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Outline of the lectures

1 Model selection via penalization, with application to
change-point detection

2 Resampling methods for penalization, and robustness to
heteroscedasticity in regression

3 Cross-validation for model/estimator selection, with
application to detecting changes in the mean of a signal
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Part II

Resampling methods for penalization, and
robustness to heteroscedasticity in regression
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Outline

1 Regressograms in heteroscedastic regression

2 The shape of the penalty must be estimated

3 Resampling

4 Theoretical guarantees for regressograms

5 Least-squares density estimation

6 Conclusion
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Heteroscedastic regression framework

Random design: (X1,Y1), . . . , (Xn,Yn) ∈ X × R i.i.d.

Yi = η(Xi ) + εi

E [εi | Xi ] = 0 and E
[
ε2
i

∣∣ Xi

]
= σ2(Xi )

Quadratic loss:

Pγ(t) = E(X ,Y )∼P [γ(t; (X ,Y )) ] = E(X ,Y )∼P

[
( t(X )− Y )2

]

Excess loss: η = s? and

` (s?, t ) = Pγ(t)− Pγ(s?) = E(X ,Y )∼P

[
(s?(X )− t(X ))2

]
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Regressograms

For any finite partition m of X

Sm :=

{∑
λ∈m

αλ1λ s.t. α ∈ Rm

}

⇒ least-squares estimator over Sm (regressogram):

ŝm ∈ arg min
t∈Sm
{Pnγ ( t )} = arg min

t∈Sm

{
1

n

n∑
i=1

(Yi − t(Xi ))2

}

If for every λ ∈ m

p̂λ = p̂λ(Dn) =
1

n
Card { i s.t. Xi ∈ λ} > 0

ŝm =
∑
λ∈m

β̂λ1λ β̂λ :=
1

np̂λ

∑
i s.t.Xi∈λ

Yi
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Regressograms: examples (X = [0, 1])

M(reg)
n (regular partitions) M(reg,1/2)

n (regular partitions on
[0, 1/2] and on [1/2, 1])

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1
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3

4

X

Y
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Regressograms: bias, ideal penalty

s?m =
∑
λ∈m

βλ1λ βλ := E(X ,Y )∼P [Y | X ∈ λ ]

` (s?, s?m ) =
∑
λ∈m

pλ

(
σ

(d)
λ

)2 (
σ

(d)
λ

)2
:= E

[
(βλ − s?(X ))2

∣∣∣ X ∈ λ
]

penid(m) = p1(m) + p2(m)− δ(m)

p1(m) = P (γ ( ŝm )− γ (s?m )) =
∑
λ∈m

pλ

(
β̂λ − βλ

)2

p2(m) = Pn (γ (s?m )− γ ( ŝm )) =
∑
λ∈m

p̂λ

(
β̂λ − βλ

)2

δ(m) = (Pn − P)γ (s?m )
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Regressograms: conditional expectations

Pm := (1Xi∈λ )1≤i≤n,λ∈m

E [p1(m) | Pm ] =
1

n

∑
λ∈m

pλ
p̂λ
σ2
λ

E [p2(m) | Pm ] =
1

n

∑
λ∈m

σ2
λ

σ2
λ := E(X ,Y )∼P

[
(Y − βλ )2

∣∣∣ X ∈ λ
]

=
(
σ

(d)
λ

)2
+
(
σ

(r)
λ

)2

(
σ

(r)
λ

)2
:= E(X ,Y )∼P

[
(σ(X ))2

∣∣∣ X ∈ λ
]
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Regressograms: expectations

E [p1(m) ] =
1

n

∑
λ∈m

σ2
λ (1 + δn,pλ )

E [p2(m) ] =
1

n

∑
λ∈m

σ2
λ

δn,pλ := E
[

pλ
p̂λ

∣∣∣∣ p̂λ > 0

]
− 1

− exp(−np) ≤ δn,p ≤ min

{
1 +

κ1

(np)1/4
, κ2

}
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Regressograms: risk, expectation of the ideal penalty

E [` (s?, ŝm ) ] =
∑
λ∈m

pλ

(
σ

(d)
λ

)2
+

1

n

∑
λ∈m

(1 + δn,pλ )σ2
λ

E [penid(m) ] =
1

n

∑
λ∈m

(2 + δn,pλ )σ2
λ
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Drawbacks of pen = pen(Dm)

Y = s?(X ) + ε with X ∼ U([0, 1])

