Analysis of some purely random forests

t1'2

Sylvain Arlot!? (joint work with Robin Genuer®)

LUniversité Paris-Sud = Paris-Saclay
2Inria Saclay, Celeste project-team

3ISPED, Université Bordeaux 2

Séminaire Palaisien
December 2, 2019

References:  arXiv:1407.3939 arXiv:1604.01515

Analysis of some purely random forests Sylvain Arlot



Outline

@ Random forests
© Purely random forests
© Toy forests in one dimension

@ Hold-out random forests

Analysis of some purely random forests Sylvain Arlot



Random forests

Outline

@ Random forests

Analysis of some purely random forests Sylvain Arlot
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Regression: data (X1, Y1),..., (X, Ya)
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Random forests
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Goal: find the signal (denoising)
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Regression

o Data D,: (X1, Y1), -, (Xn, Ya) €ERI xR (iid. ~ P)
Y, = S*(X,') + &
with s*(X) = E[Y | X] (regression function).

@ Goal: learn f measurable function X — R s.t. the quadratic
risk

Ex vyp | (F(X) = *(X))’]

is minimal.
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Regression tree (Breiman et al, 1984)

Tree: piecewise-constant

predictor, obtained by partitioning
recursively RY.

Restriction: splits parallel to the
axes.
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Regression tree (Breiman et al, 1984)

Tree: piecewise-constant
predictor, obtained by partitioning
recursively RY.

Restriction: splits parallel to the
axes.

© Choice of the partition U
(tree structure)
Usually, at each step, one
looks for the best split of the
data into two groups
(minimize sum of
within-group variances) Dj,.
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Regression tree (Breiman et al, 1984)

Tree: piecewise-constant
predictor, obtained by partitioning
recursively RY.

Restriction: splits parallel to the
axes.

@ Choice of the partition U
(tree structure)

@ For each A € U (tree leaf),

A

choice of the estimation )
of s*(x) when x € A.

X

Here, 5y = Y average of
the (Yi)XiE)\-
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Random forest (Breiman, 2001)

Definition (Random forest (Breiman, 2001))

{§@j, 1<j< q} collection of tree predictors, (©;)1<j<q i.i.d. r.v.
independent from D,,.

Random forest predictor s obtained by aggregating the tree
collection.

@ ensemble method (Dietterich, 1999, 2000)

@ powerful statistical learning algorithm, for both classification
and regression.
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Bagging (“bootstrap aggregating”)

@ Bootstrap (Efron, 1979): draw n i.i.d. r.v., uniform over
{(Xi,Yi)/i=1,...,n} (sampling with replacement)
= resample D?

o Bootstrapping a tree: 32, = Sireo(D2)

@ Bagging: bootstrap (g independent resamples) then
aggregation

C1E
E "~ a./
Sbagglng - ree
q =1
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Random Forest-Random Inputs (Breiman, 2001)

Definition (RI tree)

In a Rl tree, at each node, mtry variables are randomly chosen.
Then, the best cut direction is chosen only among the chosen
variables.

Definition (Random forest RI)

A random forest Rl (RF-RI) is obtained by aggregating RI trees
built on independent bootstrap resamples.

RF-RI & bagging on Rl trees
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Random Forest-Random Inputs

Dn
BOOtstrap / \
b,1 b,2
n n e e

Dqu
Rl tree
So, So, ... ... §@q
Aggregatic\\ /

SRF—RI
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Theoretical results on RF-RI

@ Few theoretical results on Breiman's original RF-RI

@ Most results:
e focus on a specific part of the algorithm (resampling, split
criterion),
o modify the algorithm (eg, subsampling instead of resampling)
e make strong assumptions on s*
@ References (see survey paper by Biau and Scornet, 2016):
Mentch & Hooker (2014), Scornet, Biau & Vert (2015),
Wager & Athey (2015), Genuer & Poggi (2019), ...
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Theoretical results on RF-RI

@ Few theoretical results on Breiman's original RF-RI

@ Most results:
e focus on a specific part of the algorithm (resampling, split
criterion),
o modify the algorithm (eg, subsampling instead of resampling)
e make strong assumptions on s*
@ References (see survey paper by Biau and Scornet, 2016):
Mentch & Hooker (2014), Scornet, Biau & Vert (2015),
Wager & Athey (2015), Genuer & Poggi (2019), ...

