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Résumé : Dans cette thése, nous constru-
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dans le cas des schémas au-dessus d’un corps.
Notre construction n’est pas Al-invariante en
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d’une filtration globale sur I’homologie cy-

Sur la cohomologie motivique des schémas en caractéristique mixte

Cohomologie motivique, K-théorie algébrique, géométrie p-adique

clique topologique, dont les parties graduées
unifient la cohomologie syntomique de Bhatt—
Morrow—Scholze et la cohomologie de de Rham
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Abstract: In this thesis, we construct a the-
ory of motivic cohomology for quasi-compact
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construction of Elmanto-Morrow in the case
of schemes over a field. Our construction is
non-Al-invariant in general, but it uses the
classical Al-invariant motivic cohomology of
smooth Z-schemes as an input. The main
new input of our construction is a global fil-
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graded pieces provide a common generalisation
of derived de Rham cohomology and Bhatt—
Morrow—Scholze’s syntomic cohomology. Our
theory satisfies various expected properties of
motivic cohomology, including a relation to non-
connective algebraic K-theory via an Atiyah—
Hirzebruch spectral sequence, the projective
bundle formula, and pro cdh descent. The re-
sults of Chapter 11 have appeared as [Bou23|.
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Chapter 1

Introduction (en frangais)

La cohomologie motivique est un analogue de la cohomologie singuliére en géométrie al-
gébrique. Beilinson et Lichtenbaum ont d’abord prédit son existence pour les schémas X de
type fini sur Z [Lic73, Lic84, Bei86, Bei87, BMS87], afin de mieux comprendre les valeurs spé-
ciales de leurs fonctions L. La cohomologie motivique, sous la forme de complexes de groupes
abéliens Z(i)™°'(X) indexés par les entiers i > 0, devrait étre une interpolation entiére entre
la cohomologie étale et les espaces propres d’Adams sur la K-théorie algébrique rationalisée.
En d’autres termes, il devrait exister une filtration naturelle Fil K(X) sur la K-théorie
algébrique non connective K(X), qui se scinde rationnellement, et dont les parties graduées
décalées

Z(i)™(X) = g K(X)[~2i]

sont données modulo p, lorsque p est inversible dans X, et en degrés au plus ¢, par la coho-
mologie étale R (X, pu") :

TSI (i)™ (X) o 7S RT e (X, 1Y),

Une telle théorie a d’abord été développée dans le cas lisse sur l'initiative de Bloch et
Voevodsky [Blo86, VSF00], en utilisant des cycles algébriques et la théorie de I’Al-homotopie.
Dans cette généralité, I'utilisation des techniques Al-invariantes est rendue possible par le
théoréeme fondamental de Quillen en K-théorie algébrique [Qui73], qui affirme que la K-théorie
algébrique est Al-invariante sur les schémas réguliers. Sur des schémas plus généraux, la
K-théorie algébrique n’est pas Al-invariante, et la cohomologie motivique se doit donc, elle
aussi, d’étre non Al-invariante en général. La premiére théorie de cohomologie motivique
non Al-invariante est due au travail récent d’Elmanto et Morrow [EM23], qui utilisent des
avancées récentes en K-théorie algébrique et en homologie cyclique topologique. Leur théorie
est développée dans la généralité des schémas quasi-compacts et quasi-séparés (qcgs) sur un
corps quelconque, et coincide avec la théorie classique Al-invariante sur les variétés lisses.

Dans cette thése, nous étendons le travail d’Elmanto—Morrow en caractéristique mixte,
produisant ainsi une théorie de cohomologie motivique dans la généralité initialement prévue
par Beilinson et Lichtenbaum. Notre théorie s’appuie notamment sur les progrés récents en
théorie de Hodge p-adique entiére [BMS19, BS22, BL22|, et fournit en retour une description
compléte de la cohomologie motivique modulo p, y compris lorsque p n’est pas inversible dans
le schéma X.



1.1 Une théorie de cohomologie motivique non A'-invariante

Le point de départ de notre construction est le résultat suivant, di & Kerz—Strunk—Tamie
[KST18] (qui prouvent que la K-théorie homotopique est la faisceautisation cdh de la K-théorie
algébrique) et a Land-Tamme [LT19] (qui prouvent que la fibre K" de la trace cyclotomique
satisfait la descente cdh).

Théoréme 1.1.1 ([KST18, LT19]). Soit X un schéma qcgs. Alors le diagramme commutatif
naturel
K(X) — TC(X)

|

KH(X) — (LcanTC)(X)

est un carré cartésien de spectres, ot KH(X) est la K-théorie homotopique de X, TC(X) est
’homologie cyclique topologique de X, Legn est le foncteur de cdh faisceautisation, la fleche
horizontale du haut est la trace cyclotomique, et la fleche horizontale du bas est la faisceauti-
sation cdh de la trace cyclotomique.

Le Théoreme 1.1.1 affirme que la K-théorie algébrique des schémas peut étre recons-
truite uniquement en termes de la K-théorie homotopique (donc d’informations provenant
de la théorie de I’Al-homotopie) et de I'homologie cyclique topologique (donc d’informations
provenant des méthodes de trace). La topologie cdh est une topologie de Grothendieck, in-
troduite par Voevodsky [SV00, Voel0] afin d’appliquer des techniques de théorie des topos a
I’étude de la résolution des singularités. En particulier, si la résolution des singularités était
vraie, tout schéma qcgs serait localement régulier dans la topologie cdh. Alors que la K-théorie
homotopique et I’homologie cyclique topologique ont, & l'origine, été introduites comme des
approximations utiles de la K-théorie algébrique déja existante, nous construisons la coho-
mologie motivique des schémas en utilisant des raffinements de la K-théorie homotopique
et de 'homologie cyclique topologique. Plus précisément, notre filtration motivique sur la
K-théorie algébrique est définie par le recollement de certaines filtrations sur la K-théorie ho-
motopique, sur ’homologie cyclique topologique, et sur I’homologie cyclique topologique cdh
faisceautisée.

Pour la K-théorie homotopique, nous utilisons les travaux récents de Bachmann—Elmanto—
Morrow [BEM24], qui construisent une filtration Fil}y, KH(X), qui est fonctorielle, multiplica-
tive et indexée par N, sur la K-théorie homotopique des schémas qcqs X. Les parties graduées
décalées de cette filtration, que nous noterons Z(i)°"(X), fournissent une bonne théorie de co-
homologie motivique cdh-locale pour les schémas qcgs. Leur construction, que nous rappelons
en Section 4.2, repose sur la cohomologie motivique classique Al-invariante des schémas lisses
sur Z, et étend la plupart de ses propriétés aux schémas qcqs généraux.

Notre premiére construction est celle d’une filtration Fil};, . TC(X) fonctorielle, multiplica-
tive et indexée par Z, pour les schémas qcqs X. Cette filtration coincide avec la filtration
HKR sur HC™(X/Q) en caractéristique zéro [Ant19, MRT22, Rak20], et avec la filtration
motivique sur TC(X;Z,) aprés p-complétion [BMS19, Mor21, BL22, HRW22|. La définition
qui suit décrit les parties graduées décalées de cette filtration :

Z(i)"C(X) ~ gr’ . TC(X)[—2i].

mot

10



Définition 1.1.2 (Voir Définition 3.3.3). Pour tout schéma qcgs X et tout entier i € Z, le
complexe Z(i)T€(X) € D(Z) est défini par un carré cartésien naturel

—~ >
Z(i)"°(X) ————— RI'za(X,LQZ,7)

| l

. >0
HpEIP’ ZP(Z)BMS (X) E— HpeIP RT'zar (X, (]LQ*/Z);)\) :

Une conséquence de cette définition est que le préfaisceau Z(i)TC s'identifie naturelle-

ment avec le complexe syntomique de Bhatt—Morrow—Scholze Zp(i)BMS en caractéristique p,

>
et avec le complexe de de Rham dérivé Hodge-complété RFZar(—,]LQ:Z/Q) en caractéristique
zéro. D’aprés [EM23], le complexe motivique Z(7)™°" est défini en caractéristique p et zéro
respectivement par des carrés cartésiens

Z(i)mot(X) E— Zp(i)BMS(X) Z(i)mOt(X) . erar(X7m§jQ)
Z(3)* (X)) —— (Lcdh Zp(z')BMS)(X) Z(i)h(X) — RPth(vai@)-

La définition suivante est donc une généralisation naturelle en caractéristique mixte de la
définition d’Elmanto—Morrow au-dessus d’un corps.

Définition 1.1.3 (Cohomologie motivique ; voir Section 4.3). Pour tout schéma qcqs X et
tout entier i € Z, le complexe motwique de poids 1

Z(i)™"(X) € D(Z)
de X est défini par un carré cartésien naturel

Z (i)™ (X) —— Z(i))T°(X)

| |

Z(i)“M(X) —— (Lean Z(i)19) (X),

ou la fleche horizontale du bas est induite par un raffinement filtré de la trace cyclotomique
cdh faisceautisée.

Etablir la relation attendue entre les complexes motiviques Z(i)™°" et la K-théorie al-
gébrique (Théoréme C ci-dessous) demande cependant plus d’efforts en caractéristique mixte
qu’au-dessus d’un corps. Le principal obstacle est ici de prouver que les préfaisceaux Z (i)™
s’annulent en poids ¢ < 0. Nous commencons par rappeler comment cet énoncé est prouvé
au-dessus d’'un corps. Nous utiliserons dans ce qui suit le fait que, par construction, les pré-
faisceaux Z(i)°" s’annulent en poids i < 0 (Section 4.2).

En caractéristique p, les préfaisceaux Z,(i)BMS s’annulent en poids i < 0, donc il en est de
méme pour les préfaisceaux Z(i)™M° et étape zéro de la filtration motivique associée Fil%, K

coincide avec la K-théorie algébrique. Si ’on ignore pour le moment les problémes de com-
plétude de cette filtration motivique, cela signifie que les préfaisceaux Z(i)™° fournissent un

11



raffinement cohomologique naturel de la K-théorie algébrique sur les schémas de caractéris-
tique p.
P
En caractéristique zéro, les préfaisceaux RI'z,,(—, ILQ:Z/@) ne s’annulent pas en poids ¢ < 0.

Au lieu de cela, ils s’identifient au préfaisceau RI'z,,(—, LO- /@), qui s’avére étre un faisceau
cdh sur les schémas qcgs de caractéristique zéro, d’apres les résultats de Cortinas—Haesemeyer—
Schlichting-Weibel [CHSWO08|, Antieau |Antl9| et Elmanto-Morrow [EM23|. En d’autres
termes, la fleche verticale de droite du diagramme précédent est une équivalence en poids
i < 0, de sorte que les préfaisceaux Z(i)™°* s’annulent en poids i < 0, et que I’étape zéro de
la filtration motivique associée Fil} (K coincide avec la K-théorie algébrique. Cela signifie
que les préfaisceaux Z(i)™°! fournissent un raffinement cohomologique naturel de la K-théorie
algébrique sur les schémas de caractéristique zéro.

En caractéristique mixte, nous prouvons également qu’en poids ¢ < 0, les préfaisceaux
Z(i) "¢ sont des faisceaux cdh sur les schémas qcgs, i.e., que les préfaisceaux Z (i)™t
Le résultat modulo un nombre premier p est une conséquence, comme en caractéristique p, du
fait que les préfaisceaux Z,(i)BMS s’annulent en poids i < 0. La difficulté est alors de prouver
que les préfaisceaux Q(i)TC sont des faisceaux cdh en poids i < 0.

s’annulent.

Le principal résultat de descente cdh utilisé en caractéristique zéro n’est plus vrai en carac-
téristique mixte. Plus précisément, le préfaisceau RI'za(—,LO_,/7) (ou sa rationalisation)
n’est pas un faisceau cdh sur les schémas qcgs. Nous contournerons cette difficulté en prouvant
un analogue rigide-analytique de ce résultat de descente cdh. Pour formuler ce résultat, nous
noterons

—~ >i
RUz4 (X, Le- Q,)

la cohomologie de Rham dérivée rigide-analytique d’un schéma qegs X au-dessus de Z,, que
nous définissons comme la colimite du diagramme

—~>i —~ > —~ >i
RU74 (X, (LQZ 7)) «— RU740(X,LOZ ) — RDzar(X, LQZ /)

dans la catégorie dérivée D(Z). Nous limitons ici notre attention aux schémas qeqgs au-dessus
de Z () par souci de simplicité, et renvoyons au Chapitre 5 pour les définitions et les énonces
analogues sur Z. La Définition 1.1.2 implique qu’il existe un carré cartésien naturel

Q)T (X) —— RTZar(X,mi/Q)

| !

. LG 22
@p(Z)BMS (X) RSN erar(Xa M—Qp/(@p)

BMS gont nuls. Comme

dans la catégorie dérivée D(Q). En poids i < 0, les préfaisceaux Q,(4)
déja mentionné, le préfaisceau RPZM(—,E/KLQ /Q) est par ailleurs un faisceau cdh sur les
schémas qegs. Le fait que les préfaisceaux Q(i)T¢ soient des faisceaux cdh en poids i < 0 est
donc équivalent au résultat suivant, qui peut étre vu comie un analogue rigide-analytique de

I’énoncé rationnel précédent de descente cdh.

Théoréme A (Descente cdh pour la cohomologie de de Rham rigide-analytique ; voir Corol-
laire 5.4.4). Pour tout nombre premier p, le préfaisceau RPZ&Y(_’M*Q /Qp) satisfait la des-
P

cente cdh sur les schémas qcqs au-dessus de Z,).
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La preuve moderne du résultat rationnel analogue de descente cdh repose sur la théorie
des invariants tronquants de Land—Tamme [LT19] et sur un théoréme de Goodwillie [Goo85],
qui prouvent respectivement que tout invariant tronquant est un faisceau cdh sur les schémas
gcgs et que 'homologie cyclique périodique sur Q est un invariant tronquant. Par définition,
un invariant tronquant est un invariant localisant E tel que pour tout [Ei-anneau connectif R,
la fleche naturelle E(R) — E(mo(R)) est une équivalence. Pour prouver le Théoréme A, nous
utilisons les mathématiques condensées de Clausen—Scholze [CS19], et prouvons qu’une cer-
taine variante rigide-analytique de ’homologie cyclique périodique est un invariant tronquant.
En particulier, la preuve du Théoréme A utilise un résultat sur les anneaux associatifs (et
méme sur les Ej-anneaux solides connectifs généraux).

Le Théoréme A nous permet d’obtenir la description cohomologique suivante de la coho-
mologie motivique rationnelle.

Théoréme B (Cohomologie motivique p-adique et rationnelle ; voir Corollaires 4.3.12 et 5.6.6).
Soit X un schéma qgcqs et p un nombre premier. Alors pour tous entiers i € Z et k > 1, les
diagrammes commutatifs naturels

7 [pF(E)moN (X)) ——— Z /pF(1)BMS(X) Qi)™ (X)) —— RFZar(X,ﬁf;/Q)
Z [p*()M(X) —— (Lean Z /p*(1)BMS) (X)) Qi) (X) —— chdh(xm%;/(@)

sont des carrés cartésiens dans la catégorie dérivée D(Z).

Ensemble, ces deux carrés cartésiens retrouvent les carrés cartésiens d’Elmanto—Morrow
définissant les complexes motiviques Z(i)™°" au-dessus d’un corps, et en sont donc des ana-
logues naturels en caractéristique mixte. La partie p-adique du Théoréme B est une con-
séquence formelle des Définitions 1.1.2 et 1.1.3. La partie rationnelle du Théoréme B implique,
quant a elle, que la différence entre Q(i)™°*(X) et Q(i)°"(X) ne dépend que de la rationa-
lisation Xg du schéma X. Si X est régulier, cette différence devrait s’annuler, et ce résultat
est donc plus intéressant en présence de singularités. Plus précisément, le Théoréme B peut
étre utilisé pour extraire des informations intéressantes sur les singularités d’un anneau com-
mutatif général R : les faisceaux cdh sont typiquement insensibles aux singularités, de sorte
que l'information singuliére dans le complexe motivique Z(i)™°(R) est en fait controlée par

les complexes Z /p*(i)BMS(R) et LQ(<I~§®2@) /g pour lesquels il existe des techniques de calcul.

Le Théoréme B implique également que les préfaisceaux Z(i)™°! s’annulent en poids i < 0,
ce qui était la partie manquante essentielle pour établir les propriétés fondamentales suivantes
de la cohomologie motivique.

Théoréme C (Lien avec la K-théorie algébrique). Il existe un faisceau Nisnevich finitaire de
spectres filtrés
Fil® K(—) : Sch9°%®°P —; FilSp
qui admet les propriétés suivantes :
(1) (Suite spectrale d’Atiyah—Hirzebruch ; voir Section 5.5) Pour tout schéma geqs X, la
filtration Fil,  K(X) est une filtration multiplicative et indezée par N sur la K-théorie
algébrique non connective K(X), dont les parties graduées sont naturellement données

par .
grio K(X) ~ Z(1)™"(X)[24], > 0.
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En particulier, en écrivant B (X, Z(i)) := H(Z(i)™* (X)) pour les groupes de coho-
mologie motivique correspondants, il existe une suite spectrale d’Atiyah—Hirzebruch

By = HLJ (X, Z(—j)) = K_i—j(X).

mot

Si X est de dimension valuative® finie, alors la filtration Fil%, ,K(X) est compléte, et la
suite spectrale d’Atiyah—Hirzebruch est convergente.

(2) (Décomposition d’Adams ; voir Corollaire 5.5.11) Pour tout schéma qcqs X, la suite
spectrale d’Atiyah—Hirzebruch dégénére rationnellement et, pour tout entier n € 7Z, il
existe un isomorphisme naturel de groupes abéliens

X) @z Q= P (Haio (X, Z(i) @2 Q)

>0
induite par les opérateurs d’Adams sur la K-théorie algébrique rationalisée.

L’une des principales motivations initiales pour développer la cohomologie motivique était
d’appliquer des techniques cohomologiques a ’étude de la K-théorie algébrique [BMS87|. Le
théoréme suivant résume nos résultats sur les relations entre la cohomologie motivique et un
certain nombre d’autres invariants cohomologiques. Lorsque X est lisse sur Z, nous noterons

Z(i)"2(X) := 21(X, &) [—2i]

pour le complere motivique classique de poids i, o 2°(X, e) est le complexe de cycles de Bloch
(et o e est l'indice cohomologique).

Théoréme D. Soit X un schéma qcgs, et i > 0 un entier.
(1) (Poids zéro ; voir Exemple 5.6.8) Il existe une équivalence naturelle
Z(0)™"(X) = Rlcan(X, Z)
dans la catégorie dérivée D(7Z).
(2) (Poids un ; voir Exemple 8.1.15) Il existe une fléeche naturelle
RTnis (X, G )[~1] — Z(1)™"(X))
dans la catégorie dérivée D(Z), qui est un isomorphisme en degrés au plus trois.

(8) (Cohomologie étale ; voir Corollaire 6.1.6) Pour tout nombre premier £ qui est inversible
dans X et tout entier k > 1, il existe une fleche naturelle

Z JE*(i)™(X) — Rlet(X, ')

dans la catégorie dérivée D(Z /0*), qui est un isomorphisme en degrés au plus i.

!La dimension valuative d'un anneau commutatif, définie en termes de rangs de certains anneaux de valua-
tion, a été introduite par Jaffard [Jaf60, Chapitre IV], et été généralisée aux schémas dans [EHIK21, Section 2.3].
La dimension valuative d’un schéma est toujours au moins égale & sa dimension de Krull, et les deux notions
coincident sur les schémas noethériens. Dans ce qui suit, la dimension valuative d’un schéma qcgs X sera utilisée
comme une borne supérieure de la dimension cohomologique du topos cdh de X ([EHIK21, Theorem 2.4.15]).
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(4)

(5)

(6)

(7)

(8)

(Cohomologie syntomique ; voir Corollaire 6.2.5) Pour tout nombre premier p et tout
entier k > 1, il existe une fiéeche naturelle

Z [p" (i) (X) — Z [p" ()" (X)

dans la catégorie dérivée D(Z [pF), qui est un isomorphisme en degrés au plus i, et ot
7 [p* (i)™ (X) désigne la cohomologie syntomique de poids i de X au sens de [BL22].

(K-théorie de Milnor ; voir Théoréme 8.2.6) Si X = Spec(A) est le spectre d’un anneau
local hensélien A, alors pour tout entier n > 1, il existe un isomorphisme naturel

KM(A)/n =5 H' (A, Z(i))/n

mot

de groupes abéliens, ot IA(%V[(A) désigne le ™ K-groupe amélioré de Milnor de A au
sens de [Kerl10].

(Cohomologie motivique classique ; voir Chapitre 7) Si X est lisse sur Z, alors il existe
une fleche naturelle
Z(i)™(X) — Z())™(X)

dans la catégorie dérivée D(Z), qui est un isomorphisme en degrés au plus i + 1 en
général, et un isomorphisme en tous degrés si X est de dimension au plus un sur Z.

(Cohomologie motivique lisse ; voir Corollary 8.1.12) Si X = Spec(A) est le spectre d’un
anneau local A, alors pour tout entier i > 0, il existe une équivalence naturelle

Z(i)lisse(A) AN TSi Z(i)mOt(A)

dans la catégorie dérivée D(Z), ou Z(i)'° désigne la cohomologie motivique lisse de
poids 1 de A, définie comme 'extension de Kan a gauche depuis les Z-algébres lisses du
complexe motivique classique Z(i)*. En particulier, le foncteur 7' Z(i)™°" est étendu
de Kan a gauche sur les anneauz locaur depuis les algébres locales essentiellement lisses
sur Z.

(Cohomologie motivique Al-invariante ; voir Théoréme 12.1.5) Il existe une équivalence
naturelle

(Lar Z(0)™)(X) = Z()* (X)

dans la catégorie dérivée D(Z), ou Z(i)™ (X) désigne la cohomologie motivique A'-inva-
riante de poids i de X au sens de [BEM24].

Le résultat suivant est une conséquence du Théoréme D (8) et du fait que les complexes

motiviques Al-invariants Z(i)* coincident avec les complexes motiviques classiques Z(4)

cla sur

les schémas lisses sur Z [BEM24|. En particulier, et bien que nous nous attendions & ce que

nos complexes motiviques Z(7)™°* coincident avec les complexes motiviques classiques Z(i)

cla

sur les schémas lisses sur Z, cela signifie que nous pouvons au moins prouver ce résultat aprés
avoir imposé que les complexes Z(i)™°! soient Al-invariants.

Corollaire E (Voir Corollaire 12.1.9). Soit X un schéma lisse sur Z. Alors, pour tout entier
1 > 0, i existe une équivalence naturelle

Z(i)"™(X) = (Lar Z(i)™") (X)

dans la catégorie dérivée D(Z).
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En supposant l'existence d’une bonne catégorie dérivée de motifs DM, les groupes de
cohomologie motivique d’un schéma X devraient étre donnés par

H

mot

(X, Z(i)) = Hompn (M(X), Z(i)[]),

ou M(X) € DM est le motif associé & X, et Z(i) € DM sont les motifs de Tate, qui prennent
part, pour chaque entier > 0, & une décomposition naturelle dans DM :

M(P) = P Z(j)[24]-
j=0

Dans le contexte Al-invariant, Voevodsky a construit une telle catégorie dérivée de motifs,
dans laquelle les complexes motiviques classiques Z(i)® peuvent ainsi étre interprétés en
termes de ces motifs de Tate. Sans supposer 1’Al-invariance, Annala-Twasa [AI23] et Annala—
Hoyois-Iwasa [AHI23, AHI24| ont récemment introduit une catégorie dérivée de motifs plus
générale, dans laquelle la décomposition du motif M(P7), i.e., la formule des fibrés projectifs,
est isolée comme propriété définissante de leur construction. Le résultat suivant signifie que
les complexes motiviques Z(i)™°" s’intégrent naturellement dans cette théorie de motifs non
Al-invariants.

Théoréme F (Formule des fibrés projectifs ; voir Théoréme 9.3.2). Soit X un schéma qcgs,
1 > 0 un entier, et £ un fibré vectoriel de rang r sur X. Alors, pour tout entier i > 0, les
puissances de la premiére classe de Chern motivique ¢P°(O(1)) € H2,.,(Px (&), Z(1)) induisent
une équivalence naturelle

r—1

Dz — )™M (X)[-24] = Z(H)™(Px(E))
=0

dans la catégorie dérivée D(Z).

Le Théoréme F est prouvé par Elmanto—Morrow dans le cas d’égale caractéristique [EM23],
oil la preuve repose sur la formule des fibrés projectifs pour les complexes Z(i)°" [BEM24]. En
caractéristique mixte, la formule des fibrés projectifs pour les complexes motiviques cdh-locaux
Z,(i)° n’est cependant connue que conditionnellement & une certaine propriété des anneaux
de valuation, appelée F-lissité [BM23, BEM24]. Comme nous ’expliquons maintenant, il
est possible de prouver cette propriété en caractéristique mixte, dans le cas des anneaux de
valuation au-dessus d’une base perfectoide. Le cas des anneaux de valuation généraux restant
ouvert, notre preuve du Théoréme F est différente de celle d’Elmanto—Morrow, et utilise en
particulier notre description de la cohomologie motivique a coefficients finis en fonction de la
cohomologie syntomique (Théoréme 6.2.4).

1.2 Cohomologie motivique des anneaux de valuation

Ces derniéres années, les anneaux de valuation ont été utilisés comme un moyen pour
contourner la résolution des singularités, afin d’adapter des arguments de caractéristique zéro
en caractéristique positive [KST21, KM21]. Nous expliquons ici comment adapter certaines
de ces idées en caractéristique mixte, & commencer par ’isomorphisme de Cartier. La plupart
des résultats qui suivent sur les anneaux de valuation sont ceux de [Bou23|.
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Soit p un nombre premier, que nous fixons pour le reste de l'introduction. L’isomorphisme
de Cartier affirme que pour toute IF)-algébre lisse A, le morphisme de Cartier inverse

o1, Qu/w, — Hn(Q;x/FP)
fdgi A+ Ndgp — Pt gk dgr A -+ Ndgy

est un isomorphisme de F,-espaces vectoriels pour chaque n > 0. En supposant la résolution
des singularités en caractéristique p, toute Fj-algebre serait localement lisse dans la topologie
cdh. Les anneaux locaux pour la topologie cdh sont des anneaux de valuation, donc les anneaux
de valuation de caractéristique p devraient étre des colimites filtrées de [Fj-algebres lisses, et
en particulier devraient satisfaire I'isomorphisme de Cartier. Sans supposer la résolution des
singularités, Gabber a prouvé que les anneaux de valuation de caractéristique p satisfont effec-
tivement cette propriété fondamentale des IF,-algébres lisses qu’est I'isomorphisme de Cartier.
Motivés par ce résultat et par le manque général de compréhension des anneaux de valuation,
Kelly et Morrow [KM21] ont alors introduit les algébres Cartier lisses comme des Fp-algebres
satisfaisant I'isomorphisme de Cartier, et ont étudié leur K-théorie algébrique.

Nous développons ici un analogue de cette théorie en caractéristique mixte. Le morphisme
de Cartier inverse, en tant que généralisation du morphisme de Frobenius, est spécifique a la
caractéristique p, et nous définissons le fait d’étre p-Cartier lisse pour les homomorphismes
d’anneaux généraux essentiellement en fonction de leur réduction modulo p. Cette notion plus
générale coincide avec celle introduite par Kelly-Morrow [KM21] dans le cas particulier ou
Panneau de base est . Pour une [F,-algébre R, nous noterons ¢r son endomorphisme de
Frobenius.

Définition 1.2.1 (Cartier lisse). (1) Un morphisme R — S de F-algébres est Cartier lisse,
ou S est une R-algébre Cartier lisse, s'il est cotangent lisse, i.e., son complexe cotangent
Ls/r est un S-module plat en degré zéro donné par Qé*/R? et si le morphisme de Cartier
inverse

-1
C™ Qg Qrgp B — H"(QYp)

est un isomorphisme de R-modules pour chaque n > 0.

(2) Un morphisme R — S d’anneaux commutatifs est p-Cartier lisse, ou S est une R-algébre
p-Cartier lisse, si la fleche naturelle S ®% R/p — S/p[0] est une équivalence dans la
catégorie dérivée D(R/p), et si la réduction R/p — S/p modulo p est Cartier lisse.

Autrement dit, un morphisme R — S d’anneaux commutatifs est p-Cartier lisse s’il
est p-cotangent lisse (Définition 11.1.3), et si sa réduction R/p — S/p modulo p satisfait
Iisomorphisme de Cartier. L’hypothése de p-cotangent lissité est nécessaire pour ne pas perdre
le controle des invariants que nous allons étudier lors de la spécialisation en caractéristique p.
Tout morphisme lisse d’anneaux commutatifs est p-Cartier lisse (pour tout nombre premier p).
En ce qui concerne les anneaux de valuation, une extension d’anneaux de valuation (c’est-a-
dire un morphisme injectif d’anneaux de valuation) en caractéristique mixte n’est en général
pas p-Cartier lisse. Par exemple, le morphisme Z, — Zp, ol Zp est anneau des entiers
d’une cléture algébrique @p de Q,, n’est pas p-cotangent lisse, et ne satisfait pas non plus
I’isomorphisme de Cartier : son complexe cotangent est en degré zéro, donné par le Zp—module

de torsion Q,/Z,, et Q% = Z,/p contient des éléments nilpotents ; le complexe de
p (Zp/p)/ Fp

Rham de F, — Zp/p est en fait nul en degrés positifs, et ne contient donc pas beaucoup
d’informations. En revanche, si ’anneau de valuation de base est suffisamment ramifié, ces
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obstructions disparaissent et nous pouvons prouver le résultat général qui suit. Ce résultat
généralise un théoréme de Gabber en caractéristique p, qui est valable sur les anneaux de
valuation parfaits (Théoréme 11.2.4 ci-dessous). Nous renvoyons le lecteur ou la lectrice a
[BMS18, Definition 3.5] pour la définition d’un anneau perfectoide.

Théoréme G (Voir Théoréme 11.2.1). Soit Vy un anneau de valuation dont la p-complétion
est un anneau perfectoide. Soit V un anneau de valuation qui contient Vo comme un sous-
anneau. Alors le morphisme d’inclusion Vy — V est p-Cartier lisse.

La preuve du Théoréme G proceéde par réduction au cas des anneaux de valuation de
caractéristique p, et utilise la théorie des déformations. Nous expliquons maintenant comment
appliquer le Théoréme G a des calculs de la cohomologie motivique des anneaux de valuation.

Rappelons que sur les schémas lisses sur I, la conjecture de Beilinson-Lichtenbaum, prou-
vée par Suslin et Voevodsky comme une conséquence de la conjecture de Bloch-Kato [SV00],
calcule la partie £-adique de la cohomologie motivique en termes de la cohomologie du faisceau
étale pgr des lk-racines de 1'unité. Pour décrire la partie p-adique de la cohomologie motivique,
il faut remplacer ,ug?f (qui est nul sur les variétés lisses lorsque £ = p et ¢ > 0) par les fais-
ceaux de Rham—Witt logarithmiques Win_’log [GLO0]. La description correspondante de la
K-théorie algébrique, en terme de ces faisceaux de Rham-Witt logarithmiques, est généralisée
dans [KM21] & toutes les Fp-algébres Cartier lisses.

Sur les schémas lisses sur un domaine de Dedekind de caractéristique mixte, la partie
p-adique de la cohomologie motivique classique est décrite de fagon similaire en faibles degrés
par la cohomologie étale de la fibre générique [Gei04]|. Ce résultat est une conséquence de
la conjecture de Gersten prouvée par Geisser [Gei04], et n’est pas connu pour les schémas
réguliers généraux. Combiné avec le Théoréme D (6), le résultat suivant étend cette description
de la cohomologie motivique classique au cas régulier. Plus précisément, la notion de schéma
F-lisse est introduite par Bhatt-Mathew [BM23| comme une généralisation non noethérienne
des schémas réguliers, et notre résultat s’applique naturellement & tout schéma F-lisse et sans
p-torsion.

Théoréme H (Conjecture de Beilinson—Lichtenbaum pour les schémas F-lisses ; voir Corol-
laire 6.2.6). Soit X un schéma F-lisse et sans p-torsion (e.g., un schéma régulier, plat sur 7).
Alors pour tous entiers i > 0 et k > 1, la fleche de comparaison de Beilinson—Lichtenbaum

Z [p" (i) (X) — RTet(X[], 1)

est un isomorphisme en degrés au plus i — 1, et est injectif en degré 1.

Sur un anneau de base perfectoide, les notions d’algébres F-lisse et p-Cartier lisse coin-
cident d’aprés le Théoréme 11.1.19. Au vu des Théorémes G et H, nous obtenons ainsi une
description compléte de la cohomologie motivique p-adique des anneaux de valuation au-dessus
d’une base perfectoide.

Corollaire I (Cohomologie motivique des anneaux de valuation ; voir Théoréme 11.4.6). Soit
Vo un anneau de valuation sans p-torsion et dont la p-complétion est un anneau perfectoide,
et V un anneau de valuation qui contient Vo comme sous-anneau. Alors, pour tous entiers
i >0 etk >1, le compleze motivigue Z /p* (i)™ (V) est en degrés au plus i, et la fleche de
comparaison de Beilinson—Lichtenbaum

Z [p" (i)' (V) — RTat(Spec(V[3]), 1)
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est un isomorphisme en degrés au plus 1 —1. En degré i, cette fleche est injective, et son image
est engendrée par les symboles, via le morphisme de symboles

(V>)®" = Hyy (Spec(VI, 1), 1)

La preuve du Théoréme H repose sur un théoréme de comparaison syntomique-étale de
Bhatt—Mathew [BM23|. Nous reprouvons ce théoréme de comparaison syntomique-étale dans
le cas des algebres p-Cartier lisses sur une Z;Y“-algebre perfectoide, en utilisant une propriété
des algébres p-Cartier lisses sur la filtration de Nygaard de leur cohomologie prismatique
relative (Théoréme J (N2) ci-dessous). Pour prouver cette propriété, nous étendons un certain
nombre de résultats sur la cohomologie prismatique relative des algébres lisses aux algébres
p-Cartier lisses générales. Il est a priori surprenant que ces propriétés soient vraies en ne
supposant qu’une propriété sur la fibre spéciale (l'isomorphisme de Cartier) ; nous démontrons
que certaines de ces propriétés caractérisent le fait d’étre p-Cartier lisse.

Théoréme J (Voir Théoréme 11.1.16). Soit (A, I) un prisme borné, et soit S une A/I-algébre
p-cotangent lisse. Les propositions suivantes sont équivalentes :

(CSm) S est p-Cartier lisse sur A/I.

(LQ :m) La fleche canonique (Lg/a/r))y — (]@S/(A/,))g est une équivalence dans la
catégorie dérivée D(A/I), ou (ms/(A/D)g désigne la complétion de Hodge du compleze
de Rham dérivé p-complété.

(LQ = Q) La fleche de counité (LQg/a/n)), — (sya/n)), est une équivalence dans la caté-
gorie dérivée D(A/I), ot (LQg/(a/r)); désigne le compleze de Rham dérivé p-complété.

(dR) La fleche de comparaison de de Rham Ag/)A @4 A/T — (Qs/ca/n), est une équivalence
dans la catégorie dérivée D(A/I).

~ ~(1
(A = A) La fleche canonique can : Ag/)A — Afg/)A est une équivalence dans la catégorie dérivée

~(1
D(A), ou A(S/)A désigne la complétion de Nygaard du complexe prismatique.

(Ln) La fleche de Frobenius o : A(Sl/)A — Lnibgyy est une équivalence dans la catégorie
dérivée D(A).

(N2) La fleche de Frobenius 7<'¢ : ng‘NZ%(Sl/)A — TS'g 4 est une équivalence dans la
catégorie dérivée D(A) pour tout i > 0.

1.3 Cohomologie motivique des schémas singuliers

Pour le reste de cette introduction, nous nous concentrons sur les propriétés de la coho-
mologie motivique qui sont spécifiques aux schémas singuliers. L'une des caractéristiques les
plus intéressantes, mais aussi les plus mystérieuses, de la K-théorie algébrique des schémas
singuliers est la présence de K-groupes négatifs non nuls. La plupart des propriétés connues
sur ces K-groupes négatifs reposent sur des résultats concernant la K-théorie algébrique des
éclatements [CHSWO08, KST18|. Il a notamment été prouvé par Thomason [Tho93| que la
K-théorie algébrique associe une suite exacte longue de K-groupes & la donnée d’un éclate-
ment par rapport & une immersion fermée réguliére. Le résultat suivant est un raffinement
cohomologique du résultat de Thomason.

19



Théoréme K (Formule des éclatements réguliers ; voir Théoréme 9.3.1). Pour toute im-
mersion fermée régulicre Y — X de schémas qeqs (i.e., le sous-schéma fermé Y est défini,
localement sur X pour la topologie de Zariski, par une suite réguliére) et tout entier i > 0, le
diagramme commutatif

Z(i)"HX) ——————— Z(H)™(Y)

| |

Z(i)™Y(Bly (X)) —— Z(1)™*(Bly (X) xx Y)

est un carré cartésien dans la catégorie dérivée D(Z).

La K-théorie algébrique n’associe en revanche pas de suite exacte longue 4 tout éclatement.
Motivées par le théoréme de Grothendieck sur les fonctions formelles pour la cohomologie quasi-
cohérente [Gro61, Theorem 4.1.5], de nombreuses personnes ont espéré un analogue formel
de ces suites exactes longues en K-théorie algébrique, qui serait valable pour des éclatements
généraux. Un tel résultat a finalement été démontré par Kerz-Strunk-Tamme [KST18]|, sous la
forme d’une propriété d’excision pro cdh pour la K-théorie algébrique des schémas noethériens
quelconques. Notons que la topologie pro cdh a récemment été introduite par Kelly—Saito
[KS24], comme un moyen d’encoder cette propriété d’excision pro cdh en une propriété de
descente pour cette topologie de Grothendieck. Le résultat suivant s’appuie, en particulier,
sur le Théoréme B et sur le théoréme de Grothendieck sur les fonctions formelles, expliquant
ainsi en partie ’analogie entre les techniques quasi-cohérentes et celles utilisées en K-théorie
algébrique.

Théoréme L (Descente pro cdh ; voir Théoréme 10.2.11). Pour tout entier i > 0, le pré-
faisceau Z(i)™° satisfait la descente pro cdh sur les schémas noethériens. En d’autres termes,
pour chaque carré d’éclatement abstrait

Y — X'

L

Y — X

de schémas noethériens, le diagramme commutatif associé

Z(i)"N(X) ——— Z(i)™"(X)

| !

{Z@)™ (1Y)} —— {Z (D)™ (rY )}

est un carré faiblement cartésien de pro objets dans la catégorie dérivée D(Z).

Kelly et Saito ont prouvé que la K-théorie algébrique non connective s’identifiait en fait
a la faisceautisation pro cdh de la K-théorie algébrique connective [KS24]. Combinée avec
I’observation de Bhatt-Lurie que la K-théorie algébrique connective est étendue de Kan a
gauche sur les anneaux commutatifs depuis les Z-algebres lisses [EHK120], cette propriéteé
a motivé la définition des complezes de cohomologie motiviqgue pro cdh Z(i)P*°" | comme
la faisceautisation pro cdh de 'extension de Kan & gauche des complexes motiviques clas-
siques Z(i)". Le résultat suivant repose sur la comparaison avec la cohomologie motivique
lisse (Théoréme D (7)) et sur la descente pro cdh (Théoréme L).
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Corollaire M (Comparaison avec la cohomologie motivique pro cdh ; voir Théoréme 10.4.2).
Soit X un schéma noethérien. Alors, pour tout entier i > 0, il existe une équivalence naturelle

B (X) < 20N (X)
dans la catégorie dérivée D(Z).

Notons que les complexes motiviques pro cdh Z(i)P™¢IM ne sont pas finitaires, et ne peuvent
donc pas coincider avec les complexes motiviques Z(7)™° sur les schémas qcgs généraux.

Une conjecture importante de Weibel [Wei80| énonce que pour tout schéma noethérien X
de dimension au plus d, les K-groupes négatifs K_,(X) s’annulent pour les entiers n > d.
Cette conjecture a été établie par Kerz—Strunk—Tamme [KST18], comme une conséquence
de la descente pro cdh pour la K-théorie algébrique. La preuve du résultat suivant utilise
les techniques de Kerz—Strunk—Tamme [KST18| telles que reformulées par Elmanto-Morrow
[EM23|, qui prouvent le méme résultat au-dessus d’un corps. En particulier, le Théoréme N
repose sur la descente pro cdh pour la cohomologie motivique (Théoréme L).

Théoréme N (Annulation de Weibel motivique ; voir Théoréme 10.3.3). Soit X un schéma
noethérien de dimension finie d, et i > 0 un entier. Alors pour tout entier j > i+d, le groupe
de cohomologie motivique H? (X, 7Z(1)) est nul.

mot

Via la suite spectrale d’Atiyah—Hirzebruch du Théoréme C, le Théoréme N est un raffine-
ment motivique de la conjecture d’annulation de Weibel en K-théorie.
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Chapter 2

Introduction (in english)

Motivic cohomology is an analogue in algebraic geometry of singular cohomology. It was
first envisioned to exist for schemes X of finite type over Z by Beilinson and Lichtenbaum
[Lic73, Lic84, Bei86, Bei87, BMS87|, as a way to better understand the special values of their
L-functions. Motivic cohomology, in the form of complexes of abelian groups Z(i)™°*(X)
indexed by integers ¢ > 0, should be an integral interpolation between étale cohomology, and
Adams eigenspaces on rationalised algebraic K-theory. That is, there should be a natural
filtration Fil* [, K(X) on the non-connective algebraic K-theory K(X), which splits rationally,
and whose shifted graded pieces

Z(i)™N(X) == g K (X)[2i]

are given mod p, when p is invertible in X, and in degrees at most ¢, by the étale cohomology
Rt (X, p&):

<t Fp(i)m()t (X) ~ TS R (X, ,uf?i).

Such a theory was first developed in the smooth case at the initiative of Bloch and Vo-
evodsky [Blo86, VSF00], using algebraic cycles and A'-homotopy theory. In this generality,
the use of Al-invariant techniques is permitted by Quillen’s fundamental theorem of algebraic
K-theory [Qui73], stating that algebraic K-theory is Al-invariant on regular schemes. On
more general schemes, algebraic K-theory fails to be Al-invariant, so motivic cohomology
itself needs to be non-Al-invariant in general. The first non-A'-invariant theory of motivic
cohomology was recently introduced by Elmanto and Morrow [EM23|, using recent advances
in algebraic K-theory and topological cyclic homology. Their theory is developed in the gen-
erality of quasi-compact quasi-separated (qcgs) schemes over an arbitrary field, and recovers
on smooth varieties the classical Al-invariant theory.

In this thesis, we extend the work of Elmanto—Morrow to mixed characteristic, thus
producing a theory of motivic cohomology in the originally expected generality of Beilin-
son and Lichtenbaum. Our theory relies on recent progress in integral p-adic Hodge theory
[BMS19, BS22, BL22|, and offers in return a complete description of mod p motivic cohomol-
ogy, even when p is not invertible in the qcqs scheme X.
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2.1 A non-Al-invariant theory of motivic cohomology

The starting point of our construction is the following result, due to Kerz—Strunk—Tamme
[KST18] (who prove that homotopy K-theory is the cdh sheafification of algebraic K-theory)
and Land-Tamme |[LT19] (who prove that the fibre K™ of the cyclotomic trace map satisfies
cdh descent).

Theorem 2.1.1 ([KST18, LT19|). Let X be a gcgs scheme. Then the natural commutative
diagram

K(X) — TC(X)

!

KH(X) —— (LeanTC)(X)

is a cartesian square of spectra, where KH(X) is the homotopy K -theory of X, TC(X) is the
topological cyclic homology of X, Lean 45 the cdh sheafification functor, the top horizontal map
is the cyclotomic trace map, and the bottom horizontal map is the cdh sheafified cyclotomic
trace map.

Theorem 2.1.1 states that algebraic K-theory of schemes can be reconstructed purely in
terms of homotopy K-theory (i.e., information coming from A'-homotopy theory) and topo-
logical cyclic homology (i.e., information coming from trace methods). The cdh topology is a
Grothendieck topology introduced by Voevodsky [SV00, Voel0], as a way to apply topos theo-
retic techniques to the study of resolution of singularities. In particular, assuming resolution of
singularities, any qcqs scheme would be locally regular in the cdh topology. While homotopy
K-theory and topological cyclic homology were originally introduced as tools to approximate
the existing algebraic K-theory, we construct the motivic cohomology of schemes using refine-
ments of homotopy K-theory and topological cyclic homology. More precisely, our motivic
filtration on algebraic K-theory is defined as a pullback of appropriate filtrations on homotopy
K-theory, topological cyclic homology, and cdh sheafified topological cyclic homology.

On homotopy K-theory, we use the recent work of Bachmann—Elmanto-Morrow [BEM24],
who construct a functorial multiplicative N-indexed filtration Fil} 4, KH(X) on the homotopy
K-theory of qcqgs schemes X. The shifted graded pieces of this filtration, that we will de-
note by Z(i)°®(X), provide a good theory of cdh-local motivic cohomology for qcqs schemes.
Their construction, which we review in Section 4.2, relies on the classical A'-invariant motivic
cohomology of smooth Z-schemes, and extends most of its properties to general qcqs schemes.

Our first construction is that of a functorial multiplicative Z-indexed filtration Fily . TC(X)
for qcgs schemes X. This filtration recovers the HKR filtration on HC™ (X/ Q) in characteris-
tic zero [Ant19, MRT22, Rak20]|, and the motivic filtration on TC(X;Z,) after p-completion
[BMS19, Mor21, BL22, HRW22|. We describe the shifted graded pieces

Z(i)TO(X) ~ grl . TC(X)[—2i]

mot

of this filtration in the following definition.
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Definition 2.1.2 (See Definition 3.3.3). For every qcqs scheme X and every integer i € 7Z,
the complex Z(i)T°(X) € D(Z) is defined by a natural cartesian square

—~ >
Z(i)"°(X) ———— RI'za(X,LQZ,7)

| l

. >0
HpEIP’ ZP(Z)BMS (X) E— HpeIP RT'zar (X, (]LQ*/Z);)\) :

It is straightforward from this definition that the presheaf Z(i)T¢ is naturally identified
with Bhatt-Morrow—Scholze’s syntomic complex Z,(i)BMS in characteristic p, and with the

—~>
Hodge-completed derived de Rham complex Rz, (—, LQ:;@) in characteristic zero. Follow-
ing [EM23], the motivic complex Z(i)™°" is defined in characteristic p and zero respectively
by cartesian squares

Z(i)mot(X) E— Zp(i)BMS(X) Z(i)mOt(X) . erar(X7m§jQ)
Z(3)* (X)) —— (Lcdh Zp(z')BMS)(X) Z(i)h(X) — RPth(vai@)-

The following definition is then a natural mixed characteristic generalisation of Elmanto—
Morrow’s definition over a field.

Definition 2.1.3 (Motivic cohomology; see Section 4.3). For every qcqs scheme X and every
integer ¢ € Z, the weight-i motivic complex

Z(i)™(X) € D(Z)
of X is defined by a natural cartesian square

Z (i)™ (X) ——— Z())T(X)

| |

Z(i)“M(X) —— (Lean Z(i)19) (X),

where the bottom horizontal map is induced by a filtered refinement of the cdh sheafified
cyclotomic trace map.

