
Large-scale machine learning
and convex optimization

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

ÉCOLE NORMALE

S U P É R I E U R E

Apprentissage Statistique, Univ. Paris-Sud - March 2015

“Big data” revolution?

A new scientific context

• Data everywhere: size does not (always) matter

• Science and industry

• Size and variety

• Learning from examples

– n observations in dimension d

Search engines - advertising

Search engines - Advertising

Marketing - Personalized recommendation

Visual object recognition

Personal photos

Bioinformatics

• Protein: Crucial elements of cell life

• Massive data: 2 millions for humans

• Complex data

Context

Machine learning for “big data”

• Large-scale machine learning: large d, large n

– d : dimension of each observation (input)

– n : number of observations

• Examples: computer vision, bioinformatics, advertising

– Ideal running-time complexity: O(dn)

– Going back to simple methods

– Stochastic gradient methods (Robbins and Monro, 1951)

– Mixing statistics and optimization

– Using smoothness to go beyond stochastic gradient descent

Context

Machine learning for “big data”

• Large-scale machine learning: large d, large n

– d : dimension of each observation (input)

– n : number of observations

• Examples: computer vision, bioinformatics, advertising

• Ideal running-time complexity: O(dn)

– Going back to simple methods

– Stochastic gradient methods (Robbins and Monro, 1951)

– Mixing statistics and optimization

– Using smoothness to go beyond stochastic gradient descent

Context

Machine learning for “big data”

• Large-scale machine learning: large d, large n

– d : dimension of each observation (input)

– n : number of observations

• Examples: computer vision, bioinformatics, advertising

• Ideal running-time complexity: O(dn)

• Going back to simple methods

– Stochastic gradient methods (Robbins and Monro, 1951)

– Mixing statistics and optimization

– Using smoothness to go beyond stochastic gradient descent

Outline

1. Large-scale machine learning and optimization

• Traditional statistical analysis

• Classical methods for convex optimization

2. Non-smooth stochastic approximation

• Stochastic (sub)gradient and averaging

• Non-asymptotic results and lower bounds

• Strongly convex vs. non-strongly convex

3. Smooth stochastic approximation algorithms

• Asymptotic and non-asymptotic results

4. Beyond decaying step-sizes

5. Finite data sets

Supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Prediction as a linear function θ⊤Φ(x) of features Φ(x) ∈ R
d

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rd

1

n

n
∑

i=1

ℓ
(

yi, θ
⊤Φ(xi)

)

+ µΩ(θ)

convex data fitting term + regularizer

Usual losses

• Regression: y ∈ R, prediction ŷ = θ⊤Φ(x)

– quadratic loss 1
2(y − ŷ)2 = 1

2(y − θ⊤Φ(x))2

Usual losses

• Regression: y ∈ R, prediction ŷ = θ⊤Φ(x)

– quadratic loss 1
2(y − ŷ)2 = 1

2(y − θ⊤Φ(x))2

• Classification : y ∈ {−1, 1}, prediction ŷ = sign(θ⊤Φ(x))

– loss of the form ℓ(y θ⊤Φ(x))
– “True” 0-1 loss: ℓ(y θ⊤Φ(x)) = 1y θ⊤Φ(x)<0

– Usual convex losses:

−3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

0−1
hinge
square
logistic

Main motivating examples

• Support vector machine (hinge loss)

ℓ(Y, θ⊤Φ(X)) = max{1− Y θ⊤Φ(X), 0}

• Logistic regression

ℓ(Y, θ⊤Φ(X)) = log(1 + exp(−Y θ⊤Φ(X)))

• Least-squares regression

ℓ(Y, θ⊤Φ(X)) =
1

2
(Y − θ⊤Φ(X))2

Usual regularizers

• Main goal: avoid overfitting

• (squared) Euclidean norm: ‖θ‖22 =
∑d

j=1 |θj|2

– Numerically well-behaved

– Representer theorem and kernel methods : θ =
∑n

i=1αiΦ(xi)

– See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and

Cristianini (2004)

• Sparsity-inducing norms

– Main example: ℓ1-norm ‖θ‖1 =
∑d

j=1 |θj|
– Perform model selection as well as regularization

– Non-smooth optimization and structured sparsity

– See, e.g., Bach, Jenatton, Mairal, and Obozinski (2011, 2012)

Supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Prediction as a linear function θ⊤Φ(x) of features Φ(x) ∈ R
d

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rd

1

n

n
∑

i=1

ℓ
(

yi, θ
⊤Φ(xi)

)

+ µΩ(θ)

convex data fitting term + regularizer

Supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Prediction as a linear function θ⊤Φ(x) of features Φ(x) ∈ R
d

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rd

1

n

n
∑

i=1

ℓ
(

yi, θ
⊤Φ(xi)

)

+ µΩ(θ)

convex data fitting term + regularizer

• Empirical risk: f̂(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi)) training cost

• Expected risk: f(θ) = E(x,y)ℓ(y, θ
⊤Φ(x)) testing cost

• Two fundamental questions: (1) computing θ̂ and (2) analyzing θ̂

– May be tackled simultaneously

Supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Prediction as a linear function θ⊤Φ(x) of features Φ(x) ∈ R
d

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rd

1

n

n
∑

i=1

ℓ
(

yi, θ
⊤Φ(xi)

)

+ µΩ(θ)

convex data fitting term + regularizer

• Empirical risk: f̂(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi)) training cost

• Expected risk: f(θ) = E(x,y)ℓ(y, θ
⊤Φ(x)) testing cost

• Two fundamental questions: (1) computing θ̂ and (2) analyzing θ̂

– May be tackled simultaneously

Supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Prediction as a linear function θ⊤Φ(x) of features Φ(x) ∈ R
d

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rd

1

n

n
∑

i=1

ℓ
(

yi, θ
⊤Φ(xi)

)

such that Ω(θ) 6 D

convex data fitting term + constraint

• Empirical risk: f̂(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi)) training cost

• Expected risk: f(θ) = E(x,y)ℓ(y, θ
⊤Φ(x)) testing cost

• Two fundamental questions: (1) computing θ̂ and (2) analyzing θ̂

– May be tackled simultaneously

General assumptions

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Bounded features Φ(x) ∈ R
d: ‖Φ(x)‖2 6 R

• Empirical risk: f̂(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi)) training cost

• Expected risk: f(θ) = E(x,y)ℓ(y, θ
⊤Φ(x)) testing cost

• Loss for a single observation: fi(θ) = ℓ(yi, θ
⊤Φ(xi))

⇒ ∀i, f(θ) = Efi(θ)

• Properties of fi, f, f̂

– Convex on R
d

– Additional regularity assumptions: Lipschitz-continuity,

smoothness and strong convexity

Lipschitz continuity

• Bounded gradients of f (Lipschitz-continuity): the function f if

convex, differentiable and has (sub)gradients uniformly bounded by

B on the ball of center 0 and radius D:

∀θ ∈ R
d, ‖θ‖2 6 D ⇒ ‖f ′(θ)‖2 6 B

• Machine learning

– with f(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi))

– G-Lipschitz loss and R-bounded data: B = GR

Smoothness and strong convexity

• A function f : Rd → R is L-smooth if and only if it is differentiable

and its gradient is L-Lipschitz-continuous

∀θ1, θ2 ∈ R
d, ‖f ′(θ1)− f ′(θ2)‖2 6 L‖θ1 − θ2‖2

• If f is twice differentiable: ∀θ ∈ R
d, f ′′(θ) 4 L · Id

smooth non−smooth

Smoothness and strong convexity

• A function f : Rd → R is L-smooth if and only if it is differentiable

and its gradient is L-Lipschitz-continuous

∀θ1, θ2 ∈ R
d, ‖f ′(θ1)− f ′(θ2)‖2 6 L‖θ1 − θ2‖2

• If f is twice differentiable: ∀θ ∈ R
d, f ′′(θ) 4 L · Id

• Machine learning

– with f(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi))

– Hessian ≈ covariance matrix 1
n

∑n
i=1Φ(xi)Φ(xi)

⊤

– ℓ-smooth loss and R-bounded data: L = ℓR2

Smoothness and strong convexity

• A function f : Rd → R is µ-strongly convex if and only if

∀θ1, θ2 ∈ R
d, f(θ1) > f(θ2) + f ′(θ2)

⊤(θ1 − θ2) +
µ
2‖θ1 − θ2‖22

• If f is twice differentiable: ∀θ ∈ R
d, f ′′(θ) < µ · Id

convex
strongly
convex

Smoothness and strong convexity

• A function f : Rd → R is µ-strongly convex if and only if

∀θ1, θ2 ∈ R
d, f(θ1) > f(θ2) + f ′(θ2)

⊤(θ1 − θ2) +
µ
2‖θ1 − θ2‖22

• If f is twice differentiable: ∀θ ∈ R
d, f ′′(θ) < µ · Id

• Machine learning

– with f(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi))

– Hessian ≈ covariance matrix 1
n

∑n
i=1Φ(xi)Φ(xi)

⊤

– Data with invertible covariance matrix (low correlation/dimension)

Smoothness and strong convexity

• A function f : Rd → R is µ-strongly convex if and only if

∀θ1, θ2 ∈ R
d, f(θ1) > f(θ2) + f ′(θ2)

⊤(θ1 − θ2) +
µ
2‖θ1 − θ2‖23

• If f is twice differentiable: ∀θ ∈ R
d, f ′′(θ) < µ · Id

• Machine learning

– with f(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi))

– Hessian ≈ covariance matrix 1
n

∑n
i=1Φ(xi)Φ(xi)

⊤

– Data with invertible covariance matrix (low correlation/dimension)

• Adding regularization by µ
2‖θ‖2

– creates additional bias unless µ is small

Summary of smoothness/convexity assumptions

• Bounded gradients of f (Lipschitz-continuity): the function f if

convex, differentiable and has (sub)gradients uniformly bounded by

B on the ball of center 0 and radius D:

∀θ ∈ R
d, ‖θ‖2 6 D ⇒ ‖f ′(θ)‖2 6 B

• Smoothness of f : the function f is convex, differentiable with

L-Lipschitz-continuous gradient f ′:

∀θ1, θ2 ∈ R
d, ‖f ′(θ1)− f ′(θ2)‖2 6 L‖θ1 − θ2‖2

• Strong convexity of f : The function f is strongly convex with

respect to the norm ‖ · ‖, with convexity constant µ > 0:

∀θ1, θ2 ∈ R
d, f(θ1) > f(θ2) + f ′(θ2)

⊤(θ1 − θ2) +
µ
2‖θ1 − θ2‖22

Analysis of empirical risk minimization

• Approximation and estimation errors: C = {θ ∈ R
d,Ω(θ) 6 D}

f(θ̂)− min
θ∈Rd

f(θ) =

[

f(θ̂)−min
θ∈C

f(θ)

]

