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1-D signal (example)
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1-D signal (example): Find abrupt changes in the mean
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oe

Estimation rather than identification

i = = =signal:Y |]
= Reg. func. s

With a finite sample, it is
impossible to recover some
change-points in noisy regions.

Purpose:
@ Estimate the regression function.

@ Use the quadratic loss £(u, v) = ||u — v/||*.

Rk: Without too strong noise, recover all change-points.
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Detect abrupt changes. ..

General purposes:
@ Detect changes in the whole distribution (not only in the
mean)
o Mean:

o homoscedastic: Birgé & Massart (2001), Comte & Rozenholc
(2002, 2004), Baraud, Giraud & Huet (2010)...
o heteroscedastic: A. & Celisse (2011)

e Mean and variance: Picard et al. (2007)
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Detect abrupt changes. ..

General purposes:
@ Detect changes in the whole distribution (not only in the
mean)
o Mean:

o homoscedastic: Birgé & Massart (2001), Comte & Rozenholc
(2002, 2004), Baraud, Giraud & Huet (2010)...
o heteroscedastic: A. & Celisse (2011)

e Mean and variance: Picard et al. (2007)

@ High-dimensional data of different nature:

o Vectorial: measures in RY, curves (sound recordings,. . .)
e Non vectorial: phenotypic data, graphs, DNA sequence,. ..
e Both vectorial and non vectorial data.
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Detect abrupt changes. ..

General purposes:
@ Detect changes in the whole distribution (not only in the
mean)
o Mean:

o homoscedastic: Birgé & Massart (2001), Comte & Rozenholc
(2002, 2004), Baraud, Giraud & Huet (2010)...
o heteroscedastic: A. & Celisse (2011)

e Mean and variance: Picard et al. (2007)

@ High-dimensional data of different nature:

o Vectorial: measures in RY, curves (sound recordings,. . .)
e Non vectorial: phenotypic data, graphs, DNA sequence,. ..
e Both vectorial and non vectorial data.

© Efficient algorithm allowing to deal with large data sets
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Kernel and Reproducing Kernel Hilbert Space (RKHS)

e A’: initial input space.
@ Xi,...,X,: initial observations.
® k(-,-): X x X = R: reproducing kernel (#: RKHS).
o ¢(-): X = Hs.t. ¢(x) = k(x,-): canonical feature map.
T OX)=k( ,X)
X .
v g .
(original space) ~ Mapping to / ' H (RKHS)

a Hilbert space
Asset:

Enables to work with high-dimensional heterogeneous data.

Rk:
Estimators depend on the Gram matrix K := { k(X;, Xj) };-; i<

Kernel change-point detection Sylvain Arlot



Framework
o] ]

Model

Mapping of the initial data
Vi<i<n, Y;i=¢(X)eH.

— (t1, Y1), ..., (tn, Yn) € [0,1] x H :  independent .
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Model

V1<i<n, Yi=s'+e €H,
where

@ s’ € H: mean element of Py, (distribution of Xj)

(st, F)y = Ex; [(6(X), F)y], VFEH.

o Vi =Y —s withE[e;] =0and v; :=E [H&H?{] .
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where

@ s’ € H: mean element of Py, (distribution of Xj)
<57(7 f)?—[ :]Exi[<¢(xi)’ f>7-[]’ Vi € H.
o Vi =Y —s withE[e;] =0and v; :=E [H&H?{] .

Assumptions
(1) max; || Yill, <M as. (Db).

Q max; Vi < Vmax (Vmax) .
Q s*=(s{,...,s;) € H": piecewise constant.

2 2
15 = pll™ o= 207 IS — meillyy

Goal: — Estimate s* to recover change-points.
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L east-squares estimator

e Empirical risk minimizer over S, (= model):

< s = 1 1o
Sm € arg min R,(u) where R,(u) = - |u—YI|?= - Z lui — Yill3, -
i=1

UGSm

@ Regressogram:

~ ~ 1
5 = ]]_ == Y"'
Sm Z,B)\A B Card{t,-e)\}é;\

AEM
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Model selection

Models:
o M, = {m, segmentation of {1,...,n}}, ~ Dn = Card(m).
ome {h=[0,tm], b= (tm,tm),--» Ipp = (tmp, 1,1}
© Spp={p: (t1,...,ts) = H, piecewise const. on all A € m}

< subspace of H".

