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Regression: data (X1, Y1), . . . , (Xn, Yn)
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Goal: find the signal (denoising)
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Regression

Data Dn : (X1,Y1), . . . , (Xn,Yn) ∈ Rp × R (i.i.d. ∼ P)

Yi = s?(Xi ) + εi

with s?(X ) = E[Y |X ] (regression function).

Goal: learn f measurable function X → R s.t. the quadratic
risk

E(X ,Y )∼P
[(

f (X )− s?(X )
)2]

is minimal.
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Regression tree (Breiman et al, 1984)

Tree: piecewise-constant
predictor, obtained by partitioning
recursively Rp.

Restriction: splits parallel to the
axes.

1 Choice of the partition U
(tree structure)

2 For each λ ∈ U (tree leaf),
choice of the estimation β̂λ
of s?(x) when x ∈ λ.
Here, β̂λ = Y λ average of
the (Yi )Xi∈λ.
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Tree: piecewise-constant
predictor, obtained by partitioning
recursively Rp.
Restriction: splits parallel to the
axes.
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Random forest (Breiman, 2001)

Definition (Random forest (Breiman, 2001)){
ŝΘj , 1 6 j 6 q

}
collection of tree predictors, (Θj)16j6q i.i.d. r.v.

independent from Dn.
Random forest predictor ŝ obtained by aggregating the tree
collection.

ŝ(x) = 1
q

q∑
j=1

ŝΘj (x)

ensemble method (Dietterich, 1999, 2000)
powerful statistical learning algorithm, for both classification
and regression.
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Bagging (“bootstrap aggregating”)

Bootstrap (Efron, 1979): draw n i.i.d. r.v., uniform over{
(Xi ,Yi ) / i = 1, . . . , n

}
(sampling with replacement)

⇒ resample Db
n

Bootstrapping a tree: ŝb
tree = ŝtree(Db

n )

Bagging: bootstrap (q independent resamples) then
aggregation

ŝbagging(x) = 1
q

q∑
j=1

ŝb,j
tree(x)
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Random Forest-Random Inputs (Breiman, 2001)

Definition (RI tree)
In a RI tree, at each node, mtry variables are randomly chosen.
Then, the best cut direction is chosen only among the chosen
variables.

Definition (Random forest RI)
A random forest RI (RF-RI) is obtained by aggregating RI trees
built on independent bootstrap resamples.

RF-RI ⇔ bagging on RI trees
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Random Forest-Random Inputs

Dn
Bootstrap

uu {{ ((
Db,1

n

RI tree

��
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��

. . . . . . Db,q
n

��

. . . . . .

ŝΘ1

Aggregation ))

ŝΘ2

##

. . . . . . ŝΘq

vv
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Example of application of random forests: Kinect

Depth image ⇒ depth comparison features at each pixel

⇒ body part at each pixel ⇒ body part positions ⇒ · · ·

Figures from Shotton et al (2011)
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Theoretical results on RF-RI

Few theoretical results on Breiman’s original RF-RI

Most results:
focus on a specific part of the algorithm (resampling, split
criterion),
modify the algorithm (eg, subsampling instead of resampling)
make strong assumptions on s?

References (see survey paper by Biau and Scornet, 2016):
Scornet, Biau & Vert (2015), Mentch & Hooker (2016),
Wager & Athey (2018), Genuer & Poggi (2019), ...

⇒ Here, we consider simplified RF models, for which a precise
analysis is possible: purely random forests
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Purely random forests

Definition (Purely random tree)

ŝU(x) =
∑
λ∈U

Yλ(Dn)1x∈λ

where Yλ(Dn) is the average of (Yi )Xi∈λ , (Xi ,Yi )∈Dn and the
partition U is independent from Dn.

Definition (Purely random forest)

ŝ(x) = 1
q

q∑
j=1

ŝUj (x)

with U1, . . . ,Uq i.i.d., independent from Dn.

Example (“hold-out RF” model): use some extra data D′n for
building the trees: Uj = URI(D′? j

n )) (can be done by splitting the
sample into two subsamples Dn and D′n).
" From now on, Dn is the sample used for computing
(Yλ(Dn))λ∈U, and we assume its size is n.
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ŝ(x) = 1
q

q∑
j=1
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Purely random forests

U1
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. . . . . . Uq

Using Dn, with or without resampling

��

Independent from Dn

. . . . . .

