
Large-scale machine learning
and convex optimization

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

ÉCOLE NORMALE

S U P É R I E U R E

Apprentissage Statistique, Univ. Paris-Sud - March 2015



“Big data” revolution?

A new scientific context

• Data everywhere: size does not (always) matter

• Science and industry

• Size and variety

• Learning from examples

– n observations in dimension d



Search engines - advertising



Search engines - Advertising



Marketing - Personalized recommendation



Visual object recognition



Personal photos



Bioinformatics

• Protein: Crucial elements of cell life

• Massive data: 2 millions for humans

• Complex data



Context

Machine learning for “big data”

• Large-scale machine learning: large d, large n

– d : dimension of each observation (input)

– n : number of observations

• Examples: computer vision, bioinformatics, advertising

– Ideal running-time complexity: O(dn)

– Going back to simple methods

– Stochastic gradient methods (Robbins and Monro, 1951)

– Mixing statistics and optimization

– Using smoothness to go beyond stochastic gradient descent
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Outline

1. Large-scale machine learning and optimization

• Traditional statistical analysis

• Classical methods for convex optimization

2. Non-smooth stochastic approximation

• Stochastic (sub)gradient and averaging

• Non-asymptotic results and lower bounds

• Strongly convex vs. non-strongly convex

3. Smooth stochastic approximation algorithms

• Asymptotic and non-asymptotic results

4. Beyond decaying step-sizes

5. Finite data sets



Supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Prediction as a linear function θ⊤Φ(x) of features Φ(x) ∈ R
d

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rd

1

n

n
∑

i=1

ℓ
(

yi, θ
⊤Φ(xi)

)

+ µΩ(θ)

convex data fitting term + regularizer



Usual losses

• Regression: y ∈ R, prediction ŷ = θ⊤Φ(x)

– quadratic loss 1
2(y − ŷ)2 = 1

2(y − θ⊤Φ(x))2



Usual losses

• Regression: y ∈ R, prediction ŷ = θ⊤Φ(x)

– quadratic loss 1
2(y − ŷ)2 = 1

2(y − θ⊤Φ(x))2

• Classification : y ∈ {−1, 1}, prediction ŷ = sign(θ⊤Φ(x))

– loss of the form ℓ(y θ⊤Φ(x))
– “True” 0-1 loss: ℓ(y θ⊤Φ(x)) = 1y θ⊤Φ(x)<0

– Usual convex losses:
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Main motivating examples

• Support vector machine (hinge loss)

ℓ(Y, θ⊤Φ(X)) = max{1− Y θ⊤Φ(X), 0}

• Logistic regression

ℓ(Y, θ⊤Φ(X)) = log(1 + exp(−Y θ⊤Φ(X)))

• Least-squares regression

ℓ(Y, θ⊤Φ(X)) =
1

2
(Y − θ⊤Φ(X))2



Usual regularizers

• Main goal: avoid overfitting

• (squared) Euclidean norm: ‖θ‖22 =
∑d

j=1 |θj|2

– Numerically well-behaved

– Representer theorem and kernel methods : θ =
∑n

i=1αiΦ(xi)

– See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and

Cristianini (2004)

• Sparsity-inducing norms

– Main example: ℓ1-norm ‖θ‖1 =
∑d

j=1 |θj|
– Perform model selection as well as regularization

– Non-smooth optimization and structured sparsity

– See, e.g., Bach, Jenatton, Mairal, and Obozinski (2011, 2012)
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• Expected risk: f(θ) = E(x,y)ℓ(y, θ
⊤Φ(x)) testing cost

• Two fundamental questions: (1) computing θ̂ and (2) analyzing θ̂

– May be tackled simultaneously
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Supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Prediction as a linear function θ⊤Φ(x) of features Φ(x) ∈ R
d

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rd

1

n

n
∑

i=1

ℓ
(

yi, θ
⊤Φ(xi)

)

such that Ω(θ) 6 D

convex data fitting term + constraint

• Empirical risk: f̂(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi)) training cost

• Expected risk: f(θ) = E(x,y)ℓ(y, θ
⊤Φ(x)) testing cost

• Two fundamental questions: (1) computing θ̂ and (2) analyzing θ̂

– May be tackled simultaneously



General assumptions

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Bounded features Φ(x) ∈ R
d: ‖Φ(x)‖2 6 R

• Empirical risk: f̂(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi)) training cost

• Expected risk: f(θ) = E(x,y)ℓ(y, θ
⊤Φ(x)) testing cost

• Loss for a single observation: fi(θ) = ℓ(yi, θ
⊤Φ(xi))

⇒ ∀i, f(θ) = Efi(θ)

• Properties of fi, f, f̂

– Convex on R
d

– Additional regularity assumptions: Lipschitz-continuity,

smoothness and strong convexity



Lipschitz continuity

• Bounded gradients of f (Lipschitz-continuity): the function f if

convex, differentiable and has (sub)gradients uniformly bounded by

B on the ball of center 0 and radius D:

∀θ ∈ R
d, ‖θ‖2 6 D ⇒ ‖f ′(θ)‖2 6 B

• Machine learning

– with f(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi))

– G-Lipschitz loss and R-bounded data: B = GR



Smoothness and strong convexity

• A function f : Rd → R is L-smooth if and only if it is differentiable

and its gradient is L-Lipschitz-continuous

∀θ1, θ2 ∈ R
d, ‖f ′(θ1)− f ′(θ2)‖2 6 L‖θ1 − θ2‖2

• If f is twice differentiable: ∀θ ∈ R
d, f ′′(θ) 4 L · Id

smooth non−smooth



Smoothness and strong convexity
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• If f is twice differentiable: ∀θ ∈ R
d, f ′′(θ) 4 L · Id

• Machine learning

– with f(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi))

– Hessian ≈ covariance matrix 1
n

∑n
i=1Φ(xi)Φ(xi)

⊤

– ℓ-smooth loss and R-bounded data: L = ℓR2



Smoothness and strong convexity

• A function f : Rd → R is µ-strongly convex if and only if

∀θ1, θ2 ∈ R
d, f(θ1) > f(θ2) + f ′(θ2)

⊤(θ1 − θ2) +
µ
2‖θ1 − θ2‖22

• If f is twice differentiable: ∀θ ∈ R
d, f ′′(θ) < µ · Id

convex
strongly
convex
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Smoothness and strong convexity

• A function f : Rd → R is µ-strongly convex if and only if

∀θ1, θ2 ∈ R
d, f(θ1) > f(θ2) + f ′(θ2)

⊤(θ1 − θ2) +
µ
2‖θ1 − θ2‖23

• If f is twice differentiable: ∀θ ∈ R
d, f ′′(θ) < µ · Id

• Machine learning

– with f(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi))

– Hessian ≈ covariance matrix 1
n

∑n
i=1Φ(xi)Φ(xi)

⊤

– Data with invertible covariance matrix (low correlation/dimension)

• Adding regularization by µ
2‖θ‖2

– creates additional bias unless µ is small



Summary of smoothness/convexity assumptions

• Bounded gradients of f (Lipschitz-continuity): the function f if

convex, differentiable and has (sub)gradients uniformly bounded by

B on the ball of center 0 and radius D:

∀θ ∈ R
d, ‖θ‖2 6 D ⇒ ‖f ′(θ)‖2 6 B

• Smoothness of f : the function f is convex, differentiable with

L-Lipschitz-continuous gradient f ′:

∀θ1, θ2 ∈ R
d, ‖f ′(θ1)− f ′(θ2)‖2 6 L‖θ1 − θ2‖2

• Strong convexity of f : The function f is strongly convex with

respect to the norm ‖ · ‖, with convexity constant µ > 0:

∀θ1, θ2 ∈ R
d, f(θ1) > f(θ2) + f ′(θ2)

⊤(θ1 − θ2) +
µ
2‖θ1 − θ2‖22



Analysis of empirical risk minimization

• Approximation and estimation errors: C = {θ ∈ R
d,Ω(θ) 6 D}

f(θ̂)− min
θ∈Rd

f(θ) =

[

f(θ̂)−min
θ∈C

f(θ)

]

+

[

min
θ∈C

f(θ)− min
θ∈Rd

f(θ)

]

– NB: may replace min
θ∈Rd

f(θ) by best (non-linear) predictions

1. Uniform deviation bounds, with θ̂ ∈ argmin
θ∈C

f̂(θ)

f(θ̂)−min
θ∈C

f(θ) 6 2 sup
θ∈C

|f̂(θ)− f(θ)| (proof)

– Typically slow rate O
( 1√

n

)

2. More refined concentration results with faster rates



Motivation from least-squares

• For least-squares, we have ℓ(y, θ⊤Φ(x)) = 1
2(y − θ⊤Φ(x))2, and

f(θ)− f̂(θ) =
1

2
θ⊤

(

1

n

n
∑

i=1

Φ(xi)Φ(xi)
⊤ − EΦ(X)Φ(X)⊤

)

θ

−θ⊤
(

1

n

n
∑

i=1

yiΦ(xi)− EY Φ(X)

)

+
1

2

(

1

n

n
∑

i=1

y2i − EY 2

)

,

sup
‖θ‖26D

|f(θ)− f̂(θ)| 6
D2

2

∥

∥

∥

∥

1

n

n
∑

i=1

Φ(xi)Φ(xi)
⊤ − EΦ(X)Φ(X)⊤

∥

∥

∥

∥

op

+D

∥

∥

∥

∥

1

n

n
∑

i=1

yiΦ(xi)− EY Φ(X)

∥

∥

∥

∥

2

+
1

2

∣

∣

∣

∣

1

n

n
∑

i=1

y2i − EY 2

∣

∣

∣

∣

,

sup
‖θ‖26D

|f(θ)− f̂(θ)| 6 O(1/
√
n) with high probability



Slow rate for supervised learning

• Assumptions (f is the expected risk, f̂ the empirical risk)

– Ω(θ) = ‖θ‖2 (Euclidean norm)

– “Linear” predictors: θ(x) = θ⊤Φ(x), with ‖Φ(x)‖2 6 R a.s.

