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Outline of the 5 lectures

@ Monday 14, 14:00-16:00: Statistical learning

@ Tuesday 15, 9:00-11:00: Model selection for least-squares
regression

© Thursday 17, 14:00-16:00: Linear estimator selection for
least-squares regression

Q Tuesday 22, 14:00-16:00: Resampling and model selection

© Wednesday 23, 9:00-11:00: Cross-validation and
model /estimator selection
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Statistical learning
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Outline

@ The statistical learning problem
© Which estimators?
© Estimator selection
@ Interactions within mathematics

© Conclusion
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Learning

Outline

@ The statistical learning problem
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General framework

Data: &,...,¢6pe=iid. ~ P

Goal: estimate a feature s* € S of P

Quality measure: loss function
vteS , Lp(t)=Eep[v(t:5)]=Pr(t)

minimal at t = s*
Contrast function: 7 : S x =+ [0, +00)

Excess loss

t(s",t) = Py(t) = Py(s")
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Example: prediction

e Data: (X1,Y1),...,(Xn,Ya) €= =X x Y
e Goal: predict Y given X with (X,Y)=¢(~P

@ s*(X) is the “best predictor” of Y given X, i.e., s* minimizes
the loss function

Py(t) with ~(t; (x,y)) = d(t(x),y)

measuring some “distance” between y and the prediction t(x).
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Example: regression: data (X1, Y1),...,(Xy, Ya)
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Goal: find the signal (denoising
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Example: regression

@ prediction with YV =R
e Data: (X1, Y1),...,(Xn, Yn) iid.

Yi=n(X;)+¢e with Ele] X;]=0
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Example: regression

@ prediction with Y =R
e Data: (X1, Y1),...,(Xn, Yn) iid.

Yi=n(Xi)+ei with E[g;| X;i]=0

e least-squares contrast: v(t; (x,y)) = (t(x) — y)?

= st=n and (s 8) = [t =3 =E[(£(X) = n(X))]
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Example: regression on a fixed design

o (Xi,...,Xn) =(x1,...,xn) deterministic
Y=F+cecR" with F=(n(x),...,n(x,)) €R"

and €1, ...,€, centered and independent.
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Example: regression on a fixed design

o (Xi,...,Xn) =(x1,...,xn) deterministic
Y=F+ceR" with F=(n(x),...,n(x,)) €R"

and €1, ...,€, centered and independent.

@ Homoscedastic case: €1,...,¢&, i.i.d.
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Example: regression on a fixed design

o (Xi,...,Xn) =(x1,...,xn) deterministic
Y=F+ceR" with F=(n(x),...,n(x,)) €R"

and €1, ...,€, centered and independent.

@ Homoscedastic case: €1,...,¢&, i.i.d.

@ Quadratic loss of t € S = R":

S|

Lp(t)=Ey Huv—tuﬂ —Ey [

. 1 2 1 2
= s*=F and !@(s,t):;HF*tH Znizg(n(xi)ti)
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Example: regression: fixed vs. random design

Random design Fixed design
Dy (Xiy Yi)rejep id. ~ P Y=F+ceR"
(Xnt1, Yog1) ~ P Xnt1 ~U(X1, ...y Xn)
S t: X —-R teR”
PA(t) Epeyyer (Y = tX))] Ev |31y -]
s* n:x—E[Y] X =x] F=(n(x),...,n(xn))
((sh0)  Fpoyyer | (80X) = 0())] L|F e
with Vx e R" | Ix||? = Zn:x?
i=1

Model selection and estimator selection for statistical learning Sylvain Arlot



Learning
000000800000 000

Example: regression: fixed vs. random design

Random design Fixed design
Dy (Xi, Yi)rcjap id. ~ P Y=FfccR"
(Xn+1, Ynt1) ~ P Xng1 ~U(x1, ..., Xn)
S t: X —-R teR"”
PA(t) Ex,yyep | (Y = t(X))?] Ev |31y -]
s* n:x—E[Y] X =x] F=(n(x),...,n(xn))
((sh0)  Fpoyyer | (80X) = 0())] L|F e
with Vx e R" | Ix||? = Zn:x?
i=1
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Example: regression: fixed vs. random design

