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“Big data” revolution?
A new scientific context

e Data everywhere: size does not (always) matter
e Science and industry
e Size and variety

e Learning from examples

— n observations in dimension d
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Bioinformatics

e Protein: Crucial elements of cell life
e Massive data: 2 millions for humans

e Complex data
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Context
Machine learning for “big data”

e Large-scale machine learning: large d, large n

— d : dimension of each observation (input)
— n : number of observations

e Examples: computer vision, bioinformatics, advertising
¢ Ideal running-time complexity: O(dn)

e Going back to simple methods

— Stochastic gradient methods (Robbins and Monro, 1951)
— Mixing statistics and optimization



Outline

. Large-scale machine learning and optimization
e Traditional statistical analysis

e Classical methods for convex optimization

. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex

. Smooth stochastic approximation algorithms

e Asymptotic and non-asymptotic results
. Beyond decaying step-sizes

. Finite data sets



Supervised machine learning

e Data: n observations (z;,y;) € X x Y, i=1,...,n, i.i.d.
e Prediction as a linear function ' ®(x) of features ®(x) € R

e (regularized) empirical risk minimization: find f solution of

I T
min EZZZ;E(%)H O(z;)) + p(0)

convex data fitting term + regularizer



Usual losses

e Regression: y ¢ R, prediction §j = 0 &(x)
— quadratic loss 3(y — )% = 2(y — 0 ®(x))?



Usual losses

e Regression: y € R, prediction §j = 0' ®(z)
— quadratic loss 3(y — §)? = 2(y — 0 ®(x))?

e Classification : y € {—1,1}, prediction § = sign(f' ®(x))

— loss of the form 4(y 6 ' ®(x))
— “True” 0-1 loss: 4(y0'®(x)) = L, 07 (2)<0
— Usual convex losses:

— 0-1

4 — hinge
square

—— logistic




Main motivating examples

e Support vector machine (hinge loss)
((Y,0"®(X)) =max{l - Y0 &(X),0}
e Logistic regression

((Y,0" ®(X)) =log(l+exp(—Y8'd(X)))

e Least-squares regression

HY.0TB(X)) = %(Y _OTH(X))?



Usual regularizers

e Main goal: avoid overfitting

e (squared) Euclidean norm: ||0||3 = Z;i:l 10,

— Numerically well-behaved

— Representer theorem and kernel methods : 6 = > | o, ®(z;)

— See, e.g.,, Scholkopf and Smola (2001); Shawe-Taylor and
Cristianini (2004)

e Sparsity-inducing norms

. d

— Main example: £i-norm ||0]]y = > ., (6]

— Perform model selection as well as regularization
— Non-smooth optimization and structured sparsity

— See, e.g., Bach, Jenatton, Mairal, and Obozinski (2011, 2012)
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Supervised machine learning

e Data: n observations (z;,y;) € X x Y, i=1,...,n, i.i.d.
e Prediction as a linear function ' ®(z) of features ®(x) € R?

e (regularized) empirical risk minimization: find f solution of

1 mn
' - 14 i,HTCD ;)) such that Q(0) < D
min n; (vi,0 " ®(x)) su (0)

convex data fitting term + constraint
o Empirical risk: f(0) = I3 l(y;, 0" ®(x;)) training cost
o Expected risk: f(0) =E(,,,)¢(y, 0" ®(z)) testing cost

e Two fundamental questions: (1) computing 0 and (2) analyzing 6

— May be tackled simultaneously



General assumptions

e Data: n observations (z;,y;) € X x Y, i=1,...,n, i.i.d.
e Bounded features ®(z) € R%: [|®(z)]2 < R

e Empirical risk: f(6) = LS Uy, 0" ®(x;)) training cost
o Expected risk: f(0) =E(,.,,)¢(y, 0" ®(z)) testing cost

e Loss for a single observation: f;(0) = ¢(y;,0" ®(x;))
= Vi, f(0) =Ef(0)

e Properties of f;, f,f

— Convex on R4
— Additional regularity assumptions: Lipschitz-continuity,
smoothness and strong convexity



Lipschitz continuity

e Bounded gradients of f (Lipschitz-continuity): the function f if
convex, differentiable and has (sub)gradients uniformly bounded by
B on the ball of center 0 and radius D:

v € RY 0] <D= |f'(0)ll2< B

e Machine learning

= with f(0) = 5 3770, £(y:,0 " @(z:))
— G-Lipschitz loss and R-bounded data: B =GR



Smoothness and strong convexity

e A function f : R? — R is L-smooth if and only if it is differentiable

and its gradient is L-Lipschitz-continuous

V01,02 € R, ||f/(61) — f'(02)|2 < L||01 — 62|

o If f is twice differentiable: V0 € RY, #”(0) < L - Id

A

smooth

A
NON—SMOOt|

e

i




Smoothness and strong convexity

e A function f : R? — R is L-smooth if and only if it is differentiable
and its gradient is L-Lipschitz-continuous

V01,05 € RY, ||£/(01) — f(02)]]2 < L||61 — 5|2

o If f is twice differentiable: V0 € RY, f"(0) < L-Id

e Machine learning

— with f(0) = 23" 0(y;, 07 ®(z;))
— Hessian ~ covariance matrix + Z? P(x;)® (azz)T
— /-smooth loss and R- bounded data: L = /R?



Smoothness and strong convexity

e A function f : R? — R is u-strongly convex if and only if

V01,05 € R f(01) = f(02) + f/(02) T (01 — 02) + £]161 — 2|3

o If f is twice differentiable: V0 € RY, #”(0) = u-1d

A

convex

/

A
strongly

convex

/

~__/ -



Smoothness and strong convexity

e A function f : R? — R is u-strongly convex if and only if

V01,0 € RY, f(61) = f(02) + f(02) ' (01 — 02) + £]161 — 623
o If f is twice differentiable: V0 € RY, f”(0) = p-1d

e Machine learning

— with f(0) = 23" 0(y;, 07 ®(z;))
— Hessian =~ covariance matrix %2?21 (I)(xz)(l)(xz)—r
— Data with invertible covariance matrix (low correlation/dimension)



Smoothness and strong convexity

e A function f : R? — R is u-strongly convex if and only if

V01,02 € RY, f(01) = f(02) + f'(02) " (01 — 02) + £]|61 — 613
o If f is twice differentiable: V0 € RY, f”(0) = p-1d

e Machine learning

— with f(0) = 23" 0(y;, 07 ®(z;))
— Hessian =~ covariance matrix %2?21 (I)(xz)(l)(xz)—r
— Data with invertible covariance matrix (low correlation/dimension)

e Adding regularization by £||0|°

— creates additional bias unless p is small



Summary of smoothness/convexity assumptions

e Bounded gradients of f (Lipschitz-continuity): the function f if
convex, differentiable and has (sub)gradients uniformly bounded by

B on the ball of center 0 and radius D:

Vo € RY (0]l < D = [ f'(8)]2 < B

e Smoothness of f: the function f is convex, differentiable with
L-Lipschitz-continuous gradient f’:

V01,05 € R || f/(61) — f/(02)]]2 < L||61 — 622

e Strong convexity of f: The function f is strongly convex with
respect to the norm || - ||, with convexity constant p > O:

V01,05 € R F(01) = f(02) + f/(02) T (01 — 02) + L1161 — 0|3



Analysis of empirical risk minimization

e Approximation and estimation errors: C = {0 € R¢, Q(0) < D}

F(6) - min £6) = | £6) ~ pin )| + | in 1(6) — i 6

0cRd 0cC 0cC 0 cRd

— NB: may replace min f(0) by best (non-linear) predictions
HER

1. Uniform deviation bounds, with | § € arg r@nig 7(6)
¢

f(0) —min f(8) < 2sup|f(0) — f(0) (proof)

ocC ocC

1
)

2. More refined concentration results with faster rates

— Typically slow rate O(



Motivation from least-squares

e For least-squares, we have ((y,0'®(z)) = 1(y — 0" ®(x))?, and

£(0) — f(0)

sup |£(0) — f(0)
10]|2<D

sup | f(0) — F(0)]

10]lo<D

IN

/N

%QT( ZCD ;)P IECI)(X)@(X)T>9

07 (ﬁ Z y; P (x;) — IEYCI)(X)) + %(% i Y2 — EY2),
lf —ZCD ;)P —E®(X)®(X)" )

+D|[— ®(x;) —EY(I)(X)H;—% %Zn:yf—EYQ,

O(1/+/n) with high probability



Slow rate for supervised learning

e Assumptions (f is the expected risk, fthe empirical risk)

— Q(0) = ||0]|2 (Euclidean norm)

— “Linear” predictors: 6(x) = 0'®(x), with ||®(2)|2s < R as.