– G-Lipschitz loss: f and f̂ are GR-Lipschitz on C = {‖θ‖2 6 D}
– No assumptions regarding convexity



Slow rate for supervised learning

• Assumptions (f is the expected risk, f̂ the empirical risk)

– Ω(θ) = ‖θ‖2 (Euclidean norm)

– “Linear” predictors: θ(x) = θ⊤Φ(x), with ‖Φ(x)‖2 6 R a.s.

– G-Lipschitz loss: f and f̂ are GR-Lipschitz on C = {‖θ‖2 6 D}
– No assumptions regarding convexity

• With probability greater than 1− δ

sup
θ∈C

|f̂(θ)− f(θ)| 6 GRD√
n

[

2 +

√

2 log
2

δ

]

• Expectated estimation error: E
[

sup
θ∈C

|f̂(θ)− f(θ)|
]

6
4GRD√

n

• Using Rademacher averages (see, e.g., Boucheron et al., 2005)

• Lipschitz functions ⇒ slow rate



Symmetrization with Rademacher variables

• Let D′ = {x′
1, y

′
1, . . . , x

′
n, y

′
n} an independent copy of the data

D = {x1, y1, . . . , xn, yn}, with corresponding loss functions f ′
i(θ)

E
[

sup
θ∈Θ

∣

∣f(θ)− f̂(θ)
∣

∣

]

= E
[

sup
θ∈Θ

(

f(θ)− 1

n

n
∑

i=1

fi(θ)

)

]

= E

[

sup
θ∈Θ

∣

∣

∣

∣

1

n

n
∑

i=1

E
(

f ′
i(θ)− fi(θ)|D

)

∣

∣

∣

∣

]

6 E

[

E

[

sup
θ∈Θ

∣

∣

∣

∣

1

n

n
∑

i=1

(

f ′
i(θ)− fi(θ)

∣

∣

∣

∣

∣

∣

∣

∣

D
]]

= E

[

sup
θ∈Θ

∣

∣

∣

∣

1

n

n
∑

i=1

(

f ′
i(θ)− fi(θ)

)

∣

∣

∣

∣

]

= E

[

sup
θ∈Θ

∣

∣

∣

∣

1

n

n
∑

i=1

εi
(

f ′
i(θ)− fi(θ)

)

∣

∣

∣

∣

]

with εi uniform in {−1, 1}

6 2E

[

sup
θ∈Θ

∣

∣

∣

∣

1

n

n
∑

i=1

εifi(θ)

∣

∣

∣

∣

]

= Rademacher complexity



Rademacher complexity

• Define the Rademacher complexity of the class of functions (X,Y ) 7→
ℓ(Y, θ⊤Φ(X)) as

Rn = E

[

sup
θ∈Θ

∣

∣

∣

∣

1

n

n
∑

i=1

εifi(θ)

∣

∣

∣

∣

]

.

• Note two expectations, with respect to D and with respect to ε

• Main property:

E
[

sup
θ∈Θ

∣

∣f(θ)− f̂(θ)
∣

∣

]

6 2Rn



From Rademacher complexity to uniform bound

• Let Z = supθ∈Θ

∣

∣f(θ)− f̂(θ)
∣

∣

• By changing the pair (xi, yi), Z may only change by

2

n
sup |ℓ(Y, θ⊤Φ(X))| 6 2

n

(

sup |ℓ(Y, 0)|+GRD
)

6
2

n

(

ℓ0+GRD
)

= c

with sup |ℓ(Y, 0)| = ℓ0

• MacDiarmid inequality: with probability greater than 1− δ,

Z 6 EZ +

√

n

2
c ·

√

log
1

δ
6 2Rn +

√
2√
n

(

ℓ0 +GRD
)

√

log
1

δ



Bounding the Rademacher average - I
• We have, with ϕi(u) = ℓ(yi, u)−ℓ(yi, 0) is almost surelyB-Lipschitz:

Rn = E

[

sup
θ∈Θ

∣

∣

∣

∣

1

n

n
∑

i=1

εifi(θ)

∣

∣

∣

∣

]

6 E

[

sup
θ∈Θ

∣

∣

∣

∣

1

n

n
∑

i=1

εifi(0)

∣

∣

∣

∣

]

+ E

[

sup
θ∈Θ

∣

∣

∣

∣

1

n

n
∑

i=1

εi
[

fi(θ)− fi(0)
]

∣

∣

∣

∣

]

6
ℓ0√
n
+ E

[

sup
θ∈Θ

1

n

n
∑

i=1

εi
[

fi(θ)− fi(0)
]

]

=
ℓ0√
n
+ E

[

sup
θ∈Θ

1

n

n
∑

i=1

εiϕi(θ
⊤Φ(xi))

]

• Using Ledoux-Talagrand concentration results for Rademacher
averages (since ϕi is G-Lipschitz, we get:

Rn 6
ℓ0√
n
+ 2G · E

[

sup
‖θ‖26D

∣

∣

∣

∣

1

n

n
∑

i=1

εiθ
⊤Φ(xi)

]∣

∣

∣

∣



Bounding the Rademacher average - II
• We have:

Rn 6
ℓ0√
n
+ 2GE

[

sup
‖θ‖26D

∣

∣

∣

∣

1

n

n
∑

i=1

εiθ
⊤Φ(xi)

]
∣

∣

∣

∣

=
ℓ0√
n
+ 2GE

∥

∥

∥

∥

D
1

n

n
∑

i=1

εiΦ(xi)

∥

∥

∥

∥

2

6
ℓ0√
n
+ 2GD

√

√

√

√E

∥

∥

∥

∥

1

n

n
∑

i=1

εiΦ(xi)

∥

∥

∥

∥

2

2

6
2(ℓ0 +GRD)√

n

• Overall, we get, with probability 1− δ:

sup
θ∈Θ

∣

∣f(θ)− f̂(θ)
∣

∣ 6
1√
n

(

ℓ0 +GRD)(4 +

√

2 log
1

δ

)



Putting it all together

• We have, with probability 1− δ, for all θ ∈ Θ:

f(θ)− f(θ∗) 6
[

f(θ)− f̂(θ)
]

+
[

f̂(θ)− min
θ′∈Θ

f̂(θ′)
]

+
[

min
θ′∈Θ

f̂(θ′)− f̂(θ∗)
]

6
2√
n
(ℓ0 +GRD)(4 +

√

2 log
1

δ
) +

[

f̂(θ)− min
θ′∈Θ

f̂(θ′)
]

• Only need to optimize with precision 2√
n
(ℓ0 +GRD)



Slow rate for supervised learning (summary)

• Assumptions (f is the expected risk, f̂ the empirical risk)

– Ω(θ) = ‖θ‖2 (Euclidean norm)

– “Linear” predictors: θ(x) = θ⊤Φ(x), with ‖Φ(x)‖2 6 R a.s.