. . . . . .
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Purely random forests: theory

Consistency: Biau, Devroye & Lugosi (2008), Scornet (2014)

Rates of convergence: Breiman (2004), Biau (2012),
Klusowski (2018), Duroux & Scornet (2018), Mourtada,
Gaiffas & Scornet (2017 & 2020)
Some adaptivity to dimension reduction (sparse framework):
Biau (2012), Klusowski (2018)

Forests decrease the estimation error (Biau, 2012; Genuer,
2012)

⇒ What about approximation error?
Almost the same for a forest and a tree?
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Risk of a single tree (regressogram)
Given the partition U, regressogram estimator

ŝU(x) :=
∑
λ∈U

Yλ1x∈λ

where Yλ is the average of (Yi )Xi∈λ.

ŝU ∈ argmin
f ∈SU

{
1
n

n∑
i=1

(
Yi − f (Xi )

)2
}

where SU is the vector space of functions which are constant over
each λ ∈ U.

Define:

s̃U(x) :=
∑
λ∈U

βλ1x∈λ where βλ := E[s?(X ) |X ∈ λ] .

⇒ s̃U ∈ argminf ∈SU E
[(

f (X )− s?(X )
)2] and s̃U(x) = E

[
ŝU(x) |U

]
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Risk decomposition: single tree

E
[(

ŝU(X )− s?(X )
)2]

= E
[(

s̃U(X )− s?(X )
)2]+ E

[(
ŝU(X )− s̃U(X )

)2]
= Approximation error + Estimation error

If s? is smooth, X ∼ U([0, 1]p) and U regular partition into D
pieces, then

E
[(

s̃U(X )− s?(X )
)2] ∝ 1

D2/p

If var(Y |X ) = σ2 does not depend on X , then

E
[(

ŝU(X )− s̃U(X )
)2] ≈ σ2D

n
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ŝU(X )− s̃U(X )
)2] ≈ σ2D

n

Analysis of purely random forests Sylvain Arlot



20/40

Random forests Purely random forests Toy forests Hold-out random forests Conclusion

Approximation and estimation errors, p = 1
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Risk decomposition: purely random forest

(Uj)16j6q finite partitions, i.i.d. ∼ U

Estimator (forest): ŝU1···q (x) := 1
q

q∑
j=1

ŝUj (x)

Ideal forest: s̃U1···q (x) := 1
q

q∑
j=1

s̃Uj (x) = E
[
ŝU1···q (x) |U1···q]

Quadratic risk decomposition (given X = x)

E
[(

ŝU1···q (x)− s?(x)
)2] = E

[(
s̃U1···q (x)− s?(x)

)2]
+ E

[(
ŝU1···q (x)− s̃U1···q (x)

)2]+ δU1···q (x)

Approximation error: BU ,q(x) := E
[(

s̃U1···q (x)− s?(x)
)2]
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Approximation error decomposition (given X = x)

BU ,q(x) = BU ,∞(x) + VU (x)
q

where BU ,∞(x) :=
(
E
[
s̃U(x)

]
− s?(x)

)2

and VU (x) := var
(
s̃U(x)

)

BU ,∞(x) is the approx. error of the infinite forest: s̃U,∞(x) := E
[
s̃U(x)

]
to be compared with the approximation error of a single tree

BU ,1(x) = BU ,∞(x) + VU (x)
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Toy forests

Assume: X = [0, 1)p and X uniform over [0, 1)p

If p = 1, U ∼ Utoy
k defined by:

U =
{[

0, 1− T
k

)
,

[1− T
k ,

2− T
k

)
, . . . ,

[k − T
k , 1

)}

where T has uniform distribution over [0, 1].

T/k T/k T/k T/k

13/k2/k1/k0

If p > 1, Tj for each coordinate j = 1, . . . , p, independent
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Interpretation of the ideal infinite forest (p = 1)

Proposition (A. & Genuer, 2014–2020)

For any x ∈
[

1
k , 1−

1
k

]
, the ideal infinite

forest at x satisfies:

s̃U,∞(x) = (s? ∗ hk)(x) =
∫ 1

0
s?(t)hk(x − t) dt

where

hk(u) =


k(1− ku) if 0 6 u 6 1

k
k(1 + ku) if − 1

k 6 u 6 0
0 if |u| > 1

k
u

h_
k(

u)

−1/k 0 1/k

0
k
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Interpretation of the ideal infinite forest (p = 1): proof