— G-Lipschitz loss: f and f are GR-Lipschitz on C = {||0]|» < D}
— No assumptions regarding convexity



Slow rate for supervised learning

e Assumptions (f is the expected risk, fthe empirical risk)

— Q(6) = ||0||> (Euclidean norm)

— “Linear” predictors: 6(x) = 0'®(x), with ||®(2)|2s < R as.

— G-Lipschitz loss: f and f are GR-Lipschitz on C = {||0]|» < D}
— No assumptions regarding convexity

e With probability greater than 1 — ¢
A GRD 2
su 0)— f(0) < 2+4/2lo —]
up 16) - 16)] < S22+ 210

. A4GRD
e Expectated estimation error: E|su 0)— f(0)]] <
[Qelg\f( ) — f(0)]] NG

e Using Rademacher averages (see, e.g., Boucheron et al., 2005)

e Lipschitz functions = slow rate



Symmetrization with Rademacher variables

o let D' = {z%,vy},...,2,,y.} an independent copy of the data
D={z1,y1,...,Tn, Yn}, With corresponding loss functions f!(6)

Elsup |£(6) — /0)]] = Ejsup(fe —izm)

0coO 0cO

= £ o) - ro) |
< B[s | %i“@"”)—f@'@\ o]

— E|swp %Z (£1(6) — £i(0)) |]

| €O

=1
] o
= E|sup|— > &(fi(0)— fi(6 ))“ with g; uniform in {—1,1}
L oco [TV
1 mn
< QE[sup Zszfz(ﬁ)u = Rademacher complexity
oco |1




Rademacher complexity

e Define the Rademacher complexity of the class of functions (X,Y") —
((Y,0"®(X)) as

e Note two expectations, with respect to D and with respect to ¢
e Main property:

E[ggg £(0) — F(0)]] < 2R,



From Rademacher complexity to uniform bound

o Let Z = supyee | f(0) — f(6)
e By changing the pair (x;,v;), Z may only change by

2 2 2
—sup (Y, 0" d(X))| < E(sup [4(Y,0)|[+GRD) < E(KO—I—GRD) = c

with sup |[¢(Y,0)] = 4y

e MacDiarmid inequality: with probability greater than 1 — 9,

n | 1 V2 1
/Z < EZ —c-\/log= < 2R, + — -
+\/;c 0g = R +\/ﬁ(€0+GRD) log5



Bounding the Rademacher average - |
e We have, with ;(u) = £(y;, u)—£(y;,0) is almost surely B-Lipschitz:

g
R, = E[sup|=) &fi(0)

| hco |

/N

=

N

-

i,
S|+
M

o

=k

+E[supli 160 - 50

n

/N
|
_l_
=

D

| gco N

= —+[E|su ; ZQTCD T; ]
T PO SRR

e Using Ledoux-Talagrand concentration results for Rademacher
averages (since ; is G-Lipschitz, we get:

A [
R, < —+4+2G-E| sup
Vn 162<D |7

Z&tz@TCD T; ] ‘



Bounding the Rademacher average - |l

e \We have:
R, < £—0+2GE[ Sup ZszeT@ 7 ”

Vn l6]2<D |7
A 1 —

_ %%—QGEHDE;@@(%) 2
lo 1 & 2

< %+2GD\E ﬁ;&:i@(:ﬂi) 2

. 2(¢o + GRD)

Jn

e Overall, we get, with probability 1 — o:

Sup|f f( )| —(ﬁg—i—GRD)(ZL—I—\/Qlog%)
0coO

3



Putting it all together

e We have, with probability 1 — ¢, for all 8 € O:

F0)—f0.) < [£(0)— F(0)] + [£(0) — min £(0")] + [ min £(&') — £(6.)]

0'cO 0'cO
2 I, o
< %(50+GRD)(4+\/210g5)+ /(0) — min £(6")]

e Only need to optimize with precision %(KO + GRD)



Slow rate for supervised learning (summary)

e Assumptions (f is the expected risk, fthe empirical risk)

— Q(H) = ||0||> (Euclidean norm)

“Linear” predictors: 0(x )—9T<I>( ), with ||®(x)]|2 < R as.
— G-Lipschitz loss: f and f are GR-Lipschitz on C = {||0]|» < D}
— No assumptions regarding convexity

e With probability greater than 1 — ¢

. (¢o + GRD) 2
zlélg!f(@)—f(@)K /n [2+\/E]

A 4 D
e Expectated estimation error: ]E[sup 1f(0) — f((g)u < (4o + GRD)
oeC /N

e Using Rademacher averages (see, e.g., Boucheron et al., 2005)

e Lipschitz functions = slow rate



Motivation from mean estimation
e Estimator 6 = LN zi=argminger -y, (0 — 2)* = f(0)

e From before:

- f(0) =

E() — 2)2 =
- f(0) = (0 - E>+

l\DIi—‘l\.’)Ii—\



Motivation from mean estimation

e Estimator 6 = LN zi=argminger -y (0 — 2)? = 7(6)

e From before:

~ £(0) = LE(0 — 2)? = 10— E2)? + Lvar(2) = f(0) + O(1/y/n)
= f(0) = 3(6 —E2)® + 3var(z) = f(E2) + O(1/v/n)
e More refined /direct bound:

F0)- f(B2) = 5(0-E2)?

|
DN | —
=
7\
S| =
N
=
N
N~
(\V]
|
3‘*‘
<
Qo
=
O

E[f(0) — f(Ez)]

e Bound only at 0 + strong convexity



Fast rate for supervised learning

e Assumptions (f is the expected risk, fthe empirical risk)

— Same as before (bounded features, Lipschitz loss)
— Regularized risks: f#(0) = f(0)+%|0]/5 and f*(0) = f(0)+5]0]|3
— Convexity

e For any a > 0, with probability greater than 1 — ¢, for all § € R?,
s o 8(1+2)G*R%*(32+ log 1)

neR? neRd pr
e Results from Sridharan, Srebro, and Shalev-Shwartz (2008)

— see also Boucheron and Massart (2011) and references therein

e Strongly convex functions = fast rate

— Warning: p should decrease with n to reduce approximation error



Outline

. Large-scale machine learning and optimization
e Traditional statistical analysis

e Classical methods for convex optimization

. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex

. Smooth stochastic approximation algorithms

e Asymptotic and non-asymptotic results
. Beyond decaying step-sizes

. Finite data sets



Complexity results in convex optimization

e Assumption: f convex on R?

e Classical generic algorithms

— (sub)gradient method/descent
— Accelerated gradient descent
— Newton method

e Key additional properties of f

— Lipschitz continuity, smoothness or strong convexity

e Key insight from Bottou and Bousquet (2008)

— In machine learning, no need to optimize below estimation error

e Key reference: Nesterov (2004)



