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@ Dynamical model + Observations = Ephemerides

@ Problem: how accurate are the ephemerides, in particular far
from the observation period?

@ Two main examples: Mimas (revolution period: 0.942 days)
and Titan (revolution period: 15.945 days)
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The models: TASS & NUMINT

@ TASS1.7 (Analytic Theory of Saturnian Satellites):
TASS1.6 (Vienne & Duriez 1995) + Hyperion motion theory
(Duriez & Vienne, 1997)
= Semi-analytic theory

Resampling-based estimation of ephemerides Sylvain Arlot



Introduction
[ Je]

The models: TASS & NUMINT

@ TASS1.7 (Analytic Theory of Saturnian Satellites):
TASS1.6 (Vienne & Duriez 1995) + Hyperion motion theory
(Duriez & Vienne, 1997)
= Semi-analytic theory

@ Numerical integration (NUMINT)
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The models: TASS & NUMINT

@ TASS1.7 (Analytic Theory of Saturnian Satellites):
TASS1.6 (Vienne & Duriez 1995) + Hyperion motion theory
(Duriez & Vienne, 1997)
= Semi-analytic theory

e Numerical integration (NUMINT)

= Model: x(t) = ¢(c,t) € X', where ¢ € C C RP parameter
space

e.g., x(t) = (a(t), (1))
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Internal error of the models

@ True position P(t) # ¢(c,t) for every c € C

= Internal error (or bias)

inf {d(P(t), (e, 1)) }

ceC
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Internal error of the models

@ True position P(t) # ¢(c,t) for every c € C

= Internal error (or bias)

inf {d(P(t),¢(c, 1))}

ceC

@ Neglected terms in analytic formulas (TASS)

= can be evaluated by comparison with numerical integration
(~ 10 milliarcsecond for Saturnian satellites, except Hyperion
and Japet)
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Internal error of the models

@ True position P(t) # ¢(c,t) for every c € C

= Internal error (or bias)

inf {d(P(t),¢(c, 1))}

ceC

o Neglected terms in analytic formulas (TASS)

= can be evaluated by comparison with numerical integration
(~ 10 milliarcsecond for Saturnian satellites, except Hyperion
and Japet)

@ Neglected (or unknown physical effects) in TASS and
NUMINT
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@ observer, reading the measurement
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@ star catalogue used for reduction (bias depending on the
position in the celestial sphere)
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@ observer, reading the measurement
@ instrument used

@ star catalogue used for reduction (bias depending on the
position in the celestial sphere)

@ corrections taken into account or not (refraction, aberration,
etc.)

Resampling-based estimation of ephemerides Sylvain Arlot



Introduction
00000

Observations

(tl,Xl),...,(tN,XN) ERx X
X,':P(t,')—f—é,' E[€,’]:0

Multiple error sources:

@ observer, reading the measurement
@ instrument used

@ star catalogue used for reduction (bias depending on the
position in the celestial sphere)

@ corrections taken into account or not (refraction, aberration,
etc.)

@ mass center # photocenter (phase, albedo)
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(tl,Xl),...,(tN,XN) ERx X
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Multiple error sources:

@ observer, reading the measurement
@ instrument used

@ star catalogue used for reduction (bias depending on the
position in the celestial sphere)

@ corrections taken into account or not (refraction, aberration,
etc.)

@ mass center # photocenter (phase, albedo)

@ uncertainty of observation time (especially for old
observations)
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Time distribution of observations
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Time distribution of observation nights
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Data fit: (weighted) least-squares

@ Observations (t1, X1),...,(ty, Xn) E R x X
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Data fit: (weighted) least-squares

@ Observations (t1, X1),...,(tn, Xn) E R X X
e Model: x(t) = ¢(c*, t) where ¢* € C C RP parameter space
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Data fit: (weighted) least-squares

@ Observations (t1, X1),...,(tn, Xn) E R X X
e Model: x(t) = ¢(c*, t) where ¢* € C C RP parameter space