IU(x) := the interval of U to which x belongs

s̃U(x) = 1
|IU(x)|

∫
IU(x)

s?(t) dt

If x ∈
[

1
k , 1−

1
k

]
, IU(x) =

[
x + Vx−1

k , x + Vx
k

)
where Vx has uniform distribution over [0, 1].

s̃U,∞(x) = EU
[
s̃U(x)

]
= k

∫ 1

0
s?(t)P

(
x + Vx − 1

k 6 t < x + Vx
k

)
dt

= k
∫ 1

0
s?(t) P

(
k(t − x) < Vx 6 k(t − x) + 1

)︸ ︷︷ ︸
=hk (x−t) if 1/k6x61−1/k

dt
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Analysis of the approximation error, p = 1, x ∈
[ 1

k , 1− 1
k
]

(H2) s? twice differentiable over (0, 1) and s?′′ bounded

Taylor-Lagrange formula: for every t ∈ (0, 1), some ct,x ∈ (0, 1)
exists such that

s?(t)− s?(x) = s?′(x)(t − x) + 1
2s?′′(ct,x )(t − x)2

Therefore,
s̃U(x)− s?(x) = k

∫ x+ Vx
k

x+ Vx−1
k

(s?(t)− s?(x)) dt

= k s?′(x)
∫ x+ Vx

k

x+ Vx−1
k

(t − x) dt + R1(x)

= s?′(x)
k

(
Vx −

1
2

)
+ R1(x)

where R1(x) = k
2
∫ x+ Vx

k
x+ Vx−1

k
s?′′(ct,x )(t − x)2 dt.
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Analysis of the approximation error, p = 1, x ∈
[ 1

k , 1− 1
k
]

(H2) s? twice differentiable over (0, 1) and s?′′ bounded

s̃U(x)− s?(x) = s?′(x)
k

(
Vx −

1
2

)
+ R1(x)

where R1(x) = k
2
∫ x+ Vx

k
x+ Vx−1

k
s?′′(ct,x )(t − x)2 dt.

Hence,

BUtoy
k ,∞(x) =

(
EU
[
s̃U(x)− s?(x)

])2
=
(
EU
[
R1(x)

])2
6
�
k4

and

VUtoy
k

(x) = var
(s?′(x)

k

(
Vx −

1
2

)
+ R1(x)

)
∼

k→+∞

s?′(x)2 var(Vx )
k2 .
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Analysis of the approximation error, p > 1

(Hθ) s? ∈ C1,(θ−1)(X ) Hölder space, θ ∈ [1, 2]

BUtoy
k ,∞(x) =

(
EU
[
s̃U(x)− s?(x)

])2
6
�

k2θ/p VUtoy
k

(x) ∼
k→+∞

�

k2/p

Proposition (A. & Genuer, 2014–2020)
Assuming (Hθ), θ ∈ [1, 2], ∀x ∈

[ 1
k , 1−

1
k
]p ,

BUtoy
k ,1(x) ∼

k→+∞

�

k2/p BUtoy
k ,∞(x) 6 �

k2θ/p∫
[ 1

k ,1−
1
k ]p BUtoy

k ,1(x) dx ∼
k→+∞

�

k2/p

∫
[ 1

k ,1−
1
k ]p BUtoy

k ,∞(x) dx 6 �

k2θ/p

Rate k−4/p is tight assuming θ-Hölder smoothness, θ > 2.
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Estimation error

General fact (Jensen’s inequality):

E
[(

ŝU ,∞(X )− s̃U ,∞(X )
)2]
6 E

[(
ŝU(X )− s̃U(X )

)2]

For the toy forest, without any resampling for computing labels
and assuming that var(Y |X ) = σ2:

E
[(

ŝU(X )− s̃U(X )
)2] ≈ σ2k

n

E
[(

ŝU ,∞(X )− s̃U ,∞(X )
)2] ≈ 2

3
σ2k

n

(A. & Genuer, 2016)
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Summary: risk analysis

Single tree Infinite forest
(q = 1) (q =∞)

E
[(

ŝU1···q (x)− s?(x)
)2] ≈ c1(s?, x)

k2/p + σ2k
n 6

c ′θ(s?, x)
k2θ/p + 2σ2k

3n

where c1(s?, x) = s?′(x)2

12 .