Subgradient method/descent

e Assumptions

— f convex and B-Lipschitz-continuous on {||f]|> < D}

2D
o Algorithm: 0, =IIp( 0,1 — ——=1'(0:_
g t D( t—1 BVi (6 1))
— IIp : orthogonal projection onto {||f|| < D}
e Bound: -
1 « 2DB
N o) — o) < =2
(3 > ) - 10y <2
e Three-line proof

e Best possible convergence rate after O(d) iterations



Subgradient method/descent - proof - |

® |teration: 0, = HD(Ht 1 —W’tf (‘975 1)) with Tt = é—\%

® Assumption: ||f/(0)]2 < B and ||| <

10, — 0.3 0,1 — 0, — v.f'(0,—1)||5 by contractivity of projections
01 — 0.3+ B*y7 — 27:(6: 1 — 0.) " f'(6; 1) because || f'(6:-1)]l2 < B

Or—1 — 0.5 + B>y — 2y [ f(0:-1) — f(6.)] (property of subgradients)

NN N

® |eading to

B 2%

f(et—1> T f(e*) < 9

1
+ 5 18eer = 0213 — 16— 0.3



Subgradient method/descent - proof - Il

BQ/Vt 1 2 2
5+ g L8 = 013 — 116, — 0.]

e Starting from  f(0;_1) — f(0,) <

> [f(0u1) = £(0.)] < Z = (1161 = 0]l — 16 - 6-2]

u=1 u=1 =

_ 1L 1 [[o—0.5 116 — 0.5
= Z — 0.3 )+
y— ! 2%u+1 2V 271 24
t
1 4D?
< > by
— — 27 +1 2% 2m
t D2
2D

t—1

1 2DB

e Using convexity: f(; E 9k> — f(0.) < 7
k=0



Subgradient descent for machine learning

e Assumptions (f is the expected risk, fthe empirical risk)
— “Linear” predictors: 6(x) = 0'®(x), with ||®(2)|2 < R as.
= f(0) = >0 L(yi, @(4) ' 6)

A

— G-Lipschitz loss: f and f are GR-Lipschitz on C = {||0||2 < D}

e Statistics: with probability greater than 1 — 9

A GRD 2
supl/(6) - 5(6)] < T2 |24 2108 |

e Optimization: after ¢ iterations of subgradient method

. o GRD
f(6) — min () <7

e t = n iterations, with total running-time complexity of O(n?d)



Subgradient descent - strong convexity

e Assumptions

— f convex and B-Lipschitz-continuous on {||f]|> < D}
— f p-strongly convex

2
pu(t+1)

e Algorithm: 0, =1Ip <9t_1 — f’(‘gt—l)>

e Bound:

2 & 282
/ (t(t P ke) ERARANITOESY

e Three-line proof

e Best possible convergence rate after O(d) iterations



Subgradient method - strong convexity - proof - |

® [teration: 0, = IIp(0i—1 — Y f (0:—1)) with v = ﬁ

® Assumption: ||f/(0)|2 < B and ||#||2 < D and pu-strong convexity of f

10, — 0.|l5 < |0i—1 — 0+ — £ (6:,_1)||3 by contractivity of projections
< ||0i=1 — 0.3 + B?y2 — 27v,(0,_1 — 0,) " f(6,—1) because ||f'(6,—1)|]2 < B
< 01 = 03+ B*7 = 29 [F(0r1) = F(0.) + 51001 — 0.]13]

(property of subgradients and strong convexity)

® |eading to

B%y, 1.1
f(0i—1) — f(0,) < 2t+§[——ﬂ}||9t 1 — 0, Hz——H@t 0.3
o
B? pot—1 t+1
< N0 03 M D, g

p(t+1) 2 4



Subgradient method - strong convexity - proof - |l

(t+ 1)

® From f(0;_1)— f(0«) < 16; — 0.]3

—1
1801 — 0,13 -

t U

> ulf (0 - F0)] < 3 - 5+ 7.2 [0~ Dl = 11 =+ )16 = 4]

u=1 tzl’u
B*t 1 B?t
< ——+2[0—tt+ )]0, — 0.2 < —
u+4[ (t + 1)[|0; [ p

. . 2 2B?
® Using convexity: f (E+ 1) Z uby—1 | — f(0y) <



(smooth) gradient descent

e Assumptions

— f convex with L-Lipschitz-continuous gradient
— Minimum attained at 6,

e Algorithm: .
0 = b1 — -1 (6:-1)

e Bound: 2LH(9 . H2
0,) — 9* < 0 — Ux
Fl6:) = £(6.) < =2

e Three-line proof

e Not best possible convergence rate after O(d) iterations



(smooth) gradient descent - strong convexity

e Assumptions

— f convex with L-Lipschitz-continuous gradient
— f p-strongly convex

e Algorithm:

1
0 = b1 — 7 (01-1)
e Bound:

F(0r) — £(0.) < (1 —p/L) [f(6o) — f(6.)]

e Three-line proof
e Adaptivity of gradient descent to problem difficulty

e Line search



Accelerated gradient methods (Nesterov, 1983)

e Assumptions

— f convex with L-Lipschitz-cont. gradient , min. attained at 6,

e Algorithm: 1
0 = Nt—1 — Zf’(ﬁt—l)
t—1
= 0,4+ —(0, —0,_
Tt ¢t 1 t—|—2( ' t—1)
e Bound: 2|60 — H*HQ

e Ten-line proof (see, e.g., Schmidt, Le Roux, and Bach, 2011)
e Not improvable

e Extension to strongly convex functions



Optimization for sparsity-inducing norms
(see Bach, Jenatton, Mairal, and Obozinski, 2011)

e Gradient descent as a proximal method (differentiable functions)

: L
— 0411 = arg min f(0;) + (0 — Ht)TVf(Ht)+§\\9 A

0 cRd

— 041 =0 — %vf(gt)



Optimization for sparsity-inducing norms
(see Bach, Jenatton, Mairal, and Obozinski, 2011)

e Gradient descent as a proximal method (differentiable functions)

. L
— Oyp1 = argmin f(6;) + (0 — 0;) 'V f(0r)+= |0 — 04]5
fcRd 2

— 01 =0, — %Vf(et)

e Problems of the form: | min f(6) + u€2(9)
fcR?

: L
— 0111 = arg i f(0r) + (6 — Ht)va(gt)+MQ(9)+§“9 — 05
— Q(0) = ||6||1 = Thresholded gradient descent

e Similar convergence rates than smooth optimization

— Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)



Summary: minimizing convex functions
e Assumption: f convex

e Gradient descent: 0, = 0; 1 — v, f'(6;_1)

— O(1/+/t) convergence rate for non-smooth convex functions
— O(1/t) convergence rate for smooth convex functions
— O(e™**) convergence rate for strongly smooth convex functions

e Newton method: 6, = 0,_1 — " (0,—1) "1 f(0;_1)

t
— O(e_p2 ) convergence rate



Summary: minimizing convex functions
e Assumption: [ convex

e Gradient descent: 0, = 0; 1 — v, f(6;_1)

— O(1/+/t) convergence rate for non-smooth convex functions
— O(1/t) convergence rate for smooth convex functions
— O(e™**) convergence rate for strongly smooth convex functions

e Newton method: 9,5 = Ht—l — f”(@t_l)_lf’(ﬁt_l)

t
— O(e_p2 ) convergence rate

e Key insights from Bottou and Bousquet (2008)

1. In machine learning, no need to optimize below statistical error
2. In machine learning, cost functions are averages

= Stochastic approximation



Outline

. Large-scale machine learning and optimization
e Traditional statistical analysis

e Classical methods for convex optimization

. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex

. Smooth stochastic approximation algorithms

e Asymptotic and non-asymptotic results
. Beyond decaying step-sizes

. Finite data sets



Stochastic approximation

e Goal: Minimizing a function f defined on R

— given only unbiased estimates f/(6,) of its gradients f'(4,) at
certain points 6,, € R



Stochastic approximation

e Goal: Minimizing a function f defined on R

— given only unbiased estimates f/(6,,) of its gradients f'(6,) at
certain points 6,, € R

e Machine learning - statistics

— loss for a single pair of observations: | f,,(0) = ((y,, 0" ®(z,))
— f(0) =Ef,(0) = EL(y,, 0" ®(x,)) = generalization error

— Expected gradient: f'(6) = Ef}(0) = E{{'(y,,0' ®(z,)) ®(xn)}
— Non-asymptotic results

e Number of iterations = number of observations



Stochastic approximation

e Goal: Minimizing a function f defined on R
— given only unbiased estimates f/(6,) of its gradients f'(6,) at
certain points 6,, € R
e Stochastic approximation

— (much) broader applicability beyond convex optimization
Hn — Hn—l — /Ynhn(gn—l) with E[hn(en—l)’(gn—l} — h(gn—l)

— Beyond convex problems, i.i.d assumption, finite dimension, etc.

