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Random forests
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Regression: data (X1, Y1),..., (X, Ya)
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Random forests
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Goal: find the signal (denoising)
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Random forests
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Regression

e Data D,: (Xl, Yl), .. .,(Xn, Yn) e RP xR (i.i.d. ~ P)
Y, = S*(X,') + &

with s*(X) = E[Y | X] (regression function).
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Random forests
ooe

Regression

e Data D,: (X1, Y1),--.,(Xn, Yn) € RP xR (i.iid. ~ P)
Y, = S*(X,') + &
with s*(X) = E[Y | X] (regression function).

@ Goal: learn f measurable function X — R s.t. the quadratic
risk

Ex vyp | (F(X) = *(X))’]

is minimal.
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Random forests
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Regression tree (Breiman et al, 1984)

Tree: piecewise-constant

predictor, obtained by partitioning
recursively RP.

Restriction: splits parallel to the
axes.
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Random forests
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Regression tree (Breiman et al, 1984)

Tree: piecewise-constant
predictor, obtained by partitioning
recursively RP.

Restriction: splits parallel to the
axes.

© Choice of the partition U
(tree structure)
Usually, at each step, one
looks for the best split of the
data into two groups
(minimize sum of
within-group variances) Dj,.

Analysis of purely random forests Sylvain Arlot



Random forests
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Regression tree (Breiman et al, 1984)

Tree: piecewise-constant
predictor, obtained by partitioning
recursively RP.

Restriction: splits parallel to the
axes.

@ Choice of the partition U
(tree structure)

@ For each A € U (tree leaf),

A

choice of the estimation )
of s*(x) when x € A.

X

Here, 5y = Y average of
the (Yi)XiE)\-
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Random forest (Breiman, 2001)

Definition (Random forest (Breiman, 2001))

{§@j, 1<j< q} collection of tree predictors, (©;)1<j<q i.i.d. r.v.
independent from D,,.

Random forest predictor s obtained by aggregating the tree
collection.

@ ensemble method (Dietterich, 1999, 2000)

e powerful statistical learning algorithm, for both classification
and regression.
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Bagging (“bootstrap aggregating”)

@ Bootstrap (Efron, 1979): draw n i.i.d. r.v., uniform over
{(Xi,Yi)/i=1,...,n} (sampling with replacement)
= resample D?

o Bootstrapping a tree: 32, = Sireo(D2)

@ Bagging: bootstrap (g independent resamples) then
aggregation

1S,
"~ a./
Sbagglng EZ tree
Jj=1
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Random Forest-Random Inputs (Breiman, 2001)

Definition (RI tree)

In a Rl tree, at each node, mtry variables are randomly chosen.
Then, the best cut direction is chosen only among the chosen
variables.

Definition (Random forest RI)

A random forest Rl (RF-RI) is obtained by aggregating RI trees
built on independent bootstrap resamples.

RF-RI & bagging on Rl trees
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Random Forest-Random Inputs

Dn
BOOtstrap / \
b,1 b,2
n n e e

Dqu
Rl tree
So, So, ... ... §@q
Aggregatic\\ /

SRF—RI
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Theoretical results on RF-RI

@ Few theoretical results on Breiman's original RF-RI, despite
their excellent numerical performance (eg, Fernandez-Delgado
et al, 2014)

@ Most results:
o focus on a specific part of the algorithm (resampling, split
criterion),
e modify the algorithm (eg, subsampling instead of resampling)
e make strong assumptions on s*
@ References (see survey paper by Biau and Scornet, 2016):
Scornet, Biau & Vert (2015), Mentch & Hooker (2016),
Wager & Athey (2018), Genuer & Poggi (2019), ...
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Theoretical results on RF-RI

@ Few theoretical results on Breiman's original RF-RI, despite
their excellent numerical performance (eg, Fernandez-Delgado
et al, 2014)

@ Most results:
o focus on a specific part of the algorithm (resampling, split
criterion),
e modify the algorithm (eg, subsampling instead of resampling)
e make strong assumptions on s*
@ References (see survey paper by Biau and Scornet, 2016):
Scornet, Biau & Vert (2015), Mentch & Hooker (2016),
Wager & Athey (2018), Genuer & Poggi (2019), ...

