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© Toy forests

@ Hold-out random forests
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Random forests
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Regression: data (X1, Y1),..., (X, Ya)
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Random forests
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Goal: find the signal (denoising)

4,
°
3t ° ¢ .
° * .
° ‘.0. °
L [ [ [ )
2 L4 ° °
° e o™ S0 N
o ©®eo % el o.. °
¢ S oo, v 0o o° ° °
150 oo, ."3'.---.-.-.-"~}Q ° o®e
° - L) - [ )
% - _-“'-‘f ..og~ e ®, & ° .. D LN *
) A v g :. ° * e % ¢ T
LN ° ° ° ° o0
o % PR o° ° ‘e o %
1!. ° ° ® oo
_ ° .
s . y
° ° ®
-2 °
° °
3L
L L L L L L L L L J

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Analysis of purely random forests Sylvain Arlot



Random forests
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Regression

e Data D,: (X1, Y1),...,(Xn, Yn) ERP xR (iid. ~ P)
Y,' = S*(X,') + €

with s*(X) = E[Y| X] (regression function).
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Random forests
ooe

Regression

e Data D,: (X1, Y1),...,(Xn, Yn) ERP xR (iid. ~ P)
Y,' = S*(X,') + €

with s*(X) = E[Y| X] (regression function).

@ Goal: learn f measurable function X — R s.t. the quadratic
risk )
Eox.y)~p | (F(X) = s*(X))’]

is minimal.

Analysis of purely random forests Sylvain Arlot
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Regression tree (Breiman et al, 1984)

Tree: piecewise-constant

predictor, obtained by partitioning
recursively RP.

Restriction: splits parallel to the
axes.
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Random forests
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Regression tree (Breiman et al, 1984)

Tree: piecewise-constant
predictor, obtained by partitioning
recursively RP.

Restriction: splits parallel to the
axes.

© Choice of the partition U
(tree structure)
Usually, at each step, one
looks for the best split of the
data into two groups
(minimize sum of
within-group variances) D,,.
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Random forests
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Regression tree (Breiman et al, 1984)

Tree: piecewise-constant
predictor, obtained by partitioning
recursively RP.

Restriction: splits parallel to the
axes.

© Choice of the partition U
(tree structure)

@ For each A € U (tree leaf),
choice of the estimation )
of s*(x) when x € A.
Here, E,\ =Y, average of

the (Yi)X;EA-
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Random forest (Breiman, 2001)

Definition (Random forest (Breiman, 2001))

{?@j, 1<j< q} collection of tree predictors, (©;)1<j<q i.i.d. r.v.
independent from D,,.

Random forest predictor s obtained by aggregating the tree
collection.

@ ensemble method (Dietterich, 1999, 2000)

@ powerful statistical learning algorithm, for both classification
and regression.
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Random forests
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Bagging (“bootstrap aggregating”)

@ Bootstrap (Efron, 1979): draw n i.i.d. r.v., uniform over
{(Xi,Yi)/i=1,...,n} (sampling with replacement)
= resample D?

@ Bootstrapping a tree: stree stree(Db)

e Bagging: bootstrap (g independent resamples) then
aggregation
Sbagging(x) = stree( )

qjl
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Random forests
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Random Forest-Random Inputs (Breiman, 2001)

Definition (RI tree)

In a Rl tree, at each node, mtry variables are randomly chosen.
Then, the best cut direction is chosen only among the chosen
variables.

Definition (Random forest RI)

A random forest Rl (RF-RI) is obtained by aggregating RI trees
built on independent bootstrap resamples.

RF-RI & bagging on Rl trees
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Random forests
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Random Forest-Random Inputs

Dn
BOOtstrap / \
b,1 b,2
n n e e

Dqu
Rl tree
So, So, ... ... §@q
Aggregatic\\ /

SRF—RI
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Random forests
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Example of application of random forests: Kinect

\

J \
Depth image !l = depth comparison features at each pixel

n {'l} 4]
OO LEOLLN

hﬂﬂ!}ﬂ LA AAANAAAN AN

b“ 'l :
= body part at each pixel '!«\ = body part positions .. = ---

Figures from Shotton et al (2011)
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Theoretical results on RF-RI

