne toujours (Burman et Nolan, 1992)
- Corrélations positives ⇒ risque de sur-apprentissage (Hart et Wehrly, 1986; Opsomer et. al, 2001)

Séries temporelles et données dépendantes

- non valable a priori (données non i.i.d.)
- Processus de Markov stationnaire \Rightarrow CV fonctionne toujours (Burman et Nolan, 1992)
- Corrélations positives \Rightarrow risque de sur-apprentissage (Hart et Wehrly, 1986; Opsomer et. al, 2001)
- Solution : si dépendances à courte distance, choisir $I^{(e)}$ et $I^{(v)}$ tels que

$$\min_{i \in I^{(e)}, j \in I^{(v)}} |i - j| \ge h > 0$$

⇒ CV modifiée (Chu et Marron, 1991), "h-block CV" (avec correction du biais, Burman et al. 1994), etc.

- Sélection de modèles en régression, nombre exponentiel de modèles par dimension ⇒ pénalité minimale de l'ordre de ln(n)D_m/n (Birgé et Massart, 2007)
 - \Rightarrow la validation croisée sur-apprend (sauf peut-être si $n_e \ll n$)

Grand nombre de modèles

- Sélection de modèles en régression, nombre exponentiel de modèles par dimension \Rightarrow pénalité minimale de l'ordre de $\ln(n)D_m/n$ (Birgé et Massart, 2007)
 - \Rightarrow la validation croisée sur-apprend (sauf peut-être si $n_e \ll n$)
- Wegkamp (2003) : hold-out pénalisé
- A. et Celisse (2009): regroupement des modèles par dimension, application en détection de ruptures

- Validation croisée
- 2 Sélection d'estimateurs par validation croisée
- 3 Détection de ruptures
- 4 Pénalisation V-fold
- Conclusion

Détection de ruptures et sélection de modèles

$$Y_i = \eta(t_i) + \sigma(t_i)\varepsilon_i$$
 avec $\mathbb{E}\left[\varepsilon_i\right] = 0$ $\mathbb{E}\left[\varepsilon_i^2\right] = 1$

- ullet But : détecter les ruptures dans la moyenne η du signal Y
- \Rightarrow Sélection de modèles, collection des régressogrammes avec $\mathcal{M}_n = \mathfrak{P}_{\mathrm{interv}}(\{t_1, \ldots, t_n\})$ (ensemble des partitions en intervalles)
 - lci : pas d'hypothèse sur la variance $\sigma(t_i)^2$

• Pénalité "Birgé-Massart" (suppose $\sigma(t_i) \equiv \sigma$) :

$$\widehat{m} \in \operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma \left(\widehat{s}_m \right) + \frac{C \sigma^2 D_m}{n} \left(5 + 2 \ln \left(\frac{n}{D_m} \right) \right) \right\}$$

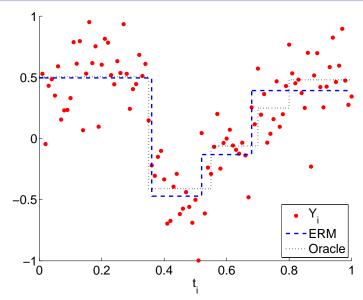
• Revient à aggréger les modèles de même dimension :

$$\widetilde{S}_D := \bigcup_{m \in \mathcal{M}_n, D_m = D} S_m$$

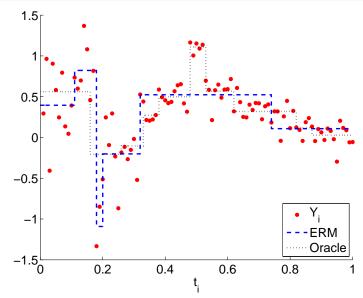
$$\widehat{s}_{D} \in \operatorname{argmin}_{t \in \widetilde{S}_{D}} \{P_{n}\gamma(t)\}$$
 programmation dynamique

$$\widehat{D} \in \operatorname{argmin}_{1 \leq D \leq n} \left\{ P_n \gamma \left(\widehat{s}_D \right) + \frac{C \sigma^2 D}{n} \left(5 + 2 \ln \left(\frac{n}{D} \right) \right) \right\}$$