+

[

min
θ∈C

f(θ)− min
θ∈Rd

f(θ)

]

– NB: may replace min
θ∈Rd

f(θ) by best (non-linear) predictions

1. Uniform deviation bounds, with θ̂ ∈ argmin
θ∈C

f̂(θ)

f(θ̂)−min
θ∈C

f(θ) 6 2 sup
θ∈C

|f̂(θ)− f(θ)| (proof)

– Typically slow rate O
(1√

n

)

2. More refined concentration results with faster rates

Motivation from least-squares

• For least-squares, we have ℓ(y, θ⊤Φ(x)) = 1
2(y − θ⊤Φ(x))2, and

f(θ)− f̂(θ) =
1

2
θ⊤

(

1

n

n
∑

i=1

Φ(xi)Φ(xi)
⊤ − EΦ(X)Φ(X)⊤

)

θ

−θ⊤
(

1

n

n
∑

i=1

yiΦ(xi)− EY Φ(X)

)

+
1

2

(

1

n

n
∑

i=1

y2i − EY 2

)

,

sup
‖θ‖26D

|f(θ)− f̂(θ)| 6
D2

2

∥

∥

∥

∥

1

n

n
∑

i=1

Φ(xi)Φ(xi)
⊤ − EΦ(X)Φ(X)⊤

∥

∥

∥

∥

op

+D

∥

∥

∥

∥

1

n

n
∑

i=1

yiΦ(xi)− EY Φ(X)

∥

∥

∥

∥

2

+
1

2

∣

∣

∣

∣

1

n

n
∑

i=1

y2i − EY 2

∣

∣

∣

∣

,

sup
‖θ‖26D

|f(θ)− f̂(θ)| 6 O(1/
√
n) with high probability

Slow rate for supervised learning

• Assumptions (f is the expected risk, f̂ the empirical risk)

– Ω(θ) = ‖θ‖2 (Euclidean norm)

– “Linear” predictors: θ(x) = θ⊤Φ(x), with ‖Φ(x)‖2 6 R a.s.

– G-Lipschitz loss: f and f̂ are GR-Lipschitz on C = {‖θ‖2 6 D}
– No assumptions regarding convexity

Slow rate for supervised learning

• Assumptions (f is the expected risk, f̂ the empirical risk)

– Ω(θ) = ‖θ‖2 (Euclidean norm)

– “Linear” predictors: θ(x) = θ⊤Φ(x), with ‖Φ(x)‖2 6 R a.s.

– G-Lipschitz loss: f and f̂ are GR-Lipschitz on C = {‖θ‖2 6 D}
– No assumptions regarding convexity

• With probability greater than 1− δ

sup
θ∈C

|f̂(θ)− f(θ)| 6 GRD√
n

[

2 +

√

2 log
2

δ

]

• Expectated estimation error: E
[

sup
θ∈C

|f̂(θ)− f(θ)|
]

6
4GRD√

n

• Using Rademacher averages (see, e.g., Boucheron et al., 2005)

• Lipschitz functions ⇒ slow rate

Symmetrization with Rademacher variables

• Let D′ = {x′
1, y

′
1, . . . , x

′
n, y

′
n} an independent copy of the data

D = {x1, y1, . . . , xn, yn}, with corresponding loss functions f ′
i(θ)

E
[

sup
θ∈Θ

∣

∣f(θ)− f̂(θ)
∣

∣

]

= E
[

sup
θ∈Θ

(

f(θ)− 1

n

n
∑

i=1

fi(θ)

)

]

= E

[

sup
θ∈Θ

∣

∣

∣

∣

1

n

n
∑

i=1

E
(

f ′
i(θ)− fi(θ)|D

)

∣

∣

∣

∣

]

6 E

[

E

[

sup
θ∈Θ

∣

∣

∣

∣

1

n

n
∑

i=1

(

f ′
i(θ)− fi(θ)

∣

∣

∣

∣

∣

∣

∣

∣

D
]]

= E

[

sup
θ∈Θ

∣

∣

∣

∣

1

n

n
∑

i=1

(

f ′
i(θ)− fi(θ)

)

∣

∣

∣

∣

]

= E

[

sup
θ∈Θ

∣

∣

∣

∣

1

n

n
∑

i=1

εi
(

f ′
i(θ)− fi(θ)

)

∣

∣

∣

∣

]

with εi uniform in {−1, 1}

6 2E

[

sup
θ∈Θ

∣

∣

∣

∣

1

n

n
∑

i=1

εifi(θ)

∣

∣

∣

∣

]

= Rademacher complexity

Rademacher complexity

• Define the Rademacher complexity of the class of functions (X,Y) 7→
ℓ(Y, θ⊤Φ(X)) as

Rn = E

[

sup
θ∈Θ

∣

∣

∣

∣

1

n

n
∑

i=1

εifi(θ)

∣

∣

∣

∣

]

.

• Note two expectations, with respect to D and with respect to ε

• Main property:

E
[

sup
θ∈Θ

∣

∣f(θ)− f̂(θ)
∣

∣

]

6 2Rn

From Rademacher complexity to uniform bound

• Let Z = supθ∈Θ

∣

∣f(θ)− f̂(θ)
∣

∣

• By changing the pair (xi, yi), Z may only change by

2

n
sup |ℓ(Y, θ⊤Φ(X))| 6 2

n

(

sup |ℓ(Y, 0)|+GRD
)

6
2

n

(

ℓ0+GRD
)

= c

with sup |ℓ(Y, 0)| = ℓ0

• MacDiarmid inequality: with probability greater than 1− δ,

Z 6 EZ +

√

n

2
c ·

√

log
1

δ
6 2Rn +

√
2√
n

(

ℓ0 +GRD
)

√

log
1

δ

Bounding the Rademacher average - I
• We have, with ϕi(u) = ℓ(yi, u)−ℓ(yi, 0) is almost surelyB-Lipschitz:

Rn = E

[

sup
θ∈Θ

∣

∣

∣

∣

1

n

n
∑

i=1

εifi(θ)

∣

∣

∣

∣

]

6 E

[

sup
θ∈Θ

∣

∣

∣

∣

1

n

n
∑

i=1

εifi(0)

∣

∣

∣

∣

]

+ E

[

sup
θ∈Θ

∣

∣

∣

∣

1

n

n
∑

i=1

εi
[

fi(θ)− fi(0)
]

∣

∣

∣

∣

]

6
ℓ0√
n
+ E

[

sup
θ∈Θ

1

n

n
∑

i=1

εi
[

fi(θ)− fi(0)
]

]

=
ℓ0√
n
+ E

[

sup
θ∈Θ

1

n

n
∑

i=1

εiϕi(θ
⊤Φ(xi))

]

• Using Ledoux-Talagrand concentration results for Rademacher
averages (since ϕi is G-Lipschitz, we get:

Rn 6
ℓ0√
n
+ 2G · E

[

sup
‖θ‖26D

∣

∣

∣

∣

1

n

n
∑

i=1

εiθ
⊤Φ(xi)

]∣

∣

∣

∣

Bounding the Rademacher average - II
• We have:

Rn 6
ℓ0√
n
+ 2GE

[

sup
‖θ‖26D

∣

∣

∣

∣

1

n

n
∑

i=1

εiθ
⊤Φ(xi)

]
∣

∣

∣

∣

=
ℓ0√
n
+ 2GE

∥

∥

∥

∥

D
1

n

n
∑

i=1

εiΦ(xi)

∥

∥

∥

∥

2

6
ℓ0√
n
+ 2GD

√

√

√

√E

∥

∥

∥

∥

1

n

n
∑

i=1

εiΦ(xi)

∥

∥

∥

∥

2

2

6
2(ℓ0 +GRD)√

n

• Overall, we get, with probability 1− δ:

sup
θ∈Θ

∣

∣f(θ)− f̂(θ)
∣

∣ 6
1√
n

(

ℓ0 +GRD)(4 +

√

2 log
1

δ

)

Putting it all together

• We have, with probability 1− δ, for all θ ∈ Θ:

f(θ)− f(θ∗) 6
[

f(θ)− f̂(θ)
]

+
[

f̂(θ)− min
θ′∈Θ

f̂(θ′)
]

+
[

min
θ′∈Θ

f̂(θ′)− f̂(θ∗)
]

6
2√
n
(ℓ0 +GRD)(4 +

√

2 log
1

δ
) +

[

f̂(θ)− min
θ′∈Θ

f̂(θ′)
]

• Only need to optimize with precision 2√
n
(ℓ0 +GRD)

Slow rate for supervised learning (summary)

• Assumptions (f is the expected risk, f̂ the empirical risk)

– Ω(θ) = ‖θ‖2 (Euclidean norm)

– “Linear” predictors: θ(x) = θ⊤Φ(x), with ‖Φ(x)‖2 6 R a.s.

– G-Lipschitz loss: f and f̂ are GR-Lipschitz on C = {‖θ‖2 6 D}
– No assumptions regarding convexity

• With probability greater than 1− δ

sup
θ∈C

|f̂(θ)− f(θ)| 6 (ℓ0 +GRD)√
n

[

2 +

√

2 log
2

δ

]

• Expectated estimation error: E
[

sup
θ∈C

|f̂(θ)− f(θ)|
]

6
4(ℓ0 +GRD)√

n

• Using Rademacher averages (see, e.g., Boucheron et al., 2005)

• Lipschitz functions ⇒ slow rate

Motivation from mean estimation

• Estimator θ̂ = 1
n

∑n
i=1 zi = argminθ∈R

1
2n

∑n
i=1(θ − zi)

2 = f̂(θ)

• From before:

– f(θ) = 1
2E(θ − z)2 = 1

2(θ − Ez)2 + 1
2 var(z) = f̂(θ) +O(1/

√
n)

– f(θ̂) = 1
2(θ̂ − Ez)2 + 1

2 var(z) = f(Ez) +O(1/
√
n)

Motivation from mean estimation

• Estimator θ̂ = 1
n

∑n
i=1 zi = argminθ∈R

1
2n

∑n
i=1(θ − zi)

2 = f̂(θ)

• From before:

– f(θ) = 1
2E(θ − z)2 = 1

2(θ − Ez)2 + 1
2 var(z) = f̂(θ) +O(1/

√
n)

– f(θ̂) = 1
2(θ̂ − Ez)2 + 1

2 var(z) = f(Ez) +O(1/
√
n)

• More refined/direct bound:

f(θ̂)− f(Ez) =
1

2
(θ̂ − Ez)2

E
[

f(θ̂)− f(Ez)
]

=
1

2
E

(

1

n

n
∑

i=1

zi − Ez

)2

=
1

2n
var(z)

• Bound only at θ̂ + strong convexity

Fast rate for supervised learning

• Assumptions (f is the expected risk, f̂ the empirical risk)

– Same as before (bounded features, Lipschitz loss)

