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Abstract

This paper tackles the problem of detecting abrupt changes in the mean of a het-
eroscedastic signal by model selection, without knowledge on the variations of the
noise. A new family of change-point detection procedures is proposed, showing that
cross-validation methods can be successful in the heteroscedastic framework, whereas
most existing procedures are not robust to heteroscedasticity. The robustness to het-
eroscedasticity of the proposed procedures is supported by an extensive simulation
study, together with recent partial theoretical results. An application to Compar-
ative Genomic Hybridization (CGH) data is provided, showing that robustness to
heteroscedasticity can indeed be required for their analysis.

1 Introduction

The problem tackled in the paper is the detection of abrupt changes in the mean of a signal
without assuming its variance is constant. Model selection and cross-validation techniques
are used for building change-point detection procedures that significantly improve on ex-
isting procedures when the variance of the signal is not constant. Before detailing the
approach and the main contributions of the paper, let us motivate the problem and briefly
recall some related works in the change-point detection literature.

1.1 Change-point detection

The change-point detection problem, also called one-dimensional segmentation, deals with
a stochastic process the distribution of which abruptly changes at some unknown instants.
The goal is to recover the location of these changes and their number. This problem is
motivated by a wide range of applications, such as audio processing [32], financial time-
series analysis [36] and Comparative Genomic Hybridization (CGH) data analysis [44]. A
large literature exists about change-point detection in many frameworks [see 14, 19, for a
complete bibliography].

The first papers on change-point detection were devoted to the search for the location of
a unique change-point, also named breakpoint [see 43, for instance]. Looking for multiple
change-points is a harder task and has been studied later. For instance, Yao [58] used
the BIC criterion for detecting multiple change-points in a Gaussian signal, and Miao and
Zhao [41] proposed an approach relying on rank statistics.
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The setting of the paper is the following. The values Y1, . . . , Yn ∈ R of a noisy signal
at points t1, . . . , tn are observed, with

Yi = s(ti) + σ(ti)εi , E [εi] = 0 and Var(εi) = 1 . (1)

The function s is called the regression function and is assumed to be piecewise constant, or
at least well approximated by piecewise constant functions, that is, s is smooth everywhere
except at a few change-points. The noise terms ε1, . . . , εn are assumed to be independent
and identically distributed. No assumption is made on σ : [0, 1] 7→ [0,∞) , except that it is
bounded. Note that all data (ti, Yi)1≤i≤n are observed before detecting the change-points,
a setting which is called off-line.

As pointed out by Lavielle [35], multiple change-point detection procedures generally
tackle one among the following three problems:

1. Detecting changes in the mean s assuming the standard-deviation σ is constant,

2. Detecting changes in the standard-deviation σ assuming the mean s is constant,

3. Detecting changes in the whole distribution of Y , with no distinction between changes
in the mean s , changes in the standard-deviation σ and changes in the distribution
of ε .

In applications such as CGH data analysis, changes in the mean s have an important
biological meaning, since they correspond to the boundaries of amplified or deleted areas
of chromosomes. However in the CGH setting, the standard-deviation σ is not always
constant, as assumed in problem 1; see Section 6 for more details on CGH data, for
which heteroscedasticity—that is, variations of σ—correspond to experimental artefacts or
biological nuisance that should be removed.

Therefore, CGH data analysis requires to solve a fourth problem, which is the purpose
of the present article:

4. Detecting changes in the mean s with no constraint on the standard-deviation σ :
[0, 1] 7→ [0,∞) .

Compared to problem 1, the difference is the presence of an additional nuisance parameter
σ making problem 4 harder. Up to the best of our knowledge, no change-point detection
procedure has ever been proposed for solving problem 4 with no prior information on σ.

1.2 Model selection

Model selection is a successful approach for multiple change-point detection, as shown by
Lavielle [35] and by Lebarbier [37] for instance. Indeed, a set of change-points—called a
segmentation—is naturally associated with the set of piecewise constant functions that can
only jump at these change-points. Given a set of functions (called a model), estimation can
be performed by minimizing the least-squares criterion (or other criteria, see Section 3).
Therefore, detecting changes in the mean of a signal, that is, the choice of a segmentation,
amounts to select such a model.

More precisely, given a collection of models {Sm}m∈Mn
and the associated collection of

least-squares estimators {ŝm}m∈Mn
, the purpose of model selection is to provide a model

index m̂ such that ŝ bm reaches the “best performance” among all estimators {ŝm}m∈Mn
.
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Model selection can target two different goals. On the one hand, a model selection
procedure is efficient when its quadratic risk is smaller than the smallest quadratic risk of
the estimators {ŝm}m∈Mn

, up to a constant factor Cn ≥ 1 . Such a property is called an
oracle inequality when it holds for every finite sample size. The procedure is said to be
asymptotic efficient when the previous property holds with Cn → 1 as n tends to infinity.
Asymptotic efficiency is the goal of AIC [2, 3] and Mallows’ Cp [39], among many others.

On the other hand, assuming that s belongs to one of the models {Sm}m∈Mn
, a pro-

cedure is model consistent when it chooses the smallest model containing s asymptotically
with probability one. Model consistency is the goal of BIC [48] for instance. See also the
article by Yang [55] about the distinction between efficiency and model consistency.

In the present paper as in [37], the quality of a multiple change-point detection pro-
cedure is assessed by the quadratic risk; hence, a change in the mean hidden by the noise
should not be detected. This choice is motivated by applications where the signal-to-noise
ratio can be small, so that exactly recovering every true change-point is hopeless. Therefore,
efficient model selection procedures will be used in order to detect the change-points.

Without prior information on the locations of the change-points, the natural collection
of models for change-point detection depends on the sample size n . Indeed, there exist(

n−1
D−1

)
different partitions of the n design points into D intervals, each partition corre-

sponding to a set of (D − 1) change-points. Since D can take any value between 1 and n ,
2n−1 models can be considered. Therefore, model selection procedures used for multiple
change-point detection have to satisfy (non-asymptotic) oracle inequalities: the collection
of models cannot be assumed to be fixed with the sample size n tending to infinity. (See
Section 2.3 for a precise definition of the collection {Sm}m∈Mn

used for change-point de-
tection.)

Most model selection results consider “polynomial” collections of models {Sm}m∈Mn
,

that is, Card(Mn) ≤ Cnα for some constants C, α ≥ 0 . For polynomial collections,
procedures like AIC or Cp are proved to satisfy oracle inequalities in various frameworks
[10, 17, 11, 18], assuming that data are homoscedastic, that is, σ(ti) does not depend on ti .

However as shown in [7], Cp is suboptimal when data are heteroscedastic, that is, when
the variance is non-constant. Therefore, other procedures must be used. For instance,
resampling penalization is optimal with heteroscedastic data and polynomial collections
[6]. Another approach has been explored by Comte and Rozenholc [27] and by Gendre [31],
which consists in simultaneously estimating the mean and the variance, using polynomial
collections of models.

However in change-point detection, the collection of models is “exponential”, that is,
Card(Mn) is of order exp(αn) for some α > 0 . For such large collections, larger than
polynomial, the above penalization procedures fail. Indeed, Birgé and Massart [18] proved
that the minimal amount of penalization required for a procedure to satisfy an oracle
inequality is of the form

pen(m) = c1
σ2Dm

n
+ c2

σ2Dm

n
log

(
n

Dm

)
, (2)

where Dm is the dimension of Sm as a vector space, c1 and c2 are positive constants, and
σ2 is the variance of the noise, assumed to be constant. Lebarbier [37] proposed c1 = 5 and
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c2 = 2 for optimizing the penalty (2) in the context of change-point detection. Penalties
similar to (2) have been introduced independently by other authors [47, 1, 13, 54, 12] and
are shown to provide satisfactory results.

Nevertheless, all these results about exponential collections assume that data are ho-
moscedastic. Actually, the model selection problem with heteroscedastic data and an
exponential collection of models has never been considered in the literature, up to the best
of our knowledge.

Furthermore, penalties of the form (2) are very close to be proportional to Dm , at least
for small values of Dm . Therefore, the results of [7] lead to conjecture that the penalty
(2) is suboptimal for model selection over an exponential collection of models, when data
are heteroscedastic. The suggest of this paper is to use cross-validation methods instead.

1.3 Cross-validation

Cross-validation (CV) methods allow to estimate (almost) unbiasedly the quadratic risk of
any estimator, such as ŝm (see Section 3.2 about the heuristics underlying CV). Classical
examples of CV methods are the leave-one-out [Loo, 34, 52] and V -fold cross-validation
[VFCV, 29, 30]. More references on cross-validation can be found in the survey [8].

CV can be used for model selection, by choosing the model Sm for which the CV
estimate of the risk of ŝm is minimal. The properties of CV for model selection with
a polynomial collection of models and homoscedastic data have been widely studied. In
short, CV is known to adapt to a wide range of statistical settings, from density estimation
[51, 24, 25] to regression [53, 57] and classification [33, 56]. In particular, Loo is asymp-
totically equivalent to AIC or Cp in several frameworks where they are asymptotically
optimal, and other CV methods have similar performances, provided the size of the train-
ing sample is close enough to the sample size [see for instance 38, 49, 28]. In addition, CV
methods are robust to heteroscedasticity of data [5], as well as several other resampling
methods [6]. Therefore, CV is a natural alternative to penalization procedures assuming
homoscedasticity.