@ c* estimated by

N
~ )1 2
ceargrpelg{NZWi(Sﬁ(Cafi)—Xj) }

where w; ~ 071 is roughly estimated from the name of the

observer, the instrument and the observed satellite (Vienne &
Duriez 1995)
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Data fit: (weighted) least-squares

@ Observations (t1, X1),...,(tn, Xn) E R X X
e Model: x(t) = ¢(c*, t) where ¢* € C C RP parameter space
@ c* estimated by

N
~ : 1 2
ce argrpelg{/v § wi (¢(c, i) = X;) }

where w; ~ ai’l is roughly estimated from the name of the

observer, the instrument and the observed satellite (Vienne &
Duriez 1995)

@ Optimization method: start with ¢ = ¢ + linearization
= iterate until convergence
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Error sources for the ephemerides: summary

@ Internal error
@ Observation errors
@ Optimization error

@ Representation error when using the ephemerides

+ take into account time repartition & heterogeneity

Resampling-based estimation of ephemerides Sylvain Arlot



Estimation methods
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Monte-Carlo method on the Covariance Matrix (MCCM)

new initial conditions

least-squares orbit

¢ Ktimes

set of initial conditions

least-squares orbit

oe o

Y

t

date of initial conditions

Resampling-based estimation of ephemerides Sylvain Arlot




Estimation methods
0@000

Monte-Carlo method on the Covariance Matrix (MCCM)

e 2B W N(EA) where A=(PTWTwWP)!
P= (8S0(/C\7 ti)/ack)(i,k) W = diag(W17 sy WN)
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Monte-Carlo method on the Covariance Matrix (MCCM)

e 2B W N(EA) where A=(PTWTwWP)!
P= (8S0(/C\7 ti)/ack)(i,k) W = diag(W17 sy WN)

= Vke{l,....B}, (9(@® 1),

= ¥t >0, region of possible positions: ((c(¥), t))icren
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Monte-Carlo method applied to the Observations (MCO)
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Monte-Carlo method applied to the Observations (MCO)

Vke{1,...,B}, DU =(t;, X, ... (tn, X\
where Vie{l,... N}, X% _X =¢ ~N(0,02)
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Monte-Carlo method applied to the Observations (MCO)

Vke{1,...,B}, DU =(t;, X, ... (tn, X\
where Vie{l,... N}, X% _X =¢ ~N(0,02)

— Vke{1,...,B},c® :E(D,(Vk))

= Vke{l,....B} (9(@® 1),
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Monte-Carlo method applied to the Observations (MCO)

Vke{1,...,B}, DU =(t;, X, ... (tn, X\
where Vie{l,... N}, X% _X =¢ ~N(0,02)

— Vke{1,...,B},c® :E(D,(Vk))

= Vke{l,....B} (9(@® 1),

= ¥t >0, region of possible positions: ((c(¥), ¢
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Another method is needed

@ MCCM: assumes that ¢ ~ N (c*, A)
= wrong results, especially on the long-term
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Another method is needed

@ MCCM: assumes that ¢ ~ N (c*, A)
= wrong results, especially on the long-term

@ MCO: assumes that X; — P(t;) = ¢; are i.i.d. Gaussian
= errors are non-Gaussian, dependent, and not identically
distributed
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Another method is needed

@ MCCM: assumes that ¢ ~ N (c*, A)
= wrong results, especially on the long-term

@ MCO: assumes that X; — P(t;) = ¢; are i.i.d. Gaussian
= errors are non-Gaussian, dependent, and not identically
distributed

@ Asteroids with few observations: MCCM and MCO already
can yield satisfactory results (Milani, 1999; Muinonen &
Bowell, 1993; Virtanen et al., 2001; ...), which can still be
improved
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Another method is needed

@ MCCM: assumes that ¢ ~ N (c*, A)
= wrong results, especially on the long-term

@ MCO: assumes that X; — P(t;) = ¢; are i.i.d. Gaussian
= errors are non-Gaussian, dependent, and not identically
distributed