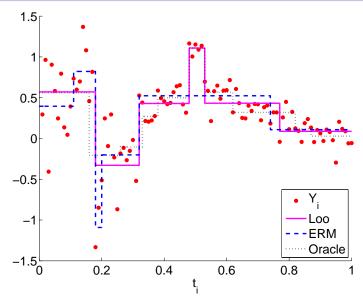
D=4, homoscédastique; n=100, $\sigma=0.25$

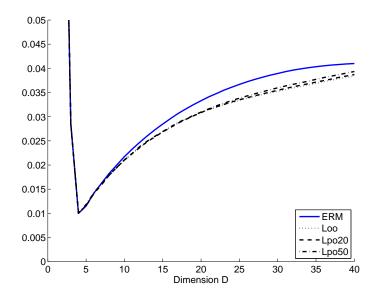


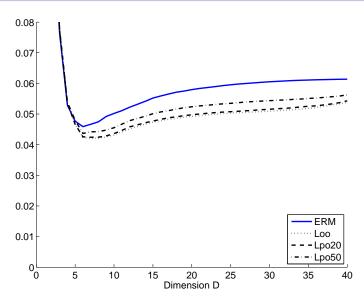
D=6, hétéroscédastique; n=100, $||\sigma||=0.30$



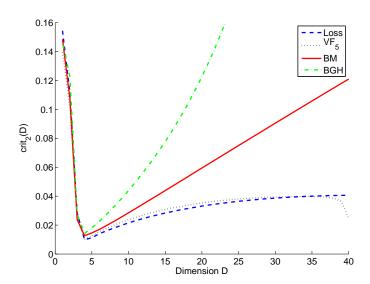
D=6, hétéroscédastique; n=100, $||\sigma||=0.30$



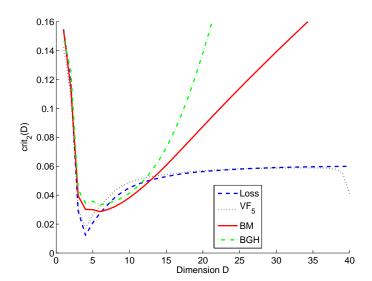




Homoscédastique : perte estimée en fonction de D



Hétéroscédastique : perte estimée en fonction de D



Détection de ruptures en 2 étapes (A. & Celisse, 2010)

$$\bullet \forall D \in \{1, \ldots, D_{\mathsf{max}}\}, \text{ choisir}$$

$$\widehat{m}(D) \in \operatorname{argmin}_{m \in \mathcal{M}_n, D_m = D} \left\{ \operatorname{crit}_1(m; (t_i, Y_i)_i) \right\}$$

Exemples pour $crit_1$: risque empirique, ou estimateurs leave-p-out ou V-fold du risque (programmation dynamique)

Détection de ruptures en 2 étapes (A. & Celisse, 2010)

$$\widehat{m}(D) \in \operatorname{argmin}_{m \in \mathcal{M}_n, D_m = D} \{ \operatorname{crit}_1(m; (t_i, Y_i)_i) \}$$

Exemples pour $crit_1$: risque empirique, ou estimateurs leave-p-out ou V-fold du risque (programmation dynamique)

Sélectionner

$$\widehat{D} \in \mathsf{argmin}_{D \in \{1, \dots, D_{\mathsf{max}}\}} \left\{ \mathsf{crit}_2(D; (t_i, Y_i)_i; \mathsf{crit}_1(\cdot)) \right\}$$

Exemples pour $crit_2$: critère empirique pénalisé, estimateur V-fold du risque

• [Emp, BM] : suppose $\sigma(\cdot) \equiv \sigma$

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma\left(\widehat{s}_m\right) + \frac{C\widehat{\sigma}^2 D_m}{n} \left(5 + 2\log\left(\frac{n}{D_m}\right)\right) \right\}$$

Méthodes concurrentes

• [Emp, BM] : suppose $\sigma(\cdot) \equiv \sigma$

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma \left(\widehat{s}_m \right) + \frac{C \widehat{\sigma}^2 D_m}{n} \left(5 + 2 \log \left(\frac{n}{D_m} \right) \right) \right\}$$