@ Few theoretical results on Breiman's original RF-RI

@ Most results:
o focus on a specific part of the algorithm (resampling, split
criterion),
o modify the algorithm (eg, subsampling instead of resampling)
e make strong assumptions on s*
o References (see survey paper by Biau and Scornet, 2016):
Scornet, Biau & Vert (2015), Mentch & Hooker (2016),
Wager & Athey (2018), Genuer & Poggi (2019), ...
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Theoretical results on RF-RI

@ Few theoretical results on Breiman's original RF-RI

@ Most results:
o focus on a specific part of the algorithm (resampling, split
criterion),
o modify the algorithm (eg, subsampling instead of resampling)
e make strong assumptions on s*
o References (see survey paper by Biau and Scornet, 2016):
Scornet, Biau & Vert (2015), Mentch & Hooker (2016),
Wager & Athey (2018), Genuer & Poggi (2019), ...

= Here, we consider simplified RF models, for which a precise
analysis is possible: purely random forests
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Purely random forests
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© Purely random forests
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Purely random forests
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Purely random forests

Definition (Purely random tree)
=) Ya(Dn)lex
AeU

where Y)(D,) is the average of (Yi)x.ex, (x,v;)ep, and the
partition U is independent from D,,.

Definition (Purely random forest)

with UL, ..., U9 i.i.d., independent from D,.
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Purely random forests
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Purely random forests

Definition (Purely random forest)
17 1

S0 = = > 5(x) = =
q q“

with U, ..., U9 i.i.d., independent from D,.

Example (“hold-out RF" model): use some extra data D;, for
building the trees: 1V = Ur;(D,”)) (can be done by splitting the
sample into two subsamples D, and D)).
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Purely random forests
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Purely random forests

Definition (Purely random forest)

1 q
sx)==)» 5
=1

with U, ..., U9 i.i.d., independent from D,.

Example (“hold-out RF" model): use some extra data D;, for
building the trees: 1V = Ur;(D,”)) (can be done by splitting the
sample into two subsamples D, and D)).

A From now on, D, is the sample used for computing
(Yx(Dn))reu, and we assume its size is n.
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Purely random forests
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Purely random forests

Ut U2 . e U9 Independent from D,

Using Dp, with or without resampling

/S\[Ul §U2 e e E[Uq
Aggregatio\
SPRF
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Purely random forests
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Purely random forests: theory

e Consistency: Biau, Devroye & Lugosi (2008), Scornet (2014)

@ Rates of convergence: Breiman (2004), Biau (2012),
Klusowski (2018), Duroux & Scornet (2018), Mourtada,
Gaiffas & Scornet (2017 & 2020)

@ Some adaptivity to dimension reduction (sparse framework):
Biau (2012), Klusowski (2018)

o Forests decrease the estimation error (Biau, 2012; Genuer,
2012)
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Purely random forests
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Purely random forests: theory

e Consistency: Biau, Devroye & Lugosi (2008), Scornet (2014)

@ Rates of convergence: Breiman (2004), Biau (2012),
Klusowski (2018), Duroux & Scornet (2018), Mourtada,
Gaiffas & Scornet (2017 & 2020)

@ Some adaptivity to dimension reduction (sparse framework):
Biau (2012), Klusowski (2018)

o Forests decrease the estimation error (Biau, 2012; Genuer,
2012)

= What about approximation error?
Almost the same for a forest and a tree?
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Purely random forests
©0000

Risk of a single tree (regressogram)

Given the partition U, regressogram estimator
su(x) == Z Yalen
A\EU

where Y), is the average of (Y;)x.cx.

Gills argmin{lzn:(yi - f(X,-))Z}

feSy n i—1

where Sy is the vector space of functions which are constant over
each A € U.
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Purely random forests
©0000

Risk of a single tree (regressogram)

Given the partition U, regressogram estimator

su(x) == Z 7/\]lxe)\
AeU

where Y), is the average of (Y;)x.cx.

Sy € argmin{lzn:(yi — f(X,-))Z}

feSy n =1

where Sy is the vector space of functions which are constant over
each A € U.

Define:

Su(x) == > Baleer  where By :=E[s*(X)| X € )] .
AeU

= 3y € argminfes[UE{(f(X) — 5*(X))2} and 5y(x) = E[sy(x) | U]



Purely random forests
0®000

Risk decomposition: single tree

E[(5u(X) - s*(X))?]
= E[(5u(X) — s*(X))°] + E[(5u(X) ~ 3u(X))?]

