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Outline of the 5 lectures

1 Monday 14, 14:00–16:00: Statistical learning

2 Tuesday 15, 9:00–11:00: Model selection for least-squares
regression

3 Thursday 17, 14:00–16:00: Linear estimator selection for
least-squares regression

4 Tuesday 22, 14:00–16:00: Resampling and model selection

5 Wednesday 23, 9:00–11:00: Cross-validation and
model/estimator selection
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Learning Estimators Estimator selection Interactions Conclusion

Part I

Statistical learning
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Learning Estimators Estimator selection Interactions Conclusion

Outline

1 The statistical learning problem

2 Which estimators?

3 Estimator selection

4 Interactions within mathematics

5 Conclusion
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Learning Estimators Estimator selection Interactions Conclusion

General framework

Data: ξ1, . . . , ξn ∈ Ξ i.i.d. ∼ P

Goal: estimate a feature s? ∈ S of P

Quality measure: loss function

∀t ∈ S , LP ( t ) = Eξ∼P [γ(t; ξ) ] = Pγ(t)

minimal at t = s?

Contrast function: γ : S× Ξ 7→ [0,+∞)

Excess loss
` (s?, t ) = Pγ(t)− Pγ(s?)

Model selection and estimator selection for statistical learning Sylvain Arlot
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Learning Estimators Estimator selection Interactions Conclusion

Example: prediction

Data: (X1,Y1), . . . , (Xn,Yn) ∈ Ξ = X × Y

Goal: predict Y given X with (X ,Y ) = ξ ∼ P

s?(X ) is the “best predictor” of Y given X , i.e., s? minimizes
the loss function

Pγ(t) with γ(t; (x , y)) = d(t(x), y)

measuring some “distance” between y and the prediction t(x).
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Learning Estimators Estimator selection Interactions Conclusion

Example: regression: data (X1, Y1), . . . , (Xn, Yn)
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Goal: find the signal (denoising)
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Example: regression

prediction with Y = R

Data: (X1,Y1), . . . , (Xn,Yn) i.i.d.

Yi = η(Xi ) + εi with E [εi | Xi ] = 0

least-squares contrast: γ(t; (x , y)) = (t(x)− y)2

⇒ s? = η and ` (s?, t ) = ‖t − η‖2
2 = E

[
( t(X )− η(X ))2

]
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Example: regression on a fixed design

(X1, . . . ,Xn) = (x1, . . . , xn) deterministic

Y = F + ε ∈ Rn with F = (η(x1), . . . , η(xn)) ∈ Rn

and ε1, . . . , εn centered and independent.

Homoscedastic case: ε1, . . . , εn i.i.d.

Quadratic loss of t ∈ S = Rn:

LP ( t ) = EY

[
1

n
‖Y − t‖2

]
= EY

[
1

n

n∑
i=1

(Yi − ti )2

]

⇒ s? = F and ` (s?, t ) =
1

n
‖F − t‖2 =

1

n

n∑
i=1

(η(xi )− ti )2

Model selection and estimator selection for statistical learning Sylvain Arlot



11/62

Learning Estimators Estimator selection Interactions Conclusion

Example: regression on a fixed design

(X1, . . . ,Xn) = (x1, . . . , xn) deterministic

Y = F + ε ∈ Rn with F = (η(x1), . . . , η(xn)) ∈ Rn

and ε1, . . . , εn centered and independent.

Homoscedastic case: ε1, . . . , εn i.i.d.

Quadratic loss of t ∈ S = Rn:

LP ( t ) = EY

[
1

n
‖Y − t‖2

]
= EY

[
1

n

n∑
i=1

(Yi − ti )2

]

⇒ s? = F and ` (s?, t ) =
1

n
‖F − t‖2 =

1

n

n∑
i=1

(η(xi )− ti )2

Model selection and estimator selection for statistical learning Sylvain Arlot



11/62

Learning Estimators Estimator selection Interactions Conclusion

Example: regression on a fixed design

(X1, . . . ,Xn) = (x1, . . . , xn) deterministic

Y = F + ε ∈ Rn with F = (η(x1), . . . , η(xn)) ∈ Rn

and ε1, . . . , εn centered and independent.