Nevertheless, nearly nothing is known about CV for model selection with an exponential
collection of models, such as in the change-point detection setting. The literature on model
selection and CV [16, 49, 18, 23] only suggests that minimizing directly the Loo estimate
of the risk over 2n−1 models would lead to overfitting.

In this paper, a remark made by Birgé and Massart [18] about a penalization procedure
is used for solving this issue in the context of change-point detection. Model selection is
performed in two steps: First, choose a segmentation given the number of change-points;
second, choose the number of change-points. CV methods can be used at each step, leading
to Procedure 6 (Section 5). The paper shows that such an approach is indeed successful
for detecting changes in the mean of a heteroscedastic signal.

1.4 Contributions of the paper

The main purpose of the present work is to design a CV-based model selection procedure
(Procedure 6) that can be used for detecting multiple changes in the mean of a heteroscedas-
tic signal. A simulation study and partial theoretical results (Proposition 1) show that this
procedure seems to be robust to a possible heteroscedasticity of data when the collection
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of models is exponential, which has never been obtained before. In particular, Procedure 6
is a reliable alternative to Birgé and Massart’s penalization procedure [17] when data can
be heteroscedastic.

Another major difficulty tackled in this paper is the computational cost of resampling
methods when selecting among 2n−1 models. Even when the number (D − 1) of change-
points is given, exploring the

(
n−1
D−1

)
partitions of [0, 1] into D intervals and performing a

resampling algorithm for each partition is not feasible when n is large and D > 2 . An
implementation of Procedure 6 with a tractable computational complexity is proposed in
the paper, using closed-form formulas for Leave-p-out (Lpo) estimators of the risk, dynamic
programming, and V -fold cross-validation.

The paper also points out that least-squares estimators are not reliable for change-
point detection when the number of change-points is given, although they are widely used
to this purpose in the literature. Indeed, experimental and theoretical results detailed in
Section 3.1 show that least-squares estimators suffer from local overfitting when the variance
of the signal is varying over the sequence of observations. On the contrary, minimizers of
the Lpo estimator of the risk do not suffer from this drawback, which emphasizes the
interest of using cross-validation methods in the context of change-point detection.

The paper is organized as follows. The statistical framework is described in Section 2.
First, the problem of selecting the “best” segmentation given the number of change-points
is tackled in Section 3. Partial theoretical results and an extensive simulation study show
that the usual minimization of the least-squares criterion can be misleading when data are
heteroscedastic, whereas cross-validation-based procedures seem to be robust to a possible
heteroscedasticity of data.

Then, the problem of choosing the number of change-points from data is addressed in
Section 4. As supported by an extensive simulation study, V -fold cross-validation (VFCV)
leads to a computationally feasible and statistically efficient model selection procedure
when data are heteroscedastic, contrary to procedures implicitly assuming homoscedastic-
ity.

The resampling methods of Sections 3 and 4 are combined in Section 5, leading to a
family of resampling-based procedures for detecting changes in the mean of a heteroscedas-
tic signal. A wide simulation study shows that they perform well with both homoscedastic
and heteroscedastic data, significantly improving the performance of procedures which
implicitly assume homoscedasticity.

Finally, Section 6 illustrates on a real data set the promising behaviour of the proposed
procedures for analyzing CGH microarray data, compared to procedures previously used
in this setting.

2 Statistical framework

In this section, the statistical framework of change-point detection via model selection is
introduced, as well as some notation.

2.1 Regression on a fixed design

Let S∗ denote the set of measurable functions [0, 1] 7→ R . Let t1 < · · · < tn ∈ [0, 1] be
some deterministic design points, s ∈ S∗ and σ : [0, 1] 7→ [0,∞) be some functions and
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define
∀i ∈ {1, . . . , n} , Yi = s(ti) + σ(ti)εi , (3)

where ε1, . . . , εn are independent and identically distributed random variables with E [εi] =
0 and E

[
ε2
i

]
= 1 .

As explained in Section 1.1, the goal is to find from (ti, Yi)1≤i≤n a piecewise constant
function f ∈ S∗ close to s in terms of the quadratic loss

‖s − f‖2
n :=

1

n

n∑

i=1

(f(ti) − s(ti))
2 .

2.2 Least-squares estimator

A classical estimator of s is the least-squares estimator, defined as follows. For every
f ∈ S∗ , the least-squares criterion at f is defined by

Pnγ(f) :=
1

n

n∑

i=1

(Yi − f(ti))
2 .

The notation Pnγ(f) means that the function (t, Y ) 7→ γ(f ; (t, Y )) := (Y − f(t))2 is
integrated with respect to the empirical distribution Pn := n−1

∑n
i=1 δ(ti,Yi) . Pnγ(f) is

also called the empirical risk of f .
Then, given a set S ⊂ S∗ of functions [0, 1] 7→ R (called a model), the least-squares

estimator on S is
ERM(S; Pn) := arg min

f∈S
{Pnγ(f)} .

The notation ERM(S; Pn) stresses that the least-squares estimator is the output of the
empirical risk minimization algorithm over S , which takes a model S and a data sample
as inputs. When a collection of models {Sm}m∈Mn

is given, ŝm(Pn) or ŝm are shortcuts
for ERM(Sm; Pn) .

2.3 Collection of models

Since the goal is to detect jumps of s , every model considered in this article is the set of
piecewise constant functions with respect to some partition of [0, 1] .

For every D ∈ {2, . . . , n} and every sequence of integers α0 = 1 < α1 < α2 < · · · <
αD−1 ≤ n (the change-points), Λ(α1,...,αD−1) denotes the partition

[0; tα1), . . . , [tαD−2 ; tαD−1), [tαD−1 ; 1]

of [0, 1] into D intervals. Then, the model S(α1,...,αD−1) is defined as the set of piecewise
constant functions that can only jump at t = tαj

for some j ∈ {1, . . . , D − 1} .
For every D ∈ {2, . . . , n} , let Mn(D) denote the set of such sequences (α1, . . . , αD−1)

of length (D − 1) , so that {Sm}m∈Mn(D) is the collection of models of piecewise constant

functions with (D − 1) change-points. When D = 1 , Mn(1) := {∅} where Λ∅ = {[0; 1]}
and the model S∅ is the linear space of constant functions on [0, 1] . Remark that for every
D and m ∈ Mn(D) , Sm is a vector space of dimension Dm = D . Therefore, estimating

6



the number (D − 1) of change-points (Section 4) is equivalent to choosing the dimension
D of a model.

The classical collection of models for change-point detection can now be defined as
{Sm}m∈Mn

, where Mn =
⋃

D∈Dn
Mn(D) and Dn = {1, . . . , n} . This collection has a

cardinality 2n−1 .
In this paper, a slightly smaller collection of models is used. We only consider models

Sm such that each element of the partition Λm contains at least two design points (tj)1≤j≤n .
Indeed, when nothing is known about the noise-level σ(·) , one cannot hope to distinguish
two consecutive change-points from a local variation of σ . For every D ∈ {1, . . . , n} ,
let Mn(D) denote the set of m ∈ Mn(D) satisfying this property. Then, the collection
of models used in this paper is defined as {Sm}m∈Mn

where Mn =
⋃

D∈Dn
Mn(D) and

Dn ⊂ {1, . . . , n/2} . Finally, in all the experiments of the paper, Dn = {1, . . . , 9n/25} for
reasons detailed in Section 4.2 and in Section 3 of the supplementary material.

2.4 Model selection

Among {Sm}m∈Mn
, the best model is defined as the oracle model Sm⋆ , where m⋆ minimizes

the quadratic loss ‖s − ŝm‖2
n over m ∈ Mn . Since the oracle depends on s , one can only

expect to select m̂(Pn) ∈ Mn from data such that the quadratic loss of ŝbm is close to that
of the oracle with high probability, that is,

‖s − ŝbm‖2
n ≤ C inf

m∈Mn

{
‖s − ŝm‖2

n

}
+ Rn (4)

where C is close to 1 and Rn is a small remainder term (typically of order n−1). Inequality
(4) is called an oracle inequality. Note that when Mn is exponential, in general, one
cannot hope to obtain (4) with C ≪ ln(n) and m̂ completely data-driven (see for instance
Corollary 4.12 in [40] in the framework of complete variable selection).

3 Localization of the change-points

A usual strategy for multiple change-point detection [35, 37] is to dissociate the search for
the best segmentation given the number of change-points from the choice of the number
of change-points.

In this section, the number (D − 1) of change-points is fixed and the goal is to localize
them. In other words, the goal is to select a model among {Sm}m∈Mn(D) .

3.1 Empirical risk minimization’s failure with heteroscedastic data

As exposed by many authors such as Lavielle [35], minimizing the least-squares criterion
over {ŝm}m∈M(D) is a classical way of estimating the best segmentation with (D − 1)
change-points. This leads to the following procedure:

Procedure 1.

m̂ERM(D) := arg min
m∈Mn(D)

{Pnγ(ŝm)} ,

so that ŝbmERM(D) = ERM
(
S̃D; Pn

)
where S̃D :=

⋃

m∈Mn(D)

Sm
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Figure 1: Comparison of ŝm⋆(D) (dotted black line), ŝbmERM(D) (dashed blue line) and
ŝbmLoo(D) (plain magenta line, see Section 3.2.2), D being the “optimal” dimension (see
Figure 3). Data are generated as described in Section 3.3.1 with n = 100 data points.
Left: homoscedastic data (s2, σc) , D = 4 . Right: heteroscedastic data (s3, σpc,3) , D = 6 .

is the set of piecewise constant functions with exactly (D−1) change-points, chosen among
t2, . . . , tn (see Section 2.3).

