The Newhouse phenomenon”

Sylvain Crovisier

We build an open set of non-hyperbolic C?-diffeomorphisms of a surface:

Theorem 1 (Newhouse [N1]). Let M be a compact surface. There exists a non-empty open set
U < Diff?(M) of non-hyperbolic diffeomorphisms. Moreover any diffeomorphism in a dense
Gs-subset of % has infinitely many sinks.

In contrast with hyperbolic diffeomorphisms, the generic systems in %/ have infinitely
many chain-recurrent classes.

Recall that in dimension d = 1, the Morse-Smale diffeomorphisms are dense in Diff" (M)
for any r > 1. In dimension d = 3, there exists a non-empty open set % c Diff! (M) of non-
hyperbolic diffeomorphisms [N2]. One question remains about the density of hyperbolicity:

On a surface M, is the set of hyperbolic diffeomorphisms dense in Diff' (M) ?

Remark 1. The proof of Newhouse’s theorem we present in this chapter is due to N. Gourmelon
and myself. It shows the following stronger version on any compact surface M:

For any a € (0,1) and for C > 0 large enough, let Diff."® (M) be the set of C'*¢ diffeomor-
phisms g such that the a-Hélder norms of Dg,Dg™" are bounded by C > 0, endowed with the
Cl-topology. It contains a non-empty open set % of non-hyperbolic diffeomorphisms. More-
over any diffeomorphism in a dense Gs-subset of % has infinitely many sinks.

1 Dynamics of the horseshoe

We consider the classical construction of the horseshoe.

a) The horseshoe. We consider a C!*¥-diffeomorphism f of a surface M and a rectangle R
diffeomorphic to [0,1]? and we assume that the cone field criterion is satisfied: there exist
A, B€(0,1) such that forany x€ Rn f‘1 (R), we have:

- Df(R*\ €% c¢€Y,
— forany ve €%, | Dfy.vll = A7 1|0,
— forany v E%;(x), IIfo_(;).vII > 17 vl

where
2
Gy ={v=v1+12€R, Bllvall > l0nll},

2
€y ={v=v1+12€R%, Bllurll > llvall}.

*(Draft) notes written for a Master 2 course at Orsay in 2013.
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Let us consider two vertical strips P;, P, € R, i.e. two disjoint rectangles whose horizontal
boundaries are contained in the two horizontal boundaries of R and whose vertical bound-
aries are graphs of the form {(y (1), 1), t € [0, 1]}, disjoint from the vertical boundaries of R.
(We take P; to the left of P,.)

Similarly we consider two disjoint horizontal strips Qy, Q> < R (with Q; below Q,) and we
suppose:

fTHRINR=PUP,,

f(P1)=Q1, [f(P2)=Qo.

The maximal invariant set K in R is contained in (P; U P») U (Q; U Q2) and is hyperbolic. (See
figure 1.)
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Figure 1: The horseshoe map.

b) Local invariant manifolds. For any x € K, the connected component of W¥(x) N R con-
taining x is a graph of the form {(s, ¢(s)), s € [0, 1]}, tangent to €“ (the function ¢ is C! and
B-Lipschitz). We denote it by WZL(‘) (0.

Similarly, the connected component of W*(x) N R containing x is a graph of the form
{(p(0),1),t € [0,1]}, tangent to €° (the function v is C! and B-Lipschitz). We denote it by

W ().
For any x, y € K, we have the following properties:
- fWS ()W, (f(x)and f~1 (W) (x) c W} (fF~(x)).

- WS

loc

(x), W () (resp. W7 (x), W2 () are either disjoint or equal.

- Wlso (%), Wlléc(y) intersect in a unique point. The intersection is transverse and con-

tained in K.

— In particular, K is transitive, hence it is a basic set.



c¢) Folding region. We introduce two open sets L;  (P; U P2) \ (Q1 U Q) and L, < (Q; U Qo) \
(P;UP,) and an integer N = 2 such that fV(L,) = L,. (See figure 2.) We are aimed to describe
the dynamics inside

RUf(Lgu---u fN (L.

F@Lw)

Figure 2: The folding region.

d) Construction. One can build such a dynamics by deformation of the classical hyperbolic
diffeomorphism of the sphere S? built by Smale [S, pages 770-773], as it is picture in figure 3.