Homoscedastic case: ε1, . . . , εn i.i.d.

Quadratic loss of t ∈ S = Rn:

LP ( t ) = EY

[
1

n
‖Y − t‖2

]
= EY

[
1

n

n∑
i=1

(Yi − ti )2

]

⇒ s? = F and ` (s?, t ) =
1

n
‖F − t‖2 =

1

n

n∑
i=1

(η(xi )− ti )2

Model selection and estimator selection for statistical learning Sylvain Arlot



12/62

Learning Estimators Estimator selection Interactions Conclusion

Example: regression: fixed vs. random design

Random design Fixed design

Dn (Xi ,Yi )1≤i≤n i.i.d. ∼ P Y = F + ε ∈ Rn

(Xn+1,Yn+1) ∼ P Xn+1 ∼ U(x1, . . . , xn)

S t : X → R t ∈ Rn

Pγ(t) E(X ,Y )∼P

[
(Y − t(X ))2

]
EY

[
1
n ‖Y − t‖2

]
s? η : x → E [Y | X = x ] F = (η(x1), . . . , η(xn))

` (s?, t ) E(X ,Y )∼P

[
( t(X )− η(X ))2

]
1
n ‖F − t‖2

with ∀x ∈ Rn , ‖x‖2 =
n∑

i=1

x2
i
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Learning Estimators Estimator selection Interactions Conclusion

Example: density estimation (Ξ = R): data

−2 0 2 4 6 8 10

Model selection and estimator selection for statistical learning Sylvain Arlot



14/62
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Example: density estimation (Ξ = R): data and target

−2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
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Density estimation

µ reference measure on Ξ

f density of P w.r.t. µ

γ(t; ξ) = − ln(t(ξ))
⇒ s? = f and ` (s?, t ) Kullback-Leibler distance from s? to t

γ(t; ξ) = ‖t‖2
L2(µ) − 2t(ξ)

⇒ s? = f and ` (s?, t ) = ‖t − s?‖2
L2(µ)
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Example: classification (prediction, X = R, Y = {0, 1})

−2 0 2 4 6 8 10
 

 

classe 0
classe 1
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Example: classification (prediction, X = R, Y = {0, 1})
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Example: classification (prediction, X = R, Y = {0, 1})

−2 0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Model selection and estimator selection for statistical learning Sylvain Arlot



20/62

Learning Estimators Estimator selection Interactions Conclusion

Example: binary supervised classification

Prediction, X = R and Y = {0, 1}
If S = {measurable mappings X 7→ Y }
0–1 loss: γ(t; (x , y)) = 1t(x) 6=y

If t ∈ S = {measurable mappings X 7→ [0, 1]},
Convex losses: γ(t; (x , y)) = ϕ(t(x)(1− 2y)) with ϕ : R 7→ R
convex, non-negative, non-increasing.
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Learning Estimators Estimator selection Interactions Conclusion

What is an estimator?

Statistical algorithm or Learning rule:
A:
⋃

n∈N Ξn 7→ S
sample Dn = (ξ1, . . . , ξn ) 7→ A(Dn)

A(Dn) = ŝA(Dn) = ŝ(Dn) ∈ S is an estimator of s?

Remark: Pγ
(
ŝA(Dn)

)
and `

(
s?, ŝA(Dn)

)
are random

Risk of ŝA:

EDn∼P⊗n

[
Pγ
(
ŝA(Dn)

)]
= R(A, n)

Excess risk of ŝA:

EDn∼P⊗n

[
`
(
s?, ŝA(Dn)

)]
= R(A, n)− Pγ (s? )
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ŝA(Dn)

)
and `

(
s?, ŝA(Dn)
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(Universal) consistency, learning rates

Consistency (P fixed): `
(
s?, ŝA(Dn)

)
→ 0 as n→ +∞

Universal consistency:
supP

{
limn→∞ EDn∼P⊗n

[
`
(
s?, ŝA(Dn)

)]}
= 0

Uniform universal consistency:
limn→∞ supP

{
EDn∼P⊗n

[
`
(
s?, ŝA(Dn)

)]}
= 0 (uniform

learning rate over all distributions).

