Sylvain Arlot (collaborations avec Alain Celisse, Matthieu Lerasle, Nelo Magalhães)

Laboratoire de Mathématiques d'Orsay, Université Paris-Sud

JES 2016, Fréjus 6 Octobre 2016

Problèmes Plan

- Problèmes
- 2 Définition
- Estimation du risque
- 4 Sélection d'estimateurs
- Conclusion

Rappel : problème de prévision

Problèmes

- Données : $D_n = (X_i, Y_i)_{1 \le i \le n}$ $X_i \in \mathcal{X}$: variable explicative $Y_i \in \mathcal{Y}$: variable d'intérêt Hypothèse : $(X, Y), (X_1, Y_1), \dots, (X_n, Y_n), \dots$ i.i.d. $\sim P$
- Prédicteur : $f: \mathcal{X} \to \mathcal{Y}$ (\mathcal{F} : ensemble des prédicteurs) Nouvelle observation $X_{n+1} \Rightarrow f(X_{n+1})$ « prévoit » Y_{n+1}
- Mesure de qualité : fonction de coût $c: \mathcal{Y} \times \mathcal{Y} \to [0, +\infty[$ Risque (erreur de prévision) : $\mathcal{R}_P(f) = \mathbb{E} \Big[c(f(X), Y) \Big]$
- En résumé : avec D_n uniquement, on cherche un prédicteur $f \in \mathcal{F}$ tel que $\mathcal{R}_P(f)$ est minimal.

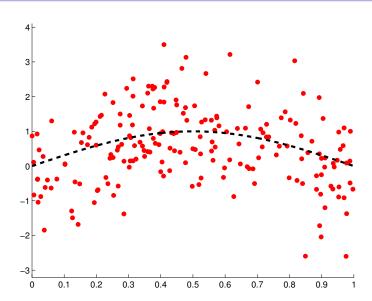
Deux problèmes

- Règle d'apprentissage \hat{f}
- \Rightarrow estimation de son risque $\mathcal{R}_P(\widehat{f}(D_n))$?

- Famille de règles d'apprentissage $(\widehat{f}_m)_{m \in \mathcal{M}}$
- \Rightarrow sélection d'un estimateur $\widehat{f}_{\widehat{m}(D_n)}(D_n)$?

Exemple: régression

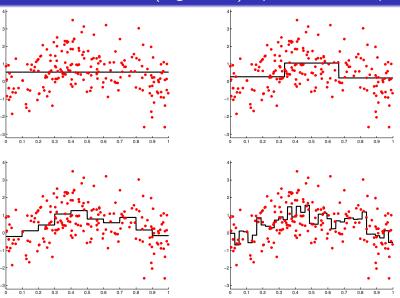
Problèmes



4/41

Sélection d'estimateurs (régression) : partitions cubiques

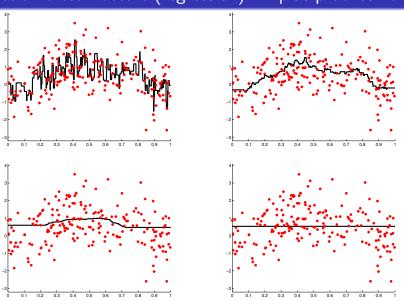
Problèmes



5/41

Sélection d'estimateurs (régression) : k plus proches voisins

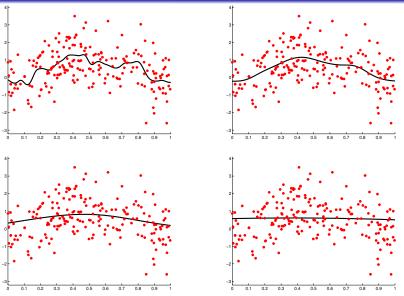
Problèmes



6/41

Sélection d'estimateurs (régression) : Nadaraya-Watson

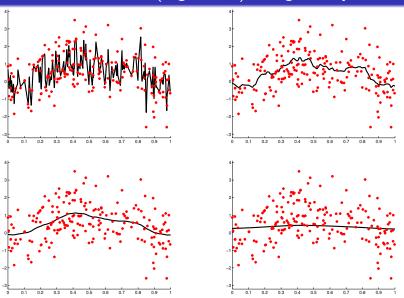
Problèmes



7/41

Sélection d'estimateurs (régression) : ridge à noyau

Problèmes



8/41

Sélection d'estimateurs

Problèmes

- Estimateur/Règle d'apprentissage : $\widehat{f}:D_n\mapsto \widehat{f}(D_n)\in\mathcal{F}$
- Exemple : estimateur des moindres carrés sur $S_m \subset \mathcal{F}$:

$$\widehat{f}_m \in \operatorname*{argmin}_{f \in S_m} \left\{ \widehat{\mathcal{R}}_n(f) \right\} \quad \text{où} \quad \widehat{\mathcal{R}}_n(f) := \frac{1}{n} \sum_{i=1}^n c(f(X_i), Y_i)$$

Exemples de modèles S_m : histogrammes, e.v. $\{\varphi_1, \ldots, \varphi_D\}$

9/41

Sélection d'estimateurs

Problèmes

- Estimateur/Règle d'apprentissage : $\widehat{f}: D_n \mapsto \widehat{f}(D_n) \in \mathcal{F}$
- Exemple : estimateur des moindres carrés sur $S_m \subset \mathcal{F}$:

$$\widehat{f}_m \in \operatorname*{argmin}_{f \in S_m} \left\{ \widehat{\mathcal{R}}_n(f) \right\} \quad \text{où} \quad \widehat{\mathcal{R}}_n(f) := \frac{1}{n} \sum_{i=1}^n c(f(X_i), Y_i)$$

Exemples de modèles S_m : histogrammes, e.v. $\{\varphi_1, \ldots, \varphi_D\}$

• Famille d'estimateurs $(\widehat{f}_m)_{m \in \mathcal{M}} \Rightarrow$ choisir $\widehat{m} = \widehat{m}(D_n)$?

9/41

Sélection d'estimateurs

Problèmes

- Estimateur/Règle d'apprentissage : $\widehat{f}: D_n \mapsto \widehat{f}(D_n) \in \mathcal{F}$
- Exemple : estimateur des moindres carrés sur $S_m \subset \mathcal{F}$:

$$\widehat{f}_m \in \operatorname*{argmin}_{f \in S_m} \left\{ \widehat{\mathcal{R}}_n(f) \right\} \quad \text{où} \quad \widehat{\mathcal{R}}_n(f) := \frac{1}{n} \sum_{i=1}^n c(f(X_i), Y_i)$$

Exemples de modèles S_m : histogrammes, e.v. $\{\varphi_1, \ldots, \varphi_D\}$

- Famille d'estimateurs $(\widehat{f}_m)_{m \in \mathcal{M}} \Rightarrow$ choisir $\widehat{m} = \widehat{m}(D_n)$?
- Exemples :
 - choix de modèles
 - « calibration » d'hyperparamètres (choix de k ou d'une distance pour k-ppv, choix du paramètre de régularisation, choix d'un noyau, etc.)
 - choix entre des méthodes de natures différentes ex. : k-ppv ou splines de lissage ?

9/4

Sélection d'estimateurs : deux objectifs

Problèmes

Estimation : minimiser le risque de l'estimateur final, i.e.,
 Inégalité oracle (en espérance ou avec grande probabilité) :

$$\ell(f^{\star}, \widehat{f}_{\widehat{m}}) \leqslant C \inf_{m \in \mathcal{M}} \{\ell(f^{\star}, \widehat{f}_{m})\} + R_{n}$$

Sélection d'estimateurs : deux objectifs

Problèmes

• Estimation : minimiser le risque de l'estimateur final, i.e., Inégalité oracle (en espérance ou avec grande probabilité) :

$$\ell(f^{\star}, \widehat{f}_{\widehat{m}}) \leqslant C \inf_{m \in \mathcal{M}} \{\ell(f^{\star}, \widehat{f}_{m})\} + R_{n}$$

 Identification : choisir le « meilleur » estimateur/modèle asymptotiquement, en supposant qu'il est bien défini, i.e., Consistance en sélection :

$$\mathbb{P}(\widehat{m}(D_n)=m^*) \xrightarrow[n\to\infty]{} 1.$$

Équivalent à l'estimation dans le cadre paramétrique.