These properties are C!-robust.

Lemma 1. Any diffeomorphism g that is C'-close to f satisfies the same properties, when one
replaces Py, P, by the new connected components of Rn g1 (R) and replace Q1,Q., L, by the
new images g(P1), g(P2), gN (Ly).

2 Transverse combinatorial structure

Let us denote by #* the union of the local unstable manifolds W7 (x) with x € K. Itis a
closed subset of R. We describe the transverse structure of #'%. One can note (but we will
not use it) that #'* intersect each vertical line of R as a Cantor set.

The connected components of Int(R) \ #'* are open rectangles G bounded by two local
unstable manifolds: G* (above) and G~ (below).

The connected component G which contains the region between Q; and Q is called
generation 0 component and denoted by Gy. The union of #* n Q; with the components G
contained in Q; and the union of #'* N Q, with the components G contained in Q, are two
closed rectangles denoted as B; and B, respectively. (See figure 4.)

We immediately get:



\ \ / \ fw =1Ly

Figure 3: The standard horseshoe (above). The realization of the horseshoe map with a fold-
ing (below).

Lemma 2. For any component G different from Gy, the pre image f~'(G) is contained in a
component G'. There exists an integer n = 1 such that f~"(G) c Gy, which is called the gener-
ation of G.

To any such component G we associate the rectangles B*, B~, which are the connected
components of f"(B;y) and f"(B,) that are adjacent to G. (The rectangle B* is above and B~
is below.) In the following we sometimes denotes B the rectangle B, or B, which contains
f7"(B™); the other one is denoted B; .

The same structure holds for the union #° of the local stable manifolds Wlso ().

3 Stable and unstable holonomies

The stable and unstable manifolds are as smooth as the diffeomorphism, but in general they
do not belong to a smooth foliation. For a surface diffeomorphism and a C!*#-diffeomor-
phism, the transverse smoothness, that is the smoothness of the holonomy of the local stable
and unstable manifolds, is however Lipschitz.

Definition 1. Lety,y’ be two transverse arcs to alocal unstable manifold W} (x). The holon-
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Figure 4: Combinatorics of components.
omy between vy, Y’ is the map which associates to any intersection z between y and W (x')

loc
close to W (x) the unique point z' € y'n W} (x).

Forany x, y € K we estimate the distance between the unstable leaves W (x) and W}! (y)
by considering vertical graphs y = {(w (1), 1), t € [0, 1]} associated to a B-Lipschitz function ¥
and the distance between Wlbéc(x) Ny and WIL(‘)C( y)ny alongy. Itisdenoted d, (Wf(‘) (), Wféc ).

We then define

ar (W (x), W (y)) = supdy, (W} (x), W) (),
Y

d”~ (W (x), W7 () = igflfdy(Wlléc(x), Wy ().
Proposition 1. Let us assume that f is a C1**-diffeomorphism and consider some C > 0.
Then, there exists A > 1and a C' -neighborhood % of f with the following property.

For any C'**-diffeomorphism g € U such that the a-Hélder norms of Dg, Dg™! are boun-
ded by C >0, for any x, y in the hyperbolic continuation Kg of K we have:

ar Wy (x), Wi (y) < Ad™ (W (x), W (1).

Proof. Let us consider two local unstable manifolds W}/ (x) and W (y), two transverse
graphs y,y’ and the subintervals I, I' inside y,y’ which connect W} (x) and W} (y). We
have to show that |I| < A|I'|, where A > 0 is a uniform constant and |I| is the length of the arc
1.

Note that the backward iterates of the endpoints of I, I’ are contained in R and tangent
to the cone €°. The length of f=%(I), f~*(I") increases exponentially as n growths, whereas
they are tangent to the thiner cone fields Df~".€°.

Let J1, J» be the arcs of WZL(‘)C(x) and WlL(‘M( y) which connect y,y’. Their backward iterates

are all contained in R and their length decreases exponentially. One deduces that there exists
N = 0 such that f‘N(I), f‘N(I’), f‘N(]l), f_N(]z) have the same length (up to a multiplica-
tive constant depending on 5, 1). See figure 5.
Lemma 3. There exists a foliation of the subrectangle of R bounded by W}, (f N(x)) and
wpe (f ~N(y)), whose leaves are tangent to €*. Its holonomy defines a homeomorphism Iy
between the transverse arcs f~N(I) and f =N (I'), which is bi-Lipschitz with a uniform constant
Lip(Ily) > 0.
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Figure 5: Image of the unstable strip by the iterate f~.

