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Introduction: This paper reviews the recent foundations of syntomic cohomol-
ogy. Syntomic cohomology is a p-adic cohomology theory developed by Bhatt,
Morrow and Scholze in [BMS19]. Thanks to its deep relations with several
important subjects in p-adic arithmetic geometry (integral p-adic Hodge the-
ory [BMS18], [BMS19], the prismatic theory of [BS22], and motivic cohomology
[BMS19], [AMMN20], [CMM21]), this will surely play a major role in the future
developments of the field. While presenting syntomic cohomology, we encounter
some of the main objects of p-adic Hodge theory, such as Fontaine’s period rings,
perfectoid rings, and p-adic cohomology theories. Finally, we present fundational
results concerning syntomic cohomology, and motivate its expected (p-adic étale)
motivic nature.
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Chapter 1

Introduction
We fix a prime number p for the rest of the text.

1.1 General introduction
p-adic Hodge theory began officially in 1967, with Tate’s foundational article [Tat67] on

p-divisible groups. Since then, the variety of techniques involved has grown up as independent
branches of mathematics, but Tate’s original results still provide the main sources of inspiration
for the new developments in the theory.

Let K be a complete discrete valuation field of characteristic 0, with perfect residue field k of
characteristic p (for instance, think about a finite extension of Qp). Let OK be the ring of integers
of K, and C the p-completion of an algebraic closure K of K. As an algebraic replacement for
singular cohomology, Grothendieck defined, for proper smooth varieties X over OK , the étale
cohomology RΓét(XK ,Zℓ) (which is a cochain complex in the derived category D(Zl)). The étale
cohomology groups H∗ét(XK ,Zℓ) are Zℓ-modules, and behave as singular cohomology groups do
for analytic varieties over C; in particular they compare to the algebraic de Rham cohomology
groups of X. However, étale cohomology does not satisfy similar good behaviour when applied
to a variety of characteristic p (such as Xk, the reduction of X modulo p), and when the prime
number ℓ chosen for the coefficient ring is equal to p. That is, étale cohomology is not the
good replacement for singular cohomology in the “p-adic context” (as opposed to the “ℓ-adic
context”, where ℓ ̸= p). To make up for this flaw, Grothendieck defined crystalline cohomology
RΓcrys(Xk/W (k)), which is defined over the ring of Witt vectors W (k). The subject of p-adic
Hodge theory can be described, as we explain now, as the comparison of these three p-adic
cohomologies: étale cohomology H∗ét(XK ,Zp), crystalline cohomology H∗crys(Xk/W (k)) and de
Rham cohomology H∗dR(X/OK).

For A an abelian variety defined over the valuation ring OK , Tate proved that for each integer
k ⩽ 2 dim(A), there exists a natural Galois-equivariant isomorphism

Hk
ét(AK , C) ∼=

⊕
i+j=k

Hj(A,Ωi
A)⊗K C(−i).

By Galois-equivariant, we mean that the absolute Galois group GK of K acts on the two sides of
the isomorphism, and that the action is compatible with this isomorphism. More precisely, the
action on the left-hand side is induced by the natural action on the base change AK := A×KK1,

1This action, defined by functoriality of the construction, is sometimes called “transport de structure”.
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and it is defined on the right-hand side as the trivial action on Hj(A,Ωi
A), and the natural action

on C(−i). Here C(i) is defined, for every integer i ∈ Z, as C(i) := Qp(i)⊗Qp
C, where Qp(i) is

the i-th tensor power of the one-dimensional p-adic representation Qp(1), on which GK acts as
the cyclotomic character. Tate conjectured that such an equivariant decomposition should exist
for any smooth projective variety defined over K. As a comparison, we know in the archimedean
context that a similar isomorphism exists for any smooth and proper algebraic variety X over C
(the usual complex numbers), and compares the singular and de Rham cohomologies of X:

H∗(Xan,Z)⊗Z C ∼= H∗dR(X/C). (1.1)
The point of these two isomorphisms (either in the archimedean, or in non-archimedean context,
respectively) is that both sides contribute complementary informations on X, and that one can
not reduce one onto the other.

Tate’s conjecture, known as the Hodge–Tate conjecture, was first solved in some cases by
Fontaine, who introduced in [Fon82] the graded ring BHT :=

⊕
i∈Z

C(i). This ring BHT (named

after Hodge and Tate), later called a “period ring” due to its relation to algebraic periods,
provides a way to rewrite Tate’s decomposition as the following isomorphism of graded K-vector
spaces

(Hk
ét(AK ,Qp)⊗Qp

BHT)GK ∼=
⊕

i+j=k

Hj(A,Ωi
A).

Remark that we do not ask anymore for the isomorphism to be Galois-equivariant, since we
took the fixed points for the Galois action on the left-hand side. This new way of writing the
Tate’s decomposition isomorphism was in fact extremely fruitful, and led to the proof of Tate’s
conjecture in the general case by Faltings, in 1988. The proof of Faltings basically relies on
the construction of an intermediate cohomology which takes values in C-vector spaces, and then
comparing each of the two sides of the isomorphism to this intermediate cohomology.

More recently, and after quite some years of active research and developments, this idea
was taken much further, when Bhatt, Morrow and Scholze defined in [BMS18] and [BMS19]
a unifying cohomology theory RΓS(X) which specialises in étale, de Rham, and crystalline
cohomologies. This new p-adic cohomology theory is called Breuil-Kisin cohomology, and, by
using its comparison results to the other usual p-adic cohomologies, allows one to prove directly
the usual conjectures of p-adic Hodge theory, such as the Hodge-Tate conjecture. In fact, this
new Breuil-Kisin cohomology not only finds back some already known results in p-adic Hodge
theory, but provides completely new types of results, for instance interpreting geometrically
some phenonema about the (p-)torsion classes of our cohomology groups. Remark that this is
not anodyne at all: in the archimedean context, the isomorphism (1.1), comparing singular and
de Rham cohomologies, is constructed by integrating some differential forms over C, and thus
does not detect any integral properties of the singular cohomology H∗(Xan,Z). Here, the results
of [BMS18] and [BMS19] imply, via the Grotendieck comparison isomorphism between algebraic
and de Rham cohomologies, some precise results about the torsion classes of H∗(Xan,Z).

This is where syntomic cohomology enters the scene. To define the Breuil-Kisin cohomology,
a new Grothendieck topology, called the quasisyntomic topology, is defined in [BMS19]. It is
inspired by the syntomic topology introduced by Fontaine and Messing in the 1980’s (which
in particular explains the name). On this topology (which is formally a site), one can define
generalisations of the Fontaine’s period rings Acrys, Bcrys, BHT, ... These become sheaves for
this topology, and thus the comparison isomorphisms of p-adic Hodge theory can be interpreted
not only at the level of the (étale, crystalline, or de Rham) cohomology groups, but in fact directly
as equivalences of complexes in the derived category, where we take tensor products with these
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new “period sheaves”. This suggests we can now bring things full circle. Indeed, historically, the
fundamental objects Tate needed to even state his comparison results or conjectures were not
the Fontaine’s period rings, but rather the rings “Qp(i)”, for i ∈ Z. These objects Qp(i) are now
turned, just as the period rings, into sheaves of complexes on the quasisyntomic topology, and
these are what we call syntomic cohomology. In fact, most of the theory of [BMS19] is integral,
as opposed to rational (the rational definitions can be deduced from the integral ones)2, so we
prefer to define syntomic cohomology as the sheaves of complexes Zp(i), indexed by integers i.

These “syntomic cohomology” sheaves Zp(i) are thus defined naturally in the context of p-adic
Hodge theory. But in fact, they are expected to provide way more than just a nice definition.
Indeed, since the foundational article of Tate in 1967, people (such as Grothendieck, Beilinson,
or Deligne) had time to figure out some relations between p-adic Hodge theory (and typically the
objects Qp(i), or Zp(i)) and the so-called motivic cohomology theory. This motivic cohomology
is a central theory in algebraic geometry; it has been constructed by Bloch, Levine, Suslin, and
Voevodsky for smooth schemes over fields and over Dedekind rings, and is still conjectural in
more general contexts. Via these relations to motivic cohomology, syntomic cohomology Zp(i)
is then expected to become a new central object in p-adic arithmetic geometry.

1.2 Overview of the mémoire
The plan is as follows. The reader is near to the end of Chapter 1, which is an introduction.

The second chapter, that is the first after the introduction, is mainly an excuse to prepare to the
third one. This second chapter introduces the classical theory of Hochschild and cyclic homology,
and contains some of the main ideas concerning topological Hochschild and cyclic homology
(which is the subject of the third chapter). Some of the classical results of the theory are
reviewed, such as the Hochschild-Kostant-Rosenberg filtration, and the calculation of HH∗(Fp).

The third chapter is the continuation of the second one, and presents topological Hochschild
homology (denoted THH) and topological cyclic homology (denoted TC). The main reason why
Chapter 2 is of any use is that, although some of the main ideas concerning THH and TC already
appear in the classical theory of Chapter 2, Chapter 3 uses a lot of ∞-category machinery, and
we did not want to scare the potential unfamiliar reader. Chapter 3 is however essential to
describe syntomic cohomology, and forms with Chapters 4 and 5 the main three faces of syntomic
cohomology.

Chapters 4 and 5 are some quicks reviews of prismatic and motivic cohomology, respectively.
Prismatic cohomology is a p-adic cohomology theory developed recently by Bhatt and Scholze,
and an analogue in mixed characteristic of crystalline cohomology. To explain it, we will need to
present the notions of δ-rings and prisms; we also introduce the (prismatic) Nygaard filtration,
which is necessary to formulate the prismatic definition of syntomic cohomology (see Section
6.2). Motivic cohomology is a long-standing conjectural theory of “universal cohomology” for
algebraic varieties. We review some of its history, and some ideas of how we can adapt it to the
p-adic context.

Chapter 6 is the meeting point of the three tributaries Chapters 3, 4 and 5. As they meet,
syntomic cohomology emerges. It can be defined in three distinct and independent ways: one
via the topogical theory of Chapter 3, another via the prismatic theory of Chapter 4, and
finally, as a form3 of motivic cohomology theory as defined in Chapter 5. As a meeting point of
three waterways, syntomic cohomology naturally bears deep consequences in p-adic arithmetic
geometry. We present some of them after proving some fundational recent results on syntomic

2Syntomic cohomology existed since its introduction by Fontaine and Messing in the 1980’s. However it gave
the right object only rationally, and was defined in a much smaller generality.

3More precisely: as p-adic étale motivic cohomology.
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cohomology. We end this chapter by a calm opening into the ocean, without wondering anymore
about open questions or proofs; just sunbathing and ruffling the waves.

The Appendix is made of technicalities, which are either complements to the main text, or
parts of it which would have made it too heavy to read. In general, we assume familiarity with
derived categories, the cotangent complex, and more generally with homological algebra. For
readability, we try to give an idea, at the beginning of each chapter or section, of what one can
find in it.

Conventions
We denote by ∼= the notion of (strict) isomorphism (for instance an isomorphism of groups,

or algebras), and by ≃ the notion of equivalence (for instance in some ∞-derived category).
Degrees of graded objects are denoted by ∗ (e.g. HH∗); for complexes and simplicial objects

we use • (e.g. Bar•); finally for filtrations we use ⋆ (e.g. N⩾⋆). When we regard an actual
complex K• as an object of the derived category, we simply write K.

Different kinds of Frobenius morphisms appear in the text. All of them will be denoted
by the letter φ. For a ring (or a δ-ring) A, we write it φA, or simply φ if the context is
clear. For cyclotomic spectra (such as topological Hochschild homology), we sometimes specify
the underlying prime number p and write φp for the Frobenius morphism. This topological
Frobenius morphism φp, when defined on the Nygaard filtration level N⩾i∆̂ (i ∈ N), is not an
endormorphism (it has target the whole object); moreover when ∆̂ is interpreted as completed
prismatic cohomology, the topological Frobenius φp gets identified with a divided Frobenius
morphism, often denoted φi, and equal to φ/di, for d a distinguished element.

Every (commutative) ring A can be regarded as a (E∞-) ring spectrum via the Eilenberg-
MacLane functor: A 7→ HA (see A.2). For simplicity, we will denote A for both the ring and the
corresponding ring spectrum. Moreover, schemes will be denoted with capital letters (e.g. X),
while letters such as X will denote formal schemes.

A (co)simplicial complex is called discrete if its homotopy groups are zero, outside of degree
0. Similarly, A (co)chain complex is called discrete if its (co)homology groups are all zero, except
the one in degree 0.

If not said otherwise, K will denote a discretely valued extension of Qp with perfect residue
field k, and with ring of integers OK . C will denote a p-completed algebraic closure of K, with
ring of integers OC (e.g., if K is equal to Qp, then C ∼= Cp). Finally we will denote W (k) for
the ring of Witt vectors over k.

The letter n will denote (co)homological degrees, while i will be used for indexing (typically,
but not only, Nygaard) filtrations, (Breuil-Kisin) twists and (motivic) weights. We remark
however that syntomic cohomology can be defined independently using a motivic filtration on
topological cyclic homology, which is defined locally by truncation of homological degrees (and
is the first historical definition for syntomic cohomology), or as Frobenius fixed points on the
Nygaard filtration of (completed, absolute) prismatic cohomology. Morever it has an expected
motivic nature, for which the indexing integer would correspond to some motivic weight. Hence
the classical choice of conventions completely collapses in this situation. We choose here to
respect this coincidence, and we will use both conventions for syntomic cohomology (that is,
Zp(i) or Zp(n)), in a locally coherent way.
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Chapter 2

Hochschild and cyclic homology

In this chapter we present the classical theory of Hochschild and cyclic homology. This is
mainly an excuse to introduce the topological theory of the next chapter in a more elementay
way.

2.1 Classical theory
Classical Hochschild homology is defined by a simple chain complex, which surprisingly bears

interesting informations about both algebraic and arithmetic objects. In this section we review
its definition and the relation with its three variants: cyclic homology, negative cyclic homology,
and periodic cyclic homology.

Definition 2.1.1. Let k be a commutative ring, and A a flat algebra over k. The Hochschild
complex HH•(A/k) is defined as

HH•(A/k) := A
b←− A⊗k A

b←− A⊗k A⊗k A
b←− . . .

with b :


A⊗k(n+1) → A⊗kn

a0 ⊗ · · · ⊗ an 7→ a0a1 ⊗ a2 ⊗ · · · ⊗ an − a0 ⊗ a1a2 ⊗ · · · ⊗ an + · · ·+
(−1)na0 ⊗ · · · ⊗ an−1an + (−1)n+1ana0 ⊗ · · · ⊗ an−1.

From now on, and if not said otherwise, k will denote a commutative ring and A a flat
k-algebra. We need to check the object we just defined is indeed a chain complex:

Lemma 2.1.2. The Hochschild complex HH•(A/k) is a chain complex of k-modules.

Proof. We need to prove that for any integer n > 1 and a0, . . . an some elements of A, then
(b ◦ b)(a0 ⊗ · · · ⊗ an) = 0. And this is a direct calculation. ■

Remark 2.1.3. Remark that A is not necessarily commutative in Definition 2.1.1. In the
noncommutative case, Hochschild homology was used by Connes in non-commutative geometry
as a replacement for the de Rham complex.

Even though they are quite similar, one should not mix up the definition of the Hochschild
complex with the one of the Bar complex.
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Definition 2.1.4. Let k be commutative ring, and A a flat algebra over k. The Bar complex
Bar•(A/k) is defined as

Bar•(A/k) := A⊗k A
b′

←− A⊗k A⊗k A
b′

←− . . .

with b′ :


A⊗k(n+1) → A⊗kn

a0 ⊗ · · · ⊗ an 7→ a0a1 ⊗ a2 ⊗ · · · ⊗ an − a0 ⊗ a1a2 ⊗ · · · ⊗ an + · · ·+
(−1)na0 ⊗ · · · ⊗ an−1an.

We leave to the reader the proof this is indeed a chain complex. One can prove there is a
quasi-isomorphism Bar(A/k) ≃−→ A, where A is considered as a discrete complex. This justifies
the difference of flavours – and of use – between the two complexes: while the Bar complex
Bar(A/k) is a canonical resolution of A, and in particular has trivial higher homology groups,
the Hochschild complex contains a lot of relevant informations on A.

Example 2.1.5. For any a, b, c ∈ A,

b(a⊗ b) = ab− ba,
b(a⊗ b⊗ c) = ab⊗ c− a⊗ bc+ ca⊗ b.

As usual, a canonical way to study a (co)chain complex (a usual one, or considered as an
element of a derived category) is to identify its (co)homology groups.

Definition 2.1.6. Hochschild homology is defined as the homology of the Hochschild complex
HH•(A/k) (Definition 2.1.1). We denote these homology groups HHn(A/k) (:= “Hn(HH(A/k))”)
for n ∈ Z. In particular HHn(A/k) = 0 for any n < 0.

Example 2.1.7. If A is commutative, then HH0(A/k) = A.

Example 2.1.8. If A is commutative, then HH1(A/k) ≃−→ Ω1
A/k. This is because HH1(A/k) =

A ⊗k A/(ab ⊗ c − a ⊗ bc + ca ⊗ b; a, b, c ∈ A), where we recognize the quotient relation as the
Leibniz rule via: a⊗ b 7→ adb.

Example 2.1.9. If A = k in Definition 2.1.1, then HHn(k/k) =
{
k if n = 0;
0 if n > 0.

Definition 2.1.1 is probably the most elementary way to define Hochschild homology. The
following two remarks deal with two other ways to consider Hochschild homology. These can
be usefulon their own, either in adapting Definition 2.1.1 to more general contexts, or to make
proofs easier.

Remark 2.1.10. (Shukla homology) The flatness condition in Definition 2.1.1 can be removed
by taking derived versions of tensor products, and homology groups in the derived category
D(k). We usually impose the flatness condition to make tensor products well-behaved. In the
derived context, the right (that is, well-behaved) analogue of Hochschild homology is called
Shukla homology.

Remark 2.1.11. We can see both the Hochschild complex HH•(A/k) and the Bar complex
Bar•(A/k) as simplicial k-modules (via Dold-Kan). If A is commutative, these are even simplicial
A-algebras. In particular Hochschild homology groups HHn(A/k), for n ⩾ 0, are A-modules in
the commutative case.
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Now we arrive to our first general result on Hochschild homology. This identifies the Hochschild
homology groups to the de Rham cohomology groups in the smooth commutative case. But
first, remark that for any flat commutative k-algebra A, there is a natural map of graded
A-algebras: Ω∗A/k → HH∗(A/k). Indeed, it can be defined by sending adb1 ∧ · · · ∧ dbn to∑

σ∈Sn
(−1)ε(σ)a⊗ bσ(1) ⊗ · · · ⊗ bσ(n), and is called the antisymmetrisation map.

Theorem 2.1.12. (Hochschild-Kostant-Rosenberg, 1962) If A is a smooth (commutative) alge-
bra over a commutative ring k, then the antisymmetrisation map is an isomorphism

Ωn
A/k

≃−→ HHn(A/k),

for any n ⩾ 0.

Proof. We use a base change formula for Hochschild homology of étale extensions, and the
formula: HH∗(A/k) ∼= TorA⊗kAop

∗ (A,A). Then one restricts to proving the result for polynomial
rings over k and n = 1, which can be done explicitly. ■

We now turn to the definition (which is more a construction than just a notation) of cyclic
homology. The starting point is the following: for k a commutative ring and A a flat k-algebra,
each A⊗k(n+1) in HH•(A/k) has a k-linear action of Z /(n+ 1) by permutation. Intuitively, this
justifies the adjective “cyclic” in the name cyclic homology. For all n ⩾ 0, let tn = t := 1 ∈
Z /(n+ 1) be a generator of the cyclic group, such that tn : a0⊗ · · ·⊗ an 7→ an⊗ a0⊗ · · ·⊗ an−1.
The idea is then to use this operator, together with the ones we will now define, to construct
cyclic homology from the Hochschild complex.

Definition 2.1.13. Let n ⩾ 0 be an integer. The norm map N : A⊗k(n+1) → A⊗k(n+1) is defined
by N :=

∑n
i=0((−1)ntn)i =

∑n
i=0(±t)i. The extra degeneracy map s : A⊗kn → A⊗k(n+1) sends

a0 ⊗ · · · ⊗ an−1 to 1⊗ a0 ⊗ · · · ⊗ an−1. Finally, let B := (1− (−1)ntn)sN : A⊗kn → A⊗k(n+1) be
the Connes’ boundary operator.

Proposition 2.1.14. The maps t, N , s, B of Definition 2.1.13, and the maps b, b′ defining the
Hochschild and Bar complexes, satisfy the following identities: (1−±t)b′ = n(1−±t); b′N = Nb;
sb′ + b′s = id; B2 = 0; Bb = −bB.

Sketch of proof. To prove that B2 = 0, we use the fact that, for any n ⩾ 0,
∑n

i=0(±t)i(1−±t) =
1− (±)n+1 = 0 (where ± denotes (−1)n). The other identities are easier, and we leave them to
the reader. ■

Before arriving to the construction of cyclic homology, let us refine Theorem 2.1.12 by identi-
fying, this time in the general commutative case, the Connes’ boundary operator to the de Rham
differential.

Remark 2.1.15. The Connes operator B induces k-linear maps: B : HHn(A/k)→ HHn+1(A/k)
(this is because Bb = −bB). If A is commutative, this makes HH∗ into a commutative differential
graded algebra. One can prove the following diagram commutes (see Remark 2.1.3)

HHn(A/k) B // HHn+1(A/k)

Ωn
A/k

d //

εn

OO

Ωn+1
A/k

εn+1

OO
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Construction 2.1.16. Using the properties 2.1.14, we define the anticommuting bicomplex of
k-modules:

...

−b′

��

...

b

��

...

−b′

��
. . . A⊗3

(1−±t)
oo

−b′

��

A⊗3
N
oo

b
��

A⊗3
(1−±t)
oo

−b′

��

. . .
N
oo

. . . A⊗2
(1−±t)
oo

−b′

��

A⊗2

b

��

N
oo A⊗2

(1−±t)
oo

−b′

��

. . .
N
oo

. . . A
(1−±t)
oo A

N
oo A

(1−±t)
oo . . .

N
oo

We fix the convention that some “A” which is a target of (1−±t), is in the position (0, 0) of
the bicomplex.

Remark 2.1.17. Even columns of Construction 2.1.16 are the Hochschild complex HH•(A/k),
and odd columns are the augmented Bar complex Bar•(A/k)→ A, which are hence acyclic.

We are now equipped to state the definition of cyclic homology. We also give the definitions
of the variants negative cyclic homology and periodic cyclic homology, since they play a part in
the theory.

Definition 2.1.18. Using this bicomplex, we define the following:

• Cyclic homology HC•(A/k) is the complex of k-modules defined as the totalization of the
half plane x ⩾ 0 of Construction 2.1.16;

• Negative cyclic homology HC−• (A/k) is the complex of k-modules defined as the product
totalization of the half plane x ⩽ 0 of Construction 2.1.16;

• Periodic cyclic homology HP•(A/k) is the complex of k-modules defined as the product
totalization of the (whole) bicomplex in Construction 2.1.16.

A typical example of how these are related is given by the following:

Proposition 2.1.19. There is a short exact sequence of complexes, called the Norm sequence

0→ HC−• (A/k)→ HP•(A/k)→ HC•(A/k)[2]→ 0.

Proof. The first arrow HC−• (A/k)→ HP•(A/k) is induced by the inclusion map on the bicomplex
of Construction 2.1.16, and thus is injective levelwise. Then note that by horizontal 2-periodicity
of the bicomplex of Construction 2.1.16 that the map HP•(A/k) → HC•(A/k)[2] is just some
restriction at the level of the bicomplex, and is thus surjective. Finally, this is indeed an exact
sequence by acyclicity of the odd columns of the defining bicomplex. ■

A natural question at this point could be to wonder why we introduce such objects. Ac-
cording to Theorem 2.1.12, we saw that Hochschild homology is related (at least in the smooth
commutative case) to the de Rham complex. When we study the de Rham complex (and de
Rham cohomology), we are often interested in the Hodge filtration.
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More precisely, for a commutative algebra A over a commutative ring k, one can define the
de Rham complex Ω•A/k. The naive truncation yields the following short exact sequence of
complexes

0→ Ω⩾i
A/k → Ω•A/k → Ω⩽i−1

A/k → 0.