• BGH (Baraud, Giraud & Huet 2009) : pénalité multiplicative, $\sigma(\cdot) \equiv \sigma$

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma \left(\widehat{s}_m \right) \left[1 + \frac{\operatorname{pen}_{\operatorname{BGH}}(m)}{n - D_m} \right] \right\}$$

- [Emp, BM] : suppose $\sigma(\cdot) \equiv \sigma$ $\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma\left(\widehat{s}_m\right) + \frac{C\widehat{\sigma}^2 D_m}{n} \left(5 + 2\log\left(\frac{n}{D_m}\right)\right) \right\}$
- BGH (Baraud, Giraud & Huet 2009) : pénalité multiplicative, $\sigma(\cdot) \equiv \sigma$

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma \left(\widehat{s}_m \right) \left[1 + \frac{\operatorname{pen}_{\operatorname{BGH}}(m)}{n - D_m} \right] \right\}$$

• ZS (Zhang & Siegmund, 2007) : BIC modifié, $\sigma(\cdot) \equiv \sigma$

Méthodes concurrentes

• [Emp, BM] : suppose $\sigma(\cdot) \equiv \sigma$

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma \left(\widehat{s}_m \right) + \frac{C \widehat{\sigma}^2 D_m}{n} \left(5 + 2 \log \left(\frac{n}{D_m} \right) \right) \right\}$$

• BGH (Baraud, Giraud & Huet 2009) : pénalité multiplicative, $\sigma(\cdot) \equiv \sigma$

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma \left(\widehat{s}_m \right) \left[1 + \frac{\operatorname{pen}_{\operatorname{BGH}}(m)}{n - D_m} \right] \right\}$$

- ZS (Zhang & Siegmund, 2007) : BIC modifié, $\sigma(\cdot) \equiv \sigma$
- PML (Picard et al., 2005) : maximum de vraisemblance pénalisé, cherche les ruptures de (η, σ)

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ \sum_{\lambda \in m} n \widehat{p}_{\lambda} \log \left(\frac{1}{n \widehat{p}_{\lambda}} \sum_{t_i \in \lambda} (Y_i - \widehat{s}_m(t_i))^2 \right) + \widehat{C}'' D_m \right\}$$

Simulations : comparaison à l'oracle (risque quadratique)

$$\frac{\mathbb{E}\left[\ell\left(s^{\star},\widehat{s}_{\widehat{m}}\right)\right]}{\mathbb{E}\left[\inf_{m\in\mathcal{M}_{n}}\left\{\ell\left(s^{\star},\widehat{s}_{m}\right)\right\}\right]}$$

 $N = 10\,000$ échantillons

$\mathcal{L}(arepsilon)$	Gaussien	Gaussien	Gaussien
$\sigma(\cdot)$	homosc.	hétérosc.	hétérosc.
η	<i>s</i> ₂	<i>s</i> ₂	<i>s</i> ₃
$[Loo, VF_5]$	4.02 ± 0.02	4.95 ± 0.05	5.59 ± 0.02
$[\mathrm{Emp},\mathrm{VF}_5]$	3.99 ± 0.02	5.62 ± 0.05	6.13 ± 0.02
$[\mathrm{Emp},\mathrm{BM}]$	3.58 ± 0.02	9.25 ± 0.06	6.24 ± 0.02
BGH	3.52 ± 0.02	10.13 ± 0.07	6.31 ± 0.02
ZS	3.62 ± 0.02	6.50 ± 0.05	6.61 ± 0.02
PML	4.34 ± 0.02	2.73 ± 0.03	4.99 ± 0.03

49/64

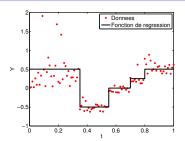
Simulations : comparaison à l'oracle (risque quadratique)

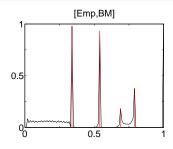
$$\frac{\mathbb{E}\left[\ell\left(s^{\star},\widehat{s}_{\widehat{m}}\right)\right]}{\mathbb{E}\left[\inf_{m\in\mathcal{M}_{n}}\left\{\ell\left(s^{\star},\widehat{s}_{m}\right)\right\}\right]}$$