– Regularized risks: fµ(θ) = f(θ)+µ
2‖θ‖22 and f̂µ(θ) = f̂(θ)+µ

2‖θ‖22
– Convexity

• For any a > 0, with probability greater than 1− δ, for all θ ∈ R
d,

fµ(θ)−min
η∈Rd

fµ(η) 6 (1+a)(f̂µ(θ)−min
η∈Rd

f̂µ(η))+
8(1 + 1

a)G
2R2(32 + log 1

δ)

µn

• Results from Sridharan, Srebro, and Shalev-Shwartz (2008)

– see also Boucheron and Massart (2011) and references therein

• Strongly convex functions ⇒ fast rate

– Warning: µ should decrease with n to reduce approximation error

Outline

1. Large-scale machine learning and optimization

• Traditional statistical analysis

• Classical methods for convex optimization

2. Non-smooth stochastic approximation

• Stochastic (sub)gradient and averaging

• Non-asymptotic results and lower bounds

• Strongly convex vs. non-strongly convex

3. Smooth stochastic approximation algorithms

• Asymptotic and non-asymptotic results

4. Beyond decaying step-sizes

5. Finite data sets

Complexity results in convex optimization

• Assumption: f convex on R
d

• Classical generic algorithms

– (sub)gradient method/descent

– Accelerated gradient descent

– Newton method

• Key additional properties of f

– Lipschitz continuity, smoothness or strong convexity

• Key insight from Bottou and Bousquet (2008)

– In machine learning, no need to optimize below estimation error

• Key reference: Nesterov (2004)

Subgradient method/descent

• Assumptions

– f convex and B-Lipschitz-continuous on {‖θ‖2 6 D}

• Algorithm: θt = ΠD

(

θt−1 −
2D

B
√
t
f ′(θt−1)

)

– ΠD : orthogonal projection onto {‖θ‖2 6 D}

• Bound:

f

(

1

t

t−1
∑

k=0

θk

)

− f(θ∗) 6
2DB√

t

• Three-line proof

• Best possible convergence rate after O(d) iterations

Subgradient method/descent - proof - I

• Iteration: θt = ΠD(θt−1 − γtf
′(θt−1)) with γt =

2D
B
√
t

• Assumption: ‖f ′(θ)‖2 6 B and ‖θ‖2 6 D

‖θt − θ∗‖22 6 ‖θt−1 − θ∗ − γtf
′(θt−1)‖22 by contractivity of projections

6 ‖θt−1 − θ∗‖22 +B2γ2
t − 2γt(θt−1 − θ∗)

⊤f ′(θt−1) because ‖f ′(θt−1)‖2 6 B

6 ‖θt−1 − θ∗‖22 +B2γ2
t − 2γt

[

f(θt−1)− f(θ∗)
]

(property of subgradients)

• leading to

f(θt−1)− f(θ∗) 6
B2γt
2

+
1

2γt

[

‖θt−1 − θ∗‖22 − ‖θt − θ∗‖22
]

Subgradient method/descent - proof - II

• Starting from f(θt−1)− f(θ∗) 6
B2γt
2

+
1

2γt

[

‖θt−1 − θ∗‖22 − ‖θt − θ∗‖22
]

t
∑

u=1

[

f(θu−1)− f(θ∗)
]

6

t
∑

u=1

B2γu
2

+
t

∑

u=1

1

2γu

[

‖θu−1 − θ∗‖22 − ‖θu − θ∗‖22
]

=
t

∑

u=1

B2γu
2

+
t−1
∑

u=1

‖θu − θ∗‖22
(1

2γu+1
− 1

2γu

)

+
‖θ0 − θ∗‖22

2γ1
− ‖θt − θ∗‖22

2γt

6

t
∑

u=1

B2γu
2

+
t−1
∑

u=1

4D2
(1

2γu+1
− 1

2γu

)

+
4D2

2γ1

=
t

∑

u=1

B2γu
2

+
4D2

2γt
6 2DB

√
t with γt =

2D

B
√
t

• Using convexity: f

(

1

t

t−1
∑

k=0

θk

)

− f(θ∗) 6
2DB√

t

Subgradient descent for machine learning

• Assumptions (f is the expected risk, f̂ the empirical risk)

– “Linear” predictors: θ(x) = θ⊤Φ(x), with ‖Φ(x)‖2 6 R a.s.

– f̂(θ) = 1
n

∑n
i=1 ℓ(yi,Φ(xi)

⊤θ)

– G-Lipschitz loss: f and f̂ are GR-Lipschitz on C = {‖θ‖2 6 D}

• Statistics: with probability greater than 1− δ

sup
θ∈C

|f̂(θ)− f(θ)| 6 GRD√
n

[

2 +

√

2 log
2

δ

]

• Optimization: after t iterations of subgradient method

f̂(θ̂)−min
η∈C

f̂(η) 6
GRD√

t

• t = n iterations, with total running-time complexity of O(n2d)

Subgradient descent - strong convexity

• Assumptions

– f convex and B-Lipschitz-continuous on {‖θ‖2 6 D}
– f µ-strongly convex

• Algorithm: θt = ΠD

(

θt−1 −
2

µ(t+ 1)
f ′(θt−1)

)

• Bound:

f

(

2

t(t+ 1)

t
∑

k=1

kθk−1

)

− f(θ∗) 6
2B2

µ(t+ 1)

• Three-line proof

• Best possible convergence rate after O(d) iterations

Subgradient method - strong convexity - proof - I

• Iteration: θt = ΠD(θt−1 − γtf
′(θt−1)) with γt =

2
µ(t+1)

• Assumption: ‖f ′(θ)‖2 6 B and ‖θ‖2 6 D and µ-strong convexity of f

‖θt − θ∗‖22 6 ‖θt−1 − θ∗ − γtf
′(θt−1)‖22 by contractivity of projections

6 ‖θt−1 − θ∗‖22 +B2γ2
t − 2γt(θt−1 − θ∗)

⊤f ′(θt−1) because ‖f ′(θt−1)‖2 6 B

6 ‖θt−1 − θ∗‖22 +B2γ2
t − 2γt

[

f(θt−1)− f(θ∗) +
µ

2
‖θt−1 − θ∗‖22

]

(property of subgradients and strong convexity)

• leading to

f(θt−1)− f(θ∗) 6
B2γt
2

+
1

2

[1

γt
− µ

]

‖θt−1 − θ∗‖22 −
1

2γt
‖θt − θ∗‖22

6
B2

µ(t+ 1)
+

µ

2

[t− 1

2

]

‖θt−1 − θ∗‖22 −
µ(t+ 1)

4
‖θt − θ∗‖22

Subgradient method - strong convexity - proof - II

• From f(θt−1)− f(θ∗) 6
B2

µ(t+ 1)
+

µ

2

[t− 1

2

]

‖θt−1 − θ∗‖22 −
µ(t+ 1)

4
‖θt − θ∗‖22

t
∑

u=1

u
[

f(θu−1)− f(θ∗)
]

6

u
∑

t=1

B2u

µ(u+ 1)
+

1

4

t
∑

u=1

[

u(u− 1)‖θu−1 − θ∗‖22 − u(u+ 1)‖θu − θ∗‖22
]

6
B2t

µ
+

1

4

[

0− t(t+ 1)‖θt − θ∗‖22
]

6
B2t

µ

• Using convexity: f

(

2

t(t+ 1)

t
∑

u=1

uθu−1

)

− f(θ∗) 6
2B2

t+ 1

(smooth) gradient descent

• Assumptions

– f convex with L-Lipschitz-continuous gradient

– Minimum attained at θ∗

• Algorithm:

θt = θt−1 −
1

L
f ′(θt−1)

• Bound:

f(θt)− f(θ∗) 6
2L‖θ0 − θ∗‖2

t+ 4
• Three-line proof

• Not best possible convergence rate after O(d) iterations

(smooth) gradient descent - strong convexity

• Assumptions

– f convex with L-Lipschitz-continuous gradient

– f µ-strongly convex

• Algorithm:

θt = θt−1 −
1

L
f ′(θt−1)

• Bound:

f(θt)− f(θ∗) 6 (1− µ/L)t
[

f(θ0)− f(θ∗)
]

• Three-line proof

• Adaptivity of gradient descent to problem difficulty

• Line search

Accelerated gradient methods (Nesterov, 1983)

• Assumptions

– f convex with L-Lipschitz-cont. gradient , min. attained at θ∗

• Algorithm:
θt = ηt−1 −

1

L
f ′(ηt−1)

ηt = θt +
t− 1

t+ 2
(θt − θt−1)

• Bound:
f(θt)− f(θ∗) 6

2L‖θ0 − θ∗‖2
(t+ 1)2

• Ten-line proof (see, e.g., Schmidt, Le Roux, and Bach, 2011)

• Not improvable

• Extension to strongly convex functions

Optimization for sparsity-inducing norms

(see Bach, Jenatton, Mairal, and Obozinski, 2011)

• Gradient descent as a proximal method (differentiable functions)

– θt+1 = arg min
θ∈Rd

f(θt) + (θ − θt)
⊤∇f(θt)+

L

2
‖θ − θt‖22

– θt+1 = θt − 1
L∇f(θt)

Optimization for sparsity-inducing norms

(see Bach, Jenatton, Mairal, and Obozinski, 2011)

• Gradient descent as a proximal method (differentiable functions)

– θt+1 = arg min
θ∈Rd

f(θt) + (θ − θt)
⊤∇f(θt)+

L

2
‖θ − θt‖22

– θt+1 = θt − 1
L∇f(θt)

• Problems of the form: min
θ∈Rd

f(θ) + µΩ(θ)

– θt+1 = arg min
θ∈Rd

f(θt) + (θ − θt)
⊤∇f(θt)+µΩ(θ)+

L

2
‖θ − θt‖22

– Ω(θ) = ‖θ‖1 ⇒ Thresholded gradient descent

• Similar convergence rates than smooth optimization

– Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)

Summary: minimizing convex functions

• Assumption: f convex

• Gradient descent: θt = θt−1 − γt f
′(θt−1)

– O(1/
√
t) convergence rate for non-smooth convex functions

– O(1/t) convergence rate for smooth convex functions

– O(e−ρt) convergence rate for strongly smooth convex functions

• Newton method: θt = θt−1 − f ′′(θt−1)
−1f ′(θt−1)

– O
(

e−ρ2t
)

convergence rate

Summary: minimizing convex functions

• Assumption: f convex

• Gradient descent: θt = θt−1 − γt f
′(θt−1)

– O(1/
√
t) convergence rate for non-smooth convex functions

– O(1/t) convergence rate for smooth convex functions

– O(e−ρt) convergence rate for strongly smooth convex functions

• Newton method: θt = θt−1 − f ′′(θt−1)
−1f ′(θt−1)

– O
(

e−ρ2t
)

convergence rate

• Key insights from Bottou and Bousquet (2008)