– G-Lipschitz loss: f and f̂ are GR-Lipschitz on C = {‖θ‖2 6 D}
– No assumptions regarding convexity

• With probability greater than 1− δ

sup
θ∈C

|f̂(θ)− f(θ)| 6 (ℓ0 +GRD)√
n

[

2 +

√

2 log
2

δ

]

• Expectated estimation error: E
[

sup
θ∈C

|f̂(θ)− f(θ)|
]

6
4(ℓ0 +GRD)√

n

• Using Rademacher averages (see, e.g., Boucheron et al., 2005)

• Lipschitz functions ⇒ slow rate



Motivation from mean estimation

• Estimator θ̂ = 1
n

∑n
i=1 zi = argminθ∈R

1
2n

∑n
i=1(θ − zi)

2 = f̂(θ)

• From before:

– f(θ) = 1
2E(θ − z)2 = 1

2(θ − Ez)2 + 1
2 var(z) = f̂(θ) +O(1/

√
n)

– f(θ̂) = 1
2(θ̂ − Ez)2 + 1

2 var(z) = f(Ez) +O(1/
√
n)



Motivation from mean estimation

• Estimator θ̂ = 1
n

∑n
i=1 zi = argminθ∈R

1
2n

∑n
i=1(θ − zi)

2 = f̂(θ)

• From before:

– f(θ) = 1
2E(θ − z)2 = 1

2(θ − Ez)2 + 1
2 var(z) = f̂(θ) +O(1/

√
n)

– f(θ̂) = 1
2(θ̂ − Ez)2 + 1

2 var(z) = f(Ez) +O(1/
√
n)

• More refined/direct bound:

f(θ̂)− f(Ez) =
1

2
(θ̂ − Ez)2

E
[

f(θ̂)− f(Ez)
]

=
1

2
E

(

1

n

n
∑

i=1

zi − Ez

)2

=
1

2n
var(z)

• Bound only at θ̂ + strong convexity



Fast rate for supervised learning

• Assumptions (f is the expected risk, f̂ the empirical risk)

– Same as before (bounded features, Lipschitz loss)

– Regularized risks: fµ(θ) = f(θ)+µ
2‖θ‖22 and f̂µ(θ) = f̂(θ)+µ

2‖θ‖22
– Convexity

• For any a > 0, with probability greater than 1− δ, for all θ ∈ R
d,

fµ(θ)−min
η∈Rd

fµ(η) 6 (1+a)(f̂µ(θ)−min
η∈Rd

f̂µ(η))+
8(1 + 1

a)G
2R2(32 + log 1

δ)

µn

• Results from Sridharan, Srebro, and Shalev-Shwartz (2008)

– see also Boucheron and Massart (2011) and references therein

• Strongly convex functions ⇒ fast rate

– Warning: µ should decrease with n to reduce approximation error



Outline

1. Large-scale machine learning and optimization

• Traditional statistical analysis

• Classical methods for convex optimization

2. Non-smooth stochastic approximation

• Stochastic (sub)gradient and averaging

• Non-asymptotic results and lower bounds

• Strongly convex vs. non-strongly convex

3. Smooth stochastic approximation algorithms

• Asymptotic and non-asymptotic results

4. Beyond decaying step-sizes

5. Finite data sets



Complexity results in convex optimization

• Assumption: f convex on R
d

• Classical generic algorithms

– (sub)gradient method/descent

– Accelerated gradient descent

– Newton method

• Key additional properties of f

– Lipschitz continuity, smoothness or strong convexity

• Key insight from Bottou and Bousquet (2008)

– In machine learning, no need to optimize below estimation error

• Key reference: Nesterov (2004)



Subgradient method/descent

• Assumptions

– f convex and B-Lipschitz-continuous on {‖θ‖2 6 D}

• Algorithm: θt = ΠD

(

θt−1 −
2D

B
√
t
f ′(θt−1)

)

– ΠD : orthogonal projection onto {‖θ‖2 6 D}

• Bound:

f

(

1

t

t−1
∑

k=0

θk

)

− f(θ∗) 6
2DB√

t

• Three-line proof

• Best possible convergence rate after O(d) iterations



Subgradient method/descent - proof - I

• Iteration: θt = ΠD(θt−1 − γtf
′(θt−1)) with γt =

2D
B
√
t

• Assumption: ‖f ′(θ)‖2 6 B and ‖θ‖2 6 D

‖θt − θ∗‖22 6 ‖θt−1 − θ∗ − γtf
′(θt−1)‖22 by contractivity of projections

6 ‖θt−1 − θ∗‖22 +B2γ2
t − 2γt(θt−1 − θ∗)

⊤f ′(θt−1) because ‖f ′(θt−1)‖2 6 B

6 ‖θt−1 − θ∗‖22 +B2γ2
t − 2γt

[

f(θt−1)− f(θ∗)
]

(property of subgradients)

• leading to

f(θt−1)− f(θ∗) 6
B2γt
2

+
1

2γt

[

‖θt−1 − θ∗‖22 − ‖θt − θ∗‖22
]



Subgradient method/descent - proof - II

• Starting from f(θt−1)− f(θ∗) 6
B2γt
2

+
1

2γt

[

‖θt−1 − θ∗‖22 − ‖θt − θ∗‖22
]

t
∑

u=1

[

f(θu−1)− f(θ∗)
]

6

t
∑

u=1

B2γu
2

+
t

∑

u=1

1

2γu

[

‖θu−1 − θ∗‖22 − ‖θu − θ∗‖22
]

=
t

∑

u=1

B2γu
2

+
t−1
∑

u=1

‖θu − θ∗‖22
( 1

2γu+1
− 1

2γu

)

+
‖θ0 − θ∗‖22

2γ1
− ‖θt − θ∗‖22

2γt

6

t
∑

u=1

B2γu
2

+
t−1
∑

u=1

4D2
( 1

2γu+1
− 1

2γu

)

+
4D2

2γ1

=
t

∑

u=1

B2γu
2

+
4D2

2γt
6 2DB

√
t with γt =

2D

B
√
t

• Using convexity: f

(

1

t

t−1
∑

k=0

θk

)

− f(θ∗) 6
2DB√

t



Subgradient descent for machine learning

• Assumptions (f is the expected risk, f̂ the empirical risk)

– “Linear” predictors: θ(x) = θ⊤Φ(x), with ‖Φ(x)‖2 6 R a.s.

– f̂(θ) = 1
n

∑n
i=1 ℓ(yi,Φ(xi)

⊤θ)

– G-Lipschitz loss: f and f̂ are GR-Lipschitz on C = {‖θ‖2 6 D}

• Statistics: with probability greater than 1− δ

sup
θ∈C

|f̂(θ)− f(θ)| 6 GRD√
n

[

2 +

√

2 log
2

δ

]

• Optimization: after t iterations of subgradient method

f̂(θ̂)−min
η∈C

f̂(η) 6
GRD√

t

• t = n iterations, with total running-time complexity of O(n2d)



Subgradient descent - strong convexity

• Assumptions

– f convex and B-Lipschitz-continuous on {‖θ‖2 6 D}
– f µ-strongly convex

• Algorithm: θt = ΠD

(

θt−1 −
2

µ(t+ 1)
f ′(θt−1)

)

• Bound:

f

(

2

t(t+ 1)

t
∑

k=1

kθk−1

)

− f(θ∗) 6
2B2

µ(t+ 1)

• Three-line proof

• Best possible convergence rate after O(d) iterations



Subgradient method - strong convexity - proof - I

• Iteration: θt = ΠD(θt−1 − γtf
′(θt−1)) with γt =

2
µ(t+1)

• Assumption: ‖f ′(θ)‖2 6 B and ‖θ‖2 6 D and µ-strong convexity of f

‖θt − θ∗‖22 6 ‖θt−1 − θ∗ − γtf
′(θt−1)‖22 by contractivity of projections

6 ‖θt−1 − θ∗‖22 +B2γ2
t − 2γt(θt−1 − θ∗)

⊤f ′(θt−1) because ‖f ′(θt−1)‖2 6 B

6 ‖θt−1 − θ∗‖22 +B2γ2
t − 2γt

[

f(θt−1)− f(θ∗) +
µ

2
‖θt−1 − θ∗‖22

]

(property of subgradients and strong convexity)

• leading to

f(θt−1)− f(θ∗) 6
B2γt
2

+
1

2

[ 1

γt
− µ

]

‖θt−1 − θ∗‖22 −
1

2γt
‖θt − θ∗‖22

6
B2

µ(t+ 1)
+

µ

2

[t− 1

2

]

‖θt−1 − θ∗‖22 −
µ(t+ 1)

4
‖θt − θ∗‖22



Subgradient method - strong convexity - proof - II

• From f(θt−1)− f(θ∗) 6
B2

µ(t+ 1)
+

µ

2

[t− 1

2

]

‖θt−1 − θ∗‖22 −
µ(t+ 1)

4
‖θt − θ∗‖22

t
∑

u=1

u
[

f(θu−1)− f(θ∗)
]

6

u
∑

t=1

B2u

µ(u+ 1)
+

1

4

t
∑

u=1

[

u(u− 1)‖θu−1 − θ∗‖22 − u(u+ 1)‖θu − θ∗‖22
]

6
B2t

µ
+

1

4

[

0− t(t+ 1)‖θt − θ∗‖22
]

6
B2t

µ

• Using convexity: f

(

2

t(t+ 1)

t
∑

u=1

uθu−1

)

− f(θ∗) 6
2B2

t+ 1



(smooth) gradient descent

• Assumptions

– f convex with L-Lipschitz-continuous gradient

– Minimum attained at θ∗

• Algorithm:

θt = θt−1 −
1

L
f ′(θt−1)

• Bound:

f(θt)− f(θ∗) 6
2L‖θ0 − θ∗‖2

t+ 4
• Three-line proof

• Not best possible convergence rate after O(d) iterations



(smooth) gradient descent - strong convexity

• Assumptions

– f convex with L-Lipschitz-continuous gradient

– f µ-strongly convex

• Algorithm:

