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Scuola Normale Superiore di Pisa, 14–23 February 2011

Model selection and estimator selection for statistical learning Sylvain Arlot



2/65

Outline of the 5 lectures

1 Statistical learning

2 Model selection for least-squares regression

3 Linear estimator selection for least-squares regression

4 Resampling and model selection

5 Cross-validation and model/estimator selection
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Part V

Cross-validation and model/estimator selection
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Reminder

Data: Dn = (ξ1, . . . , ξn) ∈ Ξn, Dn ∼ P⊗n

Excess loss
` (s?, t ) = Pγ(t)− Pγ(s?)

Statistical algorithms: ∀m ∈Mn, Am:
⋃

n∈N Ξn 7→ S
Am(Dn) = ŝm(Dn) ∈ S is an estimator of s?

Estimation/prediction goal: find m̂(Dn) ∈M such that
`
(
s?, ŝbm(Dn)(Dn)

)
is minimal
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Hold-out
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Hold-out: training sample
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Hold-out: training sample
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Hold-out: validation sample
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Cross-validation heuristics: hold-out

ξ1 , . . . , ξnt︸ ︷︷ ︸ , ξnt+1 , . . . , ξn︸ ︷︷ ︸
Training (I (t)) Validation (I (v))

ŝ
(t)
m := Am

(
D

(t)
n

)
where D

(t)
n := (ξi )i∈I (t)

P
(v)
n =

1

nv

∑
i∈I (v)

δξi nv := n − nt

⇒ R̂val
(
Am; Dn; I (t)

)
= P

(v)
n γ

(
ŝ

(t)
m

)
=

1

nv

∑
i∈I (v)

γ
(
Am

(
D

(t)
n

)
; ξi

)
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General definition of cross-validation

B ≥ 1 training sets:

I
(t)
1 , . . . , I

(t)
B ⊂ {1, . . . , n}

Cross-validation estimator of the risk of Am:

R̂vc

(
Am; Dn;

(
I

(t)
j

)
1≤j≤B

)
:=

1

B

B∑
j=1

R̂val
(
Am; Dn; I

(t)
j

)
Chosen algorithm:

m̂ ∈ argminm∈Mn

{
R̂vc

(
Am; Dn;

(
I

(t)
j

)
1≤j≤B

)}

Usually, ∀j , Card(I
(t)
j ) = nt
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Example: exhaustive data splitting

Leave-one-out (LOO), or delete-one CV, or ordinary
cross-validation:

nt = n − 1 B = n

(Stone, 1974; Allen, 1974; Geisser, 1975)

Leave-p-out (LPO), or delete-p CV:

nt = n − p B =

(
n

p

)
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Examples: partial data-splitting

V -fold cross-validation (VFCV, Geisser, 1975):
B = (Bj)1≤j≤V partition of {1, . . . , n}

R̂vf (Am; Dn;B ) =
1

V

V∑
j=1

R̂val
(
Am; Dn; Bc

j

)

Repeated Learning-Testing (RLT, Breiman et al., 1984):

I
(t)
1 , . . . , I

(t)
B ⊂ {1, . . . , n} of cardinality nt , sampled uniformly

without replacement

Monte-Carlo cross-validation (MCCV, Picard & Cook, 1984):

same with I
(t)
1 , . . . , I

(t)
B of cardinality nt , sampled uniformly

with replacement (i.i.d.)
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Related procedures

Generalized cross-validation (GCV): rotation-invariant version
of LOO for linear regression, closer to Cp and CL than to
cross-validation (Efron, 1986, 2004)

Analytical approximation to leave-p-out (Shao, 1993)

Leave-one-out bootstrap (Efron, 1983):
stabilized version of leave-one-out
heuristical bias-correction ⇒ .632 bootstrap
⇒ .632+ bootstrap (Efron & Tibshirani, 1997)
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Bias of the cross-validation estimator

Target: Pγ (Am(Dn))