Remark 1. Dynamic programming [15] leads to an efficient implementation of Procedure 1
with computational complexity O

(
n2

)
.

Among models corresponding to segmentations with (D − 1) change-points, the oracle
model can be defined as Sm⋆(D) where

m⋆(D) := arg min
m∈Mn(D)

{
‖s − ŝm‖2

n

}
.

Figure 1 illustrates how far m̂ERM(D) typically is from m⋆(D) depending on variations
of the standard-deviation σ . On the one hand, when data are homoscedastic, empirical
risk minimization yields a segmentation close to the oracle one (Figure 1, left). On the
other hand, when data are heteroscedastic, empirical risk minimization introduces artificial
change-points in areas where the noise-level is above average, and misses change-points in
areas where the noise-level is below average (Figure 1, right). In other words, when data
are heteroscedastic, empirical risk minimization over S̃D locally overfits in high-noise areas,
and locally underfits in low-noise areas.

The failure of empirical risk minimization with heteroscedastic data observed on Fig-
ure 1 is general [23, Chapter 7] and can be explained by Lemma 1 below. Indeed, the
criteria Pnγ(ŝm) and ‖s − ŝm‖2

n , respectively minimized by m̂ERM(D) and by m⋆(D) over
Mn(D) , are close to their respective expectations, as proved by the concentration inequal-
ities of [5, Proposition 9] for instance, under assumptions on ε and σ that are discussed at
the end of Section 3.2.4. Lemma 1 enables to compare these expectations.
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Lemma 1. Let m ∈ Mn and define sm := arg minf∈Sm
‖s − f‖2

n . Then,

E [Pnγ (ŝm)] = ‖s − sm‖2
n − V (m) +

1

n

n∑

i=1

σ(ti)
2 (5)

E

[
‖s − ŝm‖2

n

]
= ‖s − sm‖2

n + V (m) (6)

where

V (m) :=

∑
λ∈Λm

(σr
λ)2

n
and ∀λ ∈ Λm , (σr

λ)2 :=

∑n
i=1 σ(ti)

2
1ti∈λ

Card ({k | tk ∈ λ}) . (7)

Lemma 1 is proved in [23]; see also Section 1.1 of the supplementary material. As it is
well-known in the model selection literature, the expectation of the quadratic loss (6) is the
sum of two terms: ‖s − sm‖2

n is the bias of Sm , and V (m) is a variance term, measuring
the difficulty of estimating the Dm parameters of Sm . Up to the term n−1

∑n
i=1 σ(ti)

2

which does not depend on m , the empirical risk underestimates the quadratic risk (that
is, the expectation of the quadratic loss), as shown by (5), because of the sign in front of
V (m) .

Nevertheless, when data are homoscedastic, that is, when ∀i , σ(ti) = σ , V (m) =
Dmσ2n−1 is the same for all m ∈ Mn(D) . Therefore, (5) and (6) show that for every
D ≥ 1 , when data are homoscedastic

arg min
m∈Mn(D)

{E [Pnγ (ŝm)]} = arg min
m∈Mn(D)

{
E

[
‖s − ŝm‖2

n

]}
.

Hence, m̂ERM(D) and m⋆(D) tend to be close to one another, as on the left of Figure 1.
On the contrary, when data are heteroscedastic, the variance term V (m) can be quite

different among models (Sm)m∈Mn(D) , even though they have the same dimension D .
Indeed, V (m) increases when a change-point is moved from an area where σ is small to
an area where σ is large. Therefore, the empirical risk minimization algorithm rather puts
change-points in noisy areas in order to minimize −V (m) in (5); on the contrary, the oracle
segmentation Λm⋆(D) tends to have more change-points in areas where σ is small, since it
minimizes +V (m) in (6). This is illustrated in the right panel of Figure 1.

3.2 Cross-validation

Cross-validation (CV) methods are natural candidates for fixing the failure of empirical
risk minimization when data are heteroscedastic, since CV methods are naturally adaptive
to heteroscedasticity (see Section 1.3). The purpose of this section is to properly define
how CV can be used for selecting m̂ ∈ Mn(D) (Procedure 2), and to recall theoretical
results showing why this procedure adapts to heteroscedasticity (Proposition 1).

3.2.1 Heuristics

The cross-validation heuristics [4, 52] relies on a data splitting idea: For each candidate
algorithm—say ERM(Sm; ·) for some m ∈ Mn(D)—, part of the data—called training
set—is used for training the algorithm. The remaining part—called validation set—is used
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for estimating the risk of the algorithm. This simple strategy is called validation or hold-
out. One can also split data several times and average the estimated values of the risk over
the splits. Such a strategy is called cross-validation (CV). CV with general repeated splits
of data has been introduced by Geisser [29, 30].

In the fixed-design setting, (ti, Yi)1≤i≤n are not identically distributed so that CV
aims at estimating a quantity slightly different from the usual prediction error. Let T be
uniformly distributed over {t1, . . . , tn} and Y = s(T )+σ(T )ε , where ε is independent from
ε1, . . . , εn with the same distribution. Then, the CV estimator of the risk of ŝ = ŝ(Pn)
estimates

E(T,Y )

[
(ŝ(T ) − Y )2

]
=

1

n

n∑

i=1

Eε

[
(s(ti) + σ(ti)εi − ŝ(ti))

2
]

= ‖s − ŝ‖2
n +

1

n

n∑

i=1

σ(ti)
2 .

Hence, minimizing the CV estimator of E(T,Y )

[
(ŝm(T ) − Y )2

]
over m amounts to minimize

‖s − ŝm‖2
n , up to estimation errors.

Even though the use of CV in a fixed-design setting is not usual, theoretical results
detailed in Section 3.2.4 below show that CV actually leads to a good estimator of the
quadratic risk ‖s − ŝm‖2

n . This fact is confirmed by all the experimental results of the
paper.

3.2.2 Definition

Let us now formally define how CV is used for selecting some m ∈ Mn(D) from data. A
(statistical) algorithm A is defined as any measurable function Pn 7→ A(Pn) ∈ S∗ . For
any ti ∈ [0, 1] , A(ti; Pn) denotes the value of A(Pn) at point ti .

For any I(t) ⊂ {1, . . . , n} , define I(v) := {1, . . . , n} \I(t) ,

P (t)
n :=

1

Card(I(t))

∑

i∈I(t)

δ(ti,Yi) and P (v)
n :=

1

Card(I(v))

∑

i∈I(v)

δ(ti,Yi) .

Then, the hold-out estimator of the risk of any algorithm A is defined as

R̂ho(A, Pn, I(t)) := P (v)
n γ

(
A

(
P (t)

n

))
=

1

Card(I(v))

∑

i∈I(v)

(
A(ti; P

(t)
n ) − Yi

)2
.

The cross-validation estimators of the risk of A are then defined as the average of
R̂ho(A, Pn, I

(t)
j ) over j = 1, . . . , B where I

(t)
1 , . . . , I

(t)
B are chosen in a predetermined way

[8]. Leave-one-out, leave-p-out and V -fold cross-validation are among the most classical

examples of CV procedures. They differ one another by the choice of I
(t)
1 , . . . , I

(t)
B .

• Leave-one-out (Loo), often called ordinary CV [4, 52], consists in training with the
whole sample except one point, used for testing, and repeating this for each data
point: I

(t)
j = {1, . . . , n} \ {j} for j = 1, . . . , n . The Loo estimator of the risk of A is

defined by

R̂Loo(A, Pn) :=
1

n

n∑

j=1

[(
Yj −A

(
tj ; P

(−j)
n

))2
]

,

10



where P
(−j)
n = (n − 1)−1

∑
i, i6=j δ(ti,Yi) .

• Leave-p-out (Lpop , with any p ∈ {1, . . . , n − 1}) generalizes Loo. Let Ep denote the
collection of all possible subsets of {1, . . . , n} with cardinality n − p . Then, Lpo
consists in considering every I(t) ∈ Ep as training set indices:

R̂Lpop
(A, Pn) :=

(
n

p

)−1 ∑

I(t)∈Ep


1

p

∑

j∈I(v)

[(
Yj −A

(
tj ; P

(t)
n

))2
]
 . (8)

• V -fold cross-validation (VFCV) is a computationally efficient alternative to Lpo and
Loo . The idea is to first partition the data into V blocks, to use all the data but
one block as a training sample, and to repeat the process V times. In other words,
VFCV is a blockwise Loo, so that its computational complexity is V times that

of A . Formally, let B1, . . . , BV be a partition of {1, . . . , n} and P
(Bk)
n := (n −

Card(Bk))
−1

∑
i/∈Bk

δ(ti,Yi) for every k ∈ {1, . . . , V } . The VFCV estimator of the
risk of A is defined by

R̂VFV
(A, Pn) :=

1

V

V∑

k=1


 1

Card(Bk)

∑

j∈Bk

[(
Yj −A

(
tj ; P

(Bk)
n

))2
]
 . (9)

The interested reader will find theoretical and experimental results on VFCV and
the best way to use it in [5, 23] and references therein, in particular [20].