θt = θt−1 −
1

L
f ′(θt−1)

• Bound:

f(θt)− f(θ∗) 6 (1− µ/L)t
[

f(θ0)− f(θ∗)
]

• Three-line proof

• Adaptivity of gradient descent to problem difficulty

• Line search



Accelerated gradient methods (Nesterov, 1983)

• Assumptions

– f convex with L-Lipschitz-cont. gradient , min. attained at θ∗

• Algorithm:
θt = ηt−1 −

1

L
f ′(ηt−1)

ηt = θt +
t− 1

t+ 2
(θt − θt−1)

• Bound:
f(θt)− f(θ∗) 6

2L‖θ0 − θ∗‖2
(t+ 1)2

• Ten-line proof (see, e.g., Schmidt, Le Roux, and Bach, 2011)

• Not improvable

• Extension to strongly convex functions



Optimization for sparsity-inducing norms

(see Bach, Jenatton, Mairal, and Obozinski, 2011)

• Gradient descent as a proximal method (differentiable functions)

– θt+1 = arg min
θ∈Rd

f(θt) + (θ − θt)
⊤∇f(θt)+

L

2
‖θ − θt‖22

– θt+1 = θt − 1
L∇f(θt)



Optimization for sparsity-inducing norms

(see Bach, Jenatton, Mairal, and Obozinski, 2011)

• Gradient descent as a proximal method (differentiable functions)

– θt+1 = arg min
θ∈Rd

f(θt) + (θ − θt)
⊤∇f(θt)+

L

2
‖θ − θt‖22

– θt+1 = θt − 1
L∇f(θt)

• Problems of the form: min
θ∈Rd

f(θ) + µΩ(θ)

– θt+1 = arg min
θ∈Rd

f(θt) + (θ − θt)
⊤∇f(θt)+µΩ(θ)+

L

2
‖θ − θt‖22

– Ω(θ) = ‖θ‖1 ⇒ Thresholded gradient descent

• Similar convergence rates than smooth optimization

– Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)



Summary: minimizing convex functions

• Assumption: f convex

• Gradient descent: θt = θt−1 − γt f
′(θt−1)

– O(1/
√
t) convergence rate for non-smooth convex functions

– O(1/t) convergence rate for smooth convex functions

– O(e−ρt) convergence rate for strongly smooth convex functions

• Newton method: θt = θt−1 − f ′′(θt−1)
−1f ′(θt−1)

– O
(

e−ρ2t
)

convergence rate



Summary: minimizing convex functions

• Assumption: f convex

• Gradient descent: θt = θt−1 − γt f
′(θt−1)

– O(1/
√
t) convergence rate for non-smooth convex functions

– O(1/t) convergence rate for smooth convex functions

– O(e−ρt) convergence rate for strongly smooth convex functions

• Newton method: θt = θt−1 − f ′′(θt−1)
−1f ′(θt−1)

– O
(

e−ρ2t
)

convergence rate

• Key insights from Bottou and Bousquet (2008)

1. In machine learning, no need to optimize below statistical error

2. In machine learning, cost functions are averages

⇒ Stochastic approximation



Outline

1. Large-scale machine learning and optimization

• Traditional statistical analysis

• Classical methods for convex optimization

2. Non-smooth stochastic approximation

• Stochastic (sub)gradient and averaging

• Non-asymptotic results and lower bounds

• Strongly convex vs. non-strongly convex

3. Smooth stochastic approximation algorithms

• Asymptotic and non-asymptotic results

4. Beyond decaying step-sizes

5. Finite data sets



Stochastic approximation

• Goal: Minimizing a function f defined on R
d

– given only unbiased estimates f ′
n(θn) of its gradients f ′(θn) at

certain points θn ∈ R
d



Stochastic approximation

• Goal: Minimizing a function f defined on R
d

– given only unbiased estimates f ′
n(θn) of its gradients f ′(θn) at

certain points θn ∈ R
d

• Machine learning - statistics

– loss for a single pair of observations: fn(θ) = ℓ(yn, θ
⊤Φ(xn))

– f(θ) = Efn(θ) = E ℓ(yn, θ
⊤Φ(xn)) = generalization error

– Expected gradient: f ′(θ) = Ef ′
n(θ) = E

{

ℓ′(yn, θ⊤Φ(xn))Φ(xn)
}

– Non-asymptotic results

• Number of iterations = number of observations



Stochastic approximation

• Goal: Minimizing a function f defined on R
d

– given only unbiased estimates f ′
n(θn) of its gradients f ′(θn) at

certain points θn ∈ R
d

• Stochastic approximation

– (much) broader applicability beyond convex optimization

θn = θn−1 − γnhn(θn−1) with E
[

hn(θn−1)|θn−1

]

= h(θn−1)

– Beyond convex problems, i.i.d assumption, finite dimension, etc.

– Typically asymptotic results

– See, e.g., Kushner and Yin (2003); Borkar (2008); Benveniste et al.

(2012)



Relationship to online learning

• Stochastic approximation

– Minimize f(θ) = Ezℓ(θ, z) = generalization error of θ

– Using the gradients of single i.i.d. observations



Relationship to online learning

• Stochastic approximation

– Minimize f(θ) = Ezℓ(θ, z) = generalization error of θ

– Using the gradients of single i.i.d. observations

• Batch learning

– Finite set of observations: z1, . . . , zn
– Empirical risk: f̂(θ) = 1

n

∑n
k=1 ℓ(θ, zi)

– Estimator θ̂ = Minimizer of f̂(θ) over a certain class Θ

– Generalization bound using uniform concentration results



Relationship to online learning

• Stochastic approximation

– Minimize f(θ) = Ezℓ(θ, z) = generalization error of θ

– Using the gradients of single i.i.d. observations

• Batch learning

– Finite set of observations: z1, . . . , zn
– Empirical risk: f̂(θ) = 1

n

∑n
k=1 ℓ(θ, zi)

– Estimator θ̂ = Minimizer of f̂(θ) over a certain class Θ

– Generalization bound using uniform concentration results

• Online learning

– Update θ̂n after each new (potentially adversarial) observation zn
– Cumulative loss: 1

n

∑n
k=1 ℓ(θ̂k−1, zk)

– Online to batch through averaging (Cesa-Bianchi et al., 2004)



Convex stochastic approximation

• Key properties of f and/or fn

– Smoothness: f B-Lipschitz continuous, f ′ L-Lipschitz continuous

– Strong convexity: f µ-strongly convex



Convex stochastic approximation

• Key properties of f and/or fn

– Smoothness: f B-Lipschitz continuous, f ′ L-Lipschitz continuous

– Strong convexity: f µ-strongly convex

• Key algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)

θn = θn−1 − γnf
′
n(θn−1)

– Polyak-Ruppert averaging: θ̄n = 1
n

∑n−1
k=0 θk

– Which learning rate sequence γn? Classical setting: γn = Cn−α



Convex stochastic approximation

• Key properties of f and/or fn

– Smoothness: f B-Lipschitz continuous, f ′ L-Lipschitz continuous

– Strong convexity: f µ-strongly convex

• Key algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)

θn = θn−1 − γnf
′
n(θn−1)

– Polyak-Ruppert averaging: θ̄n = 1
n

∑n−1
k=0 θk

– Which learning rate sequence γn? Classical setting: γn = Cn−α

• Desirable practical behavior

– Applicable (at least) to classical supervised learning problems

– Robustness to (potentially unknown) constants (L,B,µ)

– Adaptivity to difficulty of the problem (e.g., strong convexity)



Stochastic subgradient descent/method

• Assumptions

– fn convex and B-Lipschitz-continuous on {‖θ‖2 6 D}
– (fn) i.i.d. functions such that Efn = f

– θ∗ global optimum of f on {‖θ‖2 6 D}

• Algorithm: θn = ΠD

(

θn−1 −
2D

B
√
n
f ′
n(θn−1)

)

• Bound:

Ef

(

1

n

n−1
∑

k=0

θk

)

− f(θ∗) 6
2DB√

n

• “Same” three-line proof as in the deterministic case

• Minimax convergence rate

• Running-time complexity: O(dn) after n iterations



Stochastic subgradient method - proof - I

• Iteration: θn = ΠD(θn−1 − γnf
′
n(θn−1)) with γn = 2D

B
√
n

• Fn : information up to time n

• ‖f ′
n(θ)‖2 6 B and ‖θ‖2 6 D, unbiased gradients/functions E(fn|Fn−1) = f

‖θn − θ∗‖22 6 ‖θn−1 − θ∗ − γnf
′
n(θn−1)‖22 by contractivity of projections

6 ‖θn−1 − θ∗‖22 +B2γ2
n − 2γn(θn−1 − θ∗)

⊤f ′
n(θn−1) because ‖f ′

n(θn−1)‖2 6 B

E
[

‖θn − θ∗‖22|Fn−1

]