Considering cyclic homology (and its variants) then allows to reconstruct the Hodge filtrations:

Theorem 2.1.20. (Connes, Loday-Quillen, Feigin-Tygan, 1980’s) Let k be a commutative base
ring containing Q, and A be a smooth k-algebra. There are natural equivalences:

HC−(A/k) ≃
∏
i∈Z

Ω⩾i
A/k[2i],

HP(A/k) ≃
∏
i∈Z

ΩA/k[2i],

HC(A/k) ≃
∏
i⩾0

Ω⩽i
A/k[2i].

Remark in this result that the equivalences are given in the derived category, as opposed to
Theorem 2.1.12 for instance, which was stated only at the level of (co)homology groups.

Sketch of proof. We use the formalism of mixed complexes (we do not explain here; see for
instance [Mor19], Section 2.2) to deal with Construction 2.1.16 in a more functorial way. In
particular, this reduces to proof to a statement about HH(A/k) and the maps b and B. We
then use Theorem 2.1.12 and some quasi-isomorphism constructed from a quasi-inverse of the
antisymmetrisation map from ΩA/k to HH(A/k). Remark that this quasi-inverse is the reason
why we need the characteristic 0 hypothesis, since it is constructed by inverting some “n!”. ■

By definition of HC(A/k), one can prove easily the following result relating Hochschild and
cyclic homology. In fact, this result is the first time we introduce a filtration on cyclic homology,
whose graded pieces we identify to something of interest (here shifted Hochschild homology);
this will become a central idea in the next chapter.

Proposition 2.1.21. Let k be a commutative ring, and A a flat algebra over k. There is nat-
ural exhaustive increasing N-indexed filtration on HC•(A/k), with graded pieces griHC•(A/k) =
HH•(A/k)[2i].

Proof. By construction of HC•(A/k), there is short exact sequence of complexes 0→ HH(A/k)→
HC(A/k) S−→ HC(A/k)[2]→ 0, where the first map is the inclusion of the 0-th column at the level
of the bicomplex, and the second map is constructed by projection after removing the first two
columns in the definition of HC•(A/k). The filtration is then defined by FiliHC•(A/k) := ker(Si :
HC•(A/k) → HC•(A/k)[2i]), for i ⩾ 0. It follows by definition it is exhaustive, increasing and
N-indexed, and its i-th graded piece is HH•(A/k)[2i] for each i ⩾ 0 thanks to our short exact
sequence of complexes. ■

Remark 2.1.22. Connes (1983) developed a notion of cyclic objects in any category C; this is
formalized by a simplicial object in the category C satisfying some axioms, which are the ones
satisfied by the Hochschild complex (in the category of k-algebras), and necessary to make the
construction of cyclic homology Construction 2.1.16.

A similar construction of Hochschild homology (and its three cyclic variants) for non-necessarily
flat algebras exists, as we explain now.
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Construction 2.1.23. Let k be commutative ring, and A a (non-necessarily flat) commutative
k-algebra. In this case, one can define the complex HH•(A/k) as the diagonal of HH•(P•/k) -
which is a bisimplicial object-, for P• → A a simplicial resolution of A by polynomial k-algebras.

Remark 2.1.24. The construction 2.1.23 is similar to the definition of the cotangent complex
with respect to the de Rham complex. More generally, these are two illustrations of the notion
of left Kan extensions: we extend a functor defined on polynomial k-algebras G : k-algΣ → D(k)
(e.g. Ω1

−/k, HH(−/k)) to a functor LG : k-alg→ D(k) by sifted colimits.

Similarly (Construction 2.1.23), we define HC(A/k) for non-flat k-algebras A by left Kan
extension from polynomial k-algebras. This is possible since HC is a colimit of HH, and not a
limit (such as HP and HC−, which involve taking infinite products of HH). Then HC(A/k) is
equipped by left Kan extension with an operator S : HC(A/k) → HC(A/k)[2] (see the proof of
Proposition 2.1.21). We can then define HP(A/k) and HC−(A/k) for general k-algebras A as
HP(A/k) := lim

←
HC(A/k)[2n] where the transition maps are shifts of the periodicity operator S,

and HC−(A/k) := hofib(HP(A/k) → HC(A/k)[2]). Remark that these definitions make sense
only in the derived category, as opposed to our first definition of Hochschild homology (Definition
2.1.1). Hence from now on, we usually work only with complexes in derived categories.

We end this section by the following classical result that relates Hochschild homology to the
cotangent complex.

Theorem 2.1.25 (Hochschild–Kostant–Rosenberg filtration). Let A be a commutative algebra
over a commutative base ring k.

(1) There is a natural complete descending N-indexed filtration on HH(A/k) such that griHH(A/k) ≃
Li

A/k[i], for all i ⩾ 0.

(2) There is a natural complete descending N-indexed filtration on HC(A/k) such that griHC(A/k) ≃⊕
n⩾0

Li
A/k[i+ 2n], for all i ⩾ 0.

Sketch of proof. For (1), recall that HH(A/k) is defined by totalising the bisimplicial object
HH(P•/k), where P• → A is a simplicial resolution of A by free (that is, polynomial) k-algebras.
The Postnikov filtration (that is, truncating the degrees) on each HH(Pn/k) formally induces
a natural complete descending N-indexed filtration on HH(A/k) whose i-th graded piece is
HHi(P•/k)[i], for any i ⩾ 0. The statement then follows from Theorem 2.1.12 applied to the
polynomial k-algebras Pn, and the definition of the cotangent complex Li

A/k.
For (2) we use similar arguments to restrict to polynomial k-algebras A. We then use again

Theorem 2.1.12, and some explicit filtration on the bicomplex (Construction 2.1.16) defining
HC. ■

Remark this result is valid over any commutative base ring (e.g. over k = Z); compare to
Theorem 2.1.20.

2.2 Hochschild homology in characteristic p

We focus in this section on Hochschild homology (and its variants) in the characteristic p
situation. In a way, this is the first time we glance at the arithmetic relevance of Hochschild
homology. We begin with a direct consequence of the Hochschild-Kostant-Rosenberg filtration
(Theorem 2.1.25).
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Corollary 2.2.1. We have

HHn(Fp /Z) ∼=
{
Fp if n ⩾ 0 is even ;
0 otherwise.

In fact, considering multiplicative structure : HH∗(Fp /Z) ∼= Fp⟨u⟩, with u ∈ HH2(Fp /Z) any
basis element, and Fp⟨u⟩ is the free divided power algebra over Fp on the element u.

Remark 2.2.2. In particular, up = 0 ∈ HH2p(Fp /Z) (by definition of the divided power struc-
ture). This is usually considered as a flaw, which is corrected when considering the “topological”
version of Hochschild homology THH(Fp).

Proof. By Theorem 2.1.25, there is a (complete descending Z-indexed) filtration of HH(Fp /Z)
with graded pieces griHH(Fp /Z) ≃ Li

Fp / Z[i]. Now, LFp / Z is given by a (flat) Fp-module N of
rank 1, supported in homological degree 1. Moreover Li

Fp / Z[−i] = Γi
Fp

(N) is the i-th divided
power of N (this is a classical result of Quillen, valid for any complex given by a flat module
N in homological degree 1, and replacing Li

Fp / Z by the ith derived wedge power of N), and in
particular is supported in degree 0; that is, Li

Fp / Z is supported in degree i. Each Fp-module
Γi
Fp

(N) is isomorphic to Symi
Fp

(N) ∼= Fp, but the algebra structure on Γ∗Fp
(N) :=

⊕
i⩾0

Γi
Fp / Z(N)

is given by
a.b = (i+ j)!

i!j! ab a ∈ Γi
Fp

(N), b ∈ Γj
Fp

(N),

where a.b denotes the multiplication in Γ∗Fp
(N) and ab denotes the multiplication in Sym∗Fp

(N).
The graded pieces of HH(Fp /Z) are supported in degrees 2i, i ⩾ 0, which implies the desired
result by Section A.3. ■

In fact, the previous result is true for any perfect field of characteristic p instead of Fp, with
the proof remaining unchanged.

We can also try to compute the Hochschild homology and its variants over Fp; that is,
HH(−/Fp) instead of HH(−/Z). These are related by a canonical base change isomorphism
HH(−/Z)⊗L

HH(Fp / Z) Fp
∼−→ HH(−/Fp). It appears it does not give any interesting information

for perfect Fp-algebras (see Corollary 2.2.4). However, we can identify HH(−/Fp) on a large class
of semiperfect algebras (which will be of interest to define syntomic cohomology later). Recall
semiperfect algebras are the Fp-algebras whose Frobenius endomorphism is surjective.

Lemma 2.2.3. ([BMS19]) Let S be a semiperfect Fp-algebra. Assume that S is quasiregular,
i.e. the cotangent complex LA/ Fp

is a flat S-module supported in homological degree 1 (see also
Definition 3.2.7). Then HH∗(S/Fp), HC−∗ (S/Fp), HP∗(S/Fp) and HC∗(S/Fp) are all supported
in even degrees. Moreover, the Fp-algebra HP0(S/Fp) ∼= HC−0 (S/Fp) has a complete descending
Z-indexed filtration by ideals such that, for all i ⩾ 0,

FiliHP0(S/Fp) ∼= HC−2i(S/Fp), HP0(S/Fp)/FiliHP0(S/Fp) ∼= HC2i(S/Fp),

griHP0(S/Fp) ∼= HH2i(S/Fp) ∼= πi(Li
S/ Fp

).

Proof. First, the quasiregular hypothesis on S together with standard facts about divided wedge
powers (recall that Li := ∧iL1) imply that Li

A/ Fp
is a flat module supported in degree i, for all

i ⩾ 0. This implies that the graded pieces Li
S/ Fp

[i] of the HKR filtration of Theorem 2.1.12.(1)
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are all in even degrees 2i. Thus the associated spectral sequence degenerates, and we get the
ending result about HH(S/Fp).

The rest of the proof is a consequence of the fact that HH∗(S/Fp) is concentrated in even de-
grees and of the Construction 2.1.16. More precisely, we first deduce that HP∗(S/Fp), HC−∗ (S/Fp)
and HC∗(S/Fp) are all supported in even degrees using some short exact sequences coming from
Construction 2.1.16. We then use that HP2i(S/Fp) ∼= HP2i−2(S/Fp) for all i ∈ Z and some “pe-
riodicity” operator relating HP(S/Fp) and HC−(S/Fp) to define the filtration on HP0(S/Fp),
where FiliHP0(S/Fp) is given by the image of HC−2i(A/Fp). The rest is a formal consequence of
Proposition 2.1.19. ■

Thanks to Lemma 2.2.3, it suffices now, for A a quasiregular semiperfect Fp-algebra, to
understand HP0(A/Fp) and its filtration to get all the data given by HH∗(A/Fp), HC−∗ (A/Fp),
HP∗(A/Fp) and HC∗(A/Fp). This filtration is contructed in [BMS19] via some degenerate
spectral sequence.

Corollary 2.2.4. Let A be a perfect Fp-algebra. Then LA/ Fp
≃ 0, and hence HH∗(A/Fp) is

isomorphic to the Fp-module A supported in degree 0 (compare to Example 2.1.9). Similarly,
HC∗(A/Fp) is supported in nonnegative even degrees, where it is isomorphic to A; HP∗(A/Fp)
is supported in even degrees, where it is isomorphic to A; and HC−∗ (A/Fp) is supported in
nonpositive even degrees, where it is isomorphic to A.

Proof. The computation of the cotangent complex in this case comes from the fact the Frobenius
morphism on A induces an endomorphism on LA/ Fp

, which is both an isomorphism by “trans-
port de structure” since A is perfect, and zero since the differential of the Frobenius is zero in
characteristic p. Remark in particular that LS′/S ≃ 0 is valid more generally for any morphism
S → S′ of perfect Fp-algebras.

The description of HH∗(A/Fp) is then a consequence of Lemma 2.2.3 for A = S. The
description of HC∗(A/Fp) comes from Proposition 2.1.21. Finally, we get that HP∗(A/Fp) and
HC−∗ (A/Fp) are concentrated in even degrees, where we compute the desired result via Lemma
2.2.3. ■

There is also an analogue of Theorem 2.1.20 in characteristic p, proved in [BMS19].

Theorem 2.2.5. ([BMS19]) Let k be a perfect field of characteristic p, and R a smooth alge-
bra over k. There are complete descending Z-indexed filtrations on HC−(R/k), HP(R/k) and
HC(R/k), with graded pieces gri given respectively by

Ω⩾i
R/k[2i], ΩR/k[2i], Ω⩽i

R/k[2i].

This result is proved using descent on the so-called quasisyntomic site. This will be detailed
in the next chapter.

Theorem 2.2.5 says basically that we have the same filtration as in characteristic 0, except it
is not necessarily split anymore.

Remark 2.2.6. Theorem 2.2.5 is formulated only over a perfect field k (compare to the char-
acteristic 0 case, Theorem 2.1.20). Antieau ([Ant18]) proved a generalization of this result to
smooth algebras over any base commutative ring (and in fact to any – possibly non-smooth –
algebra by replacing de Rham cohomology by its derived version).

We note that all the results here have their analogues in mixed-characteristic. The formulation
relies on perfectoid rings instead of perfect Fp-algebras, and is then a bit less elementary. This
will be the point of view adopted in most of the next chapter, since it includes the characteristic
p case.
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Chapter 3

THH and TC

We now present topological Hochschild homology (denoted THH). It is equipped with an
action of the circle group T = S1 which is fundamental in defining topological cyclic homology
(denoted TC). The main goal of this chapter is to introduce the “motivic” filtrations on topo-
logical Hochschild homology THH and its variants TC−, TP, whose graded pieces bear lots of
arithmetic significance. We define those by descent on the quasisyntomic site – which is defined
in Section 3.2. Details about the “motivic” nature of this filtration can be found in Chapter 5
and Chapter 6.

3.1 THH and the T-action
Here we give an idea for the construction of topological Hochschild homology, and we state

without proof a fundamental result of Bökstedt computing THH∗(Fp).
The definition of topological Hochschild homology relies on some ∞-categorical and spectra

formalism, which is quite heavy. Hence we only try to give an idea of the construction here, and
refer to Appendix A.4. or [BMS19] for some more details.

Construction 3.1.1. The somehow cyclic flavour in Definition 2.1.1 can be formalized as an
“algebraic” action of the circle group T = S1. The idea is to encode algebraically how the
circle T can act on algebraic objects such as chain complexes. More precisely, the T-action
can be formalized with the notion of cyclic objects (see [Lod92]), which are simplicial objects
in a category, with some algebraic action. The geometric realization of a cyclic object is then
equipped with an action of the topological space T 1. By doing so in the so-called category of
spectra one can define topological Hochschild homology THH(A), for any ring A (in fact for any
E∞-ring spectrum). Roughly, one replaces k-linear tensor products in HH(A/k) (see Definition
2.1.1) with smash products, and takes geometric realization. One can keep as an intuition that
smash product behaves just as k-linear tensor products.

Recall that (usual) Hochschild homology of Fp can be computed as some divided power
polynomial algebra (Corollary 2.2.1). The situation for the topological theory is a bit nicer,
thanks to the following hard result.

1As a remark, the classifying space BT of the circle group T can be represented by the infinite dimensional
projective space over C : BT ≃ CP ∞.
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Theorem 3.1.2 (Bökstedt). The homotopy groups of THH(Fp) are

THHn(Fp) := πnTHH(Fp) ∼=
{
Fp if n ⩾ 0 is even;
0 otherwise.

Regarding multiplicative structure, THH∗(Fp) ∼= Fp[u], with u ∈ THH2(Fp) = HH2(Fp /Z) any
basis element.

One can define topological analogs of negative cyclic homology and periodic cyclic homology
using similar techniques. We denote these by TC− and TP. Just like THH, these are spectra
when applied to a given E∞-ring; in particular homotopy groups, indexed by the integers, are
associated to those. A satisfying definition of topological cyclic homology TC is somehow harder
to give; this was done first by Bökstedt-Hsiang-Madsen in [BHM93], and this is reviewed in
Section 3.5.

Although topological Hochschild homology is better-behaved than classical Hochschild ho-
mology, the latter is often easier to compute explicitly, and one uses the following comparison
lemma to relate the two.

Lemma 3.1.3. ([BMS19], Lemma 2.5) For any commutative ring A, there is a natural T-
equivariant isomorphism of E∞-ring spectra

THH(A)⊗THH(Z) Z ≃ HH(A).

Moreover, this induces an isomorphism of p-complete E∞-ring spectra

THH(A;Zp)⊗THH(Z) Z ≃ HH(A;Zp).

The homotopy groups πiTHH(Z) are finite for i > 0.

Proof. This is classical fact that Hochschild and topological Hochschild homology satisfy a uni-
versal property, and, if we accept that the smash product behaves like a usual tensor product,
then these imply the first statement. More precisely, THH(A) (respectively HH(A)) is the uni-
versal T-equivariant E∞-ring spectrum (respectively T-equivariant E∞-Z-algebra) equipped with
a non-equivariant map from A. The final statement follows from the description of THH(Z) as
the colimit of the simplicial spectrum with terms Z⊗S · · · ⊗S Z and the finiteness of the stable
homotopy groups of spheres. The statement about p-completions follows as soon as one checks
that THH(A;Zp) ⊗THH(Z) Z is still p-complete, which follows from finiteness of πiTHH(Z) for
i > 0. ■

3.2 The quasisyntomic site
He now present, with some motivations, the definition of the quasisyntomic site (Definition

3.2.12), which is fundamental in defining the motivic filtrations on THH, TC−, TP and TC. For
the sake of clarity, we state some definitions only in characteristic p (see Section A.1 or [BMS19]
for the general definitions in mixed characteristic).

The starting point in defining the quasisyntomic site is the following theorem, due to Hessel-
holt [Hes06] if R = OCp

.

Theorem 3.2.1. ([BMS19]) Let R be a perfectoid ring. There is a canonical (in R) isomorphism

π0TC−(R;Zp) ∼= Ainf(R),

where TC−(R;Zp) denotes the p-completion of the spectrum TC−(R).
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Remark 3.2.2. There is a “Frobenius” endomorphism φ : π0TC−(A;Zp) → π0TP(R;Zp) ∼=
π0TC−(A;Zp), defined for any E∞-ring spectrum A. One can prove the isomorphism 3.2.1, for
A = R, is in fact φ-equivariant, where Ainf(R) := W (R♭) is naturally equipped with its Frobenius
endormorphism φ.

The idea to define the so-called quasisyntomic site, starting from Theorem 3.2.1, is somehow
a bit indirect. Let us make a small detour to be able to explain how it shows up.

In 2016, Bhatt, Morrow and Scholze defined, in [BMS18], the so-called Ainf-cohomology
theory. This is an integral p-adic cohomology theory over OC that unifies and strenghtens a lot
of known results in (integral) p-adic Hodge theory. This Ainf-cohomology theory relies on the
Ainf period ring, which is defined for any perfectoid ring R as Ainf = Ainf(R) := W (R♭), and
which also appears in Theorem 3.2.1. Hence, Theorem 3.2.1 suggests there could exist a more
general result –or theory– which would compare the Ainf-cohomology theory of [BMS18] with
topological negative cyclic cohomology (or, more generally, with all the variants of topological
Hochschild homology).

This idea is realized in [BMS19]: if A is the p-adic completion of a smooth OC-algebra, the
complex AΩA

2 from Ainf-cohomology is recovered via flat descent from π0TC−(−;Zp) by passage
to a perfectoid cover A→ R. We aim at explaining this now.

To simplify the notations and to make the intuition a bit more concrete, we state the following
results only in characteristic p (we refer to [BMS19], or Section A.1for the mixed-characteristic
version). First, let us say what it means for an ∞-sheaf to satisfy flat descent.

Definition 3.2.3. Let k be a commutative base ring, and F : k-alg → D = D(Z),D(k),Sp (or
any ∞-category with sifted colimits) a functor. We say F satisfies flat descent (or is an fpqc
∞-sheaf) if, for any faithfully flat map A→ B of k-algebras, the induced

F(A) ∼−→ lim (F(B) −→−→ F(B ⊗A B) −→−→−→ F(B ⊗A B ⊗A B) −→−→−→
−→ · · · )

is an equivalence in D.

The cosimplicial object F(B) −→−→ F(B ⊗A B) −→−→−→ · · · in Definiton 3.2.3 is the image under
the functor F of the Čech nerve Čech(B/A). Remark that in the 1-categorical definition, a
functor satisfies descent for some topology if it satisfies, for any cover in this topoogy, the same
condition as in Definition 3.2.3, only with a truncated Čech complex. Moreover, the (homotopy)
limit can be interpreted here as a totalisation functor if D = D(Z) or D(k) (where totalisation
makes sense).

Example 3.2.4. The functor TC−(−;Zp) : k-alg → D(k) satisfies flat descent. This is not
obvious at all, and was proved in [BMS19] (see Theorem 3.4.4).

Now we give an example of flat cover which is exactly the kind of covers we will use in order
to perform descent on the quasisyntomic site:

Construction 3.2.5. Let R be a smooth algebra over a perfect ring k of characteristic p. Then
the Frobenius φ : R → R is flat, and the colimit perfection Rperf := lim

φ
R is a flat R-algebra.

Moreover the Frobenius φ is an homeomorphism on Spec(R), and in particular is surjective.
Hence the map R → Rperf is faithfully flat. So, if the functor F : k − alg → D satisfies flat
descent, then the following natural morphism is an equivalence

F(R) ∼−→ lim (F(Rperf) −→−→ F(Rperf ⊗R Rperf) −→−→−→ F(Rperf ⊗R Rperf ⊗R Rperf) −→−→−→
−→ · · · ) .

2Recall first (see [BMS18]) that Ainf-cohomology is defined by the complex denoted AΩ. More precisely, given
the p-completion of a smooth OC -algebra A, we have RΓAinf (A) := RΓ(AZar, AΩA).
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Construction 3.2.5 says roughly that the value of F on R can be recovered given the values
of F on the Rperf⊗R · · · ⊗R Rperf. Hence, the idea is now to compute the value of our functor of
interest (that is, TC−(−;Zp)) on these k-algebras “Rperf ⊗R · · · ⊗R Rperf”. But what are these
algebras ? To compute anything about them, we first need to learn some of their properties.
Recall that, for now, we just computed π0TC−(−;Zp) on perfect(oid) rings, in Theorem 3.2.1.

So, first, one note that the k-algebras Rperf⊗R· · ·⊗RRperf (with R still a smooth k-algebra) are
not perfect. Instead, they are locally quotients of perfect k-algebras by regular sequences. Indeed,
locally Rperf⊗R · · ·⊗RRperf = (k[t]perf⊗k · · ·⊗kk[t]perf)⊗k[t]R, with k[t]perf = k[t1/p∞

1 , . . . , t
1/p∞

d ].
These are perfect k-algebras modulo some regular sequence (essentially because every smooth
scheme is regular).

Example 3.2.6. If R = k[t], then Rperf = k[t1/p∞ ], and Rperf⊗RRperf = k[t1/p∞ ]⊗k[t]k[t1/p∞ ] ∼=
k[x1/p∞

, y1/p∞ ]/(x−y), where t1/pj⊗1 7→ x1/pj , 1⊗t1/pj 7→ y1/pj , and x−y is a regular sequence
(with only one element).

However, locally a quotient of a perfect algebra by a regular sequence is not a good notion
when dealing with non-noetherian rings (such as perfect or perfectoid rings). This is mainly
because for non-noetherian rings, several (potentially good) definitions of a regular sequence
–which were equivalent for noetherian rings– do not coincide anymore.

This motivates the following wider definition, which is well-defined for arbitrary non-noetherian
rings:

Definition 3.2.7. A Fp-algebra A is quasiregular semiperfect (qrsp) if it is semiperfect (i.e.
its Frobenius is surjective), and the cotangent complex LA/ Fp

is a flat A-module supported in
homological degree 1.

Example 3.2.8. An easy example of quasiregular semiperfect Fp-algebra is given by perfect
Fp-algebras. Indeed, these are of course semiperfect, and their cotangent complex over Fp is
trivial, hence a flat module supported in degree 1.

The name “quasiregular” historically comes from the following definition of Quillen.

Definition 3.2.9. An ideal I of a ring A is quasiregular if I/I2 is a flat A/I-module, and
πn(L(A/I)/A) = 0 for all n > 1. For instance, if I is an ideal I of a noetherian ring A and is
locally generated by a regular sequence, then I is quasiregular.

The following lemma relates the previous two definitions.

Lemma 3.2.10. Let A be a Fp-algebra. Then A is a quasiregular semiperfect algebra if and only
if there exists a perfect Fp-algebra S and a quasiregular ideal I of S such that A ∼= S/I.