E
[
ε2
∣∣ X

]
= σ(X ) and

∫ 1/2

0
(σ(x))2 dx 6=

∫ 1

1/2
(σ(x))2 dx

m ∈M(reg,1/2)
n : Dm,1 pieces on

[
0, 1

2

]

m ∈M(reg,1/2)
n :

Dm,2 pieces on
[

1
2 , 1
]

E [penid(m) ] ≈ 4

n

[
Dm,1

∫ 1/2

0
(σ(x))2 dx + Dm,2

∫ 1

1/2
(σ(x))2 dx

]
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Drawbacks of pen = pen(Dm): an example

Y = s?(X ) + ε with X ∼ U([0, 1])

L (ε | X ) = N
(

0, σ(X )2
)

s?(X ) = X σ(X ) = 1X≤ 1
2

+
1

20
1X>1/2

E [penid(m) ] ≈ 2

n

[
Dm,1 +

Dm,2

400

]
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Example: data and oracle (n = 200)
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Example: penid(m) as a function of Dm
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Penalties function of the dimension

Lemma

For any D ∈ Dn = {Dm s.t. m ∈Mn }

Mdim(D) := argminm∈Mn s.t.Dm=D {Pnγ ( ŝm )}

Mdim :=
⋃

D∈Dn

Mdim(D)

Then, ∀F :Mn 7→ R ∀(Xi ,Yi )1≤i≤n

argminm∈Mn
{Pnγ ( ŝm ) + F (Dm)} ⊂ Mdim
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Models that can be selected with pen(Dm)
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Drawbacks of pen = pen(Dm): m̂(D?) 6= m?

Densities of (Dm̂(D?),1,Dm̂(D?),2) and (Dm?,1,Dm?,2) over
N = 1000 samples
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Towards a proof: concentration of penid

Assumption: ‖Y ‖∞ ≤ A <∞ and σ(·) ≥ σmin > 0

Concentration of p1 and p2:
if minλ∈m {npλ } ≥ ♦ ln(n), with probability at least 1− Ln−γ ,
for i = 1, 2

|pi (m)− E [pi (m) ]| ≤
LA,σmin,γ ( ln(n))2

√
Dm

E [p2(m) ]

Bernstein’s inequality: with probability at least 1− 2e−x ,

∀θ ∈ (0, 1] , |(Pn − P) (γ (s?m )− γ (s? ))| ≤ θ` (s?, s?m )+
6A2x

θn
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Heuristical proof: expectations

E [p1(m) ] ≈ E [p2(m) ] ≈ β1Dm,1

n
+
β2Dm,1

n

β1 = 2

∫ 1/2

0
σ2 β2 = 2

∫ 1

1/2
σ2

` (s?, s?m ) ≈ α1

D2
m,1

+
α2

D2
m,2

α1 =
1

48

∫ 1/2

0

(
s?′
)2

α2 =
1

48

∫ 1

1/2

(
s?′
)2

Pnγ ( ŝm )− Pγ (s? ) ≈ α1

D2
m,1

+
α2

D2
m,2

− β1Dm,1

n
− β2Dm,1

n

` (s?, ŝm ) ≈ α1

D2
m,1

+
α2

D2
m,2

+
β1Dm,1

n
+
β2Dm,1

n
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Heuristical proof: expectations

β1 = 2

∫ 1/2

0
σ2 > β2 = 2

∫ 1

1/2
σ2

α1 =
1

48

∫ 1/2

0

(
s?′
)2

α2 =
1

48

∫ 1

1/2

(
s?′
)2

Pnγ ( ŝm )− Pγ (s? ) ≈ α1

D2
m,1

+
α2

D2
m,2

− β1Dm,1

n
− β2Dm,1

n

` (s?, ŝm ) ≈ α1

D2
m,1

+
α2

D2
m,2

+
β1Dm,1

n
+
β2Dm,1

n

m? ≈

((
2α1n

β1

)1/3

,

(
2α2n

β2

)1/3
)
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Drawbacks of pen = pen(Dm): theory

Y = s?(X ) + ε with X ∼ U([0, 1]) , E
[
ε2
∣∣ X

]
= σ(X )

and σ2
a =

∫ 1/2

0
(σ(x))2 dx 6=

∫ 1

1/2
(σ(x))2 dx = σ2

b

Theorem (A. 2008)