6 ‖θn−1 − θ∗‖22 +B2γ2
n − 2γn(θn−1 − θ∗)

⊤f ′(θn−1)

6 ‖θn−1 − θ∗‖22 +B2γ2
n − 2γn

[

f(θn−1)− f(θ∗)
]

(subgradient property)

E‖θn − θ∗‖22 6 E‖θn−1 − θ∗‖22 + B2γ2
n − 2γn

[

Ef(θn−1)− f(θ∗)
]

• leading to Ef(θn−1)− f(θ∗) 6
B2γn
2

+
1

2γn

[

E‖θn−1 − θ∗‖22 − E‖θn − θ∗‖22
]



Stochastic subgradient method - proof - II

• Starting from Ef(θn−1)− f(θ∗) 6
B2γn
2

+
1

2γn

[

E‖θn−1 − θ∗‖22 − E‖θn − θ∗‖22
]

n
∑

u=1

[

Ef(θu−1)− f(θ∗)
]

6

n
∑

u=1

B2γu
2

+
n
∑

u=1

1

2γu

[

E‖θu−1 − θ∗‖22 − E‖θu − θ∗‖22
]

6

n
∑

u=1

B2γu
2

+
4D2

2γn
6

2DB√
n

with γn =
2D

B
√
n

• Using convexity: Ef

(

1

n

n−1
∑

k=0

θk

)

− f(θ∗) 6
2DB√

n



Stochastic subgradient descent - strong convexity - I

• Assumptions

– fn convex and B-Lipschitz-continuous

– (fn) i.i.d. functions such that Efn = f

– f µ-strongly convex on {‖θ‖2 6 D}
– θ∗ global optimum of f over {‖θ‖2 6 D}

• Algorithm: θn = ΠD

(

θn−1 −
2

µ(n+ 1)
f ′
n(θn−1)

)

• Bound:

Ef

(

2

n(n+ 1)

n
∑

k=1

kθk−1

)

− f(θ∗) 6
2B2

µ(n+ 1)

• “Same” three-line proof than in the deterministic case

• Minimax convergence rate



Stochastic subgradient descent - strong convexity - II

• Assumptions

– fn convex and B-Lipschitz-continuous

– (fn) i.i.d. functions such that Efn = f

– θ∗ global optimum of g = f + µ
2‖ · ‖22

– No compactness assumption - no projections

• Algorithm:

θn = θn−1−
2

µ(n+ 1)
g′n(θn−1) = θn−1−

2

µ(n+ 1)

[

f ′
n(θn−1)+µθn−1

]

• Bound: Eg

(

2

n(n+ 1)

n
∑

k=1

kθk−1

)

− g(θ∗) 6
2B2

µ(n+ 1)

• Minimax convergence rate



Outline

1. Large-scale machine learning and optimization

• Traditional statistical analysis
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2. Non-smooth stochastic approximation
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Convex stochastic approximation

Existing work

• Known global minimax rates of convergence for non-smooth

problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

– Strongly convex: O((µn)−1)

Attained by averaged stochastic gradient descent with γn ∝ (µn)−1

– Non-strongly convex: O(n−1/2)

Attained by averaged stochastic gradient descent with γn ∝ n−1/2

– Bottou and Le Cun (2005); Bottou and Bousquet (2008); Hazan

et al. (2007); Shalev-Shwartz and Srebro (2008); Shalev-Shwartz

et al. (2007, 2009); Xiao (2010); Duchi and Singer (2009); Nesterov

and Vial (2008); Nemirovski et al. (2009)



Convex stochastic approximation

Existing work

• Known global minimax rates of convergence for non-smooth

problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

– Strongly convex: O((µn)−1)

Attained by averaged stochastic gradient descent with γn ∝ (µn)−1

– Non-strongly convex: O(n−1/2)

Attained by averaged stochastic gradient descent with γn ∝ n−1/2

• Many contributions in optimization and online learning: Bottou

and Le Cun (2005); Bottou and Bousquet (2008); Hazan et al.

(2007); Shalev-Shwartz and Srebro (2008); Shalev-Shwartz et al.

(2007, 2009); Xiao (2010); Duchi and Singer (2009); Nesterov and

Vial (2008); Nemirovski et al. (2009)



Convex stochastic approximation

Existing work

• Known global minimax rates of convergence for non-smooth

problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

– Strongly convex: O((µn)−1)

Attained by averaged stochastic gradient descent with γn ∝ (µn)−1

– Non-strongly convex: O(n−1/2)

Attained by averaged stochastic gradient descent with γn ∝ n−1/2

• Asymptotic analysis of averaging (Polyak and Juditsky, 1992;

Ruppert, 1988)

– All step sizes γn = Cn−α with α ∈ (1/2, 1) lead to O(n−1) for

smooth strongly convex problems

A single algorithm with global adaptive convergence rate for

smooth problems?



Convex stochastic approximation

Existing work

• Known global minimax rates of convergence for non-smooth

problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

– Strongly convex: O((µn)−1)

Attained by averaged stochastic gradient descent with γn ∝ (µn)−1

– Non-strongly convex: O(n−1/2)

Attained by averaged stochastic gradient descent with γn ∝ n−1/2

• Asymptotic analysis of averaging (Polyak and Juditsky, 1992;

Ruppert, 1988)

– All step sizes γn = Cn−α with α ∈ (1/2, 1) lead to O(n−1) for

smooth strongly convex problems

• Non-asymptotic analysis for smooth problems? problems with

convergence rate O(min{1/µn, 1/√n})



Smoothness/convexity assumptions

• Iteration: θn = θn−1 − γnf
′
n(θn−1)

– Polyak-Ruppert averaging: θ̄n = 1
n

∑n−1
k=0 θk

• Smoothness of fn: For each n > 1, the function fn is a.s. convex,

differentiable with L-Lipschitz-continuous gradient f ′
n:

– Smooth loss and bounded data

• Strong convexity of f : The function f is strongly convex with

respect to the norm ‖ · ‖, with convexity constant µ > 0:

– Invertible population covariance matrix

– or regularization by µ
2‖θ‖2



Summary of new results (Bach and Moulines, 2011)

• Stochastic gradient descent with learning rate γn = Cn−α

• Strongly convex smooth objective functions

– Old: O(n−1) rate achieved without averaging for α = 1

– New: O(n−1) rate achieved with averaging for α ∈ [1/2, 1]

– Non-asymptotic analysis with explicit constants

– Forgetting of initial conditions

– Robustness to the choice of C
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• Stochastic gradient descent with learning rate γn = Cn−α

• Strongly convex smooth objective functions

– Old: O(n−1) rate achieved without averaging for α = 1

– New: O(n−1) rate achieved with averaging for α ∈ [1/2, 1]

– Non-asymptotic analysis with explicit constants

– Forgetting of initial conditions

– Robustness to the choice of C

• Convergence rates for E‖θn − θ∗‖2 and E‖θ̄n − θ∗‖2

– no averaging: O
(σ2γn

µ

)

+O(e−µnγn)‖θ0 − θ∗‖2

– averaging:
trH(θ∗)−1

n
+ µ−1O(n−2α+n−2+α) +O

(‖θ0 − θ∗‖2
µ2n2

)



Classical proof sketch (no averaging)

‖θn − θ∗‖22 = ‖θn−1 − γnf
′
n(θn−1)− θ∗‖22

= ‖θn−1 − θ∗‖22 − 2γn(θn−1 − θ∗)
⊤f ′

n(θn−1) + γ2
n‖f ′

n(θn−1)‖22
6 ‖θn−1 − θ∗‖22 − 2γn(θn−1 − θ∗)

⊤f ′
n(θn−1)

+2γ2
n‖f ′

n(θ∗)‖22 + 2γ2
n‖f ′

n(θn−1)− f ′
n(θ∗)‖22

6 ‖θn−1 − θ∗‖22 − 2γn(θn−1 − θ∗)
⊤f ′

n(θn−1)

+2γ2
n‖f ′

n(θ∗)‖22+2γ2
nL[f

′
n(θn−1)− f ′

n(θ∗)]
⊤(θn−1 − θ∗)

E
[

‖θn − θ∗‖22|Fn−1

]

6 ‖θn−1 − θ∗‖22 − 2γn(θn−1 − θ∗)
⊤f ′(θn−1)

+2γ2
nE‖f ′

n(θ∗)‖22 + 2γ2
nL[f

′(θn−1)− 0]⊤(θn−1 − θ∗)

6 ‖θn−1 − θ∗‖22 − 2γn(1− γnL)(θn−1 − θ∗)
⊤f ′(θn−1) + 2γ2

nσ
2

6 ‖θn−1 − θ∗‖22 − 2γn(1− γnL)
1

2
µ‖θn−1 − θ∗‖22 + 2γ2

nσ
2

=
[

1− µγn(1− γnL)
]

‖θn−1 − θ∗‖22 + 2γ2
nσ

2

E
[

‖θn−1 − θ∗‖22
]

