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Outline of the lectures

© Model selection via penalization, with application to
change-point detection

@ Resampling methods for penalization, and robustness to
heteroscedasticity in regression

© Cross-validation for model /estimator selection, with
application to detecting changes in the mean of a signal
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Part |l

Resampling methods for penalization, and

robustness to heteroscedasticity in regression
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Outline

@ Regressograms in heteroscedastic regression
e The shape of the penalty must be estimated
© Resampling

e Theoretical guarantees for regressograms
© Least-squares density estimation

@ Conclusion
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Regressograms

Outline

@ Regressograms in heteroscedastic regression

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Regressograms
@00

Heteroscedastic regression framework

e Random design: (X1, Y1),...,(Xn, Yn) € X x R i.i.d.
Yi =n(Xi) +e;i
E[e;\ X,'] =0 and E [6,2 | X,'} = 0'2(X,')

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Regressograms
@00

Heteroscedastic regression framework

e Random design: (X1, Y1),...,(Xn, Yn) € X x R i.id.
Yi =n(Xi) +e;i
E[e;\ X,'] =0 and E [6,2 ‘ X,'] — 0'2(X;)

@ Quadratic loss:

PA(t) = Egx yyp [9(E (X, Y))] = Egx yyp | (£X) = Y )]

@ Excess loss: n = s* and

£(s*,£) = PA(t) = Py(s") = Eqxyyer | (5(X) — £(X))?
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Regressograms
oeo

Regressograms

For any finite partition m of X

Sn = Za)\]l/\ st. a e R™
AEm

= least-squares estimator over S, (regressogram):

§m€argmi5n{Pm/(t)}—argm|n Z(Y t(X;))?
teESm
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Regressograms
oeo

Regressograms

For any finite partition m of X

Sni= {Z@Aﬂ)\ s.t. aERm}

AEM

= least-squares estimator over S, (regressogram):

3 in [P~ (1)) =
G Eargtrreusrnlq{ v(t)} = argmln{ Z(Y t(X;))? }
If for every A € m

PO 1 .
pr = pa(Dy) = ;Card{l st. i€} >0

gmzzg,\]b\ By = Z Yi

AEM lst XieEX
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Regressograms
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Regressograms: examples (X = [0, 1])

Mreet/2) (regular partitions on
[0,1/2] and on [1/2,1])

/\/lg,reg) (regular partitions)
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Regressograms
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Regressograms: bias, ideal penalty
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Regressograms
@000

Regressograms: bias, ideal penalty

sm=Y_ MBIy Br=Exyp[Y] X€EA]

AEM
l(s*,sy) = Z P (Ug\d)>2 <O’§\d))2 =E {([ﬁ — 5*(X))2‘ X € /\}
AEmM

Sylvain Arlot

Model selection via penalization, resampling and cross-validation, with application to change-point detection



Regressograms
@000

Regressograms: bias, ideal penalty

=) Bl Bri=Exyp[Y] X €A

AEM
“Sn(A) (o) =5 w00r| xe)
AEM

pen;a(m) = p1(m) + pa(m) — 6(m)

pam) =P (1)~ (i) = D p (B )

AEM
pa(m) = P (7 (s55) ~ 7 (Gn)) = S n (5~ 1)
AEM
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Regressograms
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Regressograms: conditional expectations

Pm = (]lxie)\ )1§i§n,)\€m

E[py(m)| Pm] = Z"* 2

)\Em

E[p2(m)| Pm] =~ ZU/\

/\Gm

o} = Epeyyer (Y = B1) ] Xea|= (agd>)2 + (ay)>2

<a§f))2 =Epeyyer [(0())] X €]
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Regressograms
[e]e] lo)

Regressograms: expectations

E[pi(m ZUA 1+ 0np, )
AEm
1
Elpa(m)] == > o3
AEM
Onpy = [E)\ Py > 0] -1
P

. K1
— — < < 14
exp(—np) < 0pp < min { 1+ (np)/% 52}
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Regressograms
oooe