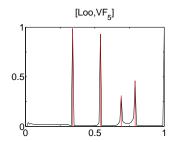
 $N = 10\,000$ échantillons

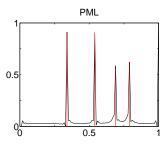
$\mathcal{L}(arepsilon)$	Gaussien	Exponentiel	Exponentiel
$\sigma(\cdot)$	homosc.	hétérosc.	hétérosc.
η	<i>s</i> ₂	<i>s</i> ₂	<i>s</i> ₃
$[\text{Loo}, \text{VF}_5]$	4.02 ± 0.02	4.47 ± 0.05	5.11 ± 0.03
$[\mathrm{Emp},\mathrm{VF}_5]$	3.99 ± 0.02	5.98 ± 0.07	6.22 ± 0.04
$[\mathrm{Emp},\mathrm{BM}]$	3.58 ± 0.02	10.81 ± 0.09	6.45 ± 0.04
BGH	3.52 ± 0.02	11.67 ± 0.09	6.42 ± 0.04
ZS	3.62 ± 0.02	9.34 ± 0.09	6.83 ± 0.04
PML	4.34 ± 0.02	5.04 ± 0.06	5.40 ± 0.03

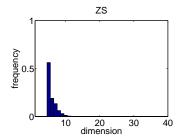
49/64

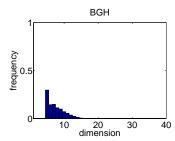


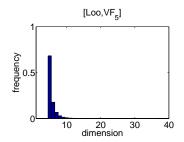


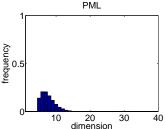








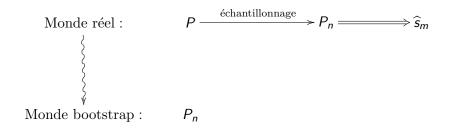




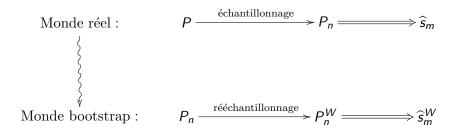
- Validation croisée
- 2 Sélection d'estimateurs par validation croisée
- Oétection de ruptures
- 4 Pénalisation V-fold
- Conclusion

Monde réel :
$$P \xrightarrow{\text{\'echantillonnage}} P_n \Longrightarrow \widehat{s}_m$$

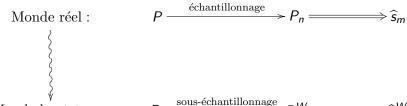
$$\operatorname{\mathsf{pen}}_{\operatorname{id}}(m) = (P - P_n)\gamma\left(\widehat{s}_m\right) = F(P, P_n)$$



$$pen_{id}(m) = (P - P_n)\gamma(\widehat{s}_m) = F(P, P_n)$$



$$(P - P_n)\gamma(\widehat{s}_m) = F(P, P_n) \leadsto F(P_n, P_n^W) = (P_n - P_n^W)\gamma(\widehat{s}_m^W)$$



Monde bootstrap: P_n

$$P_n \xrightarrow{\text{sous-\'echantillonnage}} P_n^W \Longrightarrow \widehat{s}_m^W$$

$$(P - P_n)\gamma(\widehat{s}_m) = F(P, P_n) \leadsto F(P_n, P_n^W) = (P_n - P_n^W)\gamma(\widehat{s}_m^W)$$

V-fold:
$$P_n^W = \frac{1}{n - \mathsf{Card}(B_J)} \sum_{i \notin B_J} \delta_{(X_i, Y_i)}$$
 avec $J \sim \mathcal{U}(1, \dots, V)$