= Here, we consider simplified RF models, for which a precise
analysis is possible: purely random forests
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© Purely random forests
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Purely random forests

Definition (Purely random tree)
=) Ya(Dn)lex
AeU

where Y)(D,) is the average of (Yi)x.ex, (x,v;)ep, and the
partition U is independent from D,,.

Definition (Purely random forest)

with UL, ..., U9 i.i.d., independent from D,.
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Purely random forests

Definition (Purely random forest)
17 1

S0 = = > 5(x) = =
q q“

with U, ..., U9 i.i.d., independent from D,.

Example (“hold-out RF" model): use some extra data D;, for
building the trees: 1V = Ur;(D,”)) (can be done by splitting the
sample into two subsamples D, and D)).
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Purely random forests

Definition (Purely random forest)

1 q
sx)==)» 5
=1

with U, ..., U9 i.i.d., independent from D,.

Example (“hold-out RF" model): use some extra data D;, for
building the trees: 1V = Ur;(D,”)) (can be done by splitting the
sample into two subsamples D, and D)).

A From now on, D, is the sample used for computing
(Yx(Dn))reu, and we assume its size is n.
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Purely random forests
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Purely random forests

Ut U2 . e U9 Independent from D,

Using Dp, with or without resampling

/S\[Ul §U2 e e E[Uq
Aggregatio\
SPRF
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Purely random forests
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Purely random forests: theory

Consistency: Biau, Devroye & Lugosi (2008), Scornet (2014)

Rates of convergence: Breiman (2004), Biau (2012)

Some adaptivity to dimension reduction (sparse framework):
Biau (2012)

Forests decrease the estimation error (Biau, 2012; Genuer,
2012)

= What about approximation error?

Almost the same for a forest and a tree?
@ (see also Mourtada, Gaiffas & Scornet, 2017 & 2019)
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Purely random forests
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Risk of a single tree (regressogram)

Given the partition U, regressogram estimator

su(x) == Z 7/\]lxe)\
AeU

where Y), is the average of (Y;)x.cx.

Sy € argmin{lzn:(yi — f(X,-))Z}

feSy n =1

where Sy is the vector space of functions which are constant over
each A € U.

Define:

Su(x) == > Baleer  where By ;= E[s"(X)| X € )] .
AelU

= 3y € argminfes[UE{(f(X) — 5*(X))2} and 5y(x) = E[sy(x) | U]



Purely random forests
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Risk decomposition: single tree

E[(30(X) - 5*(X))?]
= IE[(§U(X) - s*(X))z} + E[(Eru(X) - §ru(X))2]

= Approximation error + Estimation error

If s* is smooth, X ~ U([0,1]) and U regular partition into D

pieces, then
1

E|(5u(X) - s*(X)’] >

If var(Y | X) = 02 does not depend on X, then

E[(su(X) - 50(X))*] ~ oD

n
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Approximation and estimation errors
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Purely random forests
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Risk decomposition: purely random forest

(W)1<j<q finite partitions, iid. ~U

1 q
Estimator (forest): Spra(x) = p Z?Uj(x)
j=1

Ideal forest: Spra(x) ==

Quadratic risk decomposition (given X = x)
E[Gun-+(x) = 50| = E[(Gn-a() = 5"00)’]
+ B[ (Syre-a(x) = Spr-4(x))?] + dpne-a(x)

Approximation error: By o(x) = E{(%lmq(x) — 5*(x))2}

Analysis of some purely random forests Sylvain Arlot



Purely random forests
0000®

Approximation error decomposition (given X = x)