Proof. In both senses of implications, A is supposed to be semiperfect. So let us fix a perfect
Fp-algebra S with a surjective morphism S → A, and let I be the kernel of this morphism. We
need to prove that A is quasiregular semiperfect if and only if I is a quasiregular ideal, that
is, LA/ Fp

is a flat A-module supported in homological degree 1 if and only if LA/S is. Recall
that for a morphism T → S of perfect algebras, the cotangent complex LS/T ≃ 0 is trivial.
This can be proved by taking a simplical resolution P• of S by polynomial T -algebras, and then
noting that the Frobenius morphism on Ω1

P•/S is at the same time zero and an equivalence. In
particular, LS/ Fp

≃ 0. So, by the transitivity sequence for the cotangent complex, we conclude
that LA/ Fp

≃ LA/S , hence the result. ■

We still need to check now that the algebras Rperf⊗R · · ·⊗RRperf, for R a smooth k-algebra,
are indeed quasiregular semiperfect algebras (Definition 3.2.7). To do so, one can either argue
directly, or use the quasisyntomic topology (see Example 3.2.16 and Lemma 3.2.15).
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Remark 3.2.11. The analog notion in mixed-characteristic for quasiregular semiperfect algebras
is called quasiregular semiperfectoid algebras (see Section A.1 or [BMS19]). For most purposes,
they behave as their characteristic p siblings, and in particular quasiregular semiperfectoid Fp-
algebras are exactly the quasiregular semiperfect algebras of Definition 3.2.7.

We finally arrive at the definition of the quasisyntomic site. Roughly, it formalises the idea
that there exist other rings than just smooth ones that admit nice flat covers such as the R →
Rperf of Construction 3.2.5.

More precisely, we would like to perform some descent from smooth algebras over OK or
OC to quasiregular semiperfectoid algebras. To do so, one needs to have a well-behaved site-
theoretic construction which would include both types of algebras: on the first hand “nice” finite
type algebras over the integers of a p-adic number field, and on the other hand highly non-
noetherian -but whose cotangent complex is not so badly behaved, see Definition 3.2.7- algebras.
The “well-behaved” notion naturally boils down to controlling the cotangent complex of a given
morphism. A reason why the cotangent complex is a natural object to consider here is because
it controls topological Hochschild homology (see Chapter 2, Theorem 2.1.25 for a version in the
classical theory, and Theorem 3.4.15).

Definition 3.2.12. A morphism A→ B of Fp-algebras is quasisyntomic if it is flat, and LB/A

has Tor-amplitude in [−1; 0] (i.e. for each B-module M , LB/A⊗L
BM is supported in cohomological

degrees [−1; 0]). It is a quasisyntomic cover if it is faitfully flat.
A Fp-algebra A is quasisyntomic if the morphism Fp → A is. Let QSyn (resp. qSynA, for a

quasisyntomic Fp-algebra A) be the category of quasisyntomic Fp-algebras (resp. quasisyntomic
A-algebras), with all maps (and not only quasisyntomic ones).

The category QSyn defines naturally a site, called the quasisyntomic site:

Lemma 3.2.13. The category QSynop has the structure of a site, with covers given by the
quasisyntomic covers. The same holds true for the (opposite) category QRSPop of quasiregular
semiperfect Fp-algebras.

For any abelian presheaf F on the site qSynA (Definition 3.2.12), we write RΓsyn(A,F) :=
RΓ(qSynA,F) for the cohomology of its sheafification.

Proof. We need to check the three axioms for a covering family. Isomorphisms are indeed qua-
sisyntomic covers. Quasisyntomic covers are stable under compositions. So it remains to prove
that the pushout of a cover along an arbitrary map exists, and is a cover. Let C ← A → B
a diagram in QSyn, with A → B a quasisyntomic cover. Let D := B ⊗A C be the pushout in
Fp-algebras. By transitivity of the cotangent complex, one proves that C → D is a quasisyntomic
cover. Because C is quasisyntomic, this implies that D is also quasisyntomic. Hence C → D
provides a pushout of A→ B in QSyn. The statement for quasiregular semiperfect Fp-algebras
is a consequence of the first part, and Example 3.2.14. ■

The following example confirms that quasiregular semiperfect algebras are quasisyntomic,
and gives a criterion on how to recognize them among all the quasisyntomic algebras.

Example 3.2.14. A Fp-algebra A is quasiregular semiperfect if and only if it is quasisyntomic
and semiperfect. The first implication is a consequence of Lemma 3.2.15. To prove the converse,
we need to prove that π0(LA/ Fp

) ≃ 0 if A is semiperfect and quasisyntomic. And this is a
consequence of the transitivity property for the cotangent complex, applied to the morphisms
Fp → Aperf → A, together with the fact that π0(LA/S) = 0 for any surjective morphism S → A.
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We are now able to confirm that the quasisyntomic site, equipped with its quasiregular
semiperfect(oid) objects, is indeed well-suited to perform the type of descent announced at the
beginning of this section.

Lemma 3.2.15. ([BMS19], Lemma 4.28) A p-complete ring A lies in QSyn exactly when there
exists a quasisyntomic cover A→ S with S ∈ QRSPerd. When this holds, all terms S⊗A · · ·⊗AS
of the Čech nerve are quasiregular semiperfectoid. In particular, quasiregular semiperfectoid rings
form a basis for the quasisyntomic site.

Proof. For simplicity, we do the proof only in characteristic p. First, note that if A → B is a
quasisyntomic cover of p-complete rings, then A is quasisyntomic if and only ifB is quasisyntomic.
Hence if there exists a quasisyntomic cover A → S with S quasiregular semiperfectoid, then S
is quasisyntomic and so is A. For the converse, suppose A is quasisyntomic, take a surjective
morphism Fp[Xi, i ∈ I] ↠ A from a polynomial algebra over Fp, and define S := A ⊗Fp[Xi,i∈I]

Fp[X1/p∞

i , i ∈ I]. Then, by stability of quasisyntomic covers under pushout (see the proof of
Lemma 3.2.13), the morphism A → S is a quasisyntomic cover. Finally, S is a quotient of
Fp[X1/p∞

i , i ∈ I] and is then semiperfect, so Example 3.2.14 (the reverse implication) implies
that S is quasiregular semiperfect.

To prove the Čech statement, one proves by taking repeated pushouts and compositions that
A → S⊗An is quasisyntomic. So S⊗An is quasisyntomic. But it is also semiperfect, since it is
a quotient of Fp[X1/p∞

i , i ∈ I]⊗Fp[Xi,i∈I]n which is semiperfect. Hence the result by Example
3.2.14. ■

Example 3.2.16. In characteristic p, one can construct the cover A → S of Lemma 3.2.15 in
the following way: take a surjective morphism Fp[Xi, i ∈ I] ↠ A from a polynomial algebra over
Fp, and define S := A⊗Fp[Xi,i∈I] Fp[X1/p∞

i , i ∈ I].
In particular, if A = R is a smooth k-algebra, we recover from Lemma 3.2.15 that Rperf ⊗R

· · ·⊗RRperf is quasiregular semiperfect. Indeed, the Frobenius on R is surjective, so the previous
construction of S coincides with the perfection Rperf of R.

We conclude with an application of this formalism. As we said before, one can compare
Ainf-cohomology to the functor π0TC−(−;Zp). This is done as follows.

For any quasisyntomic base ring A, TC−(−;Zp) is a presheaf on the site qSynA (in fact even
a sheaf by Theorem 3.4.4), and so the association B 7→ π0TC−(B;Zp) defines a presheaf of rings
on the site qSynA.

Taking cohomology of its quasisyntomic sheafification then gives the following comparison
result:

Theorem 3.2.17. ([BMS19]) Let A be an OC-algebra that can be written as the p-adic comple-
tion of a smooth OC-algebra. There is a functorial (in A) isomorphism of E∞-Ainf-algebras

AΩA ≃ RΓsyn(A, π0TC−(−;Zp)).

We will not prove this result, since it has no purpose in the rest of the text. But we will
encounter one of the main tools in proving it, that is the filtration on RΓsyn(A, π0TC−(−;Zp))
(see Section 3.4).

3.3 A Breuil-Kisin cohomology theory over OK
As it was a major motivation in defining the quasisyntomic site (see [BMS19]), we review

the application to Breuil-Kisin cohomology theories. Roughly, the quasisyntomic site is used

20



to define a well-behaved p-adic cohomology theory that refines étale, crystalline and de Rham
cohomology.

More precisely, we use a relative version π0TC−(−/S[z];Zp) of the functor π0TC−(−;Zp).
Again, this is a presheaf for the quasisyntomic topology. And we use the cohomology of its
sheafification to define a Breuil-Kisin cohomology. Remark that this idea is quite natural, since
Ainf-cohomology already compared to the three main p-adic cohomology theories (over OC).

Theorem 3.3.1. ([BMS19], Theorem 1.2) Let X be proper smooth formal scheme over the ring
OK . There is a S-linear cohomology theory RΓS(X) equipped with a φ-linear Frobenius map
φ : RΓS(X)→ RΓS(X), with the following properties:

(1) After the extension to Ainf, it recovers the Ainf-cohomology theory

RΓS(X)⊗S Ainf ≃ RΓAinf(XOC
).

In particular, RΓS(X) is a perfect complex of S-modules, and φ induces an isomorphism

RΓS(X)⊗S,φ S

[
1
E

]
≃ RΓS(X)

[
1
E

]
,

and so all Hi
S(X) := Hi(RΓS(X)) are Breuil-Kisin modules. Moreover, after scalar exten-

sion to Ainf

[
1
µ

]
, one recovers étale cohomology.

(2) After scalar extension along some canonical map θ : S ↠ OK (see page 2 of [BMS19]),
one recovers de Rham cohomology

RΓS(X)⊗L
S OK ≃ RΓdR(X/OK).

(3) After scalar extension along the map S = W (k)JuK ↠ W (k) which is the Frobenius on
W (k) and sends u to 0, one recovers crystalline cohomology of the special fibre

RΓS(X)⊗L
S W (k) ≃ RΓcrys(Xk/W (k)).

Proof. We give only an idea on how the proof goes on. The proof in itself would take us too far
from the path of this text.

The Breuil-Kisin cohomology RΓS(X) in this result is constructed via topological Hochschild
homology. More precisely, one uses a relative variant of topological Hochschild homology, that
is, defined over the E∞-ring spectrum S[z] instead of the sphere spectrum S. An intuition one
can keep about why we use this relative version instead of usual topological Hochschild homology
is that we want to mimic the morphisms between the base rings of our p-adic cohomology (e.g.
S → OK , which sends the formal variable u to a uniformiser in OK), and to so we use the
“formal variable” z in S[z].

A relative version of topological negative cyclic homology TC−(−/S[z];Zp) is also defined,
and the Frobenius pullback of RΓS(X) is defined as

φ∗RΓS(X) := RΓsyn(X, π0TC−(−/S[z];Zp)).

The Frobenius descended object RΓS(X) of Theorem 3.3.1 is then constructed in a somewhat
indirect way, using direct calculations on TC−(−/S[z];Zp) and TP(−/S[z];Zp), and a version of
the so-called Segal conjecture.

■
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Remark 3.3.2. As a comparison, the Frobenius descended object RΓS(X) in Theorem 3.3.1
can also be defined in a site-theoretic way and more directly, using the prismatic theory of [BS19]
(see Section 4.3).

The proof of Theorem 3.3.1 relies on the construction of a filtration on π0TC−(−;Zp), where
graded pieces can be identified on a large class of p-adic rings : that is, on quasisyntomic rings.
Similar filtrations, we will describe in the next section, are defined on the spectra THH(A;Zp),
TC−(A;Zp), TP(A;Zp) and TC(A;Zp), for any quasisyntomic ring A.

3.4 Filtration on THH, TC− and TP
We arrive now at the core of the chapter, that is introducing the “motivic” filtrations on THH,

TC− and TP. First we define them; then we describe them locally (on perfectoid rings, and then
more generally on quasiregular semiperfectoid rings). Finally, we identify the graded pieces of
these filtrations in general (that is, on any quasisyntomic ring). This is done via descent on the
quasisyntomic site to quasiregular semiperfectoid rings, which form a basis for the quasisyntomic
topology.

3.4.1 Definition of the filtration
We first define the object ∆̂−, which is central to express the filtrations on THH, TC− and

TP, and which already made short appearances in the previous sections. Then we shall define
our filtrations on THH(−;Zp), TC−(−;Zp) and TP(−;Zp).

Definition 3.4.1. For any quasisyntomic ring A, define the E∞-Zp-algebra ∆̂A as follows

∆̂A := RΓsyn(A, π0TC−(−;Zp)).

For instance, ifA = S is a quasiregular semiperfectoid ring, then ∆̂S = RΓsyn(S, π0TC−(−;Zp)),
as a sheaf of complexes evaluated on S, is concentrated in degree 0; this is a direct consequence
of Theorem 3.4.16.(2). Hence we can write

∆̂S = π0TC−(S;Zp).

Said in a more fancy way, the presheaf π0TC−(−;Zp), on a base of the site qSynA (given by
quasiregular semiperfectoid rings S), is already a sheaf with vanishing higher cohomology.

More generally, ∆̂− will be a central object when studying the functors π∗THH(−;Zp),
π∗TC−(−;Zp) and π∗TP(−;Zp) in the p-adic context. Indeed, together with its Nygaard fil-
tration (Theorem 3.4.16.(1)), it will encode all the informations given by the graded pieces of
the “motivic” filtrations Definition 3.4.5 (see Theorem 3.4.20). One should be careful though
that Nygaard filtration on ∆̂A = RΓsyn(A, π0TC−(−;Zp)) is not, even intuitively, the restriction
of the filtration on TC−(A;Zp) of Definition 3.4.5 at the “π0-level”: the graded pieces of this
filtration will correspond to the Nygaard filtration levels (and not the graded pieces) on ∆̂A.

Remark 3.4.2. (Why a “∆” symbol ?) The E∞-Zp-algebra ∆̂A of Definition 3.4.1 is also the
completion of prismatic cohomology ∆A with respect to its Nygaard filtration. The filtration of
[BMS19] on ∆̂A –we aim at defining here, see Theorem 3.4.16–, also called Nygaard filtration,
coincides with the filtration coming from the prismatic theory; see Theorem 4.4.4.

The idea to define our filtrations on THH(−;Zp), TC−(−;Zp) and TP(−;Zp) is similar to
what we did in Section 3.2: we descend on the quasisyntomic site to quasiregular semiperfectoid
algebras. And locally, we want to define the filtrations as simple Postnikov filtrations:
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Definition 3.4.3. For a spectrum X (e.g. THH(−;Zp), TC−(−;Zp) or TP(−;Zp) for A a
quasisyntomic ring), the Postnikov filtration on X is defined by: FilnX := τ⩾nX, where τ⩾nX,

n ∈ Z, is a spectrum with homotopy groups: πk(τ⩾nX) ∼=
{
πk(X) if k ⩾ n

0 if k < n.
We remark that

this construction is functorial in X.

But first, we need to check that THH(−;Zp), TC−(−;Zp) and TP(−;Zp) are well-suited for
such a descent:

Theorem 3.4.4. ([BMS19], Theorem 3.1, Corollary 3.4) The functors: THH(−), TC−(−),
TP(−) on the category of commutative rings satisfy flat descent. In particular, THH(−), TC−(−),
TP(−) and their p-completed analogues THH(−;Zp), TC−(−;Zp), TP(−;Zp) satisfy descent on
the quasisyntomic site.

Proof. This relies on the fact that, over a fixed base ring R, the cotangent complex L−/R : A 7→
LA/R satisfies flat descent. This is a profound result, proved by Bhatt in [Bha12]. Concretely,
we first reduce to the case of THH(−) by using short exact sequences and limits over the HKR
filtration. And then we use the notion of “weak Postnikov tower” and Lemma 3.1.3 to reduce
to the case of HH(−). And we prove this functor satisfies flat descent by taking limit and by
induction –the initialisation being with the cotangent complex– over the HKR filtration. The last
assertion follows from the fact that the flat topology is finer than the quasisyntomic topology. ■

Now these three functors also define presheaves for the quasisyntomic topology , and then we
can define the filtrations on THH(−;Zp), TC−(−;Zp) and TP(−;Zp) as a Postnikov filtration,
taken locally on the quasisyntomic site. We remark that these presheaves will vanish on any
quasiregular semiperfect algebra for i odd (this is a part of Theorem 3.4.16), and so we will
discard the odd terms and reindex the filtration3:

Definition 3.4.5. Let A be quasisyntomic ring, and define

FilnTHH(A;Zp) = RΓsyn(A, τ⩾2nTHH(−;Zp)),

FilnTC−(A;Zp) = RΓsyn(A, τ⩾2nTC−(−;Zp)),

FilnTP(A;Zp) = RΓsyn(A, τ⩾2nTP(−;Zp)).

These are complete exhaustive decreasing multiplicative Z-indexed filtrations.

In fact, one should remark that, given the flat cover R → Rperf from Construction 3.2.5,
we can construct more explicitly the filtrations of Definition 3.4.5 using the following general
consequence of Definition 3.2.3:

Corollary 3.4.6. Let k be a perfect field of characteristic p and F : k-alg→ D = D(Z),D(k),Sp
a functor satisfying flat descent. Let R be a smooth k-algebra, and denote Fi(−) := πiF(−).
Then F(R) ∈ D has a natural complete descending Z-indexed filtration with ith-graded piece
given by the [i]-shift of the cochain complex associated (via Dold-Kan) to the totalisation of the
cosimplicial abelian group

Fi(Rperf) −→−→ Fi(Rperf ⊗R Rperf) −→−→−→ Fi(Rperf ⊗R Rperf ⊗R Rperf) −→−→−→
−→ · · ·

3The fact that our functors are supported in even degrees is not anodyne, and is related to the notion of even
cohomology theory. See Remark 6.4.3.
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Proof. Each F(Rperf ⊗R · · · ⊗R Rperf) is an object of the category D = D(Z),D(k),Sp, and
hence can be equipped with its natural complete, descending Z-indexed Postnikov filtration
τ⩾iF(Rperf ⊗R · · · ⊗R Rperf). By flat descent and functoriality of the Postnikov filtration, this
formally induces a filtration on F(R). This filtration is still complete since the limits F(Rperf⊗R

· · · ⊗R Rperf)
∼−→ limiτ<iF(Rperf ⊗R · · · ⊗R Rperf) commute with the totalisation. The graded

pieces of this filtration on F(R) are then precisely the desired objects, that is

griF(R) ≃ lim (Fi(Rperf) −→−→ Fi(Rperf ⊗R Rperf) −→−→−→ Fi(Rperf ⊗R Rperf ⊗R Rperf) −→−→−→
−→ · · · ) [i].

■

Here is a first relation between these filtrations and ∆̂−:

Example 3.4.7. The 0-th graded piece of the filtration of Definition 3.4.5 on TC− is given by:
gr0TC−(A;Zp) ≃ ∆̂A. Compare with Theorem 3.4.20.

Remark 3.4.8. For A be a quasisyntomic ring, one should not confuse the objects π0TC−(A;Zp)
and ∆̂A := RΓsyn(A;π0TC−(−;Zp)): the second one is the quasisyntomic sheafified version
of the first. In particular, π0TC−(−;Zp) –which is quasisyntomic presheaf of rings– is not
well-suited to perform descent to quasiregular semiperfectoid algebras, for which we use ∆̂− :=
RΓsyn(−;π0TC−(−;Zp)) –which is really a quasisyntomic sheaf, with values that are complexes
in the derived category. As a comparison, the graded pieces of the “naive” Postnikov filtration
(that is, the one on TC−(A;Zp)) are just the homotopy groups of TC−(A;Zp), and hence bear
less informations on the ring A.

Remark 3.4.9. The idea of defining a filtration locally for some topology goes back to the
definition of the motivic filtration on complex K-theory (see Section 5.1). One takes a cover of a
given topological space by open contractible subsets, defines locally the filtration on these subsets
–which K-theory is easier to understand because they are homotopically equivalent to a point–,
and then globalises the construction. In this type of constructions, the choice of the topology
and the covering families is crucial. In our case, the key point to globalise our constructions
from quasiregular semiperfectoids to any quasisyntomic algebra is the equivalence (given by
the restriction functor) between the categories of abelian sheaves on QRSPerdop and QSynop

([BMS19] Proposition 4.31, or page 25 of [Mor19]).

3.4.2 THH, TC− and TP on perfectoid rings
The reason why we like to perform descent to quasiregular semiperfectoid rings is that

THH(−;Zp) and its variants are well-behaved on these. Perfectoid rings R are an important
example of quasiregular semiperfectoid rings, and one can compute (the homotopy groups of)
THH(R;Zp), TC−(R;Zp) and TP(R;Zp) explicitly.

Proposition 3.4.10. Let R be a perfectoid ring. There are natural isomorphisms

π∗THH(R;Zp) ∼= R[u],
π∗TC−(R;Zp) ∼= Ainf[u, v]/(uv − ξ),
π∗TP(R;Zp) ∼= Ainf[σ, σ−1],

where u, σ are (formal variables) in degree 2, v is in degree −2, and ξ ∈ Ainf(R) is the usual
generator of the kernel of θ : Ainf(R) ↠ R. Moreover, the canonical map from π∗TP(R;Zp) to
π∗TC−(R;Zp) maps σ 7→ ξu.
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Proof. We sketch the proof for THH. First, we claim that THH(−;Zp) satisfies base change for
perfectoid ring: that is, for any map R→ R′ of perfectoid rings, the induced map THH(R;Zp)⊗L

R

R′ → THH(R′;Zp) is an equivalence. This can be proved by reduction to HH(−;Zp) via Lemma
3.1.3, and then by reduction to the cotangent complex via the HKR filtration.

Now, the result is true for R = Fp thanks to Theorem 3.1.2. Hence the base change property
implies the similar result for any perfectoid ring in characteristic p. Then the general case follows
from a more careful use of the base change property.

The other calculations also reduce first to the characteristic p case, and then to the case of
R = Fp, even though the proof is more intricate. ■

Note that this generalises Theorem 3.2.1. We now state a direct consequence of this structure
result.

Corollary 3.4.11. Let R be a perfectoid ring. For any algebra A over the perfectoid ring R,
we can consider π∗THH(A;Zp) (resp. π∗TC−(A;Zp), π∗TP(A;Zp)) as a graded algebra over
the graded ring π∗THH(R;Zp) (resp. π∗TC−(R;Zp), π∗TP(R;Zp)). Hence π∗TP(A;Zp) is 2-
periodic (that is, π∗+2TP(A;Zp) ∼= π∗TP(A;Zp)).

In particular, if S is a quasiregular semiperfectoid ring, with a map R→ S from a perfectoid
ring R, then ∆̂S has a canonical structure of Ainf(R)-module.

Proof. This is a consequence of the universal property for THH(R;Zp) (resp.TC−(R;Zp), TP(R;Zp)),
that is there is a structural (T-equivariant) morphism of E∞-ring spectra THH(R;Zp)→ THH(A;Zp),
which induces a morphism of graded rings π∗THH(R;Zp)→ π∗THH(A;Zp), making π∗THH(A;Zp)
into a π∗THH(R;Zp)-graded algebra. The last assertion is a consequence of Proposition 3.4.10 :
π∗THH(R;Zp) is 2-periodic, and then any graded algebra over π∗THH(R;Zp) is 2-periodic. ■

Remark 3.4.12. Despite the name, periodic topological cyclic homology is not always periodic.
For instance, π∗TP(Z) is not.

3.4.3 THH, TC− and TP on quasiregular semiperfectoid rings
Despite the description of THH(−;Zp), TC−(−;Zp) and TP(−;Zp) is not as direct as for

perfectoid rings, one can still compute them explicitly on any quasiregular semiperfectoid ring
(Theorem 3.4.16 and Corollary 3.4.19).

Recall that THH(−) is a functor that takes an E∞-ring spectrum A (e.g. some usual com-
mutative ring) and builds an E∞-ring spectrum THH(A) equipped with an action of the circle
group T = S1.

One can form the homotopy fixed points for this action: TC−(A) := THH(A)hT, and the Tate
construction: TP(A) := THH(A)tT, i.e. the cone of the norm map THH(A)hT → THH(A)hT

from homotopy orbits to homotopy fixed points. In particular, there is a canonical map

can : TC−(A)→ TP(A).

Remark 3.4.13. One should be careful we do not define topological cyclic homology TC naively
as the homotopy orbits THH(−)hT –which could seem natural considering the classical definition
of cyclic homology HC (see Proposition 2.1.19). Instead, the definition of TC relies on the
“Frobenius” map φ = φhT

p : TC−(A;Zp) → (THH(A)tT)hT ≃ TP(A;Zp) (well-defined for any
connective E∞-ring spectrum A) introduced by Nikolaus-Scholze in [NS18] (see Section 3.5).