Random design Fixed design
Dy, (X, Yi)1icy iid. ~ P Y=F+ececR"
(Xn+1, Ynt1) ~ P Xng1 ~U(x1, ..., Xn)
S t: X >R t e R"
PA(t) Epeyyer (Y = tX))] Ev |31y -]
s* n:x—=E[Y]X=x] F=(na),...,n(x))
((sh0)  Fpoyyer | (80X) = 0())] LIF P
with Vx e R" | Ix||? = Zn:x?
i=1
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Example: density estimation (

= R): data

10

-2
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Example: density estimation (= = R): data and target
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Density estimation

@ 1 reference measure on =

o f density of P w.r.t.
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Density estimation

@ 1 reference measure on =

o f density of P w.r.t.

o (t;§) = —In(¢(£))

= s* = f and {(s*, t) Kullback-Leibler distance from s* to t
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Density estimation

@ 1 reference measure on =

o f density of P w.r.t.

o (t;§) = —In(¢(£))

= s* = f and {(s*, t) Kullback-Leibler distance from s* to t

o Y(£:€) = lItlfa — 2(€)
* — *|2
:>5*:fand 6(5 ’t)_Ht*S ”L2(l”)
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Example: classification (prediction, ¥ =R, Y = {0,1})
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Example: classification (prediction, ¥ =R, Y = {0,1})

-2 0 2 4 6 8 10
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Example: classification (prediction, ¥ =R, Y = {0,1})
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Example: classification (prediction, ¥ =R, Y = {0,1})
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Example: binary supervised classification

@ Prediction, ¥ =R and Y ={0,1}
e If S = { measurable mappings X — )}
0-1 loss: ¥(t;(x,¥)) = Ly,
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Example: binary supervised classification

@ Prediction, ¥ =R and Y ={0,1}
e If S = { measurable mappings X — )}
0-1 loss: ¥(t;(x,¥)) = Ly,

e If t € S = { measurable mappings X — [0,1]},
Convex losses: (t; (x,y)) = p(t(x)(1 —2y)) with p : R — R
convex, non-negative, non-increasing.
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Outline

© Which estimators?
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What is an estimator?

@ Statistical algorithm or Learning rule:
A Upen ="+ S
sample D, = (&1,...,&n) — A(Dp)

o A(D,) =354(D,) =3(D,) €S is an estimator of s*
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Estimators
[ o]

What is an estimator?

@ Statistical algorithm or Learning rule:
A Upen ="+ S
sample D, = (&1,...,&n) — A(Dp)

o A(D,) =354(D,) =3(D,) €S is an estimator of s*

o Remark: Py (54(D,)) and ¢ (s*,54(D,)) are random
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Estimators
[ o]

What is an estimator?

@ Statistical algorithm or Learning rule:
A Upen ="+ S
sample D, = (&1,...,&n) — A(Dp)

o A(D,) =354(D,) =3(D,) €S is an estimator of s*
o Remark: Py (54(D,)) and ¢ (s*,54(D,)) are random
o Risk of s%:
Ep,~pen [Py (34(Dn))] = R(A, n)
o Excess risk of $4:

Ep,~pon [£ (s*,54(D,))] = R(A.n) — Py (s")
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(Universal) consistency, learning rates

o Consistency (P fixed): ¢ (s*,54(D,)) — 0 as n — 400
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Estimators
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(Universal) consistency, learning rates

o Consistency (P fixed): ¢ (s*,54(D,)) — 0 as n — 400

@ Universal consistency:
supp { liMp—oo Ep,pan [£ (s*,54(Ds))] } =0
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(Universal) consistency, learning rates

o Consistency (P fixed): ¢ (s*,54(D,)) — 0 as n — 400

@ Universal consistency:
supp { liMp—oo Ep,pan [£ (s*,54(Ds))] } =0

@ Uniform universal consistency:
limp_o0 supp { Ep,pen [£(s*,54(Dp))] } = 0 (uniform
learning rate over all distributions).
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(Universal) consistency, learning rates

o Consistency (P fixed): ¢ (s*,54(D,)) — 0 as n — 400

@ Universal consistency:
supp { liMp—oo Ep,pan [£ (s*,54(Ds))] } =0

@ Uniform universal consistency:
limp_o0 supp { Ep,pen [£(s*,54(Dp))] } = 0 (uniform
learning rate over all distributions).

