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Introduction: We review some parts of the recent foundations of syntomic co-
homology, as developed recently by Bhatt, Morrow and Scholze in [BMS19]. It
presents deep relations with several important subjects in p-adic arithmetic ge-
ometry: integral p-adic Hodge theory [BMS18], [BMS19], the prismatic theory of
[BS22], and motivic cohomology [BMS19], [AMMN22], [CMM21].
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1 Topological cyclic homology
The following complex of Hochschild homology grew up in algebraic topology, before it showed

it was very capable of handling itself in arithmetic.
Definition 1.1. Let k be a commutative ring, and A a flat algebra over k. The Hochschild
complex HH•(A/k) is defined as

HH•(A/k) := A
b←− A⊗k A

b←− A⊗k A⊗k A
b←− . . .

with b :


A⊗k(n+1) → A⊗kn

a0 ⊗ · · · ⊗ an 7→ a0a1 ⊗ a2 ⊗ · · · ⊗ an − a0 ⊗ a1a2 ⊗ · · · ⊗ an + · · ·+
(−1)na0 ⊗ · · · ⊗ an−1an + (−1)n+1ana0 ⊗ · · · ⊗ an−1.

One can define variants of Hochschild homology, called cyclic homology HC, negative cyclic
homology HC− and periodic cyclic homology HP. The Hochschild-Kostant-Rosenberg filtration
(HKR filtration) is a filtration on these objects, whose graded pieces are related to the cotangent
complex (as developed by Quillen, Illusie, ...).

An idea of Waldhausen in the 1980’s was to define Hochschild homology and its variants in
the world of spectra to get the right “integral” notion (as opposed to “rational”). The notion
of spectra is now well-developed (it relies on the ∞-categorical setting of Lurie), as well as
Hochschild homology and its variants in this context:



• THH: topological Hochschild homology;

• TC: topological cyclic homology;

• TC−: negative topological cyclic homology;

• TP: periodic topological cyclic homology.

For instance, one has the following characterisation of TC of Nikolaus-Scholze:

Proposition 1.2. Let A be a connective E∞-ring spectrum. The p-completion TC(A;Zp) of the
spectrum TC(A) satisfies the following natural fiber sequence

TC(A;Zp) −→ TC−(A;Zp) φp−can−−−−−→ TP(A;Zp).

Before stating the definition for syntomic cohomology Zp(i), we define first define the qua-
sisyntomic site.

Definition 1.3 (p-complete (faithful) flatness and Tor amplitude, [BMS19], Definition 4.1). Let
R be a commutative ring. An R-module M is called p-completely flat (resp. p-completely faithfully
flat) if M ⊗L

R R/p ∈ D(R/p) is a flat (resp. faithfully flat) R/p-module concentrated in degree
zero. Similarly, an object N ∈ D(R) has p-complete Tor amplitude in [a, b] if N⊗L

RR/p ∈ D(R/p)
has Tor amplitude in [a, b].

Remark that, if R is a Fp-algebra, then p-complete flatness (resp. p-complete Tor amplitude
in [a, b]) is the same as flatness (resp. Tor amplitude in [a, b]).

Definition 1.4 (The quasisyntomic site). (1) A commutative ring R is called quasisyntomic
if it is p-complete, has bounded p-power torsion (that is, R[p∞] = R[pn] for some integer
n ⩾ 0), and LR/ Zp

has p-complete Tor-amplitude in [−1, 0]. We let QSyn be the category of
quasisyntomic rings, with all ring homomorphisms (and not just the quasisyntomic ones).

(2) We call a map A→ B in QSyn a quasisyntomic map (resp. quasisyntomic cover) if A→ B
is p-completely flat (resp. p-completely faithfully flat), and if LB/A ∈ D(B) has p-complete
Tor-amplitude in [−1, 0]. The opposite category of QSyn acquires the structure of a site by
declaring covers to be quasisyntomic covers.

(3) An object S ∈ QSyn is quasiregular semiperfectoid if S admits a map from a perfectoid
ring, and if the Frobenius morphism on S/p is surjective. We denote by QRSPerd ⊂ QSyn
the full subcategory spanned by quasiregular semiperfectoid rings.

Remark that quasiregular semiperfectoid rings arise naturally as tensor products of the form
Rperf ⊗R · · · ⊗R Rperf, for R a smooth algebra over a perfect field of characteristic p.

Example 1.5. Any perfectoid ring R is a quasiregular semiperfectoid ring. Indeed, the cotangent
complex LR/ Zp

has p-complete Tor-amplitude concentrated in degree −1, and has bounded
p-torsion (in fact, R[p∞] = R[p]).

Definition 1.6. Let A be a quasisyntomic ring. Denote by Zp(n)(A) the graded pieces of the
filtration on TC(A;Zp)

Zp(n)(A) := grnTC(A;Zp)[−2n].

The complexes Zp(n)(A), indexed by integers n, are called syntomic cohomology of A.

2



2 Prisms and prismatic cohomology
To define prisms, we need the following notion of δ-ring, which is a variant of that of a ring

with a lift of Frobenius.

Definition 2.1. A δ-ring is a pair (A, δ) where A is a commutative ring and δ : A → A is a
map of sets with δ(0) = δ(1) = 0, satisfying the following two identities:

δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y),

δ(x + y) = δ(x) + δ(y) + xp + yp − (x + y)p

p
.