Proof. The two leaves W/ (f~V(x)) and W/ _(fN(y)) are the graphs of two f-Lipschitz

loc
functions ¢, ¢,. For u € [1,2], the functions

Qu=2-uwp1+Ww—-1¢;

are f-Lipschitz and their graphs define the leaves of the foliation. We denote by Iy the
holonomy map between f~V(I) and f~N(I').

Letze f~N(I) and z’ = I (z). Let V, V' be two vertical segments which connect the local
unstable manifolds of f~"(x), f~"(y) and which contain z and z’ respectively. The holonomy
[Ty, between V and V' is linear since the leaves ¢, have been obtained as barycenters. As a
consequence, [Ty - is a Lipschitz map whose constant % is bounded since f~N(I), f~N ",

f_N(h), f_N(fz) have comparable lengths.
The holonomy map I1y may be decomposed as

HN = HV’,f_N(I’) o HV,V’ o Hf_N(I),V'

The holonomy map IT;-~ ;)  fixes z. In a small neighborhood of z, the slopes of the leaves of

the foliation are close to a constant with norm smaller than 8 and the slope of £~V (I) above
the second coordinate is close to a constant with norm smaller than . Hence the Lipschitz
constant of IT;-~p y at z is uniformly bounded. One argues similarly for Il r-n(py. This
gives the conclusion of the lemma. O

From the previous lemma we obtain a bi-lipschitz homeomorphism I1; » between I and
I’ defined by
HI,I' = fNOHNOf_N,

Its Lipschitz constant at { € I is bounded by
1D Y-y Mo £ O LipTIn) 1D ¥ 1.
We thus have to bound the following quantity for z € f~V(I):
1Dy AN N-UID i iy (F o Ty (@)

DS n @ iz IDfipvn (fFF

(1

Lemma 4. There exists C' > 0 and A € (0,1) such that if p;, p; € (=, B) denote the slope of
fi_N(I),fi_N(I’) (above the vertical) atfi(z) and fi(l'[n(z)), then

1P, —pil<CAN
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Proof. Let L > 0 bounds the length of local unstable manifolds. Since z and I1y(z) belong to
a same leaf tangent to €%, the cone field criterion gives:

d(f Tn(2), fL(2) < AN"ld(fFN My (2), fN(2) < ANLL.

By the cone field criterion, if we consider two vectors at a same point x with slopes p, p’, then
their images D f~! will have slopes p, p’ satisfying

1P - pl=A%p’ - pl.
This gives
\pi_1 —picl <|pj_y =Pl +1p—pi-l

< A|pl - pil+ C.d(f'(2), f (TIn(2))*
< A|p} - pil + C.L*AN-D9,

where p is the s_lope of the image of the vectors with slope p; by Df 1 f I(Mx(2))) (rather
than by D f~1(f!(2))).
Since |p)y — pn| < 2, we thus obtain:

Ip; = pil < C'ATN,
where C' > 0 is a uniform constant. O

One deduces that there exists C” > 0 uniform such that:

IDf, pi-npy (ff o TN (2Dl
||Dﬁfi—N([) (fl(z))”

<C"d(f oTin(2), f () + C"lpi - P,

which is exponentially small in N —i. One deduces that (1) is uniformly bounded by a con-
stant A > 0.

Any C'*¢_diffeomorphism g which is C!-close to f and such that the C'*%-norm of
Dg,Dg!is bounded by C satisfies the same estimates. O

Remark 2. When the lengths of I, I, J1, J, are small and the slopes of y, Y’ are close to a same
constant, we get |I'| < A|I| for a constant A arbitrarily close to 1.

4 Thickness

Let us consider a local stable manifold W, (x) and an open connected component U of
W (x) \ K: it is the intersection of a component G with W (x). We are aimed to compare
U with the sizes along W}’ (x) of the adjacent rectangles B*, B"to G.