Assumptions:
x ∈ (0, 1)p far from boundary
(Hθ) s? ∈ C1,(θ−1)(X ), θ ∈ [1, 2]
X uniform over [0, 1)p

var(Y |X ) = σ2

no resampling for computing labels
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Rates of convergence

Corollary: risk convergence rates (far from boundaries, with k = k?n
optimal), under (Hθ), θ ∈ [1, 2]:

Tree risk > � n−2/(2+p) if s? not constant, θ > 1
Infinite forest risk 6 � n−2θ/(2θ+p) ⇒ minimax Cθ, θ ∈ [1, 2]

Remarks:
q > � (k?n )2 is sufficient to get an “infinite” forest

with subsampling a out of n for computing labels:
estimation error of a single tree σ2k

a instead of σ2k
n ;

no change for infinite forest
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Outline

1 Random forests

2 Purely random forests

3 Toy forests

4 Hold-out random forests
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Definition (Biau, 2012)

Split Dn into Dn1 and Dn2

U1

��

U2

��

. . . Uq

Using Dn2 , no resampling here

��

RI partitions, using Dn1

. . .

. . .

ŝU1

Aggregation ))

ŝU2

##

. . . ŝUq

{{
ŝHO−RF

⇒ purely random forest
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Numerical experiments: framework

Data generation:
Xi ∼ U([0, 1]p) Yi = s?(Xi ) + εi
εi ∼ N (0, σ2) σ2 = 1/16

s? : x ∈ [0, 1]p 7→ 1
10×

[
10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5

]
.

Data split: n1 = 1 280 n2 = 25 600

Forests definition:
nodesize = 1
k ∈ {25, 26, 27, 28, 29}
“Large” forests are made of q = k trees.
Compute integrated approximation/estimation errors
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Numerical experiments: results (p = 5)

Single tree Large forest

No bootstrap
mtry = p

0.13
k0.17 + 1.04σ2k

n2

0.13
k0.17 + 1.04σ2k

n2

Bootstrap
mtry = p

0.14
k0.17 + 1.06σ2k

n2

0.15
k0.29 + 0.08σ2k

n2

No bootstrap
mtry = bp/3c

0.23
k0.19 + 1.01σ2k

n2

0.06
k0.31 + 0.06σ2k

n2

Bootstrap
mtry = bp/3c

0.25
k0.20 + 1.02σ2k

n2

0.06
k0.34 + 0.05σ2k

n2

2
2 + p ≈ 0.286 4

4 + p ≈ 0.444
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Numerical experiments: results (p = 10)

Single tree Large forest

No bootstrap
mtry = p

0.11
k0.12 + 1.03σ2k

n2

0.11
k0.12 + 1.03σ2k

n2

Bootstrap
mtry = p

0.11
k0.11 + 1.05σ2k

n2

0.10
k0.19 + 0.04σ2k

n2

No bootstrap
mtry = bp/3c

0.21
k0.18 + 1.08σ2k

n2

0.08
k0.25 + 0.04σ2k

n2

Bootstrap
mtry = bp/3c

0.20
k0.16 + 1.05σ2k

n2

0.07
k0.26 + 0.03σ2k

n2

2
2 + p ≈ 0.167 4

4 + p ≈ 0.286
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Conclusion

Forests improve the order of magnitude of the approximation
error, compared to a single tree

Estimation error seems to change only by a constant factor
(at least for toy forests);
not contradictory with literature: here, we fix k; different
picture if nodesize is fixed (+subsampling)

Randomization:
randomization of labels seems to have no impact;
strong impact of randomization of partitions (hold-out RF:
both bootstrap and mtry)
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Approximation error: generalization

General result on the approximation error under (Hθ):
e.g., roughly, if x is centered in its cell (on average over U),

tree approx. error ∝M2 infinite forest approx. error ∝M2
2

where M2 ≈ average square distance from x to the boundary
of its cell (∝ k−2/p for toy forests)

purely uniformly random forests in dimension 1 (split a random
cell, chosen with probability equal to its volume): ≈ toy
balanced purely random forests (full binary tree, uniform
splits) in dimension p: k−α (tree) vs. k−2α (forest) where
α = − log2

(
1− 1

2p

)
⇒ not minimax rates!

other PRF studied in the literature: Mondrian forests
(Mourtada, Gäıffas & Scornet 2017 & 2020), centered
random forests (Biau, 2012; Klusowski, 2018), ...
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Open problems / future work

Theory on approximation error of hold-out RF?
⇒ understand the typical shape of the cell that contains x ,
for a RI tree
(x centered on average? square distance to boundary?)

Theory on estimation error of other PRF (beyond toy and
PURF), with lower bounds?
of hold-out RF?

Extensive numerical experiments? (other functions s?, ...)
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