1. In machine learning, no need to optimize below statistical error

2. In machine learning, cost functions are averages

⇒ Stochastic approximation

Outline

1. Large-scale machine learning and optimization

• Traditional statistical analysis

• Classical methods for convex optimization

2. Non-smooth stochastic approximation

• Stochastic (sub)gradient and averaging

• Non-asymptotic results and lower bounds

• Strongly convex vs. non-strongly convex

3. Smooth stochastic approximation algorithms

• Asymptotic and non-asymptotic results

4. Beyond decaying step-sizes

5. Finite data sets

Stochastic approximation

• Goal: Minimizing a function f defined on R
d

– given only unbiased estimates f ′
n(θn) of its gradients f ′(θn) at

certain points θn ∈ R
d

Stochastic approximation

• Goal: Minimizing a function f defined on R
d

– given only unbiased estimates f ′
n(θn) of its gradients f ′(θn) at

certain points θn ∈ R
d

• Machine learning - statistics

– loss for a single pair of observations: fn(θ) = ℓ(yn, θ
⊤Φ(xn))

– f(θ) = Efn(θ) = E ℓ(yn, θ
⊤Φ(xn)) = generalization error

– Expected gradient: f ′(θ) = Ef ′
n(θ) = E

{

ℓ′(yn, θ⊤Φ(xn))Φ(xn)
}

– Non-asymptotic results

• Number of iterations = number of observations

Stochastic approximation

• Goal: Minimizing a function f defined on R
d

– given only unbiased estimates f ′
n(θn) of its gradients f ′(θn) at

certain points θn ∈ R
d

• Stochastic approximation

– (much) broader applicability beyond convex optimization

θn = θn−1 − γnhn(θn−1) with E
[

hn(θn−1)|θn−1

]

= h(θn−1)

– Beyond convex problems, i.i.d assumption, finite dimension, etc.

– Typically asymptotic results

– See, e.g., Kushner and Yin (2003); Borkar (2008); Benveniste et al.

(2012)

Relationship to online learning

• Stochastic approximation

– Minimize f(θ) = Ezℓ(θ, z) = generalization error of θ

– Using the gradients of single i.i.d. observations

Relationship to online learning

• Stochastic approximation

– Minimize f(θ) = Ezℓ(θ, z) = generalization error of θ

– Using the gradients of single i.i.d. observations

• Batch learning

– Finite set of observations: z1, . . . , zn
– Empirical risk: f̂(θ) = 1

n

∑n
k=1 ℓ(θ, zi)

– Estimator θ̂ = Minimizer of f̂(θ) over a certain class Θ

– Generalization bound using uniform concentration results

Relationship to online learning

• Stochastic approximation

– Minimize f(θ) = Ezℓ(θ, z) = generalization error of θ

– Using the gradients of single i.i.d. observations

• Batch learning

– Finite set of observations: z1, . . . , zn
– Empirical risk: f̂(θ) = 1

n

∑n
k=1 ℓ(θ, zi)

– Estimator θ̂ = Minimizer of f̂(θ) over a certain class Θ

– Generalization bound using uniform concentration results

• Online learning

– Update θ̂n after each new (potentially adversarial) observation zn
– Cumulative loss: 1

n

∑n
k=1 ℓ(θ̂k−1, zk)

– Online to batch through averaging (Cesa-Bianchi et al., 2004)

Convex stochastic approximation

• Key properties of f and/or fn

– Smoothness: f B-Lipschitz continuous, f ′ L-Lipschitz continuous

– Strong convexity: f µ-strongly convex

Convex stochastic approximation

• Key properties of f and/or fn

– Smoothness: f B-Lipschitz continuous, f ′ L-Lipschitz continuous

– Strong convexity: f µ-strongly convex

• Key algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)

θn = θn−1 − γnf
′
n(θn−1)

– Polyak-Ruppert averaging: θ̄n = 1
n

∑n−1
k=0 θk

– Which learning rate sequence γn? Classical setting: γn = Cn−α

Convex stochastic approximation

• Key properties of f and/or fn

– Smoothness: f B-Lipschitz continuous, f ′ L-Lipschitz continuous

– Strong convexity: f µ-strongly convex

• Key algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)

θn = θn−1 − γnf
′
n(θn−1)

– Polyak-Ruppert averaging: θ̄n = 1
n

∑n−1
k=0 θk

– Which learning rate sequence γn? Classical setting: γn = Cn−α

• Desirable practical behavior

– Applicable (at least) to classical supervised learning problems

– Robustness to (potentially unknown) constants (L,B,µ)

– Adaptivity to difficulty of the problem (e.g., strong convexity)

Stochastic subgradient descent/method

• Assumptions

– fn convex and B-Lipschitz-continuous on {‖θ‖2 6 D}
– (fn) i.i.d. functions such that Efn = f

– θ∗ global optimum of f on {‖θ‖2 6 D}

• Algorithm: θn = ΠD

(

θn−1 −
2D

B
√
n
f ′
n(θn−1)

)

• Bound:

Ef

(

1

n

n−1
∑

k=0

θk

)

− f(θ∗) 6
2DB√

n

• “Same” three-line proof as in the deterministic case

• Minimax convergence rate

• Running-time complexity: O(dn) after n iterations

Stochastic subgradient method - proof - I

• Iteration: θn = ΠD(θn−1 − γnf
′
n(θn−1)) with γn = 2D

B
√
n

• Fn : information up to time n

• ‖f ′
n(θ)‖2 6 B and ‖θ‖2 6 D, unbiased gradients/functions E(fn|Fn−1) = f

‖θn − θ∗‖22 6 ‖θn−1 − θ∗ − γnf
′
n(θn−1)‖22 by contractivity of projections

6 ‖θn−1 − θ∗‖22 +B2γ2
n − 2γn(θn−1 − θ∗)

⊤f ′
n(θn−1) because ‖f ′

n(θn−1)‖2 6 B

E
[

‖θn − θ∗‖22|Fn−1

]

6 ‖θn−1 − θ∗‖22 +B2γ2
n − 2γn(θn−1 − θ∗)

⊤f ′(θn−1)

6 ‖θn−1 − θ∗‖22 +B2γ2
n − 2γn

[

f(θn−1)− f(θ∗)
]

(subgradient property)

E‖θn − θ∗‖22 6 E‖θn−1 − θ∗‖22 + B2γ2
n − 2γn

[

Ef(θn−1)− f(θ∗)
]

• leading to Ef(θn−1)− f(θ∗) 6
B2γn
2

+
1

2γn

[

E‖θn−1 − θ∗‖22 − E‖θn − θ∗‖22
]

Stochastic subgradient method - proof - II

• Starting from Ef(θn−1)− f(θ∗) 6
B2γn
2

+
1

2γn

[

E‖θn−1 − θ∗‖22 − E‖θn − θ∗‖22
]

n
∑

u=1

[

Ef(θu−1)− f(θ∗)
]

6

n
∑

u=1

B2γu
2

+
n
∑

u=1

1

2γu

[

E‖θu−1 − θ∗‖22 − E‖θu − θ∗‖22
]

6

n
∑

u=1

B2γu
2

+
4D2

2γn
6

2DB√
n

with γn =
2D

B
√
n

• Using convexity: Ef

(

1

n

n−1
∑

k=0

θk

)

− f(θ∗) 6
2DB√

n

Stochastic subgradient descent - strong convexity - I

• Assumptions

– fn convex and B-Lipschitz-continuous

– (fn) i.i.d. functions such that Efn = f

– f µ-strongly convex on {‖θ‖2 6 D}
– θ∗ global optimum of f over {‖θ‖2 6 D}

• Algorithm: θn = ΠD

(

θn−1 −
2

µ(n+ 1)
f ′
n(θn−1)

)

• Bound:

Ef

(

2

n(n+ 1)

n
∑

k=1

kθk−1

)

− f(θ∗) 6
2B2

µ(n+ 1)

• “Same” three-line proof than in the deterministic case

• Minimax convergence rate

Stochastic subgradient descent - strong convexity - II

• Assumptions

– fn convex and B-Lipschitz-continuous

– (fn) i.i.d. functions such that Efn = f

– θ∗ global optimum of g = f + µ
2‖ · ‖22

– No compactness assumption - no projections

• Algorithm:

θn = θn−1−
2

µ(n+ 1)
g′n(θn−1) = θn−1−

2

µ(n+ 1)

[

f ′
n(θn−1)+µθn−1

]

• Bound: Eg

(

2

n(n+ 1)

n
∑

k=1

kθk−1

)

− g(θ∗) 6
2B2

µ(n+ 1)

• Minimax convergence rate

Outline

1. Large-scale machine learning and optimization

• Traditional statistical analysis

• Classical methods for convex optimization

2. Non-smooth stochastic approximation

• Stochastic (sub)gradient and averaging

• Non-asymptotic results and lower bounds

• Strongly convex vs. non-strongly convex

3. Smooth stochastic approximation algorithms

• Asymptotic and non-asymptotic results

4. Beyond decaying step-sizes

5. Finite data sets

Convex stochastic approximation

Existing work

• Known global minimax rates of convergence for non-smooth

problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

– Strongly convex: O((µn)−1)

Attained by averaged stochastic gradient descent with γn ∝ (µn)−1

– Non-strongly convex: O(n−1/2)

Attained by averaged stochastic gradient descent with γn ∝ n−1/2

– Bottou and Le Cun (2005); Bottou and Bousquet (2008); Hazan

et al. (2007); Shalev-Shwartz and Srebro (2008); Shalev-Shwartz

et al. (2007, 2009); Xiao (2010); Duchi and Singer (2009); Nesterov

and Vial (2008); Nemirovski et al. (2009)

Convex stochastic approximation

Existing work

• Known global minimax rates of convergence for non-smooth

problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

– Strongly convex: O((µn)−1)

Attained by averaged stochastic gradient descent with γn ∝ (µn)−1

– Non-strongly convex: O(n−1/2)

Attained by averaged stochastic gradient descent with γn ∝ n−1/2

• Many contributions in optimization and online learning: Bottou

and Le Cun (2005); Bottou and Bousquet (2008); Hazan et al.

(2007); Shalev-Shwartz and Srebro (2008); Shalev-Shwartz et al.

(2007, 2009); Xiao (2010); Duchi and Singer (2009); Nesterov and

Vial (2008); Nemirovski et al. (2009)

Convex stochastic approximation

Existing work

• Known global minimax rates of convergence for non-smooth

problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

– Strongly convex: O((µn)−1)

Attained by averaged stochastic gradient descent with γn ∝ (µn)−1

– Non-strongly convex: O(n−1/2)

Attained by averaged stochastic gradient descent with γn ∝ n−1/2

• Asymptotic analysis of averaging (Polyak and Juditsky, 1992;

Ruppert, 1988)

– All step sizes γn = Cn−α with α ∈ (1/2, 1) lead to O(n−1) for

smooth strongly convex problems

A single algorithm with global adaptive convergence rate for

smooth problems?