6
[

1− µγn(1− γnL)
]

E
[

‖θn−1 − θ∗‖22
]

+ 2γ2
nσ

2



Proof sketch (averaging)

• From Polyak and Juditsky (1992):

θn = θn−1 − γnf
′
n(θn−1)

⇔ f ′
n(θn−1) =

1

γn
(θn−1 − θn)

⇔ f ′
n(θ∗) + f ′′

n(θ∗)(θn−1 − θ∗) =
1

γn
(θn−1 − θn) +O(‖θn−1 − θ∗‖2)

⇔ f ′
n(θ∗) + f ′′(θ∗)(θn−1 − θ∗) =

1

γn
(θn−1 − θn) +O(‖θn−1 − θ∗‖2)

+O(‖θn−1 − θ∗‖)εn

⇔ θn−1 − θ∗ = −f ′′(θ∗)
−1f ′

n(θ∗) +
1

γn
f ′′(θ∗)

−1(θn−1 − θn)

+O(‖θn−1 − θ∗‖2) +O(‖θn−1 − θ∗‖)εn

• Averaging to cancel the term 1
γn
f ′′(θ∗)−1(θn−1 − θn)



Robustness to wrong constants for γn = Cn−α

• f(θ) = 1
2|θ|2 with i.i.d. Gaussian noise (d = 1)

• Left: α = 1/2

• Right: α = 1
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• See also http://leon.bottou.org/projects/sgd
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Summary of new results (Bach and Moulines, 2011)

• Stochastic gradient descent with learning rate γn = Cn−α

• Strongly convex smooth objective functions

– Old: O(n−1) rate achieved without averaging for α = 1

– New: O(n−1) rate achieved with averaging for α ∈ [1/2, 1]

– Non-asymptotic analysis with explicit constants

• Non-strongly convex smooth objective functions

– Old: O(n−1/2) rate achieved with averaging for α = 1/2

– New: O(max{n1/2−3α/2, n−α/2, nα−1}) rate achieved without

averaging for α ∈ [1/3, 1]

• Take-home message

– Use α = 1/2 with averaging to be adaptive to strong convexity



Beyond stochastic gradient method

• Adding a proximal step

– Goal: min
θ∈Rd

f(θ) + Ω(θ) = Efn(θ) + Ω(θ)

– Replace recursion θn = θn−1 − γnf
′
n(θn) by

θn = min
θ∈Rd

∥

∥θ − θn−1 + γnf
′
n(θn)

∥

∥

2

2
+ CΩ(θ)

– Xiao (2010); Hu et al. (2009)

– May be accelerated (Ghadimi and Lan, 2013)

• Related frameworks

– Regularized dual averaging (Nesterov, 2009; Xiao, 2010)

– Mirror descent (Nemirovski et al., 2009; Lan et al., 2012)



Outline

1. Large-scale machine learning and optimization

• Traditional statistical analysis

• Classical methods for convex optimization

2. Non-smooth stochastic approximation

• Stochastic (sub)gradient and averaging

• Non-asymptotic results and lower bounds

• Strongly convex vs. non-strongly convex

3. Smooth stochastic approximation algorithms

• Asymptotic and non-asymptotic results

4. Beyond decaying step-sizes

5. Finite data sets



Convex stochastic approximation

Existing work

• Known global minimax rates of convergence for non-smooth

problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

– Strongly convex: O((µn)−1)

Attained by averaged stochastic gradient descent with γn ∝ (µn)−1

– Non-strongly convex: O(n−1/2)

Attained by averaged stochastic gradient descent with γn ∝ n−1/2

• Asymptotic analysis of averaging (Polyak and Juditsky, 1992;

Ruppert, 1988)

– All step sizes γn = Cn−α with α ∈ (1/2, 1) lead to O(n−1) for

smooth strongly convex problems

• A single adaptive algorithm for smooth problems with

convergence rate O(min{1/µn, 1/√n}) in all situations?



Adaptive algorithm for logistic regression

• Logistic regression: (Φ(xn), yn) ∈ R
d × {−1, 1}

– Single data point: fn(θ) = log(1 + exp(−ynθ
⊤Φ(xn)))

– Generalization error: f(θ) = Efn(θ)
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• Logistic regression: (Φ(xn), yn) ∈ R
d × {−1, 1}

– Single data point: fn(θ) = log(1 + exp(−ynθ
⊤Φ(xn)))

– Generalization error: f(θ) = Efn(θ)

• Cannot be strongly convex ⇒ local strong convexity

– unless restricted to |θ⊤Φ(xn)| 6 M (and with constants eM)

– µ = lowest eigenvalue of the Hessian at the optimum f ′′(θ∗)

• n steps of averaged SGD with constant step-size 1/
(

2R2
√
n
)

– with R = radius of data (Bach, 2013):

Ef(θ̄n)− f(θ∗) 6 min

{

1√
n
,
R2

nµ

}

(

15 + 5R‖θ0 − θ∗‖
)4

– Proof based on self-concordance (Nesterov and Nemirovski, 1994)



Self-concordance

• Usual definition for convex ϕ : R → R: |ϕ′′′(t)| 6 2ϕ′′(t)3/2

– Affine invariant

– Extendable to all convex functions on R
d by looking at rays

– Used for the sharp proof of quadratic convergence of Newton

method (Nesterov and Nemirovski, 1994)

• Generalized notion: |ϕ′′′(t)| 6 ϕ′′(t)

– Applicable to logistic regression (with extensions)



Self-concordance

• Usual definition for convex ϕ : R → R: |ϕ′′′(t)| 6 2ϕ′′(t)3/2

– Affine invariant

– Extendable to all convex functions on R
d by looking at rays

– Used for the sharp proof of quadratic convergence of Newton

method (Nesterov and Nemirovski, 1994)

• Generalized notion: |ϕ′′′(t)| 6 ϕ′′(t)

– Applicable to logistic regression (with extensions)

• Important properties

– Allows global Taylor expansions

– Relates expansions of derivatives of different orders



Adaptive algorithm for logistic regression

Proof sketch

• Step 1: use existing result f(θ̄n)−f(θ∗)+
R2
√
n
‖θ0−θ∗‖22 = O(1/

√
n)

• Step 2: f ′
n(θn−1) =

1
γ(θn−1−θn) ⇒ 1

n

∑n
k=1 f

′
k(θk−1) =

1
nγ(θ0−θn)

• Step 3:
∥

∥

∥
f ′(1

n

∑n
k=1 θk−1

)

− 1
n

∑n
k=1 f

′(θk−1)
∥

∥

∥

2

= O
(

f(θ̄n)− f(θ∗)
)

= O(1/
√
n) using self-concordance

• Step 4a: if f µ-strongly convex, f(θ̄n)− f(θ∗) 6
1
2µ

∥

∥f ′(θ̄n)
∥

∥

2

2

• Step 4b: if f self-concordant, “locally true” with µ = λmin(f
′′(θ∗))
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⊤Φ(xn)))

– Generalization error: f(θ) = Efn(θ)

• Cannot be strongly convex ⇒ local strong convexity

– unless restricted to |θ⊤Φ(xn)| 6 M (and with constants eM)

– µ = lowest eigenvalue of the Hessian at the optimum f ′′(θ∗)

• n steps of averaged SGD with constant step-size 1/
(

2R2
√
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)

– with R = radius of data (Bach, 2013):

Ef(θ̄n)− f(θ∗) 6 min

{

1√
n
,
R2

nµ

}

(

15 + 5R‖θ0 − θ∗‖
)4

– A single adaptive algorithm for smooth problems with

convergence rate O(1/n) in all situations?



Least-mean-square algorithm

• Least-squares: f(θ) = 1
2E

[

(yn − 〈Φ(xn), θ〉)2
]

with θ ∈ R
d

– SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)

– usually studied without averaging and decreasing step-sizes

– with strong convexity assumption E
[

Φ(xn)⊗Φ(xn)
]

= H < µ · Id



Least-mean-square algorithm

• Least-squares: f(θ) = 1
2E

[

(yn − 〈Φ(xn), θ〉)2
]

with θ ∈ R
d

– SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)

– usually studied without averaging and decreasing step-sizes

– with strong convexity assumption E
[

Φ(xn)⊗Φ(xn)
]

= H < µ · Id

• New analysis for averaging and constant step-size γ = 1/(4R2)

– Assume ‖Φ(xn)‖ 6 R and |yn − 〈Φ(xn), θ∗〉| 6 σ almost surely

– No assumption regarding lowest eigenvalues of H

– Main result: Ef(θ̄n−1)− f(θ∗) 6
4σ2d

n
+

4R2‖θ0 − θ∗‖2
n

• Matches statistical lower bound (Tsybakov, 2003)

– Non-asymptotic robust version of Györfi and Walk (1996)



Least-squares - Proof technique

• LMS recursion:

θn − θ∗ =
[

I − γΦ(xn)⊗ Φ(xn)
]

(θn−1 − θ∗) + γ εnΦ(xn)