“No Free Lunch” (cf. Devroye, Györfi & Lugosi, 1996):

In binary classification with X infinite, ∀A, ∀n ≥ 1,

sup
P

{
EDn∼P⊗n

[
`
(
s?, ŝA(Dn)

)]}
=

1

2

⇒ assumptions on P are necessary for having uniform learning rates

Model selection and estimator selection for statistical learning Sylvain Arlot
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s?, ŝA(Dn)

)
→ 0 as n→ +∞

Universal consistency:
supP

{
limn→∞ EDn∼P⊗n

[
`
(
s?, ŝA(Dn)
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Least-squares estimator: regressogram
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Least-squares estimator

Framework: Regression, least-squares contrast
γ(t; (x , y)) = (t(x)− y)2

Natural idea: minimize an estimator of
Pγ(t) = E

[
( t(X )− Y )2

]

Least-squares criterion:

Pnγ(t) =
1

n

n∑
i=1

( t(Xi )− Yi )2 with Pn =
1

n

n∑
i=1

δξi

∀t ∈ S , E [Pnγ(t) ] = Pγ(t)

Model: S ⊂ S ⇒ Least-squares estimator on S :

ŝS ∈ arg min
t∈S
{Pnγ(t)} = arg min

t∈S

{
1

n

n∑
i=1

( t(Xi )− Yi )2

}
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ŝS ∈ arg min
t∈S
{Pnγ(t)} = arg min

t∈S

{
1

n

n∑
i=1

( t(Xi )− Yi )2

}

Model selection and estimator selection for statistical learning Sylvain Arlot



25/62

Learning Estimators Estimator selection Interactions Conclusion

Least-squares estimator

Framework: Regression, least-squares contrast
γ(t; (x , y)) = (t(x)− y)2

Natural idea: minimize an estimator of
Pγ(t) = E

[
( t(X )− Y )2

]
Least-squares criterion:

Pnγ(t) =
1

n

n∑
i=1

( t(Xi )− Yi )2 with Pn =
1

n

n∑
i=1

δξi

∀t ∈ S , E [Pnγ(t) ] = Pγ(t)

Model: S ⊂ S ⇒ Least-squares estimator on S :
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Model examples in regression

histograms on some partition Λ of X
⇒ the least-squares estimator (regressogram) can be written

ŝm =
∑
λ∈Λ

β̂λ1λ β̂λ =
1

Card {Xi ∈ λ}
∑
Xi∈λ

Yi

subspace generated by a subset of an orthogonal basis of
L2(µ) (Fourier, wavelets, and so on)

variable selection: Xi =
(

X
(1)
i , . . . ,X

(p)
i

)
∈ Rp gathers p

variables that can (linearly) explain Y

∀m ⊂ {1, . . . , p} , Sm =

 t : x ∈ X 7→
∑
j∈m

βjx
(j) s.t. β ∈ Rm

 .
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27/62

Learning Estimators Estimator selection Interactions Conclusion

Regression: fixed vs. random design

Random design Fixed design

Dn (Xi ,Yi )1≤i≤n i.i.d. ∼ P Y = F + ε ∈ Rn

(Xn+1,Yn+1) ∼ P Xn+1 ∼ U(x1, . . . , xn)

S t : X → R t ∈ Rn

Pγ(t) E(X ,Y )∼P

[
(Y − t(X ))2

]
EY

[
1
n ‖Y − t‖2

]
s? η : x → E [Y | X = x ] F = (η(x1), . . . , η(xn))