Bias: if ∀j , Card(I
(t)
j ) = nt

E
[
R̂vc

(
Am; Dn;

(
I

(t)
j

)
1≤j≤B

)]
= E [Pγ (Am (Dnt )) ]

⇒ bias E [Pγ (Am (Dnt )) ]− E [Pγ (Am (Dn )) ]

Smart rule (Devroye, Györfi & Lugosi, 1996):
n 7→ E [Pγ (Am (Dn )) ] non-increasing
⇒ the bias is non-negative, minimal for nt = n − 1

Example: regressogram:

E [Pγ(ŝm(Dn)) ] ≈ Pγ(s?m) +
1

n

∑
λ∈m

σ2
λ
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Bias-correction

Corrected V -fold cross-validation (Burman, 1989, 1990):

R̂vf (Am; Dn;B )+Pnγ (Am(Dn))− 1

V

V∑
j=1

Pnγ
(
Am

(
D

(−Bj )
n

))
+ the same for Repeated Learning-Testing

Asymptotical result: bias = O(n−2) (Burman, 1989)
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Variability of the cross-validation estimator

var

[
R̂vc

(
Am; Dn;

(
I

(t)
j

)
1≤j≤B

)]
Variability sources:

(nt , nv ) : hold-out case (Nadeau & Bengio, 2003)

var
[
R̂val

(
Am; Dn; I (t)

)]
= E

[
var
(

P
(v)
n γ

(
Am(D

(t)
n )
) ∣∣∣ D

(t)
n

)]
+ var [Pγ (Am(Dnt )) ]

=
1

nv
E
[

var
(
γ ( ŝ, ξ ) | ŝ = Am(D

(t)
n )
)]

+ var [Pγ (Am(Dnt )) ]

Stability of Am (Bousquet & Elisseff, 2002)

Number of splits B

Problem: B, nt , nv linked for VFCV and LPO
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Results on variability

Linear regression, least-squares, special case (Burman, 1989):

2σ2

n
+

4σ4

n2

[
4 +

4

V − 1
+

2

(V − 1)2
+

1

(V − 1)3

]
+ o

(
n−2

)

Explicit quantification in regression (LPO) and density
estimation (VFCV, LPO): Celisse (2008)

LOO quite variable when Am is unstable (e.g., k-NN or
CART), much less when Am is stable (e.g., least-squares
estimators; see Molinaro et al., 2005)

Data-driven estimation of the variability of cross-validation
difficult: no universal unbiased estimator (RLT, Nadeau &
Bengio, 2003; VFCV, Bengio & Grandvalet, 2004), several
estimators proposed (ibid.; Markatou et al., 2005; Celisse &
Robin, 2008)
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Link between risk estimation and estimator selection

Unbiased risk estimation principle
⇒ the important quantity (asymptotically) is the bias

What is the best criterion?
In principle, the best m̂ is the minimizer of the best risk
estimator.

Sometimes more tricky (Breiman & Spector, 1992):

Only m “close” to the oracle m? really count
Overpenalization sometimes necessary (many models or small
signal-to-noise ratio)
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Reminder: key lemma

Lemma

On the event Ω where for every m,m′ ∈Mn,

(crit(m)− Pγ ( ŝm(Dn)))−
(

crit(m′)− Pγ ( ŝm′(Dn))
)

≤ A(m) + B(m′)

∀m̂ ∈ argminm∈Mn
{crit(m)}

` (s?, ŝbm(Dn))− B(m̂) ≤ inf
m∈Mn

{` (s?, ŝm(Dn)) + A(m)}
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Cross-validation for prediction: key role of nt

Linear regression framework (Shao, 1997) representative of the
general behaviour of cross-validation:

If nt ∼ n, asymptotic optimality (CV ∼ Cp)

If nt ∼ κn, κ ∈ (0, 1), CV ∼ GIC1+κ−1 (i.e., overpenalizes
from a factor (1 + κ−1)/2 ⇒ asymptotically sub-optimal)