Given the Loo estimator of the risk of each algorithm A among {ERM(Sm; ·)}m∈Mn(D) ,
the segmentation with (D − 1) change-points chosen by Loo is defined as follows.

Procedure 2.

m̂Loo(D) := arg min
m∈Mn(D)

{
R̂Loo (ERM (Sm; ·) , Pn)

}
.

The segmentations ΛbmLpop
(D) and ΛbmVFV

(D) , respectively chosen by Lpo and by VFCV,

are defined similarly (see Section 2.3 for the definition of Λm).

As illustrated by Figure 1, when data are heteroscedastic, m̂Loo(D) is often closer
to m⋆(D) than m̂ERM(D) . This improvement will be explained by theoretical results in
Section 3.2.4 below.

3.2.3 Computational tractability

The computational complexity of ERM(Sm; Pn) is O(n) since for every interval λ ∈ Λm ,
the value of ŝm(Pn) on λ is equal to the mean of {Yi}ti∈λ . Therefore, a naive implementa-

tion of Lpop has a computational complexity O
(
n
(
n
p

))
, which can be intractable for large

n in the context of model selection, even when p = 1 . In such cases, only VFCV with a
small V would work straightforwardly, since its computational complexity is O(nV ) .

11



Nevertheless, closed-form formulas for the Lpo estimator of the risk have been derived
in the density estimation [24, 22] and regression [23] frameworks. Some of these closed-
form formulas apply to regressograms ŝm with m ∈ Mn . The following theorem gives a
closed-form expression for R̂Lpop

(m) := R̂Lpop
(ERM(Sm; ·), Pn) which can be computed

with O(n) elementary operations.

Theorem 1 (Corollary 3.3.2 in [23]). Let m ∈ Mn , Sm and ŝm = ERM(Sm; ·) be defined
as in Section 2. For every (t1, Y1), . . . , (tn, Yn) ∈ R

2 and λ ∈ Λm , define

Sλ,1 :=
n∑

j=1

Yj1{tj∈λ} and Sλ,2 :=
n∑

j=1

Y 2
j 1{tj∈λ} .

Then, for every p ∈ {1, . . . , n − 1} , the Lpop estimator of the risk of ŝm defined by (8) is
given by

R̂Lpop
(m) =

∑

λ∈Λm

1

pNλ

[{
(Aλ − Bλ)Sλ,2 + BλS2

λ,1

}
1{nλ≥2} + {+∞}1{nλ=1}

]
,

where for every λ ∈ Λm ,

nλ := Card ({i | ti ∈ λ}) Nλ := 1 − 1{p≥nλ}

(
n − nλ

p − nλ

)
/

(
n

p

)

Aλ := Vλ(0)

(
1 − 1

nλ

)
− Vλ(1)

nλ
+ Vλ(−1)

Bλ := Vλ(1)
2 − 1nλ≥3

nλ(nλ − 1)
+

Vλ(0)

nλ − 1

[(
1 +

1

nλ

)
1nλ≥3 − 2

]
− Vλ(−1)1nλ≥3

nλ − 1

and ∀k ∈ {−1, 0, 1} , Vλ(k) :=

min{nλ,(n−p)}∑

r=max{1,(p−nλ)}

rk

(
n−p

r

)(
p

nλ−r

)
(

n
nλ

) .

Remark 2. Vλ(k) can also be written as E
[
Zk

1Z>0

]
where Z has hypergeometric distri-

bution with parameters (n, n − p, nλ) .

An important practical consequence of Theorem 1 is that for every D and p , m̂Lpop
(D)

can be computed with the same computational complexity as m̂ERM(D) , that is O
(
n2

)
.

Indeed, Theorem 1 shows that R̂Lpop
(m) is a sum over λ ∈ Λm of terms depending only

on {Yi}ti∈λ , so that dynamic programming [15] can be used for computing the mini-

mizer m̂Lpop
(D) of R̂Lpop

(m) over m ∈ Mn . Therefore, Lpo and Loo are computationally
tractable for change-point detection when the number of change-points is given.

Dynamic programming also applies to m̂VFV
with a computational complexity

O
(
V n2

)
, since each term appearing in R̂VFV

(m) is the average over V quantities that
must be computed, except when V = n since VFCV then becomes Loo. Since VFCV is
mostly an approximation to Loo or Lpo but has a larger computational complexity, m̂Lpop

will be preferred to m̂VFV
(D) in the following.
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3.2.4 Theoretical guarantees

In order to understand why CV indeed works for change-point detection with a given
number of change-points, let us recall a consequence of Theorem 1, which can also be found
in [23, Lemma 7.2.1 and Proposition 7.2.3]. The proof of this result has been deferred to
Section 1.3 of the supplementary material.

Proposition 1. Let m ∈ Mn . With the notation of Lemma 1, let us assume that some
K > 0 exists such that nλ ≥ Kn and nλ ≥ p + 1 for every λ ∈ Λm , with p → +∞ such
that p2/n → 0 as n tends to infinity. Furthermore, if σ2, M > 0 exist such that

(BN) ∀i , σ2(ti) ≤ σ2 and (BV) ∀i , (s(ti) − sm(ti))
2 ≤ M ,

then,

E

[
R̂Lpop

(m)
]

= ‖s − sm‖2
n +

Cp

n − p

∑

λ∈Λm

(σr
λ)2 +

1

n

n∑

i=1

σ(ti)
2 + o

(
p

n − p

)
, (10)

where 1 ≤ Cp ≤ p may only depend on K, M, σ2 .

The comparison of (6) and (10) shows that Lpop yields an almost unbiased estimator

of E[‖s − ŝm‖2
n] : The only difference is that the factor 1/n in the variance term V (m) has

been changed into Cp/(n − p) , with

1

n − p
≤ Cp

n − p
≤ p

n − p
.

Therefore, minimizing the Lpop estimator of the risk instead of the empirical risk allows
to automatically take into account heteroscedasticity of data.

As already noticed, Proposition 1 is not sufficient to derive theoretical guarantees for
m̂Lpop

(D) . In particular, precise concentration inequalities for R̂Lpop
(m) would be needed.

According to the assumptions under which similar results have been obtained for poly-
nomial collections of models [5, 6, 23], we can conjecture that (at least) the following
assumptions would be required to derive an upper bound on ‖s − ŝbmLpop

(D)‖2
n :

• moment inequalities for the errors εi : ∀q ≥ 2 , ‖ε‖q ≤ Cqβ for some C, β > 0 (for
instance, ε sub-Gaussian),

• a uniform upper bound on σ (see (BN) in Proposition 1), and probably a uniform
lower bound or mild smoothness assumptions on σ(·) ,

• a relationship between the minimum number of points in the intervals of a segmenta-
tion and the smoothness of the regression function s. Note that assumption (BV) in
Proposition 1 entails that for every λ ∈ Λm and ti ∈ λ ,

∑n
j=1 (s(ti) − s(tj))

2 ≤ Mnλ .

3.3 Simulation study

The goal of this section is to experimentally assess, for several values of p , the performance
of Lpop for detecting a given number of changes in the mean of a heteroscedastic signal.
This performance is also compared with that of empirical risk minimization.
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Figure 2: Regression functions s1, s2, s3 ; s1 and s2 are piecewise constant with 4 jumps;
s3 is piecewise constant with 9 jumps.

3.3.1 Setting

The setting described in this section is used in all the experiments of the paper.
Data are generated according to (3) with n = 100 . For every i , ti = i/n and εi has a

standard Gaussian distribution, except in Table 4 where an exponential noise is used. The
regression function s is chosen among three piecewise constant functions s1, s2, s3 plotted on
Figure 2. The model collection described in Section 2.3 is used with Dn = {1, . . . , 9n/25} .
The noise-level function σ(·) is chosen among the following functions:

1. Homoscedastic noise: σc = 0.251[0,1] ,

2. Heteroscedastic piecewise constant noise: σpc,1 = 0.21[0,1/3) + 0.051[1/3,1] , σpc,2 =
2σpc,1 or σpc,3 = 2.5σpc,1 .

3. Heteroscedastic sinusoidal noise: σs = 0.5 sin (tπ/4) .

All combinations between the regression functions (si)i=1,2,3 and the five noise-levels
σ· have been considered, each time with N = 10 000 independent samples. Results below
only report a small part of the entire simulation study but intend to be representative
of the main observed behaviour. A more complete report of the results, including other
regression functions s and noise-level functions σ , is given in the second authors’ thesis
[23, Chapter 7]; see also Section 5 of the supplementary material.

3.3.2 Results: Comparison of segmentations for each dimension

The segmentations of each dimension D ∈ Dn obtained by empirical risk minimization
(‘ERM’, Procedure 1) and Lpop (Procedure 2) for several values of p are compared on Fig-
ure 3, through the expected values of the quadratic loss E[‖s− ŝbmP (D)‖2

n] for procedure P .
On the one hand, when data are homoscedastic (Figure 3, left), all procedures yield

similar performances for all dimensions up to twice the best dimension; Lpop performs
significantly better for larger dimensions. Therefore, unless the dimension is strongly over-
estimated (whatever the way D is chosen), all procedures are equivalent with homoscedastic
data.