These structures allow us to define spectral sequences converging to π∗TC− and π∗TP :
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Lemma 3.4.14. Let A be an E∞-ring spectrum. Then there is a homotopy fixed point spectral
sequence

Ei,j
2 = H−i+j(T, πjTHH(A)) =⇒ πi+jTC−(A),

and a similar spectral sequence for the Tate construction, converging to π∗TP(A).

Proof. This is an example of the Bousfield-Kan spectral sequence for homotopy limits. More
informally, one can think of it as a “Grothendieck spectral sequence”, associated to the com-
position of taking fixed points (for the T-action) and taking π0 (and similarly for the Tate
construction). ■

Theorem 3.4.15. ([BMS19], Theorem 7.1) Let R be a perfectoid ring and S ∈ QRSPerdR.
Then π∗THH(S;Zp) is concentrated in even degrees, and each π2iTHH(S;Zp), for i ⩾ 0, admits
a finite decreasing filtration with graded pieces given in ascending order by Γj

S(M)∧p , for 0 ⩽ j ⩽ i,
with M := π1(LR/S)∧p . Here Γj

S(M) denotes the j-th divided product of the S-module M over S,
and Γj

S(M)∧p is its p-completion.

More informally, the last part of Theorem 3.4.15 says that THH(S;Zp) (for S a quasiregular
semiperfectoid algebra over R) is controlled by the cotangent complex LS/R.

Proof. One can prove that THH(−;Zp) admits a complete descending multiplicative N-indexed
filtration on the categoryof p-complete R-algebras, with graded pieces

grnTHH ≃
⊕

0⩽i⩽n
i−n even

(∧iL−/R)∧p [n].

This can be proved first on (quasi)smooth R-algebras, and then on any p-complete R-algebras by
left Kan extension. Now if S is quasiregular semiperfectoid, then (∧iL−/R)∧p has p-complete Tor
amplitude concentrated in homological degree i, and in particular lives in degree i. Hence each
term of the graded pieces lives in degree i+ n, which is even. The completeness of the filtration
implies that π∗THH(S;Zp) is concentrated in even degrees. The previous filtration also induces
a filtration on each π2iTHH(S;Zp), which graded pieces are the terms of the previous graded
pieces concentrated in degree 2i, hence the result. ■

Let R be a perfectoid ring, and S ∈ QRSPerdR. The canonical map π∗TC−(S;Zp) can−−→
π∗TP(S;Zp) is injective in all degrees, and an isomorphism in degrees ⩽ 0. This is a for-
mal consequence of the spectral sequences computing TC−(−;Zp) and TP(−;Zp) in terms of
THH(−;Zp), together with the fact that π∗THH(S;Zp) is supported in even degrees. In partic-
ular, π0TC−(S;Zp) ∼= π0TP(S;Zp).

We now state the following structural result, relating ∆̂S with THH(−;Zp), TC−(−;Zp) and
TP(−;Zp). A consequence of this result is the expression, for any quasiregular semiperfectoid
ring S, of all the homotopy groups π∗THH(S;Zp), π∗TC−(S;Zp) and π∗TP(S;Zp) in terms of
∆̂S and its Nygaard filtration.

Theorem 3.4.16. ([BMS19], Theorem 7.2) Let R be a perfectoid ring, and S ∈ QRSPerdR.

(1) The homotopy fixed point spectral sequence calculating TC−(S;Zp) and the Tate spectral se-
quence calculating TP(S;Zp) degenerate. Each of these two (degenerate) spectral sequences
endows ∆̂S := π0TC−(S;Zp) ∼= π0TP(S;Zp) with the same complete descending Z-indexed
filtration N⩾⋆∆̂S, called the Nygaard filtration, for which it is complete (see Remark 3.4.2)4.

4This Nygaard filtration satisfies N⩾i∆̂S = ∆̂S for all i ⩽ 0, and hence can also be considered as an N-indexed
filtration.
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(2) Both π∗TC−(S;Zp) and π∗TP(S;Zp) live only in even degrees.

(3) For each i ⩾ 0, there is a natural identification of the Nygaard filtration level

N⩾i∆̂S
∼= π2iTC−(S;Zp).

More precisely, the isomorphism is given by the multiplication by vi ∈ π−2iTC−(R;Zp)
: π2iTC−(S;Zp) vi

−→ π0TC−(S;Zp) (see Proposition 3.4.10 and Corollary 3.4.11 for the
definition of this map).

(4) For all i ⩾ 0, there are natural identifications of the Nygaard graded pieces N i∆̂S :=
N⩾i∆̂S/N⩾i+1∆̂S

N i∆̂S
∼= π2iTHH(S;Zp).

Proof. The first two points are a consequence of the fact that π∗THH(S;Zp) lives in even de-
grees. More precisely, the differential maps in the second page of the spectral sequences are all
zero, so the spectral sequences degenerate and induce the desired filtration on π0TC−(S;Zp) ∼=
π0TP(S;Zp). A similar argument proves (2).

For (3), we use the homotopy fixed point spectral sequence and restrict to proving a similar
statement about THH(S;Zp). This is then a consequence of the T-equivariant THH(R;Zp)-
module spectrum structure on THH(S;Zp). Remark that the “T-equivariant” is necessary here,
since we take homotopy fixed points for the T-action in the spectral sequence.

(4) is a consequence of the definition of the Nygaard filtration on ∆̂S from the spectral
sequences of (1), and again the fact that π∗THH(S;Zp) is concentrated in even degrees. It can
also be proved as a consequence of (3), if we identify the morphism N⩾i∆̂S ← N⩾i+1∆̂S with the
multiplication by v on π2i+2TC−(S;Zp). Remark here that the Nygaard filtration is defined, as
in Definition 3.4.5, with a double-speed Postnikov flavour. ■

3.4.4 Breuil-Kisin twists
We define here the notion of Breuil-Kisin twist. This aims at avoiding some choices made in

the previous results, and was introduced in [BMS19], §6.2.
The identifications in Theorem 3.4.16 depend on some choices: that is, the choice of coor-

dinates u and v, and the choice of ξ (as a generator of the kernel of the map θ : Ainf ↠ R) in
the isomorphism π∗TC−(R;Zp) ∼= Ainf[u, v]/(uv − ξ) (Proposition 3.4.10). For convenience, we
would like to make these identifications more canonical; and to do so, we choose an Ainf-module
of rank 1, which we will call a (Breuil-Kisin) “twist” Ainf{1} of Ainf, to play the role of the degree
2 part in the graded ring structures π∗TC−(R;Zp) and π∗TP(R;Zp). We do not consider specific
elements of this ring Ainf{1}. Given Proposition 3.4.10, a good candidate for this Ainf-module is
π2TP(R;Zp)5: the other homotopy groups of interest can be expressed in term of this one. More
generally, we define the Breuil-Kisin twist of any Ainf-module and any R-module as follows.

Definition 3.4.17. Let R be a perfectoid ring, and Ainf := Ainf(R) the associated period ring.
For an Ainf-module M and i ∈ Z, the Breuil-Kisin twist M{i} is: M{i} := M ⊗Ainf Ainf{1}⊗i,
where Ainf{1} := π2TP(R;Zp) (see Proposition 3.4.10). If M is an R-module, then M{i} denotes
the corresponding twist when M is considered an Ainf-module via the map θ̃ := θ◦φ−1 : Ainf ↠ R.

One could wonder why we use the map θ̃, instead of the usual map θ from Ainf to R to
define the Breuil-Kisin twist of an R-module. The reason is that, for a perfectoid ring R, we

5Remind that a perfectoid ring R is hidden in the shortened notation Ainf of Ainf(R).
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would like this Breuil-Kisin twist R{i} to express canonically the isomorphism of graded rings
π∗THH(R;Zp) ∼= R[u] of Proposition 3.4.10 (that is, without a choice of coordinate u). More
precisely, we aim at a result of the form

π∗THH(R;Zp) =
⊕
i⩾0

R{i}.

Now, π2THH(R;Zp) is canonically isomorphic to ker(θ)/ker(θ)2 –which, as a ring, is isomor-
phic to R, but also bears a non-trivial graded ring structure from π∗THH(R;Zp). Indeed,
π2THH(R;Zp) ∼= π2HH(R/Zp) (this is true for any commutative ring) and π∗HH(R/Zp) can be
computed with the HKR filtration, which has graded pieces (∧i

RLR/ Zp
)∧p [i] ≃ R[2i] (cf [BMS19],

Proposition 4.19 for the last identification). Moreover, the base change Ainf{1} ⊗Ainf,θ R
∼= R is

canonically trivial, while the base change Ainf{1} ⊗Ainf,θ̃
R ∼= ker(θ)/ker(θ)2. This explains the

choice of using θ̃ in Definition 3.4.17.
Using these Breuil-Kisin twists, the identifications of Proposition 3.4.10 can be rewritten as

follows.

Proposition 3.4.18. ([BMS19], Proposition 6.5) Let R be a perfectoid ring. Defining the Ny-
gaard filtration on Ainf as N⩾iAinf = ξiAinf for i ⩾ 0 and N⩾iAinf = Ainf for i ⩽ 0, and the
graded pieces N iAinf := N⩾iAinf/N⩾i+1Ainf, there are natural isomorphisms:

π∗THH(R;Zp) ∼=
⊕
i⩾0

R{i} =
⊕
i⩾0
N iAinf,

π∗TC−(R;Zp) ∼=
⊕
i∈Z
N⩾iAinf{i},

π∗TP(R;Zp) ∼=
⊕
i∈Z

Ainf{i},

under which the canonical map TC− → TP corresponds to the inclusion N⩾iAinf → Ainf, and
the Frobenius map TC− → TP corresponds to the Frobenius Ainf[ 1

ξ ] → Ainf[ 1
ξ̃
] which sends

N⩾iAinf{i} into Ainf{i}.

Proof. The first isomorphism follows from the multiplicative structure of Proposition 3.4.10, and
the fact that Ainf⊗Ainf,θ̃

R ∼= (kerθ)/(kerθ)2 = R{1}. The third isomorphism is also a consequence
of the multiplicative structure described in Proposition 3.4.10, and the definition of Ainf{1}. The
second isomorphism follows from unwiding the definitions of the Frobenius maps on TC− and
N⩾⋆Ainf. ■

We can also express the values of π∗THH(−;Zp), π∗TC−(−;Zp) and π∗TP(−;Zp) on quasireg-
ular semiperfectoid rings in a simpler way by using Breuil-Kisin twists. Remark we find back
Proposition 3.4.18 when applied to perfectoid rings.

Corollary 3.4.19. Let R be a perfectoid ring, and S ∈ QRSPerdR be a quasiregular semiperfec-
toid algebra over R.

(1) The homotopy groups π∗TP(S;Zp) are 2-periodic: π∗+2TP(S;Zp) ∼= π∗TP(S;Zp). More
precisely, there is a canonical isomorphism of graded rings

π∗TP(S;Zp) ∼=
⊕
i∈Z

∆̂S{i} =
⊕
i∈Z

π0TP(S;Zp){i}.
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(2) There is a canonical isomorphism of graded rings

π∗TC−(S;Zp) ∼=
⊕
i∈Z
N⩾i∆̂S{i} =

⊕
i∈Z
N⩾iπ0TP(S;Zp){i}.

In particular, the canonical map π∗TC−(S;Zp)→ π∗TP(S;Zp) is an isomorphism in non-
positive degrees.

(3) There is a canonical isomorphism of graded rings

π∗THH(S;Zp) ∼=
⊕
i∈Z
N i∆̂S{i} =

⊕
i∈Z
N iπ0TP(S;Zp){i}.

Proof. The first part of (1) is a part of Corollary 3.4.11. The rest of (1) follows from Definition
3.4.1 of ∆̂S and Definition 3.4.17 of the Breuil-Kisin twists.

For (2), we use the multiplicative structure described in Theorem 3.4.16.(3) and again Defi-
nition 3.4.17 of the Breuil-Kisin twists.

Finally, forgetting the multiplicative structure, (3) is just a part of Theorem 3.4.16. The multi-
plicative structure is then ensured by applying (2) to the short exact sequence 0→ TC−(S;Zp)[−2]→
TC−(S;Zp)→ THH(S;Zp)→ 0.

■

3.4.5 Graded pieces of THH, TC− and TP
We conclude the section by the following result, which differs from Corollary 3.4.19 by its

generality: it describes the graded pieces of the motivic filtrations for any quasisyntomic ring
A, instead of just quasiregular semiperfectoid ones. Note that, in this generality, the filtrations
need not to be split.

Theorem 3.4.20. ([BMS19], Theorem 1.12) Let A be a quasisyntomic ring. There are natural
isomorphisms:

grnTHH(A;Zp) ≃ Nn∆̂A{n}[2n] ≃ Nn∆̂A[2n],

grnTC−(A;Zp) ≃ N⩾n∆̂A{n}[2n],

grnTC−(A;Zp) ≃ ∆̂A{n}[2n].
These induce multiplicative spectral sequences:

Ei,j
2 = Hi−j(N−j∆̂A)⇒ π−i−jTHH(A;Zp),

Ei,j
2 = Hi−j(N⩾−j∆̂A{−j})⇒ π−i−jTC−(A;Zp),

Ei,j
2 = Hi−j(N−j∆̂A{−j})⇒ π−i−jTP(A;Zp).

Sketch of proof. The idea to prove Theorem 3.4.20 is to perform descent on the quasisyntomic
site -which is allowed by Theorem 3.4.4- to quasiregular semiperfectoid algebras, where we al-
ready identified the graded pieces of our filtrations on THH(−;Zp), TC−(−;Zp) and TP(−;Zp)
(Theorem 3.4.16).

More precisely, one proves this result first on R-algebras A, with R a fixed perfectoid ring.
The reason why we do so is to make sense of the Breuil-Kisin twist (the objects THH(A;Zp),
TC−(A;Zp) and TP(A;Zp) are independant of the choice of R). In this context, we unfold
the filtration by descent on the quasisyntomic site, that is we globalise the construction of the
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filtration, already constructed locally (namely on quasiregular semiperfectoids over R), to define
it on any quasisyntomic ring A over R. To perform the unfolding, and because we are dealing
with filtrations, we use the notion of filtered derived category in order to make the constructions
canonical.

In general the complex ∆̂A{1} is defined as the first graded piece of the filtration Definition
3.4.5: ∆̂A{1} := gr1TP(A;Zp)[−2]. It is again equipped with a Nygaard filtration N⩾⋆∆̂A{1}
coming via quasisyntomic descent of the abutment filtration of Theorem 3.4.19. The proof then
uses properties of the filtered derived category and some base change results to a perfectoid base
ring. ■

3.5 TC, after Nikolaus-Scholze
Before regarding the motivic filtration on topological cyclic homology TC in Section 6.1 –like

we just did for THH, TC− and TP– we still need to give a construction for TC, which is somehow
more subtle than the definitions of TC− and TP.

As we saw earlier, one could think of defining TC in the same way we define its classical
version cyclic homology HC. However, it appeared to be a bit too naive way to define TC as
the homotopy orbits THH(−)hT of THH under its T-action. The main historical reason is that
it does not satisfy McCarthy’s theorem relating relative K-theory and relative TC of a nilpotent
ideal. Here we explain how to define TC (as in [NS18]), using some arithmetic flavoured fiber
sequence6: see Definition 3.5.5.

Definition 3.5.1 ([NS19], Definition II.1.1). (1) A cyclotomic spectrum is a spectrum X with
a T-action together with T-equivariant maps φp : X → XtCp for every prime number p.
Here Cp ⊂ T denotes the cyclic subgroup of order p of T.

(2) For a fixed prime number p, a p-cyclotomic spectrum is a spectrum X with Cp∞-action
and a Cp∞-equivariant map φp : X → XtCp . Here Cp∞ ⊂ T denotes the subgroup of T of
p-power torsion elements, and Cp its cyclic subgroup of order p.

Remark that for arithmetic geometry applications, all the ring spectra are commutative ring
spectra (that is, E∞-ring spectra). However, most of the definitions and results concerning
topological cyclic homology (e.g. the definition of TC Definition 3.5.3) can be given for general
associative and unital ring spectra (that is, E1-ring spectra).

Example 3.5.2 ([NS19], Example II.1.2). (1) For every associative ring spectrumR ∈ AlgE1(Sp),
the topological Hochschild homology THH(R) is a cyclotomic spectrum . More precisely,
given a prime number p, the Tate diagonal of R is, by definition, the map ∆p : R →
(R⊗p)tCp . It extends to a T-equivariant map φp : THH(R) → THH(R)tCp defined level-
wise by the Tate diagonal ∆p, and hence defines the cyclotomic spectrum structure on
THH(R). See [NS18, III.2.] for details.

(2) The sphere spectrum S, with the trivial T-action, has the structure of a cyclotomic spectrum
called the cyclotomic sphere. One can prove it is equivalent to THH(S) as a cyclotomic
spectrum, and that the maps φp are p-completions.

(3) For every cyclotomic spectrum we get a p-cyclotomic spectrym by restriction. In particular
we can consider THH(R) and S as p-cyclotomic spectra (for any prime number p), and we
do not distinguish these notationally.

6A (homotopy) fiber sequence is a (∞, 1)-categorical construction that formalises the notion of homotopy
kernel (or homotopy fiber) of a morphism.
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Definition 3.5.3 ([NS19], Definition II.1.8). (1) Let (X, (φp)p∈P) be a cyclotomic spectrum.
The integral topological cyclic homology TC(X) of X is the mapping spectrum mapCycSp(S, X) ∈
Sp.

(2) Let (X,φp) be a p-cyclotomic spectrum. The p-typical topological cyclic homology TC(X;Zp)
of X is the mapping spectrum mapCycSpp

(S, X) ∈ Sp.

(3) Let R ∈ AlgE1(Sp) be an associative ring spectrum. Then TC(R) := TC(THH(R)) and
TC(R;Zp) := TC(THH(R);Zp).

From the previous general definition, we will use mainly the following particular case:

Definition 3.5.4 (The Frobenius morphism on TC−). Let A be a connective E∞-ring spectrum.
The “Frobenius” φp : THH(A)→ THH(A)tCp (from Definition 3.5.1) induces a map φp := φhT

p :
TC−(A;Zp)→ (THH(A)t Cp)hT ≃ TP(A;Zp).

Although the definition of topological cyclic homology in [NS18] (that is, Definition 3.5.3) is
more natural and uses the notion of cyclotomic spectra, we give the following characterization
of TC.

Definition 3.5.5 ([NS19], Corollary 1.5). For any connective E∞-ring spectrum, there is a
natural fiber sequence

TC(A)→ THH(A)hT (φp−can)−−−−−−→
∏
p∈P

(THH(A)tCp)hT

where can : THH(A)hT ≃ (THH(A)hCp)h(T/Cp) = (THH(A)hCp)hT → (THH(A)tCp)hT denotes
the canonical projection, with the isomorphism T/Cp

∼= T in the middle identification.

Let A be a connective E∞-ring spectrum. One could rewrite the fiber sequence of Definition
3.5.5 as an equalizer between the maps can, (φp)p∈P : THH(A)hT = TC−(A)→

∏
p∈P(THH(A)tCp)hT ≃∏

p∈P TP(A;Zp). Restricting to the p-completion for a given prime p, this leads to the following
characterization of TC(−;Zp):

Corollary 3.5.6. Let A be a connective E∞-ring spectrum. The p-completion TC(A;Zp) of the
spectrum TC(A) satisfies the following natural fiber sequence

TC(A;Zp)→ TC−(A;Zp) φp−can−−−−−→ TP(A;Zp).
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Chapter 4

Prisms and prismatic cohomology

Prismatic cohomology finds its motivation in the Breuil-Kisin cohomology defined in [BMS19]
(see Section 3.3). More precisely –and we will keep this analogy as a motivating thought in this
chapter–, prismatic cohomology is a site-theoretic cohomology theory defined in mixed charac-
teristic, which is analogous in its construction to crystalline cohomology in characteristic p. It
is constructed in [BS19] from the notion of prisms, which was defined for the occasion.

The relevance of prismatic cohomology for us is that is brings a completely independant
construction not only of the Breuil-Kisin cohomology RΓS(X) of Section 3.3, but also of the Ny-
gaard filtration of Theorem 3.4.16. Forseing a bit the future, this will lead to another independant
construction of syntomic cohomology (see Section 6.2).

This chapter first reviews the notion of δ-ring, which is a way to encode lifts of Frobenius on
a large class of rings. We then define prisms (which are in particular δ-rings if we forget some
additional structure) and prismatic cohomology, while giving some examples and applications.
The Nygaard filtration is defined on (absolute) prismatic cohomology in Section 4.4 by descent
on the quasisyntomic site.

4.1 δ-rings
Frobenius endomorphism is a central object in arithmetic geometry. When dealing with

mixed-characteristic objects (for instance, finite extensions of Qp, or schemes over finite exten-
sions of Qp), one uses the similar notion of lift of Frobenius, that is, an endomorphism which
coincides modulo p with the usual Frobenius endomorphism.

Example 4.1.1. The ring of integers Z has reduction Fp
∼= Z /pZ modulo p, whose Frobenius

endormorphism is the identity. In particular, the only possible lift of Frobenius on Z is the
identity. Similarly, there is exactly one Frobenius lift on the p-adic integers Zp, given by the
identity morphism.

More generally, if a ring R is p-torsionfree, then the Frobenius lift φ : R→ R can be written
as φ : x 7→ xp + pδ(x), for some map δ : R → R. This is by definition of being a Frobenius lift.
Although the map δ is not a morphism of rings (because φ is, and the two are not compatible),
this is not a random map from R to itself. Indeed, φ is a morphism of rings, and hence satisfies
the usual multiplication and addition formulas: φ(xy) = φ(x)φ(y) and φ(x+ y) = φ(x) + φ(y).
And since R is assumed to be p-torsionfree, one can write, for any x ∈ R: δ(x) = φ(x)−xp

p , which
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implies the map δ satisfies the two identities:

δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y),

δ(x+ y) = δ(x) + δ(y) + xp + yp − (x+ y)p

p
.

Conversely, given a map δ satisfying these two properties, the map φ : x 7→ xp + pδ(x) is a lift
of Frobenius.

When the ring R is not torsionfree, the notion of lift of Frobenius is a bit more subtle. For
instance, keeping the previous notations of a map δ satisfying the two previous properties and
the associated lift of Frobenius φ, it is a stronger condition for an ideal I ⊆ R to be stable under
δ than stable under φ.

Definition 4.1.2. A δ-ring is a pair (R, δ) where R is a commutative ring and δ : R → R is a
map of sets with δ(0) = δ(1) = 0, satisfying the following two identities:

δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y),

δ(x+ y) = δ(x) + δ(y) + xp + yp − (x+ y)p

p
.

The category of δ-rings is the category with objects the δ-rings, and with morphisms the mor-
phisms of rings which respect the δ-structure.

Remark 4.1.3. The expression xp+yp−(x+y)p

p in Definition 4.1.2 is a polynomial in Z[x, y]. Thus
it is well-defined, independently of any p-torsion issue.

A δ-ring (R, δ) (or simply R) is automatically equipped with a lift of Frobenius, defined
by φ(x) := xp + pδ(x). The defining conditions on δ are made so that this map φ is a ring
endomorphism, and hence a lift of Frobenius. However, remark that not every lift of Frobenius
comes from a δ-structure. For instance, there is no δ-structure on Fp : δ(0) = δ(p) = δ(1 +
· · · + 1) = δ(1) + · · · + δ(1) + 1p+...1p−(1+···+1)p

p = 1p+···+1p−(1+···+1)p

p = 1 − pp−1 = 1, which
is a contradiction. Similarly, several δ-structures on a given ring can lead to the same lift of
Frobenius.

Example 4.1.4. The Frobenius lift on the ring of integers Z comes from a unique δ-structure,
given by δ(n) := n−np

p . This is well defined by the little Fermat’s theorem.

Example 4.1.5. The ring of p-adic integers Zp has a unique δ-ring structure, given by δ(n) :=
n−np

p . The expression n−np

p is well-defined in Z /pk Z for any k ⩾ 1 (see Example 4.1.4), and
hence in Zp.

Definition 4.1.6. An element d of a δ-ring R is called distinguished if δ(d) is a unit in R.

Any morphism of δ-rings preserves distinguished elements.

Example 4.1.7. Let Zp be the δ-ring of p-adic integers. The element d := p is distinguished.
Indeed, δ(p) = 1−pp−1 is a unit in Zp. Remark that p is not distinguished in the ring of integers
Z.