53/64

Pénalité idéale :

$$(P-P_n)(\gamma(\widehat{s}_m(D_n)))$$

Pénalité V-fold (A., 2008) :

$$\operatorname{pen}_{\operatorname{VF}}(m; D_n; C; \mathcal{B}) = \frac{C}{V} \sum_{j=1}^{V} \left[\left(P_n - P_n^{(-B_j)} \right) \left(\gamma \left(\widehat{s}_m^{(-B_j)} \right) \right) \right]$$

$$\widehat{s}_m^{(-B_j)} = \widehat{s}_m \left(D_n^{(-B_j)} \right)$$

Modèle sélectionné :

$$\widehat{m} \in \operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma(\widehat{s}_m) + \operatorname{pen}(m) \right\}$$

Calcul d'espérances

Hypothèses:

$$\mathcal{B} = (B_j)_{1 \leq j \leq V}$$
 partition de $\{1, \dots, n\}$ et $\forall j \in \{1, \dots, V\}$, $\mathsf{Card}(B_j) = \frac{n}{V}$ (RegPart)

$$\forall 1 \leq N \leq n \; , \quad \mathbb{E}\left[\mathsf{pen}_{\mathrm{id}}(m; D_N)\right] = \frac{\gamma_m}{N}$$
 (Epenid)

Calcul d'espérances

Hypothèses:

$$\mathcal{B} = (B_j)_{1 \leq j \leq V}$$
 partition de $\{1, \ldots, n\}$ et $\forall j \in \{1, \ldots, V\}$, $\mathsf{Card}(B_j) = \frac{n}{V}$ (RegPart)

$$\forall 1 \leq N \leq n \; , \quad \mathbb{E}\left[\mathsf{pen}_{\mathrm{id}}(m; D_N)\right] = \frac{\gamma_m}{N}$$
 (Epenid)

Proposition (A. 2011)

$$\mathbb{E}\left[\mathsf{pen}_{\mathrm{VF}}(m; D_n; C; \mathcal{B})\right] = \frac{C}{V-1}\mathbb{E}\left[\mathsf{pen}_{\mathrm{id}}(m; D_n)\right]$$

Concentration : hypothèses supplémentaires

Pour tout
$$N \in \{1, ..., n\}$$
,

$$\mathbb{P}(|p_1(m; D_N) - \mathbb{E}[p_1(m; D_N)]| \le w_N \mathbb{E}[p_1(m; D_N)]) \ge 1 - q_N \quad (\mathbf{C}p_1)$$

$$\mathbb{P}(|p_2(m; D_N) - \mathbb{E}[p_2(m; D_N)]| \le w_N \mathbb{E}[p_2(m; D_N)]) \ge 1 - q_N \quad (\mathbf{C}p_2)$$

$$\exists S_{m} \subset \mathbb{S} \text{ t.q. } s_{m}^{\star} \in S_{m} \text{ , } \widehat{s}_{m}(D_{N}) \in S_{m} \text{ p.s.}$$

$$\text{et} \quad \forall t \in S_{m} \text{ , } \forall x \geq 0 \text{ ,}$$

$$\mathbb{P}\left(\left|\delta(t; D_{N}) - \delta(s^{\star}; D_{N})\right| \leq \inf_{\eta \in]0,1]} \left\{ \eta \ell\left(s^{\star}, t\right) + \frac{K_{\delta}x}{\eta N} \right\} \right)$$

$$\geq 1 - 2e^{-x}$$

$$(C\delta)$$

$$p_{1}(m; D_{N}) = P\gamma \left(\widehat{s}_{m}(D_{N})\right) - P\gamma \left(s_{m}^{\star}\right)$$

$$p_{2}(m; D_{N}) = P_{N}\gamma \left(s_{m}^{\star}\right) - P_{N}\gamma \left(\widehat{s}_{m}(D_{N})\right)$$

$$\delta(t; D_{N}) = \left(P_{N} - P\right)\gamma \left(t\right)$$

Concentration: résultat

Proposition (A. 2011)

On suppose : $V \ge 2$, (RegPart), (Epenid), (C p_1), (C p_2) et (C δ) avec $\gamma_m \ge 0$, $K_\delta > 0$ et (w_k) , (q_k) décroissantes positives. Alors, $\forall C > 0, x \ge 0$, avec probabilité $1 - 2V\left(q_{n(V-1)} + 2e^{-x}\right)$,