Definition 2. The stable thickness of K at U is

; - +
min(IB~ W}, (01, |B* n W} ()
U '

T(K,U) =

The stable thickness of K is
5(K) = ir(}f (K, U).
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Let z be a point on an unstable leaf W¥(x), x € K, and let y be a C!-arc at z transverse to
W4 (x).

Lemma 5. There exists N = 1 such that f~(z) belongs to wp (f ~N(x)) and Tr-niyf Ny is
contained in 6°.

Proof. Let us consider No such that f~™(z) belongs to W/ (f~°(x)). For N; = 0 large
enough, the complement of the cone D f Ny f ~Ni+No) (7)) is arbitrarily thin and contains
TNy W)e (f~M0(x). Tt is thus transverse to f°(y). One deduces that Df~"(y) is tangent

loc

to €% at fV(2). O

Definition 3. The local thickness at z is:

%(2) = ]iminfmin(|Bz+ Nyl,|B; Nyl
UZ_’Z |UZ|

)

where U, is the image by fV of a connected component of f~N(y) \ #“ (i.e. there exists a
component G such that U, = yn f¥(G)) and B are the image by f” of the rectangles B*
that are adjacent to G.

The following shows that the definition does not depend from N or 7.

Proposition 2. a) 7°(K) > 0.
b)1°(2) = 1°(K).

c) The stable thickness 1°(Kg) of the hyperbolic continuation Kg depends continuously on g
for the C'-topology on the space of C'*% diffeomorphisms such that the a-norm of Dg, Dg™!
is bounded by C > 0.

We will use the following lemma.

Lemma 6. For any A > 1 and C > 0, there exists € > 0 such that any diffeomorphism g that
is C'-close to f and such that the a-norm of Dg,Dg™" is bounded by C > 0 has the following

property.
For any C'-graph o = {(y (1), t)} which intersects W' *, any n = 0 such that:

— the slopes {Dy (1)} are contained in an interval smaller than € and included in (-, §),
— the length of f~" (o) is smaller than ¢,
and for any y1, y» € o, we have

n
A_l < ”Df (yl)la” <A
IDf™(y2)i0ll

Proof. The proof is similar than for lemma 4. We denote p;, p; the slope of f Lo) at fi(y1)
and fi(yg). The distance d(fi(yl),fi(yg)) is smaller than £.1°
This gives

P}_y = pic1l < A%|pl— pil + C.e® 2™,



We thus obtain:
, C'e®Al ife%Al = gA2IN=0)
|pi_pi|5 / 2(N=1) .
C'ed otherwise,
where C' > 0 is a uniform constant.

One deduces that .
||Df|f—i(y) Sl

(0] -
SIDS iy T

is smaller than C"e®(A/)min(.N=1 where C” > 0 and A" € (0,1) are uniform constants. One
concludes as for lemma 4. O

Proof of proposition 2. Let us consider x, U, B* as in the definition of 7(K, U). Note that one
can assume that the point x belongs to the boundary of U. The diffeomorphism f” sends

Gon W (f7"(x)), Bin W (f7"(x)) on U and B*n W} . (x). This shows that there exists
y1€BynW; (f~"(x) and yo € Gon W} (f~"(x)) such that
n
B W, 0l 1By n Wi (F ")l 1P o 00
1 |Gon W, .(f7"C)I ID |’I;Vlsoc(x) Il

From the previous lemma, the right hand is uniformly bounded from below. A similar prop-
IB-AWS ()]

erty holds for T

. This gives the property a).

Let us consider z, N,y as in the definition of local thickness. Since [|D fh‘,N ()] is arbi-
trarily close to || D fh‘,N (z)]l as { is close to z, the local thickness at z (along y) and at f~V(z)

(along f~N(y)) coincide. One can thus assume in the following that N = 0. Let us fix § > 0.
There exists ¢ such that for any interval U of generation larger than ¢ in definition 2, we have
7(U,K) > 7°(K) - 6.