Sélection d'estimateurs : deux objectifs

Estimation : minimiser le risque de l'estimateur final, i.e.,
 Inégalité oracle (en espérance ou avec grande probabilité) :

$$\ell(f^{\star}, \widehat{f}_{\widehat{m}}) \leqslant C \inf_{m \in \mathcal{M}} \{\ell(f^{\star}, \widehat{f}_{m})\} + R_{n}$$

 Identification : choisir le « meilleur » estimateur/modèle asymptotiquement, en supposant qu'il est bien défini, i.e., Consistance en sélection :

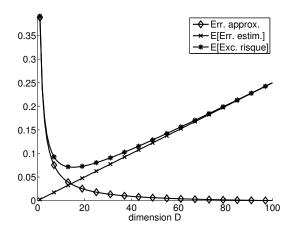
$$\mathbb{P}(\widehat{m}(D_n)=m^*) \xrightarrow[n\to\infty]{} 1.$$

Équivalent à l'estimation dans le cadre paramétrique.

• Double objectif avec une seule procédure (dilemme AIC-BIC)? Non en général (Yang, 2005). Parfois possible.

Problèmes Définition Estimation du risque Sélection d'estimateurs Conclusion

Enjeux du problème (rappel)



Sous-apprentissage

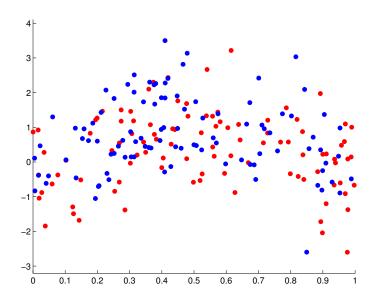
Sur-apprentissage

 Définition
 Estimation du risque
 Sélection d'estimateurs
 Conclusion

Plan

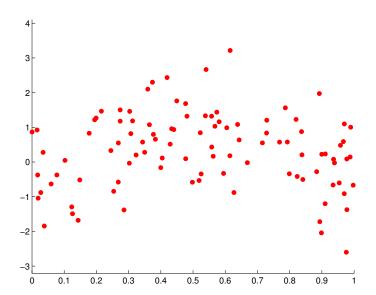
- Problèmes
- 2 Définition
- Estimation du risque
- 4 Sélection d'estimateurs
- Conclusion

Principe de la validation simple



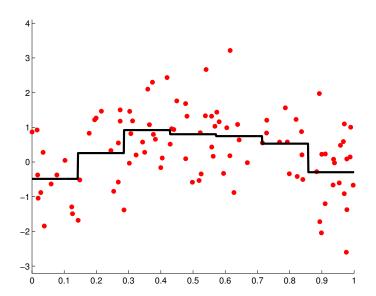
12/4

Principe de la validation : échantillon d'entraînement



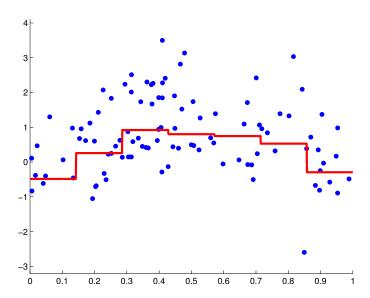
12/4

Principe de la validation : échantillon d'entraînement



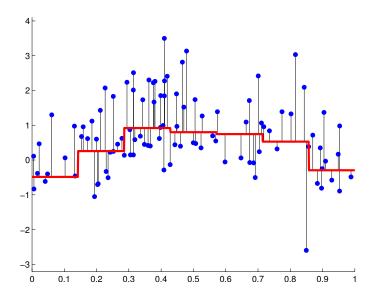
12/41

Principe de la validation : échantillon de validation



12/41

Principe de la validation : échantillon de validation



12/43

$$\underbrace{(X_1, Y_1), \dots, (X_{n_e}, Y_{n_e})}_{\text{Entra înement } D_n^E \Rightarrow \widehat{f}_m(D_n^E)}$$

$$\underbrace{(X_{n_e+1}, Y_{n_e+1}), \dots, (X_n, Y_n)}_{\text{Validation } D_n^{E^c} \Rightarrow \text{ évaluer le risque}$$

Définition

$$\underbrace{(X_1,Y_1),\ldots,(X_{n_e},Y_{n_e})}_{\text{Entraı̂nement }D_n^E\Rightarrow \widehat{f}_m(D_n^E)} \underbrace{(X_{n_e+1},Y_{n_e+1}),\ldots,(X_n,Y_n)}_{\text{Validation }D_n^{E^c}\Rightarrow \text{ évaluer le risque}$$

• estimateur « hold-out » du risque :

$$\widehat{\mathcal{R}}^{\mathrm{val}}(\widehat{f}_m; D_n; E) = \widehat{\mathcal{R}}_n^{E^c}(\widehat{f}_m(D_n^E)) = \frac{1}{\mathsf{Card}(E^c)} \sum_{i \in E^c} c(\widehat{f}_m(D_n^E; X_i), Y_i)$$

Définition

$$\underbrace{(X_1,Y_1),\ldots,(X_{n_e},Y_{n_e})}_{\text{Entraı̂nement }D_n^E\Rightarrow \widehat{f}_m(D_n^E)} \qquad \underbrace{(X_{n_e+1},Y_{n_e+1}),\ldots,(X_n,Y_n)}_{\text{Validation }D_n^{E^c}\Rightarrow \text{ évaluer le risque}$$

• estimateur « hold-out » du risque :

$$\widehat{\mathcal{R}}^{\mathrm{val}}(\widehat{f}_m;D_n;E) = \widehat{\mathcal{R}}_n^{E^c}(\widehat{f}_m(D_n^E)) = \frac{1}{\mathsf{Card}(E^c)} \sum_{i \in E^c} c(\widehat{f}_m(D_n^E;X_i),Y_i)$$

• validation croisée : moyenne d'estimateurs « hold-out »

$$\widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_m; D_n; (E_j)_{1 \leqslant j \leqslant V}) = \frac{1}{V} \sum_{i=1}^{V} \widehat{\mathcal{R}}^{\mathrm{val}}(\widehat{f}_m; D_n; E_j)$$

Validation croisée Sylvain Arlot

13/41

$$\underbrace{(X_1, Y_1), \dots, (X_{n_e}, Y_{n_e})}_{\text{Entraı̂nement } D_n^E \Rightarrow \widehat{f}_m(D_n^E)} \qquad \underbrace{(X_{n_e+1}, Y_{n_e+1}), \dots, (X_n, Y_n)}_{\text{Validation } D_n^{E^c} \Rightarrow \text{ évaluer le risque}}$$

• estimateur « hold-out » du risque :

$$\widehat{\mathcal{R}}^{\mathrm{val}}(\widehat{f}_m;D_n;E) = \widehat{\mathcal{R}}_n^{E^c}(\widehat{f}_m(D_n^E)) = \frac{1}{\mathsf{Card}(E^c)} \sum_{i \in E^c} c(\widehat{f}_m(D_n^E;X_i),Y_i)$$

• validation croisée : moyenne d'estimateurs « hold-out »

$$\widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_m; D_n; (E_j)_{1 \leqslant j \leqslant V}) = \frac{1}{V} \sum_{i=1}^{V} \widehat{\mathcal{R}}^{\mathrm{val}}(\widehat{f}_m; D_n; E_j)$$

sélection d'estimateurs :

$$\widehat{m}^{\mathrm{vc}}(D_n; (E_j)_{1 \leqslant j \leqslant V}) \in \underset{m \in \mathcal{M}}{\operatorname{argmin}} \Big\{ \widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_m; D_n; (E_j)_{1 \leqslant j \leqslant V}) \Big\}$$