= Approximation error + Estimation error
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Purely random forests
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Risk decomposition: single tree

E[(5u(X) - s*(X))?]
= E[(5u(X) — s*(X))°] + E[(5u(X) ~ 3u(X))?]

= Approximation error + Estimation error

If s* is smooth, X ~ U([0,1]P) and U regular partition into D

pieces, then .
E[(gU(X) - 5*(X))2} > Da/p
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Purely random forests
0®000

Risk decomposition: single tree

E[(5u(X) - s*(X))?]
= E[(5u(X) — s*(X))°] + E[(5u(X) ~ 3u(X))?]

= Approximation error + Estimation error

If s* is smooth, X ~ U([0,1]P) and U regular partition into D

pieces, then .
E[(gU(X) - 5*(X))2} > Da/p

If var(Y | X) = 02 does not depend on X, then

oD

E[(su(X) - 3u(X))*] ~ =
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Purely random forests
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Approximation and estimation errors, p =1

0.35]]

0.3r
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60
dimension D

—0— Approx. error
—»—Estim. error
——E[Risk]
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Purely random forests
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Risk decomposition: purely random forest

(W)1<j<q finite partitions, iid. ~U

Estimator (forest): Sprq(x) : ZSUJ
o 1, 1
Ideal forest: Spq(x) = 4 > 5p(x) = E[spra(x) [ U]
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Purely random forests
0000

Risk decomposition: purely random forest

(W)1<j<q finite partitions, iid. ~U

Estimator (forest): Sprq(x) : ZSUJ
o 1, 1
Ideal forest: Spq(x) = 4 > 5p(x) = E[spra(x) [ U]

Quadratic risk decomposition (given X = x)
E[(Gpr-a(x) = 5%(0)?] = E[(Bor-0(x) = 5°(x))’]
+E[Bur-a(x) = Sp1-a(x))°] + Opra()

Approximation error: By o(x) := E{(§U1mq(x) — s*(x))z}
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Purely random forests
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Approximation error decomposition (given X = x)

Vi (x)

But,q(x) = But,oo(x) +

2
where By oo(x) := (IE [3u(x)] — s*(x))
and  Vy(x) := var(Sy(x))

Bu,00(x) is the approx. error of the infinite forest: Sy oo(x) := E[Sy(x)]
to be compared with the approximation error of a single tree

Bz,{fl(x) = BM’OO(X) + Vz/{(X)

Analysis of purely random forests Sylvain Arlot



Toy forests
°

Outline

© Toy forests
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Toy forests
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Toy forests

Assume: X = [0,1)? and X uniform over [0,1)P

If p=1, U~U defined by:

o~ {5 5T o [0

where T has uniform distribution over [0, 1].

T/k T/k Tk T/K

leat— lex— Ll g —
1 1 1 1
|4 | | |4

| .
= = [ [
0. 1/ky 2/kax 3/K
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Toy forests
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Toy forests

Assume: X = [0,1)? and X uniform over [0,1)P

If p=1, U~U defined by:

o~ {5 5T o [0

where T has uniform distribution over [0, 1].

T/k T/k Tk T/K

leat— lex— Ll g —
1 1 1 1
|4 | | | |4

| —t —t |
0. 1/ki 2/ks 3/K

If p> 1, T; for each coordinate j = 1,..., p, independent
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Toy forests
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Interpretation of the ideal infinite forest (p = 1)

Proposition (A. & Genuer, 2014-2020)

For any x € [%, 1-— %] , the ideal infinite
forest at x satisfies:

Buco(x) = (5 * hi)(x) = /01 S*(£)hi(x — £) dt

h_k(u)

where

k(1 —ku) if0<u<
hi(u) = S k(L + ku) if =3 <u<0
1
k

o
=
=
WV

-1/ 0 1/k
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Toy forests
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Interpretation of the ideal infinite forest (p = 1): proof

Iy(x) := the interval of U to which x belongs

1
= *(t)dt
00V = [0 gy *

If x € [%,1—%}, Iy(x) = [X+ vX;17X+%>

where V, has uniform distribution over [0, 1].
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Toy forests
ooe

Interpretation of the ideal infinite forest (p = 1): proof

Iy(x) := the interval of U to which x belongs

1
5 = *(t)dt
00V = [0 gy *

Fxe [t 1-3] hl) =[x+ %2 x+ %)
where V, has uniform distribution over [0, 1].
817,00 (%) = Eu [Su(x)]