` (s?, t ) E(X ,Y )∼P

[
( t(X )− η(X ))2

]
1
n ‖F − t‖2

Pnγ(t) = 1
n

∑n
i=1 (Yi − t(Xi ))2 1

n ‖Y − t‖2

with ∀x ∈ Rn , ‖x‖2 =
n∑

i=1

x2
i

Model selection and estimator selection for statistical learning Sylvain Arlot
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Minimum contrast estimators

Empirical risk (or empirical contrast)

Pnγ(t) =
1

n

n∑
i=1

γ ( t; ξi )

∀t ∈ S, E [Pnγ(t) ] = Pγ(t)

Minimum contrast estimator (empirical risk minimizer) on
some model S ⊂ S:

ŝS ∈ arg min
t∈S

Pnγ(t) with Pn =
1

n

n∑
i=1

δξi

Another example: maximum-likelihood in density estimation:
γ(t; ξ) = − ln(t(ξ))
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Regularized estimator: kernel ridge regression

Idea: control the estimator norm in some functional space F

F ⊂ S is the Reproducing Kernel Hilbert Space (RKHS)
associated with a positive definite kernel k : X × X 7→ R

f̂ ∈ arg min
f ∈F

{
1

n

n∑
i=1

(Yi − f (Xi ))2 + λ ‖f ‖2
F

}

Representer theorem ⇒ f̂ =
∑n

i=1 α̂ik(Xi , ·)
Fixed design: (f̂ (xi ))1≤i≤n = F̂ = K (K + nλIn)−1Y

An example of linear estimator F̂ = AY
Other examples: least-squares, k-nearest-neighbours (in
regression), Nadaraya-Watson, and so on
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Other regularized estimators

Support Vector Machines (SVM) in classification:

arg min
f ∈F

{
Pnγhinge(f ) + λ ‖f ‖2

F

}
Lasso (Tibshirani 1996): regression, X = Rp

arg min
w∈Rp

{
1

2

n∑
i=1

(
Yi − w>Xi

)2
+ λ ‖w‖1

}

Structured Lasso

arg min
w∈Rp

{
1

2

n∑
i=1

(
Yi − w>Xi

)2
+ λΩ(w)

}

e.g., group Lasso (Yuan & Lin 2006): Ω(w) =
∑

g∈G ‖wg‖2
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Classification (X = R)
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Nearest neighbour rule
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k-nearest neighbours rule (k = 20)
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20-nearest neighbours rule: regression
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Outline

1 The statistical learning problem

2 Which estimators?

3 Estimator selection

4 Interactions within mathematics

5 Conclusion
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How to choose the dimension D?

D = 1

D = 9

D = 3

D = 36
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How to choose the number k of neighbours?
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Estimator selection problem

Collection of statistical algorithms given: (Am)m∈M

Problem: choosing among (Am(Dn))m∈M = (ŝm(Dn))m∈M

Examples:

model selection
calibration (choice of k or of the distance for k-NN, choice of
the regularization parameter, choice of some kernel, and so on)
choosing among algorithms of different nature, e.g.,
k-NN and SVM
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Goal: estimation or prediction

Main goal: find m̂ minimizing `
(
s?, ŝbm(Dn)(Dn)

)
Oracle: m? ∈ arg minm∈Mn {` (s?, ŝm(Dn))}

Oracle inequality (in expectation or with high probability):

` (s?, ŝbm ) ≤ C inf
m∈Mn

{` (s?, ŝm(Dn))}+ Rn

Non-asymptotic: all parameters can vary with n, in particular
the collection M =Mn

Adaptation (e.g., in the minimax sense) to the regularity of
s?, to variations of E

[
ε2
∣∣ X

]
, and so on (if (Am)m∈Mn is

well chosen)
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Goal: identification

Additional assumption (model selection case): s? ∈ Sm0 for
some m0 ∈Mn

Additional goal: select m̂ = m0 with a maximal probability

Consistency:
P (m̂ = m0 ) −−−→

n→∞
1

Estimation and identification (AIC-BIC dilemma)?
Contradictory goals in general (Yang, 2005)
Sometimes possible to share the strengths of both approaches
(e.g., Yang, 2005; van Erven et al., 2008)
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Model selection: bias and variance