Validation croisée : exemples

• Méthodes exhaustives : tous les sous-ensembles de taille n_e \Rightarrow leave-one-out $(n_e = n - 1)$

$$\widehat{\mathcal{R}}^{\text{loo}}(\widehat{f}_m; D_n) = \widehat{\mathcal{R}}^{\text{vc}}(\widehat{f}_m; D_n; (\{j\}^c)_{1 \leqslant j \leqslant n}) = \frac{1}{n} \sum_{j=1}^n c(\widehat{f}_m(D_n^{(-j)}; X_j), Y_j)$$

$$\Rightarrow \text{leave-}p\text{-out } (n_e = n - p)$$

14/41

Validation croisée : exemples

• Méthodes exhaustives : tous les sous-ensembles de taille $n_{\rm e}$ \Rightarrow leave-one-out $(n_{\rm e}=n-1)$

$$\widehat{\mathcal{R}}^{\mathrm{loo}}(\widehat{f}_{m}; D_{n}) = \widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_{m}; D_{n}; (\{j\}^{c})_{1 \leqslant j \leqslant n}) = \frac{1}{n} \sum_{j=1}^{n} c(\widehat{f}_{m}(D_{n}^{(-j)}; X_{j}), Y_{j})$$

$$\Rightarrow \text{leave-}p\text{-out } (n_{e} = n - p)$$

ullet Validation croisée « V-fold » : $\mathcal{B}=(B_j)_{1\leqslant j\leqslant V}$ partition de $\{1,\ldots,n\}$

$$\Rightarrow \widehat{\mathcal{R}}^{\mathrm{vf}}(\widehat{f}_m; D_n; (B_j)_{1 \leqslant j \leqslant V}) = \frac{1}{V} \sum_{i=1}^{V} \widehat{\mathcal{R}}_n^{B_j} \left(\widehat{f}_m \left(D_n^{B_j^c} \right) \right)$$

Définition Estimation du risque Sélection d'estimateurs Conc

Validation croisée : exemples

• Méthodes exhaustives : tous les sous-ensembles de taille n_e \Rightarrow leave-one-out $(n_e=n-1)$

$$\widehat{\mathcal{R}}^{\text{loo}}(\widehat{f}_m; D_n) = \widehat{\mathcal{R}}^{\text{vc}}(\widehat{f}_m; D_n; (\{j\}^c)_{1 \leqslant j \leqslant n}) = \frac{1}{n} \sum_{j=1}^n c(\widehat{f}_m(D_n^{(-j)}; X_j), Y_j)$$

$$\Rightarrow \text{leave-}p\text{-out } (n_e = n - p)$$

• Validation croisée « V-fold » : $\mathcal{B}=(B_j)_{1\leqslant j\leqslant V}$ partition de $\{1,\ldots,n\}$

$$\Rightarrow \widehat{\mathcal{R}}^{\mathrm{vf}}(\widehat{f}_m; D_n; (B_j)_{1 \leqslant j \leqslant V}) = \frac{1}{V} \sum_{i=1}^{V} \widehat{\mathcal{R}}_n^{B_j} \left(\widehat{f}_m \left(D_n^{B_j^c}\right)\right)$$

• Validation croisée Monte-Carlo / Apprentissage Test Répété :

$$E_1, \ldots, E_V$$
 i.i.d. uniforme

14/41

Deux hypothèses

Dans cet exposé :

$$(E_i)_{1 \le i \le V}$$
 est indépendante de D_n (Ind)

$$Card(E_1) = Card(E_2) = \cdots = Card(E_V) = n_e$$
 (Reg)

Pour la VC « V-fold » :
$$n_e = \frac{n(V-1)}{V}$$

S. .

Plan

- Problèmes
- 2 Définition
- 3 Estimation du risque
- 4 Sélection d'estimateurs
- Conclusion

Biais

$$\mathbb{E}\Big[\widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_m; D_n; (E_j)_{1 \leqslant j \leqslant V})\Big] = \frac{1}{V} \sum_{i=1}^{V} \mathbb{E}\Big[\widehat{\mathcal{R}}_n^{E_j^c}(\widehat{f}_m(D_n^{E_j}))\Big]$$

16/41

Validation croisée

$$\begin{split} \mathbb{E}\Big[\widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_m;D_n;(E_j)_{1\leqslant j\leqslant V})\Big] &= \frac{1}{V}\sum_{j=1}^{V}\mathbb{E}\Big[\widehat{\mathcal{R}}_n^{E_j^c}\Big(\widehat{f}_m(D_n^{E_j})\Big)\Big] \\ &= \frac{1}{V}\sum_{j=1}^{V}\mathbb{E}\Big[\mathcal{R}_P\Big(\widehat{f}_m(D_n^{E_j})\Big)\Big] \end{split} \tag{Ind}$$

16/41

Validation croisée

Biais

$$\begin{split} \mathbb{E}\Big[\widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_{m};D_{n};(E_{j})_{1\leqslant j\leqslant V})\Big] &= \frac{1}{V}\sum_{j=1}^{V}\mathbb{E}\Big[\widehat{\mathcal{R}}_{n}^{E_{j}^{c}}\Big(\widehat{f}_{m}(D_{n}^{E_{j}})\Big)\Big] \\ &= \frac{1}{V}\sum_{j=1}^{V}\mathbb{E}\Big[\mathcal{R}_{P}\Big(\widehat{f}_{m}(D_{n}^{E_{j}})\Big)\Big] \qquad \text{(Ind)} \\ &= \mathbb{E}\Big[\mathcal{R}_{P}\Big(\widehat{f}_{m}(D_{n_{e}})\Big)\Big] \qquad \text{(Reg)} \end{split}$$

16/41

$$\mathbb{E}\Big[\widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_{m}; D_{n}; (E_{j})_{1 \leqslant j \leqslant V})\Big] = \frac{1}{V} \sum_{j=1}^{V} \mathbb{E}\Big[\widehat{\mathcal{R}}_{n}^{E_{j}^{c}}(\widehat{f}_{m}(D_{n}^{E_{j}}))\Big]$$

$$= \frac{1}{V} \sum_{j=1}^{V} \mathbb{E}\Big[\mathcal{R}_{P}(\widehat{f}_{m}(D_{n}^{E_{j}}))\Big] \qquad \text{(Ind)}$$

$$= \mathbb{E}\Big[\mathcal{R}_{P}(\widehat{f}_{m}(D_{n_{e}}))\Big] \qquad \text{(Reg)}$$

Biais pour l'estimation du risque :

$$\mathbb{E}\Big[\mathcal{R}_{P}(\widehat{f}_{m}(D_{n_{e}}))\Big] - \mathbb{E}\Big[\mathcal{R}_{P}(\widehat{f}_{m}(D_{n}))\Big]$$

 \Rightarrow tout dépend de $n \to \mathbb{E} \left[\mathcal{R}_P(\widehat{f}_m(D_n)) \right]$

16/41

$$\mathbb{E}\Big[\widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_{m}; D_{n}; (E_{j})_{1 \leqslant j \leqslant V})\Big] = \frac{1}{V} \sum_{j=1}^{V} \mathbb{E}\Big[\widehat{\mathcal{R}}_{n}^{E_{j}^{c}}(\widehat{f}_{m}(D_{n}^{E_{j}}))\Big]$$

$$= \frac{1}{V} \sum_{j=1}^{V} \mathbb{E}\Big[\mathcal{R}_{P}(\widehat{f}_{m}(D_{n}^{E_{j}}))\Big] \qquad (\mathbf{Ind})$$

$$= \mathbb{E}\Big[\mathcal{R}_{P}(\widehat{f}_{m}(D_{n_{e}}))\Big] \qquad (\mathbf{Reg})$$

Biais pour l'estimation du risque :

$$\mathbb{E}\left[\mathcal{R}_{P}(\widehat{f}_{m}(D_{n_{e}}))\right] - \mathbb{E}\left[\mathcal{R}_{P}(\widehat{f}_{m}(D_{n}))\right]$$

 \Rightarrow tout dépend de $n o \mathbb{E} \Big[\mathcal{R}_P (\widehat{f}_m(D_n)) \Big]$

Attention ! $D_n \to \widehat{f}_m(D_n)$ doit être fixée avant d'avoir vu une seule observation ; sinon, on a un biais encore plus fort.