If M =M(reg,1/2)
n , under “reasonable” assumptions on (s?, ε, σ),

∃η(σ2
a/σ

2
b ) > 0 such that with probability at least

1− C (‖ε‖∞ , σ2
a , σ

2
b, ‖s?′‖∞ , ‖s?′′‖∞)n−2

∀F , ∀m̂F ∈ arg min
m∈Mn

{Pnγ ( ŝm ) + F (Dm)} ,

`
(

s?, ŝm̂F

)
≥
(

1 + η

(
σ2
a

σ2
b

))
inf

m∈Mn

{` (s?, ŝm )}
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Why should we estimate the shape of the penalty?

pen(D) = F (D) ⇒ loss of a factor (1 + η) > 1

pen(m) = 2E
[
σ(X )2

]
Dm/n ⇒ possible burst of the risk

pen(m) = 2 ‖σ‖2
∞Dm/n ⇒ oracle-inequality with constant

O(maxσ2/minσ2)

⇒ must estimate E[penid(m) ] for an oracle inequality with
constant (1 + o(1)) and for avoiding overfitting
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Outline

1 Regressograms in heteroscedastic regression

2 The shape of the penalty must be estimated

3 Resampling

4 Theoretical guarantees for regressograms

5 Least-squares density estimation

6 Conclusion

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



26/57

Regressograms Shape of the penalty Resampling Regressograms & resampling Density Conclusion

Resampling heuristics (bootstrap, Efron 1979)

Real world : P
sampling // Pn

+3 ŝm

penid(m) = (P − Pn)γ ( ŝm ) = F (P,Pn)
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�O
�O
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Resampling heuristics (bootstrap, Efron 1979)

Real world :

��
�O
�O
�O
�O
�O
�O
�O

P
sampling // Pn

+3 ŝm

Bootstrap world : Pn
resampling // PW

n
+3 ŝWm

(P − Pn)γ ( ŝm ) = F (P,Pn) ///o/o/o F (Pn,P
W
n ) = (Pn − PW

n )γ
(

ŝWm
)
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Exchangeable weighted resampling

PW
n :=

1

n

n∑
i=1

Wiδξi

or
1∑
k Wk

n∑
i=1

Wiδξi =
1

n

n∑
i=1

Wi

W
δξi

Bootstrap:

W ∼M
(

n;
1

n
, . . . ,

1

n

)

Subsampling:
Random-hold out(q), q ∈ {1, . . . , n − 1}:

Wi =
n

q
1i∈I with I ∼ U (Pq({1, . . . , n}) )

Rademacher(p) or Bernoulli:

pW1, . . . , pWn i.i.d. ∼ B(p)
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Theoretical justification: asymptotics

Theorem (van der Vaart & Wellner, 1996)

Let (Wn,1, . . . ,Wn,n) ∈ Rn be a non-negative random vector,
exchangeable, independent from ξ1...n, bounded and such that

n−1
n∑

i=1

(
Wn,i −W n

)2 (p)−−→ c2 > 0 .

Then, as n goes to infinity,

sup
h∈BL1

∣∣∣EW

[
h
(√

n
(

PW
n −W nPn

))]
− E [h (cG) ]

∣∣∣ (p)−−→ 0

where G is a Gaussian process, limit of
√

n(Pn − P), with zero
mean and covariance function cov(f , g) = P(fg)− P(f )P(g).
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Classical uses of resampling

estimating a variance, a quadratic risk

estimation and/or bias correction

confidence intervals, p-values

estimation of prediction error, model selection

stabilization (bagging, random forests)

...
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A resampling-based estimator of variance

Framework:

ξ1, . . . , ξn i.i.d. ∼ P E [ξi ] = µ E
[

(ξi − µ)2
]

= σ2

σ2 = nE

( 1

n

n∑
i=1

ξi − µ

)2
 = nE

[
(Eξ∼Pnξ − Eξ∼Pξ )2

]
= nE [F (P,Pn) ]

⇒ resampling-based estimator

σ̂2
W = nEW

[
F (Pn,P

W
n )
]

σ̂2
W =

R
(W )
V

n

 n∑
i=1

(ξi − µ)2 − 1

n − 1

∑
i 6=j

(ξi − µ) (ξj − µ)


R

(W )
V := EW

[(
nWi∑n
k=1 Wk

− 1

)2
]
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A resampling-based estimator of variance

σ̂2
W = nEW

[
F (Pn,P

W
n )
]

σ̂2
W =

R
(W )
V

n

 n∑
i=1

(ξi − µ)2 − 1

n − 1

∑
i 6=j

(ξi − µ) (ξj − µ)



