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In the sciences in general, the phrase “route to chaos”
has come to refer to a metaphor when some physical,
biological, economic, or social system transitions from
one exhibiting order to one displaying randomness (or
chaos). Sometimes the goal is to understand which uni-
versal mechanisms explain that transition, and how one
can describe systems that operate in a region between or-
der and complete chaos. In other words, the goal is to
understand the mathematical processes by which a sys-
tem evolves from one whose recurrent set is finite towards
another one exhibiting chaotic behavior as parameters
governing the behavior of the system are varied. This
has only been understood for one-dimensional dynamics.
The present note exposes new approaches that allow one
to move away from those limitations.

A tentative global framework toward describing a large
class of two-dimensional dynamics, inspired partially by
the developments in the one-dimensional theory of inter-
val maps is discussed. More precisely, we present a class
of intermediate smooth dynamics between one and higher
dimensions. In this setting, it could be possible to develop
a similar one-dimensional type approach and in particular
to understand the transition from zero entropy to positive
entropy.

Complexity in dynamics

Considering a system which evolves in time, the pur-
pose of dynamical systems is to describe the asymptotic
behavior of its orbits. As an example, one may think to
the gradient flow associated to a Morse function: there
exists a finite number of equilibria and any other orbit is
a curve which connects one equilibrium to another one.
One may also have in mind mechanical systems: in the
case of the ideal frictionless pendulum, one gets a flow
whose orbits are contained in the level sets of the energy
function. See figures 1 and 2.

In this note we consider discrete time systems, defined
by a map f on a phase space M . For instance, f may
be the time-1 map for the flows mentioned previously.
The forward orbits are the sequences of the form x, f(x),
f(f(x)), f(f(f(x))),. . . For convenience, one usually de-
notes fn(x) the image after n compositions by f and one
of our goals is to characterize the accumulation sets of
the orbits, usually called the limit sets.

Figure 1. A Morse-Smale dynamics de-
fined by the gradient flow of a Morse
function.

Figure 2. A hamiltonian dynamics (the pendulum).

The horseshoe map. For the above systems, or for oth-
ers like rotations or isometries, the limit sets are very sim-
ple and the orbits are described easily. But much richer
behaviors exist. This happens on surface, when a rectan-
gle R is vertically stretched, horizontally contracted and
crossed twice by its image f(R). In this case R ∩ f(R)
has two components (R0, R1) and any orbit contained in
R may be coded by a sequence in {0, 1}Z, which repre-
sents the sequence of components met along the orbit.
See figure 3 and [Shu] for more details. Conversely, any
such sequence is realized by an orbit contained in R. This
shows that for each time n ≥ 0, at least 2n different or-
bits of the system may be distinguished at the scale of
the rectangle R.

The topological entropy. One measures the complex-
ity of a dynamical system f through its entropy. It is
defined by fixing ε > 0 and considering the maximal num-
ber N(ε, f, n) of orbits under f that can be distinguished
at scale ε up to time n. The topological entropy h(f) is
the asymptotic exponential growth rate1 of this quantity.
It is always bounded when f is a differentiable map of

1Note that N(ε, f, n) increases as ε gets smaller. Formally, one

thus sets h(f) = limε→0 lim supn→+∞
1
n

logN(ε, f, n).
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Figure 3. The horseshoe map.

a compact manifold. As we will see the dynamics differs
dramatically when the entropy vanishes or is positive.

Morse-Smale dynamics. For the simple systems pic-
tured in figures 1 and 2 the entropy is zero. This is also
the case for any Morse-Smale dynamics, i.e. for systems
which generalize the gradient dynamics in this way:

• there exist finitely many periodic orbits O1,. . . ,
O`, each of them being hyperbolic (when x ∈ Oi
is fixed by fn, n ≥ 1, the moduli of the eigenval-
ues of Dfn(x) are different from 1),

• any other orbit accumulates in the past and in the
future on two different orbits Oi, Oj with i < j.

Cascade of doubling periods and odometers. An
important example of a diffeomorphism on the disc with
zero entropy and which is not Morse-Smale has been first
built in [GST] and exhibits infinite sequence of periodic
orbits. It can be described as follows: the disc D is
mapped into itself and is separated by a line of points
γ whose forward orbit converge to a fixed point x0. The
two components Dl, Dr of D\γ are topological discs that
are exchanged by the map and contain points xl, xr of
a same 2-periodic orbit. Each disc Dl or Dr is divided
by a line γl or γr of points whose orbit accumulates on
{xl, xr}; the four components of D\(γl∪γ∪γr) are cycli-
cally permuted by the map and each of them contains a
point of a same 4-periodic orbit. The decomposition goes
on inductively and produces one periodic orbit for each
period 2n.

The collection of periodic points converges to an in-
variant Cantor set K. The restriction of the dynamics
to K is conjugated to the addition by 1 on the group of
dyadic integer Z2, and for that reason the limit Cantor
set is called an odometer (or adding machine).

Transverse homoclinic intersections. For the horse-
shoe map, pictured on figure 3, we have seen that the
number of itineraries at time n has the lower bound 2n

and the entropy is at least log(2). A generalization of

x0

γ

γrγl

xrxl

Dl Dr

D

Figure 4. A cascade of doubling peri-
ods accumulating on an odometer.

that phenomenon occurs frequently in differentiable dy-
namics. Indeed, let us consider a diffeomorphism with
a fixed point p which is a hyperbolic saddle: the tan-
gent space at p decomposes as the sum of two invariant
subbundles TpM = Es ⊕ Eu, such that the eigenvalues
of Df |Es (resp. Df |Eu) have a modulus smaller than
1 (resp. larger than 1). Then the set of points whose
forward (resp. backward) orbit converges to p is an im-
mersed submanifold W s(p) (resp. Wu(p)), called stable
manifold (resp. unstable manifold) of p. Poincaré has
noticed a fascinating phenomenon: when these manifolds
have a transverse intersection point (different from p it-
self), then they have to intersect in an intricate way, see
figure 5.