= Here, we consider simplified RF models, for which a precise
analysis is possible: purely random forests
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Purely random forests
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Purely random forests

Definition (Purely random tree)
=) Ya(Dn)lex
AeU

where Y)(D,) is the average of (Yi)x.ex, (x,v;)ep, and the
partition U is independent from D,,.

Definition (Purely random forest)

with UL, ..., U9 i.i.d., independent from D,.
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Purely random forests
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Purely random forests

Definition (Purely random forest)
17 1

S0 = = > 5(x) = =
q q“

with U, ..., U9 i.i.d., independent from D,.

Example (“hold-out RF" model): use some extra data D;, for
building the trees: 1V = Ur;(D,”)) (can be done by splitting the
sample into two subsamples D, and D)).
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Purely random forests
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Purely random forests

Definition (Purely random forest)

1 q
s(x)==> 5
=1

with U, ..., U9 i.i.d., independent from D,.

Example (“hold-out RF" model): use some extra data D;, for
building the trees: 1V = Ur;(D,”)) (can be done by splitting the
sample into two subsamples D, and D)).

A From now on, D, is the sample used for computing
(Yx(Dn))reu, and we assume its size is n.
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Purely random forests
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Purely random forests

Ut U2 e e U9 Independent from D,

Using Dp, with or without resampling

/S\[Ul §U2 e e E[Uq
Aggregatio\
SPRF
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Purely random forests
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Purely random forests: theory

Consistency: Biau, Devroye & Lugosi (2008), Scornet (2014)

@ Rates of convergence: Breiman (2004), Biau (2012),
Klusowski (2018), Duroux & Scornet (2018), Mourtada,
Gaiffas & Scornet (2017 & 2020)

Some adaptivity to dimension reduction (sparse framework):
Biau (2012), Klusowski (2018)

Forests decrease the estimation error (Biau, 2012; Genuer,
2012)
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Purely random forests
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random forests: theory

e Consistency: Biau, Devroye & Lugosi (2008), Scornet (2014)

@ Rates of convergence: Breiman (2004), Biau (2012),
Klusowski (2018), Duroux & Scornet (2018), Mourtada,
Gaiffas & Scornet (2017 & 2020)

@ Some adaptivity to dimension reduction (sparse framework):
Biau (2012), Klusowski (2018)

@ Forests decrease the estimation error (Biau, 2012; Genuer,
2012)

= What about approximation error?
Almost the same for a forest and a tree?
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Purely random forests
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Risk of a single tree (regressogram)

Given the partition U, regressogram estimator
su(x) == Z Yalen
AEU

where Y), is the average of (Y;)x.cx.

Sy € argmin{lzn:(yi - f(X,-))Z}

feSy n i—1

where Sy is the vector space of functions which are constant over
each A € U.
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Purely random forests
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Risk of a single tree (regressogram)

Given the partition U, regressogram estimator

su(x) == Z 7/\]lxe)\
AelU

where Y), is the average of (Y;)x.cx.

Sy € argmin{lzn:(yi - f(X,-))Z}

feSy n i—1

where Sy is the vector space of functions which are constant over
each A € U.

Define:

Su(x) == > Baleer  where By :=E[s*(X)| X € )] .
AeU

= 3y € argminfes[UE{(f(X) — 5*(X))2} and 5y(x) = E[sy(x) | U]
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Risk decomposition: single tree

E[(s*(X) - 3u(X))?]
= E|(s*(X) = 50(X))’] +E|(50(X) - 5u(X))’]

= Approximation error + Estimation error
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Risk decomposition: single tree

E[(s*(X) - 3u(X))?]
= E|(s*(X) = 50(X))’] +E|(50(X) - 5u(X))’]

= Approximation error + Estimation error

If s* is smooth, X ~ U([0,1]P) and U regular partition into D

pieces, then .
E[(s(X) = 5u(X)?] o 17,

Analysis of purely random forests Sylvain Arlot



Purely random forests
00000

Risk decomposition: single tree

E[(s*(X) - 3u(X))?]
= E|(s*(X) = 50(X))’] +E|(50(X) - 5u(X))’]