Biais de la validation croisée : exemple générique

Hypothèse:

$$\mathbb{E}\left[\mathcal{R}_{P}(\widehat{f}_{m}(D_{n}))\right] = \alpha(m) + \frac{\beta(m)}{n}$$

(e.g., moindres carrés/ridge/k-ppv en régression, moindres carrés/noyaux en estimation de densité).

17/41

Hypothèse:

$$\mathbb{E}\left[\mathcal{R}_{P}(\widehat{f}_{m}(D_{n}))\right] = \alpha(m) + \frac{\beta(m)}{n}$$

(e.g., moindres carrés/ridge/k-ppv en régression, moindres carrés/noyaux en estimation de densité).

$$\Rightarrow \mathbb{E}\Big[\widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_m; D_n; (E_j)_{1 \leq j \leq V})\Big] = \alpha(m) + \frac{n}{n_0} \frac{\beta(m)}{n_0}$$

17/41

Biais de la validation croisée : exemple générique

Hypothèse:

$$\mathbb{E}\left[\mathcal{R}_{P}(\widehat{f}_{m}(D_{n}))\right] = \alpha(m) + \frac{\beta(m)}{n}$$

(e.g., moindres carrés/ridge/k-ppv en régression, moindres carrés/noyaux en estimation de densité).

$$\Rightarrow \qquad \mathbb{E}\Big[\widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_{m}; D_{n}; (E_{j})_{1 \leqslant j \leqslant V})\Big] = \alpha(m) + \frac{n}{n_{e}} \frac{\beta(m)}{n}$$

- \Rightarrow Biais :
 - fonction décroissante de n_e,
 - minimal pour $n_e = n 1$,
 - négligeable si $n_e \sim n$.

17/41

Biais de la validation croisée : exemple générique

Hypothèse:

$$\mathbb{E}\left[\mathcal{R}_{P}(\widehat{f}_{m}(D_{n}))\right] = \alpha(m) + \frac{\beta(m)}{n}$$

(e.g., moindres carrés/ridge/k-ppv en régression, moindres carrés/noyaux en estimation de densité).

$$\Rightarrow \qquad \mathbb{E}\Big[\widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_{m}; D_{n}; (E_{j})_{1 \leqslant j \leqslant V})\Big] = \alpha(m) + \frac{n}{n_{e}} \frac{\beta(m)}{n}$$

- \Rightarrow Biais :
 - fonction décroissante de n_e,
 - minimal pour $n_e = n 1$,
 - négligeable si $n_e \sim n$.

 \Rightarrow V-fold : le biais diminue quand V augmente, disparaît quand $V \to +\infty$.

Correction du biais

Définition (Burman, 1989) :

$$\begin{split} \widehat{\mathcal{R}}^{\text{vc-cor}}(\widehat{f}_m; D_n; (E_j)_{1 \leqslant j \leqslant V}) &= \widehat{\mathcal{R}}^{\text{vc}}(\widehat{f}_m; D_n; (E_j)_{1 \leqslant j \leqslant V}) \\ &+ \widehat{\mathcal{R}}_n(\widehat{f}_m(D_n)) - \frac{1}{V} \sum_{i=1}^V \widehat{\mathcal{R}}_n(\widehat{f}_m(D_n^{E_j})) \end{split}$$

Correction du biais

Définition (Burman, 1989) :

$$\widehat{\mathcal{R}}^{\text{vc-cor}}(\widehat{f}_m; D_n; (E_j)_{1 \leq j \leq V}) = \widehat{\mathcal{R}}^{\text{vc}}(\widehat{f}_m; D_n; (E_j)_{1 \leq j \leq V}) \\
+ \widehat{\mathcal{R}}_n(\widehat{f}_m(D_n)) - \frac{1}{V} \sum_{i=1}^V \widehat{\mathcal{R}}_n(\widehat{f}_m(D_n^{E_j}))$$

Proposition (3.1)

Hypothèses : (Ind) et $\exists \gamma(m), \forall n \geqslant 1$,

$$\mathbb{E}\Big[\mathcal{R}_{P}(\widehat{f}_{m}(D_{n})) - \widehat{\mathcal{R}}_{n}(\widehat{f}_{m}(D_{n}))\Big] = \frac{\gamma(m)}{n}$$

Alors:

$$\mathbb{E}\big[\widehat{\mathcal{R}}^{\text{vc-cor}}(\widehat{f}_m; D_n; (E_j)_{1 \leqslant j \leqslant V})\big] = \mathbb{E}\big[\mathcal{R}_P(\widehat{f}_m(D_n))\big]$$

Variance

Proposition (3.2)

On suppose (Ind) et (Reg). Alors:

$$\operatorname{\mathsf{var}}(\widehat{\mathcal{R}}^{\operatorname{val}}(\widehat{f}_m; D_n; E_0)) \geqslant \operatorname{\mathsf{var}}(\widehat{\mathcal{R}}^{\operatorname{vc}}(\widehat{f}_m; D_n; (E_j)_{1 \leqslant j \leqslant V}))$$
$$\geqslant \operatorname{\mathsf{var}}(\widehat{\mathcal{R}}^{\operatorname{lpo}}(\widehat{f}_m; D_n; n - n_e))$$

Variance

Proposition (3.2)

On suppose (Ind) et (Reg). Alors:

$$\operatorname{var}(\widehat{\mathcal{R}}^{\operatorname{val}}(\widehat{f}_m; D_n; E_0)) \geqslant \operatorname{var}(\widehat{\mathcal{R}}^{\operatorname{vc}}(\widehat{f}_m; D_n; (E_j)_{1 \leqslant j \leqslant V}))$$
$$\geqslant \operatorname{var}(\widehat{\mathcal{R}}^{\operatorname{lpo}}(\widehat{f}_m; D_n; n - n_e))$$

Proposition (3.3)

On suppose (Ind) et (Reg).

Pour la VC Monte-Carlo $(E_i \text{ iid uniformes})$, on a :

$$\operatorname{var}\left(\widehat{\mathcal{R}}^{\operatorname{vc}}(\widehat{f}_m; D_n; (E_j)_{1 \leqslant j \leqslant V})\right) = \operatorname{var}(\widehat{\mathcal{R}}^{\operatorname{lpo}}(\widehat{f}_m; D_n; n - n_e))$$

$$+ \frac{1}{V} \left[\underbrace{\operatorname{var}(\widehat{\mathcal{R}}^{\operatorname{val}}(\widehat{f}_m; D_n; E_1)) - \operatorname{var}(\widehat{\mathcal{R}}^{\operatorname{lpo}}(\widehat{f}_m; D_n; n - n_e))}_{\text{variance de permutation}} \right]$$

Histogramme régulier de pas $h_m > 0$:

$$\mathsf{var}(\widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_m)) = \frac{C_1(n,V,n_e)}{n^2} \mathcal{W}_1(h_m,P) + \frac{C_2(n,V,n_e)}{n} \mathcal{W}_2(h_m,P)$$

20/41

Variance : estimation de densité L^2 (A. & Lerasle 2012)

Histogramme régulier de pas $h_m > 0$:

$$\mathsf{var}(\widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_m)) = \frac{C_1(n,V,n_e)}{n^2} \mathcal{W}_1(h_m,P) + \frac{C_2(n,V,n_e)}{n} \mathcal{W}_2(h_m,P)$$