However, proving the expected relation between the motivic complexes Z(i)™°" and alge-
braic K-theory (Theorem C below) requires more efforts in mixed characteristic than over
a field. The main foundational obstacle is to prove that the presheaves Z(i)™°' vanish in
weights i < 0, as we explain now. Note first that, by construction, the presheaves Z(i)°" do
vanish on all qcgs schemes in weights ¢ < 0 (Section 4.2).

In characteristic p, the presheaves Zp(i)BMS vanish in weights ¢ < 0, thus so do the
presheaves Z(i)™°', and the zeroth step of the associated motivic filtration Fil% K recovers
algebraic K-theory. Ignoring for a moment the completeness issues for this motivic filtration,
this means that the presheaves Z(i)™°* provide a natural cohomological refinement of algebraic
K-theory on arbitrary characteristic p schemes.
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>
In characteristic zero, the presheaves RFZM(—,LQZI/Q) do not vanish in weights ¢ < 0.

Instead, they are equal to the presheaf RI'zy,(—, LQ,/Q), which happens to be a cdh sheaf on
qcgs Q-schemes, by results of Cortinas—Haesemeyer—Schlichting—Weibel [CHSWO08], Antieau
[Ant19], and Elmanto-Morrow [EM23]. That is, the right vertical map of the previous diagram
is an equivalence in weights i < 0, so the presheaves Z(7)™°" vanish in weights i < 0, and the
zeroth step of the associated motivic filtration Fil}, K recovers algebraic K-theory. This
means that the presheaves Z(i)™°' provide a natural cohomological refinement of algebraic
K-theory on arbitrary characteristic zero schemes.

In mixed characteristic, we prove similarly that in weights i < 0, the presheaves Z(i)T¢
are cdh sheaves on qcqs schemes, i.e., that the presheaves Z(i)™° vanish. The result modulo
a prime number p is a consequence, as in characteristic p, of the fact that the presheaves
Z.,(1)BMS vanish in weights i < 0. The difficulty is to then prove that the presheaves Q(i)T¢
are cdh sheaves in weight ¢ < 0.

The main cdh descent result used in characteristic zero does not hold in mixed charac-
teristic. That is, the presheaf RI'za (—,IL€2_,7) (or its rationalisation) is not a cdh sheaf on
gcqs schemes. We avoid this difficulty by proving a rigid-analytic analogue of this cdh descent
result. To formulate this result, denote by

—~ >
Rz (X, 1O, /)

the rigid-analytic deriwed de Rham cohomology of a qeqs Z(,)-scheme X, which we define as
the pushout of the diagram

~>i . —~ > ~ >
RUza (X, (LQZ, 7)) — Rz (X, LQZ,7) — RU70:(X, 1O/ g)

in the derived category D(Z). Here, we restrict our attention to qcqs Z,)-schemes for sim-
plicity, and refer to Chapter 5 for the relevant statements over Z. As a consequence of Defi-
nition 2.1.2, there is a natural cartesian square

Q)T (X) —— RFZar(X>m§;/Q)

| !

. 52
Q,()PM3(X) —— RTzar(X, 1O, /q,)

in the derived category D(Q). In weights i < 0, the presheaves Qp(i)BMS vanish. As already

mentioned, the presheaf RI'z,,(—, ]LQ_@/Q) is moreover a cdh sheaf on qcgs schemes. So the

fact that the presheaves Q(i)TC are cdh sheaves in weights i < 0 reduces to the following
result, which can be seen as a rigid-analytic analogue of the latter cdh descent over Q.

Theorem A (Cdh descent for rigid-analytic derived de Rham cohomology; see Corollary 5.4.4).

For every prime number p, the presheaf RFZar(—,m_Q /@p) satisfies cdh descent on qcgs
P

L

p)—schemes,

The modern proof of the analogous result over Q relies on the theory of truncating invari-
ants of Land—Tamme [LT19] and on a theorem of Goodwillie [Goo85], who prove respectively
that every truncating invariant is a cdh sheaf on gcgs schemes and that periodic cyclic ho-
mology over Q is a truncating invariant. By definition, a truncating invariant is a localizing
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invariant F such that for every connective Ei-ring R, the natural map E(R) — E(m(R)) is
an equivalence. To prove Theorem A, we then use the condensed mathematics of Clausen—
Scholze [CS19], and prove that a suitable rigid-analytic variant of periodic cyclic homology is
a truncating invariant. In particular, the proof of Theorem A relies on a result on associative
rings (actually, on general solid connective E;-rings).

As a consequence of Theorem A, we obtain the following cohomological description of
rational motivic cohomology.

Theorem B (p-adic and rational motivic cohomology; see Corollaries 4.3.12 and 5.6.6). Let
X be a gcqs scheme, and p be a prime number. Then for any integers 1 € Z and k > 1, the
natural commutative diagrams

Z /(i) "U(X) ——— 7 fp(5)PYS(X) Qi)™ (X) —— Rl (X, L0 o)
Z [p* (i) (X) —— (Lean Z /p"(i)BM8) (X) Q(i)*™™(X) —— Rleqn (X,ﬁf;/@)

are cartesian squares in the derived category D(Z).

Together, these two cartesian squares recover the cartesian squares of Elmanto—Morrow
that define the motivic complexes Z(7)™° over a field, and are thus natural mixed characteristic
analogues of these. The p-adic part of Theorem B is a formal consequence of Definitions 2.1.2
and 2.1.3. The rational part of Theorem B implies that the difference between Q(i)™%(X)
and Q(i)°“®(X) depends only on the rationalisation Xq of the scheme X. If X is regular, this
difference should vanish, and this is then more interesting in the presence of singularities. More
precisely, Theorem B can be used to capture interesting information about the singularities
of an arbitrary commutative ring R: cdh sheaves are typically insensitive to singularities, so
the singular information in the motivic complex Z(i)™°'(R) is controlled by the complexes

Z /p*(i)BMS(R) and LQ(%@ZQ)/Q’ which are accessible to computation.

Theorem B also implies that the presheaves Q (7)™ vanish in weights i < 0, which was the
essential missing part to establish the following fundamental properties of motivic cohomology.

Theorem C (Relation to algebraic K-theory). There exists a finitary Nisnevich sheaf of
filtered spectra
Fil};

mot

K(—) : Schdee:°P _ FilSp

with the following properties:

(1) (Atiyah—Hirzebruch spectral sequence; see Section 5.5) For every gcqs scheme X, the
filtration Fil% K (X) is a multiplicative N-indezed filtration on the non-connective alge-
braic K -theory K(X), whose graded pieces are naturally given by

grt GK(X) =~ Z(i)™0Y (X)) [2i], i > 0.

In particular, writing B, (X, Z(:)) = B (Z(i)™(X)) for the corresponding motivic

mot
cohomology groups, there exists an Atiyah—Hirzebruch spectral sequence

By = HLJ (X, Z(—j)) = K_i—j(X).

mot,

27



(2)

If X has finite valuative dimension,' then the filtration FilX, K (X) is complete, and the
Atiyah—Hirzebruch spectral sequence is convergent.

(Adams decomposition; see Corollary 5.5.11) For every qcqs scheme X, the Atiyah—
Hirzebruch spectral sequence degenerates rationally and, for every integer n € Z, there
1$ a natural isomorphism of abelian groups

Kn(X) ®z Q= @) (Hig" (X, Z(i) @z Q)

>0

induced by the Adams operations on rationalised algebraic K-theory.

One of the main historical motivations for developing motivic cohomology was to apply
cohomological techniques to the study of algebraic K-theory [BMS87|. The following theorem
summarizes our results on the relations between motivic cohomology and previously studied
cohomological invariants. When X is smooth over Z, we denote by

Z(i)2(X) := 21(X, 8)[—2i]

the weight-i classical motivic complex, where z¢(X, o) is Bloch’s cycle complex (and e is the
cohomological index).

Theorem D. Let X be a qcqs scheme, and © > 0 be an integer.

(1)

(2)

(3)

(4)

(Weight zero; see Example 5.6.8) There is a natural equivalence
Z(0)™*(X) = RTcan(X,Z)
in the derived category D(7Z).
(Weight one; see Example 8.1.15) There is a natural map
RTnis (X, G )[-1] — Z(1)™ (X))
in the derived category D(Z) which is an isomorphism in degrees at most three.

(Etale cohomology; see Corollary 6.1.6) For every prime number £ which is invertible in
X and every integer k > 1, there is a natural map

Z [0 (i)™(X) — RTet(X, 15
in the derived category D(Z /%) which is an isomorphism in degrees at most i.

(Syntomic cohomology; see Corollary 6.2.5) For every prime number p and every integer
k > 1, there is a natural map

Z [p"(0)N(X) — Z [p" () (X)

in the derived category D(Z /p*) which is an isomorphism in degrees at most i, where
7 Jp*(i)¥™(X) denotes the weight-i syntomic cohomology of X in the sense of [BL22].

!The valuative dimension of a commutative ring, defined in terms of the ranks of certain valuation rings,
was introduced by Jaffard in [Jaf60, Chapter IV], and generalised to schemes in [EHIK21, Section 2.3]. The
valuative dimension of a scheme is always at least equal to its Krull dimension, and both notions agree on
noetherian schemes. For our purposes, the valuative dimension of a qcgs scheme X will be used as an upper
bound on the cohomological dimension of the cdh topos of X ([EHIK21, Theorem 2.4.15]).
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(5) (Milnor K-theory; see Theorem 8.2.6) If X = Spec(A) is the spectrum of a henselian
local ring A, then for every integer n > 1, there is a natural isomorphism

KM(A)/n = H (A, Z(i))/n

mot
of abelian groups, where I/Ei\/[(A) denotes the i™™ improved Milnor K-group of A in the
sense of [Ker10].

(6) (Classical motivic cohomology; see Chapter7) If X is smooth over Z, then there is a
natural map
Z(i)™(X) — Z(i)™"(X)

in the derived category D(Z) which is an isomorphism in degrees at most i+1 in general,
and an isomorphism in all degrees if X has dimension at most one over Z.

(7) (Lisse motivic cohomology; see Corollary 8.1.12) If X = Spec(A) is the spectrum of a
local ring A, then for every integer ¢ > 0, there is a natural equivalence

Z(i)lisse(A) AN 7_§i Z(i)mot(A)

in the derived category D(Z), where Z(i)15%¢ denotes the weight-i lisse motivic cohomology
of A, defined as the left Kan extension from smooth Z-algebras of the classical motivic
complex Z.(i)2. In particular, the functor 7=V Z(i)™ is left Kan extended on local rings
from local essentially smooth Z-algebras.

(8) (Al-invariant motivic cohomology; see Theorem 12.1.5) There is a natural equivalence
(L Z(0)™*) (X) = Z(0)* (X)
in the derived category D(Z), where Z(i)*' (X) denotes the weight-i A'-invariant motivic
cohomology of X in the sense of [BEM2J].

The following result is a consequence of Theorem D (8) and the fact that the Al-invariant
motivic complexes Z(i)4' recover the classical motivic complexes Z (i) on smooth Z-schemes
[BEM24]|. In particular, although we expect our motivic complexes Z(i)™°" to actually coincide
with the classical motivic complexes Z(i)® on smooth Z-schemes, this means that the former
at least recover the latter after enforcing A'-invariance.

Corollary E (See Corollary 12.1.9). Let X be a smooth scheme over Z. Then for every integer
1 > 0, there is a natural equivalence

Z(i)**(X) = (L1 Z(0)™") (X)
in the derived category D(Z).

Assuming the existence of a well-behaved derived category of motives DM, the motivic
cohomology groups of a scheme X should be given by

B’

mot

(X, Z(i)) = Hompm (M(X), Z(i) [j]),

where M(X) € DM is the motive associated to X, and Z(i) € DM are the Tate motives, fitting
for every integer r > 0 in a natural decomposition in DM:

M(Py) = EB Z(5) 24].
j=0
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In the Al-invariant framework, Voevodsky constructed such a derived category of motives,
in which the classical motivic complexes Z(i)®® can be interpreted in terms of these Tate
motives. Without assuming Al-invariance, Annala—Iwasa [AI23] and Annala—Hoyois-Iwasa
[AHI23, AHI24| recently introduced a more general derived category of motives, where the
decomposition of the motive M(P}), i.e., the projective bundle formula, is isolated as the key
defining property. The following result states that the motivic complexes Z(i)™°! fit within
this theory of non-A'-invariant motives.

Theorem F (Projective bundle formula; see Theorem 9.3.2). Let X be a qcgs scheme, i > 0 be
an integer, and € be a vector bundle of rank r on X. Then for every integer i > 0, the powers
of the motivic first Chern class &P°Y(O(1)) € H2 . (Px (£),Z(1)) induce a natural equivalence

r—1
Dzl — )N (X)[-24] = Z()™ " (Px (€))
=0

in the derived category D(Z).

Theorem F is proved by Elmanto-Morrow in the equicharacteristic case [EM23], where
the proof relies on the projective bundle formula for the complexes Z(i)°" [BEM24]. In
mixed characteristic, however, the cdh-local motivic complexes Z(7)°® are known to satisfy
the projective bundle formula only conditionally on a certain property of valuation rings, called
F-smoothness [BM23, BEM24]. As we explain now, this condition can be proved in mixed
characteristic, for valuation rings over a perfectoid base. The case of general valuation rings
remaining open, our proof of Theorem F is different from that of Elmanto-Morrow, and uses in
particular our description of motivic cohomology with finite coefficients in terms of syntomic
cohomology (Theorem 6.2.4).

2.2 Motivic cohomology of valuation rings

In recent years, valuation rings have been used as a way to bypass resolution of singularities,
in order to adapt arguments from characteristic zero to positive characteristic [KST21, KM21].
We explain here how to adapt some of these ideas in mixed characteristic, starting with
the Cartier isomorphism. Most of the following results on valuation rings have appeared as
[Bou23].

Let p be a prime number, which we fix for the rest of the introduction. The Cartier
isomorphism states that for any smooth [F,-algebra A, the inverse Cartier map

o1 O w, — H' (5 )
fdgy A Ndgn — fPgh L gh T dgr A -+ A dgy,

is an isomorphism of F,-vector spaces for each n > 0. Assuming resolution of singularities
in characteristic p, any [Fp-algebra would be locally smooth in the cdh topology. The local
rings in the cdh topology are valuation rings, so valuation rings of characteristic p should be
filtered colimits of smooth [Fp-algebras, and in particular should satisfy the Cartier isomor-
phism. Without assuming resolution of singularities, Gabber proved [KST21, Appendix]| that
valuation rings of characteristic p actually satisfy the Cartier isomorphism. Motivated by this
result and the general lack of understanding of valuation rings, Kelly and Morrow [KM21]
introduced Cartier smooth algebras as Fp-algebras satisfying the Cartier isomorphism, and
study their algebraic K-theory.
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We develop here an analogue of this story in mixed characteristic. The inverse Cartier
map, as an extension of the Frobenius morphism, is specific to characteristic p, and we define
p-Cartier smoothness for general ring homomorphisms essentially in terms of their reduction
modulo p. This more general notion coincides with that introduced by Kelly-Morrow [KM21]
in the special case that the base ring is [F,. For an Fj,-algebra R, we denote by ¢ its Frobenius
endomorphism.

Definition 2.2.1 (Cartier smoothness). (1) A morphism R — S of Fp-algebras is Cartier
smooth, or S'is a Cartier smooth R-algebra, if it is cotangent smooth, i.e., its cotangent
complex Lg/p is a flat S-module in degree zero given by Q}?/R? and if the inverse Cartier
map

C™: Q% Orgp R — H'(Q%/p)

is an isomorphism of R-modules for each n > 0.

(2) A morphism R — S of commutative rings is p-Cartier smooth, or S is a p-Cartier
smooth R-algebra, if the natural map S ®% R/p — S/p[0] is an equivalence in the
derived category D(R/p) and the reduction R/p — S/p modulo p is Cartier smooth.

Said another way, a morphism R — S of commutative rings is p-Cartier smooth if it is
p-cotangent smooth (Definition 11.1.3) and if its reduction R/p — S/p modulo p satisfies
the Cartier isomorphism. The p-cotangent smoothness hypothesis is necessary not to lose
control, when specialising to characteristic p, on the invariants that we will study. Any smooth
morphism of commutative rings is p-Cartier smooth (for any prime p). Regarding valuation
rings, an extension of valuation rings (i.e., an injective morphism of valuation rings) in mixed
characteristic is in general not p-Cartier smooth. For instance, the morphism Z, — Z,, where
Z, is the ring of integers of an algebraic closure @p of Q,, is not p-cotangent smooth, and
does not satisfy the Cartier isomorphism: its cotangent complex is in degree zero, given by

the torsion Zp—module @p /Zp, and Q?Z o)y = Zp /p contains nilpotent elements; in fact, the
P p

de Rham complex of F, — Z,/p is zero in positive degrees, and thus does not convey a lot
of information. However, if the base valuation ring is sufficiently ramified, these obstructions
vanish and we can prove the following general result. This generalises a theorem of Gabber in
characteristic p, which is valid over perfect valuation rings (Theorem 11.2.4 below). We refer
the reader to |[BMS18, Definition 3.5] for the definition of perfectoid rings.

Theorem G (See Theorem 11.2.1). Let Vi be a valuation ring whose p-completion is a perfec-
toid ring. Let V be a valuation ring extension of V. Then the morphism Vo — V is p-Cartier
smooth.

The proof of Theorem G proceeds by reduction to the case of valuation rings of characteris-
tic p, and uses deformation theory. We explain now how to apply Theorem G to computations
of the motivic cohomology of valuation rings.

Recall that on smooth Fj,-schemes, the Beilinson-Lichtenbaum conjecture, proved by Suslin
and Voevodsky as a consequence of the Bloch-Kato conjecture [SV00|, computes the ¢-adic
part of motivic cohomology in terms of the cohomology of the étale sheaf py of £*-roots of
unity. To describe the p-adic part of motivic cohomology, one needs to replace u?f (which is
zero on smooth varieties when ¢ = p and ¢ > 0) by the logarithmic de Rham-Witt sheaves
Win—,log |GLO00]. The corresponding description of p-adic algebraic K-theory, in terms of the
logarithmic de Rham—-Witt sheaves, is generalised in [KM21] to all Cartier smooth F)-algebras.
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On smooth schemes over a mixed characteristic Dedekind domain, the p-adic part of clas-
sical motivic cohomology is similarly described in low degrees by the étale cohomology of the
generic fibre [Gei04]. This result is a consequence of the Gersten conjecture proved by Geisser
[Gei04], and is unknown for general regular schemes. Combined with Theorem D (6), the
following result extends this description of classical motivic cohomology to the regular case.
More precisely, the notion of F-smoothness was introduced by Bhatt—Mathew [BM23] as a
non-noetherian generalisation of regular schemes, and our result naturally applies to general
p-torsionfree F-smooth schemes.

Theorem H (Beilinson-Lichtenbaum conjecture for F-smooth schemes; see Corollary 6.2.6).
Let X be a p-torsionfree F-smooth scheme (e.g., a reqular scheme flat over Z). Then for any
wntegers 1 > 0 and k > 1, the Beilinson—Lichtenbaum comparison map

Z [p" ()™ (X) — Rley(X[5], p5)
is an isomorphism in degrees at most i — 1, and is injective in degree 1.

Over a perfectoid base ring, F-smoothness and p-Cartier smoothness coincide by Theo-
rem 11.1.19. Using Theorems G and H, we then obtain the following complete description of
the p-adic motivic cohomology of valuation rings over a perfectoid base.

Corollary I (Motivic cohomology of valuation rings; see Theorem 11.4.6). Let Vi be a
p-torsionfree valuation ring whose p-completion is a perfectoid ring, and V be a valuation ring
extension of Vo. Then for any integers i > 0 and k > 1, the motivic complex 7 /p* (i)™ (V)
is in degrees at most i, and the Beilinson—Lichtenbaum comparison map

Z [p" ()" (V) — RTa(Spec(V/[}]), u5y))
is an isomorphism in degrees at most i — 1. On H?, this map is injective, with image generated
by symbols, via the symbol map

(V)% = Hg (Spec(V[3]), 1ir)-

The proof of Theorem H relies on a syntomic-étale comparison theorem of Bhatt—Mathew
[BM23|. We reprove this syntomic-étale comparison theorem in the case of p-Cartier smooth
algebras over a perfectoid Z;yc—algebra, using a property of p-Cartier smooth algebras on
the Nygaard filtration of their relative prismatic cohomology (Theorem J (A=) below). To
prove this property, we extend various results on the relative prismatic cohomology of smooth
algebras to general p-Cartier smooth algebras. It is a priori surprising that these properties

are true assuming only a property on the special fibre (namely, the Cartier isomorphism); we
prove that some of them even characterise p-Cartier smoothness.

Theorem J (See Theorem 11.1.16). Let (A,I) be a bounded prism, and S a p-cotangent
smooth A/I-algebra. The following are equivalent:

(CSm) S is p-Cartier smooth over A/I.

(LQ = ]]:?2) The canonical map (LQg a/1))p — (IE?ZS/(A/I))Q is an equivalence in the derived

category D(A/I), where (LQS/(A/I));;\ is the Hodge-completion of the p-completed derived
de Rham complez.
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(LQ = Q) The counit map (LQg/a/n)); — (s/a/1)), s an equivalence in the derived cate-
gory D(A/I), where (ILQS/(A/]))Q 1s the p-completed derived de Rham complex.
e de am comparison map & — (Qg/ca/r 15 an equivalence in the
dR) The de Rh b5, &% A/T = (Qsya/n)p l I
derived category D(A/I).

(A = &) The canonical map can : Ag/)A — KS}A is an equivalence in the derived category D(A),

where ES}A is the Nygaard-completion of the prismatic complex.
(Ln) The Frobenius map ¢ : AE@I/)A — Lnrhgya is an equivalence in the derived category D(A).

(NZ) The Frobenius map 75 : TSiNZiAél/)A — TSiIiAS/A is an equivalence in the derived
category D(A) for all i > 0.

2.3 Motivic cohomology of singular schemes

For the rest of this introduction, we focus on the properties of motivic cohomology that
are specific to singular schemes. One of the most interesting, yet mysterious features of
the algebraic K-theory of singular schemes is the presence of nonzero negative K-groups.
Most of the current understanding of negative K-groups relies on results on the behaviour of
algebraic K-theory with respect to blowups [CHSW08, KST18|. It was proved in particular by
Thomason [Tho93] that algebraic K-theory sends the blowup square associated to a regular
closed immersion to a long exact sequence of K-groups. The following result is a cohomological
refinement of Thomason’s result.

Theorem K (Regular blowup formula; see Theorem 9.3.1). For every regular closed immer-
sion' Y — X of qcqs schemes (i.e., the closed subscheme Y is Zariski-locally on X defined by
a reqular sequence) and every integer i > 0, the commutative diagram

Z(i)™HX) ——————— Z(H)™(Y)

| |

Z(i)™Y(Bly (X)) —— Z(1)™*(Bly (X) xx Y)

is a cartesian square in the derived category D(Z).

However, algebraic K-theory fails to associate long exact sequences to general blowups.
Motivated by Grothendieck’s theorem on formal functions for quasi-coherent cohomology
[Gro61, Theorem 4.1.5], many people hoped for a formal analogue of these long exact se-
quences in algebraic K-theory, that would hold for general blowups. This was finally proved
by Kerz—Strunk—Tamme [KST18], in the form of a pro cdh excision property for the alge-
braic K-theory of arbitrary noetherian schemes. Note that the pro cdh topology was recently
introduced by Kelly—Saito [KS24|, as a way to encode this pro cdh excision property in a
descent property for this Grothendieck topology. The following result relies in particular on
Theorem B and on Grothendieck’s theorem on formal functions, thus shedding some light on
the analogy between quasi-coherent and K-theoretic techniques.
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Theorem L (Pro cdh descent; see Theorem 10.2.11). For every integer i > 0, the presheaf
Z(i)™°t satisfies pro cdh descent on noetherian schemes. That is, for every abstract blowup
square

Y — X’

]

Y — X

of noetherian schemes, the associated commutative diagram

Z(i)"N(X) ——— L))" (X)

| |

{Z(@D)™N (rY) }p —— {Z(@)™ (1Y)}

is a weakly cartesian square of pro objects in the derived category D(Z).

Kelly—Saito moreover proved that non-connective algebraic K-theory not only satisfies
pro cdh descent, but is the pro cdh sheafification of connective algebraic K-theory [KS24].
Combined with the observation of Bhatt—Lurie that connective algebraic K-theory is left
Kan extended on commutative rings from smooth Z-algebras [EHK20], this motivated the
definition of the pro cdh motivic compleves Z(i)P"°d" as the pro cdh sheafification of the left
Kan extension of the classical motivic complexes Z(i)'®. The following result relies on the
comparison to lisse motivic cohomology (Theorem D (7)) and pro cdh descent (Theorem L).

Corollary M (Comparison to pro cdh motivic cohomology; see Theorem 10.4.2). Let X be a
noetherian scheme. Then for every integer © > 0, there is a natural equivalence

Z(i)prOth(X) AN Z(i)mOt(X)
in the derived category D(Z).

Note that the pro cdh motivic complexes Z(i)P™%" are not finitary, so they cannot coincide
with the motivic complexes Z(7)™°" on general qcgs schemes.

An important conjecture of Weibel [Wei80| states that for every noetherian scheme X
of dimension at most d, the negative K-groups K_,(X) vanish for integers n > d. This
conjecture was settled by Kerz—Strunk—Tamme [KST18]|, as a consequence of pro cdh descent
for algebraic K-theory. The proof of the following result uses the techniques of Kerz—Strunk-
Tamme [KST18] as reformulated by Elmanto-Morrow [EM23], who proved the same result
over a field. In particular, Theorem N relies on pro cdh descent for motivic cohomology
(Theorem L).

Theorem N (Motivic Weibel vanishing; see Theorem 10.3.3). Let X be a noetherian scheme
of finite dimension d, and i > 0 be an integer. Then for every integer j > i + d, the motivic
cohomology group H? (X, 7Z(i)) is zero.

mot

Via the Atiyah—Hirzebruch spectral sequence of Theorem C, Theorem N is a motivic re-
finement of Weibel’s vanishing conjecture in K-theory.
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Chapter 3

The motivic filtration on topological
cyclic homology

In this chapter, we introduce a motivic filtration on the topological cyclic homology of qcgs
derived schemes (Definition 3.3.3), whose shifted graded pieces Z(i)™¢ will serve as a building
block for the definition of the motivic complexes Z(i)™* (Remark 4.3.7).

We first explain how to express topological cyclic homology in terms of its profinite
completion and of negative cyclic homology. Following [NS18], and given a qcqs derived
scheme X and a prime number p, the p-completed topological cyclic homology TC(X;Z,) of
X is constructed from its p-completed topological negative cyclic homology TC™(X;Z,) and
its p-completed topological periodic cyclic homology TP(X;Z,) (see Section 3.2). Following
[DGM13, Lemma 6.4.3.2] and [NS18, Section II.4], the topological cyclic homology TC(X) of
X is then defined by a natural cartesian square of spectra

TC(X) ——— TC(X)

J !

[Lep TC(X;5Zp) —— [lpep TOT (X5 Zyp).

The comparison map THH(X) — HH(X), induced by extension of scalars along the map
of Eqo-rings THH(Z) — Z, is S'-equivariant, and for every integer n € Z, the kernel and
cokernel of the induced map on homotopy groups THH,(X) — HH,(X) are killed by an
integer depending only on n. In particular, the natural commutative diagram

THH(X) —— HH(X)

| |

HpEP THH(X7 Zp) — HpE[P’ HH(X) ZP)7

is a cartesian square of spectra, which in turn defines a natural cartesian square of spectra

TC(X) — 5 HC~(X)

| |

[yer TC™ (X3 Zy) — [1,ep HO™ (X3 2Z,)
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by taking homotopy fixed points (—)hsl. Composing this cartesian square with the cartesian
square defining topological cyclic homology then induces a natural cartesian square

TC(X) — HC(X)

| |

[Tyer TC(X;Zy) — TLep HC™ (X3 Zy).

We will use this cartesian square to define the motivic filtration on TC(X) (Definition 3.3.3),
by glueing existing filtrations on the three other terms; namely, the HKR and BMS filtrations.

3.1 The HKR filtrations

In this section, we review the HKR filtrations on Hochschild homology and its variants, as
defined, in the generality of qcqs derived schemes, by [Ant19] and [BL22, Section 6.3]. Only
the HKR filtration on negative cyclic homology HC™(—) (Definition 3.1.4) will be used to
define the motivic filtration on topological cyclic homology TC(—) (Definition 3.3.3). We will
use the other HKR filtrations of this section in Chapter 5.

The following result is [BL22, Example 6.1.3 and Remarks 6.1.4 and 6.1.5].

Proposition 3.1.1 (Tate filtration). Let X be a spectrum equipped with an S'-action. Then
the Tate construction X'S' € Sp is naturally equipped with a Z-indexed filtration

Fil5 X"S" € FilSp.
This filtration is called the Tate filtration on thl, and satisfies the following properties:
(1) The filtration Fil%XltS1 € FilSp is complete.

(2) FilOTXtS1 1s the homotopy fized point spectrum Xh‘sl, which is thus also equipped with an
N-indexed complete filtration Fﬂ?‘thsl, which we call the Tate filtration on XSt

(8) For every integer n € Z, the graded piece gr%thl 1s naturally identified with the spec-
trum X |[—2n].

Following [BMS19, Section 5|, a filtered spectrum Fil*X is called connective for the Beilin-
son t-structure if for every integer i € Z, the graded piece gr'X € Sp is in cohomological
degrees at most ¢. For every integer ¢ € Z, also denote by 7'>Bi the truncation functor for the
Beilinson t-structure on filtered spectra. -

Definition 3.1.2 (Décalage filtration). Let Fil*X € FilSp be a filtered spectrum. The décalage
filtration on Fil*X is the bifiltered spectrum

Fil;Fil* X € biFilSp

where, for every integer i € Z, FilyFil*X is the i-connective cover of Fil*X € FilSp with
respect to the Beilinson t-structure on the category of filtered spectra:

FilpFil* X := 75, Fil*X.
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Construction 3.1.3 (HKR filtration on HP). For every integer i € Z, let
Filligp FilFHP (=) := Lzar Lagehacasor /poryer FilEFilHP (),

where FilTHP(—) is the Tate filtration on periodic cyclic homology of qcgs derived schemes,
Filg is the décalage filtration of Definition 3.1.2, and the left Kan extension Lasenacas.op /poryop
is taken in the category of filtration-complete filtered spectra. The HKR filtration on periodic
cyclic homology of qcgs derived schemes is the functor

Filfy IP(—) : dSchd°asP — FilSp
defined as the underlying filtered object of the bifiltered functor Filfjxg FilyHP(—):
Filfiyen HP(—) = lim Filfyyep FilHP(—).

The following definition is the one which will appear explicitly in the definition of the
motivic filtration on topological cyclic homology (Definition 3.3.3).

Definition 3.1.4 (HKR filtration on HC™). The HKR filtration on negative cyclic homology
of qcgs derived schemes is the functor

Fill g HC™ (=) : dSch9®9soP —; FilSp

defined as
Filjigg HC™ (=) := Filjg Fil3HP ().

The following definition is motivated by Proposition 3.1.1 (3).

Definition 3.1.5 (HKR filtration on HH). The HKR filtration on Hochschild homology of
gcgs derived schemes is the functor

Fill g HH(—) : dSch9€950P — FilSp

defined as
Filjjeg HH(-) := FiljggeriHP(-).

Cyclic homology HC(—) is defined as the homotopy orbits HH(—),q: of the Sl-action on
Hochschild homology HH(—), and is related to negative cyclic homology HC™ (—) and periodic
cyclic homology HP(—) by a natural fibre sequence

HC™(-) — HP(—) — HC(—)[2].

Definition 3.1.6 (HKR filtration on HC). The HKR filtration on cyclic homology of qcgs
derived schemes is the functor

Filfigr HC(—) : dSch9°¥°P —; FilSp
defined, for every integer ¢ € Z, by
Filjyc HC(—) = cofib Filjfl HO™ (~) — Filifil HP(—) ) [-2),
where the map on the right hand side is induced by Construction 3.1.3 and Definition 3.1.4.
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Remark 3.1.7 (Graded pieces of the HKR filtrations). Let X be a qcgs derived scheme.
The main result of [Ant19] describes the graded pieces of the HKR filtrations on HC™(X),
HP(X), and HC(X) in terms of the Hodge-completed derived de Rham cohomology of X. In
particular, Definition 3.1.6 provides a filtered refinement of the fibre sequence

HC™(-) — HP(-) — HC(—)][2],
which induces on graded pieces, for every integer ¢ € Z, a natural fibre sequence
> . T . 4 .
RI'z,: (X, LQ:/Z)[Qz] — Rz, (X, ]LQ_/Z)[Zz] — Rz, (X, }Lﬂf/z)[m]

in the derived category D(Z).

Proposition 3.1.8 ([Ant19, BL22|). For every integer i € Z, the functor FilqugHC(—),
from animated commutative rings to spectra, is left Kan extended from polynomial Z-algebras,
commutes with filtered colimits, and its values are in cohomological degrees at most —i.

Proof. On animated commutative rings, the Tate filtrations
Fili g FILHC™ (—) and  Filif g Fil5HP ()

are by definition left Kan extended, as complete filtered objects, from polynomial Z-algebras,
thus so is the Tate filtration FilyggFilfHC(—). The Tate filtration FilyggFiliHC(-) is
also finite by construction, so the functor FilxrHC(—) is left Kan extended on animated
commutative rings from polynomial Z-algebras. In particular, the functor

Fill g HC(—)

commutes with filtered colimits of animated commutative rings. For every integer j € Z,
the j' graded piece of the filtration FilfjxzHC(—) is naturally identified with the functor
RFZar(—,LQSJ )[25] (JAnt19]), whose values are in degrees at most —j on animated com-

_/ 7
mutative rings. The filtration Filjj g HC(—) is moreover complete on animated commutative
rings (|BL22, Remark 6.3.5]), hence the desired connectivity result. O

Lemma 3.1.9 (Completeness of the HKR filtrations, after [BL22|). Let X be a gcqs derived
scheme. Then the HKR filtrations

Filgxr HP(X), FilggrHC™ (X), FilgxrHH(X), and Filgxr HC(X)
are complete.

Proof. The result for HC™ and HH is a direct consequence of [BL22, Remark 6.3.5]. The result
for HC is a consequence of the connectivity result of Proposition 3.1.8. By Definition 3.1.6,
the result for HP is then a consequence of the result for HC™ and HC. O

Remark 3.1.10 (Variant over Q). Let X be a qcgs derived scheme. By the base change
property for Hochschild homology, the natural map

HH(X) ®7 Q — HH(Xg/ Q)

is an equivalence in the derived category D(Q), where HH(—/Q) is Hochschild homology
relative to Q. Applying the functors (—)hS', (—)tsl, and (—),gt to this Hochschild homology
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relative to Q induces relative variants HC™ (—g/ Q) of negative cyclic homology, HP(—q/ Q)
of periodic cyclic homology, and HC(—g/ Q) of cylic homology. One can then define similar
HKR filtrations

Fﬂ*HKRHH(XQ/ @), Fﬂ*HKRHC_(XQ/@)v FﬂﬁKRHP(_Q/ Q), and FiIEKRHC(_Q/@)a

on these functors, whose graded pieces are versions of derived de Rham cohomology relative

to Q.

To introduce and study the motivic filtration on topological cyclic homology (Defini-
tion 3.3.3), we will need some p-complete variants of the previous HKR filtrations.

Definition 3.1.11 (HKR filtration on HC™(—;Z,)). Let p be a prime number. The HKR
filtration on p-completed negative cyclic homology of qcgs derived schemes is the functor

Filfigr HC™ (—; Zp) : dSch9°®°P — FilSp

defined as N
FiljikpHC™ (= Zp) := (FiljixpHC™ (-))).

Remark 3.1.12. The HKR filtrations on HP(—;Z,), HC(—;Z,), and HH(—;Z,) of qcgs
derived schemes are defined as in Definition 3.1.11, where HC™ (—;Z,) is replaced by HP(—),
HC(—), or HH(—). In particular, for every qcqgs derived scheme X, Definition 3.1.6 induces a
fibre sequence of filtered spectra

FiligHC™ (X Z,) — FiljgrHP (X Z,) — Filfﬁ(lRHC(X; Zp)[2].
Lemma 3.1.13. Let X be a gcgs derived scheme. Then the filtrations

[T FilieHP(X3Z,), ] FiliisHC™(X:52Z,),  [] Filir HH(X;Zp),
pEP p€EP p€EP

and H Filiicr HC(X; Z))
peP

are complete.

Proof. The collection of complete filtered spectra is closed under limits in the category of
filtered spectra, so this is a consequence of Lemma, 3.1.9. ]

Remark 3.1.14 (Exhaustivity of the HKR filtrations). The HKR filtrations Filfjxr HC™ (—)
and Filfj g HP(—) are not exhaustive on general qcgs derived schemes (|[BL22, Remark 6.3.6]).
For the purpose of the motivic filtration on algebraic K-theory (Definition 4.3.4), we will
however only need the fact that the HKR filtration Filjj g HC(—) is always N-indexed, and in
particular exhaustive.

3.2 The BMS filtrations

Let p be a prime number. In this section, we review the BMS filtrations on p-completed
topological Hochschild homology THH(—;Z,) and its variants, as defined in [BMS19] for
p-complete p-quasisyntomic rings, and generalised in [AMMN22]| to p-complete rings and in
[BL22, Section 6.2] to animated commutative rings. Only the BMS filtration on p-completed
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topological cyclic homology TC(—;Z,) (Definition 3.2.6) will appear in the definition of the
motivic filtration on topological cyclic homology TC(—) (Definition 3.3.3). The other BMS
filtrations are necessary to construct the BMS filtration on p-completed topological cyclic
homology TC(—;Zp).

Construction 3.2.1 (BMS filtration on Fil1TP(—;Z,)). Topological Hochschild homology
THH(—) of gcgs derived schemes admits a natural S'-action, inducing a natural Tate filtration
Fil1TP(—) on topological periodic cyclic homology TP(—) := THH(—)tSl (Proposition 3.1.1).
The Tate filtration

Fily TP(—;Z,) : dSch%9*°P — FilSp

is then defined as the p-completion of the Tate filtration Fil3 TP(—). For every quasiregular
semiperfectoid ring R and every integer ¢ € Z, define the filtered spectrum

Filhy s FilA TP(R; Zy) = 759 Fili TP(R; Z,).

The filtered object '
FilgygFilp TP (—; Zp) : dSch9°4®°P — FilSp

is then first defined on p-quasisyntomic rings as the unique such functor satisfying p-complete
faithfully flat descent (the existence and unicity of such a functor is [BMS19, Proposition 4.31]).
In general, polynomial Z-algebras are p-quasisyntomic rings, and this filtered object is defined
as the Zariski sheafification of its left Kan extension from polynomial Z-algebras

Fill\sFili TP (=3 Zy) := Lzar LAniRings/Poly, Filpns iR TP (—; Zy),

where the left Kan extension is taken in the category of p-complete filtration-complete spectra.
By [BL22, Theorem 6.2.4], the resulting functor is still given by the double-speed Postnikov
filtration on quasiregular semiperfectoid rings and, as a functor from animated commutative
rings to p-complete filtration-complete spectra, commutes with sifted colimits and satisfies
p-complete faithfully flat descent.

Remark 3.2.2. The BMS filtrations were first defined in [BMS19] in the generality of p-com-
plete p-quasisyntomic rings. On general animated commutative rings R, the BMS filtrations,
by construction, depend only on the p-completion of R —and in particular vanish on ani-
mated commutative Z[%]—algebras. Here the p-completion is the derived p-completion, even
on classical commutative rings. On commutative rings with bounded p-power torsion (e.g., on
p-quasisyntomic rings), the derived and classical p-completions naturally coincide, and there

is no conflict between the two definitions.

Definition 3.2.3 (BMS filtration on TP(—;Z,)). The BMS filtration on p-completed topolog-
tcal periodic cyclic homology of qcgs derived schemes is the functor

Fillyys TP (—; Z,) : dSchd®9°P —; FilSp

defined as the underlying filtered object of the bifiltered functor FilqFiltTP(—;Z,) of Con-
struction 3.2.1:
FilgngTP(—;Zp) == hiI} FilgngFilp TP (—; Z,,).

Topological negative cyclic homology is to topological periodic cyclic homology what neg-
ative cyclic homology is to periodic cyclic homology. Given Definition 3.2.3, the following
definition then mimics Definition 3.1.4.
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Definition 3.2.4 (BMS filtration on TC™(—;Z,)). The BMS filtration on p-completed topo-
logical negative cyclic homology of qcgs derived schemes is the functor

FilisTC™ (—:Z,) 1 dSch9e95%P — FilSp

defined as
FiljinsTC™ (=3 Zy) = Filf s Fil} TP (—; Z,).

Similarly, topological Hochschild homology is to topological periodic and topological nega-
tive cyclic homologies what Hochschild homology is to periodic and negative cyclic homologies,
and the following definition mimics Definition 3.1.5.

Definition 3.2.5 (BMS filtration on THH(—;Z,)). The BMS filtration on p-completed topo-
logical Hochschild homology of qcgs derived schemes is the functor

Filsy ;s THH(—; Z,) : dSch®°P —; FilSp

defined as
Filf THH(~: Z,) = Fillysgr TP(— Z,).

Topological cyclic homology is however not to topological periodic cyclic homology what
cyclic homology is to periodic cyclic homology. Following [NS18], it is rather defined, after
p-completion, by a fibre sequence

¢p—can

TC(—;Zp) — TC™ (—;Zyp) TP(—;Zy).

Unwinding the previous definitions, the map ¢, — can : TC™(—;Z,) — TP(—;Z,) admits a
unique refinement as a filtered map

¢p — can : FilgTC™ (= Zp) — FilgysTP(—; Zp).

Definition 3.2.6 (BMS filtration on TC(—;Z,)). The BMS filtration on p-completed topolog-
scal cyclic homology of qcgs derived schemes is the functor

FilgngTC(—; Zp) = dSch9°%°P —; FilSp
defined as
FillsTC(—; Z,) := fib <¢p — can : Fillps TC™ (= Z,) — Filiys TP(— Zp)).

The BMS filtration on p-completed topological cyclic homology is always complete, as a
consequence of a connectivity result of [AMMN22]. We will need the following slightly more
precise result when studying the completeness of the motivic filtration on algebraic K-theory.

Lemma 3.2.7. Let X be a qcgs derived scheme. Then the filtrations [ ,cp FiliysTC(X;Zy)
and (Hpe]P’ FilgMSTC(X;Zp))Q are complete. More precisely, for every integer i € 7Z, the

values of the presheaves [, cp Filh\sTC(—;Z,) and (Hpe]P FiliBMSTC(—;Zp))Q are in coho-
mological degrees at most —i + 1 on affine derived schemes.
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Proof. The presheaves

[ FitisTC(—Z,) and ( T[] FilhsTC(— Zp))Q
pEP peP

are Zariski sheaves by construction, so it suffices to prove the result for affine derived schemes
X = Spec(R). Let R be an animated commutative ring, and ¢ € Z be an integer. The
spectrum Filg, TC(R; Zp) is in cohomological degrees at most —i+1 for every prime number p
(JAMMNZ22, Theorem 5.1|). Taking the product over all primes p and rationalisation, this

implies that the spectra J[ cp Filh s TC(R; Z,) and (H,peP FiliBMSTC(R;Zp))Q are also in

cohomological degrees at most —i+1, which implies that the associated filtrations are complete.
O

Remark 3.2.8 (Exhaustivity of the BMS filtrations). The BMS filtrations Filjy;gTP(—;Zp)
and FilfygTC™(—;Z,) are not exhaustive on general qcqs derived schemes (|BL22, Warn-
ing 6.2.7]). For the purpose of the motivic filtration on algebraic K-theory (Definition 4.3.4),
we will however only need the fact that the BMS filtration Filfy ;s TC(—; Z,) is always N-indexed
(|BMS19, proof of Proposition 7.16]), and in particular exhaustive.

We refer to [BMS19, BS22, BL22| (see also Sections 11.1.2 and 11.3.1) for the relation
between prismatic cohomology and the graded pieces of the BMS filtrations on TP(—;Z,),
TC™(—;Zp), and THH(—;Z,). We only define here the shifted graded pieces of the BMS
filtration on TC(—;Z,), which are a version of syntomic cohomology (see Remark 3.2.10), and
which will serve as a building block for the p-adic motivic complexes (Corollary 4.3.12).

Definition 3.2.9 (BMS syntomic cohomology). For every integer i € Z, the syntomic complex
Zy(i)BMS (=) : dSchdc4°P — D(Z)
is the functor defined as the shifted graded piece of the BMS filtration on TC(—;Z,):
Zp(i)BMS(_) = griBMSTC(_§Zp)[_2i]~

Remark 3.2.10. Syntomic cohomology Z,(i)*"(X) of gcgs derived (formal) schemes X is
defined in [BL22, Section 8.4] (see also Notation 6.2.1), in terms of the syntomic complexes
of Definition 3.2.9 and of étale cohomology. From this perspective, the syntomic complexes
Z,(1)BMS(X) of Definition 3.2.9 correspond to the syntomic cohomology Z,(i)®?(X) of the
derived p-adic formal scheme X associated to X.

Theorem 3.2.11. (1) ([BMS19, BL22]) The functor FilgysTC(—;Z,), viewed as a func-
tor from p-quasisyntomic rings to p-complete filtered spectra, satisfies descent for the
p-quasisyntomic topology.

(2) ([AMMN22, BL22]) The functor Fili\TC(—;Z,), viewed as a functor from animated
commutative rings to p-complete filtered spectra, is left Kan extended from polynomial
Z-algebras.

Proof. (1) The filtration Filf;s TC(—; Z)) is complete on p-quasisyntomic rings (Lemma 3.2.7),
so it suffices to prove the result on graded pieces. The result on graded pieces is a special case
of [BL22, Proposition 7.4.7].
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(2) By [AMMN22, Theorem 5.1 (2)], the functor Filgy;sTC(—;Z,), viewed as a functor from
p-complete animated commutative rings to p-complete filtered spectra, is left Kan extended
from p-complete polynomial Z-algebras.! Let R be an animated commutative ring, and Rg
be its (derived) p-completion. The natural map

Filg\sTC(R; Zy) — Filgys TC(R)); Zy)
is an equivalence of filtered spectra. Indeed, the filtrations
FilgsTC(R; Zy) and  Filgys TC(R)); Zy)

are N-indexed and complete (Lemma 3.2.7 and Remark 3.2.8), so it suffices to prove the result
on graded pieces, where this is a direct consequence of [BL22, Corollary 7.4.11]. This implies
the desired left Kan extension property. O

Corollary 3.2.12. Let i € Z be an inleger.

(1) The functor Z,(i)BM5(=), viewed as a functor from p-quasisyntomic rings to p-complete
objects in the derived category D(Z), satisfies descent for the p-quasisyntomic topology.

(2) The functor Z,(i)BMS(=), viewed as a functor from animated commutative rings to
p-complete objects in the derived category D(Z), is left Kan extended from polynomial
Z-algebras.

Proof. (1) was already part of the proof of Theorem 3.2.11 (1).
(2) is a direct consequence of Theorem 3.2.11 (2). O

Theorem 3.2.13 ([AMMN22]). Let (A,I) be a henselian pair of commutative rings. Then
for any integers ¢ > 0 and k > 1, the fibre of the natural map

Z /9" (0)PM (A) — Z /p* (i) PN (A/T)
in the derived category D(Z /pF) is in degrees at most i.