R
(W )
V := EW

[(
nWi∑n
k=1 Wk

− 1

)2
]
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Comparison with the classical variance estimator

Classical unbiased estimator of variance:

σ̂2 =
1

n − 1

n∑
i=1

(
ξi −

1

n

n∑
k=1

ξk

)2

σ̂2
W = R

(W )
V σ̂2

⇒ E
[
σ̂2
W

]
= R

(W )
V σ2
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Comparison with the classical variance estimator

Classical unbiased estimator of variance:

σ̂2 =
1

n − 1

n∑
i=1

(
ξi −

1

n

n∑
k=1

ξk

)2

σ̂2
W = R

(W )
V σ̂2

⇒ E
[
σ̂2
W

]
= R

(W )
V σ2
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Resampling and structure

Properties of F (P,Pn) = (Eξ∼Pnξ − Eξ∼Pξ )2:

exchangeable
translation-invariance
homogeneity
polynomial function of ξi and Eξ∼Pξ

⇒ EW [F (Pn,P
W
n ) ] has similar properties

⇒ EW

[
F (Pn,P

W
n )
]
∝ σ̂2
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Resampling and concentration

Over-concentration phenomenon for the resampling-based
estimator:

var

n

(
1

n

n∑
i=1

ξi − µ

)2
 = 2σ4 +

E
[

(ξ1 − µ)4
]
− 3σ4

n

var

(
1

R
(W )
V

σ̂2
W

)
=

1

n

(
E
[

(ξ1 − µ)4
]
− σ4

)
+

2

n(n − 1)
σ4
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Computation of the multiplicative factor

R
(W )
V := EW

[(
nWi∑n
k=1 Wk

− 1

)2
]

Efron(m): R
(W )
V =

n − 1

m

Rademacher(p): R
(W )
V =

1 + δn,p
p

− 1 ≈ 1

p
− 1

Random hold-out(q): R
(W )
V =

n

q
− 1

Leave-one-out = Rho(n − 1): R
(W )
V =

1

n − 1
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Resampling-based estimator of penid(m)

Ideal penalty:

(P − Pn)(γ(ŝm)) = F (P,Pn)

Resampling-based estimator of E [F (P,Pn) ]:

pen(m) = CWE
[

(Pn − PW
n )(γ(ŝWm ))

∣∣∣ (Xi ,Yi )1≤i≤n

]

bootstrap (Efron, 1983; Shibata, 1997), m out of n bootstrap
for identification (Shao, 1996), general exchangeable weights
(A. 2009)

Multiplicative factor CW : why? how can we estimate it?
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Rademacher penalties

Global penalties:

penid(m) ≤ penglo
id (m) = sup

t∈Sm
(P − Pn)γ(t)

Global Rademacher penalties in classification (Koltchinskii &
Panchenko, 2001; Bartlett, Boucheron & Lugosi, 2002),
exchangeable weights (Fromont, 2004)

E

[
sup
t∈Sm

{
1

n

n∑
i=1

εiγ ( t; ξi )

}∣∣∣∣∣ Pn

]
with ε1, . . . , εn i.i.d. ∼ U({−1,+1})

Local Rademacher complexities (Bartlett, Bousquet &
Mendelson, 2004; Koltchinskii, 2006)
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Outline

1 Regressograms in heteroscedastic regression

2 The shape of the penalty must be estimated

3 Resampling

4 Theoretical guarantees for regressograms

5 Least-squares density estimation

6 Conclusion
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Reminder

ŝm =
∑
λ∈m

β̂λ1λ with β̂λ :=
1

np̂λ

∑
i s.t.Xi∈λ

Yi

p̂λ = p̂λ(Dn) =
1

n
Card { i s.t. Xi ∈ λ}

penid(m) = p1(m) + p2(m)− δ(m)

p1(m) = P (γ ( ŝm )− γ (s?m )) =
∑
λ∈m

[
pλ

(
β̂λ − βλ

)2
]

p2(m) = Pn (γ (s?m )− γ ( ŝm )) =
∑
λ∈m

[
p̂λ

(
β̂λ − βλ

)2
]