Remark 4.1.8. The right definition of δ-rings (as given in [BS19]) restricts to Z(p)-algebras
(instead of general rings). In particular Z is not strictly speaking a δ-ring, and Z(p) is the initial
object in the category of δ-rings.
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4.2 Prisms
One of the motivations to introduce prismatic cohomology was to define a mixed-characteristic

variant for crystalline cohomology. In this perspective, and in the same way we define divided
power rings in the context of crystalline cohomology, we first introduce the following notion of
prism.

Definition 4.2.1. A prism is a pair (A, I) where A is a δ-ring (which induces a lift of the
Frobenius on A/p, denoted φA), and I ⊆ A is an ideal defining a Cartier divisor in Spec(A),
satisfying the following two conditions:

• The ring A is derived (p, I)-adically complete1.

• The ideal I + φA(I)A contains p.

We say a ring A is J-adically complete if it is a-complete for each element a ∈ J . In particular,
if the ideal I of Definition 4.2.1 is generated by an element d, the ring A is (p, I)-adically complete
if and only if it is p-complete and d-complete.

Remark 4.2.2. Unwinding the definitions, a special case of prism is the data of a p-torsionfree
ring A, a lift of Frobenius φA : A → A of the Frobenius on A/p, and a nonzerodivisor d ∈ A
such that A is (p, d)-complete, and p ∈ ⟨d, φA(d)⟩ (the ideal of A spanned by d and φA(d)).

In what follows, the ideal I is actually principal; we call any generator d of I a distinguished
element of A.

Examples 4.2.3. • (Crystalline Prisms) We call the prism (A, (p)) crystalline whenever A
is a p-torsionfree and p-complete ring, with a Frobenius lift φ : A → A. For example, the
usual Frobenius lift φ : W (k) → W (k) on the Witt vectors W (k) of a perfect field k of
characteristic p defines a (crystalline) prism (W (k), (p)).

• (Breuil-Kisin-type Prisms) Let π ∈ K be a uniformizer of K. We have a prism (A, I),
defined as follows: the ring A := W (k)JuK has a δ-structure induced by the usual Frobenius
lift onW (k)2, and by sending u to up; we then define I ⊆ A to be the kernel of the projection
A = W (k)JuK ↠ OK sending u to π.

• (q-crystalline Prism) Let (A, I) := (ZpJq − 1K, ([p]q)) be the prism such that: ZpJq − 1K,
the (p, q − 1)-adic completion of Z[q], has a δ-structure via the Frobenius lift sending q to
qp; and [p]q := 1 + q + · · ·+ qp−1 = qp−1

q−1 is the q analog of p.

Definition 4.2.4. A prism (A, I) is bounded if there is some integer n such that A/I[p∞] =
A/I[pn].

When defining the prismatic site and prismatic cohomology, we will use in fact essentially
only bounded prisms. Finally, we state without proof the following nice result, relating perfect
prisms (that is, prisms (A, I) such that the Frobenius φ on A, coming from its δ-structure, is an
isomorphism) to perfectoid rings:

Theorem 4.2.5 ([BS22], Theorem 3.10). The categories of perfectoid rings R and of perfect
prisms (A, I) are equivalent. The functors between these two are R 7→ Ainf(R), ker(θ)) and
(A, I) 7→ A/I.

1Remark that the notion of derived completeness coincide with the usual completeness for bounded prisms.
2W (k) is a p-torsionfree ring, since k is a perfect field of characteristic p.
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4.3 Prismatic cohomology
The notion of prisms leads to the definition of a site, called the prismatic site. Prismatic

cohomology is then defined as the cohomology of some structural sheaf on this site. In partic-
ular, this recovers the construction of a Breuil-Kisin cohomology given in Chapter 3 (following
[BMS19]), via a completely site-theoretic construction.

Fix a bounded prism (A, I), and a p-adic formal scheme X over A/I. The p-adic formal
scheme X is the object of interest here. The idea is to consider specific prisms over (A, I) in
order to get informations on X. One can see a similarity with the previously existing crystalline
theory, where one studies objects of mixed-characteristic (e.g. over the ring of Witt vectors) to
study characteristic p objects. See also Example 4.2.3.

Proposition 4.3.1 ([BS22], Proposition 1.5). If (A, I) → (B, J) is a map of prisms, then
J = IB.

Sketch of proof. One can prove that any prism (A, I) is locally for the flat topology a prism
(that is, a δ-pair satisfying the properties of Definition 4.2.1) of the form (A′, (d)), with d a
distinguished element of A′ ([BS19, Lemma 3.1.(3)]). We can thus restrict, by faithfully flat
descent, to the case where (A, I) and (B, J) are of this form. Let d and e be distinguished
elements of A and B such that I = (d) and J = (e). Now by definition of a map of δ-pairs, there
is an element f ∈ B such that d = ef , and unwinding the definitions shows that f is a unit in
B. This proves the ideals (d) and (e) coincide in B, which is what we wanted. ■

In other words, when working over a fixed base prism, the ideal I is not varying anymore.

Definition 4.3.2 (The prismatic site). Let (A, I) be a bounded prism and X a smooth p-adic
formal scheme over the ring A/I. Let (X/A)∆ be the category of maps (A, I) → (B, IB) of
bounded prisms together with a map Spf(B/IB) → X over A/I, and with the natural notion of
morphism. We shall denote such an objects by

(Spf(B)← Spf(B/IB)→ X) ∈ (X/A)∆

when the context is clear. A map (Spf(C)← Spf(C/IC)→ X)→ (Spf(B)← Spf(B/IB)→ X)
in (X/A)∆ is a flat cover if (B, IB) → (C, IC) is a faithfully flat map of prisms, that is, C is
(p, IB)-completely flat over B (see Section A.1). The category (X/A)∆ with the topology defined
by flat covers is called the prismatic site of X/A.

Remark 4.3.3. (Relation between prismatic and quasisyntomic topologies) There is no direct
relation between the prismatic site and the quasisyntomic site from Chapter 3. For a prism (A, I)
and a formal scheme X = Spf(R) over A/I, one can consider the quasisyntomic site over R (of
quasisyntomic R-algebras S) and the prismatic site (X/A)∆, as described above. Then a sheaf
on the prismatic site does not induce a sheaf on the quasisyntomic site. However, there exists a
relation between the cohomology of the prismatic structure sheaf (Definition 4.3.4) and a certain
quasisyntomic sheaf: see Theorem 4.4.5. This last quasisyntomic sheaf is constructed by unfold-
ing from quasiregular semiperfectoid algebras, and via the deep comparison result Theorem 4.4.4
between the prismatic site and the theory of [BMS19] for quasiregular semiperfectoid algebras.

Definition 4.3.4 (Prismatic structure sheaf). Let (A, I) be a bounded prism and X a p-adic
formal scheme over the ring A/I. The assignment (Spf(B)← Spf(B/IB)→ X) 7→ B defines a
presheaf O∆ of commutative A-algebras on the site (X/A)∆. It can be proved that O∆ is a sheaf,
and we call it the structure sheaf on (X/A)∆.
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If we keep in mind (as a motivation) the analogy between crystalline and prismatic cohomol-
ogy, we would like to have good properties for prismatic cohomology that we know to be true for
crystalline cohomology (comparison to the de Rham complex, Cartier isomorphism, ...). This is
what ensures (some parts of) the following result.

Theorem 4.3.5. Fix a bounded prism (A, I) (which plays the role of coefficients of prismatic
cohomology), and let X be a p-adic formal smooth scheme over A/I. Prismatic cohomology is
defined as RΓ∆(X/A) := RΓ((X/A)∆,O∆), and satisfies:

• RΓ∆(X/A) ∈ D(A) is equipped with a φA-linear map φ.

• (Crystalline comparison) If I = (p), then there is a canonical φ-equivariant isomorphism

RΓcrys(X/A) ∼= φ∗ARΓ∆(X/A)

of commutative algebras in the category D(A).

• (Etale comparison) Assume A is perfect. Then, for any n ⩾ 0 we can compute the étale
cohomology of the generic fiber Xη of X (ie over Qp) with the following canonical isomor-
phism in D(Z /pn)

RΓét(Xη,Z /pn Z) ∼=
(
RΓ∆(X/A)/pn

[
1
I

])φ=id
.

• (de Rham comparison) There is a canonical isomorphism

RΓdR(X/(A/I)) ∼= RΓ∆(X/A)⊗∧,L
A,φA

A/I

of commutative algebras in the category D(A), which extends naturally to an isomorphism
of commutative differential graded algebras.

• (Base change) Let (A, I) → (B, J) be a map of bounded prisms, and let Y be the base
change of X along B/J . Then the natural map induces an isomorphism

RΓ∆(X/A)⊗∧,L
A B ∼= RΓ∆(Y/B),

where the completion on the left is the derived (p, J)-adic completion.

The following is a consequence of the previous big result of the prismatic theory. The aim is
to see more clearly how prismatic cohomology really interpolates étale, crystalline and de Rham
cohomologies via the so-called Breuil-Kisin cohomology.

Corollary 4.3.6. We consider the Breuil-Kisin prism (S = W (k)JuK, I) as defined in Example
4.2.3, and X a proper smooth scheme over OK . Let E ∈ S be an element generating I (and
which is then a polynomial in u). Then the Breuil-Kisin cohomology RΓS(X) := RΓ∆(X/S) in-
terpolates crystalline, étale and de Rham cohomologies in the following sense, where the quotients
and fixed points are some examples of (homotopy) limits in the derived category:

(1)
(
RΓS(X)⊗S,φ W (C♭)

)φ=id ≃ RΓét(XK ,Zp).

(2) (RΓS(X)⊗S,φ S) /u ≃ RΓcrys(Xk/W (k)).

(3) (RΓS(X)⊗S,φ S) /E ≃ RΓdR(X/OK).
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Proof. We remark that the Frobenius fixed points of W (C♭) = Ainf(C) correspond to the ring
Zp, hence (1) is reformulation of the étale comparison theorem for prismatic cohomology, stated
in the case of A = S and taking the (derived) inverse limit over n.

For (2), we use the crystalline comparison to the smooth schemeXk and the prism (W (k), (p)),
and the base change property for prismatic cohomology: (RΓS(X)⊗S,φ S)/u = (RΓS(X)⊗S,φ

S)⊗S W (k) ≃ RΓ∆(Xk/W (k))⊗W (k),φ W (k).
The proof of (3) is similar to the proof of (2), replacing the crystalline comparison for prismatic

cohomology with the de Rham comparison. ■

The Breuil-Kisin cohomology RΓS(X) coincides with the one defined in [BMS19] using topo-
logical cyclic homology. The existence of this Breuil-Kisin cohomology (constructed in either
way) has the following consequences.

Example 4.3.7. • Assume that I = (p), and A is a (p-completely) smooth lift of a smooth
k-algebra equipped with a Frobenius lift, for some perfect field k. Then the length of the
torsion in crystalline cohomology, when finite, is a multiple of p.

• Let K be the discrete valuation field with ring of integers OK = Zp[p1/p]. Then the torsion
of RΓdR(X/OK) does not have a factor of the form OK /p1/p.

• Let K be any discrete valuation field of mixed characteristic, and with perfect residue field
k of characteristic p. The length of the torsion of Hn

crys(Xk/W (k)) is greater than or equal
to the length of the torsion of Hn

ét(XK ,Zp).

Remark 4.3.8. Because the base prism A has to be perfect in the étale comparison case, there
is no analog of Example 4.3.7.(1) about the torsion of étale cohomology.

The last example in particular (via the classical Grothendieck comparison result between Betti
and étale cohomologies over C) implies that if M is a projective, generically smooth Z-scheme,
with good reduction at p, then Hn

dR(M/Z) has more p-primary torsion than Hn
Betti(M(C),Z).

4.4 The Nygaard filtration
The goal of this section is to review the Nygaard filtration on prismatic cohomology ∆−/A,

defined for any bounded prism A. More precisely, it is defined on the Frobenius twist ∆(1)
−/A of the

quasisyntomic sheaf ∆−/A, which is itself constructed by descent to quasiregular semiperfectoid
algebras.

First let us give some intuition of when one uses Nygaard-type filtrations. For p-adic rings,
we suppose equipped with a Frobenius endormorphism φ, the Nygaard filtration can be defined
as follows:

Definition 4.4.1. Let A be a Z(p)-algebra, and φ : A → A a Frobenius map (that is a lift of
Frobenius if A is not an Fp-algebra). The Nygaard filtration N⩾iA is defined by

N⩾iA := {x ∈ A | φ(x) ∈ piA}.

We denote by N iA := N⩾iA/N⩾i−1A for the corresponding graded pieces.

Note that the Nygaard filtration is trivial over a ring A in which p is invertible (the graded
pieces are either equal to A or 0). Hence the Nygaard filtration is an interesting object only in the
integral context. It was defined in the context of crystalline cohomology, and in particular when
studying characteristic p objects. We will now present an analogue of this filtration (we also call
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Nygaard filtration) in the prismatic context; as usual, the prime number p will be replaced, for
general prisms (A, I) –that is, not necessarily satisfying I = (p), which would correspond to the
crystalline context– by the ideal I (see Theorem 4.4.3).

First, one can define the notion of absolute prismatic site (X)∆ for any p-adic formal scheme
X by disregarding the base (A, I) in Definition 4.3.2. More precisely, this is the category of
prisms (B, J) together with a map Spf(B/J)→ X, with (again) the flat topology. If X = Spf(S)
is a p-adic affine formal scheme, we also denote by (S)∆ the absolute prismatic site over X. If
this ring S is moreover semiperfectoid, we have a better understanding of the absolute prismatic
site (S)∆.

Definition 4.4.2. A ring S is semiperfectoid if it is a derived p-adically complete quotient of a
perfectoid ring. If S is a Fp-algebra, then S is semiperfectoid if and only it is semiperfect, that
is if its Frobenius morphism is surjective.

Theorem 4.4.3 ([BS22], Theorem 1.11 (1)). Let S be a semiperfectoid ring. Then the category
(S)∆ (underlying the absolute prismatic site (S)∆) has an initial object (∆, I), and I = (d) is
principal.

Moreover, using the notion of perfection for prisms and Theorem 4.4.3, one can define the
perfectoidization Sperfd of any semiperfectoid ring S.

We define now a filtration (called the Nygaard filtration) on this initial prism ∆init
S , when S

is a semiperfectoid ring which is moreover quasiregular (Definition 3.2.7 and Definition A.1.3).
Recall quasiregular semiperfectoid rings are of importance in the sense they form a basis for the
quasisyntomic topology.

Theorem 4.4.4. [BS22], Theorem 1.13] Let S be a quasiregular semiperfectoid ring (Defini-
tion 3.2.7). Write ∆S = ∆init

S for the initial prism (∆init
S , I), with the understanding that ∆S is

better behaved when S is quasiregular. Then the ring ∆S admits a natural Z-indexed decreasing
(“Nygaard”) filtration, described for nonnegative degrees i by

N⩾i∆S = {x ∈ ∆S | φ(x) ∈ Ii∆S}.

The ring ∆̂S = π0TC−(S;Zp) (Definition 3.4.1) is φ-equivariantly isomorphic to the completion
of ∆S with respect to its Nygaard filtration, and in particular admits a functorial δ-structure.

Let (A, I) be a bounded prism. The construction of the Nygaard filtration of Theorem 4.4.4
now globalizes (that is, sheafifies) to smooth p-adic formal schemes over A/I. By comparing the
(quasi)syntomic cohomology of this sheaf to prismatic cohomology, this induces a filtration on
prismatic cohomology.

Theorem 4.4.5 ([BS22], Theorem 1.15). Let (A, I) be a bounded prism and let X = Spf(R) be
an affine smooth p-adic formal scheme over A/I.

(1) On the quasisyntomic site qSynX , one can define a sheaf of (p, I)-completely flat δ-A-
algebras ∆−/A equipped with a Nygaard filtration on its Frobenius twist

∆(1)
−/A := ∆−/A⊗̂

L
A,φA

given by
N⩾i∆(1)

−/A = {x ∈ ∆(1)
−/A | φ(x) ∈ Ii∆−/A.}
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(2) There is a canonical isomorphism

RΓ∆(X/A) ≃ RΓ(Xqsyn,∆−/A)

and we endow prismatic cohomology with the Nygaard filtration

N⩾iRΓ∆(X/A)(1) = RΓ(Xqsyn,N⩾i∆(1)
−/A).

This filtration on prismatic cohomology will be of importance to us, since it will become a
tool in defining syntomic cohomology in Chapter 6.
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Chapter 5

Motivic cohomology

This chapter is a (small) review of the wide subject named motivic cohomology. The even
wider subject it came from, that is the theory of motives, is also way more conjectural than its
derived counterpart at this day. The goal here is to give some historical insights, as well as a few
more recent results, to understand what we mean by the “motivic nature” of both the filtrations
defined in Chapter 3, and syntomic cohomology (which is, according to titles, the subject of the
next chapter and of this whole text).

5.1 A bit of history
In the end of the XIXth century, Poincaré defined singular cohomology as an good invariant for

topological varieties. Several other invariants (e.g. simplicial cohomology, de Rham cohomology)
for these varieties were defined by Poincaré and others, and were called cohomology theories
because their similar nature. The question then arised of defining what is a cohomology theory. A
satisfying set of axioms (including a Mayer-Vietoris property, compatibility with homotopy, and
additivity) was proposed, and we know call (in this context of algebraic topology) a cohomology
theory any theory satisfying these Eilenberg-Steenrod axioms.

The starting point for motivic cohomology is the following spectral sequence.

Theorem 5.1.1 (Atiyah-Hirzebruch spectral sequence in algebraic topology). Let E be a mul-
tiplicative cohomology theory and X a topological space. Then there is a spectral sequence con-
verging to the cohomology groups E∗(X)

Ep,q
2 = Hp(X,Eq(pt))⇒ Ep+q(X),

where pt is the single point topological space, and H∗ is the singular cohomology theory. In
particular, when the differentials in the spectral sequence turn out to be understandable, one can
compute the cohomology groups E∗(X) given only the cohomology groups E∗(pt) and singular
cohomology.

This spectral sequence says that singular cohomology is “universal” in this context. In al-
gebraic geometry, one uses also a lot of cohomology theories, some of which being algebraic
analogues of the topological ones; e.g. (algebraic) de Rham cohomology is the algebraic ana-
logue of de Rham cohomology. However, this is not clear - at first - how to adapt this idea
of “universal cohomology theory” in algebraic geometry. To avoid confusion, such a universal
theory in algebraic geometry will be called motivic cohomology.
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In the 1980’s, it was predicted (by Beilinson, Deligne, ...) that a theory of motivic cohomology
Hn(X,Z(i)) for schemes X should exist, where n ∈ Z is the cohomological degree, and i ⩾ 0
is the motivic weight indexing the so-called Tate twist Z(i). One of the main motivations to
define motivic cohomology is the (conjectural) theory of motives of Grothendieck. Motives are
supposed to explain some similarities one observes in studying arithmetic and geometric aspects
of algebraic varieties. In this fashion, motivic cohomology should be some form of derived version
of the theory of motives:

Remark 5.1.2. (Motivic cohomology from the point of view of motives) These (motivic) coho-
mology groups Hn(X,Z(i)) should be, from the point of view of motives, the Ext groups between
X and the i-th Tate twist in the abelian category of motives. More precisely, one can associate
(conjecturally) a motive M(X) to any scheme X (possibly with some hypothesis on X). The i-th
Tate twist Z(i) is constructed as an object in the abelian category of motives. The associated
derived category allows one to form the Ext groups between these two objects M(X) and Z(i).
Remark that, contrary to the abelian structure on the category of motives, the associated derived
category of motives exists (at least in some cases).

The derived category associated to theFrom this abelian structure (which one of the major
issues in defining the category of motives) allows one to form the Ext groups between these two
objects M(X) and Z(i).

Remark 5.1.3. When the derived category of motives is defined, the analogues Fp(i) (for any
prime number p), Z /pr Z(i) for r ⩾ 1, Q(i), Zp(i), Qp(i) (for i ⩾ 0) of the Tate twists Z(i) can
also be defined, in the same we define Fp, Z /pr Z, Q, Zp or Qp from Z in the category of rings.

An important feature of motivic cohomology is its relation to algebraic K-theory. Alge-
braic K-theory a multiplicative cohomology theory defined for (as general as you want) algebraic
varieties. It captures enough information on arithmetic, algebraic geometry and topology to
formulate some of the main conjectures in arithmetic geometry (e.g. the standard conjectures
or the Beilinson conjectures). There is a conjectural1 “motivic” filtration on (connective) al-
gebraic K-theory, coming from the so-called Atiyah-Hirzebruch spectral sequence (and related
to the skeleton of a CW-complex in the topological setting), whose graded pieces are motivic
cohomology Hn(X,Z(i)).

In the topological setting (that is, in algebraic topology), motivic cohomology is given by
singular cohomology. The direct analogue of singular cohomology in algebraic geometry is étale
cohomology (for instance, because its construction mimics the local analytic structure of algebraic
topology). However the étale theory is, by nature, a geometric theory. Indeed, it is defined only
after base change to some algebraic closure of the base field. The Zariski motivic cohomology
is in this sense more universal - and arithmetic - than étale motivic cohomology. In particular,
one expects Zariski motivic cohomology to detects lots of subtle arithmetic phenomena (such
as relations between periods of integrals, or special values of L-functions), while étale motivic
cohomology should be related to more geometric aspects of algebraic varieties (such as Galois
representations, or ramification theory).

Although the abelian category of motives does not yet exist, motivic cohomology was con-
tructed by Bloch and Voevodsky for smooth varieties over a field. In particular, we can talk
about the Tate twist Z(i)XZar and the étale Tate twist Z(i)Xét (for i ⩾ 0) in this context. The
variants of Remark 5.1.3 are also well-defined.

Example 5.1.4. For a field F of characteristic p, the complex (Z(i)/pr)Spec(F )Zar , for any i ⩾ 0
and r ⩾ 1, of motivic cohomology modulo pr, is supported in degree i. This will be a consequence
of the result Theorem 5.3.4 of Geisser-Levine.

1It currently exists for smooth varieties, and smooth schemes over a Dedekind ring.
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As it is common in arithmetic and arithmetic geometry, one could try to understand a problem
given over the integers Z (here, the construction of motivic cohomology) by decomposing this
problem into “smaller” ones over on one hand the rationals Q, and on the other hand over each
prime number p. Respectively, this gives rise in our context to the theory of rational motivic
cohomology, and that of “p-adic” motivic cohomology for each prime number p. More precisely,
we distinguish two kinds of “p-adic” motivic cohomologies2: first ℓ-adic motivic cohomology
cohomology, when the given prime ℓ is different from the characteristic of our base scheme X;
and p-adic motivic cohomology otherwise. As usual, the behaviour in the ℓ-adic context is
somehow simpler than in the p-adic context. Moreover, it is expected that one can reconstruct
(global) motivic cohomology from its (local) rational, ℓ-adic and p-adic versions, which are still
conjectural, via the so-called arithmetic fracture square (see [nLa]).

5.2 The Beilinson-Lichtenbaum conjecture and ℓ-adic étale
motivic cohomology

The Beilinson-Lichtenbaum conjecture, which is stated in Theorem 5.2.1, relates usual (that
is, Zariski) motivic cohomology to étale motivic cohomology. In the ℓ-adic context, it says in
particular that ℓ-adic étale motivic cohomology –that is, étale sheafification of ℓ-adic motivic
cohomology Zl(i)XZar– is simply ℓ-adic étale cohomology, and gives an explicit procedure to
construct ℓ-adic motivic cohomology from ℓ-adic étale cohomology. A standard formulation of
the Beilinson-Lichtenbaum conjecture is as follows.

Theorem 5.2.1. (Beilinson-Lichtenbaum conjecture) Let X be a smooth scheme over a field k
in which the prime ℓ is invertible. Then for any i ⩾ 0, there is an isomorphism of sheaves of
complexes in the Zariski site of X

Z /ℓZ(i)XZar ≃ τ⩽iRε∗(µ⊗i
ℓ )

where ε : Xét → XZar is the restriction from the étale site to the Zariski site.

One should be careful that the functor τ⩾i is here the Zariski sheafification of the usual
truncation of complexes. In particular, both sides of the equivalence are concentrated in degrees
⩽ i only Zariski locally. The Beilinson-Lichtenbaum conjecture is essentially equivalent to the
Bloch-Kato conjecture in the ℓ-adic context, and was proved by Voevodsky.

Corollary 5.2.2. Let X be a smooth scheme over a field k in which the prime ℓ is invertible.
Then the mod ℓ Zariski motivic cohomology Z /ℓZ(i)XZar is Zariski locally concentrated in degrees
[0; i], and thus in general concentrated in degrees [0; i+dim(X)]. In degrees n ⩽ i, it is computed
in terms of the étale cohomology of µ⊗i

ℓ :

Hn(XZar,Z /ℓZ(i)XZar) = Hn
ét(X,µ⊗i

ℓ ).