Proof. By [AMMN22, Theorem 5.2|, for every henselian pair (A, I') such that the commutative
rings A and A/I are (classically) p-complete, the fibre of the natural map

Z [p"(0)PM(A) — Z [p* (1)PYP (A D)

is in degrees at most i. The proof of [AMMN?22, Theorem 5.2| proves more generally that for
(A, I) a general henselian pair of commutative rings, the fibre of the natural map

Z [p* ()M (AD) — Z /o )PV ((A/T)p)
where (—)9 is the derived p-completion, is in degrees at most i. By [BL22, Corollary 7.4.11] (see

also the proof of Theorem 3.2.11 (2)), the natural map Z /p*(i)BM3(=) — Z /p* (i) BM3 ((—)1)

is an equivalence on animated commutative rings, hence for every henselian pair (A,I) of
commutative rings, the fibre of the natural map

Z [p"(0)PM(A) — Z [p*(1)PMP (A D)

is in degrees at most 1. O

!More precisely, it is proved to be left Kan extended from p-complete polynomial Z-algebras to p-complete
p-quasisyntomic rings. By definition, p-quasisyntomic rings have bounded p-power torsion. Hence, their derived
and classical p-completions are naturally identified, and the left Kan extension to p-complete animated com-
mutative rings agrees with the left Kan extension to p-complete classical rings on p-complete p-quasisyntomic
rings.
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3.3 The motivic filtration on TC

In this section, we introduce the motivic filtration on topological cyclic homology TC(—)
of general qcgs derived schemes (Definition 3.3.3).
The following proposition is [BL22, Proposition 6.4.1].

Proposition 3.3.1 ([BL22|). Let p be a prime number. The map
Filt TP(—; Z,) —> FiliHP (—; Z,),

viewed as a map of filtered spectra-valued presheaves on the category of qcgs derived schemes,
admits a unique, multiplicative extension to a map of bifiltered presheaves of spectra

Fillyyg Fil4 TP (—; Z,) —> Filjigp FilAHP(—; Z,).

Construction 3.3.2 (BMS-HKR comparison map). Let p be a prime number. The BMS-
HKR comparison map is the map

Filp\s TC(—; Zy) — FilgpHC™ (3 Zy)

of functors from (the opposite category of) qcqgs derived schemes to the category of filtered
spectra defined as the composite

of the maps given by Definition 3.2.6, and Proposition 3.3.1 after restricting to the zeroth step
of the Tate filtration.

Definition 3.3.3 (Motivic filtration on TC). The motivic filtration on topological cyclic ho-
mology of qcgs derived schemes
Fil};

mot

TC(—) : dSch4¥°P — FilSp
is the functor defined by the cartesian square
Fil}

mot

TC(-) Filjigr HC™ ()

! |

[Lper Filgms TC(—: Zp) —— [1,ep FilikrHC™ (= Zy),

where the bottom horizontal map is the map of Construction 3.3.2, and the right vertical map
is profinite completion. For every integer ¢ € Z, also define the functor

Z,(i)TC(=) : dSch9ea°P s D(Z)?
as the shifted graded piece of this motivic filtration:

Z(i)" (=) = 8oy TC(—)[~2i].

2Every value of the functor Z(:)*“(—) has a natural module structure over the Eoo-ring Z(0)C(Z), which,
by unwinding the definition, is naturally identified with the Eo-ring H Z. This implies that the spectra-valued
functor Z(i)T°(—) takes values in H Z-linear spectra, i.e., in the derived category D(Z).
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Remark 3.3.4 (Comparison to [EM23]). For every qcgs derived scheme X over Q, the filtered
spectrum Filfj s HC™ (X)) is Q-linear by construction, so its profinite completion vanishes. The
filtration [ [ cp FilgsTC(X;Z,) also vanishes (Remark 3.2.2), and the natural map

Fil%, o

TC(X) — FilggrHC™ (X/ Q)

is then an equivalence of filtered spectra.

Similarly, for every prime number p and every qcqgs derived scheme X over F,, the filtered
spectrum Filjrr HC™(X) is Z-linear and p-complete, so it is naturally identified with its
profinite completion. Again using Remark 3.2.2, the natural map

Fil} . TC(X) — Filgys TC(X; Zy)
is then an equivalence of filtered spectra.

Remark 3.3.5 (Comparison to [BL22|). In [BL22, Section 6.4|, Bhatt—Lurie define filtrations
Filt . TP(X) and Fil}, , TC™ (X) for qcgs derived schemes X, with shifted graded pieces called

mot mot
the global prismatic complexes Ai{i} and N Z%i{i} respectively. These filtrations can be
used to obtain an alternative definition of the Fil}, ; TC(X) of Definition 3.3.3. More precisely,

mot

for every prime number p the p-completion of Bhatt—Lurie’s filtration Fil% ,TP(X) is the

mot

filtration Filgy TP (X;Z,) of Definition 3.2.3, and there is a natural fibre sequence

Fil*,, TC(X) —s Fil}

mot mot

TC™(X) — [] Filius TP(X; Zp)
peP

of filtered spectra. In particular, for every integer ¢ € Z, this induces a natural fibre sequence

2()"C(X) — NZB5{i} — [ Bxpli}

peP

in the derived category D(Z), where Ex,p denotes the p-adic absolute prismatic cohomology
of X.

Proposition 3.3.6. Let X be a qcgs derived scheme, and p be a prime number. Then the
natural map
Fil;, o TC(X;Zp) — Filgus TC(X; Zp)

s an equivalence of filtered spectra.

Proof. By definition, the natural map

Filfjr HC™ (X) — [ Filhg HC™ (X3 Zy)
LeP

in Definition 3.3.3 is profinite completion, so its fibre becomes zero after p-completion. ]

Corollary 3.3.7. Let X be a gcgs derived scheme, and p be a prime number. Then the natural
map
Zp(i) " (X) — Zp())PM(X)

is an equivalence in the derived category D(Zyp).

Proof. This is a direct consequence of Proposition 3.3.6. ]
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Proposition 3.3.8. Let X be a qcgs derived scheme. Then the filtrations

Fil%,.,TC(X) and Fil’,,,TC(X; Q)

mot
are complete.

Proof. The filtrations Filjjg HC™ (X)), [],ep Filiixg HC™ (X;Zp), and [[,cp Filiys TC(X; Zy)
are complete by Lemmas 3.1.9, 3.1.13, and 3.2.7 respectively. By Definition 3.3.3, the filtration
Fil% o TC(X) is then complete, as a pullback of three complete filtrations. To prove that the
filtration Fil}, ,TC(X; Q) is complete, consider the cartesian square of filtered spectra

mot

Fil* . TC(X;Q) Filt g HC ™ (X; Q)

" |

(e Filings TOX:2,)) | —— ( Tpep FilinenHO™(X:2,))

Q

induced by taking the rationalisation of Definition 3.3.3. The filtration

([T FilinsTC(X;2,))
peP

is complete by Lemma 3.2.7. The fibre of the natural map

Filip HC™ (X) — ] Filiikg HO™ (X;2Z,)
peP

is complete as an object of the filtered derived category DF(Z) (Lemmas 3.1.9 and 5.2.9),
and is zero modulo p for every prime number p by construction. In particular, it is naturally
identified with the fibre of the natural map

Filiu HO™ (X:Q) — ([ FilliHO™(X:2,))
peP

which is thus complete as an object of the filtered derived category DF(Q). This implies, by

*

the previous cartesian square, that the filtration Fil} ,TC(X; Q) is also complete. O

Remark 3.3.9 (Exhaustivity of the motivic filtration on TC). The motivic filtration Fil};, . TC
is not exhaustive on general qcqs derived scheme. Although this will not be necessary to prove
that the motivic filtration on algebraic K-theory is exhaustive (Proposition 5.5.1), one can
prove, using [Ant19, Lemma 4.10] and its proof, that if X is a quasi-lci Z-scheme,® then the

motivic filtration Fil* , TC(X) is exhaustive.

mot

Proposition 3.3.10. For every integer i € Z, the presheaf

Filfnot

TC(—) : dScha®°P — Sp

15 an étale sheaf.

3By this, we mean that Zariski-locally on the qcgs scheme X, the cotangent complex L_ ;z has Tor-amplitude
in [-1;0].
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Proof. By Definition 3.3.3, it suffices to prove that the presheaves HpeIP’ Fill\ s TC(—;Zp),

Fillgg HC™ (—), and [Ler Fillygg HC ™ (—;Z,) are étale sheaves. A product of sheaves is a
sheaf, and these BMS and HKR filtrations are complete (Lemmas 3.2.7, 3.1.9, and 3.1.13). It
then suffices to prove that for every prime number p, the presheaves

—~ > —~ >q
Zp(i)*M3 (=), RTzar(—,LO7,7), and RTza(—, (LQZ,5)))

are étale sheaves. The statement for Zp(i)BMS(—) is a consequence of p-fpqc descent ([BL22,
Proposition 7.4.7]). The statement for the other two presheaves reduces to the fpqc descent
for the powers of the cotangent complex ([BMS19, Theorem 3.1]). O

Corollary 3.3.11. For every integer i € Z, the presheaf
Z(i)T¢(=) : dSch¢®°P s D(Z)
1s an €étale sheaf.

Proof. This is a direct consequence of Proposition 3.3.10. O

3.4 The motivic filtration on L.q,TC

In this section, we introduce the motivic filtration on the cdh sheafification of topological
cyclic homology of general qcgs schemes (Definition 3.4.1).

Definition 3.4.1 (Motivic filtration on Lcq, TC). The motivic filtration on cdh sheafified
topological cyclic homology of qcgs schemes

Fil* Lean TC(—) : Schd%9%°P —, FilSp

is the functor defined as the cdh sheafification of the motivic filtration on topological cyclic
homology (Definition 3.3.3)
Fﬂ?notLthTC(_) = (Lcthil* TC)(—)

mot

Remark 3.4.2 (Graded pieces of Fil% ; Lcan TC). Let X be a qcgs scheme. For every integer
i € Z, the canonical map

(Lean Z(i)T9) (X) — gTior Lean TC(R)[—2i]

is an equivalence in the derived category D(Z). We will usually refer to these shifted graded
pieces by the complexes (Leqn Z (7)) (X).

Remark 3.4.3 (Completeness of Fil},  LcgnTC). It is not clear a prior: that the filtration
Fil% ot Lean TC(X) is complete, even on qegs schemes of finite valuative dimension. Modulo any
prime number p, this is a consequence of the connectivity bound [AMMN22, Theorem 5.1 (1)]
and [EHIK21, Theorem 2.4.15]. The integral statement will be a consequence of certain cdh

descent results in Chapter 5.

Remark 3.4.4 (Exhaustivity of Fil}, ; Lean TC). The filtration Fil}, ; Lean TC is not exhaustive
on general qgcqgs derived schemes. We will prove however, in Chapter 5, that the fibre of the
natural map Fil}, , TC — Fil% ., Lcan TC is N-indexed, and in particular exhaustive.
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Chapter 4

Definition of motivic cohomology

In this chapter, we introduce motivic cohomology of general quasi-compact quasi-separated
derived schemes (Definition 4.3.6) and establish some of the fundamental properties of the
associated motivic filtration.

4.1 Classical motivic cohomology

In this section, we review the classical definition of motivic cohomology of smooth schemes
in mixed characteristic. Following [Blo86, Lev01, Gei04], the motivic cohomology of smooth
Z-schemes X is classically defined in terms of Bloch’s cycle complexes z°(X,e). Recall that
Bloch’s cycle complex is a simplicial abelian group defined in terms of algebraic cycles. The
homotopy groups of Bloch’s cycle complexes, called Bloch’s higher Chow groups, are a gener-
alisation of Chow groups that are designed to generalise the relation between the Ky and the
Chow groups of a quasi-projective variety to higher K-groups. Via the Dold-Kan correspon-
dence, we view Bloch’s cycle complexes as objects of the derived category D(Z).

Definition 4.1.1 (Classical motivic cohomology of smooth schemes). Let B be a field or a
mixed characteristic Dedekind domain (e.g., B = Z), and X be a smooth B-scheme. For any
integer © € Z, the classical motivic complex

Z(i)™(X) € D(Z)
is the shift of Bloch’s cycle complex z°(X, e):
Z(i)™(X) = 2'(X, 0)[-2d],

where o is the cohomological index.

“la vanish in degrees more

Note that, by construction, the classical motivic complexes Z(1)
than 27, and in all degrees for weights ¢ < 0.
In the following definition, we use the slice filtration in stable homotopy theory, as intro-

duced by Voevodsky [Voe02a, Voe02b, BH21].

Definition 4.1.2 (Motivic filtration on K-theory of smooth schemes). Let B be a field or a
mixed characteristic Dedekind domain. The classical motivic filtration on algebraic K-theory
of smooth B-schemes is the functor

Fil§,K(—) : Sm% — FilSp

defined as the image, via the mapping spectrum construction w*> : SH(B) — PSh(Smp, Sp),
of the slice filtration f*KGL on the K-theory motivic spectrum KGL € SH(B).
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Remark 4.1.3. The pullback of algebraic cycles being well-defined only along flat maps, it
is not straightforward to prove that the classical motivic complexes Z(i)'® of Definition 4.1.1
are functorial. Over a field, Voevodsky overcomes this technicality by proving that Bloch’s
cycle complexes are represented in SH by the zeroth slice of the K-theory motivic spectrum
KGL. Over a mixed characteristic Dedekind domain, this identification is proved by Bach-
mann [Bac22]. In particular, this means that Bloch’s cycle complexes z%(—, ), when seen as a
construction taking values in the derived category D(Z), is indeed functorial, and multiplica-
tive. In terms of Definitions 4.1.1 and 4.1.2, this implies that for every integer ¢ € Z, there is
an equivalence of D(Z)-valued! functors

Z(i)™(—) = graK(—)[-2i].

Example 4.1.4 (Weight zero classical motivic cohomology). For every smooth scheme X over
a field or a mixed characteristic Dedekind domain, there is a natural equivalence

7(0)*(X) ~ R4, (X, 7Z)
in the derived category D(Z) ([Spil8, Proposition 6.1]).

Example 4.1.5 (Weight one classical motivic cohomology). For every smooth scheme X over
a field or a mixed characteristic Dedekind domain, there is a natural equivalence

Z(1)"(X) = RT7:(X, Gy ) [~ 1]

in the derived category D(Z) ([Spil8, Theorem 7.10]). In particular, the complex Z(1)%?(X)
is concentrated in degrees one and two, where it is given by

HY(Z(1)"* (X))

1

O(X)* and H*(Z(1)"¥(X)) = Pic(X).

4.2 The cdh-local motivic filtration

Following [BEM24|, we review in this section the cdh-local motivic filtration on homotopy
K-theory KH(—) of qcqs schemes (Definition 4.2.5), whose shifted graded pieces Z (i) will
serve as a building block for the definition of the motivic complexes Z(i)™" (Remark 4.3.7).
We first define the lisse motivic complexes Z(i)¢ as an intermediate construction, and as a
practical tool for later chapters.

The following definition is motivated by the observation of Bhatt—Lurie that connective
algebraic K-theory K®""(—) is left Kan extended on animated commutative rings from smooth
Z-algebras [EHK ™20, Proposition A.0.4].

Definition 4.2.1 (Motivic filtration on connective K-theory of animated rings). The motivic
filtration on connective algebraic K-theory of animated commutative rings is the functor

Filfi o K" (—) : AniRings — FilSp

defined as the left Kan extension of the classical motivic filtration on algebraic K-theory of
smooth Z-algebras

FﬂﬁsseKconn(_) = (LAniRings/SmZFﬂélaK)(_)'

'Every value of the functor gri, K(—)[—2i] has a natural module structure over the Eoo-ring grd K(Z),

which, by [Spil8, Proposition 6.1] and [Bac22], is naturally identified with the Ecc-ring H Z. This implies that
the spectra-valued functor gry,, K(—)[—2i] takes values in H Z-linear spectra, i.e., in the derived category D(Z).

cla
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Note that connective algebraic K-theory is not a Zariski sheaf on commutative rings.
Most of our results on the following lisse motivic complexes Z(7)5¢ will be formulated in the
generality of local rings.

Definition 4.2.2 (Lisse motivic cohomology of animated rings). For any integer i € Z, the
lisse motivic complex .
Z(i)"*¢ (=) : AniRings — D(Z)

is the shifted graded piece of the motivic filtration of Definition 4.2.1:
Z(i)"°(~) = griee K™ (—)[2i].
Note that the lisse motivic complexes Z (7)€ are the left Kan extension of the classical
motivic complexes Z(7)'?, and in particular vanish in weights i < 0.

Example 4.2.3 (Weight zero lisse motivic cohomology). For every local ring R, there is a
natural equivalence

7,(0)15¢(R) ~ 7[0]

in the derived category D(Z). This is a consequence of Example 4.1.4, by using that the
functor Z(0)15¢(—) is left Kan extended on local rings from its restriction to local essentially
smooth Z-algebras.

Example 4.2.4 (Weight one lisse motivic cohomology). For every commutative ring R, there
is a natural equivalence

Z(l)lisse(R) =~ (TSIRFZar(Rv Gm)) [_1]

in the derived category D(Z). In particular, the complex Z(1)"5%¢(R) € D(Z) is concentrated
in degrees one and two, where it is given by

HY(Z(1)!¢(R)) = O(R)* and H*(Z(1)"°(R)) = Pic(R).

This is a consequence of Example 4.1.5, by using that the left Kan extension of a functor
taking values in degrees at most two takes values in degrees at most two, and that the functor
7S Rl 72:(—, G,,) on commutative rings is left Kan extended from its restriction to smooth
Z-algebras. Here the latter left Kan extension property is a consequence of the same left
Kan extension property for the functors G,,(—) (which is a special case of Mathew’s criterion
[EHK 20, Proposition A.0.4]) and Pic(—) (which is a consequence of rigidity, see [EM23,
Lemma 7.6]).

Definition 4.2.5 (Cdh-local motivic filtration on K H-theory of schemes). The cdh-local mo-
tivic filtration on homotopy K-theory of qcgs schemes is the functor

Fil’y, KH(—) : Sch9°9:°P — FilSp
defined as
Fll:dhKH(—> = (LcthﬂﬁsseKconn)(—) == (LcdhLSChchs,op/Sm%DFﬂ:laK)(—).

Remark 4.2.6. By construction of the cdh-local motivic filtration (Definition 4.2.5), there is
a natural comparison map of presheaves

Fil,K(—) — Fil34, KH(-)

on smooth Z-schemes.
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Definition 4.2.7 (Cdh-local motivic cohomology of schemes). For any integer i € Z, the
cdh-local motivic complex
Z,(i)°4 (=) : Sch9¢®°P _ D(7,)

is the shifted graded piece of the motivic filtration of Definition 4.2.5:
Z(i)*" (=) = gregnKH(—)[-2d].

Although we will refer throughout the text to [BEM24] for the properties of these cdh-local
motivic complexes Z(1)°" | we already mention the following result, as it will play an important
role to establish the completeness of the motivic filtration on algebraic K-theory.

Proposition 4.2.8 (Completeness of the cdh-local motivic filtration, after [BEM24|). Let
d > 0 be an integer, and X be a qcgs scheme of valuative dimension at most d. Then for
every integer i € Z, the spectrum FilgdhKH(X) 15 in cohomological degrees at most —i+d. In
particular, the filtration Fil’y, KH(X), and its rationalisation Fil’ g KH(X; Q), are complete.

4.3 Definition of motivic cohomology

In this section, we introduce the motivic filtration on algebraic K-theory of qcqgs derived
schemes (Definitions 4.3.4 and 4.3.5), by constructing a filtered extension of the cartesian
square of Theorem 2.1.1. To do so, we first define a filtered cdh-local cyclotomic trace map
Fil%;, KH(—) — Fil%, ; Lean TC(—) (Construction 4.3.3).

Theorem 4.3.1 (Filtered cyclotomic trace in the smooth case). The cyclotomic trace map
K(=) — TC(-),

viewed as a map of spectra-valued presheaves on the category of smooth Z-schemes, admits a
unique, multiplicative extension to a map

Fil, K(—) — Fil%, .,

TC(-)
of filtered presheaves of spectra.

Proof. By Definition 3.3.3, the natural cartesian square

TC(-) — 5 HO ()

J |

HpGIP TC(_7 Zp) — HpEIP HC_ (_7 Zp)
admits a multiplicative filtered extension

Fil% ,, TC(—) ——— FilfjgHC (—)

HpGIP’ Filgus TC(—:Zp) —— HpE[P Filjixkg HC™ (—; Zp)
on qcgs derived schemes. Let p be a prime number. It then suffices to prove that the natural
maps

K(-) — HC™ (-), K(-) — HC™ (—;Z,), and K(—) — TC(—;Z,),
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viewed as maps of spectra-valued presheaves on the category of smooth Z-schemes, admit
unique multiplicative filtered extensions to maps of filtered presheaves of spectra

Fil},K(—) — FiljggHC™ (), Fil§,K(—) — FilgrHC ™ (—;Z,), and

Filg,K(—) — FilgysTC(—; Zy)

respectively.

The proof of [EM23, Proposition 4.6], which is stated over a quasismooth map of com-
mutative rings kg — k such that k is a field, applies readily to the case where kg = k = Z.
More precisely, we use in this proof the Gersten conjecture for classical motivic cohomol-
ogy on smooth Z-schemes, which is [Gei04, Theorem 1.1]. In particular, the natural map
K(—) — HC™(—), viewed as a map of spectra-valued presheaves on the category of smooth
Z-schemes, admits a unique multiplicative filtered extension to a map of filtered presheaves of
spectra Fil’}, K(—) — Filjxg HC™ (—).

Similarly, the p-completed cotangent complex (Ly /Z);;\ of a smooth Z-algebra R is concen-
trated in degree zero, given by the p-flat R-module (Q}Q/Z)IC. So for every integer i € Z, this
implies that the object grij g HC™ (R;Z,) € D(Z) is in cohomological degrees less than —i.
The proof of [EM23, Proposition 4.6] then adapts readily to prove that the natural map
K(—) = HC™(—;Z,), viewed as a map of spectra-valued presheaves on the category of smooth
Z-schemes, admits a unique multiplicative extension to a map of filtered presheaves of spectra
Filf, K(—) = FilfgrHC™ (= Zp).

Finally, the natural map K(—) — TC(—;Z,), viewed as a map of spectra-valued presheaves
on the category of smooth Z-schemes, admits a unique multiplicative extension to a map of
filtered presheaves of spectra Fil}j,K(—) — FilgysTC(—;Zy), by [AHI24, Proposition 6.12].

O

*
cla

Remark 4.3.2. For every prime number p, the BMS filtration FilfyTC(—; Z)) is determined
by its p-quasisyntomic-local values (Theorem 3.2.11). By the proof of [AHI24, Lemma 6.10],
the p-completed left Kan extension of the functor Fil’;, K(—), from smooth Z-algebras to
p-quasisyntomic rings, is p-quasisyntomic-locally identified, via the map induced by [AHI24,
Proposition 6.12|, with the functor FilgygTC(—;Z,). In particular, one can reconstruct the
BMS filtration Fily;gTC(—;Z,) on qcgs derived schemes (Definition 3.2.6) from the classical
motivic filtration Fil,K(—) on smooth Z-schemes (Definition 4.1.2). This will be used in

cla

Chapter 5 to construct Adams operations on the BMS filtration FilgyTC(—;Zp).

Construction 4.3.3 (Filtered cdh-local cyclotomic trace). The filtered cdh-local cyclotomic
trace map is the map
FilZ, KH(—) — Fil} i Lean TC(—)

mot

of functors from (the opposite category of) qcgs schemes to the category of multiplicative
filtered spectra defined as the cdh sheafification of the composite
(LSCthqS’OP/Sm%pFﬂ:laK) (—) — (LSCthqS’Op/SmEPFilElOtTC) (—) — Fll*

mot

TC(_)7

where the first map is the map induced by Theorem 4.3.1 and the second map is the canonical
map. Note here that sheafification is a multiplicative operation, and that the compatibility be-
tween left Kan extension and multiplicative structures is ensured by [Lurl7, Corollary 3.2.3.2]
(see also [EM23, 2.3.2]).
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Definition 4.3.4 (Motivic filtration on K-theory of schemes). The motivic filtration on non-
connective algebraic K-theory of qcgs schemes is the functor

Fil® K(—) : Sch9°%®°P —; FilSp
defined by the cartesian square of functors of multiplicative filtered spectra

Fily . K(—) —— Fil},, TC(-)

| |

Fil’g KH(—) —— Fil i Lean TC(—),
where the bottom horizontal map is the map of Construction 4.3.3, and the right vertical map

is cdh sheafification.

Definition 4.3.5 (Motivic filtration on K-theory of derived schemes). The motivic filtration
on non-connective algebraic K-theory of qcqs derived schemes is the functor

Fil%, K(—) : dSch9<5°P — FilSp

mot
defined by the cartesian square of functors of multiplicative filtered spectra
Fil

mot K (=) ———— FilL,TC(-)

| |

Fil* K (mo(—)) — Fil%,,, TC(mo(—))

where mo(—) : dSch — Sch is restriction to the classical locus, the filtration on K(mp(—)) is
given by Definition 4.3.4, and the filtrations on TC(—) and TC(my(—)) are given by Defini-
tion 3.3.3.

Definition 4.3.6 (Motivic cohomology of derived schemes). For any integer i € Z, the motivic
complex
Z(i)™% . dSch°4°P — D(7Z)
is the shifted graded piece of the motivic filtration of Definition 4.3.5:
Z(i)™" (=) = grimot K (—)[~2d].
For every qcgs derived scheme X, also denote by
Mo (X, Z(1)) == H"(Z(i)™*"(X)) n€Z

the motivic cohomology groups of X.

Remark 4.3.7 (Motivic cohomology of schemes). Let X be a qcqgs scheme, and i € Z be an
integer. By Definition 4.3.5, there is a natural cartesian square

Z(i)™N(X) —— Z())T°(X)

| |

Z(i)(X) —— (Lean Z(i)"¢)(X)

in the derived category D(Z), where the bottom horizontal map is induced by Construc-
tion 4.3.3 and the right vertical map is cdh sheafification. This cartesian square can serve as
a definition for the motivic cohomology of the scheme X.
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We now construct, for later use, a comparison map from classical motivic cohomology to
the motivic cohomology of Definition 4.3.6.

Definition 4.3.8 (Filtered classical-motivic comparison map). The filtered classical-motivic
comparison map is the map of presheaves

Fil},, K (=) — Fil%, K (-)

mot

on smooth Z-schemes induced by the maps Remark 4.2.6 and Theorem 4.3.1. Note here that
the compatibility between these two maps and Definition 4.3.4 is automatic by Construc-
tion 4.3.3.

Definition 4.3.9 (Classical-motivic comparison map). For any integer ¢ € Z, the classical-
motivic comparison map is the map of D(Z)-valued presheaves

Z(i)™ (=) — Z()™"(~)

on smooth Z-schemes induced by taking the i*! shifted graded piece of the filtered map of
Definition 4.3.8.

In the rest of this chapter, we discuss some of the first properties of the motivic filtration.

Remark 4.3.10 (Comparison to cdh-local motivic cohomology). By construction (Defini-
tion 4.2.5), the cdh-local motivic complex

Z(i)%h ; SchdcasoP —, D(Z)

is a cdh sheaf, so the common fibre of the horizontal maps in the cartesian square of Re-
mark 4.3.7 is also a cdh sheaf. In particular, for every qcgs scheme X, the left vertical map of
this cartesian square exhibits cdh-local motivic cohomology as the cdh sheafification of motivic
cohomology:

Z(i)*M(X) = (Lean Z(i)™") (X).

Proposition 4.3.11. Let X be a qcgs scheme, and p be a prime number. Then for every
integer k > 1, there is a natural cartesian square

Fil% K (X;Z /pF) ——— Filgys TC(X;Z /p)

" |

Fil}  KH(X; Z /p*) —— FilfygLean TC(X;Z /pF)
of filtered spectra.
Proof. This is a consequence of Proposition 3.3.6 and Definition 4.3.5. 0

Corollary 4.3.12. Let X be a qcgs scheme, and p be a prime number. Then for any integers
1 € Z and k > 1, there is natural cartesian square

Z [p* ()N (X) ———— Z/pF(i)PM(X)

| |

Z [P () M(X) —— (Lean Z /p"(1)*M5) (X)
in the derived category D(Z /pF).
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Proof. This is a direct consequence of Proposition 4.3.11. 0

Remark 4.3.13 (/-adic motivic cohomology). For any prime number p and integer k& > 1, the
filtered presheaf Filf;sTC(—;Z /p¥) and its cdh sheafification vanish on qeqs Z[%]—schemes.
In particular, Proposition 4.3.11 implies that for every qcgs Z[%]—scheme X, the natural map

Fil%, o

K(X;Z /p") — Filiq, KH(X; Z /p")
is an equivalence of filtered spectra.

Remark 4.3.14 (Completeness and exhaustivity of Fil},(K). The filtration Fil} K(X) of
Definition 4.3.5 will be proved to be N-indexed, hence exhaustive, on general qcqgs derived
schemes X (Proposition 5.5.1), and complete on qcgs schemes of finite valuative dimension
(Proposition 5.5.4). Note that these results can already be proved modulo any prime number p,

as a formal consequence of Proposition 4.3.11 and Chapter 3.

The following result is a filtered version of the classical Dundas—Goodwillie-McCarthy
theorem ([DGM13, Theorem 7.0.0.2]).

Proposition 4.3.15. Let A — B be a map of animated commutative rings such that the
induced map mo(A) — mo(B) of commutative rings is surjective with finitely generated nilpotent
kernel. Then the natural commutative diagram

Filt  K(A) —— Fil%,  TC(A)

| |

K(B) — Fil%,,,TC(B)

Fﬂ* mot

mot

15 a cartesian square of filtered spectra.

Proof. By Definition 4.3.5, it suffices to prove that the natural commutative diagram

Fil} .« K(m(A)) —— Fil; ,; TC(m(A))

| |

K(mo(B)) —— Fil%,, TC(ro(B))

Fﬂ?not mot
is a cartesian square of filtered spectra. For every cdh sheaf F' defined on qcgs schemes, the
natural map F(mo(A)) — F(mo(B)) is an equivalence. The result is then a consequence of

Definition 4.3.4. O
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Chapter 5

Rational structure of motivic
cohomology

In this chapter, we prove some fundamental properties of the motivic filtration that we
introduced in the previous chapter: namely, that it is always exhaustive and finitary, and
complete on schemes of finite valuative dimension. These properties modulo a prime number
p are a formal consequence of the analogous properties for the BMS filtration on p-completed
topological cyclic homology. Proving these results integrally will however require more un-
derstanding of the rational part of this motivic filtration. Our two main results on rational
motivic cohomology are as follows.

The first main result is the following generalisation of the rational splitting of the classical
motivic filtration.

Theorem 5.0.1 (The motivic filtration is rationally split). Let X be a gcgs derived scheme.
Then there exists a notural multiplicative equivalence of filtered spectra

Fill, o K(X;Q) =~ @D Q)™ (X)[24]-

=%

As for the classical motivic filtration, this splitting is induced by suitable Adams operations,
which we construct in the generality of qcgs derived schemes in the first section.

This result is however not enough to prove the exhaustivity, completeness, or finitariness
of the motivic filtration. Instead, these will be proved along the way to the following second
main result on rational motivic cohomology.

Theorem 5.0.2. Let X be a qcgs scheme. Then there is a natural fibre sequence of filtered
spectra

Filr, o K(X;Q) — Fil}, KH(X; Q) — cofib (FiI*H}(lRHC(XQ /Q) — Filﬁ%lRLcthC(XQ /Q))[1].

To prove this result, we use a classical argument of Weibel at the level of K-theory
(Lemma 5.6.1) and the rational splitting Theorem 5.0.1 to reduce the statement to the case
of characteristic zero, where the result is essentially [EM23, Theorem 4.10 (3)].

The key step in this argument, in order to pass from a statement at the level of K-theory
to a filtered statement, is to prove beforehand that the motivic filtration Fil} K is N-indexed
(Proposition 5.5.1). The strategy to prove this is as follows. We first introduce a new rigid-
analytic variant of the HKR filtrations in the generality of qcgs derived schemes, whose graded
pieces are rigid-analytic variants of derived de Rham cohomology. We then adapt a theorem
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Goodwillie —stating in modern language that periodic cyclic homology is truncating in char-
acteristic zero— to this rigid-analytic variant of periodic cyclic homology. This rigid-analytic
Goodwillie theorem implies, by the work of Land—Tamme on truncating invariants, that the
rigid-analytic variant of periodic cyclic homology is a cdh sheaf on qcgs schemes. A filtered
consequence of this cdh descent result then formally implies the desired result, i.e., that the

motivic filtration Fil}, K is N-indexed.

5.1 Adams operations

In this section we prove Theorem 5.0.1, using Adams operations.

In [EM23, Appendix B|, Elmanto-Morrow construct Adams operations )™ on the m-perio-
dic filtered K-theory Fil’j, K(X)[X] of smooth Z-schemes X, acting on the i'! graded piece
as multiplication by m!. Using this construction, Bachmann-Elmanto—Morrow construct the
following Adams operations " on the filtered K H-theory of arbitrary qcqs schemes X.

Proposition 5.1.1 (Adams operations on filtered K H-theory, [BEM24]|). Let m > 2 be an
integer, and X be a qcgs scheme. Then there exists a natural automorphism ™ of the filtered
spectrum Fil%g, KH(X)[L] such that for every integer i € Z, the induced automorphism on the
i graded piece Z[-L](i)°"(X)[24] is multiplication by m'.

We now use the Adams operations ¢™ on the m-periodic filtered K-theory Fil%j, K(X)[X]
of smooth Z-schemes X (JEM23, Appendix B]) to construct Adams operations )™ on the
filtered p-completed topological cyclic homology FiljsTC(X;Z,) of qcgs Z[%]—schemes X.
Proposition 5.1.2 (Adams operations on filtered TC(—;Z))). Let m > 2 be an integer, X be a
gcqs derived Z[%]—scheme, and p be a prime number. Then there exists a natural multiplicative
automorphism ™ of the filtered spectrum FilgysTC(X;Z,) such that for every integer i € Z,
the induced automorphism on the i graded piece Z,(i)®™M5(X)[2i] is multiplication by m®.
Moreover, this automorphism Y™ is uniquely determined by its naturality and the fact that on
smooth Z[%]—schemes X, the diagram of filtered spectra

Filg, K(X)[;;] — FilysTC(X3Zy)

lwm lwm

Fil}, K(X)[4] —— Fill,sTO(X:Z,)
where the horizontal maps are induced by Remark 4.3.2, and the left vertical map is defined in
[EM23, Construction B.4], is commutative.

Proof. By Remark 4.3.2, the functor Filj,;TC(—;Z,) on p-quasisyntomic rings is p-quasisyn-
tomic-locally identified with the p-completed left Kan extension of the functor Fil%j, K(—) from
smooth Z-algebras to p-quasisyntomic rings. The functor Fil;qTC(—;Z,) on p-quasisyntomic
rings moreover satisfies p-quasisyntomic descent (Theorem 3.2.11 (1)), so the Adams opera-
tion ¢™ on the functor Fil%j, K(—)[-1] ((EM23, Appendix B]) induces a natural automorphism
y™ of the presheaf Fil}y,sTC(—;Z,), acting as multiplication by m? on the i*" graded piece
Zp(1)PM5(-)[2i]. The same result then applies to animated commutative Z[-1]-algebras by
left Kan extending the result on polynomial Z[%]—algebras (Theorem 3.2.11 (2)), and to gen-
eral gcgs derived Z[%]—schemes by Zariski sheafifying the result on animated commutative
Z[--]-algebras. O

1
m
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The following result is [Rak20, Construction 6.4.8 and Proposition 6.4.12]. Note that
if X is a qcgs derived Z[1]-scheme, then the filtered spectrum Filfj HC™(X) is naturally
Z[L]-linear.

Proposition 5.1.3 (Adams operations on filtered HC™, [Rak20]). Let m > 2 be an inte-
ger, and X be qcqs derived Z[%]—scheme. Then there exists a natural multiplicative automor-

phism Y™ of the filtered spectrum Filfixg HC™ (X)) such that for every integer i € Z, the induced
>i

automorphism on the i'" graded piece ]I:?ZX/Z[l][Qi] is multiplication by m’.
m

1
m

Lemma 5.1.4. Let m > 2 be an inleger, X be a qcqs derived Z[=-]-scheme, and p be a prime
number. Then the natural diagram of filtered spectra

Filly s TC(X; Z,) — FillpHC™ (X;Z,)

lwm lwm

where the horizontal maps are defined in Construction 3.5.2, the left map is the map defined in
Proposition 5.1.2, and the right map is the map induced by Proposition 5.1.3, is commutative.

Proof. By [EM23, Lemma B.8|, the natural diagram of filtered spectra

Fill, K(X)[4] —— Filiyep HO(X)

> [

FilZ, K(X)[2] —— Filjjgg HC™ (X)

*
cla
1
m
sition 5.1.2, where the compatibility between the filtered maps is a consequence of the proof
of Theorem 4.3.1. O

is commutative for every smooth Z[-]-scheme X. The result is then a consequence of Propo-

Construction 5.1.5 (Adams operations on filtered TC). Let m > 2 be an integer, and X be
a qegs derived Z[-L]-scheme. The automorphism 1™ of the filtered spectrum Fil%,  TC(X) is

mot
the automorphism defined by pullback along the natural cartesian square of filtered spectra

Fil,,, TC(X) Filf g HO™ (X)

J |

[Ler Filgms TC(X5Zy) —— [Lep Filiikr HC™ (X5 Zy),
where the automorphism ™ of FilggrHC™(X) is the automorphism of Proposition 5.1.3,
the automorphism ¢™ of [[ p FiljxgHC™ (X;Z)) is induced by the automorphism ¢™ of
Filjjxg HC™ (X), and the automorphism 4™ of [[,p FilgygTC(X;Zp) is the automorphism
of Proposition 5.1.2. Note here that the compatibility between the automorphisms ¢™ and
the bottom map is given by Lemma 5.1.4.

Note in the following result that if X is a qcgs derived Z[%]—scheme, then the filtered
spectrum Fil% . TC(X) is naturally Z[--]-linear.

1
mot m
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Corollary 5.1.6. Let m > 2 be an integer, and X be a qcqs derived Z[%]—Scheme, Then for
every integer i € 7, the automorphism ™ induced on the i graded piece Z(i)*“(X)[2i] of the
filtered spectrum Fil},  TC(X) is multiplication by m'. Moreover, if X is smooth over Z[L],
then the natural diagram of filtered spectra

Filf, K(X)[4] —— Filh, TC(X)

l"b m lw m

Filf,K(X)[L] —— Filf,, TC(X)
where the horizontal maps are defined in Theorem 4.3.1, and the left vertical map is defined
in [EM23, Construction B.4/, is commutative.

Proof. The identification of the automorphism ™ on the graded pieces is a consequence
of Propositions 5.1.2 and 5.1.3. The second statement is a consequence of the analogous
compatibilities for [ [ p Filg\s TC(X; Zy) (Proposition 5.1.2) and for Filjg HC™ (X)) ([EM23,
Lemma B.8|), and of Lemma 5.1.4. O

Lemma 5.1.7. Let m > 2 be an integer, and X be a qcgs Z[%]—scheme. Then the natural
diagram of filtered spectra

Fil’, KH(X)[1] —— Fil% , Lean TC(X)

[ Jor

FilZg, KH(X)[1] —— Fil}0( Lean TC(X)

where the horizontal maps are defined in Construction 4.5.3, the left map is the map of Propo-
sition 5.1.1, and the right map is the map induced by Construction 5.1.5, is commutative.

Proof. The left map " of this diagram is defined by cdh sheafifying the left Kan extension
from smooth Z[L]-schemes to qcgs Z[L]-schemes of the automorphism ¢™ on Fil}), K(—)[L]
(JEM23, Appendix B|). The result then follows from Construction 4.3.3 and Corollary 5.1.6.

O]

Construction 5.1.8 (Adams operations on filtered K-theory). Let m > 2 be an integer.
Following Definition 4.3.4, if X is a qcgs Z[%]—seheme, the automorphism " of the filtered
spectrum Fil}, . K(X)[1] is the automorphism defined by pullback along the natural cartesian
square of filtered spectra

Filly K(X)[] —— Filf, TC(X)

| !

Fil’y, KH(X)[] —— Fil%,; Lean TC(X),
Fot TC(X) is the automorphism of Construction 5.1.5,
the automorphism "™ of Fily ; Lcan TC(X) is defined by cdh sheafifying the automorphism
™ of Fily,,, TC(—), and the automorphism ™ of Fil}y, KH(X)[X] is the automorphism of

Proposition 5.1.1. Note here that the compatibility between the automorphisms 9™ and the
bottom map is given by Lemma 5.1.7.

where the automorphism ™ of Fil}
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Following Definition 4.3.5, if X is a qcgs derived Z[%]—scheme, the automorphism ™ of the
filtered spectrum Fil},,,K(X)[1] is the automorphism defined by pullback along the natural

mot
cartesian square of filtered spectra

Fill, K(X)[4] —— Fil}, TO(X)

! !

Fill oK (70(X)) [] —— Fillo TC(m0 (X)),

where the automorphisms ¢™ of Fil}, ., TC(X) and Fil} , TC(mo(X)) are defined in Construc-
tion 5.1.5, and the automorphism ¢™ of Fil}, K (mo(X))[1] is the automorphism of the previ-
ous paragraph. Note here that the compatibility between the automorphisms ¢ is automatic
by construction.

Corollary 5.1.9. Let m > 2 be an integer, and X be a gcqs derived Z[%]—scheme. Then for
every integer i € Z, the automorphism ™ induced on the i'™™ graded piece Z[-L1](i)™°%(X)[2d]
of the filtered spectrum Fily, o K(X)[L] is multiplication by m'.

Proof. This is a consequence of Proposition 5.1.1 and Corollary 5.1.6. O

The following lemma explains how to use Adams operations to deduce splitting results on
the rationalisation of certain filtrations.

Lemma 5.1.10. Let
Fil* F'(—) : dSch¥°P — FilSp

be a Zariski sheaf of filtered spectra. For each integer m > 2, let ¢ be a natural multiplicative
automorphism of the filtered spectrum Fil*F(X) on qeqs derived Z[%]—schemes X, satisfying
the following properties:

(i) for every qcqs derived scheme X, the rationalised filtration FiI*F(X;Q) is complete;

(i) for any integers i € Z and m > 2, and every qcqs derived Z[%]—scheme X, the induced
automorphism on the i™™ graded piece gr'F(X) is multiplication by m?;

1

mm/
transformations from ™ o ™ to Y™ as endomorphisms of the filtered spectrum
Fil*F(X), is contractible.

(iii) for any integers m,m’ > 2, and every qcqs derived Z|——]-scheme X, the space of natural

Then for every qcqs derived scheme X, and any integers i,k € Z such that k > i, there exists
a natural equivalence of spectra

Fil'F(X;Q) ~ ( P g/ F(X;Q)) @ Fil"F(X;Q).
i<j<k

Proof. For every spectrum C equipped with a map F : C — C, denote by C¥ the homotopy
fibre of the map F. Let m > 2 be an integer, i, k € Z be integers such that £ > ¢, and X be a
qcgs derived Z[%]—scheme, for which we first construct the desired equivalence of spectra

Fil'F(X;Q) ~ ( P g/ F(X;Q) @ Fil"F(X; Q).
i<j<k
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We first prove that the spectrum (Fil"M F(X; Q))W”_ml is zero. The filtration Fil"™ ™ F(X; Q)
induced on the spectrum Fil'™ F(X:;Q) is complete (hypothesis (7)), so it suffices to prove

that the natural map ‘ A )
P —m' g F(X;Q) — g’ F(X;Q)

is an equivalence of spectra for every integer j > ¢ 4+ 1. For every integer j > ¢ + 1, this
map can be identified with multiplication by the nonzero integer m’(m’~* —1) on the Q-linear
spectrum gr/ F'(X; Q) (hypothesis (i7)), and is thus an equivalence. Taking the fibre of the

natural map " — m® on the fibre sequence of spectra
Fil'" F(X;Q) — Fil'F(X;Q) — gr' F(X;Q),
this implies that the natural map

wm _mi

(FiF(X;Q)"" ™ — (er' F(X;Q))

is an equivalence of spectra. The spectrum (griF(X ;Q))Wﬂ_ml can be naturally identified
with the spectrum gr'F(X; Q) @ gr' F(X;Q)[—1] (hypothesis (ii)), and the induced composite
map

can

g F(X;Q) — (g F(X;Q)"" ™™ =5 (FTF(X; Q)Y ™™ % Rl F(X; Q)
induces a natural splitting of spectra
Fil'F(X;Q) ~ gr' F(X;Q) ® Fil' ' F(X; Q).
By induction, this implies that for every integer k > i, there is a natural equivalence of spectra

Fil'F(X;Q) ~ ( P g/ F(X;Q) @ Fil"F(X; Q).
i<j<k

We now prove the desired equivalence of spectra for a general qcqs derived scheme X.
The presheaf Fil* F(—) being a Zariski sheaf of filtered spectra, the presheaves Fil'F(—;Q)
and (®i<j<k g’ F(—;Q)) ® Fil*F(—;Q) are Zariski sheaves of spectra. It thus suffices to
construct compatible equivalences of spectra

Fil F(XZ[%],Q) ~ ( @ ngF(XZ[%]aQ)) @ Fil F(XZ[%],Q)

1<j<k

for all integers m > 2. The construction of this equivalence for each integer m > 2, which
depends on the map ™ : Fil*F(XZ[l}) — Fil*F(XZ[l]), is the first part of this proof. Let
m,m’ > 2 be integers. The compati@ility between th7en constructions of the equivalences for
m, m’, and mm’ only depend on the choices, for every integer i € Z, of the identification of
the maps ™, ¥, and ™™ on the i*" graded piece with multiplication by m?, (m')?, and
(mm’)? respectively. These choices are compatible up to homotopy (hypothesis (7)), which
concludes the proof. O

Remark 5.1.11. Lemma 5.1.10 can also be proved, with the same proof, for Zariski sheaves of
filtered spectra Fil* F'(—) that are defined on qcgs schemes, on qcgs schemes of finite valuative
dimension, on noetherian schemes of finite dimension, or on smooth schemes over a given
commutative ring.
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Remark 5.1.12. Hypothesis (i7i) in Lemma 5.1.10 follows from the construction of the Adams
operations on the filtrations Filjj, K(—) and FiljjxgkHC™ (=), when these are defined. This
hypothesis (ii7) then follows formally for all the other filtrations considered in this section.

Proposition 5.1.13. Let
Fil*F(—) : Sch9°%% — FilSp

be a finitary Zariski sheaf of filtered spectra. For each integer m > 2, let Y™ be a natural mul-
tiplicative automorphism of the filtered spectrum Fil*F(X) on geqs Z[%]—schemes X, satisfying
the following properties:

(i) for every noetherian scheme X of finite dimension, there exists an integer d € 7 such
that for every integer i € Z, the spectrum Fil'F(X;Q) is in cohomological degrees at
most —i + d;

(ii) for any integers i € Z and m > 2, and every qcqs Z[=]-scheme X, the induced automor-
phism on the it" graded piece gr' F(X) is multiplication by m’;

(iii) for any integers m,m' > 2, and every qcqs Z[ ;]-scheme X, the space of natural

transformations from ™ o ™ to Y™™ as endomorphzsms of the filtered spectrum
Fil*F(X), is contractible.