= Approximation error + Estimation error

If s* is smooth, X ~ U([0,1]P) and U regular partition into D

pieces, then .
E[(s*(X) - 50(X))*] e

If var(Y | X) = 02 does not depend on X, then

oD

E[(su(X) - 3u(X))*] ~ =
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Approximation and estimation errors, p =1
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Purely random forests
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Risk decomposition: purely random forest

(W)1<j<q finite partitions, iid. ~U

1 q
Estimator (forest): Spra(x) = p Z?Uj(x)
j=1

Ideal forest: Spra(x) ==
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Purely random forests
0000

Risk decomposition: purely random forest

(W)1<j<q finite partitions, iid. ~U

1 q
Estimator (forest): Spra(x) = p Z?Uj(x)
j=1

Ideal forest: Spra(x) ==

Quadratic risk decomposition (given X = x)
E[(5"(x) = Syp0(6)’] = B[ (5"() = S2-0(x)]
+ B[ (Spre-a(x) = 3pr-4(x))?] + dpre-a(x)

Approximation error: By 4(x) 1= E{(s*(x) — §U1A.Aq(x))2}
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Purely random forests
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Approximation error decomposition (given X = x)

v
By,q(x) = Buco(x) +

X
~—
Pt
N—
N

where By o(x) := (E [s*(x) — Su(
and  Vy(x) := var(5y(x))

Bui.0o(x) is the approx. error of the infinite forest: 3y o0 (x) := E[3y(x)]
to be compared with the approximation error of a single tree

BMJ(X) = Bz,{po(X) + Vu(X)
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Toy forests
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Toy forests

Assume: X = [0,1)? and X uniform over [0,1)P

If p=1, U~U defined by:

o= (o5 [ 5T) oe [57)

where T has uniform distribution over [0, 1].

Tk Tk Tk T/k
1 1 1 1

| | o | & | | o |
[ = [ = [ [ [ = |

0: 1/k: 2/k: 3/k 1
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Toy forests

Assume: X = [0,1)? and X uniform over [0,1)P

If p=1, U~U defined by:

o= (o5 [ 5T) oe [57)

where T has uniform distribution over [0, 1].

Tk Tk Tk T/k
1 1 1 1

| | o | & | | o |
[ = [ = [ [ [ = |

0: 1/k: 2/k: 3/k 1

If p> 1, T; for each coordinate j = 1,..., p, independent
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Toy forest, p = 2: example

1.0

0.8

0.6

N

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Xt
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Toy forests
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Interpretation of the ideal infinite forest (p = 1)

Proposition (A. & Genuer, 2014-2020)

For any x € [%, 1-— %] , the ideal infinite
forest at x satisfies:

Buco(x) = (5 * hi)(x) = /01 S*(£)hi(x — £) dt

h_k(u)

where

k(1 —ku) if0<u<
hi(u) = S k(L + ku) if =3 <u<0
1
k

o
=
=
WV

-1/ 0 1/k
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Interpretation of the ideal infinite forest (p = 1): proof

Iy(x) := the interval of U to which x belongs

1
= *(t)dt
00V = [0 gy *

If x € [%,1—%}, Iy(x) = [X+ vX;17X+%>

where V, has uniform distribution over [0, 1].
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Toy forests
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Interpretation of the ideal infinite forest (p = 1): proof

Iy(x) := the interval of U to which x belongs

1
5 = *(t)dt
00V = [0 gy *

Fxe [t 1-3] Il =[x+ %2 x+ %)
where V, has uniform distribution over [0, 1].
817,00 (%) = Eu [Su(x)]

1 Vi—1 V,
:k/ s*(t)P<x+ = <t<x+x>dt
0 k k

1
— k/ §*(t) P(k(t — x) < Vi < k(t — x) + 1) dt
0

=hi(x—t) if 1/k<x<1—1/k
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Analysis of the approximation error, p =1, x € [%, 1-— ﬂ

(H2)  s* twice differentiable over (0,1) and s* bounded

Taylor-Lagrange formula: for every t € (0, 1), some ¢ € (0,1)
exists such that

s*(t) — s*(x) = s (x)(t — x) + %s*”(cnx)(t — x)2

Analysis of purely random forests Sylvain Arlot
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Analysis of the approximation error, p =1, x € [%, 1-— ﬂ

(H2)  s* twice differentiable over (0,1) and s* bounded

Taylor-Lagrange formula: for every t € (0, 1), some ¢ € (0,1)
exists such that

s*(t) — s*(x) = s (x)(t — x) + %s*”(cnx)(t — x)2

Therefore,

Su(x) — 5*(x) —k/ Vx_l(s ) — s*(x)) dt

+VX—1
s7(x) 1
_ Vi—Z)+R
s ( 2) + Ri(x)
where Ry(x) = & fX+V’X‘_1 s (cex)(t — x)? dt.