⇒ valid for LPO (Shao, 1997), RLT (if B � n2, Zhang, 1993)
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Sub-optimality of V -fold cross-validation

Y = X + σε with ε bounded and σ > 0

M =M(reg)
n (regular histograms over X = [0, 1])

m̂ obtained by V -fold cross-validation with a fixed V as n
increases

Theorem (A., 2008)

With probability 1− Ln−2,

` (s?, ŝbm ) ≥ (1 + κ(V )) inf
m∈Mn

{` (s?, ŝm )}

where κ(V ) > 0
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Oracle inequalities for cross-validation

If nv →∞ fast enough, one can “easily” prove the hold-out
performs at least as well as

argminm∈Mn
{Pγ (Am(Dnt ))}

van der Laan, Dudoit & van der Vaart (2006): same property
for LPO, VFCV and MCCV in a fairly general setting

Regressograms: VFCV suboptimal, but still adaptive to
heteroscedasticity (up to a multiplicative factor C (V ) > 1)

LPO in regression and density estimation when p/n ∈ [a, b ],
0 < a < b < 1 (Celisse, 2008)

Open problem: theoretical comparison taking B into account
(hence the variability of cross-validation)
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Cross-validation for identification: problem

Collection of algorithms (Am )m∈M
Goal: identify the best one for analyzing a new sample of size
n′ →∞

m0 ∈ lim
n′→∞

argminm∈M
{

E
[
Pγ
(
Am(D ′n′)

)]}
Consistency:

P (m̂(Dn) = m0 ) −−−→
n→∞

1

Examples:

identification of the true model in model selection
parametric vs. non-parametric algorithm?
k̂-NN or SVM?
...
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Cross-validation with voting (Yang, 2006)

Two algorithms A1 and A2

For m = 1, 2 (
R̂val

(
Am; Dn; I

(t)
j

))
1≤j≤B

⇒ majority vote

V1(Dn) = Card
{

j s.t. R̂val
(
A1; Dn; I

(t)
j

)
< R̂val

(
A2; Dn; I

(t)
j

)}
m̂ =

{
1 if V1(Dn) > n/2

2 otherwise

Usual cross-validation: averaging before comparison
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Cross-validation for identification: regression

“Cross-validation paradox” (Yang, 2007)

rn,m : asymptotics of E‖Am(Dn)− s?‖2

Goal: recover argminm∈M rn,m

Assumption: at least a factor C > 1 between rn,1 and rn,2

VFCV, RLT, LPO (with voting) are (model) consistent if

nv , nt →∞ and
√

nv max
m∈M

rnt ,m →∞

under some conditions on (‖Am(Dn)− s?‖p)p=2,4,∞
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Cross-validation for identification: regression

Parametric vs. parametric (rn,m ∝ n−1/2)
⇒ the condition becomes nv � nt →∞
Non-parametric vs. (non-)parametric (maxm∈M rn,m � n−1/2)
⇒ nt/nv = O(1) is sufficient, and we can have nt ∼ n (not
too close)

Intuition:

risk estimated with precision ∝ n
−1/2
v

difference between risks of order maxm∈M rnt ,m

⇒ easier to distinguish algorithms with nt small because the
difference between the risks is larger (questionable in practice)
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Cross-validation in practice: computational complexity

Naive implementation: complexity proportional to B
⇒ LPO untractable, LOO sometimes tractable
⇒ VFCV, RLT and MCCV often better

Closed-form formulas for LPO in (least-squares) density
estimation and regression (projection or kernel estimators):
Celisse & Robin (2008), Celisse (2008)
⇒ can be used for instance in change-point detection (with
dynamic programming)

Generalized cross-validation: generalization of a formula for
LOO in linear regression