By,q(x) = Buco(x) +

2
where By oo(x) := (IE [3u(x)] — s*(x))
and  Vy(x) := var(Sy(x))

Bii.0o(x) is the approx. error of the infinite forest: 3y o (x) := E[3y(x)]
to be compared with the approximation error of a single tree

BMJ(X) = Bz,{po(X) + Vu(X)
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© Toy forests in one dimension
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Toy forests in one dimension

Assume: X = [0,1) and X uniform over [0, 1)

U ~ U defined by:

o= (05T R - 5T

where T has uniform distribution over [0, 1].

T/k T/k Tk T/K

leat— lex— Ll g —
1 1 1 1
|4 | o | |4

|
= = [ [
0. 1/ky 2/kax 3/K
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Interpretation of the ideal infinite forest

Proposition (A. & Genuer, 2014)

For any x € [%, 1-— %] , the ideal infinite
forest at x satisfies:

Buco(x) = (5 * hi)(x) = /01 S*(£)hi(x — £) dt

h_k(u)

where

k(L—ku) ifO<u<t
hi(u) = S k(L + ku) if =3 <u<0
1
k

o
=
=
WV

-1/ 0 1/k
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Analysis of the approximation error

(H2)  s* twice differentiable over (0,1) and s* bounded

Taylor-Lagrange formula: for every t € (0, 1), some ¢ x € (0,1)
exists such that

s*(t) — s*(x) = s (x)(t — x) + %s*”(cnx)(t — x)2

Therefore,

Bu(x) — 5*(x) —k/ Vx_l(s ) — s*(x)) dt

+VX—1
s7(x) 1
_ Vi—Z)+R
p ( 2) + Ri(x)
where Ry(x fX+V’X‘_1 s (cex)(t — x)?dt
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Analysis of the approximation error

(Bl == 0l) < v,

Proposition (A. & Genuer, 2014)

Assuming (H2), for every x € H, 1— H ,
| O
Bu;(:oy’l(X) k—;:-oo p Bu;(:oy7 (X) < F
-k O 1-% 0
/ Buma (x5 / Buggr o) dx < 13

Rate k—* is tight assuming:
(H3)  s* three times differentiable over (0,1) and s*"” bounded
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Estimation error

General fact (Jensen's inequality):

E[(50,00(X) = 30,00(X))*| <E[(Bu(X) = 5u(X))’]
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Estimation error

General fact (Jensen's inequality):

E[(50,00(X) = 30,00(X))*| <E[(Bu(X) = 5u(X))’]

For the toy forest, without any resampling for computing labels
and assuming that var(Y|X) = o2

E[(EU(X) —§‘U(X))2] ~ szvk
E[(glu,oo(x) - §U700(X))2] ~ iaik

(A. & Genuer, 2016)

Analysis of some purely random forests Sylvain Arlot



Toy forests
00000

Summary: risk analysis

Single tree Infinite forest
(g=1) (g =00)
. w2l Loalstx) o’k st x) | 20%k
E|(Sora(x) =" ()| & 5+ e
. _ 5*/(X)2 . B S*/I(X)Z
where a(s*,x) = 15 and o(s*,x) = 142

Assumptions:
e x € (0,1) far from boundary
e (H3) s* three times differentiable over (0,1) and s* bounded
e X uniform over [0, 1]
o var(Y|X) =02
@ no resampling for computing labels
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Rates of convergence

Corollary: risk convergence rates (far from boundaries, with k = k
optimal):

-2/3

Tree ris n

>0
<O n*% =  minimax C2

k
Infinite forest risk

Remarks:

‘

o g > [(kX)? is sufficient to get an “infinite” forest

@ with subsampling a out of n for computing labels:
o : o2k o2k
estimation error of a single tree =~ instead of =%,
no change for infinite forest
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@ Hold-out random forests
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Hold-out random forests
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Definition (Biau, 2012)