— Typically asymptotic results
— See, e.g., Kushner and Yin (2003); Borkar (2008); Benveniste et al.
(2012)



Relationship to online learning

e Stochastic approximation

— Minimize f(0) = E ¢(0, z) = generalization error of
— Using the gradients of single i.i.d. observations



Relationship to online learning

e Stochastic approximation

— Minimize f(0) = E ¢(0, z) = generalization error of
— Using the gradients of single i.i.d. observations

e Batch learning

— Finite set of observations: z1,..., 2,
— Empirical risk: f(0) ==>"7_, 46, z)

— Estimator § = Minimizer of f(0) over a certain class ©
— Generalization bound using uniform concentration results



Relationship to online learning

e Stochastic approximation

— Minimize f(0) = E {(0, z) = generalization error of
— Using the gradients of single i.i.d. observations

e Batch learning

— Finite set of observations: z1,..., 2,

— Empirical risk: f(6) = %ZZ:J 00, z;)

— Estimator § = Minimizer of f(6) over a certain class ©
— Generalization bound using uniform concentration results

¢ Online learning

— Update 0, after each new (potentially adversarial) observation z,
— Cumulative loss: =37 0(0k_1, 21)
— Online to batch through averaging (Cesa-Bianchi et al., 2004)



Convex stochastic approximation

e Key properties of f and/or f,

— Smoothness: f B-Lipschitz continuous, f’ L-Lipschitz continuous
— Strong convexity: f u-strongly convex



Convex stochastic approximation

e Key properties of f and/or f,

— Smoothness: f B-Lipschitz continuous, f’ L-Lipschitz continuous
— Strong convexity: f u-strongly convex

e Key algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)

Hn — Hn—l — /anr,/l(gn—l)

— Polyak-Ruppert averaging: 6,, = %ZZ’;; 0

— Which learning rate sequence ~,,? Classical setting: | v, = Cn™ ¢




Convex stochastic approximation

e Key properties of f and/or f,

— Smoothness: f B-Lipschitz continuous, f’ L-Lipschitz continuous
— Strong convexity: f u-strongly convex

e Key algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)

Hn — Hn—l — anf//v,(gn—l)

— Polyak-Ruppert averaging: 6,, = %ZZ;; 0

—

— Which learning rate sequence ~,,? Classical setting: | v, = Cn

e Desirable practical behavior

— Applicable (at least) to classical supervised learning problems
— Robustness to (potentially unknown) constants (L,B,u)
— Adaptivity to difficulty of the problem (e.g., strong convexity)



Stochastic subgradient descent/method
e Assumptions

— fn convex and B-Lipschitz-continuous on {||0||> < D}

— (fn) i.i.d. functions such that Ef,, = f
— 6, global optimum of f on {||0||- < D}

2D
e Algorithm: 0,, =1IIp <9n 1 — W o (On )>

e Bound: .
1 2DB
Ef{— 0. ) — f(O,) <——
f(, > ) - 10 <2
e “Same” three-line proof as in the deterministic case
e Minimax convergence rate

e Running-time complexity: O(dn) after n iterations



Stochastic subgradient method - proof - |

® lteration: 0, = IIp(0p—1 — S, (0n-1)) with v, = B2\l/)ﬁ

® f, : information up to time n

o |[f/(0)]]2 < B and ||0||]2 < D, unbiased gradients/functions E( f,,|F,_1) = f

10, — 0.3 < |0n — q/nf’( n—1)|[5 by contractivity of projections
< |0n—1 — 0. Hz = 29 (01 — 0.) " fr(0—1) because || f,(0—1)2 < B
E |10 — 0121 Fn-1] < 16n-1— 0.2+ = 29 (0n-1 = 0:) " f'(0n-1)
< NOur — 0.3+ B2 - 27, [f( ) — £(6.)] (subgradient property)
E[l05 — 0.5 < H@n 1= 0. ||2 —2%[Ef( 1) — f(6)]
: BQ’Y?’L 1 2 2
® leadingto Ef(6,,—1) — f(6«) < + E||05—1 — 0.]|5 — E||6, — 6.])3]

2 2%n,



Stochastic subgradient method - proof - |l

B?v, 1
+ o [E[|0n-1 — 0.3 — E[|6), — 0.]]3]

e Starting from Ef(6,,_1) — f(0.) 5 9
Tn

IN

1
3 S [Elffur — 0.]3 — E[8, — 6.]13]

/
]
oy
M§M

Z [Ef(‘gu—l) R f(H*)] <

i B2, N 4D?> 2DB " 2D
Wi n —
> oy, S m =B/

1 2D B
® Using convexity: Ef (5 Z Qk) — f(0,) < W



Stochastic subgradient descent - strong convexity - |

e Assumptions

— f, convex and B-Lipschitz-continuous

— (fn) i.i.d. functions such that Ef,, = f
— f p-strongly convex on {||0|2 < D}

— 0, global optimum of f over {||0|> < D}

2
e Algorithm: 6, = 1Ip <9n_1 — fé(%-l))

e Bound: ,
2 i 2B
e <n<n P M) BRI e

e “Same” three-line proof than in the deterministic case

e Minimax convergence rate



Stochastic subgradient descent - strong convexity - ||

e Assumptions

— f, convex and B-Lipschitz-continuous

— (fn) i.i.d. functions such that Ef,, = f

— 0, global optimum of g = f + & - |3

— No compactness assumption - no projections

e Algorithm:

2 B 2 ,
N(n + 1)gn(9n—1) =0, u(n n 1) [fn((gn—l)+ﬂ(9n—1}

Hn — Hn—l_

2 - 2 B2
Bound: E kOrp_1 ) —g(0y) <

e Minimax convergence rate




Outline

. Large-scale machine learning and optimization
e Traditional statistical analysis

e Classical methods for convex optimization

. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex

. Smooth stochastic approximation algorithms

e Asymptotic and non-asymptotic results
. Beyond decaying step-sizes

. Finite data sets



Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strong|y convex: O((Mn)_l)
Attained by averaged stochastic gradient descent with ~,, o< (,Lm)_l
— Non-strongly convex: O(n~1/2)

Attained by averaged stochastic gradient descent with ~,, oc n~%/?



Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strong|y convex: O((Mn)_l)
Attained by averaged stochastic gradient descent with ,, oc (un) ™!
— Non-strongly convex: O(n~1/2)

Attained by averaged stochastic gradient descent with ~,, oc n~%/?

e Many contributions in optimization and online learning: Bottou
and Le Cun (2005); Bottou and Bousquet (2008); Hazan et al.
(2007); Shalev-Shwartz and Srebro (2008); Shalev-Shwartz et al.
(2007, 2009); Xiao (2010); Duchi and Singer (2009); Nesterov and
Vial (2008); Nemirovski et al. (2009)



Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strong|y convex: O((Mn)_l)
Attained by averaged stochastic gradient descent with ~,, o< (,Lm)_l
— Non-strongly convex: O(n~1/2)

Attained by averaged stochastic gradient descent with ~,, oc n~%/?

e Asymptotic analysis of averaging (Polyak and Juditsky, 1992;
Ruppert, 1988)

— All step sizes v, = Cn~% with o € (1/2,1) lead to O(n™1) for
smooth strongly convex problems



Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strongly convex: O((un)™1)
Attained by averaged stochastic gradient descent with v, o (un)~
— Non-strongly convex: O(n~1/2)
Attained by averaged stochastic gradient descent with v, xn

1
—~1/2

e Asymptotic analysis of averaging (Polyak and Juditsky, 1992;
Ruppert, 1988)

— All step sizes v, = Cn~% with a € (1/2,1) lead to O(n™1) for
smooth strongly convex problems

e Non-asymptotic analysis for smooth problems?