Analysis of purely random forests Sylvain Arlot
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Analysis of the approximation error, p =1, x € [%, 1-—

(H2)  s* twice differentiable over (0,1) and s* bounded

Su(x) — $*(x) = SHIEX) (vx _ ;) +Ri(x)

where Ry(x) = kf v, s*”(ct7)<)(t—x)2 dt.

Hence,

Analysis of purely random forests Sylvain Arlot
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Analysis of the approximation error, p > 1

(HO) s* € CHO=1)(X) Holder space, 0 € [1,2]

* pd 2 D D
By o) = (Buls"() ~200]) < o V), 1 7

Proposition (A. & Genuer, 2014-2020)
Assuming (H8), 6 € [1,2], Vx € [%7 1— %]p,

O O

Butoy oo(X) < W

Buzoyvl(x) k—;:—OO k2/P k

[l [l
/[ oy Bgma O, o /[ o s B O <

KTk

v

Rate k—*/P is tight assuming #-Hélder smoothness, 6 > 2.
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Estimation error

General fact (Jensen's inequality):

E|[(50,00(X) = 30,00(X))*| <E[(Gu(X) = 5u(X))’]

Analysis of purely random forests Sylvain Arlot
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Estimation error

General fact (Jensen's inequality):

E|[(50,00(X) = 30,00(X))*| <E[(Gu(X) = 5u(X))’]

For the toy forest, without any resampling for computing labels
and assuming that var(Y|X) = o2

E[@U(X) —E‘U(X))z] ~ szvk
E[(§U,OO(X) —ngoo(X))z} ~ iaik

(A. & Genuer, 2016)
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Summary: risk analysis

Single tree Infinite forest
(9=1) (g = o0)
- 21 alsh,x) | o’k ch(s*,x) 202k
E[(S*(X) — SUl...q(X)) } Ay < 120]p 3n
where  ci(s*,x) = 5*/1(;)2

Assumptions:
e x € (0,1)P far from boundary
o (HO) s* e cL0-1(X), 0 € 1,2]
e X uniform over [0,1)P
o var(Y|X) =02
@ no resampling for computing labels
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Rates of convergence

Corollary: risk convergence rates (far from boundaries, with k = k
optimal), under (H9), 6 € [1,2]:

O n—2/(2+p) if s* not constant, 6 > 1

On~20/C0+P) = minimax C?,0 € [1,2]

Tree risk

AN\

Infinite forest risk

Analysis of purely random forests Sylvain Arlot



Toy forests
00000e

Rates of convergence

Corollary: risk convergence rates (far from boundaries, with k = k
optimal), under (H9), 6 € [1,2]:

Tree risk > O n2/(+p) if s* not constant, 6 > 1

On~20/C0+P) = minimax C?,0 € [1,2]

AN\

Infinite forest risk

Remarks:

‘

o g > [(kX)? is sufficient to get an “infinite” forest

@ with subsampling a out of n for computing labels:
o : ok o2k
estimation error of a single tree =~ instead of %=,
no change for infinite forest
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@ Hold-out random forests
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Hold-out random forests
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Definition (Biau, 2012)

Split D, into Dp, and D,

Ut U2 U9 RI partitions, using Dy,

Using Dp,, no resampling here

/S\Ul §U2 ce /S\[Uq
Aggregatic\\ /
SHO-RF

= purely random forest
closely related to double-sample trees (Wager & Athey, 2018)

Analysis of purely random forests Sylvain Arlot



Hold-out random forests
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Numerical experiments: framework