@ “No Free Lunch” (cf. Devroye, Gyorfi & Lugosi, 1996):
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(Universal) consistency, learning rates

o Consistency (P fixed): ¢ (s*,54(D,)) — 0 as n — 400

@ Universal consistency:
supp { liMp—oo Ep,pan [£ (s*,54(Ds))] } =0

@ Uniform universal consistency:
limp_o0 supp { Ep,pen [£(s*,54(Dp))] } = 0 (uniform
learning rate over all distributions).

@ “No Free Lunch” (cf. Devroye, Gyorfi & Lugosi, 1996):
In binary classification with X infinite, VA, Vn > 1,

sup {Eppon [£(5",54(00))] } = 5
= assumptions on P are necessary for having uniform learning rates
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L east-squares estimator: regressogram

“ 02 04 06 08 1
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L east-squares estimator

o Framework: Regression, least-squares contrast
1(t: (x,¥)) = (t(x) — y)?

@ Natural idea: minimize an_estimator of
PA(t) =E [ (¢(X) — Y )?]
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L east-squares estimator

o Framework: Regression, least-squares contrast
Yt (x,y)) = (t(x) — y)?
o Natural idea: minimize an_estimator of

PA(t) =E [ (¢(X) - V)’

o Least-squares criterion:
1 n ) - 1 n
Pn = - Xi) =Y h P,=-— ,
) = 500 = V) i 2%

VieS , E[Pn(t)] = Pr(t)
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L east-squares estimator

o Framework: Regression, least-squares contrast
Yt (x,y)) = (t(x) — y)?
o Natural idea: minimize an_estimator of

PA(t) =E [ (¢(X) - V)’

@ Least-squares criterion:
1 n ) - 1 n
P, =— X)—Y; h P,=-— .
) = 50 =) 2%
veeS , E[Pay(t)] = Py(t)

@ Model: S C S = Least-squares estimator on S:

R ) ) 1 < 2
S P(t)} = - t(X;)—Y;
55 € argmin { P(t)} argrpelg{n;( (Xi)— Vi) }
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Model examples in regression

@ histograms on some partition A of X
= the least-squares estimator (regressogram) can be written

Sm:g\mh O\ = Card 1%, EA}ZY

@ subspace generated by a subset of an orthogonal basis of
L?(p) (Fourier, wavelets, and so on)

1

@ variable selection: X; = (X.(l), ... ,Xi(p)) € RP gathers p

variables that can (linearly) explain Y

Vmc{l,....,p} , Sm={t: xeXHZﬁJ st. BeR™

JEM
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Regression: fixed vs. random design

Random design Fixed design
D, (Xi, Yi)icicp iid. ~ P Y=F+eecR"
(Xnt1, Yni1) ~ P Xng1 ~ U1, - - - xn)
S t: X —-R teR”
PA(t) Epyyer | (Y = t(X))?] Ev [L11Y = tP]
st n:x—E[Y] X =x] F=(n(x), ..., n(xn))
(sh0)  Epovyer [ (600 =n(X))?] LIF - e
Puy(t) = £ 320, (Vi — (X))’ Ly — ¢
with ¥x e R" | Ix]|? = Zn:x,?

Model selection and estimator selection for statistical learning Sylvain Arlot



Estimators
0000e

Minimum contrast estimators

e Empirical risk (or empirical contrast)
1 n
Pr(t) == ~(t:&)
i=1
o Vte S, E[Py(t)] = Pr(t)

@ Minimum contrast estimator (empirical risk minimizer) on
some model S C S:

1 n
Ss € inPyy(t) with P,==% 4
ss € argmin ay(t)  wi n n; 3

@ Another example: maximume-likelihood in density estimation:
V(£:€) = —In(t(¢))
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Regularized estimator: kernel ridge regression

@ ldea: control the estimator norm in some functional space F
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e0

Regularized estimator: kernel ridge regression

@ Idea: control the estimator norm in some functional space F

e F C S is the Reproducing Kernel Hilbert Space (RKHS)
associated with a positive definite kernel k: X x X — R