Smoothness/convexity assumptions

e lteration: | 6, = 0,,_1 — VoS! (0rn_1)

— Polyak-Ruppert averaging: 6,, = %ZZ;& 0.

e Smoothness of f,: For each n > 1, the function f,, is a.s. convex,
differentiable with L-Lipschitz-continuous gradient f;:

— Smooth loss and bounded data

e Strong convexity of f: The function f is strongly convex with
respect to the norm || -

, with convexity constant p > 0O:

— Invertible population covariance matrix
— or regularization by £/(|6]°



Summary of new results (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate v, = Cn™¢

e Strongly convex smooth objective functions

— Old: O(n™1) rate achieved without averaging for o = 1
— New: O(n~1) rate achieved with averaging for o € [1/2, 1]
— Non-asymptotic analysis with explicit constants

— Forgetting of initial conditions

— Robustness to the choice of C



Summary of new results (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate ~v,, = Cn™¢

e Strongly convex smooth objective functions

— Old: O(n™1) rate achieved without averaging for o = 1
— New: O(n™!) rate achieved with averaging for o € [1/2, 1]
— Non-asymptotic analysis with explicit constants

— Forgetting of initial conditions

— Robustness to the choice of C

e Convergence rates for E||0,, — 0*||? and E||0,, — 0%]?

2
0" Vn

— Nno averaging: O( ) -+ O(e—ﬂn’yn)Hgo o H*HQ

tr H(6*)~1

0o — 9*\\2)

—1 —2« —24« H
+u  0O(n"““+n )+O( i

— averaging:



Classical proof sketch (no averaging)

167 — 0.113

E[Hen — H*HSIFn—l}

E[10n—1 — 0x[3]

IN

IN

/N

VA

A

IN

On—1— ano/z(en—l) - 9*”%
On—1— 043 — 2790 (0n—1 — 0.) " f1(On-1) + Y2l £ (0n-1)3
On—1— 0.3 — 270 (0n—1 — 0.) " f1, (0 1)
+295 1 £1(0)15 + 291 £, (Bn1) — £, (6413

10n—1 — 04115 — 270 (On—1 — 0+) " f1.(0n—1)

292 Fr (O I5+292 L f7,(0n—1) = f1,(0)] " (0n—1 — 6.)
10n—1 — 0115 — 27 (0n—1 — 02) " f'(0r—1)

+292E| £, (0:)115 + 292 LIf (0p—1) — 0] ' (-1 — 0.)
1001 = 04115 = 290 (1 = Y L) (On—1 — 0.) " f/(Bn—1) + 2770°
6t~ 6,13 — 29(1 ~ 3 L) gull601 — 0.]3 + 20207

[1 — uyn(l — ’YnL)] 10n—1 — 0.1 + 27,0
[1 — lwyn(l — ’YnL)]E[Hen—l - 0*”3] =+ 2’77302




Proof sketch (averaging)
e From Polyak and Juditsky (1992):

en — en—l — ’Ynfy,z,(en—l)

S Bn) = (01 —0,)

n

1

& ful0s) + £ (0:)(On 1 — 04) = 7_((9”_1 — 0n) + O([|n—1 — 04]%)
& fol0e) + f7(0.)(0n—1 — 0.) = %(Hn—l = 01) + O([|0n—1 — 04]%)

£O(lf—1 — 6.])en
S Gur— 0= —[(6.) 7 FL0.) £ (6. (s — 61)

+O([[0n-1 = 0:]1%) + O([|6r—1 — | )en

e Averaging to cancel the term W—if”(ﬁ*)_l(ﬁn_l —0,)



-]

log[f(6

Robustness to wrong constants for v, = Cn™“

o f(6) = 3|6|* with i.i.d. Gaussian noise (d = 1)

o Left: a =1/2
e Right: a =1

o=1/2

e See also http://leon.bottou.org/projects/sgd

—»—sgd - C=1/5
-%-ave — C=1/5
——sgd - C=1
-9-ave - C=1
—8—sgd - C=5

1|-B-ave — C=5

log[f(6 )~

—»—sgd - C=1/5
- % -ave — C=1/5
——sgd - C=1
-9-ave - C=1
—8—sgd - C=5

 |-B-ave — C=5




Summary of new results (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate v, = Cn™¢

e Strongly convex smooth objective functions

— Old: O(n™1) rate achieved without averaging for o = 1
— New: O(n~1) rate achieved with averaging for o € [1/2, 1]
— Non-asymptotic analysis with explicit constants



Summary of new results (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate ~v,, = Cn™¢

e Strongly convex smooth objective functions

— Old: O(n™1) rate achieved without averaging for o = 1
— New: O(n~1) rate achieved with averaging for o € [1/2, 1]
— Non-asymptotic analysis with explicit constants

e Non-strongly convex smooth objective functions
— Old:  O(n~—'/2) rate achieved with averaging for o = 1/2
— New: O(max{n'/273%/2 n=2/2 ne=11) rate achieved without
averaging for o € [1/3,1]
e Take-home message

— Use @ = 1/2 with averaging to be adaptive to strong convexity



Beyond stochastic gradient method

e Adding a proximal step
— Goal: min f(0)+Q0)=Ef,(0) + Q(60)

DR
— Replace recursion 0,, = 0,,_1 — v f) (05) by

0 = min ||6 — 0,1 + v f2(60)|) + CQAO)
6 cRd

— Xiao (2010); Hu et al. (2009)
— May be accelerated (Ghadimi and Lan, 2013)

e Related frameworks

— Regularized dual averaging (Nesterov, 2009; Xiao, 2010)
— Mirror descent (Nemirovski et al., 2009; Lan et al., 2012)



Outline

. Large-scale machine learning and optimization
e Traditional statistical analysis

e Classical methods for convex optimization

. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex

. Smooth stochastic approximation algorithms

e Asymptotic and non-asymptotic results
. Beyond decaying step-sizes

. Finite data sets



Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strong|y convex: O((Mn)_l)
Attained by averaged stochastic gradient descent with ~,, o< (,Lm)_l
— Non-strongly convex: O(n~1/2)

Attained by averaged stochastic gradient descent with ~,, oc n~%/?

e Asymptotic analysis of averaging (Polyak and Juditsky, 1992;
Ruppert, 1988)

— All step sizes v, = Cn~% with a € (1/2,1) lead to O(n™1) for

smooth strongly convex problems

e A single adaptive algorithm for smooth problems with
convergence rate O(min{l/un,1/y/n}) in all situations?



Adaptive algorithm for logistic regression
e Logistic regression: (®(z,,),y,) € R x {—1,1}

— Single data point: f,,(0) = log(1 + exp(—y,0 ' ®(x,,)))
— Generalization error: f(0) =Ef,(0)



Adaptive algorithm for logistic regression
e Logistic regression: (®(z,),y,) € RY x {—1,1}
— Single data point: f,,(0) = log(1 + exp(—y,0 ' ®(x,,)))
— Generalization error: f(0) =Ef,(0)
e Cannot be strongly convex = local strong convexity

— unless restricted to |0 ' ®(x,,)| < M (and with constants e*)
— 1 = lowest eigenvalue of the Hessian at the optimum f"(6,)

A
logistic loss




Adaptive algorithm for logistic regression
e Logistic regression: (®(z,,),y,) € R x {—1,1}
— Single data point: f,(0) = log(1 + exp(—y,0 ' ®(x,)))
— Generalization error: f(0) =Ef,(0)
e Cannot be strongly convex = local strong convexity
— unless restricted to |0 ' ®(x,)| < M (and with constants )
— 1t = lowest eigenvalue of the Hessian at the optimum f”(6,)
e n steps of averaged SGD with constant step-size 1/(2R2\/ﬁ)
— with R = radius of data (Bach, 2013):
1 R
V' np

— Proof based on self-concordance (Nesterov and Nemirovski, 1994)

Ef(0,) — f(0,) < min{ }(15 + 5R||0y — 9*H)4



Self-concordance

e Usual definition for convex ¢ : R — R: |¢(t)] < 2¢"(t)3/?