Figure 5. The net formed by the sta-
ble and unstable manifolds of a fixed
point, when there exists a transverse ho-
moclinic intersection.

Smale has proved that such a transverse homoclinic in-
tersection forces f to have a horseshoe, implying that the
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entropy is positive. For periodic orbits O with period τ
which are saddle (i.e. which split into saddle fixed points
of fτ ), one defines analogously the stable and unstable
manifolds W s(O),Wu(O); a transverse intersection (out-
side O) between them implies that f admits a horseshoe.
Katok has shown the converse in dimension 2. On sur-
faces, positive entropy is thus equivalent to the existence
of a horseshoe:

Theorem (Smale, Katok). For C2-diffeomorphisms on
a surface, the topological entropy is positive if and only if
there exists a hyperbolic periodic orbit with a transverse
homoclinic point.

In higher dimensions, only Smale’s implication remains,
but one may ask if Katok’s one still holds for “most” dif-
feomorphisms.

Transition to chaos in the space of systems

It appears that the space of diffeomorphisms splits into
two classes with very different dynamics: those with zero
entropy and those with positive entropy. Each of these
classes contains open sets: the set of Morse-Smale diffeo-
morphisms on the one hand, and the set of systems ex-
hibiting a transverse homoclinic orbit on the other hand.
This naturally raises the following questions.

Q1. Is the set of Morse-Smale diffeomorphisms dense in
the set of systems with zero entropy?

Q2. Is the set of diffeomorphisms with a transverse ho-
moclinic intersection dense in the set of systems with pos-
itive entropy?

If these questions have positive answers, the interface
of these two classes is small and one goal would be to
understand the systems at the transition between simple
(zero entropy) and complicated (positive entropy) dynam-
ics. In particular we would like to identify, if it exists, the
phenomena that generates entropy.

Q3. Can one characterize systems that belong to the
boundary of the class of dynamics with zero entropy?

We note that the two open classes introduced before
can be distinguished by the number of periodic orbits
present in the system: it is stably finite in one case, and
stable infinite in the other case.

Q4. Can one identify the transition from finitely to in-
finitely periodic orbits?

We will discuss these questions in different settings,
starting with the lower dimensions.

One-dimensional dynamics

These questions have already been addressed in dimen-
sion 1. We will focus on continuous maps acting on the
closed interval, but one could also consider maps acting
on other one-dimensional spaces like the circle or trees.
For monotone maps, it is not difficult to prove that the

accumulation points of any orbit is either given by fixed
points (if the map is increasing) or by a unique fixed point
and periodic orbits of period two (if the map is decreas-
ing).

A richer situation holds with non-invertible maps. The
action of quadratic polynomials on the real line illustrates
how different possible dynamical scenarios arise. Without
loss of generality, one can consider the quadratic family

fa : x 7→ ax(1− x)

which satisfies fa([0, 1]) ⊂ [0, 1] for a ∈ [0, 4]. There
is a value a∗ such that the topological entropy vanishes
when a ≤ a∗ and is positive for the other parameters.
As a < a∗ increases the (finite) number of periodic or-
bits increases and a∗ is the smallest parameter exhibiting
periodic points with arbitrarily large periods.

The natural ordering of the interval allows a combina-
torial approach. For instance, exploring the richness of
that total order structure, Milnor and Thurston have de-
veloped a Kneading Theory, giving a complete description
of all topological possibilities for the dynamics of a family
of endomorphisms of the interval, with a given number of
monotonicity branches.

Periodic approximation in the interval. A point x0

is recurrent if its forward orbit meets any of its neighbor-
hoods; this is the case when x0 is periodic. A result, that
highlights the strength of the order structure, asserts:

Property (L.-S. Young [Y]). For interval maps, the pe-
riodic points are dense in the recurrent set.

This fact is unknown in higher dimension, even from a
smooth generic point of view. A simple proof of this fact
goes along the following lines. Let us consider a recurrent
(non-periodic) point x0 and a forward iterate x1 = fn(x0)
close to x0. Without loss of generality, one can assume
that x0 < x1. We claim that there is a periodic point
for g := fn inside (x0, x1). Indeed one can easily check
that x0 is still recurrent for g. Since x0 < x1, there exists
a positive integer k such that gk(x1) < x1. Taking the
smallest k also gives gk(x0) = gk−1(x1) > x1. Therefore
we have a continuous map gk : [x0, x1]→ [0, 1] such that
gk(x0) > x1 and gk(x1) < x1. Hence the graph of gk

crosses the diagonal inside (x0, x1): there is a point p ∈
(x0, x1) which is fixed for gk and so periodic for f , see
figure 6.

fk

x1x0D− D+

Figure 6. Localization of a periodic
point in the interval.
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We can recast the previous proof, avoiding an explicit
use of the order, and in a way that can be generalized
to other contexts. Under the same choices of x0 and x1

as above, we define the intervals D− = [0, x0] and D+ =
[x1, 1] and we take the first positive integer k such that
gk(x1) /∈ D+. Such an integer exists since x0 is recurrent
and does not belong to D+. By the choice of k observe
that gk(x0) = gk−1(x1) ≥ x0 Let h : [0, 1] → [x0, x1] be
a continuous map which coincides with the identity on
[x0, x1] and such that h([0, x0]) = x0, h([x1, 1]) = x1.
Then the map h◦ gk : [x0, x1]→ [x0, x1] has a fixed point
p ∈ [x0, x1]. Note that h◦gk(x0) = x1 (since gk(x0) ∈ D+)
and h ◦ gk(x1) 6= x1 (since gk(x1) 6∈ D+). Therefore p
belongs to (x0, x1). Since h is the identity on (x0, x1),
the point p is a fixed point of gk.