1o ’ )
f eargm Yi — (X)) + \||f
arg e'ﬁ{ > ( (Xi))™+ All ||7:}

=
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Regularized estimator: kernel ridge regression

@ Idea: control the estimator norm in some functional space F

e F C S is the Reproducing Kernel Hilbert Space (RKHS)
associated with a positive definite kernel k: X x X — R

1o ’ )
f eargm Yi — (X)) + \||f
arg e'ﬁ{ > ( (Xi))™+ All ||7:}

=

o Representer theorem = f = Son g aik(Xi,-)
o Fixed design: (/f(x,-))lg,-g,, —F= K(K + nAl,)~tY
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Regularized estimator: kernel ridge regression

@ Idea: control the estimator norm in some functional space F

e F C S is the Reproducing Kernel Hilbert Space (RKHS)
associated with a positive definite kernel k: X x X — R

1y 2 2
fe argr@;{ Z(YI — (X)) +>‘||f||}'}
o Representer theorem = f = Son g aik(Xi,-)
o Fixed design: (f(x;))1<icn = F = K(K + nAl,) 1Y
@ An example of linear estimator F = AY
Other examples: least-squares, k-nearest-neighbours (in
regression), Nadaraya-Watson, and so on
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Other regularized estimators

@ Support Vector Machines (SVM) in classification:
. 2
argmin { Poinge(F) + A 15 |

@ Lasso (Tibshirani 1996): regression, X = RP

1< T \2
argvpgﬂgp{QZ(Yi—w Xi) +AIIWII1}

i=1

@ Structured Lasso

arg min { ( - WTX> +)\Q(W)}
weRP
i=1
e.g., group Lasso (Yuan & Lin 2006): Q(w) =3_, g l[wgll,



Estimators
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Classification (X = R)
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Nearest neighbour rule
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k-nearest neighbours rule (k = 20)
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20-nearest neighbours rule: regression
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Estimator selection

Outline

© Estimator selection
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How to choose the dimension D?

4 4

2 2 .

0 0

2 -2

-4 4

0 02 04 06 08 1 0 02 04 06 08 1
D=1 D=

4 4

ot TR T il 20 el

2 -2
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D=9 D =36
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How to choose the number k of neighbours?

2 ° g ° e 8

k=100 k = 200
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Estimator selection problem

@ Collection of statistical algorithms given: (Anm)mem

@ Problem: choosing among (Am(Dn))mem = (5Sm(Dn))mem

Model selection and estimator selection for statistical learning Sylvain Arlot



Estimator selection
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Estimator selection problem

@ Collection of statistical algorithms given: (Anm)mem

@ Problem: choosing among (Am(Dp))mem = (Sm(Dn)) mem

@ Examples:
e model selection
o calibration (choice of k or of the distance for k-NN, choice of
the regularization parameter, choice of some kernel, and so on)
e choosing among algorithms of different nature, e.g.,
k-NN and SVM
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Goal: estimation or prediction

e Main goal: find m minimizing ¢ (S*,/S\,’ﬁ(Dn)(Dn))
@ Oracle: m* € argminmen, {£(s*,5m(Dn)) }
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Estimator selection
[e]e]e] lelele]e]

Goal: estimation or prediction

e Main goal: find m minimizing ¢ (S*,/S\,’ﬁ(Dn)(Dn))
e Oracle: m* € argminmen, {£(s*,5m(Dn)) }
@ Oracle inequality (in expectation or with high probability):
0(s*,55) < C inf {£(s*,5m(Dn))}+ Rn
meM,
@ Non-asymptotic: all parameters can vary with n, in particular

the collection M = M,
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Estimator selection
[e]e]e] lelele]e]

Goal: estimation or prediction

e Main goal: find m minimizing ¢ (S*,/S\,’ﬁ(Dn)(Dn))
e Oracle: m* € argminmen, {£(s*,5m(Dn)) }

@ Oracle inequality (in expectation or with high probability):