Then for every qcqs scheme X, there exists a natural multiplicative equivalence of filtered
spectra

Fil*F(X;Q) ~ (P e’ F(X;Q).

Jj>*

Proof. By finitariness, it suffices to prove the result on noetherian schemes of finite dimen-
sion. Hypothesis (i) implies that the filtration Fil*F(X;Q) is complete on such schemes X.
Lemma 5.1.10 and Remark 5.1.11 then imply that there exist natural equivalences of spectra

Fil'F(X;Q) ~ ( @i<jar g F(X;Q)) @ Fil*F(X; Q)

for all integers i,k € Z such that k > 4. Again using completeness, taking the limit over
k — 400 induces a natural equivalence of spectra

Fil'F(X; Q) ~ [[ e F(X; Q).
i>i

Hypothesis (i) then implies that, at each cohomological degree, only a finite number of terms
in the previous product are nonzero. In particular, the previous equivalence can be rewritten
as a natural equivalence of spectra

Fil'F(X;Q) ~ P e’ F(X;Q),
i

which induces the desired multiplicative equivalence of filtered spectra. O

Remark 5.1.14. Let X be a qcqgs derived scheme. The argument of Proposition 5.1.13, where
the necessary hypotheses are satisfied by Corollary 5.1.6 and Proposition 3.3.8, implies that
there is a natural multiplicative equivalence of filtered spectra

motTC X @ HQ TC ]

Jj>*
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5.2 Rigid-analytic HKR filtrations

In this section, we define variants, which we call rigid-analytic, of the HKR filtrations. We
start by explaining the relevant objects at the level of Hochschild homology.

For every qcqs derived scheme X, there is a natural S'-equivariant arithmetic fracture
square

HH(X) ——  HH(Xq/Q)

l l (5.1)

Hpe]P HH(X§ Zp) I H;GIP’ HH(X§ Qp)

in the derived category D(Z), where we use base change for Hochschild homology for the top
right corner, and the convention adopted in the Notation part for the bottom left and bottom
right corners. Applying homotopy fixed points (—)hSl for the S'-action induces a natural
cartesian square

HC™(X) ——  HC™ (Xg/Q)

| |

[yer HC™ (X3 Z,) —— ([Thep HH(X; Q)"

in the derived category D(Z), where we use that taking homotopy fixed points (—)hs1 com-

mutes with limits for the bottom left corner. We call rigid-analytic variant of Hochschild
homology and of negative cyclic homology the bottom right corners of the previous two carte-
sian squares, respectively. This terminology should find some justification in Section 5.3.
Following Section 3.1, we use the previous cartesian square to introduce a new HKR filtration

1
on this rigid-analytic variant of negative cyclic homology (H;EP HH(X; Qp))hs :

Definition 5.2.1 (HKR filtration on rigid-analytic HC™). The HKR filtration on rigid-
analytic negative cyclic homology of qcgs derived schemes is the functor

’ 1
Filiier ([ HH(—:@,))" : dSchaewser —; Filsp
peP

defined by the cocartesian square

FilfjxrHC™ (=) —————— FilpgrHC™ (—/ Q)

| |

. _ . hSt
[T,ep Filfig HC™ (= Zy) —— Filjig (T,ep HH(—Qp)) ™

Remark 5.2.2. Let p be a prime number, and X be a qcqgs derived scheme over Z,. The
natural map

[ FilfixrHC ™ (X;Z¢) — FiljigpHC ™ (X; Zy)
leP

is then an equivalence of filtered spectra, and we then denote by Filfrgr HH(X ;Qp)hs1 the
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filtered spectrum Filfjxp [Tjcp HH(X; Q,)"S". In particular, the natural commutative diagram

FiljixrHC™ (X) — FilipHC™ (Xo/ Q)

! !

FilicrHC™ (X;Z,) —— Filig HH(X; Q)"
is a cartesian square of filtered spectra.

Similarly, one can apply homotopy orbits (=), g1 for the S'-action to the arithmetic fracture
square for Hochschild homology (5.1). The functor (—),q: does not commute with limits, but
the S'-action on the product [I,ep HH(X:Zy) is diagonal. Using the natural fibre sequence

HH(X;Z,) — HH(X;Z,) 1 — HH(X;Z,),41[2]

in the derived category D(Z) and the fact that the functors HH(—;Z,) and HH(—;Z,),q1 are
in non-positive cohomological degrees on animated commutative rings, one can prove that the
complex HH(X;Zy,);q1 € D(Z) is derived p-complete, hence the natural map

HC (X Zp) — HH(X; Zp) g1

is an equivalence in the derived category D(Z). In particular, applying homotopy orbits (—);,q1
to the arithmetic fracture square for Hochschild homology (5.1) induces a natural cartesian
square

HC(X) HC(Xq/ Q)

! |

[Lep HO(X3Zp) —— ([Tpep HH(X; Q) 1

in the derived category D(Z). We use this cartesian square to introduce the following HKR
filtration on the bottom right corner.

Definition 5.2.3 (HKR filtration on rigid-analytic HC). The HKR filtration on rigid-analytic
cyclic homology of qcgs derived schemes is the functor

Filfjer ([ HH(—Q,)) 1 : dSchP —; FilSp
peP

defined by the cocartesian square

Fﬂ*HKRHC(_) FﬂﬁKRHC(—Q/ Q)

J |

HpEP Filigp HC(— Zp) —— FﬂfIKR( H;ep HH(—; Qp)) RSl
Remark 5.2.4. Taking homotopy orbits (—);q1 commutes with colimits, so the natural map
Filiixr HC(X; Q) — Filixg HC(Xq/ Q)
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is an equivalence in the filtered derived category DF(Q). Upon applying rationalisation to
the natural cartesian square

Filfxr HO(X) Filixr HC(Xo/ Q)

! |

[1,er Filiikr HC(X; Zy) —— Filjikg ( H;ep HH(X;Qp)) 515
this implies that the natural map

[T FiliikrHC(X; Q) == (]| Filiixg HC(X; Zp)) o — Filficr ([ [ HH(X:Qp)) 50
pEP peP pEP

is an equivalence in the filtered derived category DF(Q).

Remark 5.2.5. Let p be a prime number, and X be a qcgs derived scheme over Z,). As in
Remark 5.2.2, we denote the filtered complex Filfjyp ([Tjep HH(X; Q) g1 by

Filiir HH(X; Q)51 € DF(Q).
In particular, the natural map
is an equivalence in the filtered derived category DF(Q) by Remark 5.2.4.

8! g by definition the cofibre of the norm map

(st [1] = (—)"S".

Applying the Tate construction (—)tSl to the arithmetic fracture square for Hochschild ho-
mology (5.1) then induces a natural cartesian square

The Tate construction (—)

HP(X) HP(Xq/ Q)

tS
HpEIP’ HP(X5 Zp) — ( H;G]P HH(X§ Qp))
in the derived category D(Z), where we use the analogous cartesian squares for HC™ and HC

to identify the bottom left corner.

Definition 5.2.6 (HKR filtration on rigid-analytic HP). The HKR filtration on rigid-analytic
periodic cyclic homology of qcgs derived schemes is the functor

, 1
Filiyer ([ HH(—:Q,))"™ : dSchaP —; FilSp
peP

defined by the cocartesian square

Filfjgp HP(—) Filjgxr HP (—q/ Q)

| |

. tS
HpE[P’ Filjgp HP (= Zp) —— FIIHKR( HpEﬂJ’ H(—; Qp))
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Remark 5.2.7. Let p be a prime number, and X be a qcgs derived scheme over Z,). As in
1
Remarks 5.2.2 and 5.2.5, we denote the filtered complex Filfjxp ( [T,ep HH(X; Qg))ts by
. 1
Filjixg HH(X;Q,)"™ € DF(Q).
In particular, the natural commutative diagram

Filfgp HP (X) ——— FiliggHP (Xo/ Q)

| !

Filiicg HP(X; Z,) —— Fillep HH(X;Q,)"S

is a cartesian square of filtered spectra.

Lemma 5.2.8. Let X be a qcqs derived scheme. Then the natural commutative diagram

. _ . hSt
H;e]}” Fﬂ*HKRHC (X; @p) — FII*HKR( H;ep HH(X; Qp))

| |

. . st
H;eIF’ Filjr HP (X Qp) — Filfixg ( H;oeIP HH(X; Qp))

is a cartesian square of filtered spectra.

Proof. There is a natural commutative diagram of filtered spectra

H;ep FilixrHC™ (X;Q,) —— H;@ FilixrHP(X;Q,) —— H;ep Fili R HO(X; Q,) 2]

~ ~ \L

- hst - tst e
FlIHKR( H;ep HH(X; @p)) - FﬂHKR( H;ep HH(X; @p)) - FIIHKlR ( H;ep HH(X; Qp)) hst 2]

where, by definition of the bottom terms (Definitions 5.2.1, 5.2.6, and 5.2.3), the horizon-
tal lines are fibre sequences. In this diagram, the right vertical map is an equivalence (Re-
mark 5.2.4), so the left square is a cartesian square. O

Lemma 5.2.9. Let X be a qcgs derived scheme. Then the filtrations

’ A 1 ’ X ’ . 1
H (FﬂflKRHH(X;@p))hS ; H (Filfkp HH(X;Qp)) 1, and H (Fﬂ*HKRHH(X?@p))tS
pEP peP peP

are complete.

Proof. The HKR filtrations on HC™ (X)), HC(X), and HP(X) are complete by Lemma 3.1.9.
The product on prime numbers p of the p-completions of these filtrations are also complete,
since p-completions and products commute with limits. Similarly, the HKR filtrations on
HC™ (Xo/Q), HC(Xg/Q), and HP(Xq/Q) are complete by [Ant19, Theorem 1.1]. The
rigid-analytic HKR filtrations on HC™, HC, and HP are thus also complete, as pushouts of
three complete filtrations. O

We now describe the graded pieces of these rigid-analytic HKR filtrations, by analogy with
the classical HKR filtrations.

67



Definition 5.2.10 (Rigid-analytic Hodge-complete derived de Rham cohomology). For every
integer ¢ € Z, the functor

RFZar< II m_% /Qp) . dSch99:°P s D((Q)
peP

is defined as the shifted graded piece of the HKR filtration on H;GIP’ HH(—; Qp)hslz
;= ZZ ; / hSl .
RFZar<—, H m—(@p/@p> = grikr ( H HH(—;Q,))™ [-2i].
p€EP peP
Remark 5.2.11. Let X be a qcgs derived scheme, and ¢ € Z be an integer. By Definition 5.2.1,

there is a natural cartesian square

RTy ( X,ﬁsz) Ry (X Lo /@)

= >1 A / >0
R0 (X, Ty (CO7)2)) —— Rl (X, Tjer L, /)
in the derived category D(Z), which can serve as an alternative definition for the bottom right
term.

Remark 5.2.12. Let X be a qcgs derived scheme, and ¢ € Z be an integer. The complexes

R ! <i
RFZar (X, H M_Qp/(@p> and RFZar <X7 H m,(@p/@p)
peP peP

are defined as in Definition 5.2.10, where (—)S" is replaced by (—)®" and (—) nsl respectively.
In particular, the natural fibre sequence

’ 1 .. ’ 1 ik ’
Filiuer ([ HE(X:Q,))"™ = Fileg ([T HEG Q)™ = Fitgd (] HEX; Q)6 2]
peP peP peP

induces a natural fibre sequence

B0 (X, T] 007, g, ) — RUzee (X J] L0, jq,) — Rz (X [T Lo o )
peP peP peP

where the right term is naturally identified with the complex

(TT ATz (x LQ<;Z)A))Q € D(Q)

peP
by Remark 5.2.4.

Remark 5.2.13. Let p be a prime number, X be a qcgs derived scheme over Z(,), and i € Z
be an integer. Following Remarks 5.2.2, 5.2.5, and 5.2.7, we denote the complexes

Al (X H L0, ja,)» Az (X J] T2 /,), and Alz (X J]'L0% o,
LeP 7P
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by

Tork e <i
RFZar (X7 Mf@p/ Qp) ’ RFZar (X, Mf(@p/ Qp) ) and RFZar (X7 M_QP/QP)

respectively. In particular, by Remark 5.2.12, there is a natural fibre sequence

Tork e <i
RPzar(X,LO°, /q,) — Rlzar(X,LQ_, /q,) — Rlza(X,LOS) /o )

in the derived category D(Q,), where the right term is naturally identified with the complex

RUz4 (X, (LQZ ) [2]) € D(Qy).

In the following result, we reformulate the motivic filtration on topological cyclic homology
of Definition 3.3.3 in terms of the rigid-analytic HKR filtration on negative cyclic homology.
This can be interpreted as a filtered arithmetic fracture square for topological cyclic homology.

Proposition 5.2.14. Let X be gcqs derived scheme. Then the natural commutative diagram

Fil, . TC(X) Fill g HC™ (Xo/ Q)

mot

| !

hst
Hpe]P Filgyus TC(X; Zp) —— Filjikg ( H;e]p HH(X; Qp))

is a cartesian square of filtered spectra.
Proof. This is a consequence of Definitions 3.3.3 and 5.2.1. O

Corollary 5.2.15. Let X be a qcgs scheme. Then the natural commutative diagram

(Lean Fillyoy TC(—)) (X) (Ledn Filfig HC™ (—o/ Q) (X)

! !

(Lean Tlpep Filins TC(=325) ) (X) —— (Lean Filfir (TTper HH(=5 @)™ ) (X),

15 a cartesian square of filtered spectra.

Proof. This is a consequence of Proposition 5.2.14, which we restrict to qcgs schemes and then
sheafify for the cdh topology. O

Corollary 5.2.16. Let X be a qcgs derived scheme. Then for every integer i € Z, the natural
commutative diagram

—~>1
Z(0)TC(X) > Rl (X.LO7, )

J !

. —~ >i
[yes Zp()™5(X) —— Rz (X, s EO7, /g, ).

is a cartesian square in the derived category D(Z).

Proof. This is a direct consequence of Proposition 5.2.14. O
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5.3 A rigid-analytic Goodwillie theorem

In this section, we prove that the rigid-analytic version of periodic cyclic homology is
a truncating invariant (Theorem 5.3.9). We first recall the definition of Hochschild, cyclic,
negative cyclic, and periodic cyclic homologies of a general cyclic object.

Definition 5.3.1 (Cyclic object). Let C be a category, or an co-category. The cyclic category A
is the category with objects [n] indexed by non-negative integers n, and morphisms [m| — [n]
given by homotopy classes of degree one increasing maps from S! to itself that map the
subgroup Z /(m + 1) to Z /(n 4+ 1). A cyclic object in C is then a contravariant functor from
the cyclic category A to C.

Notation 5.3.2 (Hochschild homology of a cyclic object). Let A be an abelian category with
exact infinite products, and X, be a cyclic object in A. Following [Goo85, Section II] (see also
[Mor18b, Section 2.2]), one can define the Hochschild homology HH(X,) of X,, as an object
of the derived category D(A) equipped with a natural S'-action. The cyclic, negative cyclic,
and periodic cyclic homologies of the cyclic object X, are then defined by

HO(X,) := HH(X,),q1, HC™(X,) := HH(X,)"S", and HP(X,) := HH(X,)"s .
In this context, there is moreover a natural map
s : HC(X,)[—2] — HC(X.)

in the derived category D(A), from which periodic cyclic homology HP(X,) € D(A) can be
recovered by the formula

HP(X,) ~ lim ( S HO(X.)[—4] =5 HO(XW)[-2] - HC(X.)).

We now apply the previous general construction to define Hochschild homology and its
variants on solid associative derived algebras over a solid commutative ring.

Definition 5.3.3 (Solid Hochschild homology). Let k be a solid commutative ring, and R be
a connective solid k-Ei-algebra. The simplicial object

- =2 R, R, R=S R R=R

has a natural structure of cyclic object in the derived oco-category of solid k-modules (Defi-
nition 5.3.1), induced by permutation of the tensor factors. We write HH(R/k), HC(R/k),
HC~(R/k) and HP(R/k) for the Hochschild, cyclic, negative cyclic and periodic cyclic ho-
mologies of this cyclic object (Notation 5.3.2). If k = Z, we simply denote these by HH(R),
HC(R), HC™(R) and HP(R).

For f : R — R’ a map of Z-E;-algebras and F : E;-Alg, — D(Z) a functor, we denote
by F(f) € D(Z) the cofibre of the map F(R) — F(R'). More generally, for f : R - R’ a
map of solid Z-E;-algebras and F' a D(Solid)-valued functor on solid Z-E;-algebras, denote by
F(f) € D(Solid) the cofibre of the map F(R) — F(R').

The following result is [Goo85, Theorem IV.2.6]. More precisely, this result of Goodwillie
is for maps of simplicial Z-algebras, and the underlying co-category of simplicial Z-algebras is
naturally identified with the oo-category of connective Z-E;-algebras, by the monoidal Dold-
Kan correspondence and [Lurl7, Proposition 7.1.4.6].
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Theorem 5.3.4 (|[Goo85]). Let f : R — R’ be a 1-connected map of connective Z-E;-algebras.
For every integer n > 0, the natural map

nls" : HCuqon(f) — HCL(f)

1s the zero map for x <n — 1.

Goodwillie’s proof of Theorem 5.3.4, although stated with respect to the abelian category
of Z-modules (or k-modules, for k an arbitrary discrete commutative ring), is valid for any
abelian symmetric monoidal category with exact infinite products (see Notation 5.3.2 and
Definition 5.3.3). One can thus prove the following generalisation of the previous result.

Theorem 5.3.5. Let f : R — R’ be a 1-connected map of connective solid 7-E1-algebras.
Then for every integer n > 0, the natural map

nls" : HC(f)[-2n] — HC(f),

in the derived category D(Solid), is the zero map on cohomology groups' in degrees at least
—n+ 1.

Proof. To prove the result for simplicial solid Z-algebras, it suffices to prove that the abelian
category of solid abelian groups is symmetric monoidal, and has exact infinite products. The
first claim is |[CS19, Theorem 6.2 (i)]. The second claim is a consequence of the fact that
the abelian category of condensed abelian groups has exact arbitrary products ([CS19, The-
orem 1.10]), and that the category of solid abelian groups, as a subcategory of the abelian
category of condensed abelian groups, is stable under all limits (|[CS19, Theorem 5.8 (¢)]). We
omit the proof of the analogue of [Lurl7, Proposition 7.1.4.6] to pass from simplicial solid
Z-algebras to connective solid Z-E;-algebras. O

For the rest of this section, and following the convention of condensed mathematics, a
condensed object is called discrete if its condensed structure is trivial. Given a classical object
X, we denote by X the associated discrete condensed object.

Lemma 5.3.6. Let R be a connective Z-Eq-algebra, and p be a prime number. Then the

natural map
HH(R) — HH(R)),

in the derived category D(Solid), exhibits the target as the p-completion of the source. In
particular, there is a natural equivalence

HH(R)[}] — HH(R}[5)/ Q)

in the derived category D(Solid).

Proof. The solid tensor product of p-complete solid connective Z-Ei-algebras is p-complete,
and so is the totalisation of a complex of p-complete solid connective Z-modules ([CS21]). In
particular, the complex @(ﬁ;\), as a totalisation of tensor powers of the p-complete solid

!By this, we mean that it is the zero map as a map of solid abelian groups, i.e., that it factors through
the zero object of the abelian category of solid abelian groups. Note that the underlying abelian group of
a nonzero solid abelian group can be zero (e.g., the quotient of Z, with the p-adic topology by Z, with the
discrete topology). In particular, being zero for a map of solid abelian groups cannot be detected on the
underlying map of abelian groups.
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connective Z-E;-algebra EI/,\, is p-complete. By the derived Nakayama lemma ([Stal9, 091N],
see also [CS21]), it thus suffices to prove the first statement modulo p. By base change for
Hochschild homology (resp. solid Hochschild homology), this is equivalent to proving that the
natural map

HH((R/p)/ F,) — HH((R/p)/F,)

is an equivalence in the derived category D(Solid). The desired equivalence is then a conse-
quence of the fact that reduction modulo p and tensor products commute with the functor (—)
from Z-Ei-algebras to solid Z-E;-algebras. The second statement follows from the fact that
rationalisation commutes with the functor

(=) : D(Z) — D(Solid),

and base change for solid Hochschild homology. O

Proposition 5.3.7. Let R be a connective Z-Eq-algebra, and p be a prime number. Then the
natural map
HC(R) — HC(R)),

in the derived category D(Solid), exhibits the target as the p-completion of the source. In
particular, there is a natural equivalence

HCO(R)" (3] — HC(R)[1]/ Q)

in the derived category D(Solid).

Proof. The first statement is a consequence of Lemma 5.3.6, and the description [Mor18b,
Definition 2.19] of (solid) cyclic homology in terms of the cyclic object HH(R) (resp. HH(R))))
in the stable co-category D(Z) (resp. D(Solid)). The second statement follows from the fact
that rationalisation commutes direct sums (or equivalently, with the functor (—),q1) and with
the functor (—) from the derived category D(Z) to the derived category D(Solid). O

Corollary 5.3.8. Let f: R — R’ a 1-connected map of connective Z-Eq-algebras. Then for
every integer n > 0, the map

nls™ : H/HC(f;Qp)[—Zn] — HIHC(f;Qp)v

peP peP
in the derived category D(Q), is the zero map on cohomology groups in degrees at least —m+1.

Proof. For every prime number p, the natural map
nls™ : @(i;\)[an] — E(iﬁ),

in the derived category D(Solid), is zero in cohomological degrees at least —n + 1 (Theo-
rem 5.3.5). Forgetting the condensed structure and taking the product over all primes p, this
implies that the natural map

nls™ HHC(f;Zp)[—Qn] — HHC<f§Zp)7

peP peP

in the derived category D(Z), is zero in cohomological degrees at least —n + 1 (Proposi-
tion 5.3.7). Taking rationalisation then implies the desired result. O
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Theorem 5.3.9 (Rigid-analytic HP is truncating). The construction

R+ (1‘[’1{1{(113;<@p))ts1 = ((HHH(R; Zp)>Q)tSI,
peP

pelP

from connective Z-E;-algebras R to the derived category D(Q), is truncating. More precisely,
there exists a truncating invariant E : Catggrf — D(Q) such that the previous construction is
the composite R +— Perf(R) — E(Perf(R)).

Proof. Let f: R — R’ be a 1-connected map of connective Z-E;-algebras. We want to prove
that the natural map

1

(11 mur0,)” — ([] ur:,)”

peP peP

tst

is an equivalence, or equivalently that its homotopy cofibre (H;GP HH(f; (@p)) vanishes in

the derived category D(Q). For every integer n > 0, the natural map

nls™ : H/HC(f;Qp)[—QTL] — H,HC(fSQp)

pEP peP

is the zero map in cohomological degrees at least —n + 1 (Corollary 5.3.8). This map is
Q-linear, so the map

s*: [T BC(f: Q)20 — [ HC(f;Q,)

pEP peP

is also the zero map in cohomological degrees at least —n + 1. Taking the inverse limit over
integers n > 0 and using the equivalence at the end of Notation 5.3.2 then implies that the

complex (H;GP HH(f; Qp))ts1 is zero in the derived category D(Q). O

5.4 Rigid-analytic derived de Rham cohomology is a cdh sheaf

The aim of this section is to prove the cdh descent result Corollary 5.4.5, which is a
rigid-analytic analogue of the following result, used in [EM23] to prove Theorem 5.0.2 in
characteristic zero.

Proposition 5.4.1 ([CHSWO08, Bal23|). For every integer i € 7, the presheaf
Filjjep HP(—g/ Q) : Sch®°P — D(Q)
15 a cdh sheaf.
Proof. This is a consequence of [LT19, Corollary A.6] and [Bal23, Theorem 1.3]. O

We first extract the following cdh descent result from Theorem 5.3.9. Note that this
argument uses the theory of truncating invariants, as developed by Land—Tamme [LT19], in a
crucial way.
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Corollary 5.4.2. The presheaf

1

(T =, Qp)fs : Sch4°eP —; D(Q)

peEP
s a cdh sheaf.
Proof. This is a consequence of Theorem 5.3.9 and [LT19, Theorem EJ. O

We then adapt the main splitting result of [Bal23| on periodic cyclic homology over Q to
our rigid-analytic setting.

Proposition 5.4.3. Let X be a qegs derived scheme. Then there exists a natural equivalence

( H / HH(X; Qp))tSI = H RI'zar <X7 H / @*@p/@p) [24]
1€Z

peP peP
in the derived category D(Q).

Proof. We adapt the proof of [Bal23, Theorem 3.4], which proves a similar decomposition for
periodic cyclic homology over Q. The crucial point to adapt this proof is to note that there is
a natural equivalence

H ' HH(X; Qp) =~ @ RFZar <X7 ( H(Li/z);}\)(@> [Z]

peP 1€EN pEP

in the derived category D(Q) (see [Bal23, Remark 2.8]|). This is the rigid-analytic analogue
of |[Bal23, Proposition 2.7], and it is for instance a consequence of Lemma 5.1.10 applied to
the N-indexed filtration Filjjxg H;eﬂb HH(—;Q,). By [Bal23, Theorem 3.2|, this implies that
there is a natural equivalence

. [ . ’ SN~ . f tSt

(Fﬂ*HRFZar(X,H L, sq,) @ Fil([]' @) ) Sl Fﬂ*T(H HH(X;@,,))
peP peP peP
in the filtered derived category DF(Q), where the tensor product ® is the Day convolution
tensor product, Filf; is the Hodge filtration on derived de Rham cohomology, and (—)" is the
completion with respect to the associated filtration. By a degree argument explained in [Bal23,
1
proof of Theorem 3.4], the filtered object Fil} ( H;GP Q, )ts carries a canonical splitting, which
induces an equivalence

1
I1 (Fﬂ*H”RrZar (x 'L, /Qp)) [2i] = Fil%, ( ] HH(X; Qp))ts
i€Z peP peP
in the filtered derived category DF(Q).
It then suffices to prove that the desired result is indeed obtained by taking the colimit
over x — —oo of the previous equivalence. Following [Bal23, proof of Theorem 3.4], the result
for the source is a formal consequence of the connectivity estimate for the functor

(- T )
peP

on animated commutative ring, which is itself a consequence of Remark 5.2.4, and of the
classical connectivity estimate for the HKR filtration on cyclic homology (Proposition 3.1.8).
The result for the target is a consequence of the fact that the Tate filtration is always exhaustive
(|Bal23, Proposition B.6]). O
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Corollary 5.4.4. The presheaf
RFZM(—, [T, /@p) . Sch®°a°P __, D((Q)
peP

1s a cdh sheaf.

Proof. This is a consequence of the natural splitting Proposition 5.4.3, and of the cdh descent
result Corollary 5.4.2. O

Corollary 5.4.5. For every integer © € Z, the presheaf
14 ! ts! qcgs,op
Filiger ([ HH(=,@,)) " : Sch®» — D(Q)
peP

s a cdh sheaf.

1
Proof. The HKR filtration on (H;oelP’ HH(—; Qp))ts is complete by Lemma 5.2.9, so it suffices
to prove the result on graded pieces. The result is then Corollary 5.4.4. 0

5.5 The Atiyah—Hirzebruch spectral sequence
In this section, we use the results of the previous sections to prove Theorem C.

Proposition 5.5.1 (The motivic filtration is N-indexed). Let X be a qcgs derived scheme.
Then for every integer i < 0, the natural map

Fil’ K(X) — K(X)

mot

is an equivalence of spectra. In particular, the motivic filtration Fil K(X) on K(X) is
exhaustive.

Proof. First assume that X is a qcgs classical scheme. The filtration Fil%y, KH(X) is N-indexed
by [BEM24], so it suffices to prove that the filtration

mot mot

coﬁb(Fil* TC(X) — (LeanFil TC)(X))

is N-indexed (Definition 4.3.4). To prove this, we use Proposition 5.2.14 and Corollary 5.2.15.
For every prime number p, the filtration Filgy;qTC(—;Z,) is N-indexed on qcgs schemes
(|BMS19, Theorem 7.2 (1)] and Theorem 3.2.11 (2)). In particular, the filtration

cofib ( T Filias TC(X;5 Zy) — (Lean [ ] Filius TC(—5 Zp)) (X ))
pEP peP

is N-indexed. The presheaf FilfjxrHP(—q/Q) is a cdh sheaf on qcgs schemes (Proposi-
tion 5.4.1), and the filtration Filjjxg HC(Xg/ Q) is N-indexed by construction. In particular,
the filtration

cofib (Filfjxr HC™ (Xg/ @) — (LeanFilica HO™ (—o/ @) (X))
is naturally identified with the filtration
coib (Piljl HC(Xg/ @) — (Lan Pl HO(—/ @) (X)) [1],
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1
which is N-indexed. Similarly, the presheaf FllHKR(Hpe]P’ (—;Qp))ts is a cdh sheaf on

qcgs schemes (Corollary 5.4.5), and the filtration FllHKR(HPGP HH(_;QP))hsl is N-indexed
(Remark 5.2.4). In particular, the filtration

. / hSt . / st
COﬁb(Fﬂ*HKR(H HH(X;@p)) - (LcthllﬁKR(H HH(_;Qp))t )(X)>
peP peP
is naturally identified with the filtration
cofib (Fil*H}gR( 1 HHX;Q,) 60 — (LeanFiligs ([ [ HH(=5Q,)) 1) (X )) 1],
peP peP

which is N-indexed.
Assume now that X is a general qcgs derived scheme. By Definition 4.3.5 and the previous
paragraph, it suffices to prove that the filtration

cofib (FﬂmotTC( ) —s FﬂmotTC(wo(X)))

is N-indexed. To prove this, we use Proposition 5.2.14. For every prime number p, the filtration
FilisTC(X; Z,) is N-indexed on polynomial Z-algebras by the previous paragraph, and hence
on general qcgs derived schemes by Zariski descent and Theorem 3.2.11 (2). In particular, the
filtration

coﬁb( [ Filis TC(X;: Z,) —s [ Filfius TC(mo(X); Zp))
peP peP

is N-indexed. The filtration
cofib (Fﬂf{KRHC_(XQ/@) — Filiigpr HC™ (m0(X )@/ @))
is N-indexed by [EM23, Theorem 4.39]. Similarly, using Theorem 5.3.9 and Proposition 5.4.3
as in the proof of Corollary 5.4.5, the natural map
- , ts? - , st
FﬂHKR( H HH(X; Qp)) — FﬂHKR( H HH (7o (X); Qp))
peP peP
is an equivalence of filtered spectra. In particular, the filtration
, hSt , hst
cofib(Filfn ([ HH(X:@,)) " — Filier (] HH(mo(X):@,)) )
peP peP

is naturally identified with the filtration

cofib (Filfyer ( [ HH(X: Q)  — Filir ( [] HH(mo(X): Q) )11,

peP peP
which is N-indexed by Remark 5.2.4. O

Corollary 5.5.2. Let X be a qcqs scheme. Then for every integer i < 0, the motivic complex
Z(i)™Y(X) € D(X) is zero.

Proof. This is a direct consequence of Proposition 5.5.1. O
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Proposition 5.5.3. Let d > 0 be an integer, and X be a gcgs scheme of valuative dimension
at most d. Then for every integer i € Z, the fibre of the natural map of spectra

Fil: , TC(X) — Fil’,o; Lean TC(X)

s in cohomological degrees at most —i + d + 2. In particular, the filtration formed by these
spectra for all integers i € 7Z, and the rationalisation of this filtration, are complete.

Proof. The last statement is a consequence of the first, as the connectivity bound for a given
filtration induces the same connectivity bound for its rationalisation. For the connectivity
bound, we use Proposition 5.2.14 and Corollary 5.2.15 to compare the spectra Fil! , TC(X)
and Fil’, o, Lean TC(X).

The presheaf [[ p Fil)sTC(X;Z,) takes values in cohomological degrees at most —i + 1
on affine schemes (Lemma 3.2.7). In particular, the fibre of the natural map of spectra

[ Filhs TC(X5 Zy) — (Lean [ | Filhas TC(—3Z,)) (X)
peP peP

is in cohomological degrees at most —i 4+ d + 2, as each term is in cohomological degrees at
most —i +d + 1 (|[CM21, Theorem 3.12| and [EHIK21, Theorem 2.4.15]).
By Proposition 5.4.1, the fibre of the natural map of spectra

Fill g HC™ (Xg/ Q) — (LeanFillikg HC™ (—g/ Q) (X)

is naturally identified with the fibre of the natural map of spectra
Filigr HC(Xq/ Q)[1] — (LeanF il HC(—a/ Q)[1]) (X).

The presheaf Filii /g HC(—g/ Q) takes values in cohomological degrees at most —i —1 (e.g., by
Lemma 3.1.9 and the description of the graded pieces Remark 3.1.7), so the previous fibre
is in cohomological degrees at most —i +d — 1 (|CM21, Theorem 3.12| and [EHIK21, Theo-
rem 2.4.15]).

Similarly, by Corollary 5.4.5, the fibre of the natural map of spectra

Filfcn ([T HHOG Q)" — (LeanFilfuge (T] HH(=,))" ) ()

pEP peP

is naturally identified with the fibre of the natural map of spectra

Fllﬁ}gR( H ,HH(X, Qp))h81 [1] — ( cthlli{KlR H HH Qp hSl[ ]) (X)
peP peP

The presheaf FllﬁKlR( H;GP HH(—;Q,)) ,s1 takes values in cohomological degrees at most —i—1
(Remark 5.2.4), so the previous fibre is in cohomological degrees at most —i +d — 1 ([CM21,
Theorem 3.12] and [EHIK21, Theorem 2.4.15]).

The previous three connectivity results imply the desired result. O

Proposition 5.5.4 (Completeness of the motivic filtration). Let d > 0 be an integer, and X be
a qeqs scheme of valuative dimension at most d. Then for every integer i € Z, the spectrum
Fil? t ot K(X) is in cohomological degrees at most —i+d+2. In particular, the motivic filtration
Fily o« K(X), and its rationalisation Fil% K(X;Q), are complete.

mot
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Proof. As in the proof of Proposition 5.5.3, the last statement is a consequence of the first.
By Definition 4.3.4, there is a natural fibre sequence of spectra

K(X) — Fil*y, KH(X).

mot

fib (Fﬂ;‘mtTC(X) — Fﬂ;‘thcthC(X)> S Tl

The left term of this fibre sequence is in cohomological degrees at most —i + d + 2 by Propo-
sition 5.5.3, and the right term is in cohomological degrees at most —i + d by [BEM24], hence
the desired result. O

Remark 5.5.5 (Non-noetherian Weibel vanishing). Let X be a qcqs scheme of valuative
dimension at most d. The same argument as in Proposition 5.5.4 implies that the negative
K-groups K_,,(X) vanish for integers n > d + 2. This is a weak form of Weibel vanishing in
the non-noetherian case.

Remark 5.5.6 (Motivic Weibel vanishing). Let X be a qcqgs scheme of dimension at most d.
Proposition 5.5.4 implies that for every integer ¢ € Z, the motivic complex Z(i)™*(X) € D(Z)
is in degrees at most i +d 4+ 2. When X is noetherian (in which case the valuative and Krull
dimensions coincide), we will prove that it is even in degrees at most i + d (Theorem 10.3.3).

Remark 5.5.7. A map of finitary presheaves of filtered spectra on qcgs schemes, which are
filtration-complete on finite-dimensional noetherian schemes, is an equivalence if and only if it
is an equivalence on graded pieces. In light of Propositions 5.5.13 and 5.5.4, we will formulate
most of our results at the level of motivic cohomology, although they can often be promoted
to results on the associated filtered spectra.

Corollary 5.5.8 (Completeness of Fil}, . Lcgn TC). Let X be a qcgs scheme of finite valuative
dimension. Then the filtrations Fil} Lean TC(X) and Fil . Lean TC(X; Q) are complete.

Proof. This is a consequence of Propositions 3.3.8 and 5.5.3. O

Remark 5.5.9. The filtrations Fil}, . TC(X) and Fil};; Lcan TC(X) do not satisfy separately

a connectivity bound similar to that of Proposition 5.5.3.

Corollary 5.5.10 (Atiyah—Hirzebruch spectral sequence). Let X be a qcgs derived scheme.
The motivic filtration Fil% K(X) on non-connective algebraic K-theory K(X) induces a nat-

mot
ural Atiyah—Hirzebruch spectral sequence

By = HLJ (X, Z(—j)) = K_;j(X).

mot

If X is a qegs classical scheme of finite valuative dimension, then this Atiyah—Hirzebruch
spectral sequence is convergent.

Proof. The first statement is a consequence of the fact the motivic filtration Fil} K(X) is

N-indexed (Proposition 5.5.1). The second statement is a consequence of the connectivity
bound for this motivic filtration (Proposition 5.5.4). O

The main consequence of Propositions 5.5.1 and 5.5.4 that we will use is the following
result.

Corollary 5.5.11. Let X be a qeqgs derived scheme. Then for every integer i > 0, there exists
a natural equivalence of spectra

K(X;Q) ~ (P Q(i)™"(X)[2i]) @ Fil},, K(X; Q).

0<j<i
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Proof. The motivic filtration Fil}; K(X;Q) is N-indexed by Proposition 5.5.1. The result on
gcgs classical schemes is then a consequence of Lemma 5.1.10 and Remark 5.1.11, where the
necessary hypotheses are satisfied by Proposition 5.5.4 and Corollary 5.1.9.

Assume now that X is a general qcqs derived scheme. Again by Lemma 5.1.10, where
the necessary hypotheses are satisfied for the filtration Fily ,TC(—) by Proposition 3.3.8 and
Corollary 5.1.6, there is a natural equivalence of spectra

Filho TC(X;Q) = ( D Q)"(X)[24]) & Filhyo TC(X; Q).
0<j<e

The result is then a consequence of Definition 4.3.5 and the previous case, where the equiva-

lences
Filfo K(mo(X); Q) = €D Q)™ (w0(X))[24]) ® Fillyo K (m0(X): Q)
0<j<i
and
Fil), o TC(mo(X); Q) ~ ( @ Q)" (mo(X))[24]) ® Fill,y TC(X; Q)
0<j<1

are compatible, by construction, with the natural map

mot TC(70(X); Q)

of Definition 4.3.4. OJ

Fil* K (mo(X); Q) —> Fil

Lemma 5.5.12. Let 7 be the Zariski, Nisnevich, or cdh topology, and (F})icr be a direct
system of presheaves. Then the natural map of presheaves

lim L, F, —s L, lim F}
—1 —1

1s an equivalence. In particular, the sheafification functor L. sends finitary Zariski sheaves to
finitary T sheaves.

Proof. As a left adjoint, the sheafification functor L., from presheaves to 7 sheaves, commutes
with all colimits. Being a sheaf for the topology 7 is detected using only finite limits, so the
inclusion functor from 7 sheaves to presheaves commutes with filtered colimits. Composing
the previous two functors then implies that the functor L., from presheaves to presheaves,
commutes with filtered colimits.

To prove the second statement, let F' be a finitary Zariski sheaf, and (R;);er be a direct
system of commutative rings. The fact that the natural map

lim L, F(R;) — L, F(lim R;)
—1 —i

is an equivalence is a consequence of the finitariness of F', and of the first statement applied
to the direct system of presheaves (F(_Ri))iel' O

Proposition 5.5.13 (The motivic filtration is finitary). Let ¢ € Z be an integer. Then the
presheaf
Fil’

mot

K(—) : dSch9¢%°P —; Sp

1s a finitary Nisnevich sheaf, i.e., it satisfies descent for the Nisnevich topology and commutes
with filtered colimits of rings.
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Proof. 1t suffices to prove the result modulo p for every prime number p, and rationally.
Algebraic K-theory is a finitary Nisnevich sheaf on qcgs derived schemes ([CMNN20, Propo-
sition A.15]). The presheaf Fil’ ,K(—; Q) is a natural direct summand of rationalised al-
gebraic K-theory (Corollary 5.5.11), so it also is a finitary Nisnevich sheaf. To prove the
result modulo a prime number p, note that the presheaf Filly, KH(—) is a finitary cdh sheaf
(|IBEM24]), and in particular a finitary Nisnevich sheaf. By Theorem 3.2.11, the presheaf
FiliBMSTC(—; [F,) is a finitary Nisnevich sheaf. By Lemma 5.5.12, this implies that the presheaf
LeanFillps TC(—;F,) is a finitary Nisnevich sheaf, and the result modulo p is then a conse-
quence of Proposition 4.3.11. O

Corollary 5.5.14. Let i € Z be an integer. Then the presheaf
Z,(i)™°% (=) : dSchI®°P s D(7Z)
18 a finitary Nisnevich sheaf.
Proof. This is a direct consequence of Proposition 5.5.13. O

Proof of Theorem 5.0.1. The motivic filtration Fil} ,KX(—) is finitary on qcgs schemes (Propo-
sition 5.5.13), and, for every noetherian scheme X of finite dimension d and every integer i € Z,
the spectrum Fil’,K(X; Q) is in cohomological degrees at most —i4d+2 (Proposition 5.5.4).
Proposition 5.1.13 then implies that there exists a natural multiplicative equivalence of filtered
spectra
Filf,o K(X;Q) ~ @B Q)™ (X)[24]-
J=x

The same argument as in Corollary 5.5.11 then implies the result for general gcqs derived
schemes.

O]

Corollary 5.5.15. Let X be a qcgs derived scheme. Then there exists a natural equivalence
of spectra

K(X;Q) ~ P Qi)™ (x)[2i].

i>0
Proof. The motivic filtration Fil}} K (X;Q) is N-indexed by Proposition 5.5.1. The result is
then a consequence of the rational splitting Theorem 5.0.1. 0

5.6 Rational structure of motivic cohomology

In this section, we finish the proof of Theorem 5.0.2. We first use an argument of Weibel
to prove the following result at the level of K-theory. We then use the rational splitting Corol-
lary 5.5.11 to prove a filtered version of this result, which reduces the proof of Theorem 5.0.2
to the case of characteristic zero.

Lemma 5.6.1. Let X be a qcqs scheme. Then the natural commutative diagram

K(X;Q) —— K(Xq; Q)

! |

KH(X;Q) — KH(Xg; Q)

1S a cartesian square of spectra.
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Proof. By Zariski descent, it suffices to prove the result for affine schemes X = Spec(R). For
every integer n € Z, let

NK,(R) := coker (K, (R) — K, (R[T]))

be the n'" NK-group of R. By [Wei81, Corollary 6.4] (see also [TT90, Exercise 9.12], where
some unnecessary hypotheses in Weibel’s result are removed), there is a natural isomorphism
of abelian groups

NK,,(R) ®z Q — NK,, (R @7 Q)

for every integer n € Z and every commutative ring R. For every commutative ring R, the
homotopy groups of the fibre K (R) of the map of spectra K(R) — KH(R) have a natural
exhaustive complete filtration with graded pieces given by the iterated N K-groups of R. In
particular, for every integer n € Z and every commutative ring R, the natural map

KY(R;Q) — KV (R @z Q;Q)
is an equivalence of spectra, which implies the desired result. ]

Corollary 5.6.2. Let X be a gcgs scheme. Then the natural commutative diagram

K(X;Q) ——— HC (Xq/Q)

! |

KH(X;Q) —— LegnHC™ (—q/ Q)(X)

18 a cartesian square of spectra.

Proof. The result for qcqs Q-schemes X is due to Cortinas—Haesemeyer—Schlichting—Weibel
[CHSWO08, CHWO08| (see also Theorem 2.1.1). The general result is then a consequence of
Lemma 5.6.1. t

We record for completeness the following result, which is well-known in characteristic zero
([CHSWO08, CHWO08]).

Corollary 5.6.3. Let X be a qcgs scheme. Then there is a natural fibre sequence of spectra
K(X;Q) — KH(X;Q) — coﬁb(HC(X@/ Q) — LeanHC(—q/ Q)(X))[l]
Proof. By Theorem 2.1.1 and Lemma 5.6.1, the natural commutative diagram

K(X;Q) ——— HC™ (Xg/Q)

! |

KH(X;Q) —— LeanHC™ (—g/ Q)(X)

is a cartesian square of spectra. By construction, there is moreover a natural commutative
diagram of spectra

HC™ (Xo/Q) ————— HP(Xq/Q) ————— HC(Xo/Q)[2]

! ! !

LeanHC™ (—q/ Q)(X) —— LeanHP(—q/ Q)(X) —— LeanHC(—q/ Q)(X)[2],

81



where the horizontal lines are fibre sequences. The middle vertical line of this diagram is an
equivalence ([CHSWO08, Corollary 3.13|, see also [LT19, Corollary A.6]), so the cofibre of the
left vertical map is naturally identified with the spectrum

cofib(HC(Xg/ Q) — LeanHC(—g/ Q)(X))[1].

The following result is a filtered refinement of Lemma 5.6.1.

Corollary 5.6.4. Let X be a qcqs scheme. Then the natural commutative diagram

Fil; o K(X; Q) —— Fil};  K(Xq; Q)

mot mot

! |

FilZg, KH(X; Q) —— Filly, KH(Xq; Q)

s a cartesian square of filtered spectra.

Proof. By Corollary 5.5.11, for every integer i > 0, the spectrum Fil’ . K(X;Q) is naturally

mot

a direct summand of the spectrum K(X;Q). The same applies to the other three filtrations
of the cartesian square, by noting that the motivic filtration Fil}y, KH(—) also is N-indexed
(IBEM24]). The compatibility between the several filtrations is automatic from the construc-
tion of the splittings. So the result is a consequence of Lemma 5.6.1. O

The following result is a filtered refinement of Corollary 5.6.2.

Theorem 5.6.5. Let X be a qcgs scheme. Then the natural commutative diagram

Fil% o

K(X;Q) —— FiljxpHC™ (Xo/ Q)

! |

Fil; . KH(X;Q) —— LeanFilfxr HC™ (—o/ Q)(X)

s a cartesian square of filtered spectra.

Proof. This is a consequence of Corollary 5.6.4, where the filtration Fil% ,TC(—) of qcgs

mot

@-schemes is naturally identified with the filtration Filjj g HC™(—/ Q) (Remark 3.3.4). [
The following result is the rational part of Theorem B.

Corollary 5.6.6. Let X be a qcgs scheme. Then for every integer i € Z, the natural commu-
tative diagram

—~ >j
Q(i)mOt(X) ? RFZar (X, LQ:@/Q)

| !

. —~ >i
QUi (X) —— Rlean (X, L0, q)
is a cartesian square in the derived category D(Q).

Proof. This is a direct consequence of Theorem 5.6.5. O
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Proof of Theorem 5.0.2. By Theorem 5.6.5, the natural commutative diagram

Fill o K(X; Q) ———— FilfxrHC™ (Xo/ Q)

! |

Filly, KH(X; Q) —— LeanFilkg HC™ (—o/ Q)(X)

is a cartesian square of filtered spectra. By Definition 3.1.6 and Remark 3.1.10, there is a
natural commutative diagram of filtered spectra

Filjzgr HC™ (Xg/ Q) —— Filjp HP(Xg/ Q) ——— FiljgpHC(Xo/ Q)[2]
s l I
LeanFilfigrHC™ (—o/ Q)(X) — LeanFilip HP(—o/ Q)(X) — LeanFilipHC(—o/ Q)(X)[2]

where the horizontal lines are fibre sequences. The middle vertical map of this diagram is an
equivalence (Proposition 5.4.1), so the cofibre of the left vertical map is naturally identified
with the filtered spectrum

cofib (Filij g HO(Xq/ Q) — LeanFiliiig HC(—g/ Q) (X)) [1].
O

The following result was proved by Elmanto-Morrow [EM23] for qcgs schemes X over Q.