 $orall \eta \in \]0,1]$,

$$|\mathsf{pen}_{\mathsf{VF}}(m; D_n; C; \mathcal{B}) - \mathbb{E}[\mathsf{pen}_{\mathsf{VF}}(m; D_n; C; \mathcal{B})] - \mathcal{Z}|$$

$$\leq \frac{4C}{V} \left(\eta + 2 \frac{w_{\underline{n(V-1)}}}{V} \right) \mathbb{E}[\mathsf{pen}_{\mathsf{id}}(m; D_n)]$$

$$+ \frac{C}{V} \left(2 \eta \ell(s^*, s_m^*) + \frac{4K_{\delta} \times V}{\eta n} \right)$$

$$o\grave{u} \quad \mathcal{Z} = \mathcal{Z}\left(D_{n}; C; \mathcal{B}\right) = \frac{C}{V} \sum_{j=1}^{V} \left(\delta\left(s^{\star}; D_{n}^{(B_{j})}\right) - \delta\left(s^{\star}; D_{n}^{(-B_{j})}\right)\right)$$

Inégalité-oracle pour la pénalisation "V-fold"

Théorème (A. 2008–2011)

Si de plus $w_k \to 0$, C = V - 1 et $\exists (\kappa_k)_{k \geq 1}$ décroissante,

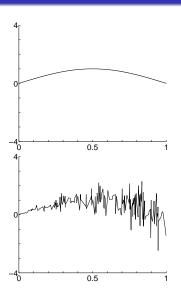
$$\forall N \geq 1$$
, $0 \leq \mathbb{E}\left[\mathsf{pen}_{\mathrm{id}}(m; D_N)\right] \leq \kappa_N \mathbb{E}\left[\ell\left(s^\star, \widehat{s}_m\left(D_N\right)\right)\right]$

Alors, avec probabilité $1 - L_1 V \operatorname{Card}(\mathcal{M}_n) (q_{\frac{n(V-1)}{V}} + e^{-x})$, pour tout $\eta_k \to 0$,

$$\ell\left(s^{\star}, \widehat{s}_{\widehat{m}_{\mathsf{pen}_{\mathsf{VF}}}(D_{n})}\right) \leq \left[1 + L_{2}\left(\eta_{n} + \frac{1}{n} + w_{\frac{n(V-1)}{V}}\right)\right] \times \inf_{m \in \mathcal{M}_{n}} \left\{\ell\left(s^{\star}, \widehat{s}_{m}(D_{n})\right)\right\} + \frac{L_{3}K_{\delta}xV}{\eta_{n}n}$$

Exemple : régressogrammes sous de bonnes hypothèses $(\|Y\|_{\infty} \le A, \ \sigma(\cdot) \ge \sigma_{\min} > 0, \ ...)$

Simulations : sin, n = 200, $\sigma(x) = x$, $\mathcal{M}_n = \mathcal{M}_n^{(\text{reg}, 1/2)}$



Mallows	3.69 ± 0.07
ivialiows	3.09 ± 0.07
2-fold	2.54 ± 0.05
5-fold	2.58 ± 0.06
10-fold	2.60 ± 0.06
20-fold	2.58 ± 0.06
leave-one-out	2.59 ± 0.06
pen 2-f	3.06 ± 0.07
pen 5-f	2.75 ± 0.06
pen 10-f	2.65 ± 0.06
pen Loo	2.59 ± 0.06
Mallows ×1.25	3.17 ± 0.07
pen 2-f $ imes 1.25$	2.75 ± 0.06
pen 5-f $ imes 1.25$	2.38 ± 0.06
pen 10-f $\times 1.25$	2.28 ± 0.05
pen Loo $ imes 1.25$	$2.21 \pm 0.05 \ 59/64$

Choix de V: estimation de densité (A. & Lerasle, 2011)