*m) < inf *5m(Dn Rn
((s"5m) < € inf {£(s"5m(Dn))} +

@ Non-asymptotic: all parameters can vary with n, in particular
the collection M = M,

e Adaptation (e.g., in the minimax sense) to the regularity of
s*, to variations of E [¢? | X, and so on (if (Am)mem, is
well chosen)
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Estimator selection
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Goal: identification

e Additional assumption (model selection case): s* € Sp,, for
some mg € M,

o Additional goal: select m = mg with a maximal probability

o Consistency:
P(m=my) ——1
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Estimator selection
[e]e]e]e] Telele]

Goal: identification

e Additional assumption (model selection case): s* € Sp,, for
some mg € M,

o Additional goal: select m = mg with a maximal probability

o Consistency:

P(m=m) —— 1
n—oo

e Estimation and identification (AIC-BIC dilemma)?
Contradictory goals in general (Yang, 2005)
Sometimes possible to share the strengths of both approaches
(e.g., Yang, 2005; van Erven et al., 2008)
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Model selection: bias and variance

E[¢(s*,5m(Ds))] = Bias + Variance

modéle
Bias or Approximation error _—
+
* k) .__ *
f(s 75m)'_ Inf {E(S 7t)} biais
teSm
Variance or Estimation error variance

E [Py (5m(Dn))] = Py (sm)
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Estimator selection
[ee]e]ele] lele]

Model selection: bias and variance

E[¢(s*,5m(Ds))] = Bias + Variance

modéle
Bias or Approximation error _—
+
* k) .__ *
f(s 75m)'_ Inf {E(S 7t)} biais
teSm
Variance or Estimation error variance

E [Py (5m(Dn))] = Py (sm)

Bias-variance trade-off
= avoid over-fitting and under-fitting
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Bias-variance trade-off

- - -Biais
Exces de risque

Dimension
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Estimator selection
O000000e

Example: homoscedastic regression on a fixed design

Y=F+e with E[e7] =07

Fn=AnY with Apn=Al =A% and tr(An)=dim(Sm)

= Bias-variance decomposition of the risk
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Estimator selection
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Example: homoscedastic regression on a fixed design

Y=F+e with E[e7] =07

Fn=AnY with Apn=Al =A% and tr(An)=dim(Sm)
= Bias-variance decomposition of the risk

Fm = arg m|n {Ht—FH }:AmF

SR - e 295

= Bias + Variance
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Estimator selection
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Unbiased risk estimation principle

m € arg neq/l\r)l {crit(m) }
m n

critig(m) = £(s*,5m(Dy))

Heuristics:
crit(m) = E[{(s*,5m(Dn))]

= valid if Card(M,) is not too large
(+ concentration inequalities)
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Estimator selection
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Why should the empirical risk be penalized?

= = =Biais
Exces de risque r

—— E[Risque empirique]
0.1F
0.05F
O b
-0.05fF
-0.1F

0 5 10 15 20 25

Dimension
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Estimator selection
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Penalization

@ Penalization: crit(m) = P,y (5m) + pen(m)

m € arg min {Ppy(Sm) + pen(m) }
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Estimator selection
O0e00000000

Penalization

@ Penalization: crit(m) = P,y (5m) + pen(m)
M e IPa(S
m € arg min {Pry(5m) + pen(m) }

@ Ideal penalty:

penid(m) - (P - Pn)f\/ (/S\m)

@ Mallows' heuristics:
pen(m) ~ E [pen;q(m)] = oracle inequality
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Estimator selection
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Example: homoscedastic regression on a fixed design

Recall that
Y=F+e with E[ef] =0

]

~

Frm=AnY with A,=Al =A2 and

E “ ?m—Fm

= Empirical risk? ldeal penalty? Expectations?

tr(Am) = dim(S,)

2 .
L (An — DR 4 TEmE)
n n

Model selection and estimator selection for statistical learning Sylvain Arlot



Estimator selection
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Example: homoscedastic regression on a fixed design

Recall that
Y=F+e with E[ef] =0

]

Fn=AnY with Ap=Al =A% and tr(Ay)=dim(5m)

o[} = St 2L

= Empirical risk? ldeal penalty? Expectations?