Corollary 5.6.7 (Rational motivic cohomology). Let X be qcqs scheme. Then for every
integer i € 7, there is a natural fibre sequence

Qi)™ (X) — Q(i)“M*(X) — cofib (RFZar (X, L%} o) — Rlean(X, Q) /Q)) [—1]

in the derived category D(Q).

Proof. For every valuation ring extension V of QQ, the natural map

<i <i
]LQV/Q — QV/Q

is an equivalence in the derived category D(Q) by results of Gabber-Ramero ([GRO03, Theo-
rem 6.5.8 (ii) and Corollary 6.5.21]). The presheaves R cqn(—, LQfé/@) and R qn(—, Qfg/@)
are finitary cdh sheaves on gcgs schemes, so the natural map

RT can (-, Lﬂfé/ o) — Blean(—, Qfg/ Q)

is an equivalence ([EHIK21, Corollary 2.4.19]). The result then follows from Theorem 5.0.2.
U

Example 5.6.8 (Weight zero motivic cohomology). For every qcqs scheme X, the natural
map

Z(0)™Y(X) — Z(0)°M(X) ~ RTcqn(X, Z),

where the last idenfication is [BEM24], is an equivalence in the derived category D(Z). Indeed,
it suffices to prove the result rationally, and modulo p for every prime number p. The result
rationally is a consequence of Corollary 5.6.7. For every prime number p, the presheaf Fp(O)BMS
is naturally identified with the presheaf RT'¢;(—,F,) (|[BMS19, Proposition 7.16]) which is a
cdh sheaf on qcgs schemes (|[BM21, Theorem 5.4]), so the result modulo p is a consequence of
Corollary 4.3.12.
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5.7 A global Beilinson fibre square

In this section we prove Theorem 5.7.3, which is a rewriting of the Beilinson fibre square of
Antieau-Mathew—Morrow—Nikolaus [AMMN22, Theorem 6.17] in terms of the rigid-analytic
derived de Rham cohomology of Section 5.2. Note that our statements are formulated in the
generality of derived schemes, and that the functor —p, is then the derived base change from Z
to F,. The results in [AMMN22] are stated in the generality of p-torsionfree commutative rings,
on which derived and classical reduction modulo p coincide.

Construction 5.7.1 (The map x). Let i« € Z be an integer. Following [AMMN22], we
construct for every qcgs derived scheme X a natural map

(HZ [BVIS ) (HRFZ“ La_/z), ))Q

peP peP
in the derived category D(Q).
(1) (p < i+ 1) Let p be a prime number. By [AMMN22, Theorem 6.17|, there exists an
integer N > 0 depending only on ¢ and a natural map

X : Zp()BMS(R/p) — p%v(ma/z)ﬁ

on p-torsionfree p-quasisyntomic rings R, and in particular on polynomial Z-algebras R.
The functors Z,(i)BM3(—/p) and - L (LO_ /2)p, as functors from animated commutative

rings to p-complete objects in the derived category D(Z), are left Kan extended from
polynomial Z-algebras (Corollary 3.2.12 (2) and by construction, respectively). Left Kan
extending the previous map then induces a natural map

L OP R — o (L))

on animated commutative rings R, where the reduction modulo p is the derived one.
Inverting p and Zariski sheafifying induces a natural map

X Qy (1) M (Xr,) — RT 740 (X, (LQ_)2))[2])
in the derived category D(Q), on general qcgs derived schemes X.

(2) (p > i+2) For prime numbers p such that p > i+ 2, there actually exists a natural map
A
X:Z ( BMS(R/P) (LQR/Z)p

on p-torsionfree p-quasisyntomic rings R ([AMMN22, Theorem 6.17]), and in particular
on polynomial Z-algebras R. Left Kan extending this map again induces a natural map

X+ Zp())PMS(R/p) — (LR z))

on animated commutative rings R. Taking the product over all primes p > ¢ + 2, and
then rationalisation and Zariski sheafification, induces a natural map

( H 7,()PMS ) ( H RT74: (X, (LQ_ 7)) ))Q

PEP> 42 PEP> ;4o

in the derived category D(Q), on general qcgs derived schemes X.
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(3) (general construction) For every qcgs derived scheme X, define the desired natural map x
as the product of the map x of (2) with the finite product over prime numbers p < i+ 1
of the map x of (1).

Theorem 5.7.2 (Beilinson fibre square, after [AMMN22]). Let X be a gcgs derived scheme.
Then for every integer i € Z, the natural diagram

(Tper Zo™5(x)) | —— (TTper Rz (X. (L2 110) )

! |

(s Zp(i)BMS(X]FP))Q — (yer BTz (X, (LQ_/Z)Q))Q

in the derived category D(Q) is commutative, with total cofibre naturally identified with the
complex

(TT Arzar(x, L0 /Z))Q € D(Q).

peP

Proof. This is a consequence of Construction 5.7.1 and [AMMN22, Theorem 6.17]. O

In the following result, the map X is defined as the composite of the map x of Construc-
tion 5.7.1 with the natural maps

H RPZar LQ /Z H RPZ&T LQ /Z) ))Q — RI'zar (X’ H /@_QP/QP)
peEP peP peP

induced by Hodge-completion and Remark 5.2.11.

Theorem 5.7.3. Let X be a qgcgs derived scheme. Then for every integer ¢ € Z, there ewists
a natural commutative square

Qi) TC(X) Rz (X, 207 )

| A !

. X =
(HpEP ZP(Z)BMS (XFP))Q B RFZar (X’ H;E]P’ m—@gp/(@p)
in the derived category D(Q), whose total cofibre is naturally identified with the complex
( ILRPZM (X195 1)), € D@
pe

Proof. By construction, there exists a natural commutative diagram

Q(#)"(X) —————— RI'zx(X, (miz)Q) - RFZM(X’IEEE;/@)
! ! '
—~ > / 21
(HPGP Zp(i)BMS(X)>Q — (Hpe[p RUza (X, (]LQ:/Z)Q))Q — Rl7ar (X, Hpepmf@p/@p)
{
X

! 1

(HpE]P’ Zp(i)BMS(XFp)>Q — (HpE]P’ RFZ&I“( 7(m—/Z)I/)\))@ — RFZar(X7 H;GP@—QP/QP)

85



in the derived category D(Q), where all the inner squares are cartesian expect the left bottom
one, and where the commutativity for the left bottom square is part of Theorem 5.7.2. The
desired total cofibre is then naturally identified with the total cofibre of the left bottom square,
and the result is then a consequence of Theorem 5.7.2. ]

Theorem 5.7.3 means in particular that the complex Q(i)T¢(X) can be expressed purely
in terms of characteristic zero, characteristic p, and rigid-analytic information.

Corollary 5.7.4. Lel p be a prime number, and X be a qcqs derived Zy)-scheme. Then for
every integer © € 7, there exists a natural cartesian square

Q) TC(X) —— RrZar(X,ﬁf; /o)

| !

. % 3
Q,(1)*M(Xr,) —— Rlzar (X, L2, /q,)

in the derived category D(Q).

Proof. The base change Xy, is zero for every prime number ¢ different from p. The com-
plex ILQ;ZF Iz is [Fp-linear, so its rationalisation vanishes. The result is then a consequence of
P

Theorem 5.7.3 and Remark 5.2.7. O
The following result is an analogue of Theorem 5.7.3 at the level of filtered objects.

Theorem 5.7.5. Let X be qcqs derived scheme. Then there exists a natural commutative
square of filtered spectra

Fillo TC(X; Q) Filir HC™ (Xo/ Q)

l L

- X Sk
( [Tper FllBMSTC(XIFp)> 0 Filfkr ( [Tep HH(X; @p)) :

whose total cofibre is naturally identified with the filtered spectrum (HpEIP’ FiI*H}gRHC(XFp)) 2].

ol

Proof. The construction of the map x in the proof of [AMMN22, Theorem 6.17]| adapts readily
to define a map at the filtered level instead of graded pieces. The proof is then the same as in
Construction 5.7.1 and Theorem 5.7.3. O

Question 5.7.6. Given the results of the previous sections, and in particular Corollary 5.4.5
and Theorem 5.7.5, it is a natural question —to which we do not know the answer— to ask
whether the presheaf

(H FHEMSTC(_FPDQ : Schds:oP _ FilSp
peP

is a cdh sheaf, where —p, again means derived base change from Z to IF,.
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Chapter 6

p-adic structure of motivic cohomology

In this chapter, we give a description of motivic cohomology with finite coefficients in terms
of Bhatt—Lurie’s syntomic cohomology (Theorem 6.2.4).

6.1 Comparison to étale cohomology

In this section, we construct a natural comparison map, called the Beilinson—Lichtenbaum
comparison map, from the motivic cohomology of a scheme to the étale cohomology of its
generic fibre (Definition 6.1.3). We then use this comparison map to establish a complete
description of ¢-adic motivic cohomology in terms of étale cohomology (Theorem 6.1.5).

We use the following important result of Deligne to construct the Beilinson—Lichtenbaum
comparison map.

Theorem 6.1.1 ([BM21]). Let p be a prime number, and k > 1 be an integer. Then for every
integer ¢ > 0, the presheaf

RTa(~[4], 1) : Sch®o® — D(Z /)
18 a cdh sheaf.

Proof. By [BM21, Theorem 5.4|, the presheaf Rrét(—[%], uf,f ) is an arc sheaf on qcgs schemes,
and the arc topology is finer than the cdh topology.' O

Definition 6.1.2 (Cdh-local Beilinson-Lichtenbaum comparison map). Let p be a prime

number, and k£ > 1 be an integer. For any integer ¢ > 0, the cdh-local Beilinson—Lichtenbaum
comparison map is the map

Z [p" ()" (=) — RTet(=[3], 1)
of functors from (the opposite category of) qcqs derived schemes to the derived category
D(Z [p*) defined as the composite

Z [P () (=) — Z /PP (~[5]) = (LeanT="Rler(—, 1)) (= [3]) — RTet (= [3] 1)

where the first map is induced by base change from Z to Z[%], the equivalence is [BEM24],
and the last map is induced by the natural transformation 7<% — id and Theorem 6.1.1.

!More precisely, the arc topology is finer than the v topology, which is finer than the h topology, which is
finer than the cdh topology (see [BM21, EHIK21]).
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Definition 6.1.3 (Beilinson—Lichtenbaum comparison map). Let p be a prime number, and
k > 1 be an integer. For any integer ¢ > 0, the Beilinson-Lichtenbaum comparison map (or
motivic-étale comparison map) is the map

Z [p" (i) (=) — RTet(=[3], 1)

of functors from (the opposite category of) qcqs schemes to the category D(Z /p*) defined as
the composite '

Z [P (=) — Z /P (=) — RTet(—[}], 1)
where the first map is cdh sheafification and the second map is the cdh-local Beilinson—
Lichtenbaum comparison map of Definition 6.1.2.

Remark 6.1.4. Let p be a prime number, k£ > 1 be an integer, R be a commutative ring, and
RZ be the p-henselisation of R. Then for every integer ¢ > 0, the natural diagram

Z/pk(i)mOt(SpeC(R)) - Z/pk(i)th(SpeC(R)) ——— RT'y (SpeC(R[%D,ng)

| | |

Z [p* (i) (Spec(Ry)) ——— Z [p*(i)*™™(Spec(Ry})) ——— RTe(Spec(Rp[5]), uor)

| | L

Z/pk(i)BMs(Spec(Rg» SN (LcdhZ/pk(i)BMS)(SPeC(Rz)) - RFét(Spec(Rg[%]),u;?lf),

is a commutative diagram in the derived category D(Z /p*), where the top horizontal right map
and the middle horizontal right map are given by Definition 6.1.2, and the bottom horizontal
right map is induced by [BL22, Theorem 8.3.1]. This statement is a consequence of the
naturality of the constructions, except for the commutativity of the bottom right square,
which is proved in [BEM24].

Theorem 6.1.5 (¢-adic motivic cohomology). Let p be a prime number, X be a qcgs scheme

over Z[%}, and k > 1 be an integer. Then for every integer i > 0, the Beilinson—Lichtenbaum
comparison for classical motivic cohomology induces a natural equivalence

Z [p"(i)"* (X) = (Lean™ RTei(=, 1)) (X)

in the derived category D(Z /p*).

Proof. The syntomic complex Z /p*(i)BMS and its cdh sheafification Legn Z /p*(i)BMS vanish
on qgecgs derived Z[%]—schemes. In particular, the natural map
Z [p" (i) (X) — Z /p" (i) (X)

is an equivalence in the derived category D(Z /p*) (Proposition 4.3.11). The Beilinson-
Lichtenbaum comparison for classical motivic cohomology induces a natural equivalence

Z Jp* (i) ™(X) <~ (LeanT='RTet(—, M?g)) (X)

in the derived category D(Z /p*) (|[BEM24]). The desired equivalence is the composite of the
previous two equivalences. ]
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Corollary 6.1.6. Let p be a prime number, X be a qcgs Z[%]—scheme, and k > 1 be an integer.
Then for every integer i > 0, there is a natural equivalence

<ty /pk(i)mOt(X) ~ 7S R (X, uf,f)

in the derived category D(Z /p*).
Proof. The natural map

7 (Leanm RTet(—, 15)) (X) — 75 (Lean Rt (—, 55)) (X)

is an equivalence in the derived category D(Z /p¥). The result is then a consequence of
Theorems 6.1.1 and 6.1.5. O

6.2 Comparison to syntomic cohomology

In this section, we study motivic cohomology with finite coefficients. Our main result is a
computation of p-adic motivic cohomology in terms of syntomic cohomology (Theorem 6.2.4).

Notation 6.2.1 (Syntomic cohomology of derived scheme, after Bhatt-Lurie [BL22]). Let X
be a qcgs derived scheme, p be a prime number, and ¢ € Z be an integer. We denote by

Zy())*™(X) € D(Zy)

the syntomic cohomology of X, as defined in [BL22, Section 8.4|. For every integer k > 1, we
also denote by Z /p¥(i)*(X) the derived reduction modulo p* of the previous complex. In
particular, the presheaf Z /p* (i)™ is a Zariski sheaf, whose restriction to animated commuta-
tive rings is left Kan extended from smooth Z-algebras, and such that on classical commutative
rings R, there is, by definition, a natural cartesian square

Z [p*(i)¥™(Spec(R)) —— Rlex(Spec(R[})), ey

| |

Z [p*(i)PMS (Spec(Ry)) —— RTa(Spec(Ry[5]), uiy)

in the derived category D(Z /p"), where RZ is the p-henselisation of the commutative ring R,
and the bottom map is the map of [BL22, Theorem 8.3.1].

Construction 6.2.2 (Motivic-syntomic comparison map). Let p be a prime number, and
k > 1 be an integer. For any integer ¢ > 0, the motivic-syntomic comparison map is the map

Z [p"(0)"N (=) — Z /P ()" (-)
of functors from (the opposite category of) qcqs schemes to the derived category D(Z /p¥)

defined as the Zariski sheafification of the map on commutative rings R induced by the natural
commutative diagram

7 [pF (i)™t (Spec(R)) —— RI'g (Spec(R[%]),u?,f)
Z [p*(i)M5 (Spec(Ry)) —— RTe(Spec(Ry[5]). i)

of Remark 6.1.4.
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The following cartesian square, where the bottom horizontal map was described indepen-
dently in [BEM24|, can be seen as an alternative definition of p-adic motivic cohomology of
qcgs schemes (see Corollary 4.3.12).

Proposition 6.2.3. Let X be a qcgs scheme, p be a prime number, and k > 1 be an integer.
Then for every integer ¢ > 0, the commutative diagram

Z [p* ()N (X) ———— Z /pF (i)™ (X)

| |

Z /p* (@) (X) —— (Lean Z /p*(H)*")(X)

where the top horizontal mayp is the motivic-syntomic comparison map of Construction 6.2.2
and the vertical maps are cdh sheafification, is a cartesian square in the derived category

D(Z [p").

Proof. By [BL22, Remark 8.4.4], there is a natural fibre sequence
RTet (X, i) — 2 Jp" (1) (X) — Z /p"(1)PM5 (X)

in the derived category D(Z /p¥). The first term of this fibre sequence satisfies arc descent by
[BM21, Theorem 5.4], hence in particular cdh descent. The result is then a consequence of
Corollary 4.3.12. O

The following result is a mixed characteristic generalisation of Elmanto-Morrow’s fun-
damental fibre sequence for motivic cohomology of characteristic p schemes (JEM23, Corol-
lary 4.32]).

Theorem 6.2.4 (p-adic motivic cohomology). Let X be a qcgs scheme, p be a prime number,
and k > 1 be an integer. Then for every integer i > 0, there is a natural fibre sequence

Z [p" (i) (X) — Z /p" (i)™ (X) — (Lean ™ Z /D" (1)) (X)

in the derived category D(Z [p*). In particular, the fibre of the motivic-syntomic comparison
map 1s in degrees at least 1 + 2.

Proof. By [BEM24|, there is a natural equivalence
Z /P ()M (X) = (Leant="Z /0" ())™") (X)
in the derived category D(Z /p*). The result is then a consequence of Proposition 6.2.3. [

Corollary 6.2.5. Let X be a qcqs scheme, p be a prime number, and k > 1 be an integer. Then
for every integer i > 0, the motivic-syntomic comparison map induces a natural equivalence

rSU ()X T 7 () (X)
in the derived category D(Z [p*).

Proof. This is a consequence of Theorem 6.2.4. O
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Algebraic K-theory being Al-invariant on regular schemes, one could expect the classi-
cal Al-invariant motivic cohomology to be a good theory for general regular schemes, not
only schemes that are smooth over a Dedekind domain. However, most of the results on
classical motivic cohomology in mixed characteristic are proved only in the smooth case,
as consequences of the Gersten conjecture proved by Geisser [Gei04]. This is the case for
the Beilinson-Lichtenbaum conjecture, which compares motivic cohomology with finite coef-
ficients to étale cohomology. Combined with Theorem D (6), the following result extends the
analogous result for classical motivic cohomology to the regular case.

Corollary 6.2.6 (Beilinson—Lichtenbaum conjecture for F-smooth schemes). Let p be a prime
number, X be a p-torsionfree F'-smooth scheme (e.g., a reqular scheme flat over Z), and k > 1
be an integer. Then for every integer i > 0, the fibre of the Beilinson—Lichtenbaum comparison
map

Z /(i)™ (X) — R (X[2], u5)
1s in degrees at least 1 + 1.

Proof. By |[BM23, Theorem 1.8]|, the fibre of the natural map
Z [p" ()™ (X) — Rle(X[}], u5)

is in degrees at least ¢ + 1. The result is then a consequence of Theorem 6.2.4. O

Corollary 6.2.7. Let p be a prime number, X be a p-torsionfree F-smooth scheme, and k > 1
be an integer. Then the fibre of the natural map

Z Jp* (i)™ (X) — Z /o (i) (X [2)])

1s in degrees at least 1 + 1.

Proof. By construction, the Beilinson—Lichtenbaum comparison map
Z [p" ()" (X) — Rlet(X[}], 1)
naturally factors as the composite

Z [p* ()N (X) — Z /p" (D)™ (X[}]) — RTe(X[3] 155)-
The fibre of the second map is in degrees at least ¢ + 1 by Corollary 6.1.6, and the fibre of
the composite is in degrees at least ¢ + 1 by Corollary 6.2.6, so the fibre of the first map is in
degrees at least ¢ + 1. O
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Chapter 7

Comparison to classical motivic
cohomology

For smooth schemes over a field, Elmanto—-Morrow proved that the motivic complexes
Z,(i)™°! coincide with the classical motivic complexes Z(4)'® ([EM23, Corollary 6.4]). Their
proof uses Gersten injectivity and the projective bundle formula to reduce the statement to
the case of fields, and relies on Gabber’s presentation lemma ([CTHK97, Theorem 3.1.1]),
which is unknown in mixed characteristic. In this chapter, we prove partial results comparing
the complexes Z(i)™°* and Z(7)“'® in mixed characteristic.

7.1 Comparison to classical motivic cohomology in low degrees

In this section, we prove that the classical-motivic comparison map Z(i)® — Z(i)™mt
(Definition 4.3.9) is an equivalence with rational or ¢-adic coefficients, and integrally in degrees
at most 7 4 1.

Proposition 7.1.1. Let p be a prime number, B be a Dedekind domain such that every
characteristic p residue field of B 1s perfect, and X be a smooth scheme over B. Then for any
integers © > 0 and k > 1, the fibre of the classical-motivic comparison map

Z 9" (i)™ (X) — Z /p" (D)™ (X)

is in degrees at least i + 2 in the derived category D(Z /p*). If p is moreover invertible in X,
then this fibre vanishes, i.e., the previous classical-motivic comparison map is an equivalence.

Proof. 1If p is invertible in the scheme X, then the composite map
Z [p"()"(X) — Z [p" ()N (X) — Z /p" ()M (X)

is an equivalence in the derived category D(Z /p*) by [BEM24]. The right map is also an
equivalence by Remark 4.3.13, so the left map is an equivalence. In general, consider the
natural commutative diagram

Z [p*(1)(X) —— (LnisT="Z [p" (1)) (X)

| |

Z [P ()N (X) ———— Z /PP () (X)
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in the derived category D(Z /p”*). The top horizontal map is an equivalence by [Gei04, Theo-
rems 1.2 (2) and 1.3] and [BM23, Theorem 5.8]. The fibre of the right vertical map is naturally
identified with (Lxis7>% Z /p*()*™)(X)[—1], and is thus in degrees at least i + 2. The fibre of
the bottom horizontal map is in degrees at least ¢ + 2 by Theorem 6.2.4. So the fibre of the
left vertical map is in degrees at least ¢ + 2. O

Proposition 7.1.2. Let B be a mized characteristic Dedekind domain, and X be a smooth
scheme over B. Then for every integer i > 0, the classical-motivic comparison map

Q)™ (X) — Qi)™ (X)
is an equivalence in the derived category D(Q).

Proof. This is a consequence of the rational splitting of algebraic K-theory induced by Adams
operations. More precisely, we use the splitting induced by Lemma 5.1.10 for the filtrations
Fil}, K(—; Q) (which is N-indexed by construction) and Fil,  K(—; Q) (which is N-indexed by
Proposition 5.5.1). These decompositions are compatible with the classical-motivic comparison

map because of the compatibility between the associated Adams operations (Section 5.1). [

Theorem 7.1.3 (Comparison to classical motivic cohomology). Let B be a mized character-
1stic Dedekind domain such that every residue field of B is perfect, and X be a smooth scheme
over B. Then for every integer i > 0, the fibre of the classical-motivic comparison map

Z(i)™(X) — Z()™(X)
1s in degrees at least 1 + 3.

Proof. Let F(X) € D(Z) be the fibre of the classical-motivic comparison map
Z(i)“*(X) — L(i)™*(X).

We want to prove that for every integer k < i 4 2, the abelian group H*¥(F (X)) is zero. By
Proposition 7.1.2, the abelian group H¥(F (X)) is torsion for every integer k € Z. For every
prime number p and every integer k € Z, there is a natural short exact sequence of abelian
groups

0 — HY(F(X))/p — HY(F(X)/p) — H*H(F(X))[p] — 0.

By Proposition 7.1.1, for every prime number p, the abelian group H¥(F(X)/p) is zero if
k < i+ 1, hence the abelian group H*(F(X))[p] is zero for every integer k < i 4+ 2. This
implies the desired result. O

Corollary 7.1.4. Let B be a mized characteristic Dedekind domain such that every residue
field of B is perfect. Then for every integer i > 0, the classical-motivic comparison map
induces an equivalence of D(Z)-valued presheaves

20 (=) — (Laaer< 20)™) ()
on essentially smooth B-schemes.

Proof. The classical motivic complex Z(4)® is a Zariski sheaf which is locally supported in

degrees at most i ([Gei04, Corollary 4.4]), so the result is a consequence of Theorem 7.1.3. O
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7.2 Comparison to classical motivic cohomology in low dimen-
sions

In this section, we study in more detail the defect for the classical-motivic comparison map
to be an equivalence (Theorem 7.2.5), and prove that this defect vanishes on smooth schemes
of dimension at most one over a mixed characteristic Dedekind domain (Corollary 7.2.6).

Lemma 7.2.1. Let B be a commutative ring, m be an element of B, C be a presentable oo-
category, and F : Algg — C be a finitary and rigid functor. If the functor F is zero on
B[=]-algebas, then for every qcgs B-scheme X, the natural map

1
s
(LeanF)(X) — (LeanF) (X p/x)
s an equivalence in the oo-category C.

Proof. Covers in a site are stable under base change, and the cdh sheafification of a finitary
presheaf is finitary, so the presheaf

(LeanF)(=B/x)

is a finitary cdh sheaf on qcgs B-schemes. It then suffices to prove that for every henselian
valuation ring V which is a B-algebra, the natural map

F(V) — (LeanF) (V/7)

is an equivalence in the oco-category C. The presheaf LognF is a finitary cdh sheaf, so it is
invariant under nilpotent extensions. In particular, the natural map

(Lcth) (V/ﬂ') — (Lcth) (V/M)

is an equivalence in the oo-category C. The quotient of a henselian valuation ring by one of
its prime ideals is a henselian valuation ring, so the target of the previous map is naturally
identified with the object F((V/4/(m)) € C. We finally prove that the natural map

F(V)— F(V/\/(x))

is an equivalence in the oo-category C. If 7 is invertible in the henselian valuation ring V', then
both terms are zero by hypothesis on the functor F. And if 7 is not invertible in V, then in
particular the henselian local ring V' is w-henselian, and the result is a consequence of rigidity
for the functor F' O

Corollary 7.2.2. Let p be a prime number, B be a discrete valuation ring of mized character-
istic (0,p), ™ be a uniformizer of B, and X be a qcqs B-scheme. Then for any integers i > 0
and k > 1, the natural map

(Leant™' Z /p" (i) PM3) (X) — (Leant™" Z /" (1)) (X /)
is an equivalence in the derived category D(Z /p").

Proof. The functor '
7L [pF()PM : Algg — D(Z /p¥)

is finitary (Theorem 3.2.11 (2)) and rigid (Theorem 3.2.13). The functor Z /p*(i)B™S is more-
over zero on Z[%]—algebras (Remark 3.2.2), so the result is a consequence of Lemma 7.2.1. O
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Remark 7.2.3. One can prove similarly that Corollary 7.2.2 holds for B a general valuation
ring of mixed characteristic (0, p), where the base change to the characteristic p field B/7 is
replaced by the base change to the characteristic p valuation ring B/+/(p).

Proposition 7.2.4. Let p be a prime number, B be a discrete valuation ring of mized char-
acteristic (0,p), and R be a henselian local ind-smooth B-algebra of residue characteristic p.
Then for any integers 1 > 0 and k > 1, the natural map

T2 p" ()PP (R) — (Leant™" Z /0" ()PP (R)
is an equivalence in the derived category D(Z /p").

Proof. Let m be a uniformizer of the discrete valuation ring B, and consider the commutative
diagram

T L ()P (R) ——— (Lean™" Z /(1)) (R)

! |

7 [pF () BMS(R /7)) —— (Lcth>iZ/pk(i)BMS)(R/7r)

in the derived category D(Z /p*). The commutative ring R is p-henselian, hence 7-henselian,
so the left vertical map is an equivalence by Theorem 3.2.13. The right vertical map is
an equivalence by Corollary 7.2.2. We prove now that the bottom horizontal map is an
equivalence. The commutative ring R/7 is a henselian local ind-smooth algebra over the
field B/7, so the classical-motivic comparison map

Z [p* Q)" (R/7) — Z [p" ()™ (R/7)

is an equivalence in the derived category D(Z /p¥) ([EM23, Corollary 6.4]). The complex
Z /p*(i)*(R) € D(Z /p*) is moreover in degrees at most i since the commutative ring R is
henselian local, so this is equivalent to the fact that the natural map

7L [t (1) (R /1) — (Lean™" Z /p"())PM°) (R/7)
is an equivalence in the derived D(Z /p*) (Theorem 6.2.4). O

Theorem 7.2.5. Let p be a prime number, B be a mized characteristic Dedekind domain such
that every characteristic p residue field of B is perfect, and R be a henselian local ind-smooth
B-algebra of residue characteristic p. Then for any integers ¢ > 0 and k > 1, the fibre of the
classical-motivic comparison map

Z [P ()" (R) — Z /p* (i)™ (R)
s in degrees at least © + 2, given by the complex
(Lean='RTet(=, i) (R)[=1] € D(Z /p").

Proof. The fact that the fibre of the classical-motivic comparison map is in degrees at least
1+ 2 is a special case of Proposition 7.1.1. The henselian local ring R is local for the Nisnevich
topology, so the proof of Proposition 7.1.1 implies that the complex Z /p*(i)'*(R) € D(Z /p*)
is moreover in degrees at most ¢, and this fibre is naturally identified with the complex
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(771 Z /p*(i)™*(R))[—1] € D(Z /p*). By Theorem 6.2.4, this complex is in turn naturally
identified with the complex

fib(7>" Z /p* (i) (R) — (Lean " Z /p"(1)¥"(R))[~1] € D(Z /p").
Consider the commutative diagram

T>iZ/pk(i)Syn(R) E—— (Lcdh7'>i Z/pk(i)syn)(R)

! |

717 Jpk (i)BMS(R) —— (Lean™™' Z /p*(i)BMS) (R)

in the derived category D(Z /p¥). The commutative ring R is p-henselian, so the left vertical
map is an equivalence (Notation 6.2.1). The commutative ring R is local, so there exists a
prime ideal p of the Dedekind domain B such that p € p and R is essentially smooth over
the localisation By,. The local ring B, is a discrete valuation ring of mixed characteristic
(0,p), so the bottom horizontal map is an equivalence (Proposition 7.2.4). The fibre of the
top horizontal map is then naturally identified with the (—1)-cohomological shift of the fibre
of the right vertical map. By Lemma 9.2.2 (applied for j = 7 and after cdh sheafification), this
fibre is naturally identified with the complex

(Lean ™ Rlet(—, jipsy!)) (R) € D(Z [p¥).

The functor RFét(—,j!u;@,f) is rigid ([Gab94], see also [BM21, Corollary 1.18 (1)]) and satisfies
cdh descent ([BM21, Theorem 5.4]), so the object

(Lean Rl et (—, j!ﬂ?zf)) (R)

is zero in the derived category D(Z /p¥) for the p-henselian commutative ring R. In particular,
there is a natural equivalence

(Lcth>iRFét(_aj!N§ki))(R) ~ (LcthSiRFét(—,j!M?;f))(R)m
in the derived category D(Z /p*), which implies the desired equivalence. O

Corollary 7.2.6. Let B be a mized characteristic Dedekind domain such that every residue
field of B is perfect, and X be a smooth B-scheme of dimension at most one over B. Then
for every integer i > 0, the classical-motivic comparison map

Z(i)*(X) — Z(i)™(X)
is an equivalence in the derived category D(Z).

Proof. The presheaves Z(i)" and Z(i)™°* are finitary Nisnevich sheaves, hence it suffices to
prove the result on the henselisation of every local ring of the scheme X. Let R be such a
henselian local ring, which is then a henselian local ind-smooth B-algebra of Krull dimension
at most 3. The result rationally is a special case of Proposition 7.1.2, so it suffices to prove
the result modulo p, for every prime number p. Let p be a prime number. If p is invertible in
the local ring R, this is Proposition 7.1.1. Assume now that p is not invertible in the henselian
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local ring R, and in particular that the ring R is p-henselian. By Theorem 7.2.5, the fibre of
the classical-motivic comparison map

Fp (i) (R) — Fp(i)™"(R)
is in degrees at least 7 4+ 2, given by the complex
(Lean™="RTe;(—, jipns")) (R)[—1] € D(Fp).

The commutative ring R is a noetherian ring of Krull dimension at most 2, hence of val-
uative dimension at most 2. So this complex is also in degrees at most ¢ + 3 ([EHIK21,
Theorem 2.4.15]), and it is thus only in degrees i + 2 and i + 3. The complexes F,(i)3(R)
and F,(:)™°"(R) (for ¢ > 0) are the graded pieces of the N-indexed complete filtrations
Fil;,K(R;Fp) and Fily, K(X;F,) on the algebraic K-theory of R. In particular, there is
natural spectral sequence

By = H' ((Leanm= "’ RTet(—, iy ")) (R)) = 0.

The previous cohomological bound implies that all the differentials in this spectral sequence
are zero, so this spectral sequence degenerates. This implies the desired equivalence. O
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Chapter 8

Comparison to Milnor K-theory and
lisse motivic cohomology

In this chapter, we study the motivic complexes Z(i)™°" on local rings. We prove that
these are left Kan extended, in degrees at most i, from local essentially smooth Z-algebras
(Theorem 8.1.11). Via the comparison to classical motivic cohomology in the smooth case
(Theorem 7.1.3), this means that the motivic complexes Z(i)™°" are controlled, up to degree 1,
by classical motivic cohomology (Corollary 8.1.12). We use the latter result to construct a
comparison map from the i*® (improved) Milnor K-group of a general local ring A to the
motivic cohomology group HY..,(A,Z(i)), and prove that this map is an isomorphism with

mot

finite coefficients (Theorem 8.2.6).

8.1 Comparison to lisse motivic cohomology

In this section, we prove a comparison between motivic cohomology and lisse motivic
cohomology on general local rings (Corollary 8.1.12), which generalises to mixed characteristic
the analogous comparison result of Elmanto—Morrow over a field (|[EM23, Theorem 7.7]). To
do so, we use the following comparison map.

Definition 8.1.1 (Lisse-motivic comparison map). For every integer ¢ € Z, the lisse-motivic
comparison map is the map
20)"5%(~) —> Z(i)™(-)

of functors from animated commutative rings to the derived category D(Z) defined as the
composite

(LAniRings/SmZ Z(i)Cla) (_) — (LAniRings/SmZ Z(i)mOt) (_) — Z(i)mOt(_)v

where the first map is the map induced by Definition 4.3.9 and the second map is the canonical
map.

Lemma 8.1.2. For every integer i > 0, the functor
752 Q7)™ (~) : AniRings — D(Q)
15 left Kan extended from smooth Z-algebras.
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Proof. By [EHK 20, Example 1.0.6], connective algebraic K-theory
7K (—; Q) : AniRings — D(Q)
is left Kan extended from smooth Z-algebras. By Corollary 5.5.11, this implies that the functor

@TSO(Q(i)mOt(—)[%]) : AniRings — D(Q)

i>0
is left Kan extended from smooth Z-algebras, which is equivalent to the desired result. O

Corollary 8.1.3. Let R be an animated commutative ring. Then for every integer i > 0, the
lisse-motivic comparison map induces a natural equivalence

Q) (R) =5 72 Qi)™ (R)
in the derived category D(Q).

Proof. If R is a smooth Z-algebra, the result is a consequence of Proposition 7.1.2 and the
fact that, by construction, the classical motivic complex Z(i)*®(R) € D(Z) is in degrees at
most 2¢. In general, this is then a consequence of Lemma 8.1.2. 0

Proposition 8.1.4. Let R be a local ring. Then for every integer i > 0, the lisse-motivic
comparison map induces a natural equivalence

@(i)lisse (R) — 7_§i Q(i)mOt (R)

in the derived category D(Q). Moreover, the motivic cohomology group Hﬂlot(R,Q(i)) is zero
fori < g < 2i.

Proof. The classical motivic complex Z(i)%?(—) is Zariski-locally in degrees at most i ([Gei04,
Corollary 4.4]). By taking left Kan extension, this implies that the lisse motivic complex
Z,(i)1%¢(~) is also Zariski-locally in degrees at most i. In particular, the lisse motivic complex
Q(7)"55¢(R) is in degrees at most 4. The result is then a consequence of Corollary 8.1.3. [

Remark 8.1.5. By Drinfeld’s theorem ([Dri06, Theorem 3.7]), the K-group K_;(R) vanishes
for every henselian local ring R. By Corollary 5.5.11, this implies that for every integer ¢ > 0,

the motivic cohomology group H2F (R, Q(i)) is zero, i.e., that the motivic cohomology group
H2 (R, Z(i)) is torsion.

mot

Corollary 8.1.6. For every integer i > 0, the functor 7= Q(i)™°, from local rings to the
derived category D(Q), is left Kan extended from local essentially smooth Z-algebras.

Proof. This is a consequence of Lemma 8.1.2 and Proposition 8.1.4. O

Proposition 8.1.7. Let p be a prime number, and k be an integer. Then for every inte-
ger i >0, the functor
rSUZ [pt(3)" (=) : Rings — D(Z /p")

15 left Kan extended from smooth Z-algebras.
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Proof. By Theorem 6.2.4, this is equivalent to the fact that the functor 7<¢Z /p* (i)™ (—) on
commutative rings is left Kan extended from smooth Z-algebras. The functor Z /p*(i)*¥™(—)
is left Kan extended from smooth Z-algebras (Notation 6.2.1), so this is equivalent to the fact
that the functor 7> Z /pF(i)*¥™(—) on commutative rings is left Kan extended from smooth Z-
algebras. By [EM23, Lemma 7.6], it then suffices to prove that the functor 7> Z /p* (i)™ (—)
is rigid. To prove this, consider the fibre sequence of D(Z /p*)-valued functors

RFét(—yj!Mf;f) T )N (=) — 7 /PP (—)

on commutative rings ([BL22, Remark 8.4.4]). By rigidity for étale cohomology (|Gab94], see
also [BM21, Corollary 1.18 (1)]), the first term of this fibre sequence is rigid. The desired
result is then a consequence of Theorem 3.2.13. 0

Corollary 8.1.8. Let p be a prime number, and k > 1 be an integer. Then for every inte-
geri >0, the functor TSVZ [pF (i)™, from local rings to the derived category D(Z /p*), is left
Kan extended from local essentially smooth Z-algebras.

Proof. This is a consequence of Proposition 8.1.7. O

Lemma 8.1.9. Let R be a local ring, p be a prime number, and k > 1 be an integer. Then
for every integer i > 0, the natural map of abelian groups

anot<R7 Z(Z)) — anot (R7 Z /pk (Z))
1S surjective.

Proof. Let P — R be a henselian surjection, where P is a local ind-smooth Z-algebra. By
Corollary 8.1.8, the functor 75VZ /p¥(i)™°! is left Kan extended on local rings from local
essentially smooth Z-algebras, so the natural map of abelian groups

Hinor (P, Z /" (i) — Hipoy (R, Z [p" (i)
is surjective. That is, the right vertical map in the commutative diagram of abelian groups

anot(Pvz(Z.)) B anot(Paz/pk(i))

| |

anot <R7 Z@)) — anot (Rv Z /pk (Z))

is surjective. To prove that the bottom horizontal map is surjective, it thus suffices to prove
that the top vertical map is surjective. The local ring P is a filtered colimit of local essentially
smooth Z-algebras, so it suffices to prove that this top vertical map is surjective for local
essentially smooth Z-algebras. To prove this, it suffices to prove that the motivic complex
Z(i)™°%(—) is zero in degree i+ 1 on local essentially smooth Z-algebras. The classical motivic
complex Z(4)2(—) is Zariski-locally in degrees at most i ([Gei04, Corollary 4.4]), so this is a
consequence of Theorem 7.1.3. 0

Corollary 8.1.10. Let R be a local ring. Then for every inleger i > 1, the motivic cohomol-
09y group H%&(R,Z(i)) is zero. If the local ring R is moreover henselian, then the motivic
cohomology group HL (R, 7(0)) is zero.

mot
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Proof. By Lemma 8.1.9 and the short exact sequence of abelian groups

0 — Hipoy (B, Z()) /P — Hpngy (B, Fp (1)) — Hioy (B, Z(3)) [p] — 0
for every prime number p and every integer 4 > 0, the abelian group H-1L (R, Z(i)) is torsion-
free. By Proposition 8.1.4 if ¢ > 1, and by Remark 8.1.5 if ¢ = 0 and R is henselian, it is also
torsion, so it is zero. ]

Theorem 8.1.11. For every integer i > 0, the functor 7=V Z(i)™°, from local rings to the
derived category D(Z), is left Kan extended from local essentially smooth Z-algebras.

Proof. Tt suffices to prove the result rationally, and modulo p for every prime number p. The
result rationally is Corollary 8.1.6. Let p be a prime number. For every local ring R, the
natural map of abelian groups

Hy o (R, Z(i)) — Hipor (R, Fp(i)
is surjective by Lemma 8.1.9, so the natural map
(ST 2™ (R)) fp — T (i)™ (R)

is an equivalence in the derived category D(F,). The result modulo p is then Corollary 8.1.8.
O

Note that the proof of Theorem 8.1.11 is similar to the proof of Elmanto-Morrow in
equicharacteristic. The following consequence, however, uses the comparison to classical mo-
tivic cohomology Theorem 7.1.3. The proof of the latter, in any characteristic, is somehow
simpler than the proof of Elmanto-Morrow’s (stronger) comparison result to classical motivic
cohomology: in particular, it does not use a presentation lemma, or the projective bundle
formula. The proof of Corollary 8.1.12 then provides an alternative argument to the proof of
[EM23, Theorem 7.7].

Corollary 8.1.12 (Comparison to lisse motivic cohomology). Let R be a local ring. Then for
every integer © > 0, the lisse-motivic comparison map induces a natural equivalence

Z(i)lisse(R) ; Tgi Z(Z-)mot (R)
in the derived category D(Z).

Proof. The classical motivic complex Z(i)%?(—) is Zariski-locally in degrees at most i ([Gei04,
Corollary 4.4]). The result is then a consequence of Theorems 7.1.3 and 8.1.11. O

In the rest of this section, we restrict our attention to henselian local rings, in order to
describe the motivic cohomology group HZ ,(—, Z(1)).

mot

Lemma 8.1.13. Let R be a henselian local ring, and p be a prime number. Then for any
integers i > 0 and k > 1, the motivic cohomology group H- L (R, Z /pF (i) is zero.

mot

Proof. By Theorem 6.2.4, the motivic cohomology group HTL (R, Z /p¥(i)) is naturally iden-

mot
tified with the kernel of the natural map of abelian groups

H*YZ /p" (@)™ (R)) — B (Lean™" Z /9" (1)) (R))
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for every commutative ring R. If R is henselian local, let m be its maximal ideal, and consider
the natural commutative diagram

HYNZ [ (i) (R)) ——— B (Leant" Z /p" (1)) (R))

| J

HHHZ [pF (D)™ (R/m)) —— B (Leant™" Z /p" (1)) (R/m))

of abelian groups. The functor 7>%7Z /p¥(i)»™ is rigid (proof of Proposition 8.1.7), so the
left vertical map is an isomorphism. The field R/m is a local ring for the cdh topology,
so the bottom horizontal map is an isomorphism. In particular, the top horizontal map is
injective. ]

Proposition 8.1.14. Let R be a henselian local ring. Then for every integer i > 1, the motivic
cohomology group H'2 (R, Z(1)) is zero.

mot

Proof. By Lemma 8.1.13 and the short exact sequence of abelian groups

0 — HELL(RLZ()) /p — ML (R Fy(0)) — HE2 (R Z() ] — 0

mot mot mot

for every prime number p, the abelian group H-"2 (R, Z(i)) is torsionfree. By Proposition 8.1.4

mot
if 4 > 2, and by Remark 8.1.5 if ¢ = 1, it is also torsion, so it is zero. O

The following example is a consequence of Example 4.2.4, Corollary 8.1.12, and Proposi-
tion 8.1.14.

Example 8.1.15. For every qcgs scheme X, the natural map
Rlyis(X, Gp) [—1] — Z(1)™"(X),

defined as the Nisnevich sheafification of the lisse-motivic comparison map (see also Defi-
nition 9.1.1), is an isomorphism in degrees at most three. That is, the motivic complex
Z(1)M°t(X) vanishes in degrees at most zero, and there are natural isomorphisms of abelian
groups

He

mot

(X,Z(1)) = O(X)*, H2

mot

(X,Z(1)) = Pic(X), HS

mot

(X,2(1)) = H(X, Gi).

8.2 Comparison to Milnor K-theory
In this section, we construct, for every integer ¢ > 1, a symbol map

KM(A) — HE (A, Z(i))

mot

for local rings A (Definition 8.2.3), through which we compare the Milnor K-groups to motivic
cohomology (Theorem 8.2.6). Note that the arguments in Lemmas 8.2.2 and 8.2.4 are very
similar to that of [EM23, Section 7|, except for the Gersten injectivity for classical motivic
cohomology, which is unknown integrally in mixed characteristic.

For every commutative ring A, the lisse-motivic comparison map (Definition 8.1.1 and
Example 4.2.4) induces on H' a natural isomorphism of abelian groups

AX S5 HLG (A, Z(1)).

By multiplicativity of the motivic complexes, this induces, for every integer ¢ > 0, a symbol
map of abelian groups ‘ ‘
(AX)®Z HY

mot

(A4, Z(i)-
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Lemma 8.2.1. For every local essentially smooth Z-algebra A, there is a natural isomorphism
H2,00(4, Z(2)) 2 Ky (A)

of abelian groups.

Proof. By Theorem 7.1.3, the classical-motivic comparison map

H?, (A, Z(2)) — H?

cla mot

(4,2(2))

is an isomorphism of abelian groups. The result is then a consequence of the Atiyah—Hirzebruch
spectral sequence for classical motivic cohomology (Remark 4.1.3), where we use that the
classical motivic complex Z(1)%?(A) € D(Z) is concentrated in degree one (Example 4.1.5 and
|Gei04, Corollary 4.4]). O

Lemma 8.2.2. Let A be a local ring. Then for every integer i > 0, the natural map of abelian
groups
(AX)@’i Hi

mot

(A, Z(i))
induced by the lisse-motivic comparison map factors through the Milnor K-group Ki\/[(A)

Proof. By definition of the Milnor K-groups, it suffices to prove that the symbol map respects
the Steinberg relations. Let a € A be an element such that ¢ and 1 — a are units in A. By
multiplicativity of the motivic complexes, it suffices to consider the case ¢ = 2 and to prove
that a ® (1 — a) is sent to zero via the symbol map. Let Z[t] — A be the ring homomorphism
sending t to a, and let p C Z[t] be the prime ideal defined as the inverse image of the maximal
ideal of A via this ring homomorphism. By naturality of the symbol map, the diagram of
abelian groups

(Z[tp)* @z (Z[t]y)* —— Hiot (Z[t]y, Z(2))

! |

AX @y A —— S H2 (A, Z(2))

mot

is commutative. It then suffices to prove that the top horizontal arrow of this diagram sends
t® (1 —t) to zero. The local ring Z[t], is essentially smooth over Z, so the right vertical map
of the commutative diagram of abelian groups

(Z[ty)* @z (Z[t]y)* ———— Hao(Z[t]p, Z(2))

! |

(Frac(Z[t]y))* @z (Frac(Z[t]p))* —— H2 (Frac(Zl[t]y), Z(2))

mot
is injective. Indeed, by Lemma 8.2.1 this is equivalent to the fact that the natural map
Ko (A) — Ky (Frac(A))

is injective, and this is the Gersten injectivity for Ky (|GL87, Corollary 6] and [DS75, The-
orem 2.2]). It then suffices to prove that the bottom horizontal map of this diagram sends
t® (1 —t) to zero. This is a consequence of the fact that the symbol map to classical motivic
cohomology respects the Steinberg relation for fields (|NS89], see also [Tot92]). O
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Definition 8.2.3 (Symbol map). Let A be a local ring. For every integer i > 0, the symbol
map '
KM(A4) — Hi

mot

(A, Z(i))
is the natural map of abelian groups of Lemma 8.2.2.