Without closed-form formulas, smart algorithms for LOO
(linear discriminant analysis, Ripley, 1996; k-NN, Daudin &
Mary-Huard, 2008): uses results obtained for previous data
splits in order to avoid doing again part of the computations

Model selection and estimator selection for statistical learning Sylvain Arlot
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Choosing among cross-validation methods

Trade-off between bias, variability and computational cost:

Bias: increases as nt decreases (except for bias-corrected
methods)
large SNR: the bias must be minimized
small SNR: a small amount of bias is better (⇒ nt = κn for
some κ ∈ (0, 1))

Variability: usually a decreasing function of B and with nv ,
but it depends on the nature of algorithms considered
(stability)

Computational cost: proportional to B, except in some cases

VFCV: B and nt functions of V ⇒ complex problem (V = 10 is
not always a good choice)
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Choosing the training samples

Usual advice: take into account a possible stratification of
data, e.g.,

distribution of the Xi in the feature space (regression)
distribution of the Yi among the classes (classification)
...

but no clear theoretical result (simulations by Breiman &
Spector, 1992: unsignificant difference).

Dependency between the I
(t)
j ?

Intuitively, better to give similar roles to all data in the
training and validation tasks ⇒ VFCV
But no clear comparison between VFCV (strong dependency),
RLT (weak dependency) and MCCV (independence).
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VFCV: Simulations: sin, n = 200, σ(x) = x , 2 bin sizes
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Models: Mn =M(reg,1/2)
n

E [` (s?, ŝbm ) ]

E [ infm∈Mn {` (s?, ŝm )} ]

computed with N = 1000 samples

Mallows 3.69± 0.07
2-fold 2.54± 0.05
5-fold 2.58± 0.06
10-fold 2.60± 0.06
20-fold 2.58± 0.06
leave-one-out 2.59± 0.06
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Universality of cross-validation?

Almost universal heuristics (i.i.d. data, no other explicit
assumption)

But Dn 7→ Abm(Dn) still is a learning rule
⇒ No Free Lunch Theorems apply

Implicit assumptions of cross-validation:

generalization error well estimated from a finite number of
points nv

behaviour of the algorithm with nt points representative from
its behaviour with n points

+ assumptions of the unbiased risk estimation principle

Model selection and estimator selection for statistical learning Sylvain Arlot
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Dependent data

cross-validation wrong in principle (assumes i.i.d.)

Stationary Markov process ⇒ CV still works (Burman &
Nolan, 1992)

Positive correlations ⇒ can overfit (Hart & Wehrly, 1986;
Opsomer et al., 2001)

Answer: for short range dependencies, choose I (t) and I (v)

such that
min

i∈I (t) , j∈I (v)
|i − j | ≥ h > 0

⇒ modified CV (Chu & Marron, 1991), h-block CV (can be
bias-corrected, Burman et al., 1994), and so on
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Large collections of models

Model selection in regression, exponential number of models
per dimension ⇒ minimal penalty of order ln(n)Dm/n (Birgé
& Massart, 2007)

⇒ cross-validation overfits (except maybe if nt � n)

Wegkamp (2003): penalized hold-out

A. & Celisse (2009): gather models of the same dimension,
with application to change-point detection
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Outline

1 Cross-validation

2 Cross-validation based estimator selection

3 Change-point detection

4 V -fold penalization

5 Conclusion
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Change-point detection and model selection

Yi = η(ti ) + σ(ti )εi with E [εi ] = 0 E
[
ε2
i

]
= 1

Goal: detect the change-points of the mean η of the signal Y

⇒ Model selection, collection of regressograms with
Mn = Pinterv({ t1, . . . , tn }) (partitions of X into intervals)

Here: no assumption on the variance σ(ti )
2

Model selection and estimator selection for statistical learning Sylvain Arlot
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Classical approach (Lebarbier, 2005; Lavielle, 2005)