— Affine invariant

— Extendable to all convex functions on R by looking at rays

— Used for the sharp proof of quadratic convergence of Newton
method (Nesterov and Nemirovski, 1994)

e Generalized notion: |©"(t)]| < ¢"(t)

— Applicable to logistic regression (with extensions)



Self-concordance

e Usual definition for convex ¢ : R — R: |¢(t)] < 2¢"(t)3/?

— Affine invariant
— Extendable to all convex functions on R by looking at rays
— Used for the sharp proof of quadratic convergence of Newton
method (Nesterov and Nemirovski, 1994)
e Generalized notion: |©"(t)]| < ¢"(t)

— Applicable to logistic regression (with extensions)

e Important properties

— Allows global Taylor expansions
— Relates expansions of derivatives of different orders



Adaptive algorithm for logistic regression
Proof sketch

e Step 1: use existing result f(én)—f(e*)Jr%H@o—@ Hz = 0(1/y/n)

¢ Step 2: ffr,z((gn—l) — %(gn—l_gn) — %ngzl ];(Hk—l) — %(HO_Hn)

PR O) = 300 B |
= O(f(0,) — f(6.)) = O(1/+/n) using self-concordance

e Step 4a: if f u-strongly convex, f(0,) — f(0 ||f HQ

e Step 4b: if f self-concordant, “locally true” with = Anin(f(04))



Adaptive algorithm for logistic regression
e Logistic regression: (®(z,,),y,) € R x {—1,1}
— Single data point: f,(0) = log(1 + exp(—y,0 ' ®(x,)))
— Generalization error: f(0) =Ef,(0)
e Cannot be strongly convex = local strong convexity
— unless restricted to |0 ' ®(x,)| < M (and with constants )
— 1t = lowest eigenvalue of the Hessian at the optimum f”(6,)
e n steps of averaged SGD with constant step-size 1/(2R2\/ﬁ)
— with R = radius of data (Bach, 2013):
1 R
V' np

— Proof based on self-concordance (Nesterov and Nemirovski, 1994)

Ef(0,) — f(0,) < min{ }(15 + 5R||0y — 9*H)4



Adaptive algorithm for logistic regression
e Logistic regression: (®(z,),y,) € R% x {-1,1}
— Single data point: f,,(0) = log(1 + exp(—y,0 ' ®(x,,)))
— Generalization error: f(0) =Ef,(0)
e Cannot be strongly convex = local strong convexity

— unless restricted to |0 ' ®(x,)| < M (and with constants )
— 1t = lowest eigenvalue of the Hessian at the optimum f”(6,)

e n steps of averaged SGD with constant step-size 1/(2R2\/ﬁ)
— with R = radius of data (Bach, 2013):
1 R?
V' np

— A single adaptive algorithm for smooth problems with
convergence rate O(1/n) in all situations?

Ef(0,) — f(0,) < min{ }(15 + 5R||0y — 9*H)4



Least-mean-square algorithm

o Least-squares: f(0) = sE|(y, — (®(z,),0))?] with § € R

— SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
— usually studied without averaging and decreasing step-sizes
— with strong convexity assumption E|®(z,,) @ ®(x,)| = H = p-1d



Least-mean-square algorithm

o Least-squares: f(0) = sE|(y, — (®(z,,),0))?] with § € R

— SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
— usually studied without averaging and decreasing step-sizes
— with strong convexity assumption E|®(z,,) @ ®(xy,)| = H = p-1d

e New analysis for averaging and constant step-size v = 1/(4R?)

— Assume ||®(z,)|| < R and |y, — (®(x,),0.)| < o almost surely
— No assumption regarding lowest eigenvalues of H

_ 4 2 4 2 — 9, 2
~ Main result: | Ef (8, 1) — f(6.) < 229 4F700 = 0.]

n n

e Matches statistical lower bound (Tsybakov, 2003)

— Non-asymptotic robust version of Gyorfi and Walk (1996)



Least-squares - Proof technique

e LMS recursion:

On — 0. = [I —@(x,) @ P(2)| (On—1 — 04) + v EnD(zy,)

e Simplified LMS recursion: with H = E|®(z,,) ® ®(z,,)]
0, —0, = [I — fyH} (On_1—0y) +ven®(xy)
— Direct proof technique of Polyak and Juditsky (1992), e.g.,

O — 0. = [[—H]"(0g = 0.) +~ ) [ —yH]""
k=1

5kq)(xk)

e Infinite expansion of Aguech, Moulines, and Priouret (2000) in powers
of ~



Markov chain interpretation of constant step sizes

e LMS recursion for f,,(0) = 1(yn — (®(z4,),0))

0, =60, _1— 7(<<I>(:z:n), On_1) — yn)CI)(acn)

2

e The sequence (0,,), is a homogeneous Markov chain

— convergence to a stationary distribution 7,
. .= def
— with expectation 0., = [ 0r.(d0)



Markov chain interpretation of constant step sizes

e LMS recursion for f,(0) = %(yn — <(I>($n)79>)2

Hn — Hn—l — A}/(<(I)(xn)7 9n—1> - yn)q)(xn)
e The sequence (0,,), is a homogeneous Markov chain

— convergence to a stationary distribution 7,
. .= def
— with expectation 0., = [ 0r.(d0)

e For least-squares, 0, = 0,

en f\ x
X — — — — — — ~ - - — —

/ / N /
| / AN /

I x - o p” 7

N 6 4
/ \)é\ * 0%
/ ~X N /X



Markov chain interpretation of constant step sizes

e LMS recursion for f,(0) = %(yn — <(I>($n)79>)2

Qn — Hn—l — A}/(<(I)(xn)7 9n—1> - yn)q)(xn)
e The sequence (0,,), is a homogeneous Markov chain

— convergence to a stationary distribution 7,
. .= def
— with expectation 0., = [ 0r.(d0)

e For least-squares, 0, = 0,




Markov chain interpretation of constant step sizes

e LMS recursion for f,(0) = %(yn — <(I>($n)79>)2

Qn — Hn—l — A}/(<(I)(xn)7 9n—1> - yn)q)(xn)
e The sequence (0,,), is a homogeneous Markov chain

— convergence to a stationary distribution 7,
. .= def
— with expectation 0., = [ 6. (d0)

e For least-squares, 0., = 0,
— 6,, does not converge to 0, but oscillates around it
— oscillations of order /v

e Ergodic theorem:

— Averaged iterates converge to 0., = 0, at rate O(1/n)



Simulations - synthetic examples

e Gaussian distributions - p = 20

synthetic square

0
v ol l\‘ u’n ,,\\ M'l‘,\'/n‘t/ w“'\\\\\{ \
_1 N ]
,ITI\ ’I\ A \ | oy, )
GD"‘ A A T
N’
HI— —2 - J\IVJ\\\H]"'I\\ ‘Jvﬂ‘"“‘w
o |
= —1/2R
—i
— -4/ ——1/32R
2 1/2
1/2R
_5 N
0 6



Simulations - benchmarks
e alpha (p = 500, n = 500 OOO), news (p = 1 300 000, n = 20 OOO)

alpha square C=1 test

alpha square C=opt test

1 1
__ 05 0.5
0 0
|
o -0.5 -0.5
;8 _1' 5 _17 2
< -1.5 l/Rz 1/2 -1.5 C/Rz 1/2
—1/R"n —C/R"n
~2/| —sAG —2/| —sSAG
0 4 0 4
log, ,(n) log, (1)

news square C=1 test news square C=opt test

0.2} 0.2}

log[f(6)-f(6.)]