• Simplified LMS recursion: with H = E
[

Φ(xn)⊗ Φ(xn)
]

θn − θ∗ =
[

I − γH
]

(θn−1 − θ∗) + γ εnΦ(xn)

– Direct proof technique of Polyak and Juditsky (1992), e.g.,

θn − θ∗ =
[

I − γH
]n
(θ0 − θ∗) + γ

n
∑

k=1

[

I − γH
]n−k

εkΦ(xk)

• Infinite expansion of Aguech, Moulines, and Priouret (2000) in powers

of γ



Markov chain interpretation of constant step sizes

• LMS recursion for fn(θ) =
1
2

(

yn − 〈Φ(xn), θ〉
)2

θn = θn−1 − γ
(

〈Φ(xn), θn−1〉 − yn
)

Φ(xn)

• The sequence (θn)n is a homogeneous Markov chain

– convergence to a stationary distribution πγ

– with expectation θ̄γ
def
=

∫

θπγ(dθ)

- For least-squares, θ̄γ = θ∗

θ̄γ

θ0

θn
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Markov chain interpretation of constant step sizes

• LMS recursion for fn(θ) =
1
2

(

yn − 〈Φ(xn), θ〉
)2

θn = θn−1 − γ
(

〈Φ(xn), θn−1〉 − yn
)

Φ(xn)

• The sequence (θn)n is a homogeneous Markov chain

– convergence to a stationary distribution πγ

– with expectation θ̄γ
def
=

∫

θπγ(dθ)

• For least-squares, θ̄γ = θ∗

θ∗

θ0

θn
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Markov chain interpretation of constant step sizes

• LMS recursion for fn(θ) =
1
2

(

yn − 〈Φ(xn), θ〉
)2

θn = θn−1 − γ
(

〈Φ(xn), θn−1〉 − yn
)

Φ(xn)

• The sequence (θn)n is a homogeneous Markov chain

– convergence to a stationary distribution πγ

– with expectation θ̄γ
def
=

∫

θπγ(dθ)

• For least-squares, θ̄γ = θ∗

– θn does not converge to θ∗ but oscillates around it

– oscillations of order
√
γ

• Ergodic theorem:

– Averaged iterates converge to θ̄γ = θ∗ at rate O(1/n)



Simulations - synthetic examples

• Gaussian distributions - p = 20
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Simulations - benchmarks

• alpha (p = 500, n = 500 000), news (p = 1 300 000, n = 20 000)
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Beyond least-squares - Markov chain interpretation

• Recursion θn = θn−1 − γf ′
n(θn−1) also defines a Markov chain

– Stationary distribution πγ such that
∫

f ′(θ)πγ(dθ) = 0

– When f ′ is not linear, f ′(
∫

θπγ(dθ)) 6=
∫

f ′(θ)πγ(dθ) = 0
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Beyond least-squares - Markov chain interpretation

• Recursion θn = θn−1 − γf ′
n(θn−1) also defines a Markov chain

– Stationary distribution πγ such that
∫

f ′(θ)πγ(dθ) = 0

– When f ′ is not linear, f ′(
∫

θπγ(dθ)) 6=
∫

f ′(θ)πγ(dθ) = 0

• θn oscillates around the wrong value θ̄γ 6= θ∗

– moreover, ‖θ∗ − θn‖ = Op(
√
γ)

• Ergodic theorem

– averaged iterates converge to θ̄γ 6= θ∗ at rate O(1/n)

– moreover, ‖θ∗ − θ̄γ‖ = O(γ) (Bach, 2013)



Simulations - synthetic examples

• Gaussian distributions - p = 20
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Restoring convergence through online Newton steps

• Known facts

1. Averaged SGD with γn ∝ n−1/2 leads to robust rate O(n−1/2)

for all convex functions

2. Averaged SGD with γn constant leads to robust rate O(n−1)

for all convex quadratic functions

3. Newton’s method squares the error at each iteration

for smooth functions

4. A single step of Newton’s method is equivalent to minimizing the

quadratic Taylor expansion

– Online Newton step

– Rate: O((n−1/2)2 + n−1) = O(n−1)

– Complexity: O(p) per iteration
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• Known facts

1. Averaged SGD with γn ∝ n−1/2 leads to robust rate O(n−1/2)

for all convex functions

2. Averaged SGD with γn constant leads to robust rate O(n−1)

for all convex quadratic functions ⇒ O(n−1)

3. Newton’s method squares the error at each iteration

for smooth functions ⇒ O((n−1/2)2)

4. A single step of Newton’s method is equivalent to minimizing the

quadratic Taylor expansion

• Online Newton step

– Rate: O((n−1/2)2 + n−1) = O(n−1)

– Complexity: O(p) per iteration



Restoring convergence through online Newton steps

• The Newton step for f = Efn(θ)
def
= E

[

ℓ(yn, 〈θ,Φ(xn)〉)
]

at θ̃ is

equivalent to minimizing the quadratic approximation

g(θ) = f(θ̃) + 〈f ′(θ̃), θ − θ̃〉+ 1
2〈θ − θ̃, f ′′(θ̃)(θ − θ̃)〉

= f(θ̃) + 〈Ef ′
n(θ̃), θ − θ̃〉+ 1

2〈θ − θ̃,Ef ′′
n(θ̃)(θ − θ̃)〉

= E

[

f(θ̃) + 〈f ′
n(θ̃), θ − θ̃〉+ 1

2〈θ − θ̃, f ′′
n(θ̃)(θ − θ̃)〉

]



Restoring convergence through online Newton steps

• The Newton step for f = Efn(θ)
def
= E

[

ℓ(yn, 〈θ,Φ(xn)〉)
]

at θ̃ is

equivalent to minimizing the quadratic approximation

g(θ) = f(θ̃) + 〈f ′(θ̃), θ − θ̃〉+ 1
2〈θ − θ̃, f ′′(θ̃)(θ − θ̃)〉

= f(θ̃) + 〈Ef ′
n(θ̃), θ − θ̃〉+ 1

2〈θ − θ̃,Ef ′′
n(θ̃)(θ − θ̃)〉

= E

[

f(θ̃) + 〈f ′
n(θ̃), θ − θ̃〉+ 1

2〈θ − θ̃, f ′′
n(θ̃)(θ − θ̃)〉

]

• Complexity of least-mean-square recursion for g is O(p)

θn = θn−1 − γ
[

f ′
n(θ̃) + f ′′

n(θ̃)(θn−1 − θ̃)
]

– f ′′
n(θ̃) = ℓ′′(yn, 〈θ̃,Φ(xn)〉)Φ(xn)⊗ Φ(xn) has rank one

– New online Newton step without computing/inverting Hessians



Choice of support point for online Newton step

• Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain θ̃

(2) Run n/2 iterations of averaged constant step-size LMS

– Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)

– Provable convergence rate of O(p/n) for logistic regression

– Additional assumptions but no strong convexity



Logistic regression - Proof technique

• Using generalized self-concordance of ϕ : u 7→ log(1 + e−u):

|ϕ′′′(u)| 6 ϕ′′(u)

– NB: difference with regular self-concordance: |ϕ′′′(u)| 6 2ϕ′′(u)3/2

• Using novel high-probability convergence results for regular averaged

stochastic gradient descent

• Requires assumption on the kurtosis in every direction, i.e.,

E〈Φ(xn), η〉4 6 κ
[

E〈Φ(xn), η〉2
]2



Choice of support point for online Newton step

• Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain θ̃

(2) Run n/2 iterations of averaged constant step-size LMS

– Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)

– Provable convergence rate of O(p/n) for logistic regression

– Additional assumptions but no strong convexity

• Update at each iteration using the current averaged iterate

– Recursion: θn = θn−1 − γ
[

f ′
n(θ̄n−1) + f ′′

n(θ̄n−1)(θn−1 − θ̄n−1)
]

– No provable convergence rate (yet) but best practical behavior

– Note (dis)similarity with regular SGD: θn = θn−1 − γf ′
n(θn−1)



Online Newton algorithm

Current proof (Flammarion et al., 2014)

• Recursion

{

θn = θn−1 − γ
[

f ′
n(θ̄n−1) + f ′′

n(θ̄n−1)(θn−1 − θ̄n−1)
]

θ̄n = θ̄n−1 +
1
n(θn − θ̄n−1)

• Instance of two-time-scale stochastic approximation (Borkar, 1997)

– Given θ̄, θn = θn−1 − γ
[

f ′
n(θ̄) + f ′′

n(θ̄)(θn−1 − θ̄)
]

defines a

homogeneous Markov chain (fast dynamics)

– θ̄n is updated at rate 1/n (slow dynamics)

• Difficulty: preserving robustness to ill-conditioning



Simulations - synthetic examples

• Gaussian distributions - p = 20
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Simulations - benchmarks

• alpha (p = 500, n = 500 000), news (p = 1 300 000, n = 20 000)
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Outline