1 Vi—1 V,
:k/ s*(t)P<x+ = <t<x+x>dt
0 k k

1
— k/ §*(t) P(k(t — x) < Vi < k(t — x) + 1) dt
0

=hi(x—t) if 1/k<x<1—1/k
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Toy forests
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Analysis of the approximation error, p =1, x € [%, 1-— ﬂ

(H2)  s* twice differentiable over (0,1) and s* bounded

Taylor-Lagrange formula: for every t € (0, 1), some ¢ x € (0,1)
exists such that

s*(t) — s*(x) = s (x)(t — x) + %s*”(cnx)(t — x)2

Analysis of purely random forests Sylvain Arlot



Toy forests
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Analysis of the approximation error, p =1, x € [%, 1-— ﬂ

(H2)  s* twice differentiable over (0,1) and s* bounded

Taylor-Lagrange formula: for every t € (0, 1), some ¢ x € (0,1)
exists such that

s*(t) — s*(x) = s (x)(t — x) + %s*”(cnx)(t — x)2

Therefore,

Su(x) — 5*(x) —k/ Vx_l(s ) — s*(x)) dt

+VX—1
s7(x) 1
_ Vi—Z)+R
s ( 2) + Ri(x)
where Ry(x) = & fX+V’X‘_1 s (cex)(t — x)?dt.
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Toy forests
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Analysis of the approximation error, p =1, x € [%, 1-—

(H2)  s* twice differentiable over (0, 1) and s* bounded

Su(x) — s (x) = SHIEX) (vx _ ;) +Ri(x)

where Ry(x) = kf v, s*”(ct7)<)(t—x)2 dt.

Hence,

B,

() = (Eulsu(0) — °(2)]) = (Eu[Ru0)]) < o

k
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Toy forests
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Analysis of the approximation error, p > 1

(HO) s* € CHO-1)(X) Holder space, 0 € [1,2]

~ * 2 |:| D
BMEOy’oo(X) = (EU [SU(X) - (X)]) S k20/p Vu:oy(X) k—;:-oo k2/p

Proposition (A. & Genuer, 2014-2020)
Assuming (H8), 6 € [1,2], Vx € [%7 1— %]p,

O O

Butoy oo(X) < W

Buzoyvl(x) k—;:—OO k2/P k

[l [l
/[ oy Bgma O, o /[ o s B O <

KTk

v

Rate k—*/P is tight assuming #-Hélder smoothness, 6 > 2.
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Toy forests
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Estimation error

General fact (Jensen's inequality):

E[(50,00(X) = 30,00(X))*| <E[(Bu(X) = 5u(X))’]
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Toy forests
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Estimation error

General fact (Jensen's inequality):

E[(50,00(X) = 30,00(X))*| <E[(Bu(X) = 5u(X))’]

For the toy forest, without any resampling for computing labels
and assuming that var(Y|X) = o2

E[(EU(X) —§‘U(X))2] ~ szvk
E[(glu,oo(x) - §U700(X))2] ~ iaik

(A. & Genuer, 2016)
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Toy forests
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Summary: risk analysis

Single tree Infinite forest
(9=1) (g = o0)
_ Can2] L alstx) o’k ch(s*,x)  20%k
E[(Spr-a(x) = s(x))?] =~ 2 T S s 3n
where  c¢1(s*,x) = s*ll(;)z :

Assumptions:
e x € (0,1)P far from boundary

o (HO) s* e cL-1(X), 0 €1,2]
e X uniform over [0,1)P

e var(Y|X) = o2

@ no resampling for computing labels
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Rates of convergence

Corollary: risk convergence rates (far from boundaries, with k = k
optimal), under (H0), 6 € [1,2]:

O n—2/(2+p) if s* not constant, 6 > 1

On=20/C0%P) = minimax C?,0 € [1,2]

Tree risk

AN\

Infinite forest risk

Analysis of purely random forests Sylvain Arlot
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Rates of convergence

Corollary: risk convergence rates (far from boundaries, with k = k
optimal), under (H0), 6 € [1,2]:

Tree risk > O n2/(2+p) if s* not constant, 6 > 1

On=20/C0%P) = minimax C?,0 € [1,2]

AN\

Infinite forest risk

Remarks:

‘

o g > [(kX)? is sufficient to get an “infinite” forest

@ with subsampling a out of n for computing labels:
o : ok o2k
estimation error of a single tree =~ instead of %=,
no change for infinite forest
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@ Hold-out random forests
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Hold-out random forests
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Definition (Biau, 2012)