One-dimensional dynamics and zero entropy. A sim-
ple characterization of positive entropy in the interval has
been given by Misiurewicz:

Property (Misiurewicz). An interval map has positive
entropy if and only if there exists two disjoint intervals
such that the images of each interval by an iterate f ` of
the map contains the union of both interval.

The reason is analogous to Smale-Katok’s theorem:
the number of itineraries for f ` with respect to these in-
tervals grows as 2n, see figure 7.

I0 I1

f(I1)

f(I0)

Figure 7. Map satisfying Misiurewicz
criterion.

Another historical result in this combinatorial theory
is Sarkovskii’s hierarchy of periodic orbits. It implies:

Property (Sharkovskii). Interval maps with zero entropy
only admit periodic points of period 2n, n ≥ 0.

Let us discuss Sharkovskii’s property in the case of
unimodal maps of the unit interval [0, 1], i.e. continuous
maps with only one turning point c ∈ [0, 1], one strictly
increasing interval [0, c] and one strictly decreasing inter-
val [c, 1]. The following dichotomy then holds:

Property. For unimodal maps f with zero entropy,
– either all forward orbits converge to a fixed point,

– or f is renormalizable: there exists an interval I con-
taining c such that f(I)∩I = ∅, f2(I) ⊂ I, f2

|I is unimodal

and the forward orbit of any point either converges to a
fixed point or enters in the interval I.

In particular, any periodic orbit is either fixed, or has
even period. Applying the property to f2

|I shows that 4

divides any period larger than 2. Arguing inductively,
one concludes that the allowed periods have the form 2n.

The dichotomy can be obtained by considering sepa-
rately the two cases f(c) ≤ c and f(c) > c. In the first
case, f([0, c]) ⊂ [0, c] and since f |[0,c] is increasing, it fol-
lows that any orbit in [0, c] converges to a fixed point;
since f([0, 1]) ⊂ [0, c], the same property holds on the
whole interval [0, 1]. In the second case, observe that since
f(c) > c and f(1) ≤ 1, there is a fixed point p ∈ (c, 1].
Let us introduce the maximal interval I := (p′, p) ⊂ (0, p)
whose image is contained in (p, 1) (note that either p′ = 0
or f(p′) = p). Observe that the turning point c belongs
to that interval, f(I) ∩ I = ∅ and f2|I is unimodal. Also
f2(p′) ≤ f2(p) = p. Since the entropy is zero, it follows
from Misiurewicz property that f2(c) ∈ I and therefore
f2(I) ⊂ I. It remains to see that any forward orbit ei-
ther converges to a fixed point or enters inside I. Note
first that if x < p− then f(x) < f(p′) = p and so either
f(x) ≥ p′ (in this case f(x) is contained in the interval
I) or f(x) < p′ and the argument can be repeated: if the
forward orbit of x does not enter in I, it remains in the
increasing interval [0, c] and converges to a fixed point.
In the last case x > p: the image f(x) belongs to the
increasing part and we are reduced to the first case. See
figure 8.

I f(I)

c p f(c)p′

Figure 8. Unimodal map which is
renormalizable.

Infinite renormalization and odometers. From the
previous discussion, one concludes that for unimodal maps
with zero entropy, two cases are possible.

A first possibility is that the inductive renormalization
described in the previous paragraph stops after a finite
number m of steps. The set of periods is then the finite
set {2k, 0 ≤ k ≤ m}. Any forward orbit accumulates on
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one periodic orbit. The dynamics is similar to a Morse-
Smale dynamics (although the number of periodic points
of a given period may be infinite).

Otherwise one says that f is infinitely renormalizable.
For each k ≥ 0, let Ik denote a renormalization interval

with period 2k, so that Vk := Ik ∪ f(Ik)∪ · · · ∪ f2k−1(Ik)
is forward invariant. The family (Vk) is decreasing and
the intersection is an invariant compact set K. When f is
C2 and D2f(c) 6= 0, it is a Cantor set2, and the dynamics
on K is the same as in the example of figure 4: it is
an odometer. Inside such a set, all the orbits are dense
and follows the same statistic: they distribute toward the
same invariant probability measure, and visit a set Ik
with frequency 2−k. Any forward orbit of f accumulates
either on a periodic orbit, or on the odometer.

The renormalization operator. Deepening the idea of
renormalization, Coullet-Tresser and independently Feigen-
baum, have proposed to consider the renormalization op-
erator R acting on the space of smooth unimodal maps
with a quadratic turning point: to any map which is
renormalizable on a maximal interval I, it associates the
map R(f) := H ◦ f2|I ◦H−1, where H is the orientation-
reversing affine homeomorphism between I and [0, 1]. See
figure 9.

R

H

f f2

R(f)

Figure 9. Renormalization of a uni-
modal map.

These people have realized that the dynamics of R
is the key for understanding the boundary of the set of
maps with zero entropy. They conjectured that the op-
erator has a unique fixed point f?, which is hyperbolic.
The set of unimodal maps whose sequence of renormal-
ization converges to f? is a one-codimensional submani-
fold (which correspond to infinitely renormalizable maps).
Outside this stable manifold, the renormalizations stop
after finitely many steps. On one side the dynamics has

2It follows from the no wandering interval theorem, see [MS].

a Morse-Smale behavior: the number of periods is finite
and the entropy vanishes. On the other side of the sta-
ble manifold, the dynamics renormalizes until a horseshoe
appears and the entropy is positive. See figure 10.

infinite
renormalizable

Morse-Smale like
h = 0

h > 0

f?

R

renormalizable maps ∃ horseshoeperiod 1 only

Figure 10. Dynamics of the renormal-
ization operator R on the space of
unimodal maps with quadratic turning
point.