1. Large-scale machine learning and optimization

• Traditional statistical analysis

• Classical methods for convex optimization

2. Non-smooth stochastic approximation

• Stochastic (sub)gradient and averaging

• Non-asymptotic results and lower bounds

• Strongly convex vs. non-strongly convex

3. Smooth stochastic approximation algorithms

• Asymptotic and non-asymptotic results

4. Beyond decaying step-sizes

5. Finite data sets



Going beyond a single pass over the data

• Stochastic approximation

– Assumes infinite data stream

– Observations are used only once

– Directly minimizes testing cost E(x,y) ℓ(y, θ
⊤Φ(x))



Going beyond a single pass over the data

• Stochastic approximation

– Assumes infinite data stream

– Observations are used only once

– Directly minimizes testing cost E(x,y) ℓ(y, θ
⊤Φ(x))

• Machine learning practice

– Finite data set (x1, y1, . . . , xn, yn)

– Multiple passes

– Minimizes training cost 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi))

– Need to regularize (e.g., by the ℓ2-norm) to avoid overfitting

• Goal: minimize g(θ) =
1

n

n
∑

i=1

fi(θ)



Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, θ
⊤Φ(xi)

)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt
n

n
∑

i=1

f ′
i(θt−1)

– Linear (e.g., exponential) convergence rate in O(e−αt)

– Iteration complexity is linear in n (with line search)
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Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, θ
⊤Φ(xi)

)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt
n

n
∑

i=1

f ′
i(θt−1)

– Linear (e.g., exponential) convergence rate in O(e−αt)

– Iteration complexity is linear in n (with line search)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

– Sampling with replacement: i(t) random element of {1, . . . , n}
– Convergence rate in O(1/t)

– Iteration complexity is independent of n (step size selection?)



Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, θ
⊤Φ(xi)

)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt
n

n
∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)



Stochastic vs. deterministic methods

• Goal = best of both worlds: Linear rate with O(1) iteration cost

Robustness to step size
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Stochastic vs. deterministic methods

• Goal = best of both worlds: Linear rate with O(1) iteration cost

Robustness to step size
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time



Accelerating gradient methods - Related work

• Nesterov acceleration

– Nesterov (1983, 2004)

– Better linear rate but still O(n) iteration cost

• Hybrid methods, incremental average gradient, increasing

batch size

– Bertsekas (1997); Blatt et al. (2008); Friedlander and Schmidt

(2011)

– Linear rate, but iterations make full passes through the data.



Accelerating gradient methods - Related work

• Momentum, gradient/iterate averaging, stochastic version of

accelerated batch gradient methods

– Polyak and Juditsky (1992); Tseng (1998); Sunehag et al. (2009);

Ghadimi and Lan (2010); Xiao (2010)

– Can improve constants, but still have sublinear O(1/t) rate

• Constant step-size stochastic gradient (SG), accelerated SG

– Kesten (1958); Delyon and Juditsky (1993); Solodov (1998); Nedic

and Bertsekas (2000)

– Linear convergence, but only up to a fixed tolerance.

• Stochastic methods in the dual

– Shalev-Shwartz and Zhang (2012)

– Similar linear rate but limited choice for the fi’s



Stochastic average gradient

(Le Roux, Schmidt, and Bach, 2012)

• Stochastic average gradient (SAG) iteration

– Keep in memory the gradients of all functions fi, i = 1, . . . , n

– Random selection i(t) ∈ {1, . . . , n} with replacement

– Iteration: θt = θt−1 −
γt
n

n
∑

i=1

yti with yti =

{

f ′
i(θt−1) if i = i(t)

yt−1
i otherwise



Stochastic average gradient

(Le Roux, Schmidt, and Bach, 2012)

• Stochastic average gradient (SAG) iteration

– Keep in memory the gradients of all functions fi, i = 1, . . . , n

– Random selection i(t) ∈ {1, . . . , n} with replacement

– Iteration: θt = θt−1 −
γt
n

n
∑

i=1

yti with yti =

{

f ′
i(θt−1) if i = i(t)

yt−1
i otherwise

• Stochastic version of incremental average gradient (Blatt et al., 2008)

• Extra memory requirement

– Supervised machine learning

– If fi(θ) = ℓi(yi,Φ(xi)
⊤θ), then f ′

i(θ) = ℓ′i(yi,Φ(xi)
⊤θ)Φ(xi)

– Only need to store n real numbers



Stochastic average gradient - Convergence analysis

• Assumptions

– Each fi is L-smooth, i = 1, . . . , n

– g= 1
n

∑n
i=1 fi is µ-strongly convex (with potentially µ = 0)

– constant step size γt = 1/(16L)

– initialization with one pass of averaged SGD



Stochastic average gradient - Convergence analysis

• Assumptions

– Each fi is L-smooth, i = 1, . . . , n

– g= 1
n

∑n
i=1 fi is µ-strongly convex (with potentially µ = 0)

– constant step size γt = 1/(16L)

– initialization with one pass of averaged SGD

• Strongly convex case (Le Roux et al., 2012, 2013)

E
[

g(θt)− g(θ∗)
]

6

(8σ2

nµ
+

4L‖θ0−θ∗‖2
n

)

exp
(

− tmin
{ 1

8n
,

µ

16L

})

– Linear (exponential) convergence rate with O(1) iteration cost

– After one pass, reduction of cost by exp
(

−min
{1

8
,
nµ

16L

})



Stochastic average gradient - Convergence analysis

• Assumptions

– Each fi is L-smooth, i = 1, . . . , n

– g= 1
n

∑n
i=1 fi is µ-strongly convex (with potentially µ = 0)

– constant step size γt = 1/(16L)

– initialization with one pass of averaged SGD

• Non-strongly convex case (Le Roux et al., 2013)

E
[

g(θt)− g(θ∗)
]

6 48
σ2 + L‖θ0−θ∗‖2√

n

n

t

– Improvement over regular batch and stochastic gradient

– Adaptivity to potentially hidden strong convexity



Convergence analysis - Proof sketch

• Main step: find “good” Lyapunov function J(θt, y
t
1, . . . , y

t
n)

– such that E
[

J(θt, y
t
1, . . . , y

t
n)|Ft−1

]

< J(θt−1, y
t−1
1 , . . . , yt−1

n )

– no natural candidates

• Computer-aided proof

– Parameterize function J(θt, y
t
1, . . . , y

t
n) = g(θt)−g(θ∗)+quadratic

– Solve semidefinite program to obtain candidates (that depend on

n, µ, L)

– Check validity with symbolic computations



Rate of convergence comparison

• Assume that L = 100, µ = .01, and n = 80000

– Full gradient method has rate
(

1− µ
L

)

= 0.9999

– Accelerated gradient method has rate
(

1−
√

µ
L

)

= 0.9900

– Running n iterations of SAG for the same cost has rate
(

1− 1
8n

)n
= 0.8825

– Fastest possible first-order method has rate
(√

L−√
µ√

L+
√
µ

)2

= 0.9608

• Beating two lower bounds (with additional assumptions)

– (1) stochastic gradient and (2) full gradient



Stochastic average gradient

Implementation details and extensions

• The algorithm can use sparsity in the features to reduce the storage

and iteration cost

• Grouping functions together can further reduce the memory

requirement

• We have obtained good performance when L is not known with a

heuristic line-search

• Algorithm allows non-uniform sampling

• Possibility of making proximal, coordinate-wise, and Newton-like

variants



spam dataset (n = 92 189, d = 823 470)



Summary and future work

• Constant-step-size averaged stochastic gradient descent

– Reaches convergence rate O(1/n) in all regimes

– Improves on the O(1/
√
n) lower-bound of non-smooth problems

– Efficient online Newton step for non-quadratic problems

– Robustness to step-size selection

• Going beyond a single pass through the data



Summary and future work

• Constant-step-size averaged stochastic gradient descent

– Reaches convergence rate O(1/n) in all regimes

– Improves on the O(1/
√
n) lower-bound of non-smooth problems

– Efficient online Newton step for non-quadratic problems

– Robustness to step-size selection

• Going beyond a single pass through the data

• Extensions and future work

– Pre-conditioning

– Proximal extensions fo non-differentiable terms

– kernels and non-parametric estimation

– line-search

– parallelization



Outline

1. Large-scale machine learning and optimization

• Traditional statistical analysis

• Classical methods for convex optimization

2. Non-smooth stochastic approximation

• Stochastic (sub)gradient and averaging

• Non-asymptotic results and lower bounds

• Strongly convex vs. non-strongly convex

3. Smooth stochastic approximation algorithms

• Asymptotic and non-asymptotic results

4. Beyond decaying step-sizes

5. Finite data sets



Conclusions

Machine learning and convex optimization

• Statistics with or without optimization?

– Significance of mixing algorithms with analysis

– Benefits of mixing algorithms with analysis

• Open problems

– Non-parametric stochastic approximation

– Going beyond a single pass over the data (testing performance)

– Characterization of implicit regularization of online methods

– Further links between convex optimization and online

learning/bandits
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