Regressograms: risk, expectation of the ideal penalty

E10(s 3] = X (080) 42 30 (14 6 ) 0}

AEM AEM

E[peng(m)] =~ 3 (2 4+ 60y, ) 3

AEM
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Shape of the penalty

Outline

e The shape of the penalty must be estimated
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Shape of the penalty
@®0000000000

Drawbacks of pen = pen(D,,)

Y =s"(X)+e with X ~U([0,1])

1/2 1
E[] X] = o(X) and /0 (a(x))2dx¢/1/2(a(x))2dx
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Shape of the penalty
@®0000000000

Drawbacks of pen = pen(D,,)

Y =s"(X)+e with X ~U([0,1])

1/2
E[e?| X] =0(X) and /O dx;é//z

E [pena(m)] ~ -

12 , 1 ,
Dm,l/o (0(x))? dx + Dy /1/2(J(x)) dx]
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Shape of the penalty
O@000000000

Drawbacks of pen = pen(D,,): an example

Y =s*(X)+e with X ~([0,1])
L(e] X)=N(0,0(X)?)
1

S*(X)IX U(X):1X§%+%]1X>l/2

Dm2
Dy g 4+ —m2
[ 1 200 }
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Shape of the penalty
[e]e] le]elelelele]e]e]

Example: data and oracle (n = 200)

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Shape of the penalty
[ee]e] lelelelele]e]e]

Example: pen;y(m) as a function of D,
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Shape of the penalty
[e]e]ele] Telelele]e]e]

Penalties function of the dimension

For any D € D, = {Dy, s.t. me M, }

Mim(D) := argmin e v, 54, Dp=n { Pny (5m) }
Maim = | Maim(D)

DeD,

Then, VF : ./\/ln — R V(X,', Y,‘)lg,'gn

argmin e p, { Pry (5m) + F(Dm) } C Mdim
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Shape of the penalty
0O0000e00000

Models that can be selected with pen(D,)
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Shape of the penalty
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Drawbacks of pen = pen(D,,): m(D*) # m*

Densities of (D#(p+),1, D(p#),2) and (Dm« 1, D 2) over
N = 1000 samples

= =
& 15 i)
=} =X
c c
o (=]
210 2
o e}
G k]
g 5 2
g E
z -3 P4
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Number of bins on [0; 0.5] Number of bins on [0; 0.5]
m(K*) m*
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Shape of the penalty
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Towards a proof: concentration of penyy

Assumption:  [|Y]|,, < A<oo and o(-) > omin >0

@ Concentration of p; and po:
if minxem {npa} > O In(n), with probability at least 1 — Ln™7,
fori=1,2

2
pi(m) — E[pi(m)]] < LA’”““&%‘(”)) E [pa(m)]

@ Bernstein's inequality: with probability at least 1 — 2e™%,

6A2x

v € (0.1] . |(Po—P) (v (sm) =7 (7))l < 0£(s", 55 )+~
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Shape of the penalty
0O0000000e00

Heuristical proof: expectations

Dnm D,
E [py(m)] ~ E [pa(m)] ~ T > o

1/2 1
p1= 2/ o? = 2/ o
0 1/2

(e5] (6%
O(s 55 )~ oL 92
" Dhy Dho
1 1/2 AY 1 ! %1\ 2
al—@o (S) 012—@ 1/2(5
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Shape of the penalty
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Heuristical proof: expectations

1/2 1
p1 = 2/ o? = 2/ o
0 1/2

1 1/2 N2
“=gg)y V=g,

1
1 *1\ 2

&5 @2 P1Dm1  2Dm;

Py (3m) — Py (s") ~ b 4 02 -
" m Dr2n,1 Drzn,z n n
. « « D 35D
0(5*5m) ~ 21 . 22 £1Dm,1 . B2Dm 1
Dm_’1 Dm,2 n n
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Shape of the penalty
0O0000000e00