On the other hand, when data are heteroscedastic (Figure 3, right), ERM yields sig-
nificantly worse performance than Lpo for dimensions larger than half the true dimension.
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Figure 3: E

[∥∥∥s − ŝbmP (D)

∥∥∥
2

n

]
as a function of D for P among ‘ERM’ (empirical risk min-

imization), ‘Loo’ (Leave-one-out), ‘Lpo(20)’ (Lpop with p = 20) and ‘Lpo(50)’ (Lpop with
p = 50). Left: homoscedastic, true model of dimension 5, (s2, σc) . Right: heteroscedas-
tic, true model of dimension 10, (s3, σpc,3) . All curves have been estimated from N = 10 000

independent samples; error bars are all negligible in front of visible differences (the larger ones are

smaller than 8.10−5 on the left, and smaller than 2.10−4 on the right).

As explained in Sections 3.1 and 3.2.4, m̂ERM(D) often puts change-points inside pure
noise for dimensions D smaller than the true dimension, whereas Lpo does not have this
drawback. Therefore, whatever the choice of the dimension (except D ≤ 4 , that is, for
detecting the obvious jumps), Lpo should be prefered to empirical risk minimization as
soon as data are heteroscedastic.

3.3.3 Results: Comparison of the “best” segmentations

This section focuses on the segmentation obtained with the best possible choice of D , that
is, the one corresponding to the minimum of D 7→ ‖s − ŝbmP (D)‖2

n (plotted on Figure 3)
for procedures P among ERM , Loo , and Lpop with p = 20 and p = 50 . Therefore, the
performance of a procedure P is defined by

Cor (JP, IdK) :=

E

[
inf1≤D≤n

{∥∥∥s − ŝbmP (D)

∥∥∥
2

n

}]

E

[
infm∈Mn

{
‖s − ŝm‖2

n

}] ,

which measures what is lost compared to the oracle when selecting one segmentation
m̂P(D) per dimension. Even if the choice of D is a real practical problem—which will
be tackled in the next sections—, Cor (JP, IdK) helps to understand which is the best
procedure for selecting a segmentation of a given dimension. The notation Cor (JP, IdK)
has been chosen for consistency with notation used in the next sections (see Section 5.1).

Table 1 confirms the results of Section 3.3.2. On the one hand, when data are ho-
moscedastic, ERM performs slightly better than Loo or Lpop . On the other hand, when
data are heteroscedastic, Lpop often performs better than ERM (whatever p), and the
improvement can be large (more than 20% in the setting (s2, σpc,3)). Overall, when ho-
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s
·

σ
·

ERM Loo Lpo20 Lpo50

2 c 2.87 ± 0.01 2.89 ± 0.01 2.90 ± 0.01 2.96 ± 0.01
pc,1 1.33 ± 0.02 1.15 ± 0.02 1.14 ± 0.01 1.11 ± 0.01
pc,3 3.14 ± 0.03 2.52 ± 0.02 2.47 ± 0.02 2.36 ± 0.02

3 c 3.18 ± 0.01 3.25 ± 0.01 3.29 ± 0.01 3.44 ± 0.01
pc,1 3.04 ± 0.02 2.70 ± 0.02 2.71 ± 0.02 2.79 ± 0.02
pc,3 4.44 ± 0.02 3.98 ± 0.02 4.00 ± 0.02 4.14 ± 0.02

Table 1: Average performance Cor (JP, IdK) for change-point detection procedures P among
ERM , Loo and Lpop with p = 20 and p = 50 . Several regression functions s and noise-
level functions σ have been considered, each time with N = 10 000 independent samples.
Next to each value is indicated the corresponding empirical standard deviation divided by√

N , measuring the uncertainty of the estimated performance. See also Table 3 of the
supplementary material.

moscedasticity of the signal is questionable, Lpop appears much more reliable than ERM
for localizing a given number of change-points of the mean.

The question of choosing p for optimizing the performance of Lpop remains a widely
open problem. The simulation experiment summarized with Table 1 only shows that Lpop

improves ERM whatever p , the optimal value of p depending on s and σ .

4 Estimation of the number of change-points

In this section, the number of change-points is no longer fixed or a priori known. The goal
is precisely to estimate this number, as often needed when analyzing data.

Two main procedures are considered. First, a penalization procedure introduced by
Birgé and Massart [17] is analyzed in Section 4.1; this procedure is successful for change-
point detection when data are homoscedastic [35, 37], but seems to fail when data are
heteroscedastic. On the basis of this analysis, V -fold cross-validation (VFCV) is then
proposed as an alternative to Birgé and Massart’s penalization procedure (BM) when data
can be heteroscedastic.

In order to enable the comparison between BM and VFCV when focusing on the ques-
tion of choosing the number of change-points, VFCV is used for choosing among the same
estimators as BM, that is {ŝbmERM(D)}D∈Dn

. The combination of VFCV for choosing D
with the new procedures proposed in Section 3 will be studied in Section 5.

4.1 Birgé and Massart’s penalization

First, let us define precisely the penalization procedure proposed by Birgé and Massart
[17] successfully used for change-point detection in [35, 37].

Procedure 3 (Birgé and Massart [17]).

1. ∀m ∈ Mn , ŝm := ERM (Sm; Pn) .

2. m̂BM := arg minm∈Mn, Dm∈Dn
{Pnγ(ŝm) + penBM(m)} , where for every m ∈ Mn ,
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the penalty penBM(m) only depends on Sm through its dimension:

penBM(m) = penBM(Dm) :=
ĈDm

n

(
5 + 2 log

(
n

Dm

))
, (11)

where Ĉ is an estimator of E[σ2(X)] —in [17], σ is assumed to be constant. In the

paper, we choose Ĉ = σ̂2 = n−1
∑n/2

i=1(Y2i − Y2i−1)
2 , assuming that t1 < · · · < tn .

Note that the conclusions of the present simulation experiment remain similar with
several other choices of Ĉ , for instance using the slope heuristics [18, 9], as proposed
by Lebarbier [37] and by Lavielle [35]. See Section 4 of the supplementary material
for a detailed discussion about Ĉ .

3. s̃BM := ŝ bmBM
.

All m ∈ Mn(D) are penalized in the same way by penBM(m) , so that Procedure 3
actually selects among {ŝbmERM(D)}D∈Dn

. Therefore, Procedure 3 can be reformulated as
follows, as noticed in [18, Section 4.3].

Procedure 4 (Reformulation of Procedure 3).

1. ∀D ∈ Dn , ŝ bmERM(D) := ERM
(
S̃D; Pn

)
where S̃D :=

⋃
m∈Mn(D) Sm (Procedure 1).

2. D̂BM := arg minD∈Dn

{
Pnγ( ŝ bmERM(D)) + penBM(D)

}
where penBM(D) is defined by

(11).

3. s̃BM := ŝ
bmERM( bDBM)

.

In the following, ‘BM’ denotes Procedure 4 and

critBM(D) := Pnγ
(
ŝ bmERM(D)

)
+ penBM(D)

is called the BM criterion.

Procedure 4 clarifies the reason why penBM must be larger than the Cp penalty. Indeed,
for every m ∈ Mn , Lemma 1 shows that when data are homoscedastic, Pnγ( ŝ m)+pen(m)
is an unbiased estimator of E[‖s − ŝm‖2

n] when pen(m) = 2σ2Dmn−1 , that is, the Cp

penalty. When Card(Mn) is at most polynomial in n , Cp is an efficient model selection
procedure, as proved in several regression frameworks [50, 38, 11]. Hence, the Cp penalty
is an adequate measure of the “capacity” of any vector space Sm of dimension Dm , at least
when data are homoscedastic.

On the contrary, in the change-point detection framework, Card(Mn) grows exponen-
tially with n . The formulation of Procedure 4 points out that penBM(D) has been built
so that critBM(D) estimates unbiasedly E[‖s− ŝ bmERM(D)‖2

n] for every D , where ŝ bmERM(D)

is the empirical risk minimizer over S̃D . Hence, penBM(D) measures the “capacity” of
S̃D , which is much bigger than a vector space of dimension D . Therefore, penBM should
be larger than the Cp penalty, as confirmed by the results of Birgé and Massart [18] on
minimal penalties for exponential collections of models.

Simulation experiments support the fact that critBM(D) is an unbiased estimator of
E[‖s − ŝ bm(D)‖2

n] for every D (up to an additive constant) when data are homoscedastic
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Figure 4: Comparison of the expectations of
∥∥s − ŝ bm(D)

∥∥2

n
(‘Loss’), critVFV

(D) (‘VF5’)
and critBM(D) (‘BM’); critBGH(D) has been included for completeness (see Section 5.2).
Data are generated as explained in Section 3.3.1. Left: homoscedastic (s2, σc) . Right:
heteroscedastic (s2, σpc,3) . In both cases, the dimension of the true model is 5. Expectations

have been estimated from N = 10 000 independent samples; error bars are all negligible in front of

visible differences (the larger ones are smaller than 2.10−3 on the left, and smaller than 4.10−3 on

the right). Similar behaviours are observed for every single sample, with slightly larger fluctuations

for critVFV
(D) than for critBM(D) . The curves ‘BM’, ‘VF5’ and ‘BGH’ have been shifted (with

the same shift value) in order to make comparison with ‘Loss’ easier, without changing the location

of the minimum.