E [` (s?, ŝm(Dn)) ] = Bias + Variance

Bias or Approximation error

` (s?, s?m ) := inf
t∈Sm

{` (s?, t )}

Variance or Estimation error

E [Pγ ( ŝm(Dn)) ]− Pγ (s?m )

Bias-variance trade-off
⇒ avoid over-fitting and under-fitting
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Bias-variance trade-off
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Example: homoscedastic regression on a fixed design

Y = F + ε with E
[
ε2
i

]
= σ2

F̂m = AmY with Am = A>m = A2
m and tr(Am) = dim(Sm)

⇒ Bias-variance decomposition of the risk

Fm = arg min
t∈Sm

{
‖t − F‖2

}
= AmF

E
[

1

n

∥∥∥F̂m − F
∥∥∥2
]

=
1

n
‖(Am − I )F‖2 +

σ2 dim(Sm)

n

= Bias + Variance

Model selection and estimator selection for statistical learning Sylvain Arlot



43/62

Learning Estimators Estimator selection Interactions Conclusion

Example: homoscedastic regression on a fixed design

Y = F + ε with E
[
ε2
i

]
= σ2

F̂m = AmY with Am = A>m = A2
m and tr(Am) = dim(Sm)

⇒ Bias-variance decomposition of the risk

Fm = arg min
t∈Sm

{
‖t − F‖2

}
= AmF

E
[

1

n

∥∥∥F̂m − F
∥∥∥2
]

=
1

n
‖(Am − I )F‖2 +

σ2 dim(Sm)

n

= Bias + Variance

Model selection and estimator selection for statistical learning Sylvain Arlot



44/62

Learning Estimators Estimator selection Interactions Conclusion

Unbiased risk estimation principle

m̂ ∈ arg min
m∈Mn

{crit(m)}

critid(m) = ` (s?, ŝm(Dn))

Heuristics:
crit(m) ≈ E [` (s?, ŝm(Dn)) ]

⇒ valid if Card(Mn) is not too large
(+ concentration inequalities)
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Why should the empirical risk be penalized?
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Penalization

Penalization: crit(m) = Pnγ ( ŝm ) + pen(m)

m̂ ∈ arg min
m∈Mn

{Pnγ ( ŝm ) + pen(m)}

Ideal penalty:

penid(m) = (P − Pn)γ ( ŝm )

Mallows’ heuristics:
pen(m) ≈ E [penid(m) ] ⇒ oracle inequality

Model selection and estimator selection for statistical learning Sylvain Arlot



46/62

Learning Estimators Estimator selection Interactions Conclusion

Penalization

Penalization: crit(m) = Pnγ ( ŝm ) + pen(m)
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Example: homoscedastic regression on a fixed design

Recall that
Y = F + ε with E

[
ε2
i

]
= σ2

F̂m = AmY with Am = A>m = A2
m and tr(Am) = dim(Sm)

E
[

1

n

∥∥∥F̂m − F
∥∥∥2
]

=
1

n
‖(Am − I )F‖2 +

σ2 dim(Sm)

n

⇒ Empirical risk? Ideal penalty? Expectations?

penid(m) =
2

n
〈Amε, ε〉+

2

n
〈(Am − In)F , ε〉

E [penid(m) ] =
2σ2Dm

n
⇒ Cp (Mallows, 1973)
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Classical penalties

Cp (Mallows, 1973; regression, least-squares estimator):

2σ2Dm/n

CL (Mallows, 1973; regression, linear estimator F̂m = AmY ):

2σ2 tr(Am)/n

AIC (Akaike, 1973; log-likelihood, p degrees of freedom):

2p/n

BIC (Schwarz, 1978; log-likelihood, identification goal):

ln(n)p/n
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Hold-out
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Hold-out: training sample
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Hold-out: validation sample
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Hold-out: validation sample
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Unbiased risk estimation principle