Si $n \to +\infty$, au premier ordre :

$$C_1(n,V,n_e)$$
 $C_2(n,V,n_e)$ $V ext{-fold},~V o\infty$ $1+rac{4}{V}$ 1

Variance : estimation de densité L^2 (A. & Lerasle 2012)

Histogramme régulier de pas $h_m > 0$:

$$\mathsf{var}(\widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_m)) = \frac{C_1(n,V,n_e)}{n^2} \mathcal{W}_1(h_m,P) + \frac{C_2(n,V,n_e)}{n} \mathcal{W}_2(h_m,P)$$

Si $n \to +\infty$, au premier ordre :

$$C_1(n,V,n_e)$$
 $C_2(n,V,n_e)$ V -fold, $V o \infty$ $1 + rac{4}{V}$ 1 hold-out, $n_e \sim n au$ $rac{1}{ au^2} + rac{2}{ au(1- au)} > 11$ $rac{1}{1- au}$ leave- p -out, $n_e \sim n au$ 1

Variance : estimation de densité L^2 (A. & Lerasle 2012)

Histogramme régulier de pas $h_m > 0$:

$$\mathsf{var}(\widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_m)) = \frac{C_1(n,V,n_e)}{n^2} \mathcal{W}_1(h_m,P) + \frac{C_2(n,V,n_e)}{n} \mathcal{W}_2(h_m,P)$$

Si $n \to +\infty$, au premier ordre :

$$C_1(n,V,n_e) \qquad C_2(n,V,n_e)$$

$$V\text{-fold, }V\to\infty \qquad \qquad 1+\frac{4}{V} \qquad \qquad 1$$

$$\text{hold-out, }n_e\sim n\tau \qquad \qquad \frac{1}{\tau^2}+\frac{2}{\tau(1-\tau)}>11 \qquad \qquad \frac{1}{1-\tau}$$

$$\text{leave-}p\text{-out, }n_e\sim n\tau \qquad \qquad 1 \qquad \qquad 1$$

$$\frac{\text{Monte-Carlo }n_e=\frac{n(V-1)}{V}}{V\text{-fold}} \qquad >1 \text{ si }V\geqslant 3 \qquad \qquad 2-\frac{1}{V}$$

Plan

- Problèmes
- 2 Définition
- Estimation du risque
- 4 Sélection d'estimateurs
- Conclusion

$$\widehat{m} \in \operatorname*{argmin}_{m \in \mathcal{M}} \left\{ \widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_m) \right\} \quad \text{vs.} \quad m^\star \in \operatorname*{argmin}_{m \in \mathcal{M}} \left\{ \mathcal{R}_P(\widehat{f}_m(D_n)) \right\}$$

• Pour tout Z (déterministe ou aléatoire),

$$\widehat{m} \in \operatorname*{argmin}_{m \in \mathcal{M}} \left\{ \widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_m) + Z \right\}$$

⇒ biais et variance inutiles.

21/41

$$\widehat{m} \in \operatorname*{argmin}_{m \in \mathcal{M}} \left\{ \widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_m) \right\} \quad \text{vs.} \quad m^\star \in \operatorname*{argmin}_{m \in \mathcal{M}} \left\{ \mathcal{R}_P(\widehat{f}_m(D_n)) \right\}$$

• Pour tout Z (déterministe ou aléatoire),

$$\widehat{m} \in \operatorname*{argmin}_{m \in \mathcal{M}} \left\{ \widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_m) + Z \right\}$$

- ⇒ biais et variance inutiles.
- Classement parfait parmi $(\widehat{f}_m)_{m \in \mathcal{M}} \Leftrightarrow \forall m, m' \in \mathcal{M}$,

$$\mathsf{signe}(\widehat{\mathcal{R}}^{\mathsf{vc}}(\widehat{f}_m) - \widehat{\mathcal{R}}^{\mathsf{vc}}(\widehat{f}_{m'})) = \mathsf{signe}(\mathcal{R}_P(\widehat{f}_m) - \mathcal{R}_P(\widehat{f}_{m'}))$$

21/41

$$\widehat{m} \in \operatorname*{argmin}_{m \in \mathcal{M}} \left\{ \widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_m) \right\} \quad \text{vs.} \quad m^\star \in \operatorname*{argmin}_{m \in \mathcal{M}} \left\{ \mathcal{R}_P(\widehat{f}_m(D_n)) \right\}$$

• Pour tout Z (déterministe ou aléatoire),

$$\widehat{m} \in \underset{m \in \mathcal{M}}{\operatorname{argmin}} \left\{ \widehat{\mathcal{R}}^{\operatorname{vc}}(\widehat{f}_m) + Z \right\}$$

- ⇒ biais et variance inutiles.
- Classement parfait parmi $(\widehat{f}_m)_{m \in \mathcal{M}} \Leftrightarrow \forall m, m' \in \mathcal{M},$ $\operatorname{signe}(\widehat{\mathcal{R}}^{\operatorname{vc}}(\widehat{f}_m) - \widehat{\mathcal{R}}^{\operatorname{vc}}(\widehat{f}_{m'})) = \operatorname{signe}(\mathcal{R}_P(\widehat{f}_m) - \mathcal{R}_P(\widehat{f}_{m'}))$
- $\Rightarrow \mathbb{E}\left[\widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_{m}) \widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_{m'})\right] \text{ doit être du bon signe (heuristique d'estimation sans biais du risque : AIC, } \mathcal{C}_{p}, \text{ leave-one-out...})$

$$\widehat{m} \in \underset{m \in \mathcal{M}}{\operatorname{argmin}} \left\{ \widehat{\mathcal{R}}^{\operatorname{vc}}(\widehat{f}_m) \right\} \quad \text{vs.} \quad m^{\star} \in \underset{m \in \mathcal{M}}{\operatorname{argmin}} \left\{ \mathcal{R}_P(\widehat{f}_m(D_n)) \right\}$$

• Pour tout Z (déterministe ou aléatoire),

$$\widehat{m} \in \operatorname*{argmin}_{m \in \mathcal{M}} \left\{ \widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_m) + Z \right\}$$

- ⇒ biais et variance inutiles.
- Classement parfait parmi $(\widehat{f}_m)_{m \in \mathcal{M}} \Leftrightarrow \forall m, m' \in \mathcal{M},$ $\operatorname{signe}(\widehat{\mathcal{R}}^{\operatorname{vc}}(\widehat{f}_m) \widehat{\mathcal{R}}^{\operatorname{vc}}(\widehat{f}_{m'})) = \operatorname{signe}(\mathcal{R}_P(\widehat{f}_m) \mathcal{R}_P(\widehat{f}_{m'}))$
- $\Rightarrow \mathbb{E}\Big[\widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_{m}) \widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_{m'})\Big] \text{ doit être du bon signe (heuristique d'estimation sans biais du risque : AIC, } \mathcal{C}_{p}, \text{ leave-one-out...)}$
- $\Rightarrow \text{var}\Big(\widehat{\mathcal{R}}^{\text{vc}}(\widehat{f}_{m}) \widehat{\mathcal{R}}^{\text{vc}}(\widehat{f}_{m'})\Big)$ doit être minimal (heuristique détaillée : A. & Lerasle 2012)

21/41

Analyse au premier ordre : espérance

$$\widehat{m} \in \operatorname*{argmin}_{m \in \mathcal{M}} \left\{ \widehat{\mathcal{R}}^{\operatorname{vc}}(\widehat{f}_m) \right\} \quad \text{vs.} \quad m^\star \in \operatorname*{argmin}_{m \in \mathcal{M}} \left\{ \mathcal{R}_P(\widehat{f}_m(D_n)) \right\}$$

• Hypothèse :

$$\mathbb{E}\left[\mathcal{R}_{P}(\widehat{f}_{m}(D_{n}))\right] = \alpha(m) + \frac{\beta(m)}{n}$$

(e.g., moindres carrés/ridge/k-ppv en régression, moindres carrés/noyaux en estimation de densité).