Heuristical proof: expectations

1/2 1
ﬁ1:2/ O'2 > 52:2/ 0'2
0 1/2

1 1/2 *1\2 1 ! *1) 2
Oél—@o (S) 042—@ 1/2(5

Py (Sm) — Py(s*) = M, M _ P1Dmy B2Dma

D,Qn 1 D?m2 n n
- « le% D D

0(s* %) ~ 21 N 22 n B1Dm 1 L B2Dm 1
Dm,1 Dm,2 n n

N <2(11n>1/3 (2042n>1/3
m* =~ )
b1 ’ B2
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Shape of the penalty
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Drawbacks of pen = pen(D,,): theory

Y =s"(X)+e with X~U([0,1]), E][e 2\ X] =a(X)
2 = 1/2 X X = 0'
and oa—/o ’d 75//2 2 dx = o2

Theorem (A. 2008)

lf M= Mg,reg’l/ 2), under “reasonable” assumptions on (s*,e,0),
In(o2/02) > O such that with probability at least
1 - C(llelloo » 92, 05, 15" lloo » 15" o)~

VF , VmF € arg ng}& {Pn’)’(/s\m)"i_F(Dm)} )
m n

g(ﬁ,%)z(un(ﬁ)) inf {£(s*,5m)}

b meM,
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Shape of the penalty
0000000000 e

Why should we estimate the shape of the penalty?

e pen(D) = F(D) = loss of a factor (1 +1n) >1
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Shape of the penalty
0000000000 e

Why should we estimate the shape of the penalty?

e pen(D) = F(D) = loss of a factor (1 +1n) >1

e pen(m) = 2E [o(X)?| Dpm/n = possible burst of the risk
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Shape of the penalty
0000000000 e

Why should we estimate the shape of the penalty?

e pen(D) = F(D) = loss of a factor (1 +1n) >1

e pen(m) =2E [O‘(X)z] D,,/n = possible burst of the risk

o pen(m) = 2||c||2. Dm/n = oracle-inequality with constant
O(max o2/ min o?)
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Shape of the penalty
0000000000 e

Why should we estimate the shape of the penalty?

e pen(D) = F(D) = loss of a factor (1 +1n) >1

e pen(m) =2E [O‘(X)z] D,,/n = possible burst of the risk

o pen(m) = 2|o||2, Dm/n = oracle-inequality with constant
O(max o2/ min o2)

= must estimate E[pen;q(m)] for an oracle inequality with
constant (1 + o(1)) and for avoiding overfitting

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Resampling

Outline

© Resampling
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Resampling
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Resampling heuristics (bootstrap, Efron 1979)

sampling -
Real world : P Py———=75,
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Resampling
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Resampling heuristics (bootstrap, Efron 1979)

li —~
Real world : P P ——5,
!
{
4
{
;
v
Bootstrap world : P,
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Resampling
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Resampling heuristics (bootstrap, Efron 1979)

sampling N
Real world : P Py, —=—=75,
5
!
!
{
§
¥ y
Bootstrap world : P, eampTne PV —=s73"

(P~ Pa)y (3n) = F(P.Pp) ~~ F(Pay P) = (Pa = PV} (%)

n m
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Resampling
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Exchangeable weighted resampling

1 n
i=1

@ Bootstrap:
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Resampling
0®0000000

Exchangeable weighted resampling

Pr\r/v = ,112”: VVi(S&'
i=1

e Efron(m) or m out of n bootstrap:

1 1
mWN/\/l<m;,..., >
n n n

Model selection via penalization, resampling and cross-validation, with application to change-point detection
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Resampling
0®0000000

Exchangeable weighted resampling

1 o 1 n 1 = W,
Pr\f‘/::n;mé& or ZkaZWié&:;Z:é&

i=1 i=1

e Efron(m) or m out of n bootstrap:

1 1
mW~M<m;,...,>
n n

n

@ Subsampling:
e Random-hold out(q), g € {1,...,n—1}:

VV,-:gI[,'E/ with INu(mq({1a7n}))

e Rademacher(p) or Bernoulli:

pWi,...,pW, iid. ~ B(p)

Model selection via penalization, resampling and cross-validation, with application to change-point detection
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Resampling
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Theoretical justification: asymptotics

Theorem (van der Vaart & Wellner, 1996)

Let (Wp1,...,Wpn) € R" be a non-negative random vector,
exchangeable, independent from &1 ,, bounded and such that

ntS (Woi—Wa)* P 250
i=1

Then, as n goes to infinity,

sup

heBLy Ew[h<ﬁ(P"’N7W”P”)” ~E[h(cG)]| Lo

where G is a Gaussian process, limit of \/n(P, — P), with zero
mean and covariance function cov(f,g) = P(fg) — P(f)P(g).