The definite mathematical proof of these results started
first in the analytic context with Sullivan’s program [Su],
approaching the Feigenbaum-Coullet-Tresser Renormal-
ization Conjecture based on Teichmüller theory, and fin-
ished with the proof by Lyubich [L], showing the hyper-
bolicity of the renormalization fixed point; this has been
later extended to lower regularity in [FMP]. Partial re-
sults about maps with more monotonicity branches (mul-
timodal maps) and the associated transition to chaos have
been obtained by many authors (see e.g. [MT] and refer-
ences cited or citing).

These results also explains some quantitative and uni-
versal phenomena appearing when the system changes in-
side one-parameter families. Every family of unimodal
maps presents essentially the same dynamical features as
it passes from zero to positive entropy: for instance when
one measures the size of the set of parameters for which
some periods appear. This is sometimes called topological
universality for one-dimensional dynamics since it allows
to show that the quadratic family encapsulates all possi-
ble dynamical behaviors.

Dissipative surface dynamics

One can naively wonder if that rich and meaningful
description of the dynamics on the interval, can be ex-
tended to higher dimension. The next level of complexity
to be considered are dissipative two-dimensional invert-
ible maps acting on the disc, i.e. diffeomorphisms f from
the 2-disc D into its image f(D) ⊂ D and which contract
the volume. Therefore, the iterates of disc are confined
to a set whose 2-dimensional volume vanishes and which
seems to have a one-dimensional structure.
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However, there are phenomena in this setting with no
one-dimensional counterpart: there exists a residual3 set
of dissipative diffeomorphisms of the disc exhibiting infin-
itely many attracting periodic orbits with arbitrarily large
periods (this property is called the Newhouse phenome-
non, see [N]), whereas generic smooth one-dimensional
maps have only finitely many attracting periodic points4.

Hénon maps. One classical example of dissipative sur-
face maps is the Hénon map which is defined by the for-
mula (x, y) 7→ (1 − ax2 + y, by) where a and b are real
parameters and b has modulus in (0, 1). See figure 11.

This family was introduced by Hénon back in the sev-
enties as a non-linear model displaying complicated dy-
namics. In the age of computers and of computer graph-
ics, Hénon maps are one of the simplest two-dimensio-
nal systems used, through numerical simulations, to show
how iterations produce extraordinarily complex behav-
iors. However, the phenomena observed computationally
have been rigorously explained only for very small sets of
parameters.

Figure 11. The forward orbit of the
point (0.35, 0.35) under the Hénon map
(x, y) 7→ (1− 1.4x2 + y, 0.3x).

Observe that b is the Jacobian of the map and by let-
ting b tend to zero, one recovers the classical quadratic
family described. One may thus expect that the two-
dimensional maps have dynamical features of the interval
quadratic map x 7→ 1− ax2, even if the Hénon maps also
display new properties, such as the intriguing Newhouse’s
phenomenon.

Difficulties. In practice, the two-dimensional systems
are much more difficult to describe and much less is known
for the Hénon maps than for the quadratic family. One
reason is that there does not exist an obvious ordering on

3The residual sets refer here to the Baire category: the phenom-

ena holds on a Gδ set which is dense inside a non-empty open set

of C2-diffeomorphisms.
4It follows from the generic finiteness of attractors, see theo-

rem B’ in [MS]

the phase space as in dimension 1, so that a combinatorial
structure of the dynamics is much more difficult to intro-
duce. In particular there is no point in the disc which
generalizes a priori the turning points in the interval. A
notion of critical points may be defined for some parame-
ters but their number turns out to often be infinite while
there is only one for quadratic maps.

In that sense, trying to look for a general description
of dissipative diffeomorphisms on the disc (with the nec-
essary adaptations) as it has been performed in the one-
dimensional context, could be considered as overambi-
tious and unattainable with such a level of generality, or
even looking to the wrong paradigm.

Perturbative approaches and strong dissipation.
Through deep analysis it is possible to describe subsets
of parameters inside the Hénon family as small perturba-
tions of the one-dimensional setting, either with positive
entropy [BC] or with zero entropy [CLM]. These works
necessarily suppose that the Jacobian b is extremely close
to 0. This setting will be qualified as “strongly dissipative
regime”.

Zero entropy – a conjecture by Tresser. The New-
house examples mentioned above have transverse homo-
clinic orbits and positive entropy, so it is possible that
when the entropy vanishes, the differences between inter-
val dynamics and dissipative dynamics in the disc may
disappear. This expectation is encapsulated in a conjec-
ture by Tresser [GT]. It focuses on maps at the bifurca-
tion locus between zero and positive entropy. The natu-
ral examples are the diffeomorphisms pictured in figure 4:
similarly to the one-dimensional case, for each positive in-
teger n there is exactly one periodic orbit with period 2n,
and no other period exists.

Conjecture (Tresser). In the space of dissipative diffeo-
morphisms of the disc, generically, maps which belong to
the boundary of the subset of systems with zero entropy
have an infinite set of periodic orbits with periods m.2k,
for a given m ≥ 1 and all k ≥ 0.

In other terms, it asserts that at the transition between
zero and positive entropy, there exists a doubling cascade
of periodic orbits.

Mildly dissipative surface dynamics

After recognizing these difficulties of the dissipative
surface dynamics, we now present an open large class of
dissipative diffeomorphisms acting on the disc D, that has
been introduced in [CP] and that that captures key prop-
erties of one-dimensional maps: abundance of periodic
points in the recurrent set, order structure through one-
dimensional reduction, renormalization structure in the
entropy zero case, etc. However, it keeps two-dimensional
features, showing all the well known complexity of dissi-
pative surface diffeomorphisms; moreover it includes the



FROM ZERO TO POSITIVE ENTROPY 7

Hénon family with Jacobian b up to 1/4 and therefore
goes beyond classic perturbative strategies.