Following [Ker10|, for A a local ring and 7 > 0 an integer, we denote by K%V[(A) the ith
improved Milnor K-group of A.

Lemma 8.2.4. Let A be a local ring. Then for every integer i > 0, the symbol map

KM(4) — H

mot

(A, Z(i))
factors through the improved Milnor K-group IAQV[(A)

Proof. Let M; > 1 be the integer defined in [Ker10]. If the residue field of the local ring A
has at least M; elements, then the natural map

K}(4) — K}M(4)

is an isomorphism of abelian groups (|[Ker10, Proposition 10 (5)]). Assume now that the residue
field of the local ring A has less than M; elements. We want to prove that the symbol map
KM(4) — H

mot

(4, Z(2))

factors through the surjective map KM(A) — K%VI(A), i.e., that every element of the abelian
group ker(KM(4) — I/ziv[(A)) is sent to zero by the previous symbol map. Let m be the
maximal ideal of the local ring A, and p be its residue characteristic. The residue field A/m of
the local ring A is isomorphic to a finite extension F, of F,. Let £ > 1 be an integer which is
coprime to the degree of this extension, and such that p® > M;. As a tensor product of finite
field extensions of coprime degree, the commutative ring Fg ®p, F,¢ is a field. Let V' be the
finite étale extension of Z,) corresponding to the field extension ¢ of ;. The commutative
ring A’ := A ®z,,, V is finite over the local ring A, and the quotient A’ /mA’ is a field, so the
commutative ring A’ is a local A-algebra, whose residue field has at least M; elements.

Let P, — A be a simplicial resolution of the local ring A where each term P, is a local
ind-smooth Z-algebra, and each face map P11 — P, is a henselian surjection. By Theo-
rem 8.1.11, there is then a natural equivalence

colim 751 Z(i)™ (P,) <5 750 Z(3)™ (A)

in the derived category D(Z). In particular, this equivalence induces a natural isomorphism

o

coed (Hingy (Pr, Z(1)) = Hingy (Po, (1)) — Hior (4, Z())

of abelian groups, where the motivic cohomology groups in the left term are naturally identified
with classical motivic cohomology groups by Theorem 7.1.3. Similarly, P, Rz, V — A is
a simplicial resolution of the local ring A’ where each term P, Rz, V is an ind-smooth
V-algebra, and each face map P41 @z, V — P, @z, V is a henselian surjection, so there
is a natural isomorphism

coeq (Hio, (Py @z, V, Z(i)) = Hiyoy (Py ®z,,, V2 (1)) — Hiyoy (A’ Z(i))
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of abelian groups, where the motivic cohomology groups of the left term are naturally identified
with classical motivic cohomology groups. Classical motivic cohomology of smooth schemes
over a mixed characteristic Dedekind domain admits functorial transfer maps along finite étale
morphisms, so the previous two isomorphisms induce a transfer map

Ny :H! (A Z(i) — H (A, Z(1))

mot mot
(A’,Z(7)) is multipli-
(A, Z(3)) is

such that pre-composition with the natural map H! (A, Z(i)) — H:

mot mot

cation by £. In particular, the kernel of the natural map Hi (A, Z(i)) — H
{-torsion.

Consider the commutative diagram

KM(A4) ————— KM(4)

| |

Hinot(Aﬂ Z(Z)) B Hinot (A,a Z(Z))

of abelian groups, and let  be an element of the abelian group ker(KM(A) — IAQVI(A)) The
residue field of the local ring A’ has at least M; elements, so the natural map KM(A’) — K%V[(A’)
is an isomorphism ([Ker10, Proposition 10 (5)]), and z is sent to zero by the top horizontal
map. In particular, the image of = by the left vertical map is in the kernel of the bottom
horizontal map, and is thus /¢-torsion by the previous paragraph. Let ¢/ > 1 be an integer
which is coprime to ¢ and to the degree of F, over F,, and such that p! > M;. The previous
argument for this integer £/ implies that the image of = by the left vertical map is also ¢'-torsion,
hence it is zero. O

Conjecture 8.2.5. Let A be a local ring. Then for every integer ¢ > 0, the natural map
Ki\/I(A) — anot(A7 Z(Z))
induced by Lemma 8.2.4 is an isomorphism of abelian groups.

The previous conjecture was proved by Elmanto-Morrow for equicharacteristic local rings
(JEM23, Theorem 7.12]). Their proof uses as an input the analogous result in the smooth case
for classical motivic cohomology, which is unknown in mixed characteristic (see Remark 8.2.7).

Theorem 8.2.6 (Singular Nesterenko-Suslin isomorphism with finite coefficients). Let A be
a henselian local ring. Then for any integers i > 0 and n > 1, the natural map

RY (4)/n — Hin (A, Z(0))/n

mot
15 an 1somorphism of abelian groups.

Proof. If the local ring A contains a field, then the natural map
K3 (A) — Hipo (A, Z(0))

mot

is an isomorphism of abelian groups ([EM23, Theorem 7.12|). Otherwise, A is a henselian local
ring of mixed characteristic (0, p) for some prime number p. In particular, the local ring A is
p-henselian. If p does not divide the integer n, then consider the commutative diagram

KM(A)/n —— H' (A, Z(i))/n

mot

| !

KM(A/p)/n —— Hio(A/p, Z(0))/n
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of abelian groups. The left vertical map is an isomorphism by [Kerl0, Proposition 10 (7)].
By Lemma 8.1.9 and Corollary 6.1.6, the right vertical map is naturally identified with the
natural map of abelian groups

HE (A, pS") — HE (A/p, n3h),

which is an isomorphism by rigidity of étale cohomology ([Gab94], see also [BM21, Corol-
lary 1.18(1)]). The local ring A/p is an Fp-algebra, so the bottom horizontal map is an
isomorphism ([EM23, Theorem 7.12]), and the result is true in this case. It then suffices to
prove that for every integer k > 1, the natural map

K} (A)/p* — Hio (A, Z(1)) /p"

mot

is an isomorphism of abelian groups. By Lemma 8.1.9 and Corollary 6.2.5, the natural map

Hipot (A, Z(0) /9" — W' (Z /" ()25 (4))

mot

is an isomorphism of abelian groups. By [LM23, Theorem 3.1|, the composite map

KM (A)/p* — Wiy (A, 2(0) /p* — H(Z /¥ ()PM5(4))

mot
is an isomorphism of abelian groups, hence the desired result. O

Remark 8.2.7. If Conjecture 8.2.5 is true for local ind-smooth Z-algebras, then the left Kan
extension properties [LM23, Proposition 1.17] and Theorem 8.1.11 imply that Conjecture 8.2.5
is true for all local rings. See the proof of [EM23, Theorem 7.12| for more details.

Remark 8.2.8. Let A be a local essentially smooth Z-algebra, ¢ > 0 be an integer, and
consider the commutative diagram

mot (A7 Z(Z))

! J

KM (Frac(A)) — H.,, (Frac(A), Z(i))

mot

KMA) —— > 1

of abelian groups. The bottom horizontal map is an isomorphism by the Nesterenko—Suslin iso-
morphism for fields (|NS89|, see also [EM23, Theorem 7.12|). The left vertical being injective
then implies that the top horizontal map is injective. That is, the Gersten injectivity conjec-
ture for the improved Milnor K-groups would imply the injectivity part of Conjecture 8.2.5.
Knowing the Gersten injectivity conjecture for the motivic cohomology group H’, ., (—,Z(i))
would imply that these two facts are equivalent. See [Liid22] for related results on the Gersten

conjecture for improved Milnor K-groups.
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Chapter 9
The projective bundle formula

In this chapter, we prove that the motivic complexes Z(i)™°" satisfy the projective bundle
formula (Theorem 9.3.2) and regular blowup excision (Theorem 9.3.1). This implies in par-
ticular that the presheaves Z(i)™°" fit within the recent theory of non-Al-invariant motives of
Annala-Iwasa [AI23] and Annala—Hoyois-Iwasa [AHI23, AHI24].

9.1 First Chern classes

In this section, we construct the motivic first Chern class (Definition 9.1.1) in order to
formulate the projective bundle formula (Theorem 9.3.2).

Definition 9.1.1 (Motivic first Chern class). Let X be a qcqs derived scheme. The motivic
first Chern class is the natural map

ot RUNis (X, G ) [—1] — Z(1)™%(X),

in the derived category D(Z), defined as the Nisnevich sheafification of the natural map of

presheaves
(T5'RT 2 (—, G ) [-1] — Z(1)™(—)

induced by Definition 8.1.1 and Example 4.2.4. We also denote by
Crant : PIC(X) — H2mot(X7Z(1))
the map induced on H2.

Remark 9.1.2. The motivic first Chern class of Definition 9.1.1 is uniquely determined by its
naturality, and the fact that it is given by the map of Definition 4.3.9 on smooth Z-schemes.

For every qegs scheme X, the line bundle O(1) € Pic(PY), via the multiplicative structure
of the motivic complexes Z(i)™°, induces, for every integer i € Z, a natural map

o (O1)) + Z(i = 1) (PX)[-2] — Z(i)™ (Px)

in the derived category D(Z). If « : IP’}( — X is the canonical projection map, this in turn
induces a natural map

T @ U O) T Z(1)N(X) @ Z(i — 1) (X)[-2] — Z(i)™"(PX) (9.1)

in the derived category D(Z). The aim of the following section is to prove that this map is an
equivalence (Theorem 9.2.1). To prove such an equivalence, we will need compatibilities with
other first Chern classes.
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Construction 9.1.3 (P'-bundle formula for additive invariants). Following [EM23, Sec-
tion 5.1], every additive invariant E of Z-linear oo-categories in the sense of [HSS17, Defi-
nition 5.11| admits a natural first Chern class, inducing a natural map of spectra

™ O (1 —c)(O(-1))n*: B(X) ® E(X) — E(PY).

For every additive invariant of Z-linear oo-categories, this map is an equivalence ([EM23,
Lemma 5.6]).

Remark 9.1.4 (Compatibility with filtrations). If the additive invariant E of Z-linear oo-
categories, seen as a presheaf of spectra on qcqs schemes, admits a multiplicative filtered
refinement Fil*E which is a multiplicative filtered module over the lisse motivic filtration
Filf K™ (Definition 4.2.2),! then this map has a natural filtered refinement

lisse
™ @ (1 —c1)(O(—-1))7* : Fi*E(X) @ Fil* 'E(X) — Fil*E(PY)

by [EM23, Construction 5.11 and Lemma 5.12|. If E is algebraic K-theory, equipped with
the motivic filtration Fil% K (Definition 4.3.6), the argument of [EM23, Lemma 5.12] and
Remark 9.1.2 imply that this map recovers, up to a shift, the map (9.1) on graded pieces.

Example 9.1.5 (Compatibility with cdh-local motivic cohomology). The multiplicative filtra-
tion Filsy, KH (Definition 4.2.5) is naturally a module over the multiplicative filtration Fil}, K
(e.g., because cdh sheafification preserves multiplicative structures), so the first Chern class
on cdh-local motivic complexes of [BEM24] is compatible with the motivic first Chern class of

Definition 9.1.1.

Example 9.1.6 (Compatibility with syntomic cohomology). Let X be a qcgs scheme, and
p be a prime number. By [BEM24|, the syntomic first Chern class of [BL22, Section 7| is
compatible with the motivic first Chern class of Definition 9.1.1 via the motivic-syntomic
comparison map (Construction 6.2.2). Note here that the motivic-syntomic comparison map
can be seen as the map induced on graded pieces from a multiplicative map of filtered spectra

Fily, .K(X;Z,) — Fil}

mot mot

K5(X3Zy),

where the target is the filtration on p-completed Selmer K-theory (|[BL22, Remark 8.4.3]).
These motivic and syntomic first Chern classes then coincide with the first Chern classes
coming from the additive invariants K(—;Z,) and K5¢(—;Z,) (Remark 9.1.4).

9.2 Plbundle formula

In this section, we prove that the motivic complexes Z(i)™°" satisfy the P!-bundle for-
mula on qcgs schemes (Theorem 9.2.1). Note that the P'-bundle formula is unknown for
the cdh-local motivic complexes Z(i)°/" on general qegs schemes.? The cartesian square of
Remark 4.3.7 thus cannot be used directly to prove the P'-bundle formula for the motivic

!The lisse motivic filtration Filf. K" is usually defined only on affine schemes. Here the argument works
if Fil*E is a Zariski sheaf of filtered spectra on qcgs schemes, and if its restriction to affine schemes is a
multiplicative filtered module over the lisse motivic filtration Filjj,, K“"".

*More precisely, Bachmann-Elmanto-Morrow proved in [BEM24] that if a qcqs scheme X satisfies the con-
dition Val(X), then the cdh-local motivic complexes Z(i)°™" satisfy the P*-bundle formula at X. In particular,
the P'-bundle formula is known for these complexes over a field, and over a mixed characteristic perfectoid
valuation ring by the results of Chapter 11 (see also [Bou23]), but not on general qcgs schemes.
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complexes Z(i)™°, as was done by Elmanto-Morrow in equicharacteristic ([EM23, Section 5]).
Instead, we use in a crucial way our main result on p-adic motivic cohomology (Theorem 6.2.4),
and a degeneration argument using Selmer K-theory.

Theorem 9.2.1 (P!'-bundle formula). Let X be a qcgs scheme, and 7 : P}( — X be the
canonical projection map. Then for every integer i € Z, the natural map

T O Z(1) (X)) @ Z(i — 1)™N(X)[~2] — Z(i)™ (Pk)
is an equivalence in the derived category D(Z).

Using Theorem 6.2.4, the proof of Theorem 9.2.1 will reduce to the proof of a similar
equivalence for the cdh sheaves (Lean7”" Fp(1)%") (=) (Proposition 9.2.8). Most of this section
is devoted to the study of these cdh sheaves.

Lemma 9.2.2. Let p be a prime number. Then for any integersi,j > 0 and k > 1, the natural
sequence

Lism™? Rl et (= i) — (Lxis™7 Z [/ ()™") (=) — (Lnis™™ Z /p"(0)"5) (=)
is a fibre sequence of D(Z /pk)—valued presheaves on gegs schemes.

Proof. The three presheaves are finitary Nisnevich sheaves, so it suffices to prove the result on
henselian local rings ([CM21, Corollary 3.27 and Example 4.31]). Let A be a henselian local
ring. By [BL22, Remark 8.4.4], there is a natural fibre sequence

RUet(A, i) — 2 /o (0)™(A) — Z /(i) 5(4)
in the derived category D(Z /p¥), so it suffices to prove that the natural map
Z/pk(i)syn(A) N Z/pk(i)BMS(A)

is surjective in degree j. If p is invertible in the henselian valuation ring A, the target of this
map is zero. If p is not invertible in A, then the valuation ring A is p-henselian, and this map
is an equivalence (Notation 6.2.1). O

Lemma 9.2.3. Let p be a prime number, and V' be a rank one henselian valuation ring of
mized characteristic (0,p). Then for any integers i > 0 and k > 1, the complex

(Lcdh7'>iRFét(_>j!U§ki))(]P)%/) € D(Z /p")
is concentrated in degree i + 1.3

Proof. The presheaf Leqn7 "R (—, jg,u,?,j ) is the cdh sheafification of a presheaf taking values
in degrees at least ¢ + 1, so it takes values in degrees at least ¢ + 1. To prove that the complex

(Leanm " RTat(—, i) (PY,) € D(Z /p")
is in degrees at most ¢ 4+ 1, consider the fibre sequence

(LcthSiRPét(_aj!kai))(]P)%/) — Rrét(P%hj!ﬂSj) — (Lcdh7>iRPét(_7j!M§ki))(]I'D%/)

3We will prove, at the end of Proposition 9.2.6, that this complex is actually zero.
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in the derived category D(Z /p*), which is a consequence of arc descent for the presheaf
RUg(—, j!ufﬁ) (|BM21, Theorem 1.8]). The scheme P}, has valuative dimension two, so the
complex

(Lean™='Rler(—, i) (Py,) € D(Z /p*)

is in degrees at most i + 2 (JEHIK21, Theorem 2.4.15]). By the P'-bundle formula for the
presheaves Rfét(—,jgp,f,f) (|BL22, proof of Theorem 9.1.1]), there is a natural equivalence

RTe(V, jupiSl) & RO (V. i) [=2] — RTat (P, jip))
in the derived category D(Z /p¥). The functors RFét(—,j[M;?ki) and Rrét(—,jlufk(i_l)> are
moreover rigid ([Gab94], see also [BM21, Corollary 1.18(1)]) and the valuation ring V' is
p-henselian, so the complex R (P}, i u?,f) € D(Z /p*) is zero. This implies that the complex

(Lcdh7>iRPét(—, 7 u?,f ))(P%/) is naturally identified with the complex

(LcthgiRFét<_7j!M§ki))(P%/)[l] € D(Z /p"),
and is thus in degrees at most ¢ + 1. O

Following [EHIK21], we say that a D(Z)-valued presheaf on qcgs schemes satisfies henselian
v-excision if for every henselian valuation ring V' and every prime ideal p of V, this presheaf
sends the bicartesian square of commutative rings

Vi—"V

| |

Vip —— Vu/pVp

to a cartesian square. Note that in the previous bicartesian square, all the commutative rings
are henselian valuation rings by [EHIK21, Lemma 3.3.5]. The following lemma explains how
to use henselian v-excision to prove that a map of cdh sheaves is an equivalence.

Lemma 9.2.4. Let S be a qcgs scheme of finite valuative dimension, C be a oco-category
which is compactly generated by cotruncated objects, and F,G : SCh%CqS’Op — C be finitary cdh
sheaves satisfying henselian v-excision. Then a map of presheaves F' — G is an equivalence
of presheaves if and only if the map F(V) — G(V') is an equivalence in C for every henselian
valuation ring V' of rank at most one with a map Spec(V) — S.

Proof. By |[EHIK21, Proposition 3.1.8 (2)], amap F' — G is an equivalence of presheaves if and
only if it is an equivalence on henselian valuation rings over S. The presheaves F' and G being
finitary, this is equivalent to the fact that it is an equivalence on henselian valuation rings of
finite rank over S. By induction, and using henselian v-excision, this is in turn equivalent to
the fact that it is an equivalence on henselian valuation rings of rank at most one over S. [

Lemma 9.2.5. Let p be a prime number. Then for any integers i > 0 and k > 1, the
D(Z /p*)-valued presheaves (Leant”"Z /p*(i)™) (=) and (Leant™*Z /p*(i)*")(PL) are fini-
tary cdh sheaves on qcqs schemes, and satisfy henselian v-excision.
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Proof. The presheaf Z /p* (i)™ is finitary, and the cdh sheafification of a finitary presheaf is
a finitary cdh sheaf (Lemma 5.5.12), so the presheaf (Lean7>"Z /p*(i)™)(—) is a finitary cdh
sheaf. Covers in a site are stable under base change, so the presheaf

(Lcth>i 7 /pk:(i)syn) (Pl_)

1s also a finitary cdh sheaf. Henselian valuation rings are local rings for the cdh topology, and
the presheaves T>iRFét(—,jgu§’,f) and 7> Z /p*(i)BMS are rigid (|Gab94] and Theorem 3.2.13),
so the presheaves

(Lcth>iRFét(_7j!N§Ij))(_) and (Lcdh7'>iZ/pk(i)BMS)(—)

satisfy henselian v-excision. By Lemma 9.2.2 (applied for j = i and after cdh sheafifica-
tion), the presheaf (Lcan7”*Z /p¥(i)®")(—) then satisfies henselian v-excision. Finally, the
presheaf (Lcant”" Z /p*(i)%¥") (PL) satisfies henselian v-excision, as a consequence of [EHIK21,
Lemma 3.3.7], and henselian v-excision for the presheaf (Lean7”*Z /p*(i)*™)(—). O

For every qcgs scheme X, the compatibilities between the motivic and syntomic first Chern
classes of Section 9.1 imply that the natural diagram

Z P ()™ (X) & Z [ (i — 1)mot (X)[-2] OO ok (jymot (L)

| |

Z[pF ()™ (X) © 2 /pk(i — 1) (X) [~2] OO 7k iyovn (Y )

is commutative. We define the natural map
(Lean™" Z /" ())¥™) (X) @ (Leant™ "' Z /" (i = 1)¥")(X)[-2] — (Leanm™" Z /p" (1)) (P)

in the derived category D(Z /p*) as the map induced, via Theorem 6.2.4, by taking cofibres
along the vertical maps of this commutative diagram.

Proposition 9.2.6. Let p be a prime number, and V be a rank one henselian valuation ring
of mized characteristic (0,p). Then for any integers i > 0 and k > 1, the natural map

LN V) @ (772 M= D(V)) 2] — (Lean ™ Z /0" ()7 (PY)
is an equivalence in the derived category D(Z /p").

Proof. The valuation ring V' is p-henselian, so the natural maps
L PN OYHV) — 72 PR (V)

and
(T>i—1Z/pk(Z- _ 1)syn(V))[_2] — (T>i—1z/pk(i)BMS(V))[—2]

are equivalences in the derived category D(Z /p¥). We first prove that the induced map
T>iZ/pk(i)BMS(V) @ (7_>i—1 Z/pk(’i _ 1)BMS(V)) [_2] SN (Lcth>iZ/pk(i)BMS)(P%/)

is an equivalence in the derived category D(Z /p*). Let s be the residue field of V. By the
rigidity property Theorem 3.2.13, the natural maps

L PR @B (V) — 72 ()P ()

113



and
(P 2 = )P V) [-2] — (77 2 /M- 1PV (R)) [2]
are equivalences in the derived category D(Z /p¥). By Corollary 7.2.2, the natural map

(Lcdh7'>l 7 /p ( )BMS) (P%/) — (LthT>Z Z /p ( )BMS) (P%//p)

is an equivalence in the derived category D(Z /p*). The presheaf (Lean7>* 7 /p¥(i)BMS)(PL)
is moreover a finitary cdh sheaf, so it is invariant under nilpotent extensions. In particular,
the natural map

(Lcdh7—>l 7 /p )BMS) (PV/p) (Lcdh7—>l 7 /p )BMS) (P;)

is an equivalence in the derived category D(Z / pk). It then suffices to prove that the natural
map

7L [ ()Y (k) @ (77T 2 /pR (= 1)PYE () [-2) — (Leant™" Z /9" (0)PMF) ()

is an equivalence in the derived category D(Z /p*), and this is a consequence of the P!-bundle
formula on characteristic p fields for the presheaves Z /p*(i)*" ([BEM24]) and Legn Z /p" (i) BMS
(|[EM23, Lemma 5.17]).

We prove now that the natural map

VL@ V) @ (T 2 = )YN(V)) 2] — (Leant T Z /0 (0)) (PY)

is an equivalence in the derived category D(Z /p*). By Lemma 9.2.2 (applied for j = i and
after cdh sheafification), we just proved that the cofibre of this map is naturally identified with
the complex A

(LeanT ™" Rt (=, jipiy)) (Py) € D(Z /p").

By Example 9.1.6, these complexes, indexed by integers ¢ > 0, form the graded pieces of the
filtered spectrum defined as the cofibre of the natural map of filtered spectra
FilX, . K(X;Z /p*) — Fil%

mot

KX 2 /p").

The cofibre of the natural map K(—;Z /p¥) — K5¢(—;Z /p¥), as a cofibre of two additive
invariants of Z-linear oco-categories, is an additive invariant of Z-linear co-categories and, as
such, satisfies the P!-bundle formula ([EM23, Lemma 5.6]). This filtration then induces a
spectral sequence

EY = Hi—j((Lcdh7'>_jRFét(_aj!ﬂfk(_j)))(P%/)) = 0.

By Lemma 9.2.3, for every integer ¢ > 0, the complex (Lcth>iRFét(_,j!M§)’j)) (PL) € D(Z /p*)
is concentrated in degree ¢ + 1, so this spectral sequence degenerates. This implies the desired
equivalence. O

Remark 9.2.7. The proof of Proposition 9.2.6 uses a reduction to the case of fields of char-
acteristic p, where the result is a consequence of the P!-bundle formula for the presheaves
Z JpF (i) (IBEM24]) and Lean Z /p*(1)BMS (JEM23, Lemma 5.17]). It is however possible to
bypass these two results and prove directly the P'-bundle formula on fields of characteristic p
for the presheaves Leqn7>"Z /p*(i)BMS| by imitating the degeneration argument of [EM23,
Lemma 5.17].
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Proposition 9.2.8. Let X be a qcgs scheme, and p be a prime number. Then for any integers
1> 0 and k > 1, the natural map

(Lean™" Z /" (1)) (X) @ (Lean™ " Z /9" (i = 1)) (X)[~2] — (LeanT " Z /p"(5)™™) (PX)
is an equivalence in the derived category D(Z /p").

Proof. The presheaves Leanm”" Z /p*(i)™™ and (Lean>" Z /p*(i)™™) (PL) are finitary cdh shea-
ves on qcqs schemes, and satisfy henselian v-excision (Lemma 9.2.5). It then suffices to prove
the desired equivalence for henselian valuation rings of rank at most one (Lemma 9.2.4). Let V
be a henselian valuation ring of rank at most one.

If p is invertible in the valuation ring V', then this is equivalent to proving that the natural
map

T RDe(V, 55 @ (77 RUe(V, 15 ™)) [<2] — (Leant™ Re(—, 150)) (PY)

is an equivalence in the derived category D(Z /p*). For every integer i > 0, there is a fibre
sequence of D(Z /p*)-valued presheaves

Z [p*()*" (=) — RTet(— p5y') — Lean™ " RTet(— 1)
on qcgs Z[%}—sehemes (IBEM24]). The desired equivalence is then a consequence of the
Pl-bundle formula on qcqgs Z[%]—schemes for the presheaf Z /pF (i) ([BEM24]) and the
presheaf RI‘ét(—,uf,f) (|BL22, proof of Theorem 9.1.1]).

If p is zero in the valuation ring V, then this is a consequence of the P'-bundle formula
on qcgs Fy-schemes for the presheaves Z /p*(i)d® (|[BEM24]) and Lean Z /p*(i)BMS (JEM23,
Theorem 5.14]).

If p is neither invertible nor zero in the valuation ring V', then V is a rank one henselian
valuation ring of mixed characteristic (0, p), and the result is Proposition 9.2.6. O

Proof of Theorem 9.2.1. It suffices to prove the result rationally, and modulo p for every prime
number p. Rationally, the Atiyah—Hirzebruch spectral sequence degenerates (Theorem 5.0.1),
so the result is a consequence of the P'-bundle formula for algebraic K-theory (Section 9.1).
Let p be a prime number. By Theorem 6.2.4, for every integer ¢ € Z, there is a fibre sequence
of D(F,)-valued presheaves on qcgs schemes

Fp(i)™ (=) — Fp()¥" (=) — (Lean7™" Fp(8)™™) (=)
By [BL22, Theorem 9.1.1], the natural map
T @ G OW)r" (i)™ (X) @ Fp(i — )™ (X)[~2] — Fp()™" (Px)
is an equivalence in the derived category D(F,). The result modulo p is then a consequence

of Proposition 9.2.8. O

9.3 Regular blowup and projective bundle formulae

In this section, we prove the regular blowup formula for the motivic complexes Z(i)™°

(Theorem 9.3.1). By an argument of Annala-Iwasa, this and the P'-bundle formula imply the
general projective bundle formula for the motivic complexes Z(i)™°" (Theorem 9.3.2).
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Theorem 9.3.1 (Regular blowup formula). Let Y — Z be a regular closed immersion of qcgs
schemes.* Then for every integer i > 0, the commutative diagram

Z(i)™N(Z) ———— Z(H)™(Y)

| I

Z(i)™ (Bly (Z)) —— Z(i)™(Bly(Z) x4 Y)

is a cartesian square in the derived category D(Z).

Proof. 1t suffices to prove the result rationally, and modulo p for every prime number p.
By definition, a cdh sheaf sends an abstract blowup square to a cartesian square, and in
particular satisfies the regular blowup formula. By Corollary 5.6.7, the regular blowup formula
for the presheaf Q(i)™°' is then equivalent to the regular blowup formula for the presheaf

RI‘Zar(—,]Lfo@/@). And the regular blowup formula for the presheaf RPZar(—,LQf;/Q) is

a consequence of the fact that for every integer j > 0, the presheaf RFZar(—,LJ_/Z ®z Q)

satisfies the regular blowup formula (|[BL22, Lemma 9.4.3]).

Let p be a prime number. Similarly, Corollary 4.3.12 implies that the regular blowup
formula for the presheaf F, (7)™ is equivalent to the regular blowup formula for the presheaf
F,(i)BMS, By [AMMN?22, Corollary 5.31], there exists an integer m > 0 and an equivalence of
presheaves

Fy(3)™5 (=) =5 fib(can — ¢« (VZIB_{i}/NZ7b_{i}) [p — (B-{i}/NZ "D _{i})/p).

In particular, it suffices to prove that for every integer j > 0, the presheaf N7A_ /p satisfies
the regular blowup formula. By [BL22, Remark 5.5.8 and Example 4.7.8], there is a fibre
sequence of presheaves

. . rconi ©+j .jconj
NIB_{i}/p — FISYA_ 7 51/p — FiPNA_ 7 15 /p-

The presheaves Fﬂ;onjﬁ_ Jz,[5]/P and Fil;‘inljﬁ_ /z,[p]/P have finite filtrations with graded
pieces given by modulo p powers of the cotangent complex, and the result is then a consequence
of the regular blowup formula for powers of the cotangent complex (|[BL22, Lemma 9.4.3]). O

Theorem 9.3.2 (Projective bundle formula). Let X be a qcgs scheme, r > 1 be an integer,
E be a wvector bundle of rank v +1 on X, and 7 : Px(E) — X be the projectivisation of E.
Then for every integer i € Z, the natural map

> o)y r : @z — )N X)[-24] — Z(i)" (Px (£))
§=0 §=0

is an equivalence in the derived category D(Z).

Proof. By Zariski descent, it suffices to consider the case where the vector bundle £ is given
by ATX'H, i.e., to prove that the natural map

> eroMm)yrt : @7 — )N (X)[-24] — Z(i)" (Py)
j=0 j=0

*A morphism Y — Z is a regular closed immersion if it is a closed immersion, and if Z admits an affine
open cover such that Y is defined by a regular sequence on each of the corresponding affine schemes.
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is an equivalence in the derived category D(Z). The presheaves Z(i)™°" satisfy the P!-bundle
formula (Theorem 9.2.1). Moreover, for every qcgs scheme X and every integer m > 0, they
send the blowup square

PZ —— Bly (AR

| |

X —2 - Amt!
to a cartesian square in the derived category D(Z) (Theorem 9.3.1, in the special case where
the regular closed immersion Y — Z is the zero section X — AR*!). By the argument of
[AI23, Lemma 3.3.5], these two properties imply, by induction, the desired projective bundle
formula. O

In the following result, denote by Z(i)%°" : Sm{ — D(Z) the Zariski sheaves on smooth
schemes over X induced by restriction of the motivic complexes Z(i)™°t.

Corollary 9.3.3 (Motivic cohomology is represented in motivic spectra). For every qcgs
scheme X, the motivic complezes {Z(i)2° }icz are represented by a Pl-motivic spectrum in
the sense of [AI23].

Proof. By definition of P'-motivic spectra, this is a consequence of elementary blowup excision
(which is a special case of Theorem 9.3.1) and the P!-bundle formula (Theorem 9.2.1). O
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Chapter 10

Motivic Weibel vanishing and pro cdh
descent

In this chapter, we study the motivic complexes Z(i)™" on noetherian schemes. We prove

a general vanishing result which refines Weibel’s vanishing conjecture on negative K-groups
(Theorem 10.3.3), and prove that they coincide with Kelly-Saito’s pro cdh motivic complexes
Z,(i)Pocdt (Theorem 10.4.2). The key input for both these results is the fact that the motivic
complexes Z(i)™°" satisfy pro cdh excision (Theorem 10.2.11), i.e., that they send abstract
blowup squares to pro cartesian squares.

Notation 10.0.1 (Abstract blowup square). An abstract blowup square (of noetherian schemes)
is a cartesian square

Y — 5 X/

l l (10.1)

Yy — X

of qcgs schemes (resp. of noetherian schemes) such that X’ — X is proper and finitely pre-
sented, Y — X is a finitely presented closed immersion, and the induced map X'\ Y’ — X\ Y
is an isomorphism. In this context, we also denote, for every integer r > 0, by rY (resp. rY”)
the r — 1% infinitesimal thickening of Y inside X (resp. of Y’ inside X’).

We use Kelly—Saito’s recent definition in [KS24| of the pro cdh topology to encode the fact
that a Nisnevich sheaf (e.g., the motivic complex Z(i)™°") satisfies pro cdh excision. Kelly—
Saito proved in particular that if S has finite valuative dimension and noetherian topological
space, then the pro cdh topos of S is hypercomplete and has enough points. For our purposes,
the following definition will be used only for noetherian schemes S.

Definition 10.0.2 (Pro cdh descent, after [KS24]). Let S be a qcgs scheme. A pro cdh sheaf
on finitely presented S-schemes is a presheaf

F: SchP*? — D(7)

satisfying Nisnevich descent, and such that for every abstract blowup square of finitely pre-
sented S-schemes (10.1), the natural commutative diagram

F(X) — F(X')

| |

{FrY)}r — {F(Y)}y
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is a weakly cartesian square of pro objects in the derived category D(Z).!

10.1 Pro cdh descent for the cotangent complex

In this section, we review the pro cdh descent for powers of the cotangent complex on
noetherian schemes (Proposition 10.1.7). On finite-dimensional noetherian schemes, this is
[Mor16, Theorem 2.10]. On general noetherian schemes, the proof follows the sketch presented
in [EM23, proof of Lemma 8.5]. In particular, the arguments are exactly as in [Morl16],
except for the following generalisation of Grothendieck’s formal functions theorem (|Gro61,
Corollary 4.1.7]), where the finite dimensionality hypothesis is removed. We give some details
for the sake of completeness.

For every commutative ring A, recall that a pro A-module { M, }, is zero if for every index r,
there exists an index r’ > r such that the map M,» — M, is the zero map. Similarly, a map
{M,}, — {N,}, of pro A-modules is an isomorphism if its kernel and cokernel are zero pro
A-modules. We say that a pro object {C,}, in the derived category D(A) is weakly zero if all
its cohomology groups are zero pro A-modules. Note that all the pro complexes that we will
consider are uniformly bounded above, so this definition is equivalent to being weakly zero in
the stable oco-category of pro objects in the derived category D(A) (|[LT19, Definition 2.27]).
Similarly, we say that a map {C,}, — {C/}, of pro objects in the derived category D(A) is a
weak equivalence if its fibre is weakly zero as a pro object in the derived category D(A).

Lemma 10.1.1 (Formal functions theorem, after Lurie [Lurl9]). Let A be a noetherian com-
mutative ring, I be an ideal of A, X be a proper scheme over Spec(A), and X} be the formal
completion of X along the vanishing locus of 1. Then for every coherent sheaf F over X, the
natural map

RTyar(X, F) — RUyar( X1, F})

where F} is the pullback of F along the natural map X — X, exhibits the target as the I-adic
completion® of the source in the derived category D(A). More precisely, the natural map

{RT7a: (X, F) /T"}r — {RT 700(X Xgpec(a) Spec(A/I7), F @p, Ox/I"Ox)}r
is a weak equivalence of pro objects in the derived category D(A).

Proof. The first statement is a special case of [Lurl9, Lemma 8.5.1.1]. The second statement,
although a priori stronger, follows by an examination of the previous proof (and in particular,
the proof of [Lurl9, Lemma 8.1.2.3|). O

Lemma 10.1.2. Let A be a noetherian commutative ring, and X be a proper scheme over

Spec(A). Then for any integers j > 0 and n € Z, the A-module Hy, (X, L{/A) is finitely
generated.

!By this, we mean that all the cohomology groups of the total fibre of this commutative square are zero
as pro abelian groups. All the presheaves F' that we will consider (most importantly, the presheaves Z(i)™°")
are bounded above on noetherian schemes, by a constant depending only on the dimension of their input (for
the motivic complexes Z(3)™°", this is Proposition 5.5.4); this definition of weakly cartesian square will then
be equivalent to being weakly cartesian in the stable co-category of pro objects in the derived category D(Z),
in the sense of [LT19, Definition 2.27].

2The cohomology groups of these coherent sheaves are finitely generated A-modules (because X is proper
over Spec(A)), so the derived I-adic completion and the classical I-adic completion coincide in this context.
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Proof. The scheme X is of finite type over Spec(A), so the Ox-module ’Hgar(—,Lj_/A) is

coherent. Because X is proper over Spec(A), its cohomology groups are thus finitely generated
A-modules. O

Corollary 10.1.3. Let A be a noetherian commutative ring, I be an ideal of A, and X be a
noetherian scheme which is proper over Spec(A). Then for any integers j > 0 and n € Z, the
natural map

{H%ar(Xv L]_/A)/IT}T — {H%ar(Xﬂ ]L]_/A ®H(5X OX/ITOX)}T
is an isomorphism of pro A-modules.
Proof. By Lemma 10.1.2 and its proof, all the terms in the hypercohomology spectral sequence

EPT=HL (X, H}

Zar

(L2 ) = HEEH(X, L2

" a)

are finitely generated A-modules. The functor {— ®4 A/I"}, is exact on the category of
finitely generated A-modules (|[Morl6, Theorem 1.1 (ii)]), so it induces a spectral sequence of
pro A-modules

EY? = {H7,. (X, Hy,.(—, jf/A))/IT}v' = {HZZ);](X LJ D/ Y
It then suffices to prove that the natural map of pro A-modules
{HZar(X H%ar( ’ ))/IT }T - {HZar(X /H%ar( 7 /A ®Héx OX/ITOX))}T

is an isomorphism for all integers p, ¢ > 0. The natural map
{1 (X, G o (= L 0) /T — {H, (X, HY (= 1) @5 A/},

is an isomorphism by Lemma 10.1.1 applied to the coherent sheaf ’HZar( ;IL_/4) on X, and
the natural map

{HZar(X HZar( , L / ) ®A A/IT)}T — {HZar(X, Hanr(—,L‘i/A @%X OX/ITOX))}T
is an isomorphism by [Morl6, Lemma 2.3]|. O

Lemma 10.1.4. Let A be a noetherian commutative ring, I be an ideal of A, and X be a
proper scheme over Spec(A) such that the induced map X \ V(IOx) — Spec(A) \ V(I) is an
1somorphism.

(1) For any integers j > 0 and n € Z, the natural map
(o (XL, @, IMOx)}r — (I Hp(X,L7 )},
is an isomorphism of pro A-modules.

(2) For any integers j > 0 and n € Z such that (j,n) # (0,0), the A—modul@ H7. (X, IL,j_/A)
is killed by a power of I; in particular, the pro A-module {I"H7, (X, L]_/A)}T is zero.
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Proof. (1) The short exact sequence 0 — {I"Ox}, — Ox — {Ox/I"Ox}, — 0 of pro
Ox-modules induces a long exact sequence

Zar

o H o (XL, @6, 170x) ) = Hyo(X, 17 )) — {Hy, (X1, ®5, Ox/I"Ox)}, —

of pro A-modules. By Corollary 10.1.3, the boundary maps of this long exact sequence vanish,
hence the natural map

{H7..(X, L];/A ®H(7)X I"Ox)}r — {I"Hp,, (X, L];/A)}T

is an isomorphism of pro A-modules. ‘
(2) By Lemma 10.1.2, the A-module H7, (X, ]L{/A) is finitely generated. Because the map

Zar

X\ V(IOx) — Spec(A) \ V(I) is an isomorphism, this A-module is moreover supported on

V(I)if (j,n) # (0,0). If (4,n) # (0,0), this implies that the A-module H7, (X, ]L_/A) is killed
by a power of I. O

Corollary 10.1.5. Let A be a noetherian commutative ring, I be an ideal of A, and X be a
proper scheme over Spec(A) such that the induced map X \ V(IOx) — Spec(A) \ V(I) is an
tsomorphism. Then for every integer 7 > 0, the natural map

(L), @4 I} — {RTae(X, LY, @5, I"Ox)}
is a weak equivalence of pro objects in the derived category D(A).
Proof. By Lemma 10.1.4, and for any integers n,a,b € Z, the pro A-module
(L), @} B, (X, LYy 06, T'Ox)),

is zero, except if (a,b) = (0,0). By transitivity for the powers of the cotangent complex (see
the proof of [Mor16, Lemma 2.8 (ii)| for more details), this implies that the natural map

{H" (), ®% HYor (X, I70x)}r — {H (X L7, ®6, I7Ox)},

is an isomorphism of pro A-modules. Let B be the A-algebra HY, (X,0x). Applying
Lemma 10.1.4 (1) for j = n = 0, it then suffices to prove that the natural map {I"}, — {I" B},
is an isomorphism of pro A-modules. The A-algebra B is finite and isomorphic to A away from
the vanishing locus of I, so the kernel and cokernel of the structure map A — B are killed by

a power of I. The result is then a formal consequence of [Morl6, Theorem 1.1 (ii)]. O

Lemma 10.1.6. Let Y — X be a closed immersion of noetherian schemes, and I be the
associated ideal sheaf on X. Then for every integer j > 0, the natural map

{Rlz7a(X, L7, ©%, Ox/T")}r — {RUza:(rY, L7 )t
is a weak equivalence of pro objects in the derived category D(A).

Proof. The scheme X is noetherian, hence quasi-separated, so we may assume by induction
that X is affine. In this case, the result is [Morl8a, Corollary 4.5 (i7)]. O
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Proposition 10.1.7. Let j > 0 be an integer. Then for every abstract blowup square of
noetherian schemes (10.1), the natural commutative diagram

RFZar(Xa LJ_/z) E— RFZar(X/v LJ_/z)

| |

{RFZar(TYy Lj_/z)}r — {RFZar(TY/aLj_/Z)}r

is a weakly cartesian square of pro objects in the derived category D(Z). In particular, the
presheaf RFZar(—,LJ_/Z) is a pro cdh sheaf on noetherian schemes.

Proof. The scheme X is noetherian, hence quasi-separated, so we may assume by induction
that X is affine, given by the spectrum of a noetherian commutative ring A. Let I be the ideal
of A defining the closed subscheme Y of Spec(A). By Lemma 10.1.6, the desired statement is
equivalent to the fact that the commutative diagram

Li&/Z RFZar(X/aLj_/Z)

| |

{LQ/Z ®a A/IT}T — {RFZar(leLj_/Z ®H@X’ OX//ITOX/)}T

is a weakly cartesian square of pro objects in the derived category D(Z). Taking fibres along
the vertical maps, this is exactly Corollary 10.1.5. O

We now use Proposition 10.1.7 to prove pro cdh descent for variants of the cotangent
complex (Corollary 10.1.10). In the following two lemmas, we consider inverse systems of
objects in the derived category D(Z). We say that an inverse system (C), in the derived
category D(Z) is essentially zero if for every index r and every integer n € Z, there exists an
index 7 > r such that the map H"(C,/) — H"(C,) is the zero map. In particular, an inverse
system (C}), in the derived category D(Z) is essentially zero if and only if the associated pro
object {C,}, in the derived category D(Z) is weakly zero.

Lemma 10.1.8. Let (Cy), be an inverse system in the derived category D(Z). If (C), is
essentially zero, then (HpelP’ C’T,/p)r 1s essentially zero.

Proof. Assume that the inverse system (C,), is essentially zero. Let rp be an index of this
inverse system, n € Z be an integer, and p be a prime number. We will use repeatedly that
for every index r, there is a natural short exact sequence

0 — H"(C;)/p — H"(C;/p) — H"H(C)[p] — 0

of abelian groups. Let r; > rg be an index such that the map H"(C,,) — H"(C,,) is the
zero map. Then for every index r > ry, the map H"(C,)/p — H"(C;,)/p is the zero map,
and the map H"(C,/p) — H"(C,,/p) thus factors through the map H"*(C,/p) — H*TL(C,)[p].
Let 72 > 71 be an index such that the map H"™(C,,) — H""1(C,,) is the zero map. Then
the map H"*1(C,,)[p] — H""(C,,)[p] is the zero map. By construction, the map

H*(Cr, /p) — H"(Cro /D)
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factors as o
H™(C,, /p) — H'TH(Cy,) [p] — H'TH(C,)[p] — H™(Cy /1),

and is thus also the zero map. The index ro does not depend on the prime number p, so the
map

[TH"(Cr./p) — TTH"(Cro/p)

peP p€EP
is the zero map, and the inverse system (HpeP Cr/p)T is essentially zero. O
Lemma 10.1.9. Let (C;), be an inverse system in the derived category D(Z). If (Cy)y is
essentially zero, then (Hpep(C’r);)\)r is essentially zero.

Proof. Assume that the inverse system (C,), is essentially zero. Let rg be an index of this
inverse system, n € Z be an integer, and p be a prime number. We will use repeatedly that
for every index r > 0, there is a short exact sequence

0 — Exty, (Q, / Zp, H*(C,)) — H"((C,);)) — Homg, (Q, / Z,, H"*1(C,)) — 0

of abelian groups. Let r; > 79 be an index such that the map H"(C,,) — H"(C},) is the zero
map. Then for every index r > r1, the map EX‘L%p (Q, / Zyp,H"(C)) — Ext%p((@p /Z,,H"(Cy,))
is the zero map, and the map H"((C);) — H"((Cy,);) thus factors through the map

H"((C});) — Homg, (Q, / Zy, H"(C,)).

Let ro > 71 be an index such that the map H*"(C,,) — H""(C,,) is the zero map. Then
the map Homz, (Q, / Zp, H+c,,)) — Homy, (Q, / Zy, H""1(C},)) is the zero map. By con-
struction, the map

H"((Cr,)p) — H'((Cry)y)

factors as

Hn((CTQ );/)\) — HomZp (Qp/Zp’ Hn+1(CT‘2>) _0_> HomZp (@p / Zpa Hn+1(CT1)) — Hn((cf’o);\)v

and is thus the zero map. The index ro does not depend on the prime number p, so the map
[TH(Cr)p) — TTH ((Cro)p)
peP peP

is the zero map, and the inverse system (HpeP(C’r);\)T is essentially zero. O

Corollary 10.1.10. Let j > 0 be an integer, and let F' be one of the presheaves
. ‘ A :
RFZar(_a LJ_/z)a RFZar(_a IEDLJ_FP/FP)’ RrZar(_a 1_!1;(]]”]_/2)1))’ and RFZar(_aLJ_Q/Q)a
J4S pE

where —, 1s the derived base change from Z to ¥,. Then the presheaf F is a pro cdh sheaf on
noetherian schemes.

Proof. The presheaf F' is a Nisnevich sheaf, so the result is equivalent to proving that F
sends an abstract blowup square of noetherian schemes to a weakly cartesian square of pro
objects in the derived category D(Z). For RFZar(—,]LJ_/Z), this is Proposition 10.1.7. For

RI'zay (—, HpeIP Lj—ﬁp/ﬁ"p)’ this is a formal consequence of Proposition 10.1.7 and Lemma 10.1.8.