Let us consider the ratio |B; ny|/|U,| which appears in the definition of the local thick-
ness. As before there exists n = 0 such that f~"(U;) and f~"(B}) coincide with the intersec-
tions of f~"(y) with G of generation ¢ and B* adjacent to G. One deduces that there exists
y1 € B¥n f~"(y) and y; € f~"(U,) such that denoting ¢ = f~"(y) we have:

B + IDf7 (ol
Bz 0yl 1B 0ol 20 A 1 k) - ).
Ul 1Gnol IDfIG2I

Note that A is arbitrarily close to 1 as U, converges to z. Arguing similarly with |B; ny|/|U,|
one deduces 7°(z) = 7°(K).

Let us prove the other inequality. One considers X € K, a component U = GN W} (X) of
Wlso € \ # * which is small, and the interval B* n Wlso (%) adjacent. One can assume that
X is a boundary point of U. Since K is transitive, there exists y € K close to x and negative
iterates f~"(y) arbitrarily close to X. One can replace x by the intersection point between
Wy (x) and W (f~"(y)): this changes the ratios |IB* N wp ()l U only a little. We are now
reduced to the case there exist iterates f”(X) arbitrarily close to x with ¢ arbitrarily large. One
deduces that there exists B;; and G, close to W} (f"(X)) which are mapped by f~” inside
B* and G. As before we have

1Binyl _ . |1B*nal
IGanyl ~ T 1GN (o))
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where o is the connected component of f~"(y) N R containing f~"(z). Arguing as in the
proof of the inclination lemma, we deduces that o and W} (%) are arbitrarily close for the
C!-topology when 7 is large. One deduces also that A is arbitrarily close to 1. This proves
7°(2) < 7°(K) and concludes the proof of the b).

The lemma 6 (and the arguments above) show that

75 (K) := inf (K, U)

U of generation n

for nlarge is close to 7°(K), uniformly in the diffeomorphism g thatis C!-close to f and such
that the C*-norm of Dg , Dg~! is bounded by C > 0. Since 7,,(K) depends continuously on
g for the C!-topology, one gets the property c). O

5 Robust tangencies

Definition 4. K has a homoclinic tangency if there exists a periodic orbit O c K such that
WS(0) and W*(0O) have a non-transverse intersection.

K has a generalized homoclinic tangency if there exist x, y € K such that W*(x) and W¥(y)
have a non-transverse intersection.

K has a C" -robust generalized homoclinic tangency if there exists a neighborhood % of
f in Diff" (M) such that any g € % has a generalized homoclinic tangency associated to the
hyperbolic continuation Ky of K.

Theorem 2. For any C? diffeomorphism f with a horseshoe K exhibiting a homoclinic tan-
gency and satisfying 1°(K) - T%(K) > 1, then there exists a diffeomorphism g close to f in
Diff?(M) which exhibits a C?-robust generalized homoclinic tangency.

6 Proofof Theorem 2
a) Preparation. Let us consider x, y € K and z € W*(x)nW¥(y) a non-transverse intersection
outside R.

We choose local coordinates (s, f) near the point z such that:
— W?¥(x) coincides locally with the graph {t = 0},

— W¥(x) coincides locally with the graph of a function ¢ = 0 which take the values 0 only
at0.

This last property is obtained after a small C*-perturbation in a neighborhood of f~!(z) (so
that K, W} (K), W} (K) are not modified).

Let y = {s = 0} be a small vertical transversal through z. By lemma 5, there exists N =
1 such that fN()f) is a graph {(s,¢(s)} and f‘N(y) is a graph {(y (1), 1)} where ¢,y are (3-
Lipschitz.

We will study the transverse structure of fN(# %) and f~(#°) near z, using the results
proved in the previous sections:

10



— If one chooses two small vertical transversals {s = s;} and {s = s»}, close to z, the holon-
omy of the local stable and local unstable laminations f¥(# %) and f~(#®) are Lips-
chitzian with a constant A > 1 close to 1.

— Reducing v if necessary, the norm of the derivatives || D f({ )iyl and [|Df N )iyl are
almost constant for { € y.

— If € > 0 has been fix and y is small enough, one deduces that for any component G* of
Int(R) \ #'* and any adjacent rectangle R%, one has:

lyn fN(BY)|

>(1-¢).74.
I}fﬂfN(G”)|>( £).T

— A similar estimate for the components G* of Int(R) \ #°°. By the Lipschitz control of the
holonomies, these estimates are still valid for verticals {s = sy} close to y.

b) Robust overlapping. We modify f again near f~'(z), in order to modify fN#%) in a
neighborhood of z without modifying £~ (# ).