• Estimation de densité par moindres carrés : sous (RegPart),

$$\begin{split} &\operatorname{\mathsf{var}}\left(\left(\operatorname{\mathsf{pen}}_{\operatorname{VF}}(m)-\operatorname{\mathsf{pen}}_{\operatorname{id}}(m)\right)-\left(\operatorname{\mathsf{pen}}_{\operatorname{VF}}(m')-\operatorname{\mathsf{pen}}_{\operatorname{id}}(m')\right)\right)\\ &=\frac{8}{n^2}\left[1+\frac{1}{V-1}\right]F\left(m,m'\right)+\frac{4}{n}\operatorname{\mathsf{var}}_P\left(s_m^{\star}-s_{m'}^{\star}\right)\\ &\operatorname{\mathsf{avec}}\left.F\left(m,m'\right)>0. \end{split}$$

Pour les histogrammes réguliers,

$$F(m, m') \le (D_m + D_{m'}) \|s^*\|^2 + 2 \|s^*\|^4$$

- Validation croisée
- 2 Sélection d'estimateurs par validation croisée
- Oétection de ruptures
- 4 Pénalisation V-fold
- Conclusion

(c)

accuracy needed x computational power available penLoo pen10F pen5F C_p MalMax

(b)

certainty and amplitude of heteroscedasticity

(a)

- étudier des méthodes utilisées en pratique :
 - heuristiques de "coude" dans la L-curve, heuristique de pente
 - (pénalités par) rééchantillonnage
 - validation croisée

- étudier des méthodes utilisées en pratique :
 - heuristiques de "coude" dans la L-curve, heuristique de pente
 - (pénalités par) rééchantillonnage
 - validation croisée
- utiliser la théorie pour proposer de nouvelles méthodes :
 - pénalités minimales pour les estimateurs linéaires
 - pénalités V-fold pour corriger le biais de la VFCV

- étudier des méthodes utilisées en pratique :
 - heuristiques de "coude" dans la L-curve, heuristique de pente
 - (pénalités par) rééchantillonnage
 - validation croisée
- utiliser la théorie pour proposer de nouvelles méthodes :
 - pénalités minimales pour les estimateurs linéaires
 - pénalités V-fold pour corriger le biais de la VFCV
- résultats théoriques assez fins pour expliquer des différences observées en pratique :
 - comparaison des poids de rééchantillonnage
 - rôle de V pour les méthodes "V-fold"

- étudier des méthodes utilisées en pratique :
 - heuristiques de "coude" dans la L-curve, heuristique de pente
 - (pénalités par) rééchantillonnage
 - validation croisée
- utiliser la théorie pour proposer de nouvelles méthodes :
 - pénalités minimales pour les estimateurs linéaires
 - pénalités V-fold pour corriger le biais de la VFCV
- résultats théoriques assez fins pour expliquer des différences observées en pratique :
 - comparaison des poids de rééchantillonnage
 - rôle de V pour les méthodes "V-fold"
- résultats non-asymptotiques

Problèmes ouverts

- étudier des méthodes utilisées en pratique :
 - validation croisée et pénalités par rééchantillonnage hors des cadres "jouet" (régressogrammes, estimation de densité par moindres carrés)?
 - pénalités minimales avec un contraste différent des moindres carrés (SVM, Lasso, etc.)?

Problèmes ouverts

- étudier des méthodes utilisées en pratique :
 - validation croisée et pénalités par rééchantillonnage hors des cadres "jouet" (régressogrammes, estimation de densité par moindres carrés)?
 - pénalités minimales avec un contraste différent des moindres carrés (SVM, Lasso, etc.)?
- résultats théoriques assez fins pour expliquer des différences observées en pratique :
 - choix d'un rééchantillonnage / d'une méthode de validation croisée?
 - explication de la variabilité (non-systématique) du leave-one-out?

Problèmes ouverts

- étudier des méthodes utilisées en pratique :
 - validation croisée et pénalités par rééchantillonnage hors des cadres "jouet" (régressogrammes, estimation de densité par moindres carrés)?
 - pénalités minimales avec un contraste différent des moindres carrés (SVM, Lasso, etc.)?
- résultats théoriques assez fins pour expliquer des différences observées en pratique :
 - choix d'un rééchantillonnage / d'une méthode de validation croisée?
 - explication de la variabilité (non-systématique) du leave-one-out?
- résultats non-asymptotiques :
 - phénomène de surpénalisation?