Model selection via penalization, resampling and cross-validation, with application to change-point detection
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Resampling
[e]e]e] lelelele]e)

Classical uses of resampling

@ estimating a variance, a quadratic risk

@ estimation and/or bias correction
@ confidence intervals, p-values
@ estimation of prediction error, model selection

e stabilization (bagging, random forests)

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Resampling
[e]e]e]e] Telelele)

A resampling-based estimator of variance

Framework:

&oosbaiid ~ P E[g]=p E[(&-p)| =0

o? =nE ( Zﬁ, ) :nE[(Engnf—Engf)z}

=nE[F(P,P,)]

= resampling-based estimator

o3y = nEw | F(Pa, PYV) |

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Resampling
[e]e]e]e] Telelele)

A resampling-based estimator of variance

o2, = nEy [F(Pn, P,‘,/V)]
o R(W) n ) 1
ohy = % (& =)= =D (&—n)(&—n)
= 2

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Resampling
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Comparison with the classical variance estimator

Classical unbiased estimator of variance:

n n 2
-~ 1 1

=

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Resampling
00000000

Comparison with the classical variance estimator

Classical unbiased estimator of variance:

—

02:H_12<§,—Z£k>

/\ WY
0% = Rg/ )52
= E {aﬁv} = RS/W)OQ
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Resampling
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Resampling and structure

o Properties of F(P, P,) = (E¢up,& — Eepé)?:
e exchangeable

translation-invariance

homogeneity

polynomial function of & and E¢p§

= Ew[F(P,, PV)] has similar properties

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Resampling
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Resampling and structure

o Properties of F(P, P,) = (E¢up,& — Eepé)?:
e exchangeable

translation-invariance

homogeneity

polynomial function of & and E¢p§

= Ew[F(Ps, PV)] has similar properties

= Ew |[F(PyPY)| x o

n

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Resampling
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Resampling and concentration

Over-concentration phenomenon for the resampling-based
estimator:

E|(& - n)*] - 30*

2
1 n
*E P — =204
var n(nilf M) o+ -

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Resampling
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Computation of the multiplicative factor

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Resampling
00000000e

Computation of the multiplicative factor

2
W) _ Wi
Rt = kw [(ZZ:1 Wi 1) ]

. wy _n-1
Efron(m): Ry, = -
1446, 1
Rademacher(p): Rs/W) _1Honp l~=--1
p p
Random hold-out(q): R&W) ="
q
1
Leave-one-out = Rho(n — 1): RE/W) = 1
n —_

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Resampling
[ le]

Resampling-based estimator of pen,;(m)

o ldeal penalty:
(P = Pn)(v(5m)) = F(P, Py)

@ Resampling-based estimator of E[F (P, P,)]:

pen(m) = CWE | (Pn = P2)(v(51)) | (Xi, Yrsizn

@ bootstrap (Efron, 1983; Shibata, 1997), m out of n bootstrap
for identification (Shao, 1996), general exchangeable weights
(A. 2009)

e Multiplicative factor Cyy: why? how can we estimate it?