2 2
pen;q(m) = " (Ame, &) + n ((Am —In)F, €)
202D,
E [penjqg(m)] = p = (, (Mallows, 1973)

Model selection and estimator selection for statistical learning Sylvain Arlot



Estimator selection
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Classical penalties

e C, (Mallows, 1973; regression, least-squares estimator):
20°Dy,/n
e C; (Mallows, 1973; regression, linear estimator Fm = AnY):
202 tr(Am)/n
e AIC (Akaike, 1973; log-likelihood, p degrees of freedom):
2p/n
@ BIC (Schwarz, 1978; log-likelihood, identification goal):

In(n)p/n

Model selection and estimator selection for statistical learning Sylvain Arlot



Estimator selection
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Estimator selection
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Hold-out: training sample
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Estimator selection
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Hold-out: training sample
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Hold-out: validation sample
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Hold-out: validation sample

“ 02 04 06 08 1
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Unbiased risk estimation principle

Heuristics:
E[crit(m)] ~ E[Py(sm)] < E[pen(m)]~ E[peniy(m)]

Examples:
e FPE (Akaike, 1970), SURE (Stein, 1981)
@ some kinds of cross-validation (e.g., leave-p-out, p < n)

@ log-likelihood: AIC (Akaike, 1973), AlCc (Sugiura, 1978;
Hurvich & Tsai, 1989)

o least-squares: C,, C; (Mallows, 1973), GCV (Craven &
Wahba, 1979)

@ covariance penalties (Efron, 2004)
@ bootstrap penalty (Efron, 1983), resampling (A., 2009)
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Interactions

Outline

@ Interactions within mathematics
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Interactions
@0000

Probability theory: measure concentration

@ Empirical processes:

(Pn = P)y(t) or sup{(Pn—P)y(t)}

o Concentration of quadratic terms, |[Me||?, x2-type statistics
(writting them as a sup, or through the general problem of
concentration of U-statistics)

@ More complex quantities, such as the “ideal penalty”

(P - Pn)7 (gm(Dn))
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Probability theory

@ Exact computation or upper bounds on expectations:
E |sup {(Pn— P)y(t)}
tes

E[(P = Pn)y (5m(Dn))]

@ Understanding the risk as a function of n
E [Py (5m(Dn))]

@ Resampling process

e Control of remainder terms (variance, deviations, ...)
compared to expectations
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Approximation theory

@ Bias term £ (s*,Sp,)

Necessary to control it for deducing an adaptation result from
an oracle inequality

Conversely, how should we choose (S ),,c 1, knowing that
pPeP?

Control of ¢ (s*, S, ) (upper and lower bound) useful for
controlling dim(S5) and dim(Sy+)
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Optimization: for practical reasons

@ 5y(D,) often defined as an arg min
= Computing 5,(D,) for every m (approximately or not)?

= Direct computation of (5(Dn)),enq, (regularization path,
e.g. LARS-Lasso)?
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Optimization: for practical reasons

@ 5y(D,) often defined as an arg min

Computing 5,(D;,) for every m (approximately or not)?

R

Direct computation of (5m(Dn)),enq, (regularization path,
e.g. LARS-Lasso)?

e Computing m € arg min e aq, { crit(m) } without going
through all m € M,? (e.g., dynamic programming for
change-point detection: Bellman & Dreyfus, 1962; Rigaill,
2010)
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Optimization: for practical reasons

@ 5y(D,) often defined as an arg min
= Computing 5,(D,) for every m (approximately or not)?

= Direct computation of (5,(Dn)) e, (regularization path,
e.g. LARS-Lasso)?

e Computing m € arg min e aq, { crit(m) } without going
through all m € M,? (e.g., dynamic programming for
change-point detection: Bellman & Dreyfus, 1962; Rigaill,
2010)

@ The most interesting procedures to study are the ones for
which efficient algorithms exist.
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Optimization: for theoretical reasons

@ 5p(Dy) often defined as an arg min

= KKT conditions can caracterize it

e Ex: ideal penalty for the Lasso (Efron et al. 2004; Zou, Hastie
& Tibshirani 2007)

@ RKHS and kernel methods: representer theorem
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Conclusion

Results we are looking for

@ guarantees for practical procedures

@ theory precise enough for explaining differences observed
experimentally

@ “non-asymptotic” results

@ use theory for designing new procedures, that do not have the
drawbacks of existing procedures
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