Split D, into Dp, and D,

Ut U2 w9 RI partitions, using Dy,

Using Dp,, no resampling here

/S\Ul §U2 oo /S\Uq
Aggregatik /
SHO-RF

= purely random forest
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Hold-out random forests
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Numerical experiments: framework

e Data generation:
X,'NU([O, ].]p) Y; :5*(X;)+E,'
gi ~ N(0,0?) 02 =1/16

1
s*:x€[0,1)° — 10 {10 sin(mxyx0) 4 20(x3 — 0.5)% 4 10x4 + 5X5} .
@ Data split: 1 =1280 np, =25600

@ Forests definition:
nodesize =1
k € {2526 27 28 29}
“Large” forests are made of g = k trees.

e Compute integrated approximation/estimation errors
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Hold-out random forests
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Numerical experiments: results (p = 5)

Single tree Large forest
No bootstrap 0.13 N 1.040%k  0.13 N 1.040°k
mtry = p k0.17 no k0.17 no
Bootstrap ~ 0.14  1.060%k 0.15  0.080%k
mtry = p k0.17 no k0-29 no
No bootstrap  0.23 N 1.010%k  0.06 N 0.060°k
mtry = LP/3J k0-19 no k031 no
Bootstrap 0.25 . 1.020%2k  0.06 . 0.0502k
mtry = |p/3| k0-20 no kO-34 ny
2 4
—— ~0.286 —— ~0.444
2+p 4+p
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Hold-out random forests
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Numerical experiments: results (p = 10)

Single tree Large forest
No bootstrap 0.11 N 1.030%k  0.11 N 1.0302k
mtry =p k0.12 no k0.12 no
Bootstrap ~ 0.11  1.050%k 0.10  0.040%k
mtry =p kO‘ll no k0‘19 no
No bootstrap  0.21 N 1.080%k  0.08 N 0.040°k
mtry — Lp/3j k0.18 no k0.25 o
Bootstrap ~ 0.20 N 1.050%k  0.07 N 0.0302k
mtry = |p/3| K016 no kO-26 ny
2 4
—=  ~0.167 —— ~0.286
2+p 4+p
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Conclusion

@ Forests improve the order of magnitude of the approximation
error, compared to a single tree

@ Estimation error seems to change only by a constant factor
(at least for toy forests);
not contradictory with literature: here, we fix k; different
picture if nodesize is fixed (++subsampling)
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Conclusion
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Conclusion

@ Forests improve the order of magnitude of the approximation
error, compared to a single tree

@ Estimation error seems to change only by a constant factor
(at least for toy forests);
not contradictory with literature: here, we fix k; different
picture if nodesize is fixed (++subsampling)

@ Randomization:
randomization of labels seems to have no impact;
strong impact of randomization of partitions (hold-out RF:
both bootstrap and mtry)
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Approximation error: generalization

@ General result on the approximation error under (H9):
e.g., roughly, if x is centered in its cell (on average over U),

tree approx. error &x Mo infinite forest approx. error /\/l%

where M = average square distance from x to the boundary
of its cell (oc k=2/P for toy forests)
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Conclusion
fo] To)

Approximation error: generalization

@ General result on the approximation error under (H9):
e.g., roughly, if x is centered in its cell (on average over U),

tree approx. error &x Mo infinite forest approx. error /\/l%

where M = average square distance from x to the boundary
of its cell (oc k=2/P for toy forests)

@ purely uniformly random forests in dimension 1 (split a random
cell, chosen with probability equal to its volume): = toy

@ balanced purely random forests (full binary tree, uniform
splits) in dimension p: k= (tree) vs. k—2% (forest) where
a = —log, (1 — ﬁ) = not minimax rates!

@ other PRF studied in the literature: Mondrian forests

(Mourtada, Gaiffas & Scornet 2017 & 2020), centered
random forests (Biau, 2012; Klusowski, 2018), ...
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Conclusion
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Open problems / future work

@ Theory on approximation error of hold-out RF?
= understand the typical shape of the cell that contains x,
for a RI tree
(x centered on average? square distance to boundary?)

@ Theory on estimation error of other PRF (beyond toy and
PURF), with lower bounds?
of hold-out RF?

o Extensive numerical experiments? (other functions s*, ...)
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