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Resampling
o] ]

Rademacher penalties

o Global penalties:

pen;q(m) < penf’(m) = sup (P = Pa) (1)
tESM

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Resampling
o] ]

Rademacher penalties

o Global penalties:

pen;q(m) < pen?°(m) = sup (P — Pa)y(t)
teESm

o Global Rademacher penalties in classification (Koltchinskii &
Panchenko, 2001; Bartlett, Boucheron & Lugosi, 2002),
exchangeable weights (Fromont, 2004)

[tseusp { Zm(t &) }

with  e1,...,eq00d. ~U{-1,+1})

n

@ Local Rademacher complexities (Bartlett, Bousquet &
Mendelson, 2004; Koltchinskii, 2006)

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Regressograms & resampling

Outline

e Theoretical guarantees for regressograms
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Regressograms & resampling
[ JeJele]e]

Reminder

Emzzg,\]lx with B\)H:n}\)\ Z Yi

AEM P ist. X;€EX

POt 1 .
pr = pa(Dn) = - Card{ist. X;e A}

peniq(m) = p1(m) + p2(m) — 6(m)
pr(m) =P (v (Sm) =7 (sh)) =D [m (BA 5,\)1

AEM

pa(m) = Pa (7(s8) =7 (Gm)) = [ﬁA (@—mﬂ

AEM

6(m) = (Pn = P)y(s,)

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Regressograms & resampling
0@000

Resampling-based penalty

Cw Riw + Row 1
penW(m) = T }7@\7_1 5/\,2 - T,B)\Si’l ]1nl3A22

with Sy 1 ::Z(Y,-—ﬁ)\) Sx2 ZZZ(Yi—/BA)z

XieX XieX
_ Wy — Wy)? —
Riw(n,py) =E (Wh — W) Xp €N, Wy >0
Wi
R Wy — Wy)?
and R w(n,py):=E ( LI ) X1 €\
: A

Sylvain Arlot
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Regressograms & resampling
(e]e] lele]

Value of R; and Ry: examples

Ri,w(n,bx) ~ Ra,w(n, pr) as npy — oo

Cwooln) = lim ——
woe(n) = i w(m B

= 1
Efron(m): Ro,w(n,px) = Z <1 - A> CWoo = -
m npx n
1
Rademacher(p): Row(n,py)=—-—1 CWooo = _P
p 1-p
Random hold-out(q): Row(n,py) = L CW,oo = 9
q n—q
N 1
Leave-one-out: RQ,W(n, pr) = Cwyeo=n—1

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot




Regressograms & resampling
[e]e]e] Je]

Expectations

E[Y;— x| X; €A]=0 and IE[(Y,-—BA)2‘ X;E)\}zaf\

C
E [penW(m) ’ Pm] = TW Z (RLW + R27w)0§]1nﬁ>\22

AEM
Cw 1 <(penW)\ 5
E[penw(m)]:mEZ (2+5n,p>\ )O')\
’ AEM
with 35,1?;1\)\/) — 0 quand npy — 400

= adaptation to heteroscedasticity

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Regressograms & resampling
[e]e]e]e]

Concentration

Proposition (A. 2009)
@ Bounded data: ||Yi||, < A< o0

@ Lower-bounded noise: o(X;) > omin > 0
e L(W) among Efr(n), Rad(1/2), Rho(n/2), Loo

For every A, > 2, with probability at least 1 — Lin~7,

’penW(m) —-E [penW(m) | Pm” ]lmin)\em{”??)\ }1>AL

_ cfvv,voo LZ(A/%W")E[m(m)]

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Regressograms & resampling
@000

Pathwise non-asymptotic oracle inequality

e L(W) among Efr(n), Rad(1/2), Rho(n/2), Loo
o Cw~ Cwo
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Regressograms & resampling
@000

Pathwise non-asymptotic oracle inequality

L(W) among Efr(n), Rad(1/2), Rho(n/2), Loo
Cw ~ Cw

Card(M,) < Cpyn™*M

Bounded data: ||Yi||,, < A < o0
Lower-bounded noise: (X;) > omin >0
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Regressograms & resampling
@000

Pathwise non-asymptotic oracle inequality

e L(W) among Efr(n), Rad(1/2), Rho(n/2), Loo

o Cw~ Cw o

e Card(M,) < Cyn*M

@ Bounded data: [|Yi||, <A< o0

@ Lower-bounded noise: o(X;) > omin >0

e s* € H(a, R) non-constant

@ Pre-selected models: Vm € M , minye, npy > 3
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Regressograms & resampling
@000