Convex stochastic approximation

Existing work

• Known global minimax rates of convergence for non-smooth

problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

– Strongly convex: O((µn)−1)

Attained by averaged stochastic gradient descent with γn ∝ (µn)−1

– Non-strongly convex: O(n−1/2)

Attained by averaged stochastic gradient descent with γn ∝ n−1/2

• Asymptotic analysis of averaging (Polyak and Juditsky, 1992;

Ruppert, 1988)

– All step sizes γn = Cn−α with α ∈ (1/2, 1) lead to O(n−1) for

smooth strongly convex problems

• Non-asymptotic analysis for smooth problems? problems with

convergence rate O(min{1/µn, 1/√n})

Smoothness/convexity assumptions

• Iteration: θn = θn−1 − γnf
′
n(θn−1)

– Polyak-Ruppert averaging: θ̄n = 1
n

∑n−1
k=0 θk

• Smoothness of fn: For each n > 1, the function fn is a.s. convex,

differentiable with L-Lipschitz-continuous gradient f ′
n:

– Smooth loss and bounded data

• Strong convexity of f : The function f is strongly convex with

respect to the norm ‖ · ‖, with convexity constant µ > 0:

– Invertible population covariance matrix

– or regularization by µ
2‖θ‖2

Summary of new results (Bach and Moulines, 2011)

• Stochastic gradient descent with learning rate γn = Cn−α

• Strongly convex smooth objective functions

– Old: O(n−1) rate achieved without averaging for α = 1

– New: O(n−1) rate achieved with averaging for α ∈ [1/2, 1]

– Non-asymptotic analysis with explicit constants

– Forgetting of initial conditions

– Robustness to the choice of C

Summary of new results (Bach and Moulines, 2011)

• Stochastic gradient descent with learning rate γn = Cn−α

• Strongly convex smooth objective functions

– Old: O(n−1) rate achieved without averaging for α = 1

– New: O(n−1) rate achieved with averaging for α ∈ [1/2, 1]

– Non-asymptotic analysis with explicit constants

– Forgetting of initial conditions

– Robustness to the choice of C

• Convergence rates for E‖θn − θ∗‖2 and E‖θ̄n − θ∗‖2

– no averaging: O
(σ2γn

µ

)

+O(e−µnγn)‖θ0 − θ∗‖2

– averaging:
trH(θ∗)−1

n
+ µ−1O(n−2α+n−2+α) +O

(‖θ0 − θ∗‖2
µ2n2

)

Classical proof sketch (no averaging)

‖θn − θ∗‖22 = ‖θn−1 − γnf
′
n(θn−1)− θ∗‖22

= ‖θn−1 − θ∗‖22 − 2γn(θn−1 − θ∗)
⊤f ′

n(θn−1) + γ2
n‖f ′

n(θn−1)‖22
6 ‖θn−1 − θ∗‖22 − 2γn(θn−1 − θ∗)

⊤f ′
n(θn−1)

+2γ2
n‖f ′

n(θ∗)‖22 + 2γ2
n‖f ′

n(θn−1)− f ′
n(θ∗)‖22

6 ‖θn−1 − θ∗‖22 − 2γn(θn−1 − θ∗)
⊤f ′

n(θn−1)

+2γ2
n‖f ′

n(θ∗)‖22+2γ2
nL[f

′
n(θn−1)− f ′

n(θ∗)]
⊤(θn−1 − θ∗)

E
[

‖θn − θ∗‖22|Fn−1

]

6 ‖θn−1 − θ∗‖22 − 2γn(θn−1 − θ∗)
⊤f ′(θn−1)

+2γ2
nE‖f ′

n(θ∗)‖22 + 2γ2
nL[f

′(θn−1)− 0]⊤(θn−1 − θ∗)

6 ‖θn−1 − θ∗‖22 − 2γn(1− γnL)(θn−1 − θ∗)
⊤f ′(θn−1) + 2γ2

nσ
2

6 ‖θn−1 − θ∗‖22 − 2γn(1− γnL)
1

2
µ‖θn−1 − θ∗‖22 + 2γ2

nσ
2

=
[

1− µγn(1− γnL)
]

‖θn−1 − θ∗‖22 + 2γ2
nσ

2

E
[

‖θn−1 − θ∗‖22
]

6
[

1− µγn(1− γnL)
]

E
[

‖θn−1 − θ∗‖22
]

+ 2γ2
nσ

2

Proof sketch (averaging)

• From Polyak and Juditsky (1992):

θn = θn−1 − γnf
′
n(θn−1)

⇔ f ′
n(θn−1) =

1

γn
(θn−1 − θn)

⇔ f ′
n(θ∗) + f ′′

n(θ∗)(θn−1 − θ∗) =
1

γn
(θn−1 − θn) +O(‖θn−1 − θ∗‖2)

⇔ f ′
n(θ∗) + f ′′(θ∗)(θn−1 − θ∗) =

1

γn
(θn−1 − θn) +O(‖θn−1 − θ∗‖2)

+O(‖θn−1 − θ∗‖)εn

⇔ θn−1 − θ∗ = −f ′′(θ∗)
−1f ′

n(θ∗) +
1

γn
f ′′(θ∗)

−1(θn−1 − θn)

+O(‖θn−1 − θ∗‖2) +O(‖θn−1 − θ∗‖)εn

• Averaging to cancel the term 1
γn
f ′′(θ∗)−1(θn−1 − θn)

Robustness to wrong constants for γn = Cn−α

• f(θ) = 1
2|θ|2 with i.i.d. Gaussian noise (d = 1)

• Left: α = 1/2

• Right: α = 1

0 2 4
−5

0

5

log(n)

lo
g[

f(
θ n)−

f∗]

α = 1/2

sgd − C=1/5
ave − C=1/5
sgd − C=1
ave − C=1
sgd − C=5
ave − C=5

0 2 4
−5

0

5

log(n)

lo
g[

f(
θ n)−

f∗]

α = 1

sgd − C=1/5
ave − C=1/5
sgd − C=1
ave − C=1
sgd − C=5
ave − C=5

• See also http://leon.bottou.org/projects/sgd

Summary of new results (Bach and Moulines, 2011)

• Stochastic gradient descent with learning rate γn = Cn−α

• Strongly convex smooth objective functions

– Old: O(n−1) rate achieved without averaging for α = 1

– New: O(n−1) rate achieved with averaging for α ∈ [1/2, 1]

– Non-asymptotic analysis with explicit constants

Summary of new results (Bach and Moulines, 2011)

• Stochastic gradient descent with learning rate γn = Cn−α

• Strongly convex smooth objective functions

– Old: O(n−1) rate achieved without averaging for α = 1

– New: O(n−1) rate achieved with averaging for α ∈ [1/2, 1]

– Non-asymptotic analysis with explicit constants

• Non-strongly convex smooth objective functions

– Old: O(n−1/2) rate achieved with averaging for α = 1/2

– New: O(max{n1/2−3α/2, n−α/2, nα−1}) rate achieved without

averaging for α ∈ [1/3, 1]

• Take-home message

– Use α = 1/2 with averaging to be adaptive to strong convexity

Beyond stochastic gradient method

• Adding a proximal step

– Goal: min
θ∈Rd

f(θ) + Ω(θ) = Efn(θ) + Ω(θ)

– Replace recursion θn = θn−1 − γnf
′
n(θn) by

θn = min
θ∈Rd

∥

∥θ − θn−1 + γnf
′
n(θn)

∥

∥

2

2
+ CΩ(θ)

– Xiao (2010); Hu et al. (2009)

– May be accelerated (Ghadimi and Lan, 2013)

• Related frameworks

– Regularized dual averaging (Nesterov, 2009; Xiao, 2010)

– Mirror descent (Nemirovski et al., 2009; Lan et al., 2012)

Outline

1. Large-scale machine learning and optimization

• Traditional statistical analysis

• Classical methods for convex optimization

2. Non-smooth stochastic approximation

• Stochastic (sub)gradient and averaging

• Non-asymptotic results and lower bounds

• Strongly convex vs. non-strongly convex

3. Smooth stochastic approximation algorithms

• Asymptotic and non-asymptotic results

4. Beyond decaying step-sizes

5. Finite data sets

Convex stochastic approximation

Existing work

• Known global minimax rates of convergence for non-smooth

problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

– Strongly convex: O((µn)−1)

Attained by averaged stochastic gradient descent with γn ∝ (µn)−1

– Non-strongly convex: O(n−1/2)

Attained by averaged stochastic gradient descent with γn ∝ n−1/2

• Asymptotic analysis of averaging (Polyak and Juditsky, 1992;

Ruppert, 1988)

– All step sizes γn = Cn−α with α ∈ (1/2, 1) lead to O(n−1) for

smooth strongly convex problems

• A single adaptive algorithm for smooth problems with

convergence rate O(min{1/µn, 1/√n}) in all situations?

Adaptive algorithm for logistic regression

• Logistic regression: (Φ(xn), yn) ∈ R
d × {−1, 1}

– Single data point: fn(θ) = log(1 + exp(−ynθ
⊤Φ(xn)))

– Generalization error: f(θ) = Efn(θ)

Adaptive algorithm for logistic regression

• Logistic regression: (Φ(xn), yn) ∈ R
d × {−1, 1}

– Single data point: fn(θ) = log(1 + exp(−ynθ
⊤Φ(xn)))

– Generalization error: f(θ) = Efn(θ)

• Cannot be strongly convex ⇒ local strong convexity

– unless restricted to |θ⊤Φ(xn)| 6 M (and with constants eM)

– µ = lowest eigenvalue of the Hessian at the optimum f ′′(θ∗)

logistic loss

Adaptive algorithm for logistic regression

• Logistic regression: (Φ(xn), yn) ∈ R
d × {−1, 1}

– Single data point: fn(θ) = log(1 + exp(−ynθ
⊤Φ(xn)))

– Generalization error: f(θ) = Efn(θ)

• Cannot be strongly convex ⇒ local strong convexity

– unless restricted to |θ⊤Φ(xn)| 6 M (and with constants eM)

– µ = lowest eigenvalue of the Hessian at the optimum f ′′(θ∗)

• n steps of averaged SGD with constant step-size 1/
(

2R2
√
n
)

– with R = radius of data (Bach, 2013):

Ef(θ̄n)− f(θ∗) 6 min

{

1√
n
,
R2

nµ

}

(

15 + 5R‖θ0 − θ∗‖
)4

– Proof based on self-concordance (Nesterov and Nemirovski, 1994)

Self-concordance

• Usual definition for convex ϕ : R → R: |ϕ′′′(t)| 6 2ϕ′′(t)3/2

– Affine invariant

– Extendable to all convex functions on R
d by looking at rays

– Used for the sharp proof of quadratic convergence of Newton

method (Nesterov and Nemirovski, 1994)

• Generalized notion: |ϕ′′′(t)| 6 ϕ′′(t)

– Applicable to logistic regression (with extensions)