@ Asteroids with few observations: MCCM and MCO already
can yield satisfactory results (Milani, 1999; Muinonen &
Bowell, 1993; Virtanen et al., 2001; ...), which can still be
improved

@ Many observations = long-term ephemerides & complex
models = new methods needed
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Resampling heuristics (bootstrap, Efron 1979)

li .
Real world : p P P,——=<c=72¢(P,)

precision = F¢(P, Py) = ((c*, t) — ¢(C, t) )
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Resampling heuristics (bootstrap, Efron 1979)

li ~ A~
Real world : p%Pnﬁc:c(Pn)
l
{
{
!
;
¢
Bootstrap world : P,

precision = F(P, P,) = (p(c*, t) — ¢(c, t) )2
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Resampling heuristics (bootstrap, Efron 1979)

li PPN
Real world : p— L p,=——=7C=¢(P,)
5
{
{
{
{
/
.
Bootstrap world : p, ——P0E PW —=¢cW = ¢(PV

Fe(P, Pn) ~~ F(Pa, PY) = (0(2,1) — (@, 1))

1 n
resampling P,YV = Z Wid(x, vy with W~ M(n; nt...,nY
i=1
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Resampling heuristics (bootstrap, Efron 1979)

li PO
Real world : p— L p,=—=7C=¢(P,)
;
{
{
{
{
/
Bootstrap world : P, _Subsampling PW —=¢cW = ¢(P)

Fe(P, Pn) ~~s Fe(Pa, PYY) = (0(€, t) — (€%, 1))°

subsampling PW = Card Z (x,v;) Wwith I C{1,...,n} random

Resampling-based estimation of ephemerides Sylvain Arlot



Estimation methods
(o] lo}

The bootstrap for estimating the extrapolated error

k
Vk € {17 "78}3 DI(V) = (tll(k)7X/1(k))7' “7(tll(\lk),Xl(\lk))

where Wk, I8, 18 iid. ~u({1,...,n})
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The bootstrap for estimating the extrapolated error

k
Vk € {17 "78}3 DI(V) = (tll(k)7X/1(k))7' “7(tll(\lk),Xl(\lk))

where Wk, I8, 18 iid. ~u({1,...,n})

= Vke{l,...,B}, ¢k :E(D,(Vk))

= Vke{l,....B}, (9(@® 1),

= ¥t >0, region of possible positions: ((c(¥), ¢
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The block bootstrap

@ Implicit assumption of the bootstrap: i.i.d. data
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The block bootstrap

@ Implicit assumption of the bootstrap: i.i.d. data

= How to deal with dependence (between the t; and between
the errors)?
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The block bootstrap

@ Implicit assumption of the bootstrap: i.i.d. data

= How to deal with dependence (between the t; and between
the errors)?

@ Solution: the Block Bootstrap (e.g., Politis, 2003):

First, group data into blocks: (t;, Xi)icg, for 1 < ¢ < N,
Then, resample the blocks
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The block bootstrap

@ Implicit assumption of the bootstrap: i.i.d. data

= How to deal with dependence (between the t; and between
the errors)?

@ Solution: the Block Bootstrap (e.g., Politis, 2003):
First, group data into blocks: (ti, Xi)icg, for 1 < ¢ < N,
Then, resample the blocks

= dependences inside the blocks are caught by the block
bootstrap
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The block bootstrap

@ Implicit assumption of the bootstrap: i.i.d. data

= How to deal with dependence (between the t; and between
the errors)?