Mild dissipation. As mentioned before, the theory of
real one-dimensional dynamics is leveraged on the order
structure of the interval: each point separates the inter-
val in two components. This feature does not exist for
the plane and has to be replaced by a different separa-
tion property. At any point x, one can consider its stable
set, i.e. the set of points whose iterates get closer to the
forward orbit of x:

W s(x) = {y : dist(fn(x), fn(y))→ 0}.

For instance x can belong to a periodic orbit which at-
tracts all the points in a neighborhood: in this case W s(x)
contains a neighborhood of the orbit and one says that x
is a sink.

Since the dynamics is dissipative, one expects that
for “most points” x the set W s(x) is non-empty, and
indeed using results from ergodic theory, one can show
that unless x is a sink, the stable set is an embedded
1-dimensional submanifold, called the stable manifold of
x. Since the dynamics acts on the disc D, we say that
W s(x) separates, when it contains a curve γsx through x
whose endpoints belong to the boundary of the disc, so
that D \ γsx has two connected components. In this way,
we can introduce the following definition (see figure 12):

Definition. A diffeomorphism which sends the disc into
its interior and contracts the volume is mildly dissipa-
tive if for any invariant5 probability measure µ and for
µ-almost every point x,

• either x is an attracting periodic point (a sink),
• or through x there exists a curve that is contained

in the stable set of x and that separates the disc.

x

γsx

D

Figure 12. A stable manifold which
separates the disc.

It turns out that this class contains open sets of maps
that are sufficiently close to maps on the interval (hence

5The invariance of the measure by f means that f∗µ = µ.

contains strongly dissipative systems), but is wider: us-
ing tools from complex analysis, one can show that it
also contains all Hénon maps whose Jacobian have mod-
ulus less than 1/4. For this reason these systems are
called mildly dissipative. Note that one can build ex-
amples of dissipative diffeomorphisms on the disc that
are not mildly dissipative, but these systems are maybe
exceptional: we do not know if mild dissipation holds
generically.

One-dimensional reduction. Although the existence
of stable curve only occurs on a measurable subset, it
allows to induce dynamical partitions of the system. As-
suming the mild dissipation property (stable manifolds
separate the disc) one can prove that the dynamics of
a mildly dissipative diffeomorphisms of the disc can be
reduced to a continuous non-invertible map acting on a
real tree (a simply connected and path connected metric
space):

Property. Given a smooth mildly dissipative diffeomor-
phisms f of the disc D, there exist a continuous map h on
a real tree X and a projection Π: D→ X such that:

• f and h are semi-conjugated: Π ◦ f = h ◦Π,
• any two f -invariant probability measures µ, ν with

no atoms and mutually singular project on differ-
ent measures Π∗(µ),Π∗(ν).

The second item says that the projection does not col-
lapse too much the dynamics.

Reducing a system to a lower-dimensional one is a fre-
quent strategy in dynamics. In our setting the key idea
behind is that the space of leaves of foliations in the plane
generates a one-dimensional structure. The mild dissipa-
tion provides a large collection of stable manifolds that
are disjoint separating curves. It is well-known that the
dual object to a planar lamination is a tree: the idea be-
hind the proof of the previous property is to quotient the
disc along these stable curves, see figure 13. That prop-
erty suggests that the one-dimensional order structure re-
emerges from the mild dissipation and makes possible to
envision results with a “one-dimensional flavor”.

Periodic approximation in the disc. Another concise
result that highlights the richness of the mildly dissipative
class is the following:

Property. For mildly dissipative diffeomorphisms of the
disc, the closure of the set of periodic points contains the
support of any invariant probability measure.

The proof uses an essential idea of one-dimensional dy-
namic that can be transposed to mildly dissipative diffeo-
morphisms of the disc: recurrence of non-periodic points
forces to reverse the orientation on the projected tree X
and this implies the existence of a periodic point. It goes
along the following lines.



8 SYLVAIN CROVISIER AND ENRIQUE PUJALS

Figure 13. The one-dimensional struc-
ture associated to the family of stable
manifolds.

Let us consider an f -invariant probability measure µ
with no atom. Poincaré recurrence theorem asserts that,
in a restriction to a full measure set, all points are re-
current. Let us fix some point x0 in that set. We have
to prove that any neighborhood of x0 contains a periodic
point. By recurrence, there exists x1 = fn(x0) close to x0

such that the stable curves γsx0
, γsx1

are close and bound
a thin strip S; the intersection of the strip with a large
iterate of the disc, D := fm(D) defines a box R with
small diameter as in figure 14, such that D \ R has two
connected components D− and D+.

Let g := fn and let k be the first positive integer such
that gk(x0) ∈ D+ and gk+1(x0) /∈ D+ (this exists since
x1 = g(x0) does not belong to D+ and x0 is recurrent).
Similarly as in the one-dimensional case, we consider a
continuous map h : D → R such that

h|R = Id, h(D−) = γsx0
∩R, and h(D+) = γsx1

∩R.

In particular, h ◦ gk sends R into itself and therefore has
a fixed point p in R.

Since gk(x0) ∈ D+ and since stable curves do not cross,
gk(γsx0

) ⊂ D+; similarly gk(γsx1
) ⊂ D−. Consequently,

h◦gk has no fixed point in R∩(γsx0
∪γsx1

) and by definition

of h, one deduces h ◦ gk(p) = gk(p) = p. Hence f has a
periodic point in R which is arbitrarily close to x0, as
required.

Mildly dissipative dynamics with zero entropy:
I– prototype models

We have described two classes of examples of mildly
dissipative diffeomorphisms: Morse-Smale systems, which
belong to the interior of the set of dynamics with zero en-
tropy, and the examples pictured on the figure 4 which
belong to its boundary. We now present topological mod-
els with zero entropy and unbounded periods, that can

D−

D+

x1

x0
R

S

D

Figure 14. Why periodic points are
dense.