The two tangent leaves W*(x) and W*(y) are limit in a neighborhood of z of leaves G*
and G** respectively: G* is the image by f~ of a components of Int(R) \ # ¢ and G>* are its
boundary leaves; similarly G“ is the image by fV of a components of Int(R) \ #* and G**
are its boundary leaves. See figure 6.

Gu,+
Gu
G~

GS,+
GS
GS™

Figure 6: The overlapping between the stable and unstable laminations.

The perturbation is done in order that the following assumptions are satisfied in a neigh-
borhood (—¢, €)? of z, for two components G%, G* and for any diffeomorphism g in an open
set % < Diff* (M) close to the initial diffeomorphism f:

(01) G*~ meets G,
(02) G** meets G,
(03) G** does not meet G5~

(And necessarly, G~ meets G>*.)

We have to prove that any diffeomorphism g € % has a generalized homoclinic tangency.

¢) The induction.
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Lemma 7. Let us assume that the components G°,G" satisfy the assumptions (O1-3) of the
previous section for a diffeomorphism g. Then either g has a generalized homoclinic tangency,
or there exists components G°, G satisfying also assumptions (O1-3) such that:

— either G* = G* and the generation of G* is larger than the one of G,
— or G* = G* and the generation of G is larger than the one of G°.

Proof. Let us introduce two rectangles B¥, B“ adjacent to G*,G" and such that B®* = G®~
and B%~ = G"* (see figure 7).

Bu
Gu
444é g
GS
: \
\\\\\\\\\i\\\\BS
I N .

Figure 7: Overlapping between components and rectangles (1).

Claim 1. One of the following properties holds:
(@) B~ <G"7,
(b) B%* >G5,

Proof. If one supposes by contradiction that these properties are not satisfied, there exists a
vertical y; close to z such that
(y1nG*) > (y1nB%),

and there exists a vertical y» close to z such that
(Y2n G®) > (y2nB").
One deduces:

ly2n Gl =1y1nGY =z |ly1nB°|=ly2nB’|= (1 -7’ (K)ly2n Gl

Similarly:
lY2an G’z ly2nBY =2 (1-&)t"“(K)ly2n GY|.
This gives
ly2n G = (1-&)*T° (KT (K)ly2 N GY,
which is a contradiction since 75(K)T4%(K) > 1. O
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Let us assume for instance that the first case of the claim B®~ < G*~ holds. Among the
leaves X of f~N(#¥) which satisfy = < G*~, we choose the last one, i.e. minimizing the
distance to G*~. Two cases are possible:

— either X < G*~ intersect each other: we have found a generalized homoclinic tangency,

— or X < G%":in this case X = G5~ where G* is the image by £~ of a new component of
Int(R) \ #%; by definition of X, the leaf G meets G*~. We also define G* = G“.

If there is no generalized homoclinic tangency for g, we have found a new pair of compo-
nents G°, G* satisfying (see figure 8):

(01) G** does not meet G5* (and G¥7),
(02) G*~ meets G5,
(03) G*~ does not meet G~

Note that G* is contained in B, hence has a generation larger than the generation of G°.

If the second case B** > G** of the claim holds, the same argument gives the same
conclusion (but this time G® = G* and the generation of G* is larger than the generation of
G®).

7 "\\\\\>
\\\\\\\\

% 7 = Z G’

27

Figure 8: Overlapping between components and rectangles (2).

Let us consider the rectangles B, B* adjacent to G°, G such that B~ = U®* and B%* =
U"~. As before we prove:

Claim 2. One of the following properties holds:
(a) BS* meets G,
(b) B*~ meets G5~.

We assume for instance that B~ meets G¥~ as in the first case of the claim. Among
the leaves X of fV(# %) which meet G*~, we choose as before the last one. Two cases are
possible:

— either 2 < G%: we have found a generalized homoclinic tangency,

- or 2 = G*~ where G* is the image by f" of a new component of Int(R) \ # %; by defini-
tion of 2, the leaf G%* is disjoint from G*~. We also define GS=G".
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If there is no generalized homoclinic tangency for g, we have found a new pair of compo-
nents G*, G satisfying (O1-3). If BS* meets G** as in the second case of the claim, we obtain
the same conclusion by the same argument.