Proof. The last part is just a reformulation of Theorem 5.2.1 when taking cohomology groups on
the two sides, and using that the Zariski cohomology of Rε∗(µ⊗i

ℓ ) is the étale cohomology of µ⊗i
ℓ .

The global assertion about Z /ℓZ(i)XZar is a consequence of the local one, via the local-global
spectral sequence: Hn(X,Hj(Z /ℓZ(i)XZar))⇒ Hn+j(X,Z /ℓZ(i)XZar)3, and the definition of the
cohomological dimension dim(X). ■

2Here we restrict our attention to schemes defined over a given field. Hence the characteristic of our schemes
is well-defined.

3Remark that in the current ∞-category context this local-global sequence requires some technical assumptions
to be satisfied. One can read Lurie for more details.
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One should not mistake motivic cohomology Z /ℓZ(i)XZar and étale cohomology µ⊗i
ℓ (which

are respectively sheaves of complexes on the Zariski and the étale site): their cohomology groups
coincide only in degrees ⩽ i. In higher degrees, one can deduce from the Gersten conjecture that
Hn(XZar,Z /ℓZ(i)XZar) = 0 for any n > 2i.

5.3 p-adic (étale) motivic cohomology
In the p-adic setting, Milne and Illusie understood étale cohomology (with constant coeffi-

cients µ⊗j
ℓ ) was not anymore étale motivic cohomology theory, as in the ℓ-adic context. Instead,

one should replace the sheaf “µ⊗j
p ” by the log de Rham-Witt sheaf: WrΩi

X,log[−i]. Remark this
sheaf is, by definition, concentrated in degree 0 (we also say it is discrete). It was proved by
Geisser-Levine, in the case of a p-adic smooth scheme X, this indeed corresponds to Zariski
motivic cohomology (as defined by Voevodsky).

Definition 5.3.1. Let A be commutative ring. The logarithmic de Rham group Ωj
A,log, for j ⩾ 0,

is the subgroup of the de Rham group Ωj
A generated Zariski locally4 by the logarithmic forms dx

x ,
for x ∈ A×. This definition globalizes to general schemes X, and defines the logarithmic de
Rham groups Ω•X,log. The de Rham-Witt analogue WΩ•X,log (or WrΩ•X,log := WΩ•X,log/p

r, for
r ⩾ 1) is defined analogously.

Remark 5.3.2. The de Rham-Witt complex WΩ is a mixed-characteristic analogue of the (alge-
braic) de Rham complex. As the usual Witt vectors construction for rings, it has a Frobenius and
a Verschiebung endomorphism. For proper smooth schemes over a perfect field of characteristic
p, it computes crystalline cohomology.

Example 5.3.3. Let X be a smooth scheme over a field of characteristic p. There is a natural
quasi-isomorphism of complexes: W0ΩX = WΩX/p ≃ ΩX . The same result holds for the
logarithmic analogue.

The following deep result, we will not prove here, compares (Zariski) motivic cohomology as
constructed by Voevodsky and the logarithmic de Rham-Witt sheaf.

Theorem 5.3.4. (Geisser-Levine, [GL00]) Let X be a smooth scheme over a field k of charac-
teristic p. Then for any r ⩾ 1 and i ⩾ 0, there is a natural isomorphism of sheaves of complexes
on the Zariski site of X:

WrΩi
X,log[−i] ≃ Z(i)XZar/p

r.

Remark 5.3.5. (Z(i)/pr is supported in degree i) In this remark, we try to give some insights
to explain the shift “[−i]” appearing in Theorem 5.3.4. Concretely, it says that Z(i)/pr is a
complex of sheaves supported in degree i; and we claim this is not a coincidence: it means that
it is purely symbolic, generated by multiplication of terms coming from Z(1)[1] = Gm.

More precisely, motivic cohomology is equipped with a bigraded multiplicative structure.
That is, for any A a ring whose motivic cohomology is well-defined, there is a map of complexes
Z(i)(A)⊗Z(j)(A)→ Z(i+j)(A) for each i and j nonnegative integers, which are compatible with
each other. Taking cohomology induces maps Hn(A,Z(i))⊗Hm(A,Z(j))→ Hn+m(A,Z(i+j)). In
general Z(1)(A) is A×[−1] = Gm(A)[−1], whence H1(A,Z(1)) = A×. So, given units f1, . . . , fj ∈
A, we can then use the product structure to build an element {f1, . . . , fj} ∈ Hj(A,Z(j)): such
elements are called symbols. The previous construction usually refines to a map from Milnor

4One can alternatively define Ωj
A as the forms generated étale locally by the logarithmic forms, and then

restrict to the Zariski site. The definitions coincide, thanks to [Mor15], Corollary 4.2(i).
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K-theory KM
j (A)→ Hj(A,Z(j)), which is usually an isomorphism (called the Nesterenko-Suslin

isomorphism).
In practice, this means that Z(j)(A) nearly always has classes in cohomological degree j.

Saying that it is “purely symbolic” means that it only has these “obvious” classes, i.e., that
it is supported in degree j. For instance, the previous deep result of Geisser-Levine shows
that Z(i)(A)/pr, and in particular Z(i)(A)/p, is purely symbolic; hence for local rings A (i.e.
rings such that there is no higher Zariski cohomology), the Atiyah-Hirzebruch spectral sequence
from motivic cohomology to K-theory completely degenerates and we see that Kj(A;Z /p) =
Hj(A,Z(j)/p) = KM

j (A)/p. Overall, this shows that every element in Kj(A;Z /p) is generated
by products of j elements from K1(A;Z /p) = A×/p, i.e., the K-group mod p is purely symbolic,
in a similar sense.

Now let us go back to logarithmic forms. A priori, this is not clear from Theorem 5.3.4
why these objects should be related to motivic cohomology. And in fact, the main reason why
logarithmic forms are of any importance is because of this same motivic nature we can see in
Theorem 5.3.4 (this really comes, historically, from observations of Milne and Illusie). Intuitively,
one could say that (usual) algebraic differential forms, given by the de Rham or the de Rham-
Witt complex, have too much structure to be motivic. That is, motivic cohomology needs to
compare to all other cohomology theories (by definition of being motivic), and then can not
bear too much structural informations (such as a Frobenius endomorphism, or a Verschiebung
operator). This structure on the de Rham-Witt complex is killed when restricting to logarithmic
forms. In fact, this is intuitively explained by the following, saying that logarithmic forms are
the Frobenius fixed points of these usual algebraic differential forms:

Proposition 5.3.6. ([BMS19], Proposition 8.4) Let X be a smooth scheme over a perfect field k
of characteristic p. Then for all i ⩾ 0, there is a short exact (i.e. exact in each degree) sequence
of sheaves of complexes on the pro-étale site of X

0→WΩi
X,log[−i]→ N⩾iWΩ•X

φi−1−−−→WΩ•X → 0

where φi : N⩾iWΩ•X → WΩ•X is the Frobenius on the Nygaard filtration (see [BMS19] for its
construction in this case) of the de Rham-Witt sheaf WΩ•X .

We note that the last result is formulated in the (pro-)étale topology, instead of the Zariski
topology. This means that the de Rham-Witt complex sheaf corresponds to these Frobenius
fixed-points only in the étale context. In the Zariski topology, there is a similar fiber sequence,
but the map φi − 1 is not surjective, and hence this does not defines a distinguished triangle as
in the previous result. In fact, Proposition 5.3.6 is the first time we see a relation between (the
Frobenius fixed points of) the Nygaard filtration and p-adic étale motivic cohomology – where
the étale part is related to what we just wrote. See Section 6.2 and Section 6.6.
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Chapter 6

Syntomic cohomology

We now arrive to the core of the text: that is, syntomic cohomology. The last three chapters
covered three different topics in arithmetic geometry, which correspond to the three flavours one
can taste when looking –with his or her mind– at syntomic cohomology. The first corresponds
historically to the first definition of syntomic cohomology as we know it, and is related to Chapter
3 (Section 6.1). The prismatic theory of Chapter 4 can be applied to produce an independent
equivalent definition of syntomic cohomology (Section 6.2). These two definitions can be used to
prove some applications to algebraic K-theory and p-adic Hodge theory (Section 6.4), and can
be compared to the previous definition1 of syntomic cohomology given by Fontaine and Messing
(Section 6.5). Finally, we prove that syntomic cohomology (as defined in Section 6.1) is p-adic
étale motivic cohomology, hence ending the triple-flavoured description of syntomic cohomology.

6.1 As graded pieces of TC
We begin with the first definitionof syntomic cohomology. Following the methods of Chapter

3, it is defined as the graded pieces of TC(−;Zp) with respect to its “motivic” filtration.
Let A be a quasisyntomic ring. Recall that the E∞-Zp-algebra ∆̂A is defined by ∆̂A :=

RΓsyn(A;π0TC−(−;Zp)), and is equipped with its Nygaard filtration N⩾⋆∆̂A. Moreover, recall
there are (complete exhaustive decreasing multiplicative) indexed respectively by Z⩾0, Z and Z
filtrations on THH(A;Zp), TC−(A;Zp) and TP(A;Zp), given by the Postnikov filtration locally
on the quasisyntomic site

FilnTHH(A;Zp) := RΓsyn(A; τ⩾2nTHH(−;Zp)),
FilnTC−(A;Zp) := RΓsyn(A; τ⩾2nTC−(−;Zp)),

FilnTP(A;Zp) := RΓsyn(A; τ⩾2nTP(−;Zp)),

with graded pieces:
grnTHH(A;Zp) := Nn∆̂A{n}[2n],

grnTC−(A;Zp) := N⩾n∆̂A{n}[2n],

grnTP(A;Zp) := ∆̂A{n}[2n].
1This definition was not as general, and not as well-behaved as the recent one. However it gave, apart from

its name, some ideas of results which have now been proved also in the bigger generality allowed by the recent
definition.
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Roughly, this says that the graded pieces of the filtrations on THH(A;Zp), TC−(A;Zp) and
TP(A;Zp) are understood by the object ∆̂A, together with its Nygaard filtration N⩾⋆∆̂A.

Moreover, the sheaves ∆̂−, N⩾⋆∆̂−, and N ⋆∆̂− take discrete values, defined via topological
Hochschild homology, on quasiregular semiperfectoid algebras.

Question 6.1.1. How about a similar filtration on TC(A;Zp) ?

This question is answered by the following theorem: that is, the filtrations on TC−(−;Zp)
and TP(−;Zp) induce a natural filtration on TC(−;Zp).

Theorem 6.1.2. ([BMS19], Theorem 1.12.(5)) Let A be a quasisyntomic ring. The map φp :
TC−(A;Zp) → TP(A;Zp) (Corollary 3.5.6) induces natural maps φp : FilnTC−(A;Zp) →
FilnTP(A;Zp), thereby giving a natural filtration

FilnTC(A;Zp) := hofib(φp − can : FilnTC−(A;Zp)→ FilnTP(A;Zp))

on topological cyclic homology TC(A;Zp) = hofib(φp − can : TC−(A;Zp)→ TP(A;Zp)).

We can now state the definition of syntomic cohomology.

Definition 6.1.3. Let A be a quasisyntomic ring. Denote by Zp(n)(A) the graded pieces of the
filtration on TC(A;Zp)

Zp(n)(A) := grnTC(A;Zp)[−2n] = hofib(φ− can : N⩾n∆̂A{n} → ∆̂A{n}),

where φ : N⩾n∆̂A{n} → ∆̂A{n} is a natural Frobenius endomorphism of the Breuil-Kisin twist
∆̂A{n}. The complexes Zp(n)(A), indexed by integers n, are called syntomic cohomology of A.

Fontaine and Messing, in [FM87], defined a version of syntomic cohomology for noetherian
schemes. This is related, in characteristic p, to crystalline cohomology. In both cases, the most
interesting examples of coverings for an affine scheme Spec(A) are the extensions of A generated
by the pn-th roots of elements of A. This difference is that in the version of [BMS19], one can add
all of these roots (for all n and all elements of A) at once. The ring we obtain is a quasiregular
semiperfectoid ring (which is indeed a quasisyntomic ring, hence considered by the theory of
[BMS19]). In particular, this makes most of the constructions and the proofs more natural.

Remark 6.1.4. Despite the name, the so-called “Frobenius” map φp defined on π0TC−(−;Zp)
(or similar topological objects) is not obviously, nor always, related to the Frobenius of some
characteristic p object. However, when applied to mixed characteristic or characteristic p objects,
one can show in most cases (e.g. Definition 6.1.3) that this “Frobenius” morphism φp corresponds
to (some lift of) the Frobenius φ on the associated object.

Example 6.1.5. For instance, if R is a perfectoid ring, then ∆̂R = π0TC−(R;Zp) ∼= Ainf(R)
(see Section 3.4), and the topological “Frobenius” map φp on π0TC−(R;Zp) (coming the p-
cyclotomic spectrum structure of TC−(−;Zp)) corresponds to the classical lift of Frobenius on
the ring Ainf(R) := W (R♭).

Remark 6.1.6. Let S be a quasiregular semiperfectoid ring. A consequence of the prismatic the-
ory [BS19, Remark 1.14.] is that the (topological) “Frobenius” map φp on the commutative ring
π0TC−(S;Zp) = π0TP(S;Zp) lifts the Frobenius on the (characteristic p) ring π0TC−(S;Zp)/p.
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The syntomic cohomology complexes Zp(n) (or Zp(n)(−)) are sheaves of complexes on the
quasisyntomic site QSynop. For any integer n, it follows from the Definition 6.1.3 (and from the
local structure of TC− and ∆̂) that these complexes Zp(n) are locally on qSynA concentrated
in (cohomological) degrees 0 and 1. More precisely, in the case of a quasiregular semiperfectoid
ring S, the filtration on TC−(−;Zp) and TP(−;Zp) is just the usual double-speed Postnikov
filtration (thanks to Theorem 3.4.16.(2)), and the syntomic sheaf Zp(n) is thus given by the two
term complex

Zp(n)(S) = (τ[2n−1;2n]TC(S;Zp)[−2n]) = hofib(φ− can : π2nTC−(S;Zp)→ π2nTP(S;Zp)),

with cohomology2

H0(Zp(n)(S)) = TC2n(S;Zp), H1(Zp(n)(S)) = TC2n−1(S;Zp).

In fact, one can prove that locally, the sheaves of complexes Zp(n) are even discrete (see
Theorem 6.3.1). In particular, Zp(n) locally identifies with its global section functor. And
because the derived global section functor applied to Zp(n), and Zp(n) itself are quasisyntomic
sheaves, one can write for any quasisyntomic ring A

Zp(n)(A) = RΓsyn(A,Zp(n))

as the cohomology of a sheaf on the quasisyntomic site of A –justifying the name syntomic
cohomology.

Now we give some examples of computations for syntomic cohomology (Definition 6.1.3).

Lemma 6.1.7 (Zp(n) for n < 0). In negative degree n < 0, the complexes Zp(n) = 0 vanish.

Proof. Intuitively, we could prove this by analogy to the classical theory of Chapter 2: this would
give us an exact sequence (which is just an analogy, since the Definition 3.5.3 of TC does not
have such a property) 0 → TC−(A;Zp) → TP(A;Zp) → TC(A;Zp) → 0, we can apply to any
quasisyntomic ring A. And then by taking homotopy groups and using that the canonical map
π∗TC−(A;Zp) → π∗TP(A;Zp) is an isomorphism in degrees ⩽ 0 (Theorem 3.4.20), we could
conclude that Zp(n) vanishes for n < 0 (and is concentrated in degree 0 for n = 0). However the
only concrete relation we have at disposal instead of this exact sequence, is the fiber sequence
from Corollary 3.5.6, and this is not sufficient to make this proof work.

The actual proof ([BMS19], Proposition 7.16) that Zp(n) = 0 for n < 0 is in fact not that
far from the previous intuition: we use a comparison to the classical definition of TC, given in
[NS18, Theorem II.4.10], which implies that for any connective ring spectrum (and then any
quasisyntomic ring) A, we have πiTC(A;Zp) = 0 for any i < −1. In particular, Zp(n) vanishes
locally (according to the previous discussion), and hence Zp(n) = 0 for n < 0. ■

Corollary 6.1.8. Let A be a quasisyntomic ring. Then there is a spectral sequence

Ei,j
2 = Hi−j(Zp(−j)(A))⇒ π−i−jTC(A;Zp).

This spectral sequence degenerates locally on the quasisyntomic site. For a quasisyntomic ring S
on which it degenerates, we have the following identification

πnTC(S;Zp) =
{

H0(Zp(n/2)(S)) if n ⩾ 0 is even;
0 otherwise.

.

2Remark that the conventions for TC are those of homology, while they are cohomological for the complexes
Zp(n).
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Proof. The first assertion is a direct application of the formalism of spectral sequences induced
by a filtered complex, applied to Theorem 6.1.2. In particular, the graded pieces of πnTC(A;Zp)
are indeed given by: griπnTC(A;Zp) = Hn+2i(Zp(n+ i)(A)).

For the second assertion, we use the deep result (Theorem 6.3.1) of the previous discussion,
which asserts that locally on the quasisyntomic site, Zp(n) takes discrete values. Since it is
defined via a double-speed Postnikov filtration, this implies that all the differentials on the E2-
page of our spectral sequence are zero (by an argument of parity). The final assertion is just
reindexing the indices, and Lemma 6.1.7. ■

Proposition 6.1.9 (Zp(n) for n = 0). In weight 0, syntomic cohomology Zp(0) coincide qua-
sisyntomic locally with the constant sheaf Zp := lim

←
Z /pr Z.

Sketch of proof. This is proved in [BMS19], Proposition 7.16, by showing first that π−1TC(−;Zp)
vanishes locally on QRSPerdop, hence Zp(0) is locally concentratred in degree 0. This proves that,
as an ∞-sheaf, Zp(0) is discrete (that is, it takes discrete values locally on the quasisyntomic
site)3. Then, by looking at pro-étale covers on QRSPerdop, a result of [CMM18] comparing
algebraic K-theory and τ⩾0TC proves the result. ■

Proposition 6.1.10 (Zp(n) for n = 1). In weight 1, syntomic cohomology Zp(1) is quasisyntomic
locally concentrated in degree 0, where it is given by TpGm.

Note that here Tp(−) denotes the p-adic Tate module, defined on abelian groups by A 7→ Tp(A) :=
lim
←
A[pn] = lim

←
{a ∈ A | pn.a = 0}.

Sketch of proof. This is proved in [BMS19], Proposition 7.17 in the following way: one uses the
result from [CMM18] comparing TC and algebraic K-theory to reduce to the same computation
in K-theory; then one proves the result for rings which are both quasiregular semiperfectoid and
w-local (that is, local for the pro-étale topology, as defined in [BS15]); finally, one proves that
such rings form a basis for QRSPerd in the quasisyntomic topology (this suffices to prove the
result on QSyn). ■

Remark 6.1.11. A general motto in this story is that the objects THH(A;Zp), TC−(A;Zp),
TP(A;Zp), TC(A;Zp) admits filtrations for A any quasisyntomic ring, and that the graded
pieces of these filtrations are locally discrete (that is, concentrated in only one degree) in the
quasisyntomic topology.

6.2 As Frobenius fixed points on the Nygaard filtration of
prismatic cohomology

We now give the prismatic definition for syntomic cohomology. More precisely, syntomic
cohomology corresponds to the Frobenius fixed points on the Nygaard filtration on prismatic
cohomology. Here the Frobenius comes directly from the prismatic theory (and the δ-ring struc-
tures), and has not the same nature than the topological Frobenius endormorphism of Section
6.1.

3(Classical and ∞-sheaves) Remark that Zp is here a constant classical sheaf (that is, it takes values in abelian
groups), considered, via composition by Ab → D(Z), as an ∞-presheaf with values in the derived (∞-)category
D(Z). In particular the ∞-sheafification of this ∞-presheaf Zp, which is also the cohomology RΓ(−,Zp) of the
classical sheaf Zp, is equal to Zp(0) on any object of the quasisyntomic site. Thus one can not hope Zp is already
an ∞-sheaf, since it has in general higher cohomology groups.
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The object ∆̂ (and its Nygaard filtration N⩾⋆∆̂) from the topological theory, have a pris-
matic interpretation (Theorem 4.4.4): it is the (quasisyntomic sheafified) Nygaard completion
of the prism ∆. Recall that syntomic cohomology is defined as sheaves Zp(n) for n ⩾ 0 on the
quasisyntomic site, via the Nygaard filtration on ∆̂:

Zp(i)(−) := hofib(φ− can : N⩾i∆̂{i} → ∆̂{i}).

The construction of the non-completed object ∆ is completely independant of the topological
definition of ∆̂. This suggests an alternative definition of syntomic cohomology, given in Definition
6.2.2.

Definition 6.2.1. (Divided Frobenius maps) Let S be a quasiregular semiperfectoid ring with
associated prism (∆S , (d)). For i ⩾ 0, the divided Frobenius map φi on the (Nygaard-completed)
prism ∆̂S (Definition 3.4.1 or Definition 4.4.4) is

φi := φ

di
: N⩾i∆̂S{i} → ∆̂S{i},

where φ is the Frobenius map coming from the δ-ring structure of ∆, and d is a nonzero divisor.
One can prove that φi corresponds to the topological Frobenius φ.

This map is well-defined because the image of φ in ∆̂S is contained in di∆̂S .
In particular the (topological) Frobenius φ identifies with the divided (arithmetic) Frobe-

nius φ
pi , and one can define syntomic cohomology Zp(i) in the following way.

Definition 6.2.2. Let S be a quasiregular semiperfectoid ring. Then

Zp(i)(S) ≃ hofib(φi − 1 : N⩾i∆̂S → ∆̂S).

This construction forms a sheaf on the site of quasiregular semiperfectoid algebras. One can then
globalize to get a sheaf Zp(i) on the whole quasisyntomic site (which is called “unfolding” in the
litterature).

Note that syntomic cohomology appears not in the same fashion here, compared to the
first definition via the filtration on TC. Indeed, syntomic cohomology Zp(n) is on the one
hand the graded pieces of the filtration on TC (Definition 6.1.3); and on the other hand, it is
the Frobenius fixed points on the Nygaard filtration levels (N⩾n∆−)φi=1 = (N⩾i∆−)φ=pi of
prismatic cohomology (Definition 6.2.2).

6.3 Foundational results on syntomic cohomology
After defining syntomic cohomology in the two last sections, the goal in this section is to

present some structural results about it. For instance, we identify syntomic cohomology in some
cases, and present some general properties about it (torsionfreeness, connectivity, ...).

The syntomic cohomology sheaves Zp(i) are concentrated in positive (cohomological) degrees.
In fact, we can prove that locally (in the quasisyntomic topology), these are even discrete com-
plexes4. More precisely, we have the following result which is a consequence of the prismatic
theory (and whose proof correspond to [BS19, Section 7], which we will not reproduce here).

4We call such sheaves simply discrete sheaves. Similarly, we say in general that a sheaf which takes values
in D(Zp)⩾0 is p-torsion free if its cohomology groups are all p-torsion free on some basis of the corresponding
topology.
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Theorem 6.3.1 ([BS22], Theorem 1.17). The quasisyntomic sheaves of complexes Zp(n) are
concentrated in degree 0 and p-torsion free5. More precisely, given R ∈ QSyn, there exists a
cover R→ R′ in QSyn such that Zp(n)(R′) is discrete and p-torsion free.

Remark 6.3.2. One should not confuse what we call “the syntomic cohomology sheaf Zp(n)”
and “a quasisyntomic sheaf”, which is only a sheaf on the quasisyntomic site. In particular,
quasisyntomic cohomology Zp(n) is a sheaf on the quasisyntomic site for each integer n.

In characteristic p, one can even identify syntomic cohomology locally in the quasisyntomic
site. But before stating the corresponding precise result, let us recall a few facts about the
object Acrys(−), which is a generalisation of the crystalline Fontaine’s period ring Acrys (see
Construction 6.4.8).

Acrys(−) is defined, for a semiperfect Fp-algebra S, as the p-completion of the divided power
envelope of W (S♭) → S (see [BMS19], Definition 8.9). In particular we have Acrys(S)/p =
DS♭(I), where DS♭(I) is the divided power envelope of S♭ along the ideal I := ker(S♭ ↠ S) ⊆
S♭. The Frobenius morphism on S induces by functoriality a Frobenius endormorphism φ :
Acrys(S) → Acrys(S), so that we can define a Nygaard filtration on Acrys(S) (Definition 4.4.1):
N⩾iAcrys(S) := {x ∈ Acrys(S) | φ(x) ∈ piAcrys(S)}, for i ⩾ 0. The object Âcrys(S) denotes the
completion of Acrys(S) with respect to this Nygaard filtration, and thus is also equipped with its
(completed) Nygaard filtration N⩾iÂcrys(S).