Definition 2.2. A prism is a pair (A, I) where A is a δ-ring (which induces a lift of the Frobenius
on A/p, denoted φA), and I ⊆ A is an ideal defining a Cartier divisor in Spec(A), satisfying the
following two conditions:

• The ring A is derived (p, I)-adically complete1.

• The ideal I + φA(I)A contains p.

Theorem 2.3 ([BS22], Theorem 1.11 (1)). Let S be a semiperfectoid ring. Then the cate-
gory (S)∆ (underlying the absolute prismatic site (S)∆) has an initial object (∆S , I), and I = (d)
is principal.

One can attach a Nygaard filtration to the object ∆S , for S a quasiregular semiperfectoid
ring.

Definition 2.4 (Divided Frobenius maps). Let S be a quasiregular semiperfectoid ring with
associated prism (∆S , (d)). For i ⩾ 0, the divided Frobenius map φi on the (Nygaard-completed)
prism ∆̂S is

φi := φ

di
: N⩾i∆̂S{i} → ∆̂S{i},

where φ is the Frobenius map coming from the δ-ring structure of ∆, and d is a nonzero divisor,
and {i} is the Breuil-Kisin twist (which can be trivialised by fixing a map from a perfectoid ring
to S).

Definition 2.5. Let S be a quasiregular semiperfectoid ring. Then

Zp(i)(S) ≃ hofib(φi − 1 : N⩾i∆̂S{i} → ∆̂S{i}).

This construction forms a sheaf on the site of quasiregular semiperfectoid algebras. One can then
globalize to get a sheaf Zp(i) on the whole quasisyntomic site (which is called “unfolding” in the
litterature).

Theorem 2.6 ([BS22], Theorem 1.15). Let (A, I) be a bounded prism and let X = Spf(R) be an
affine smooth p-adic formal scheme over A/I. There is a canonical isomorphism:

RΓ∆(X/A) ≃ RΓ(Xqsyn, ∆−/A).
1Remark that the notion of derived completeness coincide with the usual completeness for bounded prisms.
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3 Motivic nature
In the 1980’s, it was predicted (by Beilinson, Deligne, ...) that a theory of motivic cohomology

Hn(X,Z(i)) for schemes X should exist, where n ∈ Z is the cohomological degree, and i ⩾ 0 is
the motivic weight indexing the so-called Tate twist Z(i). Motivic cohomology is expected to be
the graded pieces of a filtration on algebraic K-theory, and to be related to motives2. From this
point of view, syntomic cohomology is expected to be p-adic étale motivic cohomology:
Theorem 3.1. Let X be a smooth scheme over a perfect field k of characteristic p. Then there
is an isomorphism of sheaves of complexes in the étale site of X, between syntomic cohomology
Zp(n) and p-adic étale sheafified motivic cohomology Zp(n)mot (which is constructed in this case
by Voevodsky).

In the ℓ-adic case, étale and usual/Zariski motivic cohomologies are related via the Beilinson-
Lichtenbaum conjecture.
Theorem 3.2 (Beilinson–Lichtenbaum conjecture). Let X be a smooth scheme over a field k
in which the prime ℓ is invertible. Then for any i ⩾ 0, there is an isomorphism of sheaves of
complexes in the Zariski site of X

Z /ℓZ(i)XZar ≃ τ⩽iRε∗(µ⊗i
ℓ )

where ε : Xét → XZar is the restriction from the étale site to the Zariski site.
In the p-adic setting (in which we are when dealing with syntomic cohomology), the constant

étale sheaf µ⊗i
ℓ has to be replaced by the (étale) logarithmic de Rham-Witt sheaf, and we have

the following:
Theorem 3.3 ([BMS19], Theorem 1.15 (1)). Let A be a smooth k-algebra, where k is a perfect
field of characteristic p. Then there is an isomorphism of sheaves of complexes on the pro-étale
site of X = Spec(A)

Zp(i) ≃WΩi
X,log[−i].

4 Concrete computations
One has the following general vanishing result for syntomic cohomology:

Theorem 4.1 ([AMMN22], Theorem G)). Let A be a quasisyntomic ring. Then the syntomic
cohomology complex Zp(i)(A) is concentrated in cohomological degrees ⩽ i + 1. Moreover, if A is
a strictly henselian local ring, then the complex Zp(i)(A) is concentrated in cohomological degrees
⩽ i.

Locally on the quasisyntomic site, one has more precise informations.
Proposition 4.2 ([BMS19]). If S is a quasiregular semiperfectoid ring, then the completed prism
∆̂S is concentrated in degree 0, and thus Zp(i)(S) = hofib(φ−can : N⩾i∆̂S → ∆̂S) is concentrated
in degree 0 and 1.
Example 4.3. If S = R is a perfectoid ring, then Zp(i) = hofib(Ainf(R)→ Ainf).

In fact, one can be more precise (though it requires more work):
Theorem 4.4 ([BS22]). For each integer n ⩾ 0, the sheaf Zp(n) is discrete and p-torsionfree.
Corollary 4.5. Locally on the quasisyntomic site, p-completed K-theory is concentrated in even
degrees.

2The motivic cohomology groups Hn(X,Z(i)) should be, from the point of view of motives, the Ext groups
between X and the i-th Tate twist in the abelian category of motives.
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