Analyse au premier ordre : espérance

$$\widehat{m} \in \operatorname*{argmin}_{m \in \mathcal{M}} \left\{ \widehat{\mathcal{R}}^{\operatorname{vc}}(\widehat{f}_m) \right\} \quad \text{vs.} \quad m^\star \in \operatorname*{argmin}_{m \in \mathcal{M}} \left\{ \mathcal{R}_P(\widehat{f}_m(D_n)) \right\}$$

• Hypothèse :

$$\mathbb{E}\left[\mathcal{R}_{P}(\widehat{f}_{m}(D_{n}))\right] = \alpha(m) + \frac{\beta(m)}{n}$$

(e.g., moindres carrés/ridge/k-ppv en régression, moindres carrés/noyaux en estimation de densité).

• Quantités clés :

$$\mathbb{E}\left[\mathcal{R}_{P}(\widehat{f}_{m}) - \mathcal{R}_{P}(\widehat{f}_{m'})\right] = \alpha(m) - \alpha(m') + \frac{\beta(m) - \beta(m')}{n}$$

$$\mathbb{E}\left[\widehat{\mathcal{R}}^{\text{vc}}(\widehat{f}_{m}) - \widehat{\mathcal{R}}^{\text{vc}}(\widehat{f}_{m'})\right] = \alpha(m) - \alpha(m') + \frac{n}{n} \frac{\beta(m) - \beta(m')}{n}$$

 \Rightarrow VC favorise m de complexité $\beta(m)$ plus petite, d'autant plus que n_e diminue.

VC pour l'estimation : grandes lignes (\mathcal{M} « petite »)

• Au premier ordre, le biais détermine la performance de : leave-p-out, VC V-fold, VC Monte-Carlo si $B\gg n^2$

VC se comporte comme

$$\underset{m \in \mathcal{M}}{\operatorname{argmin}} \Big\{ \mathbb{E} \Big[\mathcal{R}_{P} \big(\widehat{f}_{m} (D_{n_{e}}) \big) \Big] \Big\}$$

ou si n_v assez grand (y compris le hold-out)

VC pour l'estimation : grandes lignes (\mathcal{M} « petite »)

• Au premier ordre, le biais détermine la performance de :

leave-
$$p$$
-out, VC V -fold, VC Monte-Carlo si $B\gg n^2$ ou si n_v assez grand (y compris le hold-out)

VC se comporte comme

$$\underset{m \in \mathcal{M}}{\operatorname{argmin}} \Big\{ \mathbb{E} \Big[\mathcal{R}_{P} (\widehat{f}_{m}(D_{n_{e}})) \Big] \Big\}$$

- \Rightarrow optimalité au premier ordre si $n_e \sim n$
- \Rightarrow sous-optimal sinon e.g., VC V-fold avec V fixe.
 - Résultats théoriques en régression et estimation de densité par moindres carrés, au moins.

Analyse au second ordre (1): variance

$$\mathsf{var}\Big(\widehat{\mathcal{R}}^{\mathsf{vc}}\big(\,\widehat{f}_{m};D_{n};(E_{j})_{1\leqslant j\leqslant V}\big) - \widehat{\mathcal{R}}^{\mathsf{vc}}\big(\,\widehat{f}_{m'};D_{n};(E_{j})_{1\leqslant j\leqslant V}\big)\Big)$$

Sylvain Arlot Validation croisée

Analyse au second ordre (1): variance

$$\mathsf{var}\Big(\widehat{\mathcal{R}}^{\mathrm{vc}}\big(\,\widehat{f}_{m};\,D_{n};\,(E_{j})_{1\leqslant j\leqslant V}\big) - \widehat{\mathcal{R}}^{\mathrm{vc}}\big(\,\widehat{f}_{m'};\,D_{n};\,(E_{j})_{1\leqslant j\leqslant V}\big)\Big)$$

Estimation de densité L^2 , histogrammes réguliers :

$$=\frac{C_{1}(n,V,n_{e})}{n^{2}}\mathcal{W}_{1}(h_{m},h'_{m}P)+\frac{C_{2}(n,V,n_{e})}{n}\mathcal{W}_{2}(h_{m},h'_{m},P)$$

Différences avec la variance du critère VC seul?

$$C_1, C_2$$
 identiques, mais $\frac{W_1}{n^2} \approx \frac{W_2}{n}$ pour les m, m' « qui comptent »

⇒ même classement entre méthodes, quelques différences quantitatives

Définition Estimation du risque Sélection d'estimateurs Conclusion

Analyse au second ordre (2) : pénalisation

$$\widehat{m} \in \operatorname*{argmin}_{m \in \mathcal{M}} \Big\{ \widehat{\mathcal{R}}_n \big(\widehat{f}_m (D_n) \big) + \underbrace{\mathtt{pen} \big(m; D_n \big)}_{\mathsf{p\'enalit\'e}} \Big\}$$

Pénalité idéale :

$$\mathsf{pen}_{\mathrm{id}}(m;D_n) := \mathcal{R}_P(\widehat{f}_m(D_n)) - \widehat{\mathcal{R}}_n(\widehat{f}_m(D_n))$$

Estimation sans biais du risque :

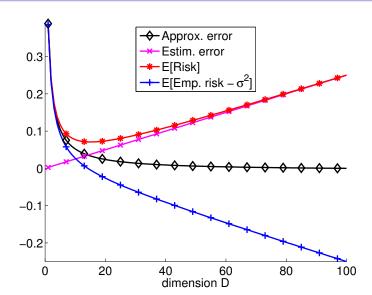
$$\mathbb{E}\big[\mathsf{pen}(m;D_n)\big] \approx \mathbb{E}\Big[\mathsf{pen}_{\mathrm{id}}(m;D_n)\Big] \qquad \qquad \text{(à translation près)}$$

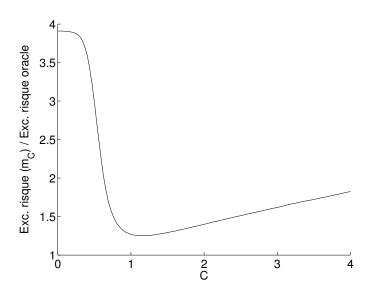
Majoration du risque :

$$pen(m; D_n) \geqslant pen_{id}(m; D_n)$$
 (à translation près)

Définition Estimation du risque **Sélection d'estimateurs** Conclusion

Pourquoi pénaliser?





27/41

Surpénalisation et validation croisée

Hypothèses: (Ind), (Reg),

$$\mathbb{E}\Big[\mathcal{R}_{P}(\widehat{f}_{m}(D_{n}))\Big] = \alpha(m) + \frac{\beta(m)}{n} \quad \text{et} \quad \mathbb{E}\Big[\widehat{\mathcal{R}}_{n}(\widehat{f}_{m}(D_{n}))\Big] = \alpha(m) - \frac{\beta(m)}{n}$$

Alors:

$$\mathbb{E}\Big[\widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_m; D_n; (E_j)_{1\leqslant j\leqslant V})\Big] = \mathbb{E}\Big[\widehat{\mathcal{R}}_n(\widehat{f}_m(D_n)) + \underbrace{\frac{1}{2}\bigg(1 + \frac{n}{n_e}\bigg)}_{pen_{\mathrm{id}}} \quad pen_{\mathrm{id}}(m)\Big]$$

facteur de surpénalisation

Surpénalisation et validation croisée

Hypothèses : (Ind), (Reg),

$$\mathbb{E}\Big[\mathcal{R}_{P}(\widehat{f}_{m}(D_{n}))\Big] = \alpha(m) + \frac{\beta(m)}{n} \quad \text{et} \quad \mathbb{E}\Big[\widehat{\mathcal{R}}_{n}(\widehat{f}_{m}(D_{n}))\Big] = \alpha(m) - \frac{\beta(m)}{n}$$