Strategy:

(Sm)mEMn — (/s\m)me./\/ln — /S\,',‘q 77

Oracle model: m* € argmin .\, ||s* — Sl
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Model selection

Models:
o M, = {m, segmentation of {1,...,n}}, ~ Dn = Card(m).
ome {h=[0,tm], b= (tm,tm),--» Ipp = (tmp, 1,1}
© Spp={p: (t1,...,ts) = H, piecewise const. on all A € m}

< subspace of H".

Strategy:

(Sm)mEMn — (/s\m)me./\/ln — /S\,'ﬁ 77

Oracle model: m* € argmin .\, ||s* — Sl
Goal: Oracle inequality (in expectation, or with large probability):

Is* =3all? < € inf {lIs* ~Snl* + R(m.n) }
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Which change-points? (D known)
@00

Choose (D — 1) change-points. ..

Assumption: (Harchaoui & Cappé (2007))
The number (D — 1) of change-points is known.
Question:

Find the locations of the (D — 1) change-points? (D is given).

Strategy:

The “best” segmentation in D pieces is obtained by applying the
ERM algorithm over Up _p Sm :

ERM algorithm:

’/ﬁERM(D) = argmin 7/?\,,, (/S\m) .
m|Dm=D

Rk: Based on dynamic programming.
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Which change-points? (D known)
oeo

Quality of the segmentations
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Which change-points? (D known)
(e]e] J

Elementary calculations

Ideal criterion: (My: orthog. proj. operator onto S,,)
Is* =3ml|? = lIs* = Mms™[|* + M|
Empirical risk:

~ * * * 2
1Y =5mll? = [Is* = Mms™ (> = [Nz |* +2/((1 = Nm)s*, &) + el
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Which change-points? (D known)
(e]e] J

Elementary calculations

Ideal criterion: (My: orthog. proj. operator onto S,,)
Is* =3ml|? = lIs* = Mms™[|* + M|
Empirical risk:

1Y = Sll* = I8 = Mms™[1* = M |* +2((1 = Mm)s™, €) + el

Expectations (va = ﬁu) 2iea Vi)
E [[1s" = %nl?] = 15" = Ms”* + 3" 11
AEM

E[IIY =3l | = lIs* = NMms*P = 3" v + Cst
AEM

Conclusion:

— ERM prefers models with large >, va (overfitting).
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How many change-points?
@00

Choose the number of change-points

From {/S\,’,\,D }D, choose D amounts to choose the “best model”.
Ideal penalty:

m* € argmin ||s* — 5,

meM
= argmin { ||Y _g\mH2 + Pe”id(m)} )
meM

with  penyy(m) =: 2 ||Mpell> — 2 (1 — Mpy)s*, &).
Strategy

@ Concentration inequalities for linear and quadratic terms.

@ Derive a tight upper bound pen > pen;q with high probability.
Previous work:
Birgé & Massart (2001): Gaussian assumption + real valued
functions.
— cannot be extended to Hilbert framework.



How many change-points?
(o] T}

Concentration of the linear term

Theorem (Linear term)

Assume (Db)—(Vmax) hold true.
Then, for every segmentation m € M, for every x > 0 with
probability at least 1 — 2e™%,

4M?
’<|_|m5*—5*, €>| SHHI_ImS*_S*Hz—F (Vmax +—>X 7

0 3

for every 6 > 0.
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How many change-points?
ooe

Concentration of the quadratic term

Theorem (Quadratic term)
Assume (Db)—Vmax), and

M2
dk>1, 0<— <miny (Vmin) .
K ]
Then, for every m € M,, x >0, and 6 € (0,1],
IMme > = E [ IMme]?] | < 6F [IMms* = 32| +672L(<) Vinanx

—X

with probability at least 1 — 2e™, where L(k) is a constant.