By construction,
generation(G®) < generation(G®),
generation(G") < generation(G%),
and at least one of these inequality is strict. This ends the proof of the lemma 7. O

d) Robust tangency. From lemma 7 we obtain a sequence of components Gj,, G5 such that:

- max(generation(G;), generation(G})) = 0,
—00

- GnNGL#2,

- Gy NGt =¢.

If one assumes for instance that generation(G:) — oo, one deduces that G;;~ and G;;"
n—oo

converge toward a same leaf = of =N (#¥). One can also assume that G'* converge toward
aleaf =“ of FN(W'Y).
We obtain:

- Since Gi'" = G}~ we have X% > =%,
- Since G¥" meets G5 *, we have that Z“ meets >°.

One deduces that 2% and X° have a non-transverse intersection, hence g has a generalized
homoclinic tangency. This ends the proof of the theorem 2.

7 Infinitely many sinks or sources

The following proposition ends the proof of the Newhouse’s theorem 1 stated at the begin-
ning of the chapter.

Proposition 3. Let us consider an open set% < Diff*(M) and a transit if hyperbolic set which
admits a hyperbolic continuation K for each g € % . Let us assume furthermore that Kg has a
generalized homoclinic tangency for each g € % . Then, there exists a dense Gs-subset G c U
such that any g € 9 has infinitely many sinks or infinitely many sources.

Proof. For N =1, we define
9Yn =1{g €%, g has at least N sinks or sources }.

It is an open set. If it is dense for each N = 1, then the set ¢ = N¥y is a dense Gg-set as
announced. The proof of the proposition is thus a consequence of the following. O

Proposition 4. For any diffeomorphism f € Diff*(M), for any transitive hyperbolic set K with
a generalized homoclinic tangency and for any neighborhood U of K, there exists g arbitrarily
closeto f in Diff* (M) with a sink or a source whose orbit meets U.
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The next lemma shows that one can assume that the diffeomorphism f in the previous
proposition has a homoclinic tangency.

Lemma 8. For any diffeomorphism f € Diff*(M), for any transitive hyperbolic set K with a
generalized homoclinic tangency and for any neighborhood U of K, there exists g arbitrarily
close to f which exhibits a homoclinic tangency associated to a periodic orbit contained in U.

Proof. Letx,y € Kand N = 1such that f -N (Wlso c(x)) and f -N (Wlbéc(y)) have a non-transverse
intersection z. Since K is transitive, there exists a hyperbolic periodic orbit O c U with
two points p, g close to x and y respectively. Consequently, the leaves f~V (W} .(p)) and
FNW; (x)) are close to each other, the leaves fN (W} (¢)) and fN(W} (y)) are close to
each other.

A perturbation of f in a small neighborhood of f~!(z) will produce a tangency between

FNWS (p))and fNWH (g)). 0

loc loc

The end of the section is devoted to the proof of the second proposition.

Proof of proposition 4. Let O be a periodic orbit. In order to simplify the presentation, one
will assume that O is a fixed point p. We choose some coordinates (s, t) near p = (0,0) such
that:

— WS

loc

— there exists N = 1 such that fN(l,O) =(0,1) and fN(Wl‘(‘)c(p)) is tangent to Wlsoc(p) at

(0,1) .e. DFN(1,0) sends the horizontal direction on the vertical one),

- Df N(1,0) sends the vertical direction on the horizontal one.

Let us consider a small vertical segment y through (1,0), a horizontal segment o through
(0,1), and a large integer m = 1. The segments f~""(y) and o intersect at a point q. See
figure 9.

Figure 9: The homoclinic return giving birth to sinks or sources.

From the inclination lemma, D f*(f~""(q)) sends the horizontal direction to a direction
close to the vertical and sends a direction close to the vertical to the vertical direction. Con-
sequently, there exists a C*-perturbation g of f supported near g and f~'(g) such that
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— ¢ is m+ N-periodic for g,

- Dg™*N(g) exchange horizontal and vertical directions, and its determinant is different
from +1: its eigenvalues have the same modulus, which is different from 1.

This proves that g is a sink or a source (depending if the determinant has modulus larger or
smaller than 1). O
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