“Birgé-Massart” penalty (assumes σ(ti ) ≡ σ):

m̂ ∈ argminm∈Mn

{
Pnγ ( ŝm ) +

Cσ2Dm

n

(
5 + 2 ln

(
n

Dm

))}

Equivalent to aggregating models of the same dimension:

S̃D :=
⋃

m∈Mn ,Dm=D

Sm

ŝD ∈ argmin
t∈eSD
{Pnγ ( t )} dynamic programming

D̂ ∈ argmin1≤D≤n

{
Pnγ ( ŝD ) +

Cσ2D

n

(
5 + 2 ln

( n

D

))}
Model selection and estimator selection for statistical learning Sylvain Arlot
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D = 4, homoscedastic; n = 100, σ = 0.25
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D = 6, heteroscedastic; n = 100, ‖σ‖ = 0.30
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D = 6, heteroscedastic; n = 100, ‖σ‖ = 0.30
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Homoscedastic: loss as a function of D
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Heteroscedastic: loss as a function of D
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Homoscedastic: estimate of the loss as a function of D
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Heteroscedastic: estimate of the loss as a function of D
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Change-point detection algorithms (A. & Celisse, 2010)

1 ∀D ∈ {1, . . . ,Dmax }, select

m̂(D) ∈ argminm∈Mn,Dm=D { crit1(m; (ti ,Yi )i )}

Examples for crit1: empirical risk, or leave-p-out or V -fold
estimators of the risk (dynamic programming)

2 Select

D̂ ∈ argminD∈{1,...,Dmax } {crit2(D; (ti ,Yi )i ; crit1(·))}

Examples for crit2: penalized empirical criterion, V -fold
estimator of the risk
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Competitors

[Emp,BM]: assume σ(·) ≡ σ

argminm∈Mn

{
Pnγ ( ŝm ) +

C σ̂2Dm

n

(
5 + 2 log

(
n

Dm

))}

BGH (Baraud, Giraud & Huet 2009): multiplicative penalty,
σ(·) ≡ σ

argminm∈Mn

{
Pnγ ( ŝm )

[
1 +

penBGH(m)

n − Dm

]}
ZS (Zhang & Siegmund, 2007): modified BIC, σ(·) ≡ σ
PML (Picard et al., 2005): penalized maximum likelihood,
looks for change-points of (η, σ), assuming a Gaussian model

argminm∈Mn

∑
λ∈m

np̂λ log

 1

np̂λ

∑
ti∈λ

(Yi − ŝm(ti ))2

+ Ĉ ′′Dm


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+ Ĉ ′′Dm



Model selection and estimator selection for statistical learning Sylvain Arlot



49/65

Cross-validation CV-based estimator selection Change-point detection V -fold penalization Conclusion

Competitors

[Emp,BM]: assume σ(·) ≡ σ

argminm∈Mn

{
Pnγ ( ŝm ) +
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Simulations: comparison to the oracle (quadratic risk)

E [` (s?, ŝbm ) ]

E [ infm∈Mn {` (s?, ŝm )} ]
N = 10 000 sample

L(ε) Gaussian Gaussian Gaussian
σ(·) homosc. heterosc. heterosc.
η s2 s2 s3

[Loo,VF5] 4.02 ± 0.02 4.95 ± 0.05 5.59 ± 0.02
[Emp,VF5] 3.99 ± 0.02 5.62 ± 0.05 6.13 ± 0.02
[Emp,BM] 3.58 ± 0.02 9.25 ± 0.06 6.24 ± 0.02

BGH 3.52 ± 0.02 10.13 ± 0.07 6.31 ± 0.02
ZS 3.62 ± 0.02 6.50 ± 0.05 6.61 ± 0.02

PML 4.34 ± 0.02 2.73 ± 0.03 4.99 ± 0.03
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Simulations: comparison to the oracle (quadratic risk)

E [` (s?, ŝbm ) ]

E [ infm∈Mn {` (s?, ŝm )} ]
N = 10 000 sample

L(ε) Gaussian Exponential Exponential
σ(·) homosc. heterosc. heterosc.
η s2 s2 s3