(Figure 4 left). However, when data are heteroscedastic, theoretical results proved by Birgé
and Massart [17, 18] no longer apply, and simulations show that critBM(D) does not always
estimate ‖s − ŝ bmERM(D)‖2

n well (Figure 4 right). This result is consistent with Lemma 1,
as well as the suboptimality of penalties proportional to Dm for model selection among a
polynomial collection of models when data are heteroscedastic [7].

Therefore, penBM(D) is not an adequate measure of the capacity of S̃D in general when
data are heteroscedastic, and another capacity measure is required.

4.2 Cross-validation

As shown in Section 3.2.2, CV can be used for estimating the quadratic loss ‖s −A(Pn)‖2
n

for any algorithm A . In particular, CV was successfully used in Section 3 for estimating
the quadratic risk of ERM(Sm; ·) for all m ∈ Mn(D) with a given number (D − 1) of
change-points (Procedure 2), even when data are heteroscedastic.

Therefore, CV methods are natural candidates for fixing BM’s failure. The proposed
procedure—with VFCV—is the following.

Procedure 5.

1. ∀D ∈ Dn , ŝ bmERM(D) := ERM
(
S̃D; Pn

)
,

2. D̂VFV
:= arg minD∈Dn

{critVFV
(D)}

where critVFV
(D) := R̂VFV

(
ERM

(
S̃D(·); ·

)
, ·

)
and R̂VFV

is defined by (9).

3. s̃JERM,VFV K =: ŝ
bmERM( bDVFV

)
.
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s· σ· Id VF5 BM BGH

2 c 2.87 ± 0.01 3.99 ± 0.02 3.58 ± 0.02 3.52 ± 0.02
pc,2 2.91 ± 0.02 5.62 ± 0.05 9.25 ± 0.06 10.13 ± 0.07

s 2.98 ± 0.01 4.34 ± 0.03 4.76 ± 0.03 4.88 ± 0.03
3 c 3.18 ± 0.01 4.31 ± 0.02 4.67 ± 0.01 4.47 ± 0.01

pc,2 4.14 ± 0.02 5.82 ± 0.02 5.90 ± 0.02 5.93 ± 0.02
s 3.92 ± 0.01 5.61 ± 0.02 5.64 ± 0.02 5.63 ± 0.02

Table 2: Performance Cor (JERM, PK) for P = Id (that is, choosing the dimension D⋆ :=

arg minD∈Dn

{∥∥s − ŝbmERM(D)

∥∥2

n

}
), P = VFV with V = 5, P = BM or P = BGH . Several

regression functions s and noise-level functions σ have been considered, each time with
N = 10 000 independent samples. Next to each value is indicated the corresponding
empirical standard deviation divided by

√
N , measuring the uncertainty of the estimated

performance. See also Table 4 of the supplementary material.

The notation JERM, VFV K means that ERM is used first to choose the best segmen-
tation for each dimension, and then VFV estimates the number of change-points (see the
last paragraph of Section 5.1).

Remark 3. The model S̃D depends on the design points, so it should be written
S̃D((ti)1≤i≤n) . In particular, in the second step of Procedure 5, critVFV

(D) is computed
by considering the models S̃D((ti)i/∈Bk

) for k = 1, . . . , V , which are non-empty only when
D ≤ (n − maxk {Card(Bk)})/2 ≈ n(V − 1)/(2V ) . This is always assumed in the paper
(see Section 3 of the supplementary material for further details).

Similar procedures can be defined with Loo and Lpop instead of VFCV. The interest
of VFCV is its reasonably small computational cost—taking V ≤ 10 for instance—, since

no closed-form formula exists for CV estimators of the risk of ERM
(
S̃D; Pn

)
.

4.3 Simulation results

A simulation experiment was performed in the setting presented in Section 3.3.1, for com-
paring BM and VFV with V = 5 blocks. A representative picture of the results is given by
Figure 4 and by Table 2 [see 23, Chapter 7, and Section 5 of the supplementary material
for additional results].

As illustrated by Figure 4, critVFV
(D) can be used for measuring the capacity of S̃D .

Indeed, VFCV correctly estimates the risk of empirical risk minimizers over S̃D for every
D and for both homoscedastic and heteroscedastic data; critVFV

(D) only underestimates∥∥s − ŝ bm(D)

∥∥2

n
for dimensions D close to n(V − 1)/(2V ) , for reasons explained in Sec-

tion 3 of the supplementary material. On the contrary, critBM(D) is a poor estimate of∥∥s − ŝ bm(D)

∥∥2

n
when data are heteroscedastic.

Subsequently, VFCV yields a much smaller performance index

Cor (JERM, PK) :=

E

[∥∥∥s − ŝ
bmERM( bDP)

∥∥∥
2

n

]

E

[
infm∈Mn

{
‖s − ŝm(Pn)‖2

n

}]
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than BM when data are heteroscedastic (Table 2); see also Section 4 of the supplementary
material for details about the performances of BM and possible ways to improve them.
When data are homoscedastic, VFCV and BM have similar performances (maybe with a
slight advantage for BM), which is not surprising since BM uses the knowledge that data
are homoscedastic. Moreover, BM has been proved to be optimal in the homoscedastic
setting [17, 18].

Overall, VFCV seems to be a reliable alternative to BM when no prior knowledge can
guarantee that data are homoscedastic.

5 New change-point detection procedures via cross-

validation

Sections 3 and 4 showed that when data are heteroscedastic, CV can be used success-
fully instead of penalized criteria for detecting change-points given their number, as well
as for estimating the number of change-points. Nevertheless, in Section 4, the segmenta-
tions compared by CV were obtained by empirical risk minimization, so that they can be
suboptimal according to the results of Section 3.

The next step for obtaining reliable change-point detection procedures for heteroscedas-
tic data is to combine the two ideas, that is, to use CV twice. The goal of the present
section is to properly define such procedures (with various kinds of CV) and to assess their
performances.

5.1 Definition of a family of change-point detection procedures

The general strategy used in this article for change-point detection relies on two steps:
First, detect where (D − 1) change-points should be located for every D ∈ Dn ; second,
estimate the number (D − 1) of change-points. This strategy can be summarized with the
following procedure:

Procedure 6 (General two-step change-point detection procedure).

1. ∀D ∈ Dn , AD(Pn) := ŝbm(D) = arg minm∈Mn(D) {crit1(Sm, Pn)} where for every

model S , crit1(S, Pn) ∈ R estimates ‖s − ERM(S; Pn)‖2
n and ŝm = ERM(Sm; Pn) is

defined as in Section 3.1.

2. D̂ = arg minD∈Dn
{crit2(AD, Pn)} , where for every algorithm AD , crit2(AD, Pn) ∈ R

estimates ‖s −AD(Pn)‖2
n .

3. Output: m̂(D̂) and the corresponding estimator ŝ
bm( bD)

of s .

Let us now detail which are the candidate criteria crit1 and crit2 for being used in
Procedure 6. For the first step:

• The empirical risk (‘ERM’) is

crit1,ERM(S, Pn) := Pnγ (ERM (S; Pn))

20



• The Leave-p-out estimator of the risk (‘Lpop’) is, for every p ∈ {1, . . . , n − 1} ,

crit1,Lpo(S, Pn, p) := R̂Lpop
(ERM(S; ·), Pn)

• For comparison, the ideal criterion (‘Id’) is defined by crit1,Id(S, Pn) :=
‖s − ERM(S; Pn)‖2

n .

As in Section 3, Loo denotes Lpo1 . The VFCV estimator of the risk R̂VFV
could also be

used as crit1 ; it will not be considered in the following because it is computationally more
expensive and more variable than Lpo (see Section 3.2).

For the second step:

• Birgé and Massart’s penalization criterion (‘BM’) is

crit2,BM(AD, Pn) := Pnγ (AD (Pn)) + penBM(D) ,

where penBM(D) is defined by (11) with c1 = 5 , c2 = 2 and Ĉ is chosen by the slope
heuristics (see Section 4 of the supplementary material).

• The V -fold cross-validation estimator of the risk (‘VFV ’) is, for every V ∈ {1, . . . , n} ,

crit2,VFV
(AD, Pn) := R̂VFV

(AD, Pn) ,

where R̂VFV
is defined by (9) and the blocks B1, . . . , BV are chosen as in Procedure 5

(see Remark 3).

• For comparison, the ideal criterion (‘Id’) is defined by crit2,Id(AD, Pn) :=
‖s −AD(Pn)‖2

n .

Remark 4. For crit2 , definitions using Lpo could theoretically be considered. They are not
investigated here because they are computationally intractable.

In the following, the notation Jα, βK is used as a shortcut for “Procedure 6 with crit1,α

and crit2,β”, and the outputs of Jα, βK are denoted by m̂Jα,βK ∈ Mn and s̃Jα,βK ∈ S∗ . For
instance, BM coincides with JERM, BMK ; Procedures Jα, IdK are compared for several α
in Section 3; Procedures JERM, βK are compared for β ∈ {Id, BM, VF5} in Section 4.

5.2 Alternative competing procedures

Three alternative procedures for change-point detection are also considered in the simula-
tion study of Section 5.3. Some of them follow a completely different strategy from that of
Birgé and Massart. Their comparison with procedures proposed in Section 5.1 strengthens
the generality level of the observed results.