On quasiregular semiperfect Fp-algebras S, one can prove that Acrys(S) coincides with the
derived de Rham-Witt complex LWΩS ([BMS19], Theorem 8.14). One can then deduce that
Acrys(S) is p-torsionfree on these algebras, that it defines a sheaf on QRSP, which unfolding to
QSynFp

computes crystalline cohomology RΓcrys(A/Zp), for regular Fp-algebras A.
Now, ∆̂S compares to Âcrys(S) for quasiregular semiperfect algebras:

Theorem 6.3.3. ([BMS19], Theorem 8.17) Let S be a quasiregular semiperfect Fp-algebra. There
is a functorial φ-equivariant isomorphism of rings ∆̂S

∼= Âcrys(S), with an identification of the
two Nygaard filtrations.

In fact, this is how we prove that ∆̂A computes crystalline cohomology of A, for A a smooth
algebra over a perfect field of characteristic p; this is an analogue of Theorem 3.2.17 in character-
istic p. Instead of proving this result (whose proof goes through several successive reductions, up
to the case S = Fp[T±1/p∞ ]/(T −1)), we present in detail the following one, more directly related
to syntomic cohomology, which gives an explicit version of Theorem 6.3.1 in characteristic p:

Proposition 6.3.4. ([BMS19], Proposition 8.20) Let S be a quasiregular semiperfect Fp-algebra,
and i > 0. Then the complex Zp(i)(S) is concentrated locally in degree 0 and given by the p-
torsionfree group Acrys(S)φ=pi . For i = 0, the same result holds for the sheaf Zp(0) only locally
on the site QRSPop: Zp(0) takes discrete values locally on this site, given by the p-torsionfree
group sheaf6 Acrys(−)φ=pi .

Proof. Recall that for a quasiregular semiperfect Fp-algebra S, we have the following description
of syntomic cohomology: Zp(i)(S) = hofib(N⩾i∆̂S

φi−1−−−→ ∆̂S) (see Definition 6.2.2), with φi := φ
pi

the divided Frobenius map.
5The definitions for discrete and p-torsion free sheaves here is the one for ∞-sheaves, that is sheaves taking

values in the derived ∞-category D(Z) which are locally discrete / p-torsion free. Roughly, there is an equivalence
between discrete sheaves A of abelian groups (that is, sheaves that take discrete values on any object of the
defining site), and discrete ∞-sheaves with values in D(Z), via the functor A 7→ RΓ(−, A).

6Remark that here we mean ∞-sheaf: being p-torsionfree then means it takes locally (discrete) p-torsionfree
values.
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Then, one can prove ([BMS19], Lemma 8.19) that the operator φi − 1 : N⩾iÂcrys(−) →
Âcrys(−) is surjective (directly for any quasiregular semiperfect algebra S if i > 0, and only as a
map of sheaves, that is locally, if i = 0). Hence, according to the previous result, we can identify
syntomic cohomology Zp(i) on any quasiregular semiperfect Fp-algebra with

Zp(i)(S) = ker(N⩾iÂcrys(S) φi−1−−−→ Âcrys(S)).

It remains to prove that the natural map

α : ker(N⩾iAcrys(S) φi−1−−−→ Acrys(S))→ ker(N⩾iÂcrys(S) φi−1−−−→ Âcrys(S))

is an isomorphism. By definition of the Nygaard filtration7, the divided Frobenius map φi :
N⩾iAcrys(S) → Acrys(S) factors through the completion map α : N⩾iAcrys(S) → N⩾iÂcrys(S);
we call β the corresponding quotient map. This ensures the injectivity of α : if x ∈ N⩾iAcrys(S)
satisfies φi(x) = x, and α(x) = 0, then φi(x) = β(α(x)) = 0, and thus x = φi(x) = 0. Moreover
the quotient map β : N⩾iÂcrys(S) → Acrys(S) satisfies the identity: φi(y) = α(β(y)) for any
y ∈ N⩾iÂcrys(S), and thus a similar argument implies the surjectivity of α. ■

Again in characteristic p, and for smooth varieties over a perfect field (and in particular not
only locally in the quasisyntomic site), one can compute explicitly syntomic cohomology Zp(n).

Theorem 6.3.5. ([BMS19], Theorem 1.15.(1)) Let A be a smooth k-algebra, where k is a perfect
field of characteristic p. Then there is an isomorphism of sheaves of complexes on the pro-étale
site of X = Spec(A)

Zp(i) ≃WΩi
X,log[−i].

Remark 6.3.6. We use the pro-étale site in the formulation of Theorem 6.3.5 so that the
logarithmic de Rham-Witt sheaf is well-defined (the “pro-” part being because we work with
p-adic coefficients, see [BS15]). Zp(i) is indeed a sheaf of complexes on the pro-étale site by
restriction from the quasisyntomic site: étale morphisms are quasisyntomic, and qSynA is stable
under filtered colimits.

In mixed-characteristic, we can also compute an analogue of Theorem 6.3.5:

Theorem 6.3.7. ([BMS19], Theorem 1.15.(2)) Let A be the p-adic completion of a smooth
OC algebra, where C is an algebraically closed complete extension of Qp. Then there is an
isomorphism of sheaves of complexes on the pro-étale site of X = Spf(A)

Zp(i) ≃ τ⩽iRψ Zp(i),

where on the right-hand side, Zp(i) denotes the usual (pro-)étale sheaf on the generic fiber X of
X, and Rψ denotes the nearby cycles functor.

As we will see in Section 6.6, syntomic cohomology is a form of motivic cohomology. There
is a more general relation between motivic cohomology and the nearby cycles. Indeed, the
localisation sequence for motivic cohomology relates motivic cohomology of a scheme (with some
assumptions, e.g. smooth over the ring of integers OK of a p-adic field K) to its generic and
special fibers; then the Beilinson Lichtenbaum conjecture (Theorem 5.2.1) expresses the motivic
cohomology of the generic fiber as étale cohomology; remark finally that a connectivity result

7More precisely, we use the fact that Acrys(S) is p-complete, and so if for an element x the Frobenius φ(x) is
in piAcrys(S) for any i ⩾ 0, then φ(x) = 0.
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on the motivic cohomology of the special fiber explains the τ⩽i in the previous result, which
is necessary to make nearby cycles appear. In higher cohomological degrees, one thus expects
motivic cohomology of our scheme to be the same as the motivic cohomology of its generic fiber8.

In low degrees, one can also compute syntomic cohomology Zp(i) only in terms derived de
Rham theory, instead of TC or the prismatic theory. This is a consequence of a comparison
result to the theory of Fontaine-Messing, given in [AMMN20].
Notation 6.3.8. Let R be a commutative ring. There is an analogue of de Rham complex,
which is the right well-behaved version for non-smooth commutative rings R. It is defined in
[Bha12], and called the derived de Rham cohomology LΩR of R. It is equipped with a derived
Hodge filtration LΩ⩾⋆

R , a crystalline Frobenius φ : LΩR → LΩR, and, for i < p, a “divided”
Frobenius φ/pi : LΩ⩾i

R → LΩR.
Remark 6.3.9. The derived de Rham cohomology is a complex defined only in the derived
category. The intuition is similar to that of the cotangent complex with respect to Ω1.
Theorem 6.3.10. ([AMMN20], Theorem F) Let A be a quasisyntomic ring.

(1) For each i ⩽ p− 2, there is a natural identification

Zp(i)(A) ≃ hofib(φ/pi − id : LΩ⩾i
A → LΩA).

(2) For each i ⩾ 0, there is a natural identification

Qp(i)(A) ≃ hofib(φ− pi : LΩ⩾i
A → LΩA)Qp

,

where (−)Qp
on the right-hand side means we take rationalisation.

The proof of Theorem 6.3.10 relies on the following connectivity result on syntomic cohomol-
ogy.
Theorem 6.3.11. ([AMMN20], Theorem G) Let A be a quasisyntomic ring. Then the syntomic
cohomology complex Zp(i)(A) is concentrated in cohomological degrees ⩽ i+ 1. Moreover, if A is
a strictly henselian local ring, then the complex Zp(i)(A) is concentrated in cohomological degrees
⩽ i.

This connectivity result finds its meaning when we interpret syntomic cohomology Zp(i) as
a form of motivic cohomology (see Section 6.6). Indeed, it is expected that a fixed (homology)
group of algebraic K-theory πnK(−) does not receive, via the Atiyah-Hirzebruch spectral se-
quence, a contribution for all weights i of motivic cohomology Z(i)(−). Here the (p-adic étale)
analogue for syntomic cohomology Zp(i) is that πnTC(−;Zp) receives a contribution only from
H−n(Zp(0)(−)), H2−n(Zp(1)(−)), H4−n(Zp(2)(−)), . . . Hence it receives non-trivial data, thanks
to the previous connectivity result, only from Zp(i) for i ⩽ n+ 1.

6.4 Applications to K-theory and p-adic Hodge theory
We now give some applications of our fundational results of Section 6.3. One should not

that Proposition 6.4.4 is only a consequence of the Beilinson fiber square, and Theorem 6.4.6 is
a consequence of Theorem 6.5.9 and the Beilinson fiber square. As we do not discuss here the
Beilinson fiber square (which is fully developped in [AMMN20]), these are not strictly applications
of Section 6.3. The following is a consequence of the discreteness of syntomic cohomology (see
[BS19], Section 14).

8A version of such a result is given in [BS22], Theorem 9.4 for perfectoid rings. A more general statement for
smooth schemes over a perfectoid ring will be published soon by other coauthors.
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Corollary 6.4.1 ([BS22], Corollary 14.2). Locally on the quasisyntomic site, the functor K(−;Zp)9

is concentrated in even degrees, i.e. πnK(−;Zp) for n odd vanishes after quasisyntomic sheafifi-
cation.

Proof. The paper [CMM18] identifies K-theory with topological cyclic homology on a large class
of rings. In particular, if shows that for S a ring which is Henselian along pS and such that S/pS
is semiperfect (e.g. if S is quasiregular semiperfectoid), the trace map K(S;Zp)→ τ⩾0TC(S;Zp)
is an equivalence.

Now, for a quasiregular semiperfectoid ring S, TC(S;Zp) (and hence τ⩾0TC(S;Zp)) admits
a N-indexed filtration given by the doube-speed Postnikov filtration, and with graded pieces
griTC(S;Zp) = Zp(i)(S). And by Theorem 6.3.1, these are discrete quasisyntomic sheaves. So
πnK(−;Zp) is locally zero for n odd on the quasisyntomic site, and hence its quasisyntomic
sheafification is also zero. ■

Another consequence of the proof of Corollary 6.4.1 is that the trace map from algebraic
K-theory induces an identification K2n(−;Zp)[0] ≃ Zp(n), where the left-hand side is the qua-
sisyntomic sheafified K-group. Hence (Proposition 6.3.4), one deduces in particular the following
structure result for K-theory on quasiregular semiperfect Fp-algebras.

Corollary 6.4.2. ([BMS19], Corollary 8.23) For any quasiregular semiperfect Fp-algebra S, the
algebraic K-theory K∗(S;Zp) vanishes in odd degrees, and we have an isomorphism of graded
rings

Keven(S;Zp) ∼=
⊕
i⩾0

Acrys(S)φ=pi

.

Remark 6.4.3. Being concentrated in even degrees is not a condition without meaning. A co-
homology theory is called an even cohomology theory when it is concentrated in even degrees (for
instance, algebraic K-theory on the site of quasiregular semiperfectoid algebras). The fundamen-
tal structure behind even cohomology theory is that of complex vector bundles, which are central
objects in K-theory, and in geometry in general: these are represented by the infinite-dimensional
complex projective space CP∞, which has (singular, and hence, by the Atiyah-Hirzebruch spec-
tral sequence, any) cohomology concentrated in even degrees.

Moreover, remark the local situation of Corollary 6.4.2 is drastically different from the one
in Remark 5.3.5, which is about syntomic cohomology in the global situation.

Using the fundational results on TC and syntomic cohomology (which are related by their
“motivic” filtration, via the definition given in Definition 6.1.3), one can reprove some known
calculations on the K-theory of p-adic fields (see [AMMN20], section 7). Here is an example.

Proposition 6.4.4. ([AMMN20], Example 7.2) If the field F is a finite extension of Qp of degree
d, then for any integer s ⩾ 0

dimQp
Ks(F ;Qp) =


0 if s < 0 or s even,
d+ 1 if s = 1,
d otherwise.

Sketch of proof. For s < 0, this is by definition of (connective) K-theory. Let k be the residue
field of F . Since k is perfect, we have Ks(k;Zp) = Zp for s = 0 and 0 otherwise (this is classical
result in K-theory, see [AMMN, Theorem 7.1]). Then the dévissage cofiber sequence in K-theory
with Zp-coefficients K(k;Zp) → K(OF ;Zp) → K(F ;Zp) proves that Ks(OF ;Zp) ∼= Ks(F ;Zp)

9Here K(−) denotes the connective algebraic K-theory of a ring, and K(−;Zp) its p-completion.

53



for s ̸= 1 and that there is an exact sequence 0 → K1(OF ;Zp) → K1(F ;Zp) → Zp → 0, where
the map K1(F ;Zp) ∼= F× ⊗Z Zp → Zp is induced by the p-adic valuation.

Then, one can prove using the Beilinson fiber square and a computation on cyclic homology
of OF that K2s−1(OF ;Qp) = F for s = 1 and 0 otherwise, and K2s(OF ;Qp) = 0 for s > 0.

Finally, we get the desired result by taking dimension of the Qp-vector spaces in the previous
identifications. ■

Remark 6.4.5. This dimension calculation is in accordance to the Beilinson-Lichtenbaum con-
jecture, which predicts in this case that K2s−1(F ;Qp) ≃ H1

ét(F,Qp(s)) and K2s−2(F ;Qp) ≃
H2

ét(F,Qp(s)) for any s > 0.

We can also perform the same kind of calculations directly for syntomic cohomology:

Theorem 6.4.6 ([AMMN20], Theorem 7.5). Let OF be a complete discrete valuation ring of
mixed characteristic with perfect residue field k of characteristic p (e.g. the ring of integers of a
finite extension of Qp). Then there is a natural identification

Qp(i)(OF ) ≃
{
RΓproét(Spec(k),Qp) if i = 0;
F [−1] if i > 0.

And, if OF is unramified (e.g. if OF is the ring of integers of a finite unramified extension F of
Qp), the previous identification has an integral version, though only in low degrees

Zp(i)(W (k)) ≃
{
RΓproét(Spec(k),Zp) if i = 0;
W (k)[−1] if 0 < i ⩽ p− 2.

Sketch of proof. The first part comes from the fiber square ([AMMN, Theorem 6.17]) comparing
Qp(i)(OF ) and Qp(i)(OF /p), and some comparison result between Qp(i) and Qp(i)FM.

The integral result follows from the same comparison result Theorem 6.5.9 between Zp(i) and
Zp(i)FM, and the fact that the map φ : W (k)→W (k) is the identity. ■

The filtration on étale K-theory (that is, on TC) is somewhat harder to compute in mixed-
characteristic. However, we can still compute things on some examples. We give now an appli-
cation when applying our results to perfectoid rings. More precisely, we use the calculation of
(rational) syntomic cohomology Theorem 6.3.10 on perfectoid rings, and deduce a new proof of
the so-called “fundamental exact sequence of p-adic Hodge theory”.

Theorem 6.4.7 (The fundamental exact sequence for OC). Let OC be the ring of integers of a
complete algebraically closed nonarchimedean field C (for instance C = Cp). Then there is the
following short exact sequence of abelian groups, for any i > 0 :

0→ Qp(i)(OC)→ B+
crys(OC)φ=pi

→ B+
dR(OC)/Fil⩾iB+

dR(OC)→ 0.

Remark the first historical version of this exact sequence was given in the case of i = 0, where
the middle term is then called Be := B+

crys(OC)φ=1, and the last term is replaced as follows

0→ Qp → Be → BdR/B+
dR → 0.

We recall for convenience the definitions of the period rings (that is, Ainf, Acrys, B+
dR) appearing

in Theorem 6.4.7. These are stated in the widest generality, that is for a general perfectoid ring
R, but one recovers the previous rings by taking R = OC .
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Construction 6.4.8 (Period rings, see [Bei12], [Bha12]). Let R be a perfectoid ring.

(1) The Fontaine’s ring Ainf(R) := W (R♭) is equipped with the canonical map θ : Ainf(R) ↠ R
with kernel generated by some element ξ. Here Ainf(R) is also isomorphic to the completed
prismatic cohomology ∆̂R, where the corresponding Nygaard filtration is given by the ξ-adic
filtration on Ainf(R).

(2) The ring Acrys(R) = Acrys(R/p) is the p-adic completion of the divided power envelope of
(ξ) ⊂ Ainf(R), that is the divided power envelope along the morphism Ainf(R) ↠ R. We
have Acrys(R) ≃ LΩR, where the right-hand side is the derived de Rham cohomology of
R; the Hodge filtration is identified with the divided power filtration via this equivalence.
We also define B+

crys(R) := Acrys(R)[1/p] = (LΩR)Qp
, which inherits a Frobenius operator

φ from Acrys(R).

(3) Finally, let B+
dR(R) be the ring B+

dR(R) := lim
←

(Ainf(R)/ξn[1/p]), which is also the Hodge

completion (L̂ΩR)Qp
of (LΩR)Qp

. Remark that, via this identification, the ξ-adic filtration
on B+

dR(R) (for which it is complete) corresponds to the Hodge filtration on (L̂ΩR)Qp
.

As a lot of constructions or results concerning the ring OC of Theorem 6.4.7, there is a more
general version of the fundamental exact sequence of p-adic Hodge theory for general perfectoid
rings R. This general version is recovered by the fundational results obtained on syntomic
cohomology, as we explain now.

Theorem 6.4.9 (The fundamental exact sequence, [AMMN20], Theorem 7.7). Let R be a per-
fectoid ring and i > 0. Then there is a natural pullback square in D(Qp)

RΓproét(Spec(R[1/p]),Qp(i)) //

��

B+
crys(R)φ=pi

��
Fil⩾iB+

dR(R) // B+
dR(R).

Proof. We use the so-called Beilinson fiber square, studied in depth in the article [AMMN20].
Roughly, this is a functorial pullback square relating TC(R), TC(R/p), HC−(R) and HP(R)
for any commutative ring henselian along (p). Combined with the following pullback square
–generalisation of McCarthy’s theorem– from [CMM21]

K(R) //

tr
��

K(R/I)

tr
��

TC(R) // TC(R/I)

applied to the henselian pair (R, I) = (R, (p)), we deduce that for any perfectoid ring R there is
a fiber square:

Qp(i)(R) //

��

Qp(i)(R/p)

��
(L̂Ω

⩾i

R )Qp
// (L̂ΩR)Qp

.

55



More precisely, this follows from [AMMN20], Theorem 6.17. Now the first term is identified with
RΓproét(Spec(R[1/p]),Qp(i)) by [BS19, Theorem 9.4]; the proof of this identifications relies on
successive reductions, and uses descent on the arc-topology, as developed in [BM18]10.

Moreover, the ring R/p is quasiregular semiperfect, hence by Proposition 6.3.4, Qp(i)(R/p) ≃
Acrys(R/p)[1/p] = Acrys(R/p)[1/p] = Acrys(R)[1/p] =: B+

crys(R)φ=pi .
And finally, the bottom arrow identifies with the map FiliB+

dR(R)→ B+
dR(R) by construction

of the period ring B+
dR(R) (Construction 6.4.8). ■

6.5 Comparison with the theory of Fontaine-Messing
We present here the comparison result given in [AMMN20] between syntomic cohomology

(as defined in [BMS19]), and the historically first notion of syntomic cohomology, as defined by
Fontaine and Messing (in [FM87]). First, let us review some of the classical definitions of the
theory of Fontaine-Messing, such as the syntomic site (which gave the name to the more recent
quasisyntomic site).

Definition 6.5.1 (Mazur). A finite type map f : Y → X of schemes is syntomic if it is both a
local complete intersection and flat.

The corresponding syntomic topology is aimed to be richer than the flat topology, without
being too complicated to handle. See [FM87], [Bau92] or [KT03] for some applications.

Remark 6.5.2. The notion of “local complete intersection” relies on regular closed embeddings,
which are non-ambiguously defined only for noetherian schemes. In Fontaine-Messing, all schemes
are then implicitly noetherian when dealing with syntomic topology.

In the noetherian context, we have the following:

Theorem 6.5.3 (Quillen). Let A and B be noetherian rings, and A→ B a map of finite type.
Then this is a local complete intersection if and only if the cotangent complex LB/A has Tor
amplitude in [−1, 0] (indexing conventions for the derived category are cohomological).

Remark 6.5.4. The finite type hypothesis in the previous result can be removed, by replacing
“local complete intersection” by a more general notion valid for non-finite type morphisms of
noetherian rings, as in [Avr99]. Following [FM87], we will not use these conventions here.

In this regard, the idea of the quasisyntomic topology developed in [BMS19] is to discard
the noetherian and finite type hypotheses. As a comparison, we recall here the definition of
quasisyntomic morphism. As usual in this context, all the constructions satisfy descent for the
Zariski topology, so we may restrict to the affine context:

Definition 6.5.5. A map of rings R→ S is quasisyntomic if it is flat, and the cotangent complex
LS/R has Tor amplitude in [−1, 0].

Remark that, when considering p-complete rings, one may prefer to replace the “flat” and
“Tor amplitude” conditions by their p-complete analogues (as we do in Definition A.1.3). To
avoid this type of complications, let us work over Fp.

10The local parts on the arc-topology are given by (ultra)products of p-complete valuation rings of rank ⩽ 1 with
algebraically closed fraction field. The main deep property used in [BS19, Theorem 9.4] about the arc-topology
is that both Zp(n) and RΓ(Spec(R[1/p]),Zp(n)) are p-complete arc-sheaves when restricted to the category of
perfectoid rings, and thus one can perform descent on the arc-topology.
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Definition 6.5.6 ([FM86], II.1.1.). Let X be a scheme. The syntomic site SynX consists of
the category of X-schemes, endowed with the topology generated by the surjective syntomic X-
morphisms of affine schemes. When X = Spec(A) is affine, we also denote SynA the site
consisting of the category of affine schemes over Spec(A), with the same topology.

Let QSynFp
be the category of quasisyntomic Fp-algebras (and all maps between them), and

QSynft
Fp
⊆ QSynFp

the full subcategory of quasisyntomic finite type Fp-algebras. We turn both
categories (or more precisely their opposites) into sites by declaring covers to be quasisyntomic
faithfully flat maps.

Lemma 6.5.7. There is a (trivial) canonical equivalence of sites SynFp

∼= QSynft op
Fp

.

Proof. By definition, an object of SynFp
is a finite type Fp-algebra which is flat and a local

complete intersection. By Theorem 6.5.3, this corresponds to quasisyntomic Fp-algebras of finite
type, ie to objects of QSynft op

Fp
. The maps in both categories are all morphisms (with the usual

change of direction between rings and schemes). Finally, a map of rings is faithfully flat if and
only if it is flat, and the induced map on spectra is surjective, so the claim follows (again using
Theorem 6.5.3). ■

Even if Fontaine-Messing defined syntomic cohomology Zp(i) only in the noetherian context,
their definition can be adapted to the more recent context of quasisyntomic rings.

Definition 6.5.8 (Syntomic cohomology of Fontaine–Messing, [AMMN, Definition 6.9.). ] We
define sheaves Zp(i)FM for 0 ⩽ i ⩽ p− 2, and Qp(i)FM for i ⩾ 0, on the quasiregular semiperfec-
toid site QRSPerd, via

Zp(i)FM(S) = fib(φ/pi − id : LΩ⩾i
S → LΩS),

Qp(i)FM(S) = fib(φ− pi : LΩ⩾i
S → LΩS)Qp

.

These are sheaves on QRSPerd because S 7→ LΩ⩾i
S is a sheaf. Unfolding (that is globalising to

the whole quasisyntomic site), this defines similar sheaves on QSyn, for which we give the same
notations.

The following important result implies in particular the calculation of syntomic cohomology
(of [BMS19]) in terms of derived de Rham cohomology Theorem 6.3.10.