08| ___cac | 08| ___cac

2 4 2 4
log, ,(n) log, ,(n)



Beyond least-squares - Markov chain interpretation

e Recursion 0,, = 0,,_1 — ~vf!(0,_1) also defines a Markov chain

— Stationary distribution 7., such that | f/(6 Wv(dﬁ) =0
— When f’ is not linear, f'([ 0m,(df)) # [ f'(0)my(d0) =0



Beyond least-squares - Markov chain interpretation

e Recursion 0, =60,,_1 —~vf/(0,,_1) also defines a Markov chain

— Stationary distribution 7., such that | f/(6 Wv(dﬁ) =0
— When f’ is not linear, f'([ 0m,(df)) # [ f'(0)my(d0) =0

e 0, oscillates around the wrong value 0., # 0,




Beyond least-squares - Markov chain interpretation

e Recursion 0, =60,,_1 —~vf/(0,,_1) also defines a Markov chain
— Stationary distribution 7., such that | f/(6 Wv(dﬁ) =0
— When f’ is not linear, f'([ 0m,(df)) # [ f'(0)my(d0) =0

e 0, oscillates around the wrong value 0., # 0,

— moreover, |0, —0,| = O,(\/7)

e Ergodic theorem

— averaged iterates converge to 0., # 0, at rate O(1/n)
— moreover, ||0. — 0, = O(y) (Bach, 2013)



Simulations - synthetic examples

e Gaussian distributions - p = 20

synthetic logistic — 1

l0g, [f(6)-1(6)]

A
log, (n)



Restoring convergence through online Newton steps

e Known facts

1. Averaged SGD with v,, oc n~'/2 leads to robust rate O(n~'/?)
for all convex functions

2. Averaged SGD with ~,, constant leads to robust rate O(n™!)
for all convex quadratic functions

3. Newton's method squares the error at each iteration
for smooth functions

4. A single step of Newton's method is equivalent to minimizing the
quadratic Taylor expansion



Restoring convergence through online Newton steps

e Known facts

1. Averaged SGD with v,, oc n~'/2 leads to robust rate O(n~'/?)
for all convex functions

2. Averaged SGD with ~,, constant leads to robust rate O(n™!)
for all convex quadratic functions = O(n—1)

3. Newton's method squares the error at each iteration
for smooth functions = O((n~=1/2)?)

4. A single step of Newton's method is equivalent to minimizing the
quadratic Taylor expansion

e Online Newton step

— Rate: O((n~Y2)2 4+ n=1) =0(n™1)
— Complexity: O(p) per iteration



Restoring convergence through online Newton steps

e The Newton step for f = Ef,(0) = E[l(yn, (0, ®(z,)))] at 6 is

equivalent to minimizing the quadratic approximation

),0 =) +5(0 -0, f"(0)(0 - 0))

g(0) = f(0) + (f'(0),
f (é)v 0 — 9> + %<9 - HvEf”(e)(e - (9)>

F(6) + (E
E|£(0) + (£1(0),0 = 0) + 5(0 — 0, £1(0)(6 — 0))|

™



Restoring convergence through online Newton steps

e The Newton step for f = Ef,(0) = E[l(yn, (0, ®(z,)))] at 6 is

equivalent to minimizing the quadratic approximation

™

),0 =) +5(0 -0, f"(0)(0 - 0))

g(0) = £(0) + (f'(0),
f1(0),0 — 0) + 30 — 0.Ef/(0)(6 — 0))

= f(0) + (E
= E|f(0) + (f,(0),0 — 8) + 30— 0, £1(0)(0 - 0)),

e Complexity of least-mean-square recursion for g is O(p)

On, = 01 — Y[ 2 (0) + F1(0)(8,—1 — 0)]

- fqlq,/(é) = 0" (yn, <9~, O (x,)))P(x,) ® ®(x,) has rank one
— New online Newton step without computing/inverting Hessians



Choice of support point for online Newton step

e Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain 6
(2) Run n/2 iterations of averaged constant step-size LMS

— Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
— Provable convergence rate of O(p/n) for logistic regression
— Additional assumptions but no strong convexity



Logistic regression - Proof technique

e Using generalized self-concordance of ¢ : u — log(1 4+ e™*):
" ()] < ¢"(u)
— NB: difference with regular self-concordance: ¢ (u)| < 29" (u)3/?

e Using novel high-probability convergence results for regular averaged
stochastic gradient descent

e Requires assumption on the kurtosis in every direction, i.e.,

]E<(I)(xn)7 77>4 <K [E<(I)(ajn)’ 77>2} 2



Choice of support point for online Newton step

e Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain 6
(2) Run n/2 iterations of averaged constant step-size LMS

— Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
— Provable convergence rate of O(p/n) for logistic regression
— Additional assumptions but no strong convexity

e Update at each iteration using the current averaged iterate

— Recursion: 9n = Hn_l — "}/[f,,/%((g_n_ﬂ + fg(@n_l)(en_l — Hn_l)]

— No provable convergence rate (yet) but best practical behavior
— Note (dis)similarity with regular SGD: 0,, = 0,,_1 — vf] (0,,_1)



Online Newton algorithm
Current proof (Flammarion et al., 2014)

e Recursion

en—l _ W[fqlq,(e_n—l) + qu(e_n—l)(en—l — (9_77,—1)}

O
en — en—l =+ %(en — e_n—l)

e Instance of two-time-scale stochastic approximation (Borkar, 1997)

— Given 0, 0, = 0,1 — Y[fL(0) + [/(0)(0n_1 — 0)] defines a
homogeneous Markov chain (fast dynamics)
— 0, is updated at rate 1/n (slow dynamics)

e Difficulty: preserving robustness to ill-conditioning



e Gaussian distributions - p = 20

log, [f(6)~f(6,)]

Simulations - synthetic examples

synthetic logistic — 1

log, [f(6)~f(6,)]

synthetic logistic — 2

-3 ——every 2°
| — every iter.
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5l 2I—step—dbll. |
0 6

4
log, (n)



Simulations - benchmarks
e alpha (p = 500, n = 500 OOO), news (p = 1 300 000, n = 20 OOO)

alpha logistic C=1 test

05 05 alpha logistic C=opt test
0 0
o -0.5 -0.5
T
e  lfj—ur? ~1f—c/r?
o — 12,112 - 2 1/2
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Outline

. Large-scale machine learning and optimization
e Traditional statistical analysis

e Classical methods for convex optimization

. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex

. Smooth stochastic approximation algorithms

e Asymptotic and non-asymptotic results
. Beyond decaying step-sizes

. Finite data sets



Going beyond a single pass over the data

e Stochastic approximation

— Assumes infinite data stream
— Observations are used only once
— Directly minimizes testing cost E(, ,y £(y,0 ' ®(z))



Going beyond a single pass over the data

e Stochastic approximation

— Assumes infinite data stream
— Observations are used only once
— Directly minimizes testing cost E, ,y £(y,0 ' ®(z))

e Machine learning practice

— Finite data set (z1,91,...,Tn, Yn)

— Multiple passes

— Minimizes training cost %2?21 0(y;, QT(P(%'))

— Need to regularize (e.g., by the ¢5-norm) to avoid overfitting

e Goal: minimize g(f) = %Zfz(ﬁ)
i=1



Stochastic vs. deterministic methods
e Minimizing g(0 Zf@ ) with f;(0) = €(y;, 0" ®(x;)) + pQ(6)

e Batch gradient descent: 6; = 0;_1—~;g'(0;_1) = 6,_ 1——Zf (0;_1)

— Linear (e.g., exponential) convergence rate in O(e~ %)
— Iteration complexity is linear in n (with line search)



Stochastic vs. deterministic methods
e Minimizing ¢g(6 Zf@ ) with f;(0) = €(y;, 0" ®(x;)) + pQ(6)

e Batch gradient descent: 6; = 0;_1—~;g'(0;_1) = 6,_ 1——Zf (0;_1)



Stochastic vs. deterministic methods
e Minimizing g(0 Zf@ ) with f;(0) = €(y;, 0" ®(x;)) + pQ(6)

e Batch gradient descent: 6; = 0;_1—~;g'(0;_1) = 6,_ 1——Zf (0;_1)

— Linear (e.g., exponential) convergence rate in O(e~ %)
— Iteration complexity is linear in n (with line search)

e Stochastic gradient descent: 6; = 0;_1 — fytfi’(t)(et_l)

— Sampling with replacement: i(¢) random element of {1,...,n}
— Convergence rate in O(1/t)
— Iteration complexity is independent of n (step size selection?)