ZS Zhang and Siegmund [59] proposed a modified version of the BIC criterion, denoted
by ZS in the sequel. It is suited to the specific change-point detection setting, where
likelihood is not smooth with respect to the location of the change-points, unlike what is
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implicitly assumed to derive BIC. The ZS procedure consists in maximizing over m ∈ Mn

the following criterion:

critZS(m) :=
n − Dm + 1

2
log

[
1 +

SSlog

SSall − SSlog

]
+ log

[
Γ

(
n − Dm + 1

2

)
Γ−1

(
Dm + 1

2

)]

+
Dm

2
log (SSall) −

1

2

∑

λ∈Λm

log nλ +

(
1

2
− Dm

)
log(n) ,

where

SSlog =
∑

λ∈Λm

n∑

i=1


ŝm(ti) −

n∑

j=1

Yj

n




2

1λ(ti) , SSall =

n∑

i=1


Yi −

n∑

j=1

Yj

n




2

and Γ(x) =
∫ +∞
0 tx−1e−t dt .

Note that this procedure does not assume the variance to be known, but assumes the
variance is constant.

BGH In the context of Gaussian regression, Baraud, Giraud and Huet [12] propose a
new penalized criterion, which does not depend on the a priori knowledge of the variance of
the noise: The selected model results from the minimization over m ∈ Mn of the criterion

critBGH(m) :=




∑

λ∈Λm

n∑

i=1

[
(Yi − ŝm(ti))

2
1λ(ti)

]



(
1 +

penBGH(m)

n − Dm

)
,

where penBGH(m) is defined in [12] and depends on a constant chosen by simulation to be
equal to K = 1.1 .

PML The so-called PML procedure—for penalized maximum likelihood—was intro-
duced in the bioinformatics community to deal with the particular problem of change-point
detection in CGH profiles [45]. PML aims at detecting changes in either the mean or the
variance, that is, change-points for (s, σ) . The selected model is defined as a minimizer
over m ∈ Mn of

critPML(m) :=
∑

λ∈Λm

nλ log


 1

nλ

∑

ti∈λ

(Yi − ŝm(ti; Pn))2


 + Ĉ ′′Dm ,

where nλ = Card {ti ∈ λ} and Ĉ ′′ is estimated from data by the slope heuristics algorithm
[35, 37].

5.3 Simulation study

A simulation experiment compares procedures Jα,VF5K for several α, JERM, BMK , and
also ZS, BGH, and PML (defined Section 5.2). The experimental setting is the same
as that of Section 3.3.1. Two cases are considered for the errors εi: standard Gaussian,
and centered normalized exponential. A representative picture of the results is given by
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Tables 3–4; additional results can be found in Section 5 of the supplementary material
and in [23, Chapter 7]. The (statistical) performance of each competing procedure P is
measured by

Cor(P) :=
E

[
‖s − s̃P(Pn)‖2

n

]

E

[
infm∈Mn

{
‖s − ŝm(Pn)‖2

n

}] ,

both expectations being evaluated by averaging over N = 10 000 independent samples.

(s, σ) (s1, σc) (s1, σpc,2) (s1, σpc,3) (s1, σs)
JLoo,VF5K 2.40 ± 0.02 3.17 ± 0.03 3.40 ± 0.03 2.59 ± 0.03

JERM,VF5K 2.38 ± 0.02 3.20 ± 0.03 3.42 ± 0.03 2.73 ± 0.03
JERM,BMK 1.70 ± 0.02 3.10 ± 0.03 3.81 ± 0.03 2.08 ± 0.02

BGH 1.85 ± 0.02 6.38 ± 0.05 6.51 ± 0.04 3.83 ± 0.03
ZS 1.71 ± 0.02 3.92 ± 0.04 4.41 ± 0.04 2.46 ± 0.03

PML 2.79 ± 0.02 3.42 ± 0.03 3.97 ± 0.04 2.72 ± 0.03

(s, σ) (s2, σc) (s2, σpc,2) (s2, σpc,3) (s2, σs)
JLoo,VF5K 4.02 ± 0.02 4.95 ± 0.05 5.24 ± 0.05 4.32 ± 0.03

JERM,VF5K 3.99 ± 0.02 5.62 ± 0.05 5.94 ± 0.06 4.34 ± 0.03
JERM,BMK 3.58 ± 0.02 9.25 ± 0.06 8.79 ± 0.06 4.76 ± 0.03

BGH 3.52 ± 0.02 10.13 ± 0.07 9.77 ± 0.07 4.88 ± 0.03
ZS 3.62 ± 0.02 6.50 ± 0.05 6.92 ± 0.06 4.16 ± 0.02

PML 4.34 ± 0.02 2.73 ± 0.03 2.84 ± 0.03 4.32 ± 0.02

(s, σ) (s3, σc) (s3, σpc,2) (s3, σpc,3) (s3, σs)
JLoo,VF5K 4.42 ± 0.02 5.24 ± 0.02 5.59 ± 0.02 5.35 ± 0.02

JERM,VF5K 4.31 ± 0.02 5.82 ± 0.02 6.13 ± 0.02 5.61 ± 0.02
JERM,BMK 4.67 ± 0.01 5.90 ± 0.02 6.24 ± 0.02 5.64 ± 0.02

BGH 4.47 ± 0.01 5.93 ± 0.02 6.31 ± 0.02 5.63 ± 0.02
ZS 5.46 ± 0.02 6.63 ± 0.02 6.61 ± 0.02 6.31 ± 0.02

PML 5.05 ± 0.02 4.67 ± 0.03 4.99 ± 0.03 5.52 ± 0.02

Table 3: Performance Cor(P) for several change-point detection procedures P. Several
regression functions s and noise-level functions σ have been considered, each time with
N = 10000 independent samples. Next to each value is indicated the corresponding em-
pirical standard deviation divided by

√
N , measuring the uncertainty of the estimated

performance.

(s, σ) (s2, σpc,2) (s2, σpc,3) (s3, σpc,2) (s3, σpc,3)
JLoo,VF5K 4.47 ± 0.05 4.69 ± 0.06 4.80 ± 0.03 5.11 ± 0.03

JERM,VF5K 5.98 ± 0.07 6.31 ± 0.07 5.82 ± 0.04 6.22 ± 0.04
JERM,BMK 10.81 ± 0.09 10.31 ± 0.09 6.09 ± 0.04 6.45 ± 0.04

BGH 11.67 ± 0.09 11.15 ± 0.09 5.94 ± 0.03 6.42 ± 0.04
ZS 9.34 ± 0.09 9.29 ± 0.09 6.60 ± 0.04 6.83 ± 0.04

PML 5.04 ± 0.06 5.00 ± 0.06 5.17 ± 0.03 5.40 ± 0.03

Table 4: Same as Table 3 with εi having an exponential distribution.

Let us now comment the results reported in Tables 3–4.
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Figure 5: Probability to put a change-point at ti , i = 1, . . . , n , for three procedures in
setting (s2, σpc,3) with exponential errors. The four vertical red lines correspond to the
four true change-points of s = s2 .

First, BM is consistently outperformed by other procedures and can lead to poor es-
timations, except in the homoscedastic settings in which it confirms its strength. In the
few heteroscedastic frameworks where BM performs well (s = s1 and σ = σpc,2 or σs),
these good performances are mainly due to a somehow lucky overestimation of E[σ2(X)],
as detailed in Section 4 of the supplementary material. Comparing BM and JLoo, VF5K ,
Figure 5 shows that BM often puts false change-points in [0, 1/3) , where the noise-level
is higher, and that BM detects less often the two true change-points of s at t = 0.7 and
t = 0.8 . This confirms the phenomenon pointed out in Section 3.

Second, empirical risk minimization (ERM) slightly outperforms CV (Loo) when data
are homoscedastic. On the contrary, when data are heteroscedastic, Loo clearly outper-
forms ERM , often by a margin larger than 10% , for instance in setting (s2, σpc,2) . Since
ERM puts more change-points than CV in noisy regions, it leads to poor approximations
of the oracle segmentation. Therefore, the results of Section 3 are confirmed when using
VF5 (instead of Id) for choosing the dimension.

Third, considering the overall simulation study, JLoo, VF5K remarkably achieves the
best performance. It is sometimes outperformed by other procedures like PML, BGH or
ZS in specific settings. But these three procedures can yield very poor results in different
contexts, whereas CV remains reliable. For instance, BGH performs badly in settings
(s2, σpc,·) compared with CV, and ZS performs significantly worse than JLoo, VF5K in all
heteroscedastic settings but (s1, σs) and (s2, σs). The good performances achieved by PML
in Table 3 with s2, s3 and σpc,· are balanced by the overfitting of PML, which chooses
segmentations with too many change-points, as illustrated by Table 5 and by Figures 4–5
of the supplementary material. Furthermore, PML relies on the assumption that errors are
Gaussian: with an exponential noise (Table 4), CV outperforms PML and other procedures.
Figure 5 also shows that PML detects less often than CV the two “easy” change-points of
s2 at 0.35 and 0.55 , and that PML often puts false change-points uniformly over [0, 1] .