δ(m) = (Pn − P)γ (s?m )
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Resampling-based penalty

penW (m) =
CW

n

∑
λ∈m

R1,W + R2,W

np̂λ − 1

(
Sλ,2 −

1

np̂λ
S2
λ,1

)
1np̂λ≥2

with Sλ,1 :=
∑
Xi∈λ

(Yi − βλ ) Sλ,2 :=
∑
Xi∈λ

(Yi − βλ )2

R1,W (n, p̂λ) := E

[
(W1 − Ŵλ)2

Ŵ 2
λ

∣∣∣∣∣ X1 ∈ λ , Ŵλ > 0

]

and R2,W (n, p̂λ) := E

[
(W1 − Ŵλ)2

Ŵλ

∣∣∣∣∣ X1 ∈ λ

]
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Value of R1 and R2: examples

R1,W (n, p̂λ) ∼ R2,W (n, p̂λ) as np̂λ →∞

CW ,∞(n) := lim
np̂λ→∞

1

R2,W (n, p̂λ)

Efron(m): R2,W (n, p̂λ) =
n

m

(
1− 1

np̂λ

)
CW ,∞ =

m

n

Rademacher(p): R2,W (n, p̂λ) =
1

p
− 1 CW ,∞ =

p

1− p

Random hold-out(q): R2,W (n, p̂λ) =
n

q
− 1 CW ,∞ =

q

n − q

Leave-one-out: R2,W (n, p̂λ) =
1

n − 1
CW ,∞ = n − 1
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Expectations

E [Yi − βλ | Xi ∈ λ ] = 0 and E
[

(Yi − βλ )2
∣∣∣ Xi ∈ λ

]
= σ2

λ

E [penW (m) | Pm ] =
CW

n

∑
λ∈m

(R1,W + R2,W )σ2
λ1np̂λ≥2

E [penW (m) ] =
CW

CW ,∞

1

n

∑
λ∈m

(
2 + δ

(penW)
n,pλ

)
σ2
λ

with δ
(penW)
n,pλ

→ 0 quand npλ → +∞

⇒ adaptation to heteroscedasticity
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Concentration

Proposition (A. 2009)

Bounded data: ‖Yi‖∞ ≤ A <∞
Lower-bounded noise: σ(Xi ) ≥ σmin > 0

L(W ) among Efr(n), Rad(1/2), Rho(n/2), Loo

For every An ≥ 2, with probability at least 1− L1n−γ ,

|penW (m)− E [penW (m) | Pm ]|1minλ∈m{np̂λ }≥An

≤ CW

CW ,∞

L2(A/σmin, γ) ln(n)√
AnDm

E [p2(m) ]
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Pathwise non-asymptotic oracle inequality

L(W ) among Efr(n), Rad(1/2), Rho(n/2), Loo

CW ≈ CW ,∞

Card(Mn) ≤ CMnαM

Bounded data: ‖Yi‖∞ ≤ A <∞
Lower-bounded noise: σ(Xi ) ≥ σmin > 0

s? ∈ H(α,R) non-constant

Pre-selected models: ∀m ∈M , minλ∈m np̂λ ≥ 3

Theorem (A. 2009)

With probability at least 1− ♦n−2,

` (s?, ŝm̂ ) ≤
(

1 + (ln(n))−1/5
)

inf
m∈M

{` (s?, ŝm )}
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Models that can be selected: penLoo better than pen(Dm)
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Simulations: 1.25× penLoo(m) vs. K ?Dm
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Adaptation

s̃ := ŝm̂ with m̂ ∈ argmin
m∈M(reg)

n

minλ∈m{np̂λ }≥3

{Pnγ ( ŝm ) + penW (m)}

Assumptions:

Bounded data: ‖Yi‖∞ ≤ A <∞
Lower-bounded noise: σ(Xi ) ≥ σmin > 0

Lower-bounded density of X : ∀I ⊂ X ,
P (X ∈ I ) ≥ cmin

X Leb(I )

s? = η ∈ H(α,R) with α ∈ (0, 1]:

∀x1, x2 ∈ X , |s?(x1)− s?(x2)| ≤ R ‖x1 − x2‖α∞
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Adaptation

s̃ := ŝm̂ with m̂ ∈ argmin
m∈M(reg)

n

minλ∈m{np̂λ }≥3

{Pnγ ( ŝm ) + penW (m)}

E [` (s?, s̃ ) ] ≤ K2R
2d

2α+d n
−2α
2α+d ‖σ‖∞

4α
2α+d +

K3A2

n2

and if σ(·) is Kσ-Lipschitz with at most Jσ jumps:

E [` (s?, s̃ ) ] ≤ K2R
2d

2α+d n
−2α
2α+d ‖σ‖L2(Leb)