Figure 15. The diffeomorphisms f0

(left) and f1 (right). The attracting do-
mains are depicted by a dash boundary.

be built through a sequences of “surgeries and pasting”
of two elementary Morse-Smale systems.

Prototype models. Let us first introduce two Morse-
Smale dissipative diffeomorphisms of the disc f0, f1 that
we describe below and depicted in figure 15. The limit
set of f0 is the union of a fixed saddle whose unstable
branches are interchanged and of an attracting orbit of
period two that revolves around the fixed point. The limit
set of f1 is the union of a fixed attracting periodic point,
a saddle of period three revolving around the fixed point
and an attracting periodic orbit (also of period three);
each saddle has an unstable branch anchored at the fixed
point and an unstable branch contained in the attracting
domain of the 3-periodic sink. Both diffeomorphisms are
depicted in figure 15. In both situations, one says that
the saddle periodic orbit is stabilized: either it is a fixed
point, or its unstable manifold intersects the basin of a
fixed sink.

An inductive construction. Given any sequence (ki) in
{0, 1}N, one can build a sequence of dissipative diffeo-
morphisms (gi), with exactly one sink of period τi :=
Πi
j=1(2 + kj) whose basin is a disc Di. It is obtained in-

ductively from the diffeomorphism gi−1 by “pasting” the
diffeomorphism fki in the basin of the sink of gi−1, so that
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the return map g
τi−1

i |Di
is conjugated to fki . In that way,

gi has a nested sequence of discs D0 ⊃ D1 ⊃ · · · ⊃ Di

that are renormalization domains of periods τ0, . . . , τi.
Each diffeomorphism gi is Morse-Smale; moreover the
construction can be done in a such way that the sequence
(gi) converges to a homeomorphism.

Properties of the limit system. The homeomorphism that
is obtained as limit of the sequences (gi) verifies that:

• the dynamics is “infinite renormalizable” in the
sense that there is a nested sequences of renor-
malization domains with increasing periods;

• the limit set (i.e. the set of points that belongs
to renormalization domains with arbitrarily large
period) is a Cantor set whose dynamics is an
odometer (as introduced at the beginning of this
text, but its sequence of periods (τi) may not be
equal to the sequence (2i)).

We want to make some remarks: (i) The construction
shows that there exist homeomorphisms with vanishing
entropy and with periodic points whose period is not 2n.
(ii) The sequence can converge to a smooth mildly dissi-
pative diffeomorphism if ki = 0 for i large. (iii) The pre-
vious construction can be performed by gluing together
more elementary diffeomorphisms fk: the period of their
saddles and of their non-fixed sink may be larger; one
can also consider more complicate Morse-Smale systems
f0, f1.

Are the prototype models the typical ones? One
can ask if the properties displayed by the prototype mod-
els are also satisfied by mildly dissipative diffeomorphisms
f of the disc with zero entropy. More precisely:

• What can be the periods of a nested sequence of
attracting domains?

• When f belongs to the interior of the set of sys-
tems with entropy zero, do its periodic points
have bounded periods?

• When f belongs to the boundary of the set of
systems with entropy zero, is it infinitely renor-
malizable? is any limit set either an odometer
Cantor set or a periodic orbit?

The strongly dissipative case. These questions can
be tested on strongly dissipative diffeomorphisms. In
fact, they have been answered by de Carvalho, Lyubich
and Martens [CLM] for Hénon-like mappings of the form
F (x, y) = (f(x) + ε(x, y), x) where f is a unimodal map
of the interval with a quadratic turning point and ε is a
real-valued map from the square to R with a small size. In
this work, they construct a period-doubling renormaliza-
tion operator which extends the renormalization operator
introduced for unimodal maps (figure 10) and they show
that (for sufficiently small ε) the properties carry over
to this case. Namely, the renormalization operator ad-
mits a unique fixed point (which actually coincides with

the fixed point of the renormalization on the interval): it
is hyperbolic (with a one-codimensional stable manifold)
and the periods of its renormalization domains are 2n for
all n ≥ 0.

Mildly dissipative dynamics with zero entropy:
II– the general case

In the general case, the notion of turning point does
not exist anymore and the map may be far from one-
dimensional endomorphisms. In fact, it is not difficult
to construct mildly dissipative diffeomorphisms with zero
entropy which are not close to an interval map and even
have periodic points with periods that are not a power of
two (see the prototype construction) and so the renormal-
ization scheme developed for Hénon-like maps with very
small Jacobian cannot be applied directly.

In what follows, we are going to state the results that
we have obtained with Charles Tresser [CPT] and at the
end, we explain some of the main ideas of the proof.

Renormalizable dynamics. As in dimension 1, the re-
normalization is an essential tool for secribing the tran-
sition to chaos. Let us define that notion for surface dif-
feomorphisms.

Definition. A diffeomorphism f of the disc is renor-
malizable if there exist a compact set D ⊂ D homeo-
morphic to the unit disc and an integer τ > 1 such that
f i(D) ∩D = ∅ for each 1 ≤ i < τ and fτ (D) ⊂ D. One
says that D is a renormalization domain of period τ .

Based on that definition, one gets a dichotomy:

Theorem A. For any mildly dissipative diffeomorphism
f of the disc whose entropy vanishes,

• either f is renormalizable,
• or any forward orbit converges to a fixed point.

Morse-Smale diffeomorphisms (whose non-wandering
dynamics is a finite set of hyperbolic periodic points) are
certainly not infinitely renormalizable. It is natural to
generalize this class of diffeomorphisms in order to allow
bifurcations of periodic orbits.

Definition. A system is generalized Morse-Smale if:

• the limit set of any forward orbit is a periodic
orbit,

• the limit set of any backward orbit that is con-
tained in D is a periodic orbit,

• the set of periods over all periodic orbits is finite.

(Contrary to classical Morse-Smale systems, there may
exist infinitely many periodic points with a same period.)