Pathwise non-asymptotic oracle inequality

e L(W) among Efr(n), Rad(1/2), Rho(n/2), Loo
o Cw~ Cwoo

Card(M,) < Cpyn™*M

Bounded data: ||Yi||,, < A < o0
Lower-bounded noise: (X;) > omin >0

s* € H(«a, R) non-constant
Pre-selected models: Vm € M , minyxecm, npy > 3

Theorem (A. 2009)

With probability at least 1 — {n~2,

0(s*,3q) < <]_ e (|n(n))*1/5) njgjf\/l{f(s*;s\m)}

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Regressograms & resampling
[o] le]e}

Models that can be selected: penLoo better than pen(D,,)

Number of bins on [0.5; 1]
OOOOOOGOOOOOOOE OO

® ® 00
O

14 16 18

O
O

o OO0 0O

REFO®OOOOO

6 10
Number of bins on [0; 0.5]
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Regressograms & resampling
[o]e] leo}

Simulations: 1.25 x pen;,,(m) vs. K*Dp,

—IdLin
- — penLoo*1.25

NG

= n
es) N [*)

model selection performance

oy
o

=
N

0 500 1000 1500 2000 2500 3000
sample size
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Regressograms & resampling
[oele] ]

Adaptation

S:=355 with me argmin  {P,y(5n)+ peny(m)}
mE/\/l(nrcg)
minAGm{nﬁA}Za

Assumptions:
@ Bounded data: [|Yi||, <A< o0
@ Lower-bounded noise: o(X;) > omin > 0
o Lower-bounded density of X: VI C X,
P(X el)>cy™Leb(/)
e s* =1 € H(a,R) with a € (0,1]:

Vxi,x € X, [s%(x1) = s"(x)| < R|x1 — x5

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot



Regressograms & resampling
[oele] ]

Adaptation

s:=5z with me argmin  {Pyy(Sm) + peny(m)}
meM(e®
minxem{ npx }>3

z —2a a K3A?
E[ﬁ(s*’s)]§K2R%nﬁ ol 2i+d_'_ 3

n2
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Regressograms & resampling
[oele] ]

Adaptation

s:=5z with me argmin  {Pyy(Sm) + peny(m)}
meM(e®
minxem{ npx }>3

< =L <& _4a KA2
E[¢(s*,3)] < K2R2§id n2a2+d ol o Tatd 4 22
and if o(-) is K,-Lipschitz with at most J, jumps:
K4 A?

E[0(s,3)] < KoR%3 0758 o] 2105y 277 +
) > A2 n Tl 12(Leb) 2

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Regressograms & resampling
@®0000

Theoretical comparison of weights: reminder

E[pena(m)] = + 3 (246, )03

AEM

1 —(penW
and I[E[penW(m)]:;Z(2+(5£f5A ))ai

AEM
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Regressograms & resampling
lo] lele]e]

~ Poisson(1)

0.4 T
— 3(n,pl)
. E5,,(nphl) | phi>0]

€
= _
<] JUPTRRTITIILLL
b oot
R 5
= 02 4
= .
£
5 .
g
= 04 E
[y .
5
=
£ -06f B
5

—0.8& 4
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Regressograms & resampling
00e00

S. dnpy: Rho(n/2) ~ Rad(1/2)

3(n,pl) or E[Bw(n,phl) | phI>0] H.-o. a. (floor(n/2))

0.4

0.3

0.2

0.1

-0.3

-0.5
0

3(n,pl)
. E[3,,(n.phi) | phi>0]

40 50 60 70 80 90 100
n*pl

with application to change-poi

Sylvain Arlot



Regressograms & resampling
000e0

Leave-one-ou

0.4 T

3(n,pl)
. E[3,,(n.phi) | phi>0]

3(n,pl) or E[Bw(n,phl) | phI>0] L.o.o0.