@ Solution: the Block Bootstrap (e.g., Politis, 2003):
First, group data into blocks: (ti, Xi)icg, for 1 < ¢ < N,
Then, resample the blocks

= dependences inside the blocks are caught by the block

bootstrap
@ Assumption: blocks are (almost) independent
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Data generation

e N = 3650 observation dates (tj)i<j<n, tiy1 — ti = 4 days,
from 1960 to 2000
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Validation on simulated data
0000000

Data generation

e N = 3650 observation dates (t;)i<j<n, tit+1 — ti = 4 days,
from 1960 to 2000

e Initial orbit: Vi, X(O) xO)(t;) = ¢(C, t;) where € estimated
from real data
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Validation on simulated data
0000000

Data generation

e N = 3650 observation dates (t;)i<j<n, tit+1 — ti = 4 days,
from 1960 to 2000

e Initial orbit: Vi, XI.(O) = x(O(t;) = (<, t;) where € estimated
from real data

@ Simulated k-th observation set: X,-(k) = XI.(O) + om(i)§i where
&1,...,&n are iid. N(0,1), M(i) is the month to which t;
belongs, 01,...,0m(n) are i.i.d. N (p, 72) with g = 0.15” and
7 =0.05".
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Validation on simulated data
0000000

Data generation

e N = 3650 observation dates (t;)i<j<n, tit+1 — ti = 4 days,
from 1960 to 2000

e Initial orbit: Vi, XI.(O) = x(O(t;) = (<, t;) where € estimated
from real data

@ Simulated k-th observation set: X,-(k) = XI.(O) + omi&i where
&1,...,&n are i.id. N(0,1), M(i) is the month to which t;
belongs, o1,...,om(n) are i.i.d. N(u, 72) with = 0.15” and
7 =0.05".

— estimate ¢(k) by least-squares = x(¥)(t) = p(c(¥), t)
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Validation on simulated data
0000000

Data generation

e N = 3650 observation dates (t;)i<j<n, tit+1 — ti = 4 days,
from 1960 to 2000

e Initial orbit: Vi, XI.(O) = x(O(t;) = (<, t;) where € estimated
from real data

@ Simulated k-th observation set: X,-(k) = XI.(O) + omi&i where
&1,...,&n are i.id. N(0,1), M(i) is the month to which t;
belongs, o1,...,om(n) are i.i.d. N(u, 72) with = 0.15” and
7 =0.05".

= estimate ¢(K) by least-squares = x(K)(t) = (c(¥), t)

= angular separation at time t: si(t) =

V(al9() = a()) cos (6©)(£)) )2 + (30)(£) — 50O (t) )?
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Validation on simulated data
0000000

Data generation

e N = 3650 observation dates (t;)i<j<n, tit+1 — ti = 4 days,
from 1960 to 2000
e Initial orbit: Vi, XI.(O) = x(O(t;) = (<, t;) where € estimated
from real data
@ Simulated k-th observation set: X,-(k) = XI.(O) + omi&i where
&1,...,&n are i.id. N(0,1), M(i) is the month to which t;
belongs, o1,...,om(n) are i.i.d. N(u, 72) with = 0.15” and
7 =10.05".
= estimate ¢(K) by least-squares = x(K)(t) = (c(¥), t)
= angular separation at time t: si(t) =

V(0®(1) — a®©)(1)) cos (50)(1)) ) + (54)(2) — 60)(1))’

= Dependent observations, of rather good quality
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Validation on simulated data
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Region of possible motions: Titan (TASS)
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Validation on simulated data
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Average size of the region of possible motions

1 K
75(6) = || ¢ D (5¢(0)?
k=1

se(t) =/ ((al(£) — a®(2)) cos (50)(£)) )2 + (809(t) — 50O)(t) )?

is the (angular) separation between the k-th orbit and the inital
orbit at time t
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Size of the region of possible motions: Mimas (TASS)
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Validation on simulated data
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Size of the region of possible motions: Titan (TASS)
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Validation on simulated data
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Principle of simulations
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Validation on simulated data
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Performance of MCCM: Mimas (B = 200), TASS
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Validation on simulated data
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Performance of MCO: Mimas (B = 200), TASS
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Validation on simulated data
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Performance of the Bootstrap: Mimas (B = 200), TASS
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Validation on simulated data
[ eJe]e}