4α
2α+d +

K4A2

n2

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



46/57

Regressograms Shape of the penalty Resampling Regressograms & resampling Density Conclusion

Adaptation
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Theoretical comparison of weights: reminder

E [penid(m) ] =
1

n

∑
λ∈m

(2 + δn,pλ )σ2
λ

and E [penW (m) ] =
1

n

∑
λ∈m

(
2 + δ

(penW)
n,p̂λ

)
σ2
λ
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δ
(penW)
n,p̂λ

vs. δn,pλ
: Rho(n/2) ≈ Rad(1/2)
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δ
(penW)
n,p̂λ

vs. δn,pλ
: Leave-one-out
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s?(x) = sin(2πx) n = 200 σ(x) = x M =M(reg,1/2)
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Outline

1 Regressograms in heteroscedastic regression

2 The shape of the penalty must be estimated

3 Resampling

4 Theoretical guarantees for regressograms

5 Least-squares density estimation
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Least-squares density estimation

µ reference measure on Ξ

f = dP/dµ ∈ S = L2(µ)

γ(t; ξ) = ‖t‖2
L2(µ) − 2t(ξ)

⇒ Pγ(t) = ‖t‖2
L2(µ) − 2 〈t, f 〉L2(µ)

⇒ s? = f and ` (s?, t ) = ‖t − s?‖2
L2(µ)

(ψλ )λ∈m orthonormal basis of Sm

⇒ s?m =
∑

λ∈m(Pψλ)ψλ and ŝm =
∑

λ∈m(Pnψλ)ψλ

penid(m) = (P − Pn)γ ( ŝm ) = 2(Pn − P)(ŝm)

= 2 ‖s?m − ŝm‖2
L2(µ) + 2(Pn − P)(s?m)
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L2(µ) + 2(Pn − P)(s?m)

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



53/57

Regressograms Shape of the penalty Resampling Regressograms & resampling Density Conclusion

Least-squares density estimation

µ reference measure on Ξ

f = dP/dµ ∈ S = L2(µ)

γ(t; ξ) = ‖t‖2
L2(µ) − 2t(ξ)

⇒ Pγ(t) = ‖t‖2
L2(µ) − 2 〈t, f 〉L2(µ)

⇒ s? = f and ` (s?, t ) = ‖t − s?‖2
L2(µ)

(ψλ )λ∈m orthonormal basis of Sm

⇒ s?m =
∑

λ∈m(Pψλ)ψλ and ŝm =
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I.i.d. framework (Lerasle 2009)

penid(m) = 2(Pn − P)(ŝm)

penW (m) = CWEW

[
2(PW

n −W Pn)(ŝWm )
]

⇒ penW (m) only depends on W through a multiplicative factor

⇒ E [penW (m) ] = CW var
(

W1 −W
)
E [penid(m) ]

+ concentration of penW (m) around its expectation (faster than
penid(m))

⇒ oracle inequality with constant 1 + o(1) under well-chosen
assumptions on P and Mn

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



54/57

Regressograms Shape of the penalty Resampling Regressograms & resampling Density Conclusion

I.i.d. framework (Lerasle 2009)

penW (m) = CWEW

[
2(PW

n −W Pn)(ŝWm )
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]

⇒ penW (m) only depends on W through a multiplicative factor

⇒ E [penW (m) ] = CW var
(

W1 −W
)
E [penid(m) ]

+ concentration of penW (m) around its expectation (faster than
penid(m))

⇒ oracle inequality with constant 1 + o(1) under well-chosen
assumptions on P and Mn

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



55/57

Regressograms Shape of the penalty Resampling Regressograms & resampling Density Conclusion

Dependent case (Lerasle 2010)

Mixing (β or τ)

Split the data into several blocks ⇒ keep one every two blocks

Resample the blocks (which are almost independent)

⇒ Oracle inequality (with an oracle only based on part of the
original sample)

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



56/57

Regressograms Shape of the penalty Resampling Regressograms & resampling Density Conclusion

Outline

1 Regressograms in heteroscedastic regression

2 The shape of the penalty must be estimated

3 Resampling

4 Theoretical guarantees for regressograms

5 Least-squares density estimation

6 Conclusion

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



57/57

Regressograms Shape of the penalty Resampling Regressograms & resampling Density Conclusion

Limits of resampling

Computational complexity

⇒ alternative: non-exchangeable weights (e.g., V -fold)

Non-asymptotic results: can we have some without
closed-form expressions?
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