-0.3 I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

n*pl
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Regressograms & resampling

[e]e]e]e] }

s*(x) =sin(2mx) n =200 o(x)=x M= MU=/

4
Mallows 3.69 £ 0.07

o E[peniq] 2.30 + 0.05
pen Efr 3.15 4+ 0.07
pen Loo 2.59 £+ 0.06

2 pen Rho 2.50 4+ 0.06

N 05 1 pen Rad 2.49 + 0.06

0

_40 0.5 1
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Regressograms & resampling
Q000e

S*(x) = sin(27rx) =400 U(X) =x M= M(reg,l/2)

4
Mallows 3.69 + 0.07
o T E[peny] 2.30 + 0.05
pen Efr 3.15+0.07
pen Loo 2.59 + 0.06
. pen Rho 2.50 + 0.06
N 05 1 pen Rad 2.49 + 0.06
Mallows x1.25 | 3.17 4+ 0.07
E[pen;q] x 1.25 | 2.03 £ 0.04
pen Efr x1.25 2.60 + 0.06
0 pen Loo x1.25 | 2.22+0.05
pen Rho x1.25 | 2.14 + 0.05
pen Rad x1.25 | 2.14 + 0.05
b 05 1
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Density

Outline

© Least-squares density estimation
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Density
[ lele}

Least-squares density estimation

@ 1 reference measure on =
o f=dP/ducS="L)
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Density
[ lele}

Least-squares density estimation

@ 1 reference measure on =
o f=dP/ducS="L)

o Y(£:€) = lItlfa — 2t(€)
= P’Y(t) = HtH%z(,u,) -2 <t7 f>L2(,u)

= s*=f and ((s"t)=t—5",
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Density
[ lele}

Least-squares density estimation

@ 1 reference measure on =
o f=dP/ducS="L)

o Y(£:€) = lItlfa — 2t(€)
= P’Y(t) = HtH%z(,u,) -2 <t7 f>L2(,u)
= s =f and ((s*t)=|t—s"},

® (¥ )\ Orthonormal basis of Sy,
= 5;7 = ZAEm(Pﬂ))\)ﬂ)A and 5, = Zkem(inx)ﬁb\
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Density
[ lele}

Least-squares density estimation

@ 1 reference measure on =
o f=dP/ducS="L)

o Y(£:€) = lItlfa — 2t(€)
= P’Y(t) = HtH%z(,u,) -2 <t7 f>L2(,u)
= s =f and ((s*t)=|t—s"},

® (¥ )\ Orthonormal basis of Sy,

= Sm =D aem(PUN)¥x and Sy =37 (Patha)¥n

peniq(m) = (P — Pn)y (5m) = 2(Pn — P)(5m)
=25, = Smll 2 +2(Pn — P)(s)

m
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Density
(o] le}

li.d. framework (Lerasle 2009)
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Density
(o] le}

li.d. framework (Lerasle 2009)

penyy (m) = CwEw [2(P,,W . WP,,)(@VV)}

= penyy,(m) only depends on W through a multiplicative factor
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Density
(o] le}

li.d. framework (Lerasle 2009)

penyy (m) = CwEw [2(P,,W . WP,,)(@,,V!)}

= penyy,(m) only depends on W through a multiplicative factor
= E[peny(m)] = Cwvar (Wi — W) E [penjy(m)]

+ concentration of penyy,(m) around its expectation (faster than
pen;q(m))

Sylvain Arlot
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Density
(o] le}

li.d. framework (Lerasle 2009)

penyy (m) = CwEw [2(P,,W . WP,,)(@,,V!)}

= penyy,(m) only depends on W through a multiplicative factor

= E[peny(m)] = Cwvar (Wy — W) E [pen;q(m)]
+ concentration of penyy,(m) around its expectation (faster than
pen;q(m))

= oracle inequality with constant 1 + o(1) under well-chosen
assumptions on P and M,

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Density
ooe

Dependent case (Lerasle 2010)

e Mixing (8 or 7)

@ Split the data into several blocks = keep one every two blocks

@ Resample the blocks (which are almost independent)

= Oracle inequality (with an oracle only based on part of the
original sample)

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot



Conclusion

Outline

@ Conclusion
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Conclusion

Limits of resampling

@ Computational complexity
= alternative: non-exchangeable weights (e.g., V-fold)

@ Non-asymptotic results: can we have some without
closed-form expressions?

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot
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