Alors:

$$\mathbb{E}\Big[\widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_m; D_n; (E_j)_{1 \leqslant j \leqslant V})\Big] = \mathbb{E}\Big[\widehat{\mathcal{R}}_n(\widehat{f}_m(D_n)) + \underbrace{\frac{1}{2}\left(1 + \frac{n}{n_e}\right)}_{\text{pen}_{\mathrm{id}}} \quad \mathsf{pen}_{\mathrm{id}}(m)\Big]$$

facteur de surpénalisation

$$\mathbb{E}\Big[\widehat{\mathcal{R}}^{\mathrm{vf}}\big(\,\widehat{f}_{m};D_{n};(B_{j})_{1\leqslant j\leqslant V}\big)\Big] = \mathbb{E}\bigg[\widehat{\mathcal{R}}_{n}\big(\,\widehat{f}_{m}(D_{n})\big) + \overbrace{\left(1 + \frac{1}{2(V-1)}\right)}^{}\operatorname{pen}_{\mathrm{id}}(m)\bigg]$$

Surpénalisation et validation croisée

Hypothèses: (Ind), (Reg),

$$\mathbb{E}\Big[\mathcal{R}_{P}\big(\widehat{f}_{m}(D_{n})\big)\Big] = \alpha(m) + \frac{\beta(m)}{n} \quad \text{et} \quad \mathbb{E}\Big[\widehat{\mathcal{R}}_{n}\big(\widehat{f}_{m}(D_{n})\big)\Big] = \alpha(m) - \frac{\beta(m)}{n}$$

Alors:

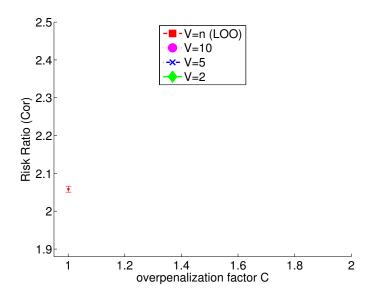
$$\mathbb{E}\Big[\widehat{\mathcal{R}}^{\mathrm{vc}}(\widehat{f}_m;D_n;(E_j)_{1\leqslant j\leqslant V})\Big] = \mathbb{E}\Big[\widehat{\mathcal{R}}_n(\widehat{f}_m(D_n)) + \underbrace{\frac{1}{2}\bigg(1+\frac{n}{n_e}\bigg)}_{\text{pen}_{\mathrm{id}}} \quad \mathsf{pen}_{\mathrm{id}}(m)\Big]$$

facteur de surpénalisation

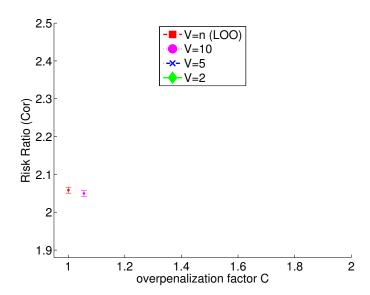
$$\mathbb{E}\Big[\widehat{\mathcal{R}}^{\mathrm{vf}}\big(\,\widehat{f}_{m};D_{n};(B_{j})_{1\leqslant j\leqslant V}\big)\Big] = \mathbb{E}\Big[\widehat{\mathcal{R}}_{n}\big(\,\widehat{f}_{m}(D_{n})\big) + \overbrace{\left(1 + \frac{1}{2(V-1)}\right)} \, \mathsf{pen}_{\mathrm{id}}(m)\Big]$$

En corrigeant le biais : pas de surpénalisation!

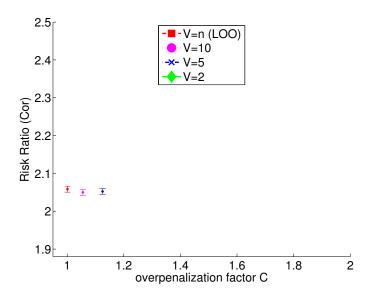
$$\mathbb{E}\Big[\widehat{\mathcal{R}}^{\mathrm{vc-cor}}(\widehat{f}_m;D_n;(E_j)_{1\leqslant j\leqslant V})\Big] = \mathbb{E}\Big[\widehat{\mathcal{R}}_n(\widehat{f}_m(D_n)) + \mathsf{pen}_{\mathrm{id}}(m;D_n)\Big]$$

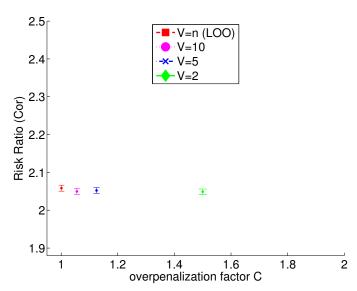


Validation croisée

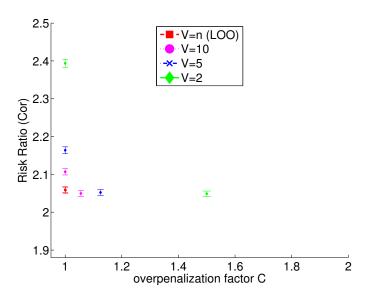


29/43



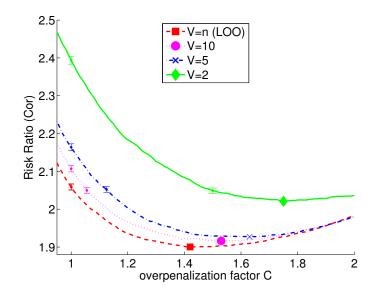


Simulation (estimation de densité L^2) : pénalisation V-fold



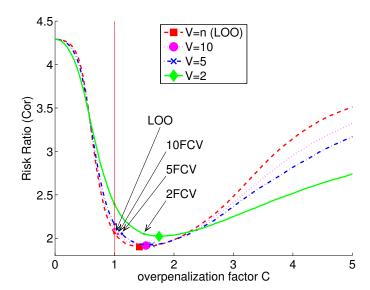
30/41

Simulation (estimation de densité L^2) : surpénalisation



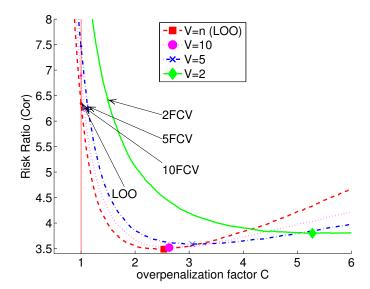
31/41

Simulation (estimation de densité L^2) : conclusion



32/41

Simulation (estimation de densité L^2) : cadre différent



33/41

Plan

- Problèmes
- 2 Définition
- Stimation du risque
- 4 Sélection d'estimateurs
- Conclusion

Risque de l'estimateur sélectionné?

$$\widehat{\mathcal{R}}^{\mathrm{vc}}\left(\widehat{f}_{\widehat{\boldsymbol{m}}^{\mathrm{vc}}\left(D_{n};(E_{j})_{1\leqslant j\leqslant V}\right)};D_{n};(E_{j})_{1\leqslant j\leqslant V}\right)$$

est une estimation biaisée du risque

$$\mathcal{R}_P\Big(\widehat{f}_{\widehat{m}^{\mathrm{vc}}\big(D_n;(E_i)_{1\leq i\leq V}\big)}\Big)$$

Risque de l'estimateur sélectionné?

$$\widehat{\mathcal{R}}^{\mathrm{vc}}\left(\widehat{f}_{\widehat{\boldsymbol{m}}^{\mathrm{vc}}\left(D_{n};(E_{j})_{1\leqslant j\leqslant V}\right)};D_{n};(E_{j})_{1\leqslant j\leqslant V}\right)$$

est une estimation biaisée du risque

$$\mathcal{R}_{P}\left(\widehat{f}_{\widehat{m}^{\mathrm{vc}}\left(D_{n};(E_{j})_{1\leqslant j\leqslant V}\right)}\right)$$

⇒ découpage en trois sous-échantillons : entraînement / validation / test

• Temps de calcul : $\mathcal{O}(V)$ en général

Choix d'un type de validation croisée (cas « régulier »)

- ullet Temps de calcul : $\mathcal{O}(V)$ en général
- Taille n_e de l'échantillon d'entraînement :
 ⇒ biais / facteur de surpénalisation (décroissant avec n_e)
 possibilité de débiaiser (mais le souhaite-t-on?)