[Loo,VF5] 4.02 ± 0.02 4.47 ± 0.05 5.11 ± 0.03
[Emp,VF5] 3.99 ± 0.02 5.98 ± 0.07 6.22 ± 0.04
[Emp,BM] 3.58 ± 0.02 10.81 ± 0.09 6.45 ± 0.04

BGH 3.52 ± 0.02 11.67 ± 0.09 6.42 ± 0.04
ZS 3.62 ± 0.02 9.34 ± 0.09 6.83 ± 0.04

PML 4.34 ± 0.02 5.04 ± 0.06 5.40 ± 0.03

Model selection and estimator selection for statistical learning Sylvain Arlot
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Simulations: position of the change-points
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Simulations: selected dimension (D0 = 5)
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Outline

1 Cross-validation

2 Cross-validation based estimator selection

3 Change-point detection

4 V -fold penalization

5 Conclusion
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Resampling heuristics (bootstrap, Efron 1979)

Real world : P
sampling // Pn

+3 ŝm

penid(m) = (P − Pn)γ ( ŝm ) = F (P,Pn)

V -fold: PW
n =

1

n − Card(BJ)

∑
i /∈BJ

δ(Xi ,Yi ) with J ∼ U(1, . . . ,V )
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��
�O
�O
�O
�O
�O
�O
�O

P
sampling // Pn

+3 ŝm

Bootstrap world : Pn
resampling // PW

n
+3 ŝW

m

(P − Pn)γ ( ŝm ) = F (P,Pn) ///o/o/o F (Pn,P
W
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n )γ
(
ŝW
m

)
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Real world :
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�O
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�O
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n
+3 ŝW
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V -fold penalties (A. 2008)

Ideal penalty:
(P − Pn)(γ(ŝm(Dn)))

V -fold penalty (A., 2008):

penVF(m; Dn; C ;B) =
C

V

V∑
j=1

[(
Pn − P

(−Bj )
n

)(
γ
(

ŝ
(−Bj )
m

))]

ŝ
(−Bj )
m = ŝm

(
D

(−Bj )
n

)
Selected model:

m̂ ∈ argminm∈Mn
{Pnγ(ŝm) + pen(m)}
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Computing expectations

Assumptions:

B = (Bj)1≤j≤V partition of {1, . . . , n}

and ∀j ∈ {1, . . . ,V } , Card(Bj) =
n

V

 (RegPart)

∀1 ≤ N ≤ n , E [penid(m; DN) ] =
γm

N
(Epenid)

Proposition (A. 2011)

E [penVF(m; Dn; C ;B) ] =
C

V − 1
E [penid(m; Dn) ]
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Concentration: additional assumptions

For all N ∈ {1, . . . , n},
P ( |p1(m; DN)− E [p1(m; DN) ]| ≤ wNE [p1(m; DN) ]) ≥ 1− qN (Cp1)

P ( |p2(m; DN)− E [p2(m; DN) ]| ≤ wNE [p2(m; DN) ]) ≥ 1− qN (Cp2)

∃Sm ⊂ S s.t. s?m ∈ Sm , ŝm(DN) ∈ Sm a.s.

and ∀t ∈ Sm , ∀x ≥ 0 ,

P
(
|δ(t; DN)− δ(s?; DN)| ≤ inf

η∈(0,1]

{
η` (s?, t ) +

Kδx

ηN

})
≥ 1− 2e−x


(Cδ)

p1(m; DN) = Pγ ( ŝm(DN))− Pγ (s?m )

p2(m; DN) = PNγ (s?m )− PNγ ( ŝm(DN))

δ(t; DN) = (PN − P)γ ( t )

Model selection and estimator selection for statistical learning Sylvain Arlot
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Concentration: result

Proposition (A. 2011)

Assume: V ≥ 2, (RegPart), (Epenid), (Cp1), (Cp2) and (Cδ)
with γm ≥ 0, Kδ > 0 and (wk ) , (qk ) non-increasing non-negative.