@ Data generation:
X ~U01P) Y= s"(X) +e
gi ~ N(0,0?) 0?=1/16

1
S [10sin(7x1%0) + 20(x3 — 0.5)2 + 10x4 + 55 | -
e Data split: n1 =1280 np, =25600
@ Forests definition:
nodesize =1
k € {25,20 27 28 291
“Large” forests are made of g = k trees.

e Compute integrated approximation/estimation errors
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Hold-out random forests
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Numerical experiments: results (p = 5)

Single tree Large forest

No bootstrap 0.13  1.040%k 0.13  1.040%k

mtry = p k0-17 no k0-17 no
Bootstrap ~ 0.14  1.060°k 0.15  0.080%k
mtry = p k0-17 o 0-29 o
No bootstrap 0.23 L 1.010%2k  0.06 . 0.0602k
mtry = Lp/3j k0-19 no k0-31 no
Bootstrap ~ 0.25 N 1.020%k  0.06 N 0.0502k
mtry = [p/3| K0-20 no kO34 ny
2 4
—— =~ 0.286 —— =~ 0.444
2+p 4+p
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Numerical experiments: results (p = 10)

Single tree Large forest

No bootstrap 0.11  1.030%k 0.11  1.030%k

mtry = p k0-12 no k0-12 no
Bootstrap ~ 0.11 ~ 1.050°k 0.10  0.040%k
mtry = p k0.11 ny k0-19 o
No bootstrap  0.21 N 1.080%2k  0.08 N 0.040°k
mtry = Lp/3j k0-18 no k0-25 no
Bootstrap  0.20 N 1.050%k  0.07 N 0.0302k
mtry = |p/3| K016 no k026 ny
2 4
— = ~0.167 — ~0.286
2+p 4+p
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Conclusion

@ Forests improve the order of magnitude of the approximation
error, compared to a single tree

@ Estimation error seems to change only by a constant factor
(at least for toy forests);
not contradictory with literature: here, we fix k; different
picture if nodesize is fixed (+subsampling)
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Conclusion
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Conclusion

@ Forests improve the order of magnitude of the approximation
error, compared to a single tree

@ Estimation error seems to change only by a constant factor
(at least for toy forests);
not contradictory with literature: here, we fix k; different
picture if nodesize is fixed (+subsampling)

@ Randomization:
randomization of labels seems to have no impact;
strong impact of randomization of partitions (hold-out RF:
both bootstrap and mtry)
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Approximation error: generalization: purf

Purely uniformly random forests:
split a random cell, chosen with probability equal to its volume
= in dimension p = 1, rates similar to toy forests

=az ]

1.0
1

0.8
1

0.6

X2

0.4

0.2

|

Xt
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Approximation error: generalization: bprf

Balanced purely random forests in dimension p:
full binary tree, uniform splits = k= (tree) vs. k=2 (forest)

where oo = — log, (1 — ﬁ) = not minimax rates!
" | —
-
. - 4
Sl T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Xt
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Approximation error: 4 PRFs, different rates

UBPRF BPRF
1.0 o 1.0 o T T
0.8 0.8
06 06
*
0.4 0.4 o _L: I L
°v2*meL 027 ‘ ‘ ‘ %
0.0 0.0
T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10
x* x*
PURF ToY
10 1 — 1.0 o
LERIIE= ] 0.8 [
os || 1 [ ’ 06 |
*
0.4 J:‘ 0.4
02 02
0.0 0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Xt
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Approximation error: generalization

o General result on the approximation error under (H9):
e.g., roughly, if x is centered in its cell (on average over U),

tree approx. error o< Mo infinite forest approx. error o< M%
where M =~ average square distance from x to the boundary

of its cell (oc k=2/P for toy forests)

@ other PRF studied in the literature: Mondrian forests
(Mourtada, Gaiffas & Scornet 2017 & 2020), centered
random forests (Biau, 2012; Klusowski, 2018), ...
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Open problems / future work

@ Theory on approximation error of hold-out RF?
= understand the typical shape of the cell that contains x,
for a Rl tree
(x centered on average? square distance to boundary?)

@ Theory on estimation error of other PRF (beyond toy and
PURF), with lower bounds?
of hold-out RF?

e Extensive numerical experiments? (other functions s*, ...)
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