Self-concordance

• Usual definition for convex ϕ : R → R: |ϕ′′′(t)| 6 2ϕ′′(t)3/2

– Affine invariant

– Extendable to all convex functions on R
d by looking at rays

– Used for the sharp proof of quadratic convergence of Newton

method (Nesterov and Nemirovski, 1994)

• Generalized notion: |ϕ′′′(t)| 6 ϕ′′(t)

– Applicable to logistic regression (with extensions)

• Important properties

– Allows global Taylor expansions

– Relates expansions of derivatives of different orders

Adaptive algorithm for logistic regression

Proof sketch

• Step 1: use existing result f(θ̄n)−f(θ∗)+
R2
√
n
‖θ0−θ∗‖22 = O(1/

√
n)

• Step 2: f ′
n(θn−1) =

1
γ(θn−1−θn) ⇒ 1

n

∑n
k=1 f

′
k(θk−1) =

1
nγ(θ0−θn)

• Step 3:
∥

∥

∥
f ′(1

n

∑n
k=1 θk−1

)

− 1
n

∑n
k=1 f

′(θk−1)
∥

∥

∥

2

= O
(

f(θ̄n)− f(θ∗)
)

= O(1/
√
n) using self-concordance

• Step 4a: if f µ-strongly convex, f(θ̄n)− f(θ∗) 6
1
2µ

∥

∥f ′(θ̄n)
∥

∥

2

2

• Step 4b: if f self-concordant, “locally true” with µ = λmin(f
′′(θ∗))

Adaptive algorithm for logistic regression

• Logistic regression: (Φ(xn), yn) ∈ R
d × {−1, 1}

– Single data point: fn(θ) = log(1 + exp(−ynθ
⊤Φ(xn)))

– Generalization error: f(θ) = Efn(θ)

• Cannot be strongly convex ⇒ local strong convexity

– unless restricted to |θ⊤Φ(xn)| 6 M (and with constants eM)

– µ = lowest eigenvalue of the Hessian at the optimum f ′′(θ∗)

• n steps of averaged SGD with constant step-size 1/
(

2R2
√
n
)

– with R = radius of data (Bach, 2013):

Ef(θ̄n)− f(θ∗) 6 min

{

1√
n
,
R2

nµ

}

(

15 + 5R‖θ0 − θ∗‖
)4

– Proof based on self-concordance (Nesterov and Nemirovski, 1994)

Adaptive algorithm for logistic regression

• Logistic regression: (Φ(xn), yn) ∈ R
d × {−1, 1}

– Single data point: fn(θ) = log(1 + exp(−ynθ
⊤Φ(xn)))

– Generalization error: f(θ) = Efn(θ)

• Cannot be strongly convex ⇒ local strong convexity

– unless restricted to |θ⊤Φ(xn)| 6 M (and with constants eM)

– µ = lowest eigenvalue of the Hessian at the optimum f ′′(θ∗)

• n steps of averaged SGD with constant step-size 1/
(

2R2
√
n
)

– with R = radius of data (Bach, 2013):

Ef(θ̄n)− f(θ∗) 6 min

{

1√
n
,
R2

nµ

}

(

15 + 5R‖θ0 − θ∗‖
)4

– A single adaptive algorithm for smooth problems with

convergence rate O(1/n) in all situations?

Least-mean-square algorithm

• Least-squares: f(θ) = 1
2E

[

(yn − 〈Φ(xn), θ〉)2
]

with θ ∈ R
d

– SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)

– usually studied without averaging and decreasing step-sizes

– with strong convexity assumption E
[

Φ(xn)⊗Φ(xn)
]

= H < µ · Id

Least-mean-square algorithm

• Least-squares: f(θ) = 1
2E

[

(yn − 〈Φ(xn), θ〉)2
]

with θ ∈ R
d

– SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)

– usually studied without averaging and decreasing step-sizes

– with strong convexity assumption E
[

Φ(xn)⊗Φ(xn)
]

= H < µ · Id

• New analysis for averaging and constant step-size γ = 1/(4R2)

– Assume ‖Φ(xn)‖ 6 R and |yn − 〈Φ(xn), θ∗〉| 6 σ almost surely

– No assumption regarding lowest eigenvalues of H

– Main result: Ef(θ̄n−1)− f(θ∗) 6
4σ2d

n
+

4R2‖θ0 − θ∗‖2
n

• Matches statistical lower bound (Tsybakov, 2003)

– Non-asymptotic robust version of Györfi and Walk (1996)

Least-squares - Proof technique

• LMS recursion:

θn − θ∗ =
[

I − γΦ(xn)⊗ Φ(xn)
]

(θn−1 − θ∗) + γ εnΦ(xn)

• Simplified LMS recursion: with H = E
[

Φ(xn)⊗ Φ(xn)
]

θn − θ∗ =
[

I − γH
]

(θn−1 − θ∗) + γ εnΦ(xn)

– Direct proof technique of Polyak and Juditsky (1992), e.g.,

θn − θ∗ =
[

I − γH
]n
(θ0 − θ∗) + γ

n
∑

k=1

[

I − γH
]n−k

εkΦ(xk)

• Infinite expansion of Aguech, Moulines, and Priouret (2000) in powers

of γ

Markov chain interpretation of constant step sizes

• LMS recursion for fn(θ) =
1
2

(

yn − 〈Φ(xn), θ〉
)2

θn = θn−1 − γ
(

〈Φ(xn), θn−1〉 − yn
)

Φ(xn)

• The sequence (θn)n is a homogeneous Markov chain

– convergence to a stationary distribution πγ

– with expectation θ̄γ
def
=

∫

θπγ(dθ)

- For least-squares, θ̄γ = θ∗

θ̄γ

θ0

θn

Markov chain interpretation of constant step sizes

• LMS recursion for fn(θ) =
1
2

(

yn − 〈Φ(xn), θ〉
)2

θn = θn−1 − γ
(

〈Φ(xn), θn−1〉 − yn
)

Φ(xn)

• The sequence (θn)n is a homogeneous Markov chain

– convergence to a stationary distribution πγ

– with expectation θ̄γ
def
=

∫

θπγ(dθ)

• For least-squares, θ̄γ = θ∗

θ∗

θ0

θn

Markov chain interpretation of constant step sizes

• LMS recursion for fn(θ) =
1
2

(

yn − 〈Φ(xn), θ〉
)2

θn = θn−1 − γ
(

〈Φ(xn), θn−1〉 − yn
)

Φ(xn)

• The sequence (θn)n is a homogeneous Markov chain

– convergence to a stationary distribution πγ

– with expectation θ̄γ
def
=

∫

θπγ(dθ)

• For least-squares, θ̄γ = θ∗

θ∗

θ0

θn

θ̄n

Markov chain interpretation of constant step sizes

• LMS recursion for fn(θ) =
1
2

(

yn − 〈Φ(xn), θ〉
)2

θn = θn−1 − γ
(

〈Φ(xn), θn−1〉 − yn
)

Φ(xn)

• The sequence (θn)n is a homogeneous Markov chain

– convergence to a stationary distribution πγ

– with expectation θ̄γ
def
=

∫

θπγ(dθ)

• For least-squares, θ̄γ = θ∗

– θn does not converge to θ∗ but oscillates around it

– oscillations of order
√
γ

• Ergodic theorem:

– Averaged iterates converge to θ̄γ = θ∗ at rate O(1/n)

Simulations - synthetic examples

• Gaussian distributions - p = 20

0 2 4 6
−5

−4

−3

−2

−1

0

log
10

(n)

lo
g 10

[f(
θ)

−
f(

θ *)]

synthetic square

1/2R2

1/8R2

1/32R2

1/2R2n1/2

Simulations - benchmarks

• alpha (p = 500, n = 500 000), news (p = 1 300 000, n = 20 000)

0 2 4 6

−2

−1.5

−1

−0.5

0

0.5

1

log
10

(n)

lo
g 10

[f(
θ)

−
f(

θ *)]

alpha square C=1 test

1/R2

1/R2n1/2

SAG

0 2 4 6

−2

−1.5

−1

−0.5

0

0.5

1

log
10

(n)

alpha square C=opt test

C/R2

C/R2n1/2

SAG

0 2 4

−0.8

−0.6

−0.4

−0.2

0

0.2

log
10

(n)

lo
g 10

[f(
θ)

−
f(

θ *)]

news square C=1 test

1/R2

1/R2n1/2

SAG

0 2 4

−0.8

−0.6

−0.4

−0.2

0

0.2

log
10

(n)

news square C=opt test

C/R2

C/R2n1/2

SAG

Beyond least-squares - Markov chain interpretation

• Recursion θn = θn−1 − γf ′
n(θn−1) also defines a Markov chain

– Stationary distribution πγ such that
∫

f ′(θ)πγ(dθ) = 0

– When f ′ is not linear, f ′(
∫

θπγ(dθ)) 6=
∫

f ′(θ)πγ(dθ) = 0

Beyond least-squares - Markov chain interpretation

• Recursion θn = θn−1 − γf ′
n(θn−1) also defines a Markov chain

– Stationary distribution πγ such that
∫

f ′(θ)πγ(dθ) = 0

– When f ′ is not linear, f ′(
∫

θπγ(dθ)) 6=
∫

f ′(θ)πγ(dθ) = 0

• θn oscillates around the wrong value θ̄γ 6= θ∗

θ̄γ

θ0

θn

θ̄n

θ∗

Beyond least-squares - Markov chain interpretation

• Recursion θn = θn−1 − γf ′
n(θn−1) also defines a Markov chain

– Stationary distribution πγ such that
∫

f ′(θ)πγ(dθ) = 0

– When f ′ is not linear, f ′(
∫

θπγ(dθ)) 6=
∫

f ′(θ)πγ(dθ) = 0

• θn oscillates around the wrong value θ̄γ 6= θ∗

– moreover, ‖θ∗ − θn‖ = Op(
√
γ)

• Ergodic theorem

– averaged iterates converge to θ̄γ 6= θ∗ at rate O(1/n)

– moreover, ‖θ∗ − θ̄γ‖ = O(γ) (Bach, 2013)

Simulations - synthetic examples

• Gaussian distributions - p = 20

0 2 4 6
−5

−4

−3

−2

−1

0

log
10

(n)

lo
g 10

[f(
θ)

−
f(

θ *)]

synthetic logistic − 1

1/2R2

1/8R2

1/32R2

1/2R2n1/2

Restoring convergence through online Newton steps

• Known facts

1. Averaged SGD with γn ∝ n−1/2 leads to robust rate O(n−1/2)

for all convex functions

2. Averaged SGD with γn constant leads to robust rate O(n−1)

for all convex quadratic functions

3. Newton’s method squares the error at each iteration

for smooth functions

4. A single step of Newton’s method is equivalent to minimizing the

quadratic Taylor expansion

– Online Newton step

– Rate: O((n−1/2)2 + n−1) = O(n−1)