Idea of the proof:
@ Pinelis-Sakhanenko's inequality (HZ;@\ €iHH)-

@ Bernstein's inequality (upper bounding moments)
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ts? (D known) How many change-points?
slele] lo)

Oracle inequality

Assume (Db)-(Vmin)-(Vmax) and define
_ . J1 ~ 12
m € argmin | — |Y —Sm||“ + pen(m) ¢ ,

where pen(m) = ""‘axDm [Cl In ( ) + Cz} for constants
Ci, G > 0. Then, for every x > 1, with probability at least
1—2e7%,

Ao VinaxX

1 N ) 1 —~
= ||s* — s,;,”2 < Ajinf { = ||s* — sm||2 + pen(m)} + =,
n m | n n

where A1 > 1 and Ay > 0 are absolute constants.

. ’ 2
In Birgé & Massart (2001), pen(m) = Z-Lm [cl In (DL,,,> + 62}.



How many change-points?
oe

Model selection procedure

m XDm
pen(m) = VaT [Cl In <Dn> + C2:| = pen(Dp,) .

Algorithm
©Q For every 1 < D < Dpax,

Mip € argmin {||Y—§m||2}

m, Dm=

@ Define
B—argmln{HY stH Vm;XD [C1In(D>+C2}}

where Ci, (;: computed by simulation experiments.
© Final estimator:

o~

Sm —. S,’ﬁf).
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Empirical assessment
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Changes in the distribution (synthetic data)

Description:

@ n=1000, D* —1=9, Np = 100.

@ In each segment, observations generated according to one
distribution within a pool of 10 distributions with same mean
and variance.

© Kernel-based approach enables to distinguish them (higher
order moments)

O Gaussian kernel: kn(x,y) = exp | — |\x—y|\2/(2h2)].

Sylvain Arlot
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Empirical assessment
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Changes in the distribution (synthetic data), cont.

Results
0.55 - 0.025
—Emp. risk
—Crit.
0.5} True risk 0.02
0.015
0.457
0.01
0.4 = 0.005
0 5 10 15 20 25 30 35 40 % 200 400 600 800 1000

Hausdorff distance: 0.053 £ 0.006
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Empirical assessment
ooe

Changes in the distribution (synthetic data), cont.

Results: estimated number of change-points
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Empirical assessment
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“Le grand échiquier”, 70s-80s French talk show

music applause speech

@ Audio and video recordings.

@ Audio: different situations can be distinguished from sound
recordings (music, applause, speech,...).

@ Video: different video scenes can be distinguished by their
backgrounds or specific actions of people (clapping hands,
discussing,. . .).
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Empirical assessment
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Audio signal

Description:
e n=500, D* —1=4.
@ At each t;, one observes a multivariate vector of dimension 12.
e Gaussian kernel: kn(x,y) = exp {— l[x — y|? /(2h2)]
Results: Hausdorff distance 0.079 + 0.006

Ermp. sk
eric
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Empirical assessment
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Video sequence

Description:
e n=10000, D* —1 = 4.
@ Each image summarized by a histogram with 1024 bins.
o 2 kernel: ka(x,y) = S0, G,

Results: Hausdorff distance 0.093 & 0.007

i 5 10 15 20 25 30 35 40 200 400 600 800 1000
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Empirical assessment
[efe]e] )

Conclusion

Take-home message:

@ Change-point detection algorithm for possibly
high-dimensional or complex data

@ Data-driven choice of the number of change-points
e Non-asymptotic oracle inequality (guarantee on the risk)

@ Experiments: changes in less usual properties of the
distribution, audio or video data
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Empirical assessment
[efe]e] )

Conclusion

Take-home message:

@ Change-point detection algorithm for possibly
high-dimensional or complex data

@ Data-driven choice of the number of change-points
e Non-asymptotic oracle inequality (guarantee on the risk)

@ Experiments: changes in less usual properties of the
distribution, audio or video data

Open questions:
@ Influence of the choice of kernel
@ Data-driven choice of the kernel
© Relax the assumption on the variance

© Extend our model selection theorem to other regression
settings
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