Split D, into Dp, and D,

Ut U2 w9 RI partitions, using Dy,

Using Dp,, no resampling here

/S\Ul §U2 oo /S\Uq
Aggregatik /
SHO-RF

= purely random forest
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Numerical experiments: framework

@ Data generation:
X ~U(01)%) Y =57 (X) + e
gi ~ N(0,0?) 0?=1/16

1
s ixe[0,1]7 = o [10sin(mx1%0) + 20(x3 — 0.5)% + 10x4 + 56
e Data split: n1 =1280 np, =25600
@ Forests definition:
nodesize =1
k € {25,20 27 281
“Large” forests are made of g = k trees.

e Compute integrated approximation/estimation errors
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Numerical experiments: results (d = 5)

Single tree Large forest
No bootstrap 0.13 N 1.040%k  0.13 N 1.0402k
mtry = d k0-17 Ny k0-17 Ny
Bootstrap ~ 0.14  1.060%k 0.15  0.080%k
mtry = d k017 Ny k0-29 Ny
No bootstrap  0.23 N 1.010%k  0.06 N 0.0602k
mtry = Ld/3J k0419 no k0.31 no
Bootstrap 0.25 L+ 1.020%2k  0.06 n 0.0502k
mtry = Ld/?,J k0-20 Ny k034 Ny
2 4
——— ~0.286 ——— =~ 0.444
d+2 d+4
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Numerical experiments: results (d = 10)

Single tree Large forest
No bootstrap 0.11 N 1.030%k  0.11 N 1.0302k
mtry — d k012 n2 k012 n2
Bootstrap ~ 0.11  1.050%k  0.10 N 0.040%k
mtry = d kO0.11 no k0-19 no
No bootstrap  0.21 N 1.080%k  0.08 N 0.0402%k
mtry — Ld/3J k0418 no k0.25 no
Bootstrap  0.20 N 1.050%2k  0.07 N 0.0302k
mtry = Ld/?,J k0-16 Ny k0-26 Ny
2 4
= ~0.167 —— ~0.286
d+2 d+4
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Conclusion

@ Forests improve the order of magnitude of the approximation
error, compared to a single tree

@ Estimation error seems to change only by a constant factor
(at least for toy forests);
not contradictory with literature: here, we fix k; different
picture if nodesize is fixed (+subsampling)

@ Randomization:
randomization of labels seems to have no impact;
strong impact of randomization of partitions (hold-out RF:
both bootstrap and mtry)
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Approximation error: generalization

o General result on the approximation error under (H2)/(H3):
e.g., roughly, if x is centered in its cell (on average over U),

tree approx. error o< Mo infinite forest approx. error oc M3

where M = average square distance from x to the boundary
of its cell (oc k=2 for toy forests)

Analysis of some purely random forests Sylvain Arlot



Conclusion
fo] To)

Approximation error: generalization

o General result on the approximation error under (H2)/(H3):
e.g., roughly, if x is centered in its cell (on average over U),

tree approx. error o< Mo infinite forest approx. error oc M3

where M = average square distance from x to the boundary
of its cell (oc k=2 for toy forests)

e toy forests in dimension d: approximation error o< k=2/9 vs.
k—*/4 (infinite forest reaches minimax C? rates)

@ purely uniformly random forests in dimension 1 (split a random
cell, chosen with probability equal to its volume): = toy

@ balanced purely random forests (full binary tree, uniform
splits) in dimension d: k=< (tree) vs. k—2 (forest) where
o = —log, (1 — %) = not minimax rates!

e Mondrian forests (Mourtada, Gaiffas & Scornet 2017 & 2019).
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Open problems / future work

@ Theory on approximation error of hold-out RF?
= understand the typical shape of the cell that contains x,
for a Rl tree
(x centered on average? square distance to boundary?)

@ Theory on estimation error of other models (beyond toy and
PURF)?
of hold-out RF?

e Extensive numerical experiments? (other functions s*, ...)
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