– Complexity: O(p) per iteration

Restoring convergence through online Newton steps

• Known facts

1. Averaged SGD with γn ∝ n−1/2 leads to robust rate O(n−1/2)

for all convex functions

2. Averaged SGD with γn constant leads to robust rate O(n−1)

for all convex quadratic functions ⇒ O(n−1)

3. Newton’s method squares the error at each iteration

for smooth functions ⇒ O((n−1/2)2)

4. A single step of Newton’s method is equivalent to minimizing the

quadratic Taylor expansion

• Online Newton step

– Rate: O((n−1/2)2 + n−1) = O(n−1)

– Complexity: O(p) per iteration

Restoring convergence through online Newton steps

• The Newton step for f = Efn(θ)
def
= E

[

ℓ(yn, 〈θ,Φ(xn)〉)
]

at θ̃ is

equivalent to minimizing the quadratic approximation

g(θ) = f(θ̃) + 〈f ′(θ̃), θ − θ̃〉+ 1
2〈θ − θ̃, f ′′(θ̃)(θ − θ̃)〉

= f(θ̃) + 〈Ef ′
n(θ̃), θ − θ̃〉+ 1

2〈θ − θ̃,Ef ′′
n(θ̃)(θ − θ̃)〉

= E

[

f(θ̃) + 〈f ′
n(θ̃), θ − θ̃〉+ 1

2〈θ − θ̃, f ′′
n(θ̃)(θ − θ̃)〉

]

Restoring convergence through online Newton steps

• The Newton step for f = Efn(θ)
def
= E

[

ℓ(yn, 〈θ,Φ(xn)〉)
]

at θ̃ is

equivalent to minimizing the quadratic approximation

g(θ) = f(θ̃) + 〈f ′(θ̃), θ − θ̃〉+ 1
2〈θ − θ̃, f ′′(θ̃)(θ − θ̃)〉

= f(θ̃) + 〈Ef ′
n(θ̃), θ − θ̃〉+ 1

2〈θ − θ̃,Ef ′′
n(θ̃)(θ − θ̃)〉

= E

[

f(θ̃) + 〈f ′
n(θ̃), θ − θ̃〉+ 1

2〈θ − θ̃, f ′′
n(θ̃)(θ − θ̃)〉

]

• Complexity of least-mean-square recursion for g is O(p)

θn = θn−1 − γ
[

f ′
n(θ̃) + f ′′

n(θ̃)(θn−1 − θ̃)
]

– f ′′
n(θ̃) = ℓ′′(yn, 〈θ̃,Φ(xn)〉)Φ(xn)⊗ Φ(xn) has rank one

– New online Newton step without computing/inverting Hessians

Choice of support point for online Newton step

• Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain θ̃

(2) Run n/2 iterations of averaged constant step-size LMS

– Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)

– Provable convergence rate of O(p/n) for logistic regression

– Additional assumptions but no strong convexity

Logistic regression - Proof technique

• Using generalized self-concordance of ϕ : u 7→ log(1 + e−u):

|ϕ′′′(u)| 6 ϕ′′(u)

– NB: difference with regular self-concordance: |ϕ′′′(u)| 6 2ϕ′′(u)3/2

• Using novel high-probability convergence results for regular averaged

stochastic gradient descent

• Requires assumption on the kurtosis in every direction, i.e.,

E〈Φ(xn), η〉4 6 κ
[

E〈Φ(xn), η〉2
]2

Choice of support point for online Newton step

• Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain θ̃

(2) Run n/2 iterations of averaged constant step-size LMS

– Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)

– Provable convergence rate of O(p/n) for logistic regression

– Additional assumptions but no strong convexity

• Update at each iteration using the current averaged iterate

– Recursion: θn = θn−1 − γ
[

f ′
n(θ̄n−1) + f ′′

n(θ̄n−1)(θn−1 − θ̄n−1)
]

– No provable convergence rate (yet) but best practical behavior

– Note (dis)similarity with regular SGD: θn = θn−1 − γf ′
n(θn−1)

Online Newton algorithm

Current proof (Flammarion et al., 2014)

• Recursion

{

θn = θn−1 − γ
[

f ′
n(θ̄n−1) + f ′′

n(θ̄n−1)(θn−1 − θ̄n−1)
]

θ̄n = θ̄n−1 +
1
n(θn − θ̄n−1)

• Instance of two-time-scale stochastic approximation (Borkar, 1997)

– Given θ̄, θn = θn−1 − γ
[

f ′
n(θ̄) + f ′′

n(θ̄)(θn−1 − θ̄)
]

defines a

homogeneous Markov chain (fast dynamics)

– θ̄n is updated at rate 1/n (slow dynamics)

• Difficulty: preserving robustness to ill-conditioning

Simulations - synthetic examples

• Gaussian distributions - p = 20

0 2 4 6
−5

−4

−3

−2

−1

0

log
10

(n)

lo
g 10

[f(
θ)

−
f(

θ *)]

synthetic logistic − 1

1/2R2

1/8R2

1/32R2

1/2R2n1/2

0 2 4 6
−5

−4

−3

−2

−1

0

log
10

(n)
lo

g 10
[f(

θ)
−

f(
θ *)]

synthetic logistic − 2

every 2p

every iter.
2−step
2−step−dbl.

Simulations - benchmarks

• alpha (p = 500, n = 500 000), news (p = 1 300 000, n = 20 000)

0 2 4 6
−2.5

−2

−1.5

−1

−0.5

0

0.5

log
10

(n)

lo
g 10

[f(
θ)

−
f(

θ *)]

alpha logistic C=1 test

1/R2

1/R2n1/2

SAG
Adagrad
Newton

0 2 4 6
−2.5

−2

−1.5

−1

−0.5

0

0.5

log
10

(n)

alpha logistic C=opt test

C/R2

C/R2n1/2

SAG
Adagrad
Newton

0 2 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

log
10

(n)

lo
g 10

[f(
θ)

−
f(

θ *)]

news logistic C=1 test

1/R2

1/R2n1/2

SAG
Adagrad
Newton

0 2 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

log
10

(n)

news logistic C=opt test

C/R2

C/R2n1/2

SAG
Adagrad
Newton

Outline

1. Large-scale machine learning and optimization

• Traditional statistical analysis

• Classical methods for convex optimization

2. Non-smooth stochastic approximation

• Stochastic (sub)gradient and averaging

• Non-asymptotic results and lower bounds

• Strongly convex vs. non-strongly convex

3. Smooth stochastic approximation algorithms

• Asymptotic and non-asymptotic results

4. Beyond decaying step-sizes

5. Finite data sets

Going beyond a single pass over the data

• Stochastic approximation

– Assumes infinite data stream

– Observations are used only once

– Directly minimizes testing cost E(x,y) ℓ(y, θ
⊤Φ(x))

Going beyond a single pass over the data

• Stochastic approximation

– Assumes infinite data stream

– Observations are used only once

– Directly minimizes testing cost E(x,y) ℓ(y, θ
⊤Φ(x))

• Machine learning practice

– Finite data set (x1, y1, . . . , xn, yn)

– Multiple passes

– Minimizes training cost 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi))

– Need to regularize (e.g., by the ℓ2-norm) to avoid overfitting

• Goal: minimize g(θ) =
1

n

n
∑

i=1

fi(θ)

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, θ
⊤Φ(xi)

)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt
n

n
∑

i=1

f ′
i(θt−1)

– Linear (e.g., exponential) convergence rate in O(e−αt)

– Iteration complexity is linear in n (with line search)

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, θ
⊤Φ(xi)

)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt
n

n
∑

i=1

f ′
i(θt−1)

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, θ
⊤Φ(xi)

)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt
n

n
∑

i=1

f ′
i(θt−1)

– Linear (e.g., exponential) convergence rate in O(e−αt)

– Iteration complexity is linear in n (with line search)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

– Sampling with replacement: i(t) random element of {1, . . . , n}
– Convergence rate in O(1/t)

– Iteration complexity is independent of n (step size selection?)

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, θ
⊤Φ(xi)

)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt
n

n
∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

Stochastic vs. deterministic methods

• Goal = best of both worlds: Linear rate with O(1) iteration cost

Robustness to step size

time

lo
g

(e
xc

e
ss

 c
o

st
)

stochastic

deterministic

Stochastic vs. deterministic methods

• Goal = best of both worlds: Linear rate with O(1) iteration cost

Robustness to step size

hybridlo
g

(e
xc

e
ss

 c
o

st
)

stochastic

deterministic

time

Accelerating gradient methods - Related work

• Nesterov acceleration

– Nesterov (1983, 2004)

– Better linear rate but still O(n) iteration cost

• Hybrid methods, incremental average gradient, increasing

batch size

– Bertsekas (1997); Blatt et al. (2008); Friedlander and Schmidt

(2011)

– Linear rate, but iterations make full passes through the data.

Accelerating gradient methods - Related work

• Momentum, gradient/iterate averaging, stochastic version of

accelerated batch gradient methods

– Polyak and Juditsky (1992); Tseng (1998); Sunehag et al. (2009);

Ghadimi and Lan (2010); Xiao (2010)

– Can improve constants, but still have sublinear O(1/t) rate

• Constant step-size stochastic gradient (SG), accelerated SG

– Kesten (1958); Delyon and Juditsky (1993); Solodov (1998); Nedic

and Bertsekas (2000)

– Linear convergence, but only up to a fixed tolerance.