Correlation coefficient and multiplying factor (TASS)

correlation coefficient ps = corr(a¥m(t), oM (1))

multiplying factor KS

Mimas Titan
Method ps KS ps KS
MCCM 0.511 | 1.876 || 0.955 | 0.790
MCO 0.999 | 1.001 || 0.994 | 0.966
Bootstrap 1.000 | 1.458 || 0.999 | 1.456
Block Bootstrap | 0.999 | 1.484 | 0.999 | 1.441

(B =200 ; only for one simulated reference orbit)
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Validation on simulated data
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Comments

@ MCO shouldn’t / can't be used on real data:
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Validation on simulated data
(o] Jele}

Comments

@ MCO shouldn’t / can't be used on real data:

o Data generation clearly in favour of MCO in the simulations
(noise really Gaussian, constant variance)

o Unknown noise-level(s), difficult to estimate precisely

o Inhomogeneity of real observations (different coordinates,
different kinds of observations) = can't easily “add” noise

@ Problem of choosing the blocks:

e Dependent blocks = slight overestimation of the error
e Too large blocks = more variable estimation
o Question: when are two observations independent?

e Multiplying factor for the bootstrap € [1.4;1.5]: why? how
general is this?
ks seems much closer to 1 for NUMINT
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Validation on simulated data
[e]e] e}

How many resamples do we need? ps (TASS)
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Validation on simulated data
[e]e]e] ]

How many resamples do we need? ms (TASS)

facteur de proportionnalité
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Application on real data
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Application: old vs. recent observations
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Application on real data
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Precision of old observations: Mimas (TASS)

Mimas
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Application on real data
[e]e] lelele]le]e]

Precision of recent observations: Mimas (TASS)

Mimas
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Application on real data
[e]e]e] lelele]e]

Precision when using all the observations: Mimas (TASS)
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Application on real data
[ee]e]e] Telele]

Precision of old observations: Titan (TASS)
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Application on real data
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Precision of recent observations: Titan (TASS)
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Application on real data
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Precision when using all the observations: Titan (TASS)
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Application on real data
O000000e

Precision when using all the observations: Japet (TASS)
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Conclusion

Astronomical conclusions

@ qualitative differences between satellites:
fast motion (Mimas) / slow motion (Titan)
main term of the mean longitude

@ accurate observations on a short period can be less useful
than noisy observations on a long period
= old observations indeed are useful

@ Other applications (Desmars’ Ph.D., 2009):

o expected improvement of reducing errors: Gaia mission (a few
observations very accurate + improvement of the accuracy of
past observations)

e asteroids: Toutatis (time-space accuracy of close approaches
to Earth)
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Conclusion

tatis: will December, 12th be the end of the world?
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Conclusion

Mathematical conclusions

@ Bootstrap: versatile and robust method for estimating the
extrapolated error

@ Building blocks = handling dependence between observations

@ Open problems:
e Multiplying factor ks
e Formal proofs: known results in simpler statistical frameworks

only

o Theoretical link between sensitivity to initial conditions and
resampling-based estimators of extrapolated error

o What about other resampling methods (e.g., subsampling)?
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Conclusion

Expected improvement of precision thanks to Gaia results:

Mimas

Mimas (BR)
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Conclusion

Expected improvement of precision thanks to Gaia results:

Encelade
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Conclusion

Toutatis orbit

Toutatis
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Conclusion

Toutatis: time-space precision of close approach to Earth

on December, 12th 2012
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Conclusion

Toutatis: time-space precision of close approach to Earth

on October 2322
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Conclusion

Results with NUMINT instead of TASS (B = 30 samples)
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Conclusion

Results with NUMINT instead of TASS (B = 30 samples)

Mimas Titan
Method Ps KS Ps KS
MCO 0.989 | 0.848 || 0.997 | 0.723
Bootstrap 0.999 | 1.041 || 0.997 | 0.832
Block Bootstrap | 0.981 | 0.999 || 0.997 | 0.842
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