Theorem 6.5.9 ([AMMN20], Theorem 6.22). Let A be a quasisyntomic ring. Then there are
natural, multiplicative equivalences of sheaves of complexes:

Zp(i)FM(A) ≃ Zp(i)(A) for i ⩽ p− 2
Qp(i)FM(A) ≃ Qp(i)(A) for all i ⩾ 0.

Sketch of proof. First we can reduce to proving the result for A = S a quasiregular semiperfectoid
Zp-algebra. If we fix some i ⩾ 0, we can also suppose that Zp(i)(S) is concentrated in degree 0
thanks to Theorem 6.3.1. We then prove, using a version of the Beilinson fiber square ([AMMN,
Theorem 6.17]) that Qp(i)(S/p) is concentrated in degree 0. This implies that the map φ− pi :
(LΩS)Qp

→ (LΩS)Qp
is surjective, thus giving us a cartesian and cocartesian square of abelian

groups:
Qp(i)(R) //

��

Qp(i)(R/p)

��
(LΩ⩾i

R )Qp
// (LΩR)Qp

.
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We then prove by a structure result on the right map that φ − pi : (LΩ⩾i
S )Qp

→ (LΩS)Qp
is

surjective. Putting these observations together, this shows a natural identification

Qp(i)(S) = (LΩS)φ=pi

Qp
∩ (LΩ⩾i

S )Qp
≃ hofib(φ− pi : (LΩ⩾i

S )Qp
→ (LΩS)Qp

),

which is exactly the second desired identification.
The first assertion, about Zp(i), is more intricate, and follows from an analogue of Theorem

6.3.1 proving that Zp(i)FM(−), for i ⩽ p − 2, is a discrete sheaf on the quasisyntomic site (see
[AMMN, Section 6.4]). ■

Remark 6.5.10. The previous equivalences are given only in nonnegative (cohomological) de-
grees. This is because syntomic cohomology Zp(i) and Qp(i) is zero in negative degrees (see
Example 6.1.7).

It was established (in [Gei04, Theorem 1.3.]) that, for i ⩽ p−2 and formally smooth schemes
over DVRs, syntomic cohomology is p-adic étale motivic cohomology. In fact, one expects this
is the case in general; and the new definition of syntomic cohomology being valid in a much
more general context then the one of Fontaine-Messing (that is, on the quasisyntomic site),
this suggests a far wider definition for p-adic étale motivic cohomology (see the next section for
details).

6.6 Syntomic cohomology is p-adic étale motivic cohomol-
ogy

The aim of this section is to present the motivic flavour of syntomic cohomology. In particular
we sketch the proof that syntomic cohomology is p-adic étale motivic cohomology.

On the one hand, algebraic K-theory has a filtration with graded pieces motivic cohomology
(see Section 5.1). On the other hand, topological cyclic homology TC has a filtration –in the
p-adic context– with graded pieces syntomic cohomology (see Section 6.1). Moreover, there is a
map, called the cyclotomic trace map, which is an equivalence in some contexts of interest, that
one can use to compare algebraic K-theory and TC. An adventurous mind would like to try to
compare these two filtrations. This (arguably good) way of thinking leads to the intuition that
syntomic cohomology has, in some sense, some motivic nature. This is the idea we develop now.

Algebraic K-theory is related to topological cyclic homology TC in the following way. Let R
be a commutative ring. The cyclotomic trace is a map from algebraic K-theory to topological
cyclic homology

K(R)→ TC(R).

This map can be shown to be universal in some sense ([BGT]), and is an extremely useful tool in
studying algebraic K-theory. First, because TC is often easier to calculate directly than K-theory
- for instance in the p-adic setting by using results of [BMS19]. And the cyclotomic trace is also
an effective approximation to algebraic K-theory in a lot of contexts. In this way, for p-adic
rings, TC and p-adic étale K-theory agree in nonnegative degrees, via the cyclotomic trace map.
We formulate this last result for strictly henselian local rings R, since they are the local rings in
the étale topology.

Theorem 6.6.1 ([CMM21], Theorem C). Let R be a strictly henselian local ring with residue
field of characteristic p. Then the map K(R)→ TC(R) is a p-adic equivalence, that is, it is an
equivalence after p-completion.
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One may then expect the filtration of Theorem 6.1.2 to be the étale sheafification of the
filtration on algebraic K-theory with associated graded motivic cohomology (see Section 5.1 on
motivic coho). In particular one expects the Zp(i) to be the p-adic étale motivic cohomology (or,
more precisely, of p-adic étale Tate twist). More concretely, it should be the complex obtained
by étale sheafifying and p-adically completing the (Tate twist) complex Z(i).

This intuition is supported by all the computations surrounding syntomic cohomology. For
instance, the results of [BMS19] together with Theorem 6.6.1 provide us a p-adic étale Atiyah-
Hirzebruch type spectral sequence. Another example is the following result in equal characteristic
p.

Theorem 6.6.2. Let X be a smooth scheme over a perfect field k of characteristic p. Then there
is an isomorphism of sheaves of complexes in the étale site of X, between syntomic cohomology
Zp(n) and p-adic étale sheafified motivic cohomology Zp(n)Mot (which is constructed in this case
by Voevodsky).

Proof. This is a consequence of the computation Theorem 6.3.5 of syntomic cohomology in terms
of the logarithmic de Rham-Witt sheaf, and the classical result of Geisser-Levine Theorem 5.3.4
on p-adic motivic cohomology. ■

In the p-adic context, one hopes to define p-adic motivic cohomology on a large class of
objects using syntomic cohomology (that is, p-adic étale motivic cohomology) and a similar
Beilinson-Lichtenbaum type construction.

Remark 6.6.3. While the ℓ-adic and p-adic motivic cohomology are only “local” parts of motivic
cohomology, one can expect to construct a “global” theory of motivic cohomology from these,
when combined with the (also conjectural, and largely independant) rational motivic cohomology
(see also the end of Section 5.1).

Example 6.6.4. As an example, the situation in equal characteristic p is well-understood. In-
deed, for smooth algebras over a perfect field of characteristic p, p-adic étale motivic cohomology
is known to be given by the logarithmic de Rham-Witt sheaves; see Theorem 6.3.5.

6.7 An hedonist picture of syntomic cohomology
It is often nice to get a look from above once we learned several details of a theory. Here we

try to summarize some of the main aspects we encountered about syntomic cohomology.

Remind that syntomic cohomology can be defined via topological Hochschild homology (using
techniques of Chapter 3), or independently via prismatic cohomology (reviewed in Chapter 4),
and that it corresponds to p-adic étale motivic cohomology (reviewed in Chapter 5).

Syntomic cohomology is a collection of sheaves Zp(i) = Zp(i)(−), for i ∈ N, on the quasisyn-
tomic site (as defined in Section 3.2 in characteristic p, and in Section A.1 in mixed characteristic).
The quasiregular semiperfectoid Zp-algebras form a basis for the quasisyntomic site, on which
it is easier to compute syntomic cohomology Zp(i); similarly when restricting to characteristic
p, quasiregular semiperfect Fp-algebras form a basis for the quasisyntomic site (restricted to
Fp-algebras), on which we can express more explicitly the values of the sheaves Zp(i). A major
technique when proving or defining anything about syntomic cohomology is thus to perform
quasisyntomic descent to quasiregular semiperfectoid rings. There exist some rational and mod
p variants of syntomic cohomology as well, we denote by Qp(i) and Fp(i) respectively, and for
which the previous remarks also apply.
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By restricting syntomic cohomology to the étale site (or the pro-étale site), we can identify
syntomic cohomology with p-adic étale motivic cohomology. Since p-adic étale motivic coho-
mology (in fact any form of motivic cohomology) is still a conjectural object in general, this
identification makes sense only when the motivic side makes sense (for instance, for a smooth
scheme over a field). However, some important conjectural properties of p-adic étale motivic co-
homology (such as an Atiyah-Hirzebruch type spectral sequence) are satisfied by syntomic coho-
mology, and in a greater generality than where motivic cohomology is already well-defined. This
suggests some new possible developments in motivic cohomology theory, arising from syntomic
cohomology. Remark that, comparing syntomic cohomology Zp(i) with motivic cohomology, the
integer i ⩾ 0 is interpreted as a motivic weight (see Section 5.1).

The prismatic theory is not conjectural at all in its construction, and provides a construction of
the sheaves Zp(i) which is in a way more arithmetical (in particular, it does not use the topological
theory surrounding TC). It is based on the so-called prismatic site, and gives an analogue in
mixed characteristic of some construction which previously existed only equal characteristic p.
For instance, think about crystalline cohomology, which takes a (smooth proper) variety over a
perfect field k of characteristic p to a cohomology theory defined over the mixed characteristic
ring W (k). It is represented by an explicit complex WΩ• (or LWΩ• in its derived version),
also of mixed characteristic. These objects are extremely useful to study questions in p-adic
Hodge theory, and the prismatic cohomology then gives a similar construction for varieties of
mixed characteristic. Prismatic cohomology, denoted ∆−, is again a sheaf on the quasisyntomic
site, and is equipped with a natural filtration N⩾i∆− (i ⩾ 0), called the Nygaard filtration.
In this picture, syntomic cohomology appears as the divided Frobenius fixed points on this
Nygaard filtration: Zp(i)(−) = (N⩾i∆−)φi=1, where φi := φ

pi , and is thus concretely related
to most of the prismatic cohomology theory. Finally, the relation between the prismatic theory
(Chapter 4) and the topological theory (Chapter 3) is in the fact that the Nygaard completion
∆̂− of prismatic cohomology corresponds (φ-equivariantly) to the quasisyntomic sheaf ∆̂− :=
RΓsyn(−, π0TC−(−;Zp)).

We now summarize these ideas in the following, where we compare the informations in mixed
characteristic (that is, the general situation) to their characteristic p analogues, where we have
sometimes more precise informations.
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General picture of syntomic cohomology
For any i ⩾ 0, syntomic cohomology Zp(i) is a sheaf of complexes on the quasisyntomic

site QSyn, and its values are concentrated in cohomological degrees [0, i]. Moreover, for any
quasisyntomic ring A,

Zp(i)(A) = griTC(A;Zp)[−2i] (Chapter 3, motivic filtration on TC)
= (N⩾i∆A)φi=1 (Chapter 4, Frobenius fixed points on prismatic cohomology)

= Zp(i)Spec(A)ét (Chapter 5, p-adic étale motivic cohomology)

In mixed characteristic
On quasiregular semiperfectoid alge-

bras S, the complexes Zp(i)(S) are con-
centrated in degrees [0, 1]; this comes from
the fact that the complex ∆̂S is discrete
(that is, concentrated in degree 0).

Even more locally in the quasisyntomic
topology, Zp(i) is in fact discrete for any
i ⩾ 0. This implies that p-completed al-
gebraic K-theory K(−;Zp) is, locally in
the quasisyntomic topology, concentrated
in even degrees.

Examples:
• ∆̂R ≃ Ainf(R) for any perfectoid ring
R. In particular ∆̂R is concentrated
in degree 0.

• Zp(i)(R) ≃
(
φ−1(d)iA

φ

di−id
−−−−→ A

)
for R any perfectoid ring, (A, (d)) an
associated perfect prism, and i > 0.

• The Nygaard filtration on the ring
Z is simply the p-adic filtration:
N⩾i Z = pi Z. Its Nygaard comple-
tion is thus its p-adic completion Zp.

In characteristic p
On quasiregular semiperfect Fp-

algebras S, the complexes Zp(i)(S)
are given by the p-torsion free ring
Acrys(S)φ=pi , concentrated in degree 0.
This implies that the p-completed alge-
braic K-theory on S is concentrated in
even degrees, and given by K2i(S;Zp) ∼=
Acrys(S)φ=pi .

Examples:
• For k a perfect Fp-algebra (e.g. k =

Fp), ∆̂k
∼= Ainf(k) = W (k).

• For k a perfect Fp-algebra,
Zp(i)(k) ≃ W (k)φ=pi [0] ≃(
φ−1(p)iW (k)

φ

pi−id
−−−−→W (k)

)
is

zero whenever i > 0. For instance
if k = Fp, then Zp(i)(Fp) ≃ Zp[0] if
i = 0, and is zero otherwise.

• For any quasisyntomic Fp-algebra
A, the Frobenius endormorphism on
A acts by multiplication by pi on
Zp(i)(A).
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Appendix A

Technicalities

Here are some more technical tools and definitions that were used throughout the text.

A.1 Some useful definitions in mixed characteristic
We present here some definitions of objects we encountered in the main text, and for which

we only gave the definition in characteristic p. We thus state the definitions of perfectoid rings,
of quasiregular semiperfectoid rings, and finally the definition of the quasisyntomic site in mixed
characteristic, as given in [BMS18], [BMS19] or [AMMN20].

We begin with the definition of perfectoid rings, as stated in [BMS18]1. Let R be a commu-
tative ring which is π-adically complete and separated for some element π ∈ R dividing p. Note
that this condition implies that R is also p-adically complete. Let φ : R/pR → R/pR be the
(absolute) Frobenius on R/pR (in fact, all the induced Frobenius morphisms will also be denoted
by φ). We denote by R♭ the tilt of R

R♭ := lim
←−φ

R/pR,

which is a perfect Fp-algebra. Remark that for such a ring, one can define its Fontaine’s ring
Ainf(R) : Ainf(R) := W (R♭), which is still equipped with a Frobenius automorphism φ (W (−)
denotes the ring of Witt vectors, hence the Frobenius is a lift of Frobenius here).

Definition A.1.1 (Perfectoid ring, [BMS18], Definition 3.5). A ring S is perfectoid if and only
if it satisfies the following conditions:

(1) S is π-adically complete for some element π ∈ S such that πp divides p;

(2) the Frobenius map φ : S/pS → S/pS is surjective;

(3) the kernel of the map θ : Ainf(S)→ S is principal.

Remark that a ring of characteristic p is perfectoid if and only if it is perfect (take π = 0).
We will not try to really motivate this definition, but we shall just say that perfectoid rings
have played an important role in p-adic arithmetic geometry, by providing some tool to study
highly non-Notherian objects. For instance, perfectoid rings arise naturally when considering
local questions on the pro-étale topology. In fact, the situation is similar to what we encountered

1There exist a lot of different definitions for perfectoid rings in the litterature, which often apply to different
contexts. The definition given in [BMS18] unifies most of them.
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in Chapter 3, where the quasiregular semiperfect(oid) rings form a basis for the quasisyntomic
topology. We now define these (quasiregular semiperfectoid and quasisyntomic rings) in mixed
characteristic.

First, we need the following definition:

Definition A.1.2 (p-complete (faithful) flatness and Tor amplitude, [BMS19], Definition 4.1).
Let R be a commutative ring. An R-module M is called p-completely flat (resp. p-completely
faithfully flat) if M ⊗L

RR/p ∈ D(R/p) is a flat (resp. faithfully flat) R/p-module concentrated in
degree zero. Similarly, an object N ∈ D(R) has p-complete Tor amplitude in [a, b] if N ⊗L

RR/p ∈
D(R/p) has Tor amplitude in [a, b].

Remark that, if R is a Fp-algebra, then p-complete flatness (resp. p-complete Tor amplitude
in [a, b]) is the same as flatness (resp. Tor amplitude in [a, b]).

Definition A.1.3 (The quasisyntomic site)). (1) A commutative ring R is called quasisyn-
tomic if it is p-complete, has bounded p-power torsion (that is, R[p∞] = R[pn] for some
integer n ⩾ 0), and LR/ Zp

has p-complete Tor-amplitude in [−1, 0]. We let QSyn be the
category of quasisyntomic rings, with all ring homomorphisms (and not just the quasisyn-
tomic ones).

(2) We call a map A→ B in QSyn a quasisyntomic map (resp. quasisyntomic cover) if A→ B
is p-completely flat (resp. p-completely faithfully flat), and if LB/A ∈ D(B) has p-complete
Tor-amplitude in [−1, 0]. The opposite category of QSyn acquires the structure of a site by
declaring covers to be quasisyntomic covers.

(3) An object S ∈ QSyn is quasiregular semiperfectoid if S admits a map from a perfectoid
ring, and if the Frobenius morphism on S/p is surjective. We denote by QRSPerd ⊂ QSyn
the full subcategory spanned by quasiregular semiperfectoid rings.

Example A.1.4. (1) An Fp-algebra is quasiregular semiperfectoid (resp. quasisyntomic) if
and only if it is quasiregular semiperfect (resp. quasisyntomic as defined in Chapter 3) (see
Definitions 3.2.7 and 3.2.12 respectively).

(2) Any perfectoid ring R is a quasiregular semiperfectoid ring. Indeed, the cotangent complex
LR/ Zp

has p-complete Tor-amplitude concentrated in degree −1, and has bounded p-torsion
(in fact, R[p∞] = R[p]).

The proofs of the foundational results about the quasisyntomic site (for instance, quasiregular
semiperfectoid rings form a basis for the quasisyntomic site) correspond to their characteristic p
analogues (see [BMS19] for more details).

A.2 ∞-categories and spectra
The definition of an ∞-category has motivation in both (usual) category formalism and

homotopy theory. The basic idea is that we would like to keep trace of the choices we make when
we say “these two objects are equal”: what we usually mean by this (at least in algebraic contexts)
is that there is an isomorphism from the first to the second object. But then there may exist other
such isomorphisms, from the first and to the second same object. But usually, one can relate
these different isomorphisms by some “2-morphisms”, which can also be isomorphisms. And so
on, we define some “higher” morphisms, starting from our two concrete objects. To formalise
this notion (and to be able to use such ideas concretely, without specifying all the higher data
we are dealing with), we use simplicial objects. More precisely, the definition of an ∞-category
comes as follows:
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Definition A.2.1 (∞-category). We say a simplicial set S• is an ∞-category if it satisfies the
following condition

For 0 < i < n, every map σ0 : Λn
i → S• from the i-th simplicial horn admits an extension to the

n-simplex: σ : ∆n → S•.

This condition is called the weak Kan extension condition (and ∞-categories are also called weak
Kan complexes).

In practice, the notion of ∞-category is often used in algebraic geometry in the case where
S• is the derived category D(k) over some ring k: the “elements” (we usually call without
quotation marks) of the ∞-derived category D(k) –which correspond to the 0-simplexes of S•–
are the usual complexes of k-modules, seen as elements in the derived category, “1-morphisms”
are usual morphisms, “2-morphisms” are homotopies between morphisms, “3-morphisms” are
homotopies between homotopies between morphisms, and so on. This example of ∞-category
leads us directly2 to the notion of spectrum.

The category of spectra is, in a way, a well-behaved category to deal with algebraic objects
(such as rings, or modules) in the ∞-categorical setting. A good approximation for the category
of spectra is the derived ∞-category D(Z) over the integers Z, which embeds into the category
of spectra. This theory was developed progressively from the 1980’s. It started from algebraic
topology issues, and was formalized in its modern version in the setting of∞-categories of Lurie.
This is only recently that the theory of spectra has had arithmetic applications (typically via
topological cyclic homology, as in [BMS19]). Instead of giving a precise definition, we present
here only some intuition for the definition of spectra.

Definition A.2.2. Intuitively, a spectrum is a sequence of pointed spaces {Xn}n⩾0 and maps
S1 ∧Xn → Xn+1 (where S1 ∧Xn = S1 ×Xn/((S1 × ⋆) ∪ (⋆×Xn))). Given a spectrum X, one
can extract homotopy groups πi(X), i ∈ Z, which are all abelian (one can think of these π∗ as
an analogue of H∗).

The category of spectra Sp is a symmetric monoidal ∞-category, with a symmetric monoidal
structure called “smash product”. Notions of rings and modules still make sense in spectra, and
the ∞-derived category D(k) over a fixed commutative ring k embeds into the category Sp.

Definition A.2.3. Ring objects in spectra are called E∞-rings. The initial object in E∞-rings
is the so-called sphere spectrum S.

There is a functor, called the Eilenberg-Maclane functor, which takes any complex C• (and
in particular, any usual commutative ring when considered as a discrete complex) to a E∞-ring
spectrum HC. This defines a fully faithful map to the symmetric monoidal category of spectra.

As an example, one can speak about sheaves taking values not only in the derived category
D(Z), but in E∞-ring spectra. This is the case for THH(−) for instance.

A.3 Of filtrations and spectral sequences
The notion of filtration is used for lots of different types of objects. We define it here only

for chain complexes.
2The history of the two notions is a bit more complicate.
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Definition A.3.1 (Filtration on a chain complex). Let C• a complex of modules over a com-
mutative ring. A descending, N-indexed filtration on C• is the data of a descending chain of
subcomplexes: C• = Fil0C• ⊇ Fil1C• ⊇ Fil2C• ⊇ . . . . The graded pieces of this filtration are the
complexes griC := FiliC/Fili+1C, for i ⩾ 0; one checks easily these are indeed complexes. Such
a filtration is said to be complete if the canonical map C → lim

i
C/FiliC is an isomorphism; that

is, if it is an isomorphism in each degree.
The similar notions of Z-indexed, or ascending filtrations are defined in the same way. We say

the filtration is then exhaustive if the colimit up to the filtration is the complex itself. Remark
this property is trivial for N-indexed filtrations, and non trivial for Z-indexed ones.

Now, one can associate to a (Z- or N-indexed) filtered chain complex C a spectral sequence.
This spectral sequence is a tool for computing the (co)homology of the complex C from the
(co)homology of the associated graded objects –which is in general simpler. Recall a spectral
sequence is given in general by some bicomplexes, indexed by some pages Ep,q

r , among which
we usually specify only a first page (for instance the E2-page). We do not recall the theory of
spectral sequences here, but only what is necessary for us.

One says that a spectral sequence converges to H with an increasing filtration F if Ep,q
∞ =

FilpHp+q/Filp+1Hp+q. Moreover, a spectral sequence degenerates (at the second page) if E∞ =
E2. This happens in particular when all the differentials on the second page are zero.

Going the other way, we can define a spectral sequence converging to a given complex equipped
with a filtration. More precisely, let us fix a cochain complex C• together with subcomplexes
FilpC•, forming a complete exhaustive decreasing filtration, where p ranges across the integers.
We require the boundary map to be compatible with the filtration. Then we define the first
page of the spectral sequence as: Ep,q

1 := FilpCp+q/Filp+1Cp+q. That is, E1 corresponds to the
graded pieces of the filtration. By restricting the differential of C• on this first page, we can
define recursively the higher pages of the spectral sequence. And, thanks to the completeness
and exhaustiveness properties of our given filtration, this spectral sequence converges to Ep,q

∞ =
FilpHp+q(C•). This gives us an equivalence between spectral sequences and filtrations on a
complex of modules.

Moreover, when the starting complex C• admits a ring structure (and hence its cohomology
has the structure of a graded ring H(C•)), then it induces a multiplicative structure on the
induced spectral sequence: that is, each page Er is differential graded algebra (instead of just
a geaded bicomplex), and these multiplicative structures on each page are compatible via the
boundary map.

Now, we sometimes consider complexes C that are defined directly in a derived category,
without a canonical complex to represent it (this is the case for crystalline cohomology, who
needed to wait for the de Rham-Witt complex before being represented by a canonical complex
in some cases, or even topological Hochschild homology, which is by nature only an object in the
derived sense). In this case, our previous discussion needs to be adapted: for instance, even the
notion of “subcomplex” is not well-defined. This is what we do now.
Definition A.3.2 (Filtration in the derived category). We say that a descending N-indexed
filtration on the complex C is then a collection of complexes FiliC, i ⩾ 0, and maps between
them: C = Fil0C ← Fil1C ← Fil2C ← . . . . The graded pieces of the filtration are computed as
the cofiber of the maps Fil⋆+1C → Fil⋆C.

Such a (descending, N-indexed) filtration is said to be complete if the canonical map C →
RlimiC/FiliC is an equivalence, where Rlim means we take the (inverse) limit in the derived
sense, and C/FiliC denotes the cofiber of the map FiliC → C. This condition is equivalent to
asking that RlimiFiliC ≃ 0.
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The previous discussion can now be translated directly in the language of derived categories.

Remark A.3.3 (Filtration on a sheaf). We can also speak about filtrations on a given sheaf. If
this sheaf takes values in the category of rings, or k-modules for a given ring k, then we are in
the first situation. If this sheaf takes values in the derived category over some ring (for instance
D⩾0(Zp)), then we use the second definition. In both cases, we define the filtration directly on
the values of our sheaf.

In fact, the notion of filtered objects in derived category can be formalized in a more functorial
way when using sheaves taking values in this category. More precisely, there is a notion of filtered
derived category, which formalises the fact for a sheaf to be equipped with a natural filtration.
In particular, this allows some good formalism when dealing with compatibility between tensor
products and filtered objects. See [BMS19], Section 5.1 for some details on the filtered derived
category.
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