Clearly these diffeomorphisms have zero entropy. More-
over, the set of mildly dissipative generalized Morse-Smale
diffeomorphisms of the disc is C1 open. A stronger ver-
sion of theorem A states that in the renormalizable case
there exist finitely many disjoint renormalization domains
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such that the limit set of any forward orbit contained in
their complement is a fixed point. That version implies:

Corollary. A mildly dissipative diffeomorphism of the
disc with zero entropy is

• either infinitely renormalizable,
• or generalized Morse-Smale.

Boundary of zero entropy. From the previous the-
orem and the fact that generalized Morse-Smale diffeo-
morphisms are in the interior of the set of systems with
zero entropy, one can characterize the dynamics in the
boundary of zero entropy:

Corollary. A mildly dissipative diffeomorphism of the
disc in the boundary of zero entropy is infinitely renor-
malizable.

One can now wonder, after these results, if one can
get a complete characterization of the limit sets of these
systems. The following result extends the property of
interval maps.

Corollary. Let f be a mildly dissipative diffeomorphism
of the disc with zero entropy. Then the limit set of any
orbit is:

• either a periodic orbit,
• or a generalized odometer: there exists an odome-

ter h on the Cantor set K and a continuous sub-
jective map π : C → K such that π ◦ f |C = h ◦ π.
Moreover π is “essentially” one-to-one.

Figure 4 represents the second case.

Set of periods. One cannot expect that Sarkovskii’s
property stated above for interval maps extends identi-
cally in the disc. Indeed the prototype models show that
any finite set of integers can appear inside the set of pe-
riods of a mildly dissipative diffeomorphism having zero
entropy. But a constraint appears, when one considers
periodic orbits with sufficiently large period:

Theorem B. If f is an infinitely renormalizable mildly
dissipative diffeomorphism of the disc with zero entropy,
then there exist an open set W and m ≥ 1 such that:

• W is a finite disjoint union of renormalization
domains whose period divides m (possibly several
orbits of domains),

• the periods of points in D \W are bounded by m,
• any renormalization domain D ⊂ W of fm has

period of the form 2k: it is associated to a nested
sequence of renormalization domains D = Dk ⊂
· · · ⊂ D1 ⊂W of fm with period 2k, . . . , 2.

In other words, the period of a renormalization domain
is eventually a power of 2: after replacing f by an iterate,
the period of all the renormalization domains are powers
of 2. This implies the announced property on periods:

Corollary. For any mildly dissipative diffeomorphism f
of the disc with zero entropy, there exist two finite families
of integers {n1, . . . , nk} and {m1, . . . ,m`} such that the
set of periods of the periodic orbits of f coincides with

Per(f) = {n1, . . . , nk} ∪
{
mi.2

k, 1 ≤ i ≤ ` and k ∈ N
}
.

In particular, this proves Tresser’s conjecture in the
case of mildly dissipative dynamics of the disc.

Hénon maps. The previous results can be applied to
the Hénon family for all parameters provided that the
Jacobian is smaller than 1/4 (this requires some adapta-
tion in order to reduce it to a map sending the disc into
its interior). More precisely, when the entropy vanishes,
any forward (resp. backward) orbit in R2 has exactly one
of the following behavior:

• it escapes to infinity, i.e. leaves compact sets;
• it converges to a periodic orbit;
• it accumulates to a generalized odometer.

Mildly dissipative dynamics with zero entropy:
III– sketch of the proofs

The approach for the general case cannot use the in-
terval ordering and is based instead on the structure of
the set of periodic points: the unstable branches of the
saddle periodic points serve as a skeleton of the dynam-
ics that allows to construct the renormalization domains.
We fist explain this strategy on the prototype examples
introduced before.

Dynamical features of the prototype examples.
Let us consider a prototype diffeomorphism gi obtained
after pasting a finite number Morse-Smale diffeomorphisms
fk0 , fk1 , fki . The unstable branches of the saddles connect
the periodic points and define a tree structure that we call
chain, see figure 16.

From each saddle p points out at least one arrow, which
lands at a point q with the same or double period. Two
cases may occur (see figure 16):

• either q is a an attracting periodic point,
• or q is a saddle whose unstable branches are ex-

changed by some iterate of f .

That observation allows to reconstruct the renormaliza-
tion domains of the prototype example f , see figure 17.

In the first case (above on the figure 17), the unstable
manifold of p accumulates on the sink q which anchors
a revolving saddle w with larger period (period three in
the figure); this implies that the unstable branch of p has
to cross the stable manifolds of the iterates of w. One
then defines a disc which contains q, w, is bounded by a
piece of the unstable branch of p and a piece of the stable
manifolds of the saddle w, and which is mapped into itself
by some iterate of f .

In the second case (below on the figure 17), the unsta-
ble manifold of p accumulates on the saddle q (with the
same period) whose unstable branches are exchanged by
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Figure 16. Chain of periodic points as-
sociated to the diffeomorphism g ob-
tained by pasting successively f0, f0, f1.
It contains: one saddle fixed point (red),
a two-periodic saddle orbit (blue) whose
unstable branches are exchanged by g2,
a four-periodic attracting orbit (brown),
and twelve-periodic saddle (orange) and
attracting (pink) orbits. The arrows in-
dicate if periodic points are saddles or
sinks (for sinks, all arrows are pointing
in).

the dynamics and accumulate on a sink of double period.
This implies that the unstable branch of p has to cross
both stable branches of q. Again, a piece of the unstable
branch of p and of the stable manifolds of the saddle q,
defines a disc which is mapped into itself by some iterate,
contains q, but not p.

This construction leads us to introduce the following:

Definition. A Jordan domain D is a Pixton disc6 of
period τ if its boundary decomposes in two parts: one
subset of Wu(p) and a closed set whose forward iterates
by fτ are all contained in the interior of D.