Then, ∀C > 0, x ≥ 0, with probability 1− 2V
(

q n(V−1)
V

+ 2e−x
)
,

∀η ∈ (0, 1],

|penVF (m; Dn; C ;B )− E [penVF (m; Dn; C ;B ) ]−Z|

≤ 4C

V

(
η + 2w n(V−1)

V

)
E [penid(m; Dn) ]

+
C

V

(
2η` (s?, s?m ) +

4KδxV

ηn

)

where Z = Z (Dn; C ;B ) =
C

V

V∑
j=1

(
δ
(

s?; D
(Bj )
n

)
− δ

(
s?; D

(−Bj )
n

))
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Oracle inequality for V -fold penalization

Theorem (A. 2008–2011)

Assume also that wk → 0, C = V − 1 and ∃(κk)k≥1

non-increasing,

∀N ≥ 1 , 0 ≤ E [penid(m; DN) ] ≤ κNE [` (s?, ŝm (DN )) ]

Then, with probability at least 1− L1V Card(Mn)(q n(V−1)
V

+ e−x),

for every ηk → 0,

`
(

s?, ŝbmpenVF
(Dn)

)
≤
[

1 + L2

(
ηn +

1

n
+ w n(V−1)

V

)]
× inf

m∈Mn

{` (s?, ŝm(Dn))}+
L3KδxV

ηnn

Example: regressograms under reasonable assumptions on
(‖Y ‖∞ ≤ A, σ(·) ≥ σmin > 0, ...)
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Simulations: sin, n = 200, σ(x) = x , Mn =M(reg,1/2)
n
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4

Mallows 3.69± 0.07
2-fold 2.54± 0.05
5-fold 2.58± 0.06
10-fold 2.60± 0.06
20-fold 2.58± 0.06
leave-one-out 2.59± 0.06

pen 2-f 3.06± 0.07
pen 5-f 2.75± 0.06
pen 10-f 2.65± 0.06
pen Loo 2.59± 0.06

Mallows ×1.25 3.17± 0.07
pen 2-f ×1.25 2.75± 0.06
pen 5-f ×1.25 2.38± 0.06
pen 10-f ×1.25 2.28± 0.05
pen Loo ×1.25 2.21± 0.05
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Choice of V : density estimation (A. & Lerasle, 2011)

Least-squares density estimation: assuming (RegPart),

var
(

(penVF(m)− penid(m))− (penVF(m′)− penid(m′))
)

=
8

n2

[
1 +

1

V − 1

]
F
(
m,m′

)
+

4

n
varP (s?m − s?m′ )

with F (m,m′ ) > 0.

For regular histograms,

F
(
m,m′

)
≤ (Dm + Dm′) ‖s?‖2 + 2 ‖s?‖4
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Outline

1 Cross-validation

2 Cross-validation based estimator selection

3 Change-point detection

4 V -fold penalization

5 Conclusion
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Choice of an estimator selection procedure
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Conclusion

guarantees for practical procedures:

“elbow” heuristics on the L-curve, slope heuristics
resampling(-based penalties)
cross-validation

use theory for designing new procedures:

minimal penalties for linear estimators
V -fold penalties for correcting the bias of VFCV

theory precise enough for explaining differences observed
experimentally:

compare resampling weights
influence of V on V -fold methods

“non-asymptotic” results
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Open problems

guarantees for practical procedures:

cross-validation and resampling penalties outside “toy
frameworks” (regressograms, least-squares density estimation)?
minimal penalties without the least-squares contrast (SVM,
Lasso, and so on)?

theory precise enough for explaining differences observed
experimentally:

choice of a resampling scheme / a cross-validation method?
explain the (non-systematic) variability of leave-one-out?

“non-asymptotic” results:

overpenalization phenomenon?
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