• Stochastic methods in the dual

– Shalev-Shwartz and Zhang (2012)

– Similar linear rate but limited choice for the fi’s

Stochastic average gradient

(Le Roux, Schmidt, and Bach, 2012)

• Stochastic average gradient (SAG) iteration

– Keep in memory the gradients of all functions fi, i = 1, . . . , n

– Random selection i(t) ∈ {1, . . . , n} with replacement

– Iteration: θt = θt−1 −
γt
n

n
∑

i=1

yti with yti =

{

f ′
i(θt−1) if i = i(t)

yt−1
i otherwise

Stochastic average gradient

(Le Roux, Schmidt, and Bach, 2012)

• Stochastic average gradient (SAG) iteration

– Keep in memory the gradients of all functions fi, i = 1, . . . , n

– Random selection i(t) ∈ {1, . . . , n} with replacement

– Iteration: θt = θt−1 −
γt
n

n
∑

i=1

yti with yti =

{

f ′
i(θt−1) if i = i(t)

yt−1
i otherwise

• Stochastic version of incremental average gradient (Blatt et al., 2008)

• Extra memory requirement

– Supervised machine learning

– If fi(θ) = ℓi(yi,Φ(xi)
⊤θ), then f ′

i(θ) = ℓ′i(yi,Φ(xi)
⊤θ)Φ(xi)

– Only need to store n real numbers

Stochastic average gradient - Convergence analysis

• Assumptions

– Each fi is L-smooth, i = 1, . . . , n

– g= 1
n

∑n
i=1 fi is µ-strongly convex (with potentially µ = 0)

– constant step size γt = 1/(16L)

– initialization with one pass of averaged SGD

Stochastic average gradient - Convergence analysis

• Assumptions

– Each fi is L-smooth, i = 1, . . . , n

– g= 1
n

∑n
i=1 fi is µ-strongly convex (with potentially µ = 0)

– constant step size γt = 1/(16L)

– initialization with one pass of averaged SGD

• Strongly convex case (Le Roux et al., 2012, 2013)

E
[

g(θt)− g(θ∗)
]

6

(8σ2

nµ
+

4L‖θ0−θ∗‖2
n

)

exp
(

− tmin
{ 1

8n
,

µ

16L

})

– Linear (exponential) convergence rate with O(1) iteration cost

– After one pass, reduction of cost by exp
(

−min
{1

8
,
nµ

16L

})

Stochastic average gradient - Convergence analysis

• Assumptions

– Each fi is L-smooth, i = 1, . . . , n

– g= 1
n

∑n
i=1 fi is µ-strongly convex (with potentially µ = 0)

– constant step size γt = 1/(16L)

– initialization with one pass of averaged SGD

• Non-strongly convex case (Le Roux et al., 2013)

E
[

g(θt)− g(θ∗)
]

6 48
σ2 + L‖θ0−θ∗‖2√

n

n

t

– Improvement over regular batch and stochastic gradient

– Adaptivity to potentially hidden strong convexity

Convergence analysis - Proof sketch

• Main step: find “good” Lyapunov function J(θt, y
t
1, . . . , y

t
n)

– such that E
[

J(θt, y
t
1, . . . , y

t
n)|Ft−1

]

< J(θt−1, y
t−1
1 , . . . , yt−1

n)

– no natural candidates

• Computer-aided proof

– Parameterize function J(θt, y
t
1, . . . , y

t
n) = g(θt)−g(θ∗)+quadratic

– Solve semidefinite program to obtain candidates (that depend on

n, µ, L)

– Check validity with symbolic computations

Rate of convergence comparison

• Assume that L = 100, µ = .01, and n = 80000

– Full gradient method has rate
(

1− µ
L

)

= 0.9999

– Accelerated gradient method has rate
(

1−
√

µ
L

)

= 0.9900

– Running n iterations of SAG for the same cost has rate
(

1− 1
8n

)n
= 0.8825

– Fastest possible first-order method has rate
(√

L−√
µ√

L+
√
µ

)2

= 0.9608

• Beating two lower bounds (with additional assumptions)

– (1) stochastic gradient and (2) full gradient

Stochastic average gradient

Implementation details and extensions

• The algorithm can use sparsity in the features to reduce the storage

and iteration cost

• Grouping functions together can further reduce the memory

requirement

• We have obtained good performance when L is not known with a

heuristic line-search

• Algorithm allows non-uniform sampling

• Possibility of making proximal, coordinate-wise, and Newton-like

variants

spam dataset (n = 92 189, d = 823 470)

Summary and future work

• Constant-step-size averaged stochastic gradient descent

– Reaches convergence rate O(1/n) in all regimes

– Improves on the O(1/
√
n) lower-bound of non-smooth problems

– Efficient online Newton step for non-quadratic problems

– Robustness to step-size selection

• Going beyond a single pass through the data

Summary and future work

• Constant-step-size averaged stochastic gradient descent

– Reaches convergence rate O(1/n) in all regimes

– Improves on the O(1/
√
n) lower-bound of non-smooth problems

– Efficient online Newton step for non-quadratic problems

– Robustness to step-size selection

• Going beyond a single pass through the data

• Extensions and future work

– Pre-conditioning

– Proximal extensions fo non-differentiable terms

– kernels and non-parametric estimation

– line-search

– parallelization

Outline

1. Large-scale machine learning and optimization

• Traditional statistical analysis

• Classical methods for convex optimization

2. Non-smooth stochastic approximation

• Stochastic (sub)gradient and averaging

• Non-asymptotic results and lower bounds

• Strongly convex vs. non-strongly convex

3. Smooth stochastic approximation algorithms

• Asymptotic and non-asymptotic results

4. Beyond decaying step-sizes

5. Finite data sets

Conclusions

Machine learning and convex optimization

• Statistics with or without optimization?

– Significance of mixing algorithms with analysis

– Benefits of mixing algorithms with analysis

• Open problems

– Non-parametric stochastic approximation

– Going beyond a single pass over the data (testing performance)

– Characterization of implicit regularization of online methods

– Further links between convex optimization and online

learning/bandits

References

A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright. Information-theoretic lower bounds

on the oracle complexity of stochastic convex optimization. Information Theory, IEEE Transactions

on, 58(5):3235–3249, 2012.

R. Aguech, E. Moulines, and P. Priouret. On a perturbation approach for the analysis of stochastic

tracking algorithms. SIAM J. Control and Optimization, 39(3):872–899, 2000.

F. Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic

regression. Technical Report 00804431, HAL, 2013.

F. Bach and E. Moulines. Non-asymptotic analysis of stochastic approximation algorithms for machine

learning. In Adv. NIPS, 2011.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties.

Technical Report 00613125, HAL, 2011.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Structured sparsity through convex optimization,

2012.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.

SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

Albert Benveniste, Michel Métivier, and Pierre Priouret. Adaptive algorithms and stochastic

approximations. Springer Publishing Company, Incorporated, 2012.

D. P. Bertsekas. A new class of incremental gradient methods for least squares problems. SIAM

Journal on Optimization, 7(4):913–926, 1997.

D. Blatt, A. O. Hero, and H. Gauchman. A convergent incremental gradient method with a constant

step size. SIAM Journal on Optimization, 18(1):29–51, 2008.

V. S. Borkar. Stochastic approximation with two time scales. Systems & Control Letters, 29(5):

291–294, 1997.

Vivek S Borkar. Stochastic approximation. Cambridge Books, 2008.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Adv. NIPS, 2008.

L. Bottou and Y. Le Cun. On-line learning for very large data sets. Applied Stochastic Models in

Business and Industry, 21(2):137–151, 2005.

S. Boucheron and P. Massart. A high-dimensional wilks phenomenon. Probability theory and related

fields, 150(3-4):405–433, 2011.

S. Boucheron, O. Bousquet, G. Lugosi, et al. Theory of classification: A survey of some recent

advances. ESAIM Probability and statistics, 9:323–375, 2005.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning algorithms.

Information Theory, IEEE Transactions on, 50(9):2050–2057, 2004.

B. Delyon and A. Juditsky. Accelerated stochastic approximation. SIAM Journal on Optimization, 3:

868–881, 1993.

J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. Journal

of Machine Learning Research, 10:2899–2934, 2009. ISSN 1532-4435.

M. P. Friedlander and M. Schmidt. Hybrid deterministic-stochastic methods for data fitting.

arXiv:1104.2373, 2011.

S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex stochastic

composite optimization. Optimization Online, July, 2010.

Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly convex

stochastic composite optimization, ii: shrinking procedures and optimal algorithms. SIAM Journal

on Optimization, 23(4):2061–2089, 2013.

L. Györfi and H. Walk. On the averaged stochastic approximation for linear regression. SIAM Journal

on Control and Optimization, 34(1):31–61, 1996.

E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimization.

Machine Learning, 69(2):169–192, 2007.

Chonghai Hu, James T Kwok, and Weike Pan. Accelerated gradient methods for stochastic optimization

and online learning. In NIPS, volume 22, pages 781–789, 2009.

H. Kesten. Accelerated stochastic approximation. Ann. Math. Stat., 29(1):41–59, 1958.

H. J. Kushner and G. G. Yin. Stochastic approximation and recursive algorithms and applications.

Springer-Verlag, second edition, 2003.

Guanghui Lan, Arkadi Nemirovski, and Alexander Shapiro. Validation analysis of mirror descent

stochastic approximation method. Mathematical programming, 134(2):425–458, 2012.

N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence

rate for strongly-convex optimization with finite training sets. In Adv. NIPS, 2012.

N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence

rate for strongly-convex optimization with finite training sets. Technical Report 00674995, HAL,

2013.

O. Macchi. Adaptive processing: The least mean squares approach with applications in transmission.

Wiley West Sussex, 1995.

A. Nedic and D. Bertsekas. Convergence rate of incremental subgradient algorithms. Stochastic

Optimization: Algorithms and Applications, pages 263–304, 2000.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to

stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009.

A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley

& Sons, 1983.

Y. Nesterov. A method for solving a convex programming problem with rate of convergence O(1/k2).

Soviet Math. Doklady, 269(3):543–547, 1983.

Y. Nesterov. Introductory lectures on convex optimization: a basic course. Kluwer Academic Publishers,

2004.

Y. Nesterov. Gradient methods for minimizing composite objective function. Center for Operations

Research and Econometrics (CORE), Catholic University of Louvain, Tech. Rep, 76, 2007.

Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical programming, 120

(1):221–259, 2009.

Y. Nesterov and A. Nemirovski. Interior-point polynomial algorithms in convex programming. SIAM

studies in Applied Mathematics, 1994.

Y. Nesterov and J. P. Vial. Confidence level solutions for stochastic programming. Automatica, 44(6):

1559–1568, 2008. ISSN 0005-1098.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM Journal

on Control and Optimization, 30(4):838–855, 1992.

H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Statistics, 22:400–407,

1951. ISSN 0003-4851.

D. Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process. Technical Report

781, Cornell University Operations Research and Industrial Engineering, 1988.

M. Schmidt, N. Le Roux, and F. Bach. Optimization with approximate gradients. Technical report,

HAL, 2011.

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.

S. Shalev-Shwartz and N. Srebro. SVM optimization: inverse dependence on training set size. In Proc.

ICML, 2008.

S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss

minimization. Technical Report 1209.1873, Arxiv, 2012.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for svm.

In Proc. ICML, 2007.

S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Stochastic convex optimization. In proc.

COLT, 2009.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University Press,

2004.

M.V. Solodov. Incremental gradient algorithms with stepsizes bounded away from zero. Computational

Optimization and Applications, 11(1):23–35, 1998.

K. Sridharan, N. Srebro, and S. Shalev-Shwartz. Fast rates for regularized objectives. 2008.

P. Sunehag, J. Trumpf, SVN Vishwanathan, and N. Schraudolph. Variable metric stochastic

approximation theory. International Conference on Artificial Intelligence and Statistics, 2009.

P. Tseng. An incremental gradient(-projection) method with momentum term and adaptive stepsize

rule. SIAM Journal on Optimization, 8(2):506–531, 1998.

A. B. Tsybakov. Optimal rates of aggregation. 2003.

A. W. Van der Vaart. Asymptotic statistics, volume 3. Cambridge Univ. press, 2000.

L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization. Journal

of Machine Learning Research, 9:2543–2596, 2010. ISSN 1532-4435.