Fourth, Cor often decreases when the noise-level increases, such as in settings (s1, σpc,·)
and (s2, σpc,·) in Table 3. Indeed, Cor is a ratio to the performance of the risk of the oracle,
which becomes so small when the noise-level decreases that it becomes harder to keep Cor

at the same level. In these frameworks, only overfitting can make Cor larger when the
noise-level is larger (see the performances of JERM, BMK).
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Med(D̂) P

[
D̂ < D⋆

]
P

[
D̂ = D⋆

]
P

[
D̂ > D⋆

]

(s1, σpc,3) JLoo,VF5K 5 0 0.68 0.32
BGH 7 0 0.30 0.70
ZS 5 0 0.56 0.44

PML 7 0 0.14 0.86
(s2, σpc,2) JLoo,VF5K 5 0.50 0.31 0.19

BGH 6 0.37 0.10 0.53
ZS 4 0.66 0.13 0.21

PML 7 0 0.25 0.75

Table 5: Empirical probabilities of choosing the best possible dimension D⋆ for several
change-point detection procedures. Several regression funtions s. and noise-level functions
σ. have been considered. Med(D̂) denotes the empirical median of D̂ over N = 10000
independent samples.

In order to assess the generality of the results of Table 3, the procedures considered in
Section 5.3 have been compared in three random settings. The results of these experiments
are reported in Section 2 of the supplementary material. They show in particular that
when the noise-level happens to be much larger in areas where s does not jump than in
areas where s does jump, then the local overfitting phenomenon is more frequent, making
Cor(JLpo, VF5K) significantly smaller than Cor(JERM, VF5K) .

Finally, the dependence on p of the performance of JLpop, VF5K is assessed in Section 5
of the supplementary material. All values of p between 1 and n/2 perform almost equally
well, with a small advantage to p = 1 which may not be general. Let us mention here that
the choice of p for Lpop is usually related to overpenalization [see for instance 6, 22, 23],
but it seems difficult to characterize the settings for which overpenalization is needed for
detecting change-points given their number.

6 Application to CGH microarray data

In this section, the new change-point detection procedures proposed in the paper are
applied to CGH microarray data.

6.1 Biological context

The purpose of Comparative Genomic Hybridization (CGH) microarray experiments is to
detect and map chromosomal aberrations. For instance, a piece of chromosome can be
amplified, that is, appear several times more than usual, or deleted. Such aberrations are
often related to cancer disease.

Roughly, CGH profiles give the log-ratio of the DNA copy number along the chromo-
somes, compared to a reference DNA sequence [see 44–46, for details about the biological
context of CGH data].

The goal of CGH data analysis is to detect abrupt changes in the mean of a signal (the
log-ratio of copy numbers), and to estimate the mean in each segment. Hence, change-point
detection procedures are needed.
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Moreover, assuming that CGH data are homoscedastic is often unrealistic. Indeed,
changes in the chemical composition of the sequence are known to induce changes in the
variance of the observed CGH profile, possibly independently from variations of the true
copy number. Therefore, procedures robust to heteroscedasticity, such as the ones proposed
in Section 5, should yield better results—in terms of detecting changes of copy number—
than procedures assuming homoscedasticity.

The data set considered in this section is based on the Bt474 cell lines, which denote
epithelial cells obtained from human breast cancer tumors of a sixty-year-old woman [45].
A test genome of Bt474 cell lines is compared to a normal reference male genome. Even
though several chromosomes are studied in these cell lines, this section focuses on chromo-
somes 1 and 9. Chromosome 1 exhibits a putative heterogenous variance along the CGH
profile, and chromosome 9 is likely to meet the homoscedasticity assumption. Log-ratios of
copy numbers have been measured at 119 locations for chromosome 1 and at 93 locations
for chromosome 9.

6.2 Procedures used in the CGH literature

Before applying Procedure 6 to the analysis of Bt474 CGH data, let us recall the definition
of two change-point detection procedures, which were the most successful for analyzing the
same data according to the literature [45].

The first procedure is a simplified version of BM, called ‘BMsimple’, proposed by
Lavielle [35, Section 2] and first used on CGH data in [45]. Note that BM would give
similar results on the data of Figure 6.

The second procedure is PML, as defined in Section 5.2.

6.3 Results

Results obtained with BMsimple, PML, JERM, VF5K and JLpo20, VF5K on the Bt474 data
set are reported on Figure 6.

For chromosome 9, BMsimple and PML yield (almost) the same segmentation, so that
the homoscedasticity assumption is certainly not much violated. As expected, JERM, VF5K
and JLpo20, VF5K also yield very similar segmentations, which confirms the reliability of
these procedures for homoscedastic signal [see 23, Section 7.6 for details].

The picture is quite different for chromosome 1. Indeed, as shown by Figure 6 (right),
BMsimple selects a segmentation with 7 change-points, whereas PML selects a segmen-
tation with only one change-point. The major difference between BMsimple and PML
supports at least the idea that these data must be heteroscedastic.

Nevertheless, none of the segmentations chosen by BMsimple and PML are entirely
satisfactory: BMsimple relies on an assumption which is certainly violated; PML may use
a change in the estimated variance for explaining several changes in the mean.

CV-based procedures JERM, VF5K and JLpo20, VF5K yield two other segmentations,
with a medium number of change-points, respectively 4 and 3. In view of the simulation
experiments of the previous sections, the segmentation obtained via JLpo20, VF5K should
be the most reliable one since data can be heteroscedastic. Therefore, the right of Figure 6
can be interpreted as follows: The noise-level is small in the first part of chromosome 1,
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Figure 6: Change-points locations along Chromosome 9 (Left) and Chromosome 1 (Right).
The mean on each homogeneous region is indicated by plain horizontal lines.
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then higher, but not as high as estimated by PML. In particular, the copy number changes
twice inside the second part of chromosome 1 (as defined by the segmentation obtained
with PML), indicating that two putative amplified regions of chromosome 1 have been
detected.

Note however that choosing among the segmentations obtained with JERM, VF5K and
JLpo20, VF5K is not an easy task without additional data. A definitive answer would need
further biological experiments.

7 Conclusion

7.1 Results summary

Cross-validation (CV) methods have been used to build reliable procedures (Procedure 6)
for detecting changes in the mean of a signal whose variance may not be constant.

First, when the number of change-points is given, empirical risk minimization seems to
fail for some heteroscedastic problems, as shown by the simulation study and by partial
theoretical results. On the contrary, the Leave-p-out (Lpop) seems robust to a possible
heteroscedasticity while being computationally efficient thanks to closed-form formulas
given in Section 3.2.3 (Theorem 1).

Second, for choosing the number of change-points, the commonly used penalization
procedure proposed by Birgé and Massart in the homoscedastic framework should not be
applied to heteroscedastic data. V -fold cross-validation (VFCV) seems to be a reliable
alternative—both with homoscedastic and heteroscedastic data—, leading to much better
segmentations in terms of quadratic risk when data are heteroscedastic. Furthermore, un-
like usual deterministic penalized criteria, VFCV efficiently chooses among segmentations
obtained by either Lpo or empirical risk minimization, without any specific change in the
procedure.

To conclude, the combination of Lpo (for choosing a segmentation for each possible
number of change-points) and VFCV yields a reliable procedure for detecting changes in
the mean of a signal which is not a priori known to be homoscedastic (contrary to existing
change-point detection procedures, that are not well adapted to this problem). The result-
ing procedure is computationally tractable for small values of V , since its computational
complexity is of order O(V n2 Card(Dn)) = O(V n3) , which is similar to many comparable
change-point detection procedures. The influence of V on the statistical performance of
the procedure is not studied specifically in this paper; nevertheless, considering V = 5
only was sufficient to obtain a better statistical performance than Birgé and Massart’s
penalization procedure when data are heteroscedastic. When applied to real data (CGH
profiles in Section 6), the proposed procedure turns out to be quite useful and effective,
for a data set on which existing procedures highly disagree because of heteroscedasticity.

7.2 Prospects

The general form of Procedure 6 could be used with several other criteria, at both steps of
the change-point detection procedure. For instance, resampling penalties [6] could be used
at the first step, for localizing the change-points given their number. At the second step,
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V -fold penalization [7] could also be used instead of VFCV, with the same computational
cost and possibly an improved statistical performance.

Comparing precisely these resampling-based criteria for optimizing the performance of
Procedure 6 would be of great interest and deserves further works. Simultaneously, several
values of V should be compared for the second step of Procedure 6, and the precise influence
of p when Lpop is used at the first step should be further investigated. Preliminary results
in this direction can already be found in [23, Chapter 7].

Another important direction for future works concerns the assumption that errors εi

are independent, which is always made throughout the paper. Indeed, the cross-validation
heuristics strongly relies on this to make sure that the validation sample is independent
from the training sample. So, one can wonder whether Procedure 6 can be applied when
errors are dependent. The literature on CV [see Section 8.1 in 8] shows that dependencies
can make CV overfit [see for instance 42], except maybe in very specific settings [e.g., with
a particular stationary Markov process 21]. Most approaches to overcome this problem
[e.g., “modified CV”, 26] consist in discarding part of the validation sample so that it
becomes (almost) independent from the training sample, which obviously can only be
done in the change-point detection framework if the segments are much longer than the
range of dependencies. Up to the best of our knowledge, no modification of CV has ever
been proposed that could deal with more general dependencies for change-point detection.
So, we can only make the following suggestion: if two (or more) independent copies of
(ti, Yi)1≤i≤n are available (which is possible in many applications), use a procedure of the
form JVF, VFK where in both steps, the training and validation samples are taken from
independent parts of the whole sample.
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