Stochastic vs. deterministic methods
e Minimizing g(6 Zfz with f;(8) = £(y;, 0" ®(x;)) + us2(0)

e Batch gradlent descent: 975 — (975 1—"7Ytg (975 1 = 975 1—— Zf (975 1

e Stochastic gradient descent: 6; = 0;_1 — fytfi’(t)(Ht_l)




Stochastic vs. deterministic methods

e Goal = best of both worlds: Linear rate with O(1) iteration cost
Robustness to step size

L stochastic

deterministic

—

log(excess cost

time



Stochastic vs. deterministic methods

e Goal = best of both worlds: Linear rate with O(1) iteration cost

log(excess cost

hybri

Robustness to step size

stochastic

deterministic

time



Accelerating gradient methods - Related work

e Nesterov acceleration

— Nesterov (1983, 2004)
— Better linear rate but still O(n) iteration cost

e Hybrid methods, incremental average gradient, increasing
batch size

— Bertsekas (1997); Blatt et al. (2008); Friedlander and Schmidt
(2011)
— Linear rate, but iterations make full passes through the data.



Accelerating gradient methods - Related work

e Momentum, gradient/iterate averaging, stochastic version of
accelerated batch gradient methods

— Polyak and Juditsky (1992); Tseng (1998); Sunehag et al. (2009);
Ghadimi and Lan (2010); Xiao (2010)
— Can improve constants, but still have sublinear O(1/t) rate

e Constant step-size stochastic gradient (SG), accelerated SG

— Kesten (1958); Delyon and Juditsky (1993); Solodov (1998); Nedic
and Bertsekas (2000)
— Linear convergence, but only up to a fixed tolerance.

e Stochastic methods in the dual

— Shalev-Shwartz and Zhang (2012)
— Similar linear rate but limited choice for the f;’s



Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

e Stochastic average gradient (SAG) iteration

— Keep in memory the gradients of all functions f;, 1 =1,...,n
— Random selection i(t) € {1,...,n} with replacement

- (0 if o =1(t
— lteration: 0y = 0,1 — L g y; with y! = fi( 1t % ( |
n < Y, otherwise



Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

e Stochastic average gradient (SAG) iteration

— Keep in memory the gradients of all functions f;, 1 =1,...,n
— Random selection i(t) € {1,...,n} with replacement
& (0p—1) ifi=1(t
— lteration: 6, = 60;_1 — Bl ny with y} = fi( 1t ) ( )
n = Y, otherwise

e Stochastic version of incremental average gradient (Blatt et al., 2008)

e Extra memory requirement

— Supervised machine learning
= If fi(0) = Li(yi, ®(x;) ' 0), then f/(0) = £i(yi, P(x;) " 0) ()

— Only need to store n real numbers



Stochastic average gradient - Convergence analysis

e Assumptions

— Each f; is L-smooth, 1 =1,....n

— 9:%2?21 fi is p-strongly convex (with potentially = 0)
— constant step size v, = 1/(16L)

— initialization with one pass of averaged SGD



Stochastic average gradient - Convergence analysis

e Assumptions

— Each f; is L-smooth, 1 =1,....n

— 9:%2?21 fi is p-strongly convex (with potentially = 0)
— constant step size v, = 1/(16L)

— initialization with one pass of averaged SGD

e Strongly convex case (Le Roux et al., 2012, 2013)

E[g(6) — 9(0.)] < (if - 4LH90n_9*H2> exp ( — tmin {81n’ i67))

— Linear (exponential) convergence rate with O(1) iteration cost
After one pass, reduction of cost b ( ' {1 e })
— , reduction exp [ —min § =, —
P > 316



Stochastic average gradient - Convergence analysis

e Assumptions

— Each f; is L-smooth, 1 =1,....n

— 9:%2?21 fi is p-strongly convex (with potentially = 0)
— constant step size v, = 1/(16L)

— initialization with one pass of averaged SGD

e Non-strongly convex case (Le Roux et al., 2013)

o2+ L||6o—0.]2 n
NG l

— Improvement over regular batch and stochastic gradient
— Adaptivity to potentially hidden strong convexity

E|g(0:) — g(6:)] <48



Convergence analysis - Proof sketch

e Main step: find “good” Lyapunov function J(6;, 3%, ..., 9%)

— such that E[J (04, 9%, ..., y5 )| Fica] < J(Or—1,y7 'seo oyl h)
— no natural candidates

e Computer-aided proof

— Parameterize function J(6;, 4%, ..., y%) = g(0;) —g(0.) +quadratic
— Solve semidefinite program to obtain candidates (that depend on

n, u, L)
— Check validity with symbolic computations



Rate of convergence comparison

e Assume that L = 100, u = .01, and n = 80000

— Full gradient method has rate
(1—£) =0.9999
— Accelerated gradient method has rate
(1 — \/%) = 0.9900
— Running n iterations of SAG for the same cost has rate
(1—2)" =0.8825

— Fastest possible first-order method has rate

\/f—ﬁ)2 _
( T ) = 0.9608

e Beating two lower bounds (with additional assumptions)

— (1) stochastic gradient and (2) full gradient



Stochastic average gradient
Implementation details and extensions

e The algorithm can use sparsity in the features to reduce the storage
and iteration cost

e Grouping functions together can further reduce the memory
requirement

e \We have obtained good performance when L is not known with a
heuristic line-search

e Algorithm allows non-uniform sampling

e Possibility of making proximal, coordinate-wise, and Newton-like
variants



Objective minus Optimum

spam dataset (n = 92 189, d = 823 470)
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Summary and future work

e Constant-step-size averaged stochastic gradient descent

— Reaches convergence rate O(1/n) in all regimes

— Improves on the O(1/4/n) lower-bound of non-smooth problems
— Efficient online Newton step for non-quadratic problems

— Robustness to step-size selection

e Going beyond a single pass through the data



Summary and future work

e Constant-step-size averaged stochastic gradient descent

— Reaches convergence rate O(1/n) in all regimes

— Improves on the O(1/4/n) lower-bound of non-smooth problems
— Efficient online Newton step for non-quadratic problems

— Robustness to step-size selection

e Going beyond a single pass through the data

e Extensions and future work

— Pre-conditioning

— Proximal extensions fo non-differentiable terms
— kernels and non-parametric estimation

— line-search

— parallelization



Outline

. Large-scale machine learning and optimization
e Traditional statistical analysis

e Classical methods for convex optimization

. Non-smooth stochastic approximation

e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds
e Strongly convex vs. non-strongly convex

. Smooth stochastic approximation algorithms

e Asymptotic and non-asymptotic results
. Beyond decaying step-sizes

. Finite data sets



Conclusions
Machine learning and convex optimization

e Statistics with or without optimization?

— Significance of mixing algorithms with analysis
— Benefits of mixing algorithms with analysis

e Open problems

— Non-parametric stochastic approximation

— Going beyond a single pass over the data (testing performance)

— Characterization of implicit regularization of online methods

— Further links between convex optimization and online
learning /bandits
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