Conclusion

Choix d'un type de validation croisée (cas « régulier »)

- ullet Temps de calcul : $\mathcal{O}(V)$ en général
- Taille n_e de l'échantillon d'entraînement :
 ⇒ biais / facteur de surpénalisation (décroissant avec n_e)
 possibilité de débiaiser (mais le souhaite-t-on?)
- Nombre V de découpages à n_e fixé \Rightarrow variance (décroissante), quasi minimale pour V « petit » (en fonction de n_e ...) \Rightarrow compromis temps de calcul / précision

35/4

Choix d'un type de validation croisée (cas « régulier »)

- ullet Temps de calcul : $\mathcal{O}(V)$ en général
- Taille n_e de l'échantillon d'entraînement :
 ⇒ biais / facteur de surpénalisation (décroissant avec n_e)
 possibilité de débiaiser (mais le souhaite-t-on?)
- Nombre V de découpages à n_e fixé ⇒ variance (décroissante), quasi minimale pour V « petit » (en fonction de n_e...)
 ⇒ compromis temps de calcul / précision
- « V-fold » : biais et variance reliés $\Rightarrow V = 5$ ou 10?

Conclusion

Choix d'un type de validation croisée (cas « régulier »)

- Temps de calcul : $\mathcal{O}(V)$ en général
- Taille n_e de l'échantillon d'entraînement : \Rightarrow biais / facteur de surpénalisation (décroissant avec n_e) possibilité de débiaiser (mais le souhaite-t-on?)
- Nombre V de découpages à n_e fixé \Rightarrow variance (décroissante), quasi minimale pour V « petit » (en fonction de $n_{e...}$) ⇒ compromis temps de calcul / précision
- « V-fold » : biais et variance reliés $\Rightarrow V = 5$ ou 10?
- Découplage biais/variance \Rightarrow choix plus simple de n_e et V:
 - VC Monte-Carlo
 - VC « V-fold » répétée
 - pénalisation « V-fold » : facteur de surpénalisation C choisi librement

Validation croisée ou procédure spécifique?

• Par exemple : C_p ou validation croisée?

Conclusion

Validation croisée ou procédure spécifique?

- Par exemple : C_p ou validation croisée?
- Si les hypothèses de C_p sont vérifiées : estimateurs et risque des moindres carrés, modèles = espaces vectoriels, bruit homoscédastique
 - \Rightarrow C_p (la validation croisée paye le prix de sa polyvalence)

36/41

Validation croisée ou procédure spécifique?

- Par exemple : C_p ou validation croisée?
- Si les hypothèses de C_p sont vérifiées : estimateurs et risque des moindres carrés, modèles = espaces vectoriels, bruit homoscédastique
 - \Rightarrow C_p (la validation croisée paye le prix de sa polyvalence)
- Sinon (ou si on n'a pas confiance...)
 - ⇒ validation croisée (plus robuste)

36/41

- Par exemple : C_p ou validation croisée?
- Si les hypothèses de C_p sont vérifiées : estimateurs et risque des moindres carrés, modèles = espaces vectoriels, bruit homoscédastique
 - \Rightarrow C_p (la validation croisée paye le prix de sa polyvalence)
- Sinon (ou si on n'a pas confiance...)
 ⇒ validation croisée (plus robuste)
- Très souvent, aucune méthode spécifique ⇒ validation croisée

Généralité de ces résultats?

 Au moins valable pour les moindres carrés (régression / estimation de densité) et les noyaux en estimation de densité.

Généralité de ces résultats?

- Au moins valable pour les moindres carrés (régression / estimation de densité) et les noyaux en estimation de densité.
- Correction du biais / pénalisation V-fold : valable si

$$\mathbb{E}\Big[\mathcal{R}_{P}\big(\widehat{f}_{m}(D_{n})\big) - \widehat{\mathcal{R}}_{n}\big(\widehat{f}_{m}(D_{n})\big)\Big] = \frac{\gamma(m)}{n}.$$

Sinon : utiliser le V-fold répété ou la VC Monte-Carlo avec n_e bien choisi.

Généralité de ces résultats?

- Au moins valable pour les moindres carrés (régression / estimation de densité) et les noyaux en estimation de densité.
- Correction du biais / pénalisation V-fold : valable si

$$\mathbb{E}\Big[\mathcal{R}_{P}\big(\widehat{f}_{m}(D_{n})\big) - \widehat{\mathcal{R}}_{n}\big(\widehat{f}_{m}(D_{n})\big)\Big] = \frac{\gamma(m)}{n}.$$

Sinon : utiliser le V-fold répété ou la VC Monte-Carlo avec n_e bien choisi.

• Variance : d'autres comportements possibles dans d'autres cadres (expériences).

lèmes Définition Estimation du risque Sélection d'estimateurs Conclusion

Généralité de ces résultats?

 Au moins valable pour les moindres carrés (régression / estimation de densité) et les noyaux en estimation de densité.

• Correction du biais / pénalisation V-fold : valable si

$$\mathbb{E}\Big[\mathcal{R}_{P}\big(\widehat{f}_{m}(D_{n})\big) - \widehat{\mathcal{R}}_{n}\big(\widehat{f}_{m}(D_{n})\big)\Big] = \frac{\gamma(m)}{n}.$$

Sinon : utiliser le V-fold répété ou la VC Monte-Carlo avec n_e bien choisi.

- Variance : d'autres comportements possibles dans d'autres cadres (expériences).
- Tout peut se vérifier sur des données simulées : tracer

$$n o \mathbb{E}ig[\mathcal{R}_Pig(\widehat{f}_m(D_n)ig)ig] \qquad ext{et} \qquad m o ext{var}ig(\widehat{\mathcal{R}}^{ ext{vc}}ig(\widehat{f}_mig) - \widehat{\mathcal{R}}^{ ext{vc}}ig(\widehat{f}_{m^\star}ig)ig) \,.$$

blèmes Définition Estimation du risque Sélection d'estimateurs **Conclusion**

Validation croisée pour l'identification

- Différence principale : valeur de la constante de surpénalisation optimale C^* , souvent $C^* \to +\infty$ lorsque $n \to +\infty$.
- \Leftrightarrow Paradoxe de la validation croisée (Yang, 2006, 2007) : $n_e \ll n$ peut être nécessaire!
 - Pourquoi? n_e plus petit \Rightarrow plus facile de distinguer les deux procédures... si n_e assez grand (régime asymptotique).
 - Remarque : objectif d'estimation, cadre paramétrique ⇒ phénomène similaire.

olèmes Définition Estimation du risque Sélection d'estimateurs Conclusion

Données dépendantes

• $D_n^E, D_n^{E^c}$ pas indépendants \Rightarrow l'heuristique de la VC s'écroule!

⇒ problèmes possibles pour l'estimation du risque (Hart & Wehrly, 1986; Opsomer et al., 2001).

 Solution pour une dépendance à courte portée : supprimer des données dans chaque sous-échantillon ⇒ séparer (temporellement) les échantillons d'entraînement et de validation.

oblèmes Définition Estimation du risque Sélection d'estimateurs Conclusion

Grande famille d'estimateurs/modèles

- Sélection de modèles/estimateurs parmi une famille « exponentielle » (exclu implicitement dans tous les résultats précédents).
 - \Rightarrow l'espérance ne décrit plus le comportement au premier ordre!
- Exemples: sélection de variables avec p ≥ n variables, détection de ruptures.
- Solution : regrouper les modèles ⇒ un estimateur par « dimension » (e.g., minimiseur du risque empirique) fonctionne pour la détection de ruptures (A. & Celisse, 2010).

Conclusion

Questions?

Et vous, comment utilisez-vous la validation croisée?

Quel(s) choix pour V, n_e , etc.?

Quel(s) comportement(s) avez-vous observé en pratique?

41/41