Heuristics:

E [ crit(m) ] ≈ E [Pγ ( ŝm ) ] ⇔ E [pen(m) ] ≈ E [penid(m) ]

Examples:

FPE (Akaike, 1970), SURE (Stein, 1981)

some kinds of cross-validation (e.g., leave-p-out, p � n)

log-likelihood: AIC (Akaike, 1973), AICc (Sugiura, 1978;
Hurvich & Tsai, 1989)

least-squares: Cp, CL (Mallows, 1973), GCV (Craven &
Wahba, 1979)

covariance penalties (Efron, 2004)

bootstrap penalty (Efron, 1983), resampling (A., 2009)

...
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Outline

1 The statistical learning problem

2 Which estimators?

3 Estimator selection

4 Interactions within mathematics

5 Conclusion
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Probability theory: measure concentration

Empirical processes:

(Pn − P)γ(t) or sup
t∈S
{(Pn − P)γ(t)}

Concentration of quadratic terms, ‖Mε‖2, χ2-type statistics
(writting them as a sup, or through the general problem of
concentration of U-statistics)

More complex quantities, such as the “ideal penalty”

(P − Pn)γ ( ŝm(Dn))
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Probability theory

Exact computation or upper bounds on expectations:

E
[

sup
t∈S
{(Pn − P)γ(t)}

]
E [ (P − Pn)γ ( ŝm(Dn)) ]

Understanding the risk as a function of n

E [Pγ ( ŝm(Dn)) ]

Resampling process

Control of remainder terms (variance, deviations, ...)
compared to expectations

...
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Approximation theory

Bias term ` (s?,Sm )

Necessary to control it for deducing an adaptation result from
an oracle inequality

Conversely, how should we choose (Sm )m∈Mn
knowing that

P ∈ P?

Control of ` (s?,Sm ) (upper and lower bound) useful for
controlling dim(Sbm) and dim(Sm?)
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Optimization: for practical reasons

ŝm(Dn) often defined as an arg min

⇒ Computing ŝm(Dn) for every m (approximately or not)?

⇒ Direct computation of ( ŝm(Dn))m∈Mn
(regularization path,

e.g. LARS-Lasso)?

Computing m̂ ∈ arg minm∈Mn {crit(m)} without going
through all m ∈Mn? (e.g., dynamic programming for
change-point detection: Bellman & Dreyfus, 1962; Rigaill,
2010)

The most interesting procedures to study are the ones for
which efficient algorithms exist.

Model selection and estimator selection for statistical learning Sylvain Arlot



59/62

Learning Estimators Estimator selection Interactions Conclusion

Optimization: for practical reasons
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Optimization: for theoretical reasons

ŝm(Dn) often defined as an arg min

⇒ KKT conditions can caracterize it

Ex: ideal penalty for the Lasso (Efron et al. 2004; Zou, Hastie
& Tibshirani 2007)

RKHS and kernel methods: representer theorem

...
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Results we are looking for

guarantees for practical procedures

theory precise enough for explaining differences observed
experimentally

“non-asymptotic” results

use theory for designing new procedures, that do not have the
drawbacks of existing procedures

http://www.di.ens.fr/~arlot/2011pisa.htm

Model selection and estimator selection for statistical learning Sylvain Arlot

http://www.di.ens.fr/~arlot/2011pisa.htm


62/62

Learning Estimators Estimator selection Interactions Conclusion

Results we are looking for

guarantees for practical procedures

theory precise enough for explaining differences observed
experimentally

“non-asymptotic” results

use theory for designing new procedures, that do not have the
drawbacks of existing procedures

http://www.di.ens.fr/~arlot/2011pisa.htm

Model selection and estimator selection for statistical learning Sylvain Arlot

http://www.di.ens.fr/~arlot/2011pisa.htm

	Statistical learning
	The statistical learning problem
	

	Which estimators?
	
	
	
	

	Estimator selection
	
	

	Interactions within mathematics
	

	Conclusion