An trapped disc for fτ (i.e. a disc mapped by fτ into
its interior) is a particular example of a Pixton disc.

How to work out the general case. The strategy in
the general case goes along the next steps which will be
detailed in the following paragraphs.

i) Chains. As for the prototype models built previ-
ously, the set of fixed points and their unstable
branches forms a connected set which has a tree
structure. Considering also iterates fm, one gets
chains between periodic points whose period di-
vides m: the periodic points of larger period are
connected to the ones of lower period and “re-
volve” around them.

ii) The case where all the periodic points are fixed.
We then prove that any limit set is a fixed point.

6Pixton introduced a similar notion in order to study planar
homoclinic orbits.

p q

w

p q

w

p
q

p

q

Figure 17. Examples of Pixton discs.

iii) Construction of Pixton discs. When there are pe-
riodic points that are not fixed, one builds Pixton
discs which contains all periodic points of higher
period and are good candidates to be renormal-
ization domains.

iv) Renormalization domains. Once the Pixton discs
are constructed, we prove that the “maximal ones”
are renormalization domains.

v) Eventual period two. At last one concludes that
after several renormalizations, the new renormal-
ization periods are all equal to 2.

Chains of periodic points. The key ingredient to ob-
tain the tree structure is to check that there is no cycle
between fixed (or periodic) points:

Property. There is no sequence of saddle fixed points
{p1, . . . , pn} such that the unstable manifold Wu(pi) ac-
cumulates on pi+1 and Wu(pn) accumulates on p1.

This property generalizes Smale’s theorem mentioned
in the first section: a cycle would force a situation close
to what is depicted in figure 5, which would give positive
entropy.

In chains, a special role is played by stabilized points:
these are saddles that either are fixed and whose unstable
branches are exchanged by f , or are not fixed but whose
unstable manifold is anchored by a fixed point. The stable
manifolds of the stabilized points bound domains called
decorated regions (see figure 18). These regions are pair-
wise disjoints: otherwise, using that each iterate of the
decorated orbit has an unstable branch which accumu-
lates on a stabilizing fixed point, it would imply that an
unstable manifold crosses the stable manifold of another
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f2(p)

f(p)
p

f3(p)

Figure 18. A stabilized periodic orbit
of period 4 and its 4 decorated regions
bounded by the stable manifolds. The
periodic orbit is stabilized by the fixed
point in the middle.

iterate, creating a homoclinic intersection and therefore
contradicting the fact that the entropy vanishes.

Moreover, the decorating regions contain all the peri-
odic points of larger periods: otherwise, it would again
force a homoclinic intersection. One can thus decompose
the set of periodic points as:

• stabilizing fixed points,
• stabilized periodic orbits,
• periodic orbits contained in decorated regions.

The case where all the periodic points are fixed.
In this setting, the property of periodic approximation in
the disc implies that any probability invariant measure
is supported on the set of fixed points. Hence, the limit
set of any forward orbit contains a fixed point. If it is
not a singleton, the forward orbit also accumulates on
points in unstable branches of fixed points, so that its
limit set contains contains a cycle of fixed points. This
would contradicts the no cycle property stated before.

Construction of Pixton discs. To each unstable branch
Γ ⊂Wu(p), fixed by an iterate fτ , we build a Pixton disc
DΓ for fτ that contains the accumulation set of Γ, in a
similar way as we did for the prototype examples: if w is
a saddle point accumulated by Γ, one considers a disc D
bounded by an arc in Γ and an arc in the stable manifolds
of w; this disc contains all the periodic points of deeper
level and connected to w in the chain structure, see fig-
ure 19. The Pixton disc DΓ is obtained as the union of
such discs for different choices of w.

Renormalization domains. To prove that the Pixton
disc DΓ is actually a renormalization domain, one has to
prove that the iterates of Γ ∩ DΓ (in figure 19) remain
contained in the disc; if a piece of Γ escapes from DΓ

under forward iterations, a strong version of the property
of periodic approximation implies that there are periodic

Γ

q

p

w

f(w) D

Figure 19. Construction of a Pixton
disc: Γ is fixed and w has period 2.

points outside DΓ which are accumulated by Γ, a con-
tradiction since DΓ contains all the periodic points that
belong to the accumulation set of Γ.

Eventual period two. The previous steps build the
renormalization (theorem A). A large number of renor-
malizations reduces the study to a small neighborhood
W of the union of the generalized odometers. We then
have to show that the period of all the further renormal-
izations is equal two (theorem B).

We first observe that for the saddle orbits contained in
W , a large proportion of the iterates have stable mani-
folds which vary continuously for the C1-topology. In par-
ticular, for a large proportion of points, the stable mani-
folds are “parallel”. This is consistent with the example
of figure 4, where the renormalization periods are 2 at
each step. However a renormalization period larger than
two would provide more than two stable curves, based
at iterates close, and which have to bend away from each
other (see for instance the figure 18 where the period is 4).
This contradicts the fact that these curves are C1-close.

Dynamics in higher dimensions

There is no such detailed description of the dynamics of
systems with zero entropy for general surface diffeomor-
phisms and on higher-dimensional manifolds. However
perturbative methods have been developed which allow
to describe a C1-dense open set of systems. In particular,
they imply the following dichotomy:

Theorem [PS, C]. The union of the set of Morse-Smale
diffeomorphisms and of the set of diffeomorphisms having
a transverse homoclinic intersection is a C1-dense open
set of the space of diffeomorphisms.
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As the diffeomorphisms with a transverse homoclinic
intersection have positive entropy, this result character-
izes - inside a dense open set - the systems with zero
entropy. However the dynamics on the boundary of the
set of systems with zero entropy are not understood. And
in higher topologies, almost nothing is known.

Acknowledgments. We are grateful to the anonymous ref-
erees for their numerous comments on this text which
helpt to improve its presentation.
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