For RI‘Zar(—, Hpep(]Lj_/Z)g), this is similarly a formal consequence of Proposition 10.1.7 and

Lemma 10.1.9. And for RI‘Zar(—, LJ—WQ)? this is a consequence of Proposition 10.1.7 and the
fact that the rationalisation of a zero pro system of abelian groups is zero. O
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10.2 Pro cdh descent for motivic cohomology

In this section, we prove pro cdh descent for the motivic complexes Z(i)™°* (Theorem

10.2.11). We use Corollary 5.2.16 to decompose the proof into several steps, which ultimately
all rely on Corollary 10.1.10. We start with the following rational results.

>
Proposition 10.2.1 ([EM23]). For every integer i > 0, the presheaf RI‘Zar(—,]LQ:;/Q) is a
pro cdh sheaf on noetherian schemes.

Proof. This is a part of [EM23, proof of Theorem 8.2]. More precisely, one uses Proposi-
tion 5.4.1 to reduce the proof to a finite number of powers of the cotangent complex relative
to Q, where this is Corollary 10.1.10. O

The following result is a rigid-analytic variant of Proposition 10.2.1.

P
Proposition 10.2.2. For every integer i > 0, the presheaf RFZar(—,Hpep ILQ:Q) /Q, ) s a
P

pro cdh sheaf on noetherian schemes.

Proof. By Remark 5.2.12, there is a fibre sequence of presheaves

A0 (=TT C27, j,) — Rz (=TI T0 so,) — Bz (= (T] (10255,)0),)

pEP pEP p€EP

on qcgs derived schemes, and in particular on noetherian schemes. By Corollary 5.4.2, the
presheaf RFZar(—, H;GP M,Q /Qp) is a cdh sheaf on noetherian schemes, so it is a pro cdh
P

sheaf on noetherian schemes. The presheaf RFZar(—, (HpeIP (]LQQ/Z) ) ) has a finite filtra-
tion with graded pieces given by the presheaves RI'zu(—, (HpeIP’ (LJ_/Z);)Q) (0 <5 <)

These presheaves are pro cdh sheaves on noetherian schemes by Corollary 10.1.10, so the
presheaf RI'z,,; (—, ( HpGIP’ (LQT/ Z) )Q) is a pro cdh sheaf on noetherian schemes. This implies

/\>1

that the presheaf RFZar(—, HpeIP LQ,Q /Q, ) is a pro cdh sheaf on noetherian schemes. O

mot

Proposition 10.2.3. For every integer i > 0, the presheaf Q(7) s o pro cdh sheaf on

noetherian schemes.

Proof. By Corollary 5.6.7, there is a fibre sequence of presheaves
-\ I dh % %
Q)™ (=) — Qi)™ (=) —> cofib( RTzar (=, O 3) — Rlean(—, 2<% o) )[-1]

on qcgs derived schemes, and in particular on noetherian schemes. Cdh sheaves are in par-
ticular pro cdh sheaves, so it suffices to prove that the presheaf RI'z,, (X LO< /Q) is a pro
cdh sheaf on noetherian schemes. This presheaf has a finite filtration with graded pieces
given by the presheaves RFZar(—,Lj_Q/Q) (0 < j < i), so the result is a consequence of
Corollary 10.1.10.

Alternatively, one can prove this result by using Corollary 5.5.11 and pro cdh descent for
algebraic K-theory ([KST18, Theorem Al). O

Corollary 10.2.4. For every integer i > 0, the presheaf Q(i)TC is a pro cdh sheaf on noethe-
rian schemes.
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Proof. By Remark 4.3.7, the presheaf Q(i)TC is a pro cdh sheaf on noetherian schemes if and
only if the presheaf Q(i)™°" is a pro cdh sheaf on noetherian schemes. The result is then a
consequence of Proposition 10.2.3. 0

By Remark 4.3.7, the presheaf Q(i)™" is a pro cdh sheaf on noetherian schemes if and
only if the presheaf Q(i)™°® is a pro cdh sheaf on noetherian schemes. One can then prove
Proposition 10.2.3 alternatively by using Corollary 5.5.11 and pro cdh descent for algebraic
K-theory ([KST18, Theorem A]).

We now turn our attention to Bhatt—Morrow—Scholze’s syntomic complexes Z, (i)BMS.

Corollary 10.2.5. For every integer i > 0, the presheaf (HpeIP’ Zp(i)BMS)Q is a pro cdh sheaf
on noetherian schemes.

Proof. Rationalising the cartesian square of Corollary 5.2.16 yields a cartesian square of
presheaves

Q(i)TC(—) — % RT'y.r (—,mﬁg/(@)

| |

‘ 2t
(HpeIP ZP(Z)BMS(_))Q » RlU'zar <_7 H;EIP’ m—Qp/@p>

on qcgs derived schemes, and in particular on noetherian schemes. The other three presheaves
of this cartesian square being pro cdh sheaves on noetherian schemes (Propositions 10.2.1,
10.2.2, and 10.2.3), the bottom left presheaf is also a pro cdh sheaf on noetherian schemes. [J
Lemma 10.2.6. Let p be a prime number. Then for every integer i > 0, the presheafIFp(i)BMS
1s a pro cdh sheaf on noetherian schemes.

Proof. By [AMMN22, Corollary 5.31|, there exists an integer m > 0 and an equivalence of
presheaves®

Fy(3)5 () =5 fib(can — ¢« (V=B {i}/NZ 7B _{i}) fp — (B {i} /N _{i})/p).

In particular, it suffices to prove that for every integer j > 0, the presheaf N7A_/p is a pro
cdh sheaf on noetherian schemes. By [BL22, Remark 5.5.8 and Example 4.7.8|, there is a fibre
sequence of presheaves

NIb_{i}/p — FIYB_ 5 /0 =25 FIUSSR 5 150/

The presheaves Fil;onjl_ Jz,[p]/P and Fil;gnljﬁ_ /z,[p]/P have finite filtrations with graded
pieces given by modulo p powers of the cotangent complex. The result is then a consequence
of Corollary 10.1.10. O

Lemma 10.2.7. Let A be an abelian group of the form A = HpeIP Ap, where Ay, is a derived
p-complete abelian group. If A is torsion, then A is bounded torsion (i.e., there exists an
integer N > 1 such that A is N-torsion).

*Prismatic cohomology was first defined on p-complete p-quasisyntomic rings ([BMS19, BS22]), and then
generalised to arbitrary animated commutative rings by taking the left Kan extension from polynomial Z-
algebras, and imposing that it depends only on the derived p-completion of its input (JAMMN22, BL22|). On
noetherian rings R, the derived and classical p-completions agree, so the prismatic cohomology of R is naturally
identified with the prismatic cohomology of the classical p-completion of R.
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Proof. Assume that the abelian group A is torsion. Then for every prime number p, the
abelian group A, is torsion and derived p-complete, hence it is bounded p-power torsion by
[Bhal9, Theorem 1.1|. Let S be the set of prime numbers p such that A, is not the zero
group. Then there exists an inclusion of abelian groups Hpe ¢F, € A, and, if S is infinite,
then Hpes IF,, is not torsion. So S is finite, and, as a finite product of bounded torsion abelian
groups, the abelian group A is bounded torsion. O

Proposition 10.2.8. For every integer i > 0, the presheaf [[,cp Zp(1)BMS s a pro cdh sheaf
on noetherian schemes.

Proof. Fix an abstract blowup square of noetherian schemes (10.1). Let {C,}, be the pro
object in the derived category D(Z) defined as the total fibre of the commutative square
obtained by applying the presheaf HpeIP Zp(i)BMS to this abstract blowup square. We want to
prove that {C, }, is weakly zero. By Corollary 10.2.5, its rationalisation {C, ®z Q}, is weakly
Zero.

Let r9 > 0 and n € Z be integers. Let r1 > rg be an integer such that the map

H*(Cr,) ©2 Q — H"(Cry) ©2Q
is the zero map. We now construct an integer ro > r; such that the map
H"(Cp,) — H"(Cry)

is the zero map. By Lemma 10.2.6, and for every prime number p, the pro abelian group
{H"(C,/p)}+ is zero, which implies that the pro abelian group {H"(C,)/p}, is zero. By
induction, this implies that for every integer N > 1, the pro abelian group {H"(C,)/N},
is zero. By construction, the cohomology groups H"(C,) (r > 0) are naturally products,
indexed by prime numbers p, of derived p-complete abelian groups. The kernel and cokernel
of a map of derived p-complete abelian groups are derived p-complete abelian groups. So
the image A,, of the map H"(C,,) — H"(C,,) is a product, indexed by prime numbers p,
of derived p-complete abelian groups. This abelian group A,, is also torsion by definition of
the integer r1, so Lemma 10.2.7 implies that there exists an integer N > 1 such that A,, is
N-torsion. Let 7o > r; be an integer such that the map H"(C,,)/N — H"(C,,)/N is the zero
map. Then the map
H*(Cr,) — H"(Cyy)

factors as
H"(Cyy) — H(Cy,)/N == H(C,,)/N — Ay € HY(Chy),

and is thus the zero map, which concludes the proof. ]

Corollary 10.2.9. Let p be a prime number. Then for every integer i > 0, the presheaf
Zy(1)BMS s a pro cdh sheaf on noetherian schemes.

Proof. The presheaf Z,(i)M5 is a direct summand of the presheaf [],.p Z(i)M3, so the result
is a consequence of Proposition 10.2.8. O

Proposition 10.2.10. For every integer i > 0, the presheaf Z(i)"C is a pro cdh sheaf on
noetherian schemes.
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Proof. By Corollary 5.2.16, there is a cartesian square of presheaves

Z(i)TC B E— RFZar (—, m%;/(@)

| !

. e 27:
HpEIP’ ZP(Z)BMS E— RPZar<_a H;)eIP’ m*Qp/Qp)

on qcgs derived schemes, and in particular on noetherian schemes. The presheaves
i

AUz (— L0, ), RUzae (= [ TOZ, 1g,), and [] 2,()%

peP peP
are pro cdh sheaves on noetherian schemes by Propositions 10.2.1, 10.2.2, and 10.2.8 respec-
tively. So the presheaf Z(i) "¢ is a pro cdh sheaf on noetherian schemes. O

The following result was proved on noetherian schemes over a field by Elmanto—Morrow
[EM23].

Theorem 10.2.11 (Pro cdh descent). For every integer i > 0, the motivic complex Z(i)™°*
15 a pro cdh sheaf on noetherian schemes.

Proof. By Remark 4.3.7, there is a cartesian square of presheaves

Z(i)m(’t Z(i)TC

| |

Z (i) —— Legn Z(i)T°

on qegs schemes, and in particular on noetherian schemes. The presheaf Z(i)TC is a pro cdh
sheaf on noetherian schemes by Proposition 10.2.10. The presheaves Z(i)°" and Leqy Z(7)T¢
are cdh sheaves on noetherian schemes by construction, hence pro cdh sheaves on noetherian
schemes. So the presheaf Z(i)™°" is a pro cdh sheaf. O

Remark 10.2.12 (Pro cdh descent for algebraic K-theory). The arguments to prove Theo-
rem 10.2.11 can be adapted to give a new proof of the pro cdh descent for algebraic K-theory
of Kerz—Strunk—Tamme [KST18]. More precisely, by Theorem 2.1.1, pro cdh descent for alge-
braic K-theory is equivalent to pro cdh descent for T'C. By Corollary 5.6.3, the result rationally
reduces to the pro cdh descent for HC, which is proved by Morrow (|[Morl6, Theorem 0.2]).
The result mod p is similar to that of Lemma 10.2.6, where the Nygaard filtration and the
relative prismatic cohomology are replaced by the Tate filtration and by relative THH; the pro
cdh descent for relative THH then reduces to the pro cdh descent for powers of the cotangent
complex by [AMMN22, Section 5.2]. Following Section 5.2, there is a natural cartesian square

TC(-) HC™ (—o/Q)

| -

[Ty TC(=Zp) —— (ITep HH(—5Q,))

1
Using the cdh descent for the presheaves HP(—qg/Q) (|LT19]|) and (H;E]P, HH(—;@p))tS
(Corollary 5.4.2), the pro cdh descent of the two right terms reduces to the pro cdh descent
for HC. The integral statement is then similarly a consequence of Lemma 10.2.7.
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10.3 Motivic Weibel vanishing

In this section, we prove Theorem 10.3.3, which is a motivic refinement of Weibel’s van-
ishing conjecture on negative K-groups ([KST18, Theorem B (4)]).

Lemma 10.3.1. Let V be a henselian valuation ring. Then for every integer i > 0, the motivic
complex Z(i)™° (V) € D(Z) is in degrees at most i.

Proof. Henselian valuation rings are local rings for the cdh topology, so the natural maps
Z(i)™H (V) — Z(0)*M(V) «— Z(0)™(V)
are equivalences in the derived category D(Z) (Remark 4.3.10 and Definition 4.2.5). O

Lemma 10.3.2. Let A be a local ring, and I be a nil ideal of A. Then for every integer i > 0,

the fibre of the natural map
Z(i)™ (A) — Z(i)™" (A/T)

15 in degrees at most i.

Proof. We first prove the result rationally, and modulo p for every prime number p. Any
finitary cdh sheaf is invariant under nil extensions. By Corollary 5.6.7, the result after ratio-
nalisation is thus equivalent to the fact that the fibre of the natural map

<1 <1
LG 071 — LG 1) ol

is in degrees at most 7. Both terms of this map are in degrees at most i. In degree 4, this map

is given by the natural map

1—1 1—1
Qagyo — Ya/mng/ o

which is surjective as the Q-algebra (A/I)g is a quotient of the Q-algebra Ag. Let p be a
prime number. By Corollary 4.3.12, the result modulo p is equivalent to the fact that the fibre

of the natural map
Fp (i)"Y (4) — Fy (i) M5 (A/T)

is in degrees at most 7. The pair (A, I) is henselian, so this is a consequence of Theorem 3.2.13.
By the previous rational statement, the fibre F' € D(Z) of the natural map

Z(i)™(A) — Z(i)™" (A/T)

has torsion cohomology groups in degrees at least ¢+ 1. By the short exact sequence of abelian
groups ‘ ‘ ‘
0 — H/(F)/p — B/ (F/p) — W (F)[p] — 0

for every prime number p and every integer j > ¢ + 1, the previous torsion statement implies
that these cohomology groups are also torsionfree, hence zero, in degrees at least ¢+ 2. It then
remains to prove that the abelian group HH'I(F) is zero. By Corollary 8.1.10 and its proof,
the abelian group H1\ (A, Z(i)) is torsionfree, so it suffices to prove that the natural map of
abelian groups Hi (A, Z(i)) — H., . (A/I,Z(i)) is surjective. Let P be a local ind-smooth Z-
algebra with a surjective map P — A. By Theorem 8.1.11 (see also Lemma 8.2.4 for a related
argument), and because P — A/ is also a surjection from a local ind-smooth Z-algebra, the
composite map of abelian groups

H’L

mot

(P,Z(i)) — H

mot

(A7 Z@)) — anot (A/Ia Z(Z))

is surjective, so the right map is surjective, as desired. O
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Theorem 10.3.3 (Motivic Weibel vanishing). Let d > 0 be an integer, and X be a noethe-
rian scheme of dimension at most d. Then for every integer ¢ > 0, the motivic complez
Z(i)™Y(X) € D(Z) is in degrees at most i + d.

Proof. The presheaf Z (i)™ : Sch9°4%°? — D(Z) satisfies the following properties:
(1) it is finitary (Corollary 5.5.14);
(2) it satisfies pro cdh descent on noetherian schemes (Theorem 10.2.11);

(3) for every henselian valuation ring V, the complex Z (i)™ (V) is in degrees at most i
(Lemma 10.3.1);

(4) for every noetherian local ring A and every nilpotent ideal I of A, the fibre of the natural
map Z(i)™°(A) — Z(i)™°*(A/I) is in degrees at most i (Lemma 10.3.2).

By [BEM24], the presheaf Z(i)°d" : Sch9°4°P — D(Z) is a finitary cdh sheaf which is in degrees
at most ¢ on henselian valuation rings, hence it also satisfies the previous properties.

By [EM23, Proposition 8.10| applied to the presheaf ﬁb( Z(i)mot — Z(i)th) [i], this implies
that for every noetherian scheme X of dimension at most d, the complex

fib( Z (i)™ (X) — Z(i)*™ (X))

is in degrees at most i +d. The complex Z(i)*"(X) is also in degrees at most i +d ([BEM24]),
so the complex Z(i)™°*(X) is in degrees at most i + d. O

Remark 10.3.4 (Relation to Weibel’s K-theoretic vanishing conjecture). Let X be a noethe-
rian scheme of dimension at most d. Theorem 10.3.3 states that the Atiyah—Hirzebruch spectral
sequence N o

Ey? =H, J (X, Z(—j)) = K_;—;(X)

mot

is supported in the left half plane z < d: see the following representation of the Ey page,
where H? (i) denotes the motivic cohomology group H? (X, Z(i)).

mot

0 0 0 0 e 0 0 0 0

0 0 H°00) HY0) --- H¥Z%0) HYL0)  HYO) 0

0 H°x1) wH@a) w©H2(1) - HTYQ)  HY1) T HFYQ) 0
2\)

(2) "H2) .- HY2)  HTH2) THT2) 0

In particular, the negative K-groups K_;_;(X) vanish for —i — j < —d (this is Weibel’s
vanishing conjecture on algebraic K-theory), and there is a natural edge map isomorphism

K_g(X) =~ HY

mot

(X, 2(0))

of abelian groups. Using the description of weight zero motivic cohomology (Example 5.6.8),
the latter result recovers the known description of K_;(X) (JKST18, Corollary D]). Note
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that Theorem 10.3.3 is however not a new proof of these results of Kerz—Strunk—Tamme, as
our Atiyah—Hirzebruch spectral sequence relating motivic cohomology and algebraic K-theory
relies on Theorem 2.1.1, which itself relies on the results in [KST18|.

Remark 10.3.5. Let X be a noetherian scheme of dimension at most d. Then for every
integer ¢ > 0, the proof of Theorem 10.3.3 also implies that the natural map

Z(i)H(X) — Z (i)™ (X)
is surjective on H*?. For i = 0, this map is even an isomorphism on H¢ (actually on all

cohomology groups, by Example 5.6.8), thus recovering Weibel’s conjecture that the map
K_4(X) - KH_4(X) is an isomorphism |[Wei80, KST18].

The following result is a description of the group K_4,1, similar to the description of the
group K_; predicted by Weibel (Remark 10.3.4).

Corollary 10.3.6. Let d > 0 be an integer, and X be a noetherian scheme of dimension at
most d. Then there is a natural exact sequence

_ 5 _
HE (X, Z) = HEEH (XL Z(1) — Ko (X) — HI N (X, Z) — 0

mot

of abelian groups, where 0 is the differential map coming from the Es-page of the Atiyah—
Hirzebruch spectral sequence (Corollary 5.5.10). Moreover, for every integer m > 2, if m is
invertible in X, then the image of the map (m — 1)d is m-power torsion.

Proof. The motivic complex Z(i)™°%(X) is zero for i < 0 (Corollary 5.5.2), and is naturally
identified with the complex RI'cqn(X,Z) for i = 0 (Example 5.6.8). The first statement
is then a consequence of the Atiyah—Hirzebruch spectral sequence (Corollary 5.5.10) and of
motivic Weibel’s vanishing (Theorem 10.3.3). The second statement is a consequence of the
compatibility of the map ¢ with the Adams operation ¥ (Construction 5.1.8). More precisely,
Corollary 5.1.9 implies that the induced map

6 HE (X, Z)[L] — HEt (X, Z(1)) [ L]

mot m

satisfies the equation 6 = md, i.e., (m — 1)0 = 0, which implies the desired result. O

10.4 Comparison to pro cdh motivic cohomology

In this section, we compare the motivic complexes Z(i)™° to Kelly-Saito’s pro cdh motivic
complexes Z(i)P*° (Theorem 10.4.2). In equicharacteristic, this is [KS24, Corollary 1.11]
(see also [EM23, Theorem 1.15]). Our proof is structurally the same, although finitariness and
pro cdh descent in mixed characteristic rely on the main results of Chapter 5, and our proof of
the comparison to lisse motivic cohomology is different in mixed characteristic (see comment
before Corollary 8.1.12).

Lemma 10.4.1. Let R be a nil extension of a henselian valuation ring, i.e., o commutative
ring R whose quotient R/1 by its ideal of nilpotent elements I is a henselian valuation ring.
Then for every integer i > 0, the lisse-motivic comparison map

20 (B) — 2™ (R)
is an equivalence in the derived category D(Z).

131



Proof. By Corollary 8.1.12, it suffices to prove that the complex Z(i)™*(R) € D(Z) is in
degrees at most i. Let I be the ideal of nilpotent elements of the commutative ring R. Using
the natural fibre sequence

ﬁb(Z(i)mOt(R) — Z(i)mOt(R/I)) — Z())™(R) — Z(i)™°"(R/I)
in the derived category D(Z), the result is then a consequence of Lemmas 10.3.1 and 10.3.2. O

Theorem 10.4.2 (Comparison to pro cdh motivic cohomology). Let X be a noetherian
scheme. Then for every integer i > 0, the lisse-motivic comparison map induces a natural
equivalence

Z(i)Proett(X) = Z(1) N (X)
in the derived category D(Z).
Proof. The presheaf Z (i)™t : Sch®®°P — D(Z) satisfies the following properties:
(1) it is finitary (Corollary 5.5.14);
(2) it satisfies pro cdh descent on noetherian schemes (Theorem 10.2.11);
(3) for every pro cdh local ring R, the lisse-motivic comparison map
Z(i)™*(R) — Z(i)™"(R)

is an equivalence in the derived category D(Z) (Lemma 10.4.1 and [KS24, Proposi-
tion 1.7]).

By [KS24, Theorem 9.7],* this implies that for every noetherian scheme X, the lisse-motivic
comparison map induces a natural equivalence

~

Z(,L-)procdh(X) AN Z(i)mOt(X)

in the derived category D(Z). O

4This theorem is stated for schemes over a field, but the proof works over any noetherian commutative ring.
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Chapter 11
Motivic cohomology of valuation rings

In this chapter, we describe the motivic cohomology of valuation rings. In particular,
we give a complete description of the p-adic motivic cohomology of valuation rings over a
perfectoid base (Theorem 11.4.6). Our proof relies on the study of the prismatic cohomology
of these valuation rings, which applies naturally to a broader class of algebras that we call
p-Cartier smooth. Note that the results of this chapter have appeared as [Bou23|.

11.1 Prismatic cohomology of Cartier smooth algebras

Let p be a prime number. In this section, we introduce the notion of p-Cartier smoothness
for morphisms of commutative rings (Definition 11.1.5), and give several characterisations in
terms of prismatic cohomology (Theorem 11.1.16).

The p-Cartier smooth morphisms generalise smooth morphisms, and behave as if they were
smooth from the point of view of syntomic cohomology. Syntomic cohomology can be defined
in terms of Frobenius eigenspaces of prismatic cohomology, and this section is devoted to
the prismatic cohomology of p-Cartier smooth algebras. Our main result is Theorem 11.1.16.
We also give a comparison with the notion of F-smoothness introduced in [BM23] (see Sec-
tion 11.1.4).

11.1.1 Definitions

For a commutative ring R, the cotangent complex
L_/r: R-Alg — D(R)
is the natural derived version of the module of Kahler differentials
0! p s R-Alg — R-Mod.

It controls information on the relative prismatic complex via the Hodge-Tate comparison
theorem [BS22, Theorem 4.11]. The condition that S ®% R/p € D(R/p) is in degree zero and
base change for the cotangent complex imply that the morphism Lg, ®E}‘% R/p — Ls/p)/(R/p)
is an equivalence. This allows one to lift properties of the cotangent complex of R/p — S/p
to similar properties on the p-completed cotangent complex of R — S.

Definition 11.1.1 (p-discreteness). A morphism R — S of commutative rings is p-discrete
if the derived tensor product S ®% R/p € D(R/p) is concentrated in degree zero, where it is
given by S/p.
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Examples 11.1.2. A morphism R — S of commutative rings is p-discrete in the following

cases.

(1)
(2)
(3)

R and S are Fj-algebras.
The morphism R — S is flat.

R and S are p-torsionfree. More precisely, if R is p-torsionfree, then the morphism
R — § is p-discrete if and only if S is p-torsionfree.

The following definition axiomatises some properties satisfied by the cotangent complex in
the smooth case.

Definition 11.1.3 (Cotangent smoothness, [BMS19]). (1) A morphism R — S of commu-

(2)

tative rings is cotangent smooth, or S is a cotangent smooth R-algebra, if the cotangent
complex Lg,r has Tor-amplitude in [0; 0], i.e., QE/R is a flat S-module and Hy,(Lg/r) = 0
for all n > 0.

A morphism R — S of commutative rings is p-cotangent smooth, or S is a p-cotangent
smooth R-algebra, if it is p-discrete and its reduction R/p — S/p modulo p is cotangent
smooth.!

Examples 11.1.4. (1) A smooth morphism of commutative rings is cotangent smooth, be-

(2)

cause its cotangent complex is in degree zero, where it is given by the locally free module
of differential forms.

A morphism of perfect F)-algebras is cotangent smooth, because its cotangent complex is
zero. More generally, a morphism R — S of perfectoid rings is p-cotangent smooth. In-
deed, it is p-discrete as a base change of the morphism Ajn¢(R) — Ajne(S) of p-torsionfree
rings. And the cotangent complex L(g/p)/(r/p) 18 zero, as a base change of the cotangent

complex Lg, /R of the morphism R’ — S” of perfect [F)-algebras.

A filtered colimit of (p-)cotangent smooth algebras is (p-)cotangent smooth, because the
cotangent complex commutes with filtered colimits.

Let V be a valuation ring with perfect fraction field, and V' a valuation ring extension
of V' (see section 11.2). The morphism V' — V' has cotangent complex concentrated in
degree zero (|[GRO3, Theorem 6.5.8 (i7)]). If V' contains a perfect field, then the morphism
V — V' is cotangent smooth ([GR03, Corollary 6.5.21]). If the p-completion of V is a
perfectoid ring, then the morphism V' — V' is p-cotangent smooth (Proposition 11.2.8
below).

Several properties of prismatic cohomology in the smooth case —such as the comparison
between prismatic cohomology and de Rham cohomology [BS22, Corollary 15.4]- do not hold
for general p-cotangent smooth morphisms R — S. We will prove (Theorem 11.1.16) that the
obstruction to satisfy these properties vanishes exactly when the morphism R/p — S/p satisfies
the Cartier isomorphism. For an F,-algebra R, we denote by ¢ its Frobenius endomorphism.

!More generally, a morphism R — S of commutative rings, possibly with bounded p-power torsion, will be
called p-something if it is p-discrete and if its reduction R/p — S/p modulo p is something. We distinguish
this from similar notions on p-complete rings, often called p-completely something.
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Definition 11.1.5 (Cartier smoothness). (1) A morphism R — S of F,-algebras is Cartier
smooth, or S is a Cartier smooth R-algebra, if it is cotangent smooth and if the inverse
Cartier map

C™: Q% ®rgp R — H'(QY/p)

is an isomorphism of R-modules for each n > 0.

(2) A morphism R — S of commutative rings is p-Cartier smooth, or S is a p-Cartier smooth
R-algebra, if it is p-discrete and its reduction R/p — S/p modulo p is Cartier smooth.

Remark 11.1.6. If a morphism R — S of commutative rings is p-Cartier smooth (resp.
p-cotangent smooth), then its p-completion R;\ — 51/7\ is p-Cartier smooth (resp. p-cotangent
smooth). Moreover, if the morphism R — S is p-discrete and its p-completion R) — S is
p-Cartier smooth (resp. p-cotangent smooth), then so is R — S.

Equivalently, a morphism R — S of commutative rings is p-Cartier smooth if it is p-cotan-
gent smooth and if the morphism R/p — S/p satisfies the Cartier isomorphism. For a mor-
phism R — S of F-algebras, recall that the inverse Cartier map

C™': Q% p Orgp R — H'Y(Q%)5),
for any integer n > 0, is defined as the unique R-linear map satisfying
CH(fdgr A+~ Ndg, @ 1) = fPgP™1 . g2 Ydgy A - A dgs,.
Cartier smoothness when R = F,, was already studied in [KM21].

Examples 11.1.7. A morphism R — S of commutative rings is p-Cartier smooth in the
following cases.

(1) The morphism R — S is smooth. Indeed, S is a flat R-algebra and the cotangent complex
Lg/g is a flat S-module in degree zero, so the morphism R — S is p-cotangent smooth.
The Cartier isomorphism is a standard property of smooth morphisms in characteristic p
(see for instance [DI87, Theorem 1.2]).

(2) S is a filtered colimit of smooth R-algebras. Indeed, filtered colimits of p-cotangent
smooth algebras are p-cotangent smooth, and the inverse Cartier map commutes with
filtered colimits.

(3) R =F, and S is a valuation ring. The cotangent smoothness is a result of Gabber—
Ramero (Example 11.1.4 (4)). The Cartier isomorphism is a result of Gabber (|[KST21,
Corollary A.4]).

(4) R — S is a morphism of perfectoid rings. The cotangent complex of the morphism
R/p — S/p is zero (Example 11.1.4 (2)), so the Cartier isomorphism is trivial for n > 1.
If R and S are perfect IF)-algebras and n = 0 the Cartier isomorphism holds; in general
the inverse Cartier map for n = 0 is the reduction modulo p’, for some element p’ € R”,
of the inverse Cartier map associated to the morphism R’ — S” of perfect [Fp-algebras,
and is thus an isomorphism.

(5) R is a valuation ring whose p-completion is a perfectoid ring, and S is a valuation ring
extension of R (Theorem 11.2.1 below).
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Example 11.1.8. An imperfect Fj-algebra S whose cotangent complex Lg, g, is trivial, is
cotangent smooth but not Cartier smooth. Indeed, it is cotangent smooth because any algebra
over the field I, is flat and because the zero complex of S-modules has Tor-amplitude in [0; 0].
In degree zero, the inverse Cartier map for the map IF,, — S is the Frobenius map ¢g: S — 5,
and is thus not an isomorphism; so the IF,-algebra S is not Cartier smooth. Remark that
imperfect [F,-algebras with trivial cotangent complex exist, by [Bhal3].

Lemma 11.1.9 (Base change for Cartier smoothness). Let R — S be a p-Cartier smooth
morphism, and R’ an R-algebra. If the morphism R' — S ®r R’ is p-discrete (e.g., if R is a
flat R-algebra, or if R is an Fp-algebra), then it is p-Cartier smooth.

Proof. Assuming p-discreteness, the p-cotangent smoothness is preserved by base change. The
Cartier isomorphism depends only on the reduction modulo p of the morphism R’ — S®pg R/,
so we can assume that R, R’ and S are Fp-algebras. Let n > 0 be an integer. There is a
canonical isomorphism of R’-modules

Vsonr)m = Vsyp ®r R

By Cartier smoothness of the morphism R — S, the R-module H"(QE/R) is flat, so there is a
canonical isomorphism of R’-modules

H"(Q%/5) ©r R’ = H"(QY 5 @5 R).

Moreover, Q% R is a complex of flat R-modules by cotangent smoothness of the morphism
R — S, so there is a canonical isomorphism of R’-modules

H"(Q%r ©f R) = H"(Wsq . py/r)
and the morphism R’ — S ®p R’ satisfies the Cartier isomorphism. O

Remark 11.1.10 (Transitivity of Cartier smoothness). One can also prove that the com-
posite of two p-Cartier smooth morphisms of commutative rings is p-Cartier smooth, using
the transitivity property of the derived de Rham complex ([Bhal2, Proposition 3.22]) and
Theorem 11.1.16 (LQ = Q).

11.1.2 Review of relative prismatic cohomology

Prisms are defined in [BS22] as pairs (A, 1), where A is a d-ring (roughly,® a Z,)-algebra
with a lift of Frobenius ¢4 : A — A) and I C A is an ideal defining a Cartier divisor in
Spec(A), such that A is derived (p,I)-complete and p € I + ¢4(I)A. In all the cases of
interest the ideal I C A will be a principal ideal generated by a nonzerodivisor. A prism (A, I)
is called bounded if the ring A/I has bounded p-power torsion. Restricting to bounded prisms
avoids complications involving derived completions: for instance, the underlying ring A of a
bounded prism (A4, I) is (p, I)-complete in the classical sense.

Following [BMS19, Section 4] or [BL22, Appendix C|, a morphism R — S of commutative
rings is p-quasisyntomic if it is p-flat and L(g/p)/(r/p) has Tor-amplitude in [~1;0]. For in-
stance, any noetherian local complete intersection ring S is p-quasisyntomic over Z by [Avr99,
Theorem 1.2].

2More precisely, a d-ring is a Zp)-algebra A equipped with a map d4 : A — A such that ¢4 : A — A,z —
2P 4+ pda(x) is a ring homomorphism. If A is a p-torsionfree Z,)-algebra, a é-ring structure on A is the same
as a ring endomorphism lifting the Frobenius on A/p. If A is a general Z,)-algebra, a d-ring structure on A is
the same as a lift of Frobenius in the derived sense ([BS22, Remark 2.5]).
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Given a bounded prism (A, ) and a p-quasisyntomic A/I-algebra S, [BS22, Section 4.1]
defines the prismatic site (S/A), as the site having as objects the prisms (B, 1B) over (A, 1)
with a map S — B/IB, and covers given by flat covers. The relative prismatic complex
Dgsa € D(A) is defined as the cohomology of the sheaf

Op : (S/A)p — A-Alg, (B,IB) — B.
Similarly, the Hodge—Tate complex KS/ A € D(A/I) is defined as the cohomology of the sheaf
Oy : (S/A)p — A/I-Alg, (B,IB) — B/IB.

For instance, if k is a perfect field of characteristic p and S is a (p-)quasisyntomic k-algebra,
then (W (k), (p)) is an example of bounded prism and Asyw (k) recovers the crystalline coho-
mology of S (|[BL22, Section 4.6]). For a general A/I-algebra S, prismatic and Hodge-Tate
complexes are defined by left Kan extension from the smooth case. The compatibility be-
tween the two definitions in the p-quasisyntomic case is proved in [BL22, Section 4|. Note in
particular that p-Cartier smooth algebras are not necessarily p-quasisyntomic, as they are not
necessarily p-flat.
The prismatic complex Ag/4 naturally bears an A-linear Frobenius endomorphism

¢ : A,(S'l/)A — AS/A?
where A(Sl/) 4= bgy A®37¢ A is the Frobenius-twisted prismatic complex. Our main result on
the prismatic cohomology of p-Cartier smooth algebras describes the image of this Frobenius
endomorphism ¢, and is formulated in terms of the functor Ln;. Following [BMS18, Section 6]
and for A a commutative ring, I C A an ideal defining a Cartier divisor in Spec(A) and
C € D(A) a complex, the object Ln;C € D(A) is defined as follows. The complex C in the

derived category D(A) is represented by a complex (C*®, d) of A-modules such that for all i € Z,
C? is I-torsionfree (i.e., C*[I] = 0). Define the complex 1;C® with terms

nCt = {z € I'C" | dx € I'T1 O}

and differential induced by the differential of C'*. As an object of the derived category D(A)
this construction does not depend on the choice of (C®,d) (|]BMS18, Corollary 6.5]), and
we call this object Ln;C € D(A). Following [BMS19, Section 5|, an object Fil*C of the
filtered derived category DF(A) is called connective for the Beilinson t-structure if for every
integer i € Z, the graded piece gr' C € D(A) is in degrees at most i. The connective cover
for the Beilinson t-structure of a filtered complex Fil* C is the universal connective filtered
complex with a map to Fil* C.

Proposition 11.1.11. Let A be a commutative ring, I C A an ideal defining a Cartier divisor
in Spec(A) and C an object in the derived category D(A).

(1) ([BMS18, Lemma 6.4]) For each integer i € 7Z, there is a canonical isomorphism of
A-modules

H'(Ln;C) = (HY(C)/HY(C)[I]) @4 I'.

(2) (|[BMS19, Proposition 5.8]) LniC € D(A) is the complex underlying the connective cover
for the Beilinson t-structure of the I-adically filtered object I*C € DF(A).
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(8) (|[BMS18, Proposition 6.12]) There is a natural equivalence
(LniC) @5 A/T = H*(C/I)

in the derived category D(A/I), where the differential on H*(C/I) is the Bockstein op-
erator induced by the I-adic filtration on C.

By the previous proposition, the complex LnsAg, 4 is characterised by a universal property
in terms of the [-adic filtration on the prismatic complex Ag,/4. Following [BS22, Section 15|,

(1)

§/A 35 the

define the Nygaard filtration N *Ag/) 4 on the Frobenius-twisted prismatic complex A
preimage® of the I-adic filtration I*Ag /4 via the morphism ¢. The Frobenius
1
(23 : Ag /) A — A S/A
naturally upgrades to a map of filtered complexes

6 NZ*DG) — " (11.1)

in the filtered derived category DF(A). Beware that the filtration N Z*Ag/) 4 1s in general

not complete, and we denote by ES}A € D(A) (resp. N%g/)A € D(A/I), for i > 0) the

Nygaard-completed prismatic complex (resp. the Nygaard graded pieces). On the Nygaard
graded pieces, the Frobenius (11.1) can be rewritten as a map

¢ : /\/’lﬁg/)A — ZS/A{Z}

for each 7 > 0, where - o )
Agya{i} == hg/a @4/ (1/17)%".

To describe the image of this Frobenius map, define the conjugate filtration Filc°™ KS/ a{i} on
the Hodge—Tate complex ZS/A{Z'} as the left Kan extension from smooth A/I-algebras of the
increasing Postnikov filtration 7<*A_ /4 {i}.

Theorem 11.1.12 (|BS22, BL22]|). Let (A,I) be a bounded prism, and S be an A/I-algebra.
(1) For each i > 0, the Frobenius map ¢ : NiAg/)A — Agafi} factors as
7 (ZB .qconj x . n. 5 .
NG, = Fili™ B a{it = Bgya{il,
and the map ¢ : N%g/)A — Fil;zonj ZS/A{Z'} s an equivalence. In particular, the complex
N%g}A € D(A/I) is in degrees at most i.

(2) The Frobenius map ¢ : A(SI)A — hgya factors as

AS}A i) LT/IAS/A 2} AS/A'

3To make sense of this preimage, one needs to restrict to large p-quasisyntomic A/I-algebras —for which
the prismatic complex Ag,4 is concentrated in degree zero-, and then generalise the definition using descent
on the p-quasisyntomic site and left Kan extension.
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Proof. The first part of (1) is a special case of [BL22, Proposition 5.1.1 and Remark 5.1.3],
where the result is formulated for a general animated commutative A/I-algebra S. All the
objects are left Kan extended from the smooth case, where the result is also given by [BS22,
Theorem 15.3]. The functor 7<'A_,,{i} is in degrees at most i, so its left Kan extension
(defined as a sifted colimit) is also in degrees at most i.

(2) The filtered complex N Z*Ag/)A € DF(A) is connective for the Beilinson t-structure
by (1). So the map ¢ : NZ*AS/)A — I*Ag/4 factors through the connective cover for the
Beilinson t-structure of the target. The result follows from Proposition 11.1.11 (2), by looking
at the underlying complexes. O

We recall some important features of the relative prismatic complex in the smooth case,
following [BS22].

Theorem 11.1.13 (Prismatic cohomology in the smooth case, [BS22]). Let (A, I) be a bounded
prism, and S be a smooth A/I-algebra.

(1) (Ln; comparison) The Frobenius map

Qg : Ag/)A ;> Lf]jﬁs/A

of Theorem 11.1.12(2) is an equivalence in the derived category D(A).

(2) (Hodge—Tate comparison) There is a canonical isomorphism

(Qyasn)y — T (Bgyaf{+}) == PH (hs/a{i})

1>0

of differential graded A/I-algebras, where the differential on H*(KS/A{*}) 1s the Bockstein
operator induced by the I-adic filtration on Ag 4.

(8) (de Rham comparison) There is a canonical equivalence

Aqu/),ax ®% A/T = Qs/a/n)p

in the derived category D(A/I).

Proof. By [BL22, Corollary 4.1.14], the prismatic cohomology of S is the same as the pris-
matic cohomology of the p-completion of S. (1) and (2) then respectively follow from [BS22,
Theorem 15.3| and [BS22, Theorem 4.11]. Using Proposition 11.1.11(3), (3) is a consequence
of (1) and (2). O

11.1.3 Prismatic cohomology of Cartier smooth algebras

In this subsection we prove Theorem J (Theorem 11.1.16), characterising p-Cartier smooth
algebras in terms of their prismatic cohomology.

Any p-Cartier smooth algebra is p-cotangent smooth by definition. We first extend some
properties of smooth algebras to general p-cotangent smooth algebras. Given a morphism
R — S of commutative rings, denote by Lg/r the Hodge-completed derived de Rham com-

plex, and by (@S/R); its p-completion.

Proposition 11.1.14. Let (A, I) be a bounded prism, and S be a p-cotangent smooth A/I-algebra.
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(1) The canonical map (ﬁzs/(A/I))g — (Qs/a/1))y is an equivalence in the derived cate-
gory D(A/I).

(2) The conjugate filtration Filc™ ZS/A on the Hodge—Tate complex ZS/A € D(A/I) coincides
with the Postnikov filtration TS*KS/A. In particular for each i > 0, the Frobenius map
& N'bG), — Byali)
induces an equivalence
61 NG, = r5ihg A {i}
in the derived category D(A/I).

(8) There is a canonical isomorphism

(Qya/n)p — T (Bsya{+})

of differential graded A/I-algebras, where the differential on H*(ZS/A{*}) 1s the Bockstein
operator induced by the I-adic filtration on Ag) 4.

(4) The Frobenius map b A(Sl/)A — Lnibg a of Theorem 11.1.12(2) factors as

n ~1)
AEs*l/),ax — Dg/a 2, Lnibga,

and the map (Z) : lg/)A — Lnihg 4 is an equivalence in the derived category D(A).

Proof. (1) By the derived Nakayama lemma ([Stal9, 091N]), it suffices to prove the result
after derived reduction modulo p. By base change for the Hodge-completed derived de Rham
complex and p-discreteness, this is equivalent to proving that the canonical map

LQ(s/p)/ca/w,1)) — SUs/m)/(A/(0,1))

is an equivalence in the derived category D(A/(p,I)). Both sides are complete for the Hodge
filtration, so it suffices to prove that this canonical map is an equivalence on the Hodge graded
pieces. The corresponding map

Liis/py /sy = — sy pcasm. ="

is the shift of a wedge power of the counit map

Lis/my/a/wn) — Q%S/p)/(A/(pJ))[O]

for all n > 0, which is an equivalence by p-cotangent smoothness of the morphism A/I — S.
(2) By left Kan extension of the Hodge-Tate comparison Theorem 11.1.13 (2) (or [BL22,
Remark 4.1.7]), there is a canonical equivalence

(L) (a/ry)pl—nl{—n} == gri?™ Ag)a

in the derived category D(A/I), for each n > 0. By the derived Nakayama lemma ([Stal9,
091N]) and p-cotangent smoothness of the morphism A/I — S, the complex

(LS (a/1)p € D(A/I)
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is in degree zero and the conjugate graded piece gr%onj ES/A is thus in degree n. By induction
on n > 0 and using the long exact sequence in cohomology groups associated to the homotopy
cofibre sequence .

Fll(;LO_ni KS/A — Fﬂ%onj ES/A — grflonj KS/A7

we deduce that Fil®® Ag /4 belongs to DM A/T), that the induced morphism
Fll;(il{ ZS/A — Tgn—lFﬂzonj ZS/A
is an equivalence and that the morphism
H"(FL™ By ) — H (g1 By )

is an isomorphism of A/I-modules. The conjugate filtration Fil¢°™ Agy4 is moreover exhaus-

tive, as a left Kan extension of the exhaustive Postnikov filtration 7S*A_ /A- S0 the canonical
map

| Dga) = 7<"hg)a

Filse™ Bg/a — 75" lim (R}’

is an equivalence for each n > 0, and the conjugate filtration Fil®™ KS/ 4 coincides with the

Postnikov filtration 7<*Ag/4. The last statement is a consequence of Theorem 11.1.12(1).
(3) By left Kan extension of the Hodge-Tate comparison Theorem 11.1.13 (2) (or [BL22,
Remark 4.1.7]) and (2), there is for each n > 0 a canonical isomorphism

(Q%)a/n)p — H'(Bg/a{n})

of A/I-modules. To prove that the de Rham differential d coincides via these isomorphisms
with the Bockstein operator 8 on H*(Ag/4{*}), it suffices to prove it when S is a polynomial
A/I-algebra, where this is Theorem 11.1.13 (2).

(4) For each integer k > 0, the map of filtered complexes ¢ : NE*AS/)A — I*Ag/ 4 induces
a map of filtered complexes

b NZ*A(Sl/)A/NZ*JrkA(Sl)

/A — I*AS/A/I*—HCAS/A ~ AS/A ®% I*/I*+k.

Taking the inverse limit over k > 0 defines a map of filtered complexes
>y (1) *
10) N= AS/A — I AS/A'

~(1
The canonical map N E*A(Sl/) Vs N E*Aé/)A is an equivalence on graded pieces, so the same
argument as in Theorem 11.1.12 (2) proves that

n (1)

factors as
(1

n (1) b n
A(31/)A =% hg/a 2 Lnthg/a = Mgy,

where the composite ¢~> : AS/)A — Lnihgyy of the first two maps is the map defined in The-

orem 11.1.12(2). Remark that the [-adic filtration on LnjhAg 4 is complete by [BL22, Re-
mark D.10]. To prove that q; : lg/) 4 — Lnibg) 4 is an equivalence, it suffices by completeness

to prove that it is an equivalence on graded pieces. Proposition 11.1.11(2) (more precisely,
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[BMS19, Theorem 5.4 (2)]) identifies the i*® graded piece of Lnrhgsa with the truncation 7=

of the I-adic graded piece Ag/a{i}. Together with the identification ./\/'%g/)A = ./\/il(sl/)A, it
then suffices to prove that

- - .

61 NBG), — <'Bga{i}

is an equivalence for all ¢ > 0, which is (2). O

Remark 11.1.15. The factorisation part of Proposition 11.1.14 (4) and its proof hold more
generally for (A, I) a bounded prism and S any A/I-algebra.

Theorem 11.1.16. Let (A, I) be a bounded prism, and S be a p-cotangent smooth A/I-algebra.
The following are equivalent:

(CSm) The inverse Cartier map

n c! n/oe
Usmyrarmn) @a/wn)bapn A0 1) == B Qs /) a/0,17))

is an isomorphism of A/(p,I)-modules for all n > 0, i.e., S is p-Cartier smooth over

A/l

(LQ = m) The Hodge-completion map (ILQS/(A/I));\ — (]I/XZS/(A/I));Q is an equivalence in the
derived category D(A/I).

(LQ = Q) The counit map (LQg/a/n)); — (s/a/r)), s an equivalence in the derived cate-
gory D(A/I).
e de am comparison map ® — (Qg/ca/1 15 an equivalence in the
dR) The de Rh b5, &% AT = Qsyam)p ! h
derived category D(A/I).
(A) The canonical map Ag/)A QL AT — H*(Ag/a{*}) is an equivalence in the derived category
D(A/I).

(A = @) The Nygaard-completion map A(Sl/)A — lg/)A 1s an equivalence in the derived category
D(A).
(Ln) The Frobenius map ¢ : Ag/)A — Lnrhgya is an equivalence in the derived category D(A).

(N) The canonical map HY Ag/)A oL A/T — H*(N*Ag/)A) is an equivalence in the derived

category D(A/I), where the differential on H* (./\/'*Agl/)A) is the Bockstein operator induced

by the Nygaard filtration on Aél/)A'

(N'Z) The Frobenius map 7<% : TSiNEiAgl/)A — TSiI%S/A is an equivalence in the derived
category D(A) for all i > 0.

Proof. (CSm) < (LQ = Q) By derived Nakayama ([Stal9, 091N]), the counit map
(Ls)casn))p — (Qs/a/n)y
is an equivalence in the derived category D(A/I) if and only if the counit map
L& s /m)arw.0) — Lisym)scare.n)
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is an equivalence in the derived category D(A/(p, 1)), i.e., if the induced map

H" (L& s/p)/a/(0,1))) — B (Qs/p) 14/ 0,1)))

is an isomorphism of A/(p,I)-modules for each n > 0. By [Bhal2, Proposition 3.5|, the
derived de Rham complex L8 s/p) /(4 /(p,1)) 18 €quipped with an exhaustive N-indexed increasing

filtration Fil¢o LQ(s/p)/(A/(p,1)); Whose graded pieces are given by

—1. An L ~ nj
s N (L) /(A1) D dj o), 0ry A 0 D) [=1] — 81 L) 14/ 0,1)):

where C~! is the left Kan extension of the inverse Cartier map. By cotangent smoothness
of the morphism A/(p,I) — S/p, the graded piece gry,”™ LQ(s/p)/(4/(p.1)) 18 thus concentrated
in degree n for each n > 0. Arguing by induction on n > 0 and by exhaustiveness of the
conjugate filtration Filco™ LQs/p)/(A/(p.1))> there is a canonical isomorphism

H" (gre™ L s /p) /(a7 p.1) — B (L) 14/ (p.17))-

In particular the counit map L s/ /(a/(p,1)) = (S/p)/(A/(p,1)) 18 an equivalence in the derived
category D(A/(p, I)) if and only if the inverse Cartier map

—1 . 0n n °
C s Qs A1) ©A) )by ) A0 1) — B ()04 (p,1))

is an isomorphism of A/(p, I)-modules for all n > 0.
(LQ=LQ) & (LL2=Q) & (dR) & () & (A = Z) < (Ln) By [BL22, Proposition 5.2.3]
there is a commutative diagram

N
p

(LQ2s/(a/1)

in the derived category D(A), where the dashed arrows are derived reduction modulo I (|BL22,
Proposition 5.2.5 and Corollary 5.2.8] and Proposition 11.1.11 (3)). The map

(LQs/a/n))p — H* (Bgra{x})
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is defined as the composite

(LQs/a/n)h — (Qsyayn)y — H (Bgja{x}).

The three equivalences in this diagram hold for any p-cotangent smooth A/I-algebra S by
Proposition 11.1.14. By derived Nakayama ([Stal9, 091N]) and commutativity of this diagram,
the conditions (LQ = m), (LQ = Q), (dR), (&), (Ln) and (A = @) are then equivalent.

(Ln) & (N) There is a commutative diagram

AD

HY * *
&k AJT —2— (VA

S/A)
I J3

HY, _
(Lnihgra) ®% AJT —2— H*(Bgja{*})

in the derived category D(A/I), where the maps ¢ are defined in Theorem 11.1.12, and the
functor HY (where B refers to the Beilinson t-structure) is defined in [BMS19, Theorem 5.4].
More precisely, the functor HOB sends the filtered complex

NZ*by), € DF(A)
to
H*(M*A§),) € Ch(A) ~ DF(A)7,
where DF(A)Y is the heart of the filtered derived category DF(A) for its Beilinson t-structure.
Because J\/’*Ag/)A is naturally an object of the derived category D(A/I), this induces a map

0
DY i S NINS

(1)
A S/A)

S/A

in the derived category D(A/I) on the underlying complexes. For any p-cotangent smooth
A/I-algebra S, the right and bottom maps of the previous diagram are equivalences (Propo-
sitions 11.1.14 (2) and 11.1.11 (3)). By derived Nakayama and commutativity of the diagram,
the Frobenius map

¢ : Afgl/)A — L’I?[AS/A

is an equivalence in the derived category D(A) if and only if the canonical map

HY Ay, @5 A/ — (WA,

is an equivalence in the derived category D(A/I).
(NZ) = (Ln) Assume that the Frobenius map

5 TSiNZiAg/)A — TSiIiAS/A

is an equivalence for each ¢ > 0, and in particular that the Frobenius map

6 H(NZAG) ) — H(I'hg)y)

is an isomorphism of A-modules for each ¢ > 0. The homotopy cofibre sequence
>ip (1) >i—1,(1) i—1 (1)
N—AS/A—M\/'— AS/A—H\/ AS/A
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induces an exact sequence

n— i— 1 n ip(l n i— 1 n i— 1
H' U VITIAG) ) — HPWEIAY) ) — HPWZIIAY) ) — HRWVAY))
for each integer n. By Proposition 11.1.14 (2), the graded piece Ni_lﬁg/)A is in degrees [0;7—1]

and the Frobenius map ¢ : J\/”'*IAS/)A — ZS/A{i—l} is an isomorphism in degrees at most 7 — 1.

In particular the morphism HH(NZ%S/)A) — H”(/\/‘ziflﬁg/)A) is an isomorphism for all i,n > 0
satisfying ¢ < mn, and the canonical morphism

HVZAG),) — HIWVZ0G),) = H(AG),)

is an isomorphism for all i > 0. The A-module H*(Ln;A s/4) is canonically identified with the
image of the morphism H'(I°Ag/4) — H'(I""1Ag,4) by Proposition 11.1.11 (1). The Frobenius
map

(b : NZ*AS}A — I*AS/A

thus induces a map of short exact sequences

i— i—1,0 i— i—1,( i ne i
HT WZEIAL) ) — HTH WAL ) — HIWZAY)) — Hi(AG),

J J [ 2

H NI g /n) — B (Agya{i — 1}) — H' (I'Agpa) — H' (Lnihga) — 0.

) —— 0

The first three vertical maps are isomorphisms by assumption, thus so is the right vertical
map, for each ¢ > 0. So the Frobenius map ¢ : A(Sl/)A — Lnrhgya is an equivalence.

(Ln) = (NZ) Assume the Frobenius map ¢ : Ag/)A — Lmrhg/4 is an equivalence. We
prove by induction on ¢ > 0 that for every integer n < i, the Frobenius morphism

¢ HM(NZIAY) ) — H' (I'hg)s)

is an isomorphism of A-modules. For i = 0, it suffices to prove that the Frobenius morphism

¢: 10l

5/,4) — HO(AS/A)

is an isomorphism, or equivalently that the canonical map
HO(Lnihg4) = HO(Ag/a) /H (Bgya) 1] — HO(Asg)a)

is an isomorphism. For any prism (B, IB) over (A, I), the A-algebra B is I-torsionfree [BS22,
Lemma 3.5], so

HO(bga) = i

m B
(B,IB)E(S/A)p

is also I-torsionfree (|[BL22, Theorem 4.3.6]) and the morphism HO(LmAS/A) — HO(AS/A) is
the identity. Assume 4 is now a non-negative integer for which the result holds. Using the
equivalence

¢ AS)A — Lnihgya,
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the first, second and fourth vertical maps of the previous diagram are isomorphisms, so the
morphism

¢ : H’L(NZ’LA(I)

S/A) — Hi(IiAS/A)

is also an isomorphism. For n < 4, the Frobenius ¢ : /\/Z*A(;/)A — I*Ag/4 induces a map of

exact sequences

H - VZIaG) ) > HPHNVIAG)) » HP(VZHAD) ) & HY(VZiAG),) > HY(AAY),)

o o Js s .|

HH (I gpa) » B (bgya{i}) — HY (I bgya) — H'(I'bgya) — H"(Bgyaii})

where the isomorphisms are given by Proposition 11.1.14 (2) and the induction hypothesis.
It follows that the morphism ¢ : H”(/\/?%g/)A) — Hn(I%S/A) is also an isomorphism, which
concludes the proof. O

11.1.4 Comparison with F-smoothness

In this subsection, we compare the absolute notion of F-smoothness, introduced by Bhatt—
Mathew [BM23], with our relative notion of p-Cartier smoothness, in the case when the base
is perfectoid (Theorem 11.1.19). F-smoothness is a variant of (p-adic) smoothness designed to
capture smoothness in an absolute sense. For instance, regular rings are F-smooth ([BM23,
Theorem 4.15)).

Absolute prismatic cohomology can be defined using an absolute version of the relative
prismatic site introduced in Section 11.1.2. We recall only the necessary notation, and refer the
reader to [BL22] for the general theory. Following [BMS19, Section 4] or [BL22, Appendix C],
a commutative ring S is p-quasisyntomic if S has bounded p-power torsion and

Ls/z ® S/p € D(S/p)

has Tor-amplitude in [—1;0]. Following [BL22, Sections 4 and 5| and for any p-quasisyntomic
ring S, the absolute prismatic site (5) is the site having as objects the prisms (3, J) with a
map S — B/J and covers given by flat covers. The absolute prismatic complex Ag € D(Zp)
is the cohomology of the sheaf

OA : (S)A — A—Alg, (B,J) — B.
It is equipped with a Nygaard filtration N'Z*Ag and a map of filtered complexes
¢ NZ*hg — A
where the filtered complex Ag*} is an absolute version of the I-adic filtration on relative pris-

matic cohomology. This Frobenius map is compatible with the Frobenius map on relative
prismatic cohomology when S is defined over a base prism.

Definition 11.1.17 (F-smoothness, [BM23|). A p-quasisyntomic ring S is F-smooth if for
each integer i > 0, the Nygaard filtration on Ag{i} is complete and the homotopy cofibre
hocofib(¢) of the Frobenius map

¢ : NiAS — Ks{i},

where Ag{i} := gr Ag*], has p-complete Tor-amplitude in degrees at least i + 1.
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Following [BS22, Section 3|, a bounded prism (A, ) is perfect if its Frobenius ¢4 is an
isomorphism. The functor (A,I) — A/I induces an equivalence between the category of
perfect prisms and the category of perfectoid rings (|BS22, Theorem 3.10]). Given a perfect
prism (A, I), a p-quasisyntomic A/I-algebra S and an integer i > 0, the canonical maps

Bs{i} — bpa{i} — b), (i}

are equivalences and their composite can be refined into an equivalence of filtered complexes
(|BL22, Construction 5.6.1 and Theorem 5.6.2])

NZbs{i} = NZ*AG), {i}.

Theorem 11.1.18. Let (A, I) be a bounded prism, and S be a p-quasisyntomic A/I-algebra.
Then S is p-Cartier smooth over A/I if and only if it satisfies the following relative version of
F-smoothness: for each integer i > 0 (or equivalently i € {0,1}), the homotopy cofibre of the

Frobenius map ¢ : N%(;/)A — ZS/A{Z'} has p-complete Tor-amplitude in degrees at least i 4+ 1,
and the Nygaard filtration on Ag/)A{i} is complete.

Proof. Assume first that S is p-Cartier smooth over A/I. Let i > 0 be an integer. The cofibre
of the Frobenius map

(;5 : NZASS}/)A — KS/A{Z'},

cofibre is naturally identified with 72"*'Ag/,{i} by Theorem 11.1.14(2). For all integers
n > i+ 1, the cohomology groups H"(Tz”lls/A{i}) are canonically isomorphic to (Qg/(A/I))Z/)\
by the Hodge-Tate comparison (Proposition 11.1.14 (3)). By p-cotangent smoothness of the
A/I-algebra S, the S-modules (Qg/(A/I))z/o\ are p-completely flat for all n, hence the complex

Tzi“ls/ 4 has p-complete Tor-amplitude in degrees at least ¢ + 1. The Nygaard filtration on

Agl/)A{i} is defined as the tensor product of the Nygaard filtration on AS}A with the invertible

A-module A{i} ([BL22, Construction 5.6.1]), and is thus complete by Theorem 11.1.16 (A = A).
Assume now that S is F-smooth. In particular for every integer i > 0 (we only use
i € {0,1} in this argument), the Frobenius map

¢ N%S}A — Bg/a{i}

has cofibre in degrees at least i + 1, and ./\/'%(Sl/)A is in degrees at most ¢ (Theorem 11.1.12 (1)),
so there is an equivalence

b1 NG, — 5B a{i}.
The Frobenius factors through the equivalence
¢ :N"AQ}A = FilC A a{i}
of Theorem 11.1.12 (1), so the canonical map
Filf™™ g a{i} — 75"Bg/afi}
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is an equivalence. The F-smoothness condition for ¢ = 0 and ¢ = 1 implies that the total
cofibre of the commutative diagram

FilgonjES/A _— ES/A

| !

FilioanS/A{l} —— Ag/a{l},

which is naturally identified with gr‘ionjls/ 4{1}[—1] € D(S), has Tor-amplitude in degrees at
least zero. By the Hodge-Tate comparison, this means that the cotangent complex

(Ls/ca/n)p € D(S)

has Tor-amplitude in degrees at least zero, hence is concentrated in degree zero, where it
is given by a flat S-module. So the morphism A/I — S is p-cotangent smooth. By Theo-
rem 11.1.16 (A = A) = (C'Sm), S is then p-Cartier smooth over A/I. O

Corollary 11.1.19. Let (A, I) be a perfect prism, and S be a p-discrete A/I-algebra. Assume

that the ring S is p-quasisyntomic. Then S is F-smooth if and only if S is p-Cartier smooth
over A/I.

Proof. Because the base prism (A, I) is perfect, the Nygaard filtration on Ag/) 4 is naturally

identified with the Nygaard filtration on Ag (|[BL22, Theorem 5.6.2]), and this identification
is compatible with Frobenius maps. The result is then a consequence of Theorem 11.1.18. [J

Remark 11.1.20. In general, given a p-discrete morphism R — .S of p-quasisyntomic rings,
the notions of F-smoothness for S and p-Cartier smoothness for R — S do not agree. For
instance, the ring Z,[p'/?] is regular noetherian and is thus F-smooth ([BM23, Theorem 4.15]),
but the morphism Z, — Z,[p'/?] is not p-Cartier smooth (it is not p-cotangent smooth). On
the other hand, the identity endomorphism of R is always p-Cartier smooth, but not all
p-quasisyntomic rings R are F-smooth: any F-smooth p-complete noetherian ring is regular
(|BM23, Theorem 4.15]). If S is a p-Cartier smooth Zy-algebra, then S is F-smooth ([BM23,
Corollary 4.17]).

11.2 Valuation rings are Cartier smooth

Recall that a valuation ring is an integral domain V' such that for any elements f and g
in V, either f € gV or g € fV. The valuation on the fraction field F' of V is defined as the
canonical group homomorphism v : F* — F*/V* =: T'p, where I'r is naturally equipped
with a structure of totally ordered abelian group, and is called the value group of F. The
value group I'p (resp. the valuation ring V') is said to be discrete if it is isomorphic to the ring
of integers Z. The rank of a valuation ring is defined as its number of nonzero prime ideals.
In particular, a valuation ring V has rank at most one if and only if its value group I'r can
be embedded in the ordered group of real numbers R. A valuation ring extension V' of V' is
a valuation ring V’ equipped with a flat ring morphism V' — V’. The flat modules over a
valuation ring V are exactly the torsionfree V-modules, so a morphism V' — V' of valuation
rings is flat if and only if it is injective.

Valuation rings arise in various contexts in p-adic geometry, e.g., in [BS17, Hub96, Sch12,
BM21]. The goal of this section is to prove the following result.
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Theorem 11.2.1. Let V be a valuation ring whose p-completion is a perfectoid ring. Let V'
be a valuation ring extension of V. Then the morphism V — V' is p-Cartier smooth.*

The main consequence of Theorem 11.2.1 that we will use is the following result.

Corollary 11.2.2. Let V be a p-torsionfree valuation ring whose p-completion is a perfectoid
ring, and V' be a valuation ring extension of V. Then for any integers i > 0 and k > 1, the
map

Z [p" (i) (V") — RTe(Spec(V'[}]), 153)

is an isomorphism on cohomology in degrees < i, and is injective on H'.
Proof. This is a consequence of Theorems 11.2.1 and 11.3.12. O

Examples of valuation rings V' satistying the hypothesis of Theorem 11.2.1 include the ring
of integers Z,, of an algebraic closure Q, of Q,,, the ring of integers Oc, of the p-adic complex
numbers C, and the ring Z,[p"/?”] (Example 11.2.6 below).

Remark 11.2.3. By Example 11.1.2(2), an extension of valuation rings is p-discrete. In
particular, an extension of valuation rings V' — V' is p-Cartier smooth if and only if the
morphism V/p — V’/pis Cartier smooth, 4.e., if V/p — V'/p satisfies the Cartier isomorphism
and the cotangent complex Ly /) /v/p) is a flat (V'/p)-module in degree zero.

We will distinguish three cases. If p is invertible in the valuation ring V, then the rings
V/p and V' /p are zero® and the result is trivial. If p is zero in the valuation ring V, the result
is essentially due to Gabber-Ramero and Gabber, as we recall now. We will then focus on the
remaining case, i.e., that of mixed characteristic.

Assume that p = 0 in the valuation ring V. By [BMS18, Example 3.15] an F)-algebra, or
equivalently its p-completion, is a perfectoid ring if and only if it is perfect (i.e., its Frobenius
endomorphism is an isomorphism). Theorem 11.2.1 is then due to Gabber-Ramero and Gab-
ber. Remark that Cartier smoothness in characteristic p, including its relation to valuation
rings and algebraic K-theory, was previously studied in [KM21].

Theorem 11.2.4 (Cartier smoothness of characteristic p valuation rings, [GR03, KST21]).
Let V' be a perfect valuation ring of characteristic p, and V' be a valuation ring extension of V.
Then the morphism V' — V' is Cartier smooth. Equivalently:

(1) The cotangent complex Ly v, is concentrated in degree zero, and Q%///V is a flat V'-module.
(2) The inverse Cartier map
C™h: QY Qugy V — HY (O )
s an isomorphism of V-modules for each n > 0.

Proof. (1) The cotangent complexes Ly /i and Ly~ /F, are concentrated in degree zero (|GRO3,
Theorem 6.5.8 (i7)]) where they are given by Q‘l/,/v and Q%/,/]Fp, and Q%///]Fp is a torsionfree

V'-module ([GR03, Corollary 6.5.21]). There is a homotopy transitivity fibre sequence

Lyw, @y V' — Lyryg, — Ly v,

“By Theorem 11.1.19, note that this is equivalent to the fact that the valuation ring V' is F-smooth.
"There is a slight ambiguity whether the zero ring is perfectoid or not. We include this case to avoid any
ambiguity.
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and Ly, g, >~ 0 because V' is a perfect Fp-algebra. So the natural morphism
Q%///Fp —> Q:‘L///V

is an isomorphism of V/-modules. Torsionfree modules over a valuation ring are flat, so Q%/, v
is a flat V'-module.

(2) The morphism F,, — V' satisfies the Cartier isomorphism ([KST21, Corollary A.4]).
By the previous paragraph, there is a canonical isomorphism

1 = 0!
Qvl/ ]Fp —> Qvl/v
of V/-modules, so the morphism V — V' also satisfies the Cartier isomorphism. O

Assume now, for the rest of this section, that p is neither invertible nor zero in the valuation
ring V; we say in this case that V is a mized characteristic valuation ring. The hypothesis on
V in Theorem 11.2.1 can be reformulated as follows.

Lemma 11.2.5. Let V be a mized characteristic valuation ring. The following are equivalent:
(1) The p-completion of the valuation ring V is a perfectoid ring.

(2) The ring V/p has a nonzero nilpotent element, and its Frobenius endomorphism is sur-
jective.

Proof. The second condition depends only on the ring V/p, so we can assume the valuation
ring V' is p-complete. Because p is nonzero in the valuation ring V', the ring V is in particular
p-torsionfree.

By [BMS18, Lemmas 3.9 and 3.10], a p-torsionfree ring R is perfectoid if and only if R
is p-complete, the Frobenius on R/p is surjective and up € R admits a compatible system
of p-power roots for some unit v € R*. From now on, let V be a nonzero p-complete and
p-torsionfree valuation ring, such that the Frobenius on V/p is surjective.

(1) = (2) Let u € V* be a unit such that up admits a compatible system ((up)'/?"),en of
p-power roots in the valuation ring V. Because V is p-torsionfree and not the zero ring, p is
nonzero in V and neither is (up)/?. The element (up)'/? € V thus defines a nonzero nilpotent
element in the ring V/p.

(2) = (1) Assume the valuation ring V' has an element 7 € V' defining a nonzero nilpotent
element in V/p. Because the Frobenius on V/p is surjective, we can assume that 7 is nonzero
in V/p. Because V is a valuation ring, this implies that 77 divides p and that p divides some
power of w in V. In particular the valuation ring V' is m-complete for this element 7 € V.
By [BMS18, Lemma 3.9], there exists a unit « € V* such that up € V' admits a compatible
system of p-power roots in V. O

Example 11.2.6. The p-completion of the ring Zp[pl/poo} is a perfectoid valuation ring, be-
cause it satisfies the hypotheses of Lemma 11.2.5(2). In particular, any valuation ring ex-
tension V' of Z, containing a compatible system of p-power roots of p is p-Cartier smooth
over Z,[p"/?”] by Theorem 11.2.1. Beware that p-completion (or even taking the p-adically
separated quotient) does not preserve the value group of a valuation ring. For instance, the
localisation of the ring Z,[X/p",n > 0] at the ideal (X/p",n > 0) C Z,[X/p",n > 0] is a
valuation ring, with fraction field Q,(X) and with p-completion Z; an alternative description
of this valuation ring is the fiber product Z, xq, Q,[X](x). Similarly, the localisation of the
ring Zp[pl/poo7X/p", n > 0] at the ideal (X/p™,n > 0) C Zp[pl/i”oo,X/p”, n > 0] is a valuation
ring, with fraction field Qp(pl/poo, X) and p-adically separated quotient Zp[pl/poo].
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To prove Theorem 11.2.1 for the morphism V' — V| it suffices to prove that the morphism
V/p — V'/p is cotangent smooth (i.e., its cotangent complex Ly /p)/(v/p) is given by a flat
V' /p-module in degree zero) and satisfies the Cartier isomorphism (Remark 11.2.3). We first
prove the cotangent smoothness.

Lemma 11.2.7. Let V' be a valuation ring in which p is nonzero, and M be a V'-module. If
the V'-module M is p-torsionfree, then its derived reduction M ®E‘}, V' /p modulo p is a flat
V' |p-module in degree zero.

Proof. Because p is a nonzerodivisor in the valuation ring V’, the derived reduction M &%, V' /p
modulo p of any V’-module M is concentrated in degree zero if and only if M is p-torsionfree.

Assuming M is a p-torsionfree V’'-module, we prove now that M/p is a flat V’/p-module.
Consider the p-adically separated quotient vV’ of V', i.e., the quotient of V’ by its ideal
Nn>oP™V'. The ring V' is a valuation ring, because it is an integral domain and satisfies

the divisibility condition of valuation rings. Define M’ as the V/-module M Ry V’. The mor-
phism M — M’ of V'-modules is surjective, with kernel given by a quotient of the V’'-module
M @y (,5op"V'. The V'-module M ®y (1,50 p" V" is p-divisible, so the morphism M — M’

becomes an isomorphism after reduction modulo p. Because V'isa p-adically separated valua-
tion ring, any p-torsionfree V’-module is torsionfree and thus flat. In particular the V/-module
M’ is flat, and the V’/p-module M’/p is also flat. So the V’/p-module M/p is flat. O

Proposition 11.2.8 (Cotangent smoothness of the morphism V/p — V'/p). Let V be a mized
characteristic valuation ring whose p-completion is a perfectoid ring. Let V' be a valuation
ring extension of V. Then the V'-module Q%,,/V is p-torsionfree and the cotangent complex

Ly jpyvyp) 1 @ flat V' [p-module in degree zero.

Proof. Note the equivalence Ly /) /(v/p) = Ly /v ®H“/, V' /p. The cotangent complex of any
extension of valuation rings with characteristic zero fraction fields is concentrated in degree
zero ([GRO3, Theorem 6.5.8 (#4)]°). In particular the cotangent complex Ly is concentrated
in degree zero, given by the V/-module Q%/,/V. If the V'-module Q%///V is p-torsionfree, then
the cotangent complex Ly p /(v/p) is a flat V' /p-module in degree zero (Lemma 11.2.7).

We prove now that the V’-module Q%/,/V is p-torsionfree. Let I be the fraction field of the

valuation ring V’, and I’ an algebraic closure of F’. We fix a valuation on F’ extending the
valuation of the valued field F’, and denote by V the corresponding ring of integers. Applying
again [GR03, Theorem 6.5.8 (ii)] to V, V/ and V’ and because the morphism V' — V7 is flat,
the transivity sequence for the cotangent complex can be rewritten as a short exact sequence
of V’-modules:

0 — Qyyy & V7 — Qs — Qg — 0.

An V'-module (resp. V’-module) M is p-torsionfree if and only if the multiplication by p
morphism p : M — M is injective. The morphism V' — V7’ being faithfully flat, the

V'-module Q%/,/V is thus p-torsionfree if and only if the V’-module Q%/V@’V’W is p-torsionfree.
By the previous short exact sequence, it then suffices to prove the V’-module Q% v is

p-torsionfree. The p-completions VI',/\ and W;\ of V and V' are perfectoid rings, respectively

®More precisely, [GR03, Theorem 6.5.8 (ii)] is formulated for extensions of valued fields. An extension of
valuation rings V < V' is the composition of the localisation V < V,, at the prime ideal p := V Nmy~ and
the morphism V;, < V’. The cotangent complex of the first morphism is trivial and the second morphism is
induced by an extension of valued fields.
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by assumption and because the field F’ is algebraically closed. In particular the cotangent
complex ]L(WA) In/ (VY /p is zero (|[BMS18, Lemma 3.14|). Equivalently, the cotangent complex
P P o

L(W )/ (V/p) is zero. In particular, the derived reduction Q. L_V’/p modulo p of the

—( - A% e
V’-module Q% is in degree zero, or equivalently the V’-module Q% is p-torsionfree. [

/v /v

It remains to prove the Cartier isomorphism for the reduction modulo p of valuation ring
extensions V' — V', where V is a mixed characteristic valuation ring whose p-completion is
a perfectoid ring. The proof of the Cartier isomorphism for positive charateristic valuation
rings [KST21, Corollary A.4| relies on subtle approximation results of Gabber, which do not
immediately pass to mixed characteristic. Our strategy of proof in mixed characteristic is to
reduce to this result in positive characteristic. We are immediately faced with the following
issue: if V' is a mixed characteristic valuation ring, the ring V/p is in general not an integral
domain, and in particular not a valuation ring.

Here we use the perfectoid assumption on the base V to remark that there is a perfect
valuation ring V® of characteristic p (the tilt of V) whose reduction modulo some element
deVhis naturally isomorphic to V/p. The Cartier isomorphism is preserved by base change
(Lemma 11.1.9). So it would suffice to find a valuation ring extension V’” of V” whose
reduction modulo d is V'/p to prove the Cartier isomorphism for V/p — V’//p. To construct
such a valuation ring V'? over the d-complete lift V” of V/p, we use the deformation theory of
Musie [I171, I11.2.1.2.3] (see also [Sch12, Theorem 5.11]). Namely, we will need the following
result, where R is aring, I C R is an ideal such that I? = 0, and Sy is a flat Ry := R/I-algebra.

Theorem 11.2.9 (Deformation theory, [III71]). There is an obstruction class w(Sp) in the
abelian group Ext?go (Lsy/Ro» So®RyI) which vanishes precisely when there exists a flat R-algebra
S such that S ®pr Ry = Sg. If there exists such a deformation, then the set of all isomorphism
classes of such deformations forms a torsor under Extgo (Lsy/Ros So @R, 1), and every defor-
mation has automorphism group Homg, (s, /r,, S0 @R, ).

To apply this deformation result recursively up to a d-adic deformation V'’ of the flat
V/p-algebra V' /p, we need to have control on the cotangent complex L py/(v/p)- More
precisely, if the cotangent complex Ly, (v/p) Was a projective V' /p-module in degree zero
then the higher Ext-groups in this deformation result would vanish and we could construct
the lift V’® in a unique way. By Proposition 11.2.8, the cotangent complex Lo py vy 18
concentrated in degree zero, given by the flat V’/p-module Q%v/ 10/ (V/p)" The inverse Cartier
map commutes with filtered colimits, so we can assume the field extension F' — F” induced by
the valuation ring extension V' — V' is of finite type to prove the Cartier isomorphism. But
even for such valuation ring extensions, the V' /p-module Q%V, )/ (V/p) will not be projective in
general. For instance, when F' & F(X), it follows from the proof of [GR03, Proposition 6.5.6]
that the V’'-module Q}, Jv can be isomorphic to my V', where my is the maximal ideal of

V. The next result will ensure the vanishing of the relevant Ext?-groups in the deformation
theory, and thus the existence of a lift V'? (see also Remark 11.2.15 about the uniqueness of
such a lift).

Lemma 11.2.10. Let V be a finite rank valuation ring, with fraction field F'. If M is a torsion-
free V-module such that M Qv F is a finite dimensional F-vector space, then the V/p-module
M/p is a countable filtered colimit of free V/p-modules of rank at most dimp(M @y F). In
particular, the V' /p-module M /p has projective dimension at most one.
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Proof. The morphism of V-modules M — M ®y F is injective because the V-module M is
torsionfree. We identify the V-module M with a submodule of the V-module M ®y F' via this
morphism. We prove by induction on the dimension d of the F-vector space M ®y F' that M
is a countable filtered union of free V-modules.

For d = 0, the V-module M is free of rank zero. For d = 1, the V-module M is isomorphic
to a submodule of F', and we consider two cases. If M is equal to F, then M is the filtered
union of the free V-submodules of rank one of F. If M is not equal to F', then up to shifting
M multiplicatively by an element of V', we can assume that M is contained in V, i.e., that M
is an ideal of V. Every ideal of a ring is the filtered union of its finitely generated subideals,
and every such ideal is principal in a valuation ring. So the V-module M can be written as
a filtered union of free V-submodules of rank at most one. In both cases, and because the
valuation ring V has finite rank, one can assume that the filtered colimit is countable. So the
V-module M is a countable filtered union of free V-modules of rank at most one.

Fix an integer d > 1, assume the result is proved for all integers less than or equal to d,
and let M be a V-submodule of the (d + 1)-dimensional F-vector space @f:llFei. Let Me, ,
be the image of M under the projection pgiq : @gillFei — Fegqy1. By the previous para-

graph, the V-module M,
V-modules of rank at most one. Let M ™ := p;il(Me(:ll), so that M is the filtered union of
the V-modules M. For each integer n > 0, there is a short exact sequence of V’'-modules

is the countable filtered union of a system (M6§3+)1)n6N of free

0— M™nel Fe; — M™ — MM 0,

€d+1

which is split since the V-module Me((::)l is free. The induction hypothesis implies that, for each
integer n > 0, the V-module M) N @;?lle e; is a countable filtered union of free V-modules.
Taking the direct sum with the V-module Me(:ll, this implies that M (™ is the countable filtered
union of a system (M), .y of free V'-modules. The V-module M is thus the countable
union of the free V-modules M ™) n m e N, and this union is filtered by construction. This
concludes the induction.

In particular, the V/p-module M /p is a countable filtered colimit (P(™),,cx of free V/p-mo-
dules of rank at most dimp(M ®y F). To prove the last claim, consider the Milnor exact
sequence

0 — ®penP™ L @penP™ — M/p — 0

of V-modules, where f, : P(") — P("+1) ig the transition map and
8 : ([En)nzo — (wn - fn—l(xn—l))y

where f_1(x_1) := 0. For every V/p-module Q, the Ext-groups Exti//p(P(”), () vanish for all
integers n > 0 and i > 1. Applying the long exact sequence of Ext-groups to the previous
short exact sequence of V/p-modules implies that

Extif/p(M/p, Q)=0

for every integer i > 2 and every V/p-module Q, i.e., that the V/p-module M /p has projective
dimension at most one. O

Corollary 11.2.11. Let V be a mized characteristic valuation ring whose p-completion is a
perfectoid ring. Let V' be a finite rank valuation ring extension of V. Assume that V and V'
are p-adically separated, and that the induced field extension F — F' is of finite type. Then
the V' /p-module Q%V’/p)/(V/p) has projective dimension at most one.
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Proof. We apply Lemma 11.2.10 to the V'-module Q%/,/V. The V'-module Q%/,/V is p-torsionfree

(Proposition 11.2.8), and thus torsionfree since V' is p-adically separated. The localisation at
a prime ideal has trivial cotangent complex, so the canonical map Q%/,/V Qv F' — Q},,/F is an

isomorphism. Moreover, the F’-vector space Q%, /F is finite dimensional since F' — F’ is a field

extension of finite type. The reduction modulo p of the V'-module Q%,, v is the V'’ /p-module
1 .

Q(V’ 10/ (V/p)? hence the conclusion. ]

We now use this result on the projective dimension of Q%V, /) (V/p) to lift the V/p-algebra

V' /p to a valuation ring extension V'? of V?.

Notation 11.2.12. Let V be a mixed characteristic valuation ring whose p-completion is a
perfectoid ring. Denote by
b .
=1
AL
the tilt of this perfectoid ring. The ring V? is a perfect valuation ring of characteristic p, which
is d-complete for some element d € V” such that there is a natural ring isomorphism

V/p=VP/d.

We will need the following to ensure that the flat lift V’° produced by deformation theory
is actually a valuation ring.

Lemma 11.2.13. Let V be a mized characteristic valuation ring whose p-completion is a per-
fectoid ring. Let V' be a valuation ring extension of V and V' a d-complete flat V°-algebra.
Assume there is an isomorphism of V°/d =V /p-algebras V'° /d = V' /p. Then V'° is a valua-
tion ring extension of %48

Proof. The commutative ring V' is a flat V"-algebra, so it suffices to prove that it is an
integral domain such that for any elements f and ¢ in V'?, either f divides g or ¢ divides f.
We first prove the latter property.

The valuation ring V? is perfect by definition. Denote by (d'/?"),en € (V?)N a compatible
system of p-power roots of d € V°. A module over the valuation ring V? is flat if and only if
it is torsionfree, so the V°-module V'? is d'/P"-torsionfree for each n > 0. In the following we
identify the rings V/p and V?/d; in particular any (rational) power d® of d € V° defines an
element of V/p, which we also denote by d*.

Let f and g be elements of the ring V’”. Let us prove that either f divides g or ¢ divides f.
First assume in this paragraph that ¢ = d. We assume that d does not divide f in V’?, and
prove that f divides d. Because V' is a valuation ring, and for every a € Z[%], a < 1, either
f divides d®, or d* divides f in the ring V'?/d. If f divides d* for such an « in V'°/d, then
we can write fh = d® + dt in V'? for some elements h,t € V'?. Because V'? is d-complete it
is also d'~%*-complete. In particular 1 + d*~%¢ is a unit in V'?, so f divides d®, and thus f
divides d. If f does not divide d* for any « € Z[%], o < 1, then in particular d'/? divides f
in V'°/d. Because d'/? divides d in V'°, it then also divides f in V'°. Because V'" is d'/?-
torsionfree, we can consider the element f/d'/? € V'*. By construction, any lifts f,d'/? € V'
of f,dY/? € V'"/d satisfy that f divides p, f is divisible by p'/?, and the quotient f/d'/? is
sent to f/d'/P by the map V' — V'/p. This implies that f/d'/? divides d'~/? in V'?/d. The
same argument as in the previous case implies that f divides d in V'°.

Going back to the elements f and g of V'?, we deduce the following: if f is not divisible
by d and g is divisible by d, then f divides g. The ring V'? is d-torsionfree, so we can also
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assume that d does not divide one of f and g. We now assume that d does not divide f or g.
Without loss of generality and because V' is a valuation ring, there is an element h € V' /p
such that f = gh in V'’/d. We can then write f = gh + dt for some elements h,t € V'°.
By the previous paragraph, and because d does not divide g, we know that g divides d. So g
divides f in V'°.

We now prove that the ring V'? is an integral domain. By the previous divisibility property,
and because the ring V'? is d-adically separated, any nonzero element in V’® divides d" for
some integer n > 1. The product of two nonzero elements of V'* would thus imply that a
certain power of d vanishes in V’?, which is impossible since the ring V' > is d-torsionfree. The
ring V'? is then an integral domain, as desired. O

Theorem 11.2.14. Let V' be a mized characteristic valuation ring whose p-completion is a
perfectoid ring, and V' be a valuation ring extension of V. If the V' /p-module Q%V,/p)/(v/p)
has projective dimension at most one, then there exists a d-complete valuation ring extension
V'" of V? such that there is a ring isomorphism V'? /d = V' /p.

The projective dimension hypothesis is satisfied in particular if the induced field extension
F — F’ is of finite type and V" is of finite rank (Corollary 11.2.11). It is also satisfied for the
p-completion of such an extension, as it depends only on its reduction modulo p.

Proof. We prove by induction on n > 1 that there are, for all 1 < m < n, flat V°/d™-algebras

V" with isomorhisms V/?/d SN /p and with discrete cotangent complexes Ly /(s jgm)
having projective dimension at most one. By Theorem 11.2.9, the vanishing of the obstructions
in this process can be expressed in terms of the cotangent complexes H"(V,’L 0y /(v jany- Forn =1,
define V{" as the flat V°/d-algebra V'/p.

Now let n > 1 be an integer, and assume we are given for each 1 < m < n a flat
V?/d™-algebra V!’ with isomorphisms V,/? /d™~1 = V> | for all 2 < m < n. We claim that
the cotangent complex Lvﬁb/(vb/dn) is in degree zero, given by a Vn’b—module of projective
dimension at most one. Tensoring the short exact sequence

00—V LoV v —0
of V° /d™-modules by the cotangent complex LVTW SV Jdn) induces a distinguished triangle
L pyovipy — LVAb/(V*’/d") — Lvéil/(vb/dnfl) —

in the derived category D(V/'?). The discreteness and the projective dimension of Lo (v jam)
being at most one thus reduce inductively to the case n = 1. For n =1, Ly p)/(v/p) i In
degree zero by Proposition 11.2.8, and the V’/p-module Q(lv, 10)/(V/p) has projective dimension
at most one.

In particular, the Ext?-group in the deformation theory Theorem 11.2.9 vanishes, and so
does the deformation class. This implies that there is a flat V’/d"+!-algebra V% | with an

isomorphism V'> , /d" = V> This concludes the induction.

Let V'’ be the inverse limit of the system (V,{b)nzl. In particular, the V°-algebra V'’ is

d-complete. For each integer n > 2, there is a natural exact sequence of V’-modules:
0— V"2, Ly v

Passing to the inverse limit over n > 2 implies that the V’-modules V’ > has no d-torsion, and
is thus flat. By Lemma 11.2.13, V’? is thus a valuation ring extension of V°. O
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Proof of Theorem 11.2.1. As a flat morphism of integral domains, the valuation ring extension
V — V' is p-Cartier smooth if and only if the morphism V/p — V’/p is Cartier smooth
(Remark 11.2.3). The result in characteristic p is Theorem 11.2.4, and the result when p is
invertible in V"’ is trivial. In mixed characteristic, the cotangent smoothness of the morphism
V/p — V'/p is Proposition 11.2.8. The inverse Cartier map depends only on the morphism
V/p — V' /p, so we can replace V and V' by their p-adically separated quotients to prove the
Cartier isomorphism.

We now reduce to the case where V' is a rank one valuation ring. The ideal p := /(p) of
the valuation ring V is a prime ideal and, as such, induces a natural short exact sequence

00—V —=VaeV/p—V/rV, —0

of V-modules ([HKK18, Lemma 3.12|). Note that the commutative ring V} is a mixed charac-
teristic rank one valuation ring whose p-completion is a perfectoid ring. For every morphism
A — B of commutative rings, let

By Theorem 11.1.16 (LQ = m), a p-cotangent smooth morphism of commutative rings A — B
(e.g., V.— V') is p-Cartier smooth if and only if F(B/A) € D(A) vanishes. Tensoring and
p-completing the previous short exact sequence with F'(V’/V) in the derived category D(V)
induces, by base change for de Rham cohomology, a natural fibre sequence

F(V' V) — F(Vyy:/Vo) @ F((V' /pV") [ (V/p)) — F((Vay'/pVev')/ (Ve /pV2))

in the derived category D(V). Here we use that the morphism V' — V' is flat, that pV’ is a
prime ideal of the valuation ring V', and that there is a natural isomorphism of commutative
rings Vv, =2 V'@y V. The morphisms V/p — V'/pV" and V, /pV, — Vp’v//pr’V, are extensions
of characteristic p valuation rings, so F((V'/pV’)/(V/p)) and F(( p’V,/prV/)/(Vp/p%)) are
zero in the derived category D(V) (Theorem 11.2.4). The morphism V' — V' is then p-Cartier
smooth if and only if the morphism V, — Vp/\// is p-Cartier smooth, i.e., we can assume that
the valuation ring V' has rank one.

The fraction field F’ of the valuation ring V' is the filtered union of the finite type field
extensions F of F contained in F’. The valuation ring V' is the filtered union of the associated
valuation rings V; and the inverse Cartier map commutes with filtered colimits, so we can
assume that the field extension F' — F” is of finite type. We assume now that V is a mixed
characteristic rank one valuation ring (in particular p-adically separated) whose p-completion
is a perfectoid ring, that V"’ is a p-adically separated valuation ring extension of V' such that the
field extension F' — F’ is of finite type, and prove the Cartier isomorphism for the morphism
V/p — V'/p. In this case the valuation ring V' has finite rank ([GR03, 6.1.24]), so there exists
a valuation ring extension ¥V’ — V’? such that V'°/d is isomorphic to V' /p (Theorem 11.2.14).
The Cartier isomorphism for V? — V’? (Theorem 11.2.4) then implies the Cartier isomorphism
for V/p — V' /p by base change along the morphism V’ — V°/d (Lemma 11.1.9). O

Remark 11.2.15. Let V be a mixed characteristic rank one perfectoid valuation ring, and V'
a rank one valuation ring extension of V', such that the induced field extension F' — F’ is of
finite type. In this remark, we sketch the proof of the fact that the d-complete valuation ring
V'? introduced in Theorem 11.2.1, is unique up to isomorphism. To do so, we consider almost
mathematics ([GR03, AGT16]) with respect to the pair (V°,+/(d)) (Notation 11.2.12). The
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proof of Lemma 11.2.10, where we use [GR03, Lemma 2.4.15], can be adapted to prove that
the V' /p-module Q%V, Ip)/(V/p) is almost free, and in particular almost projective. The almost

deformation theory [GRO03, Corollary 3.2.11] then implies that the d-complete flat lift V'® of
Theorem 11.2.14 must be unique when seen in the category of almost V’-algebras. One can
check that the functor

(=) : V-Alg o, Ve-Alg HSLN V-Alg,

where the second map is the right adjoint to the localisation functor from V-algebras to
almost V-algebras (JGR03, Proposition 2.2.13 (4¢)]), is the identity on rank one valuation rings
extensions of V”. By construction, the valuation ring V'? is of rank one because the valuation
ring V' is of rank one, hence the result.

11.3 The syntomic-étale comparison theorem

In this section, we prove Theorems 11.3.10 and 11.3.12, comparing the syntomic cohomol-
ogy of a p-Cartier smooth algebra over a perfectoid ring to the étale cohomology of its generic
fibre. This comparison theorem was also proved in [KM21, LM23| in characteristic p, and in
[BM23] for p-torsionfree F-smooth schemes, using different methods.

11.3.1 Syntomic cohomology

The syntomic complexes Z (i)™ were first defined in [BMS19, Section 7.4] for p-complete
p-quasisyntomic rings in terms of p-completed topological cyclic homology. Another equivalent
definition was given in [BS22] in terms of absolute prismatic cohomology, and a generalisation
for general schemes was developed in [BL22, Section 8.4]. In this section, we will be interested
mainly in p-complete” algebras over Ly = Z[Cpoo];)\, whose syntomic complexes can be defined
in terms of relative prismatic cohomology (Definition 11.3.1).

Theideal I C A of a perfect prism (Section 11.1.4 or [BS22, Definition 3.2 (2)]) is necessarily
principal, generated by a nonzerodivisor d € A. When defining a perfect prism (A, (d)) in this
section, we implicitly fix a choice of generator d € A. If the perfect prism (A, (d)) is a prism
over the perfected ¢g-de Rham prism (Z[ql/poo]@%qil), ([plg)), we implicitly assume that this
element d is [pl; € A. When the base prism (A, I) is perfect, one can define a Nygaard
filtration N =*A s/4 on the prismatic complex Ag/4 (without Frobenius twist), and we denote
by

6 NZ* Dgg =5 NZ*BY), 5 Ty

the Frobenius on the relative prismatic complex (see Section 11.1.2 for the definition of the
second map). Following [BS22, Section 12| and for each i > 0, a divided Frobenius map

¢ = “%’ : N g q — bgya

"As in Remark 3.2.2, one can consider the derived or the classical p-completion of a given commutative ring.
The two notions coincide on commutative rings with bounded p-power torsion. In this section, we assume that
p-complete commutative ring means p-complete commutative ring with bounded p-power torsion. Note that,
by definition, p-quasisyntomic rings have bounded p-power torsion.
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is defined and sits in the commutative diagram

: @i
NZ g p —— hg/a

RN

d'hga.

Definition 11.3.1 (Syntomic complexes). Let (A, (d)) be a perfect prism over the prism
(Z[q"/P™ ](pq 1) ([plg)), and S be a p-complete A/d-algebra. For each integer i > 0, the

syntomic complex Zy(1)¥1(S) € D=°(Z,) is
Zp(1)¥"(S) := hofib(¢; — 1 : N='Ag/n — Agya).
For each integer k > 1, also define Z /p*(i)¥*(S) := Z,(i)*¥™(9) ®%p 7 [p".

Over a scheme in which p is invertible, the object Z, (), called p-adic étale Tate twist, will
denote the (pro-)étale sheaf defined as the inverse limit over k£ > 1 of the étale sheaves uf?,f

Following [BL22, Section 8.3|, there is a map comparing the syntomic complexes and the p-adic
étale Tate twists.

Construction 11.3.2 (The syntomic-étale comparison map, [BL22]). Let S be a p-complete
ring (e.g., a p-complete Z;¥-algebra). For every integer i > 0, there is a canonical map

Zp(1)¥"(S) — RTproer(Spec(S[5)), Zp(1)),

called the syntomic-étale comparison map. For every integer k > 1, one can also consider the
derived reduction modulo p* of this canonical map

Z/p )V(S) — Rfét(SpeC(S[%]),qu).

Remark 11.3.3. Let (A, (d)) be a perfect prism, and S be an A/d-algebra. For each i > 0,
the canonical map

(N=bg/a)3)/p — bssalgl/p
is an equivalence in the derived category D(A). By left Kan extension and p-quasisyntomic
descent, it suffices to prove it for quasiregular semiperfectoid A/d-algebras S, for which there
are natural inclusions of (p,d)-completely flat A-modules (bzl(d)%S/A - ./\/Z%S/A C Agja-
The result follows by using the equality (¢,"(d))? = d in A/p.

Theorem 11.3.4 (Prismatic-étale comparison, [BS22, BL22|). Let (A, (d)) be a perfect prism
over the prism (Z[ql/pw]&q_l),([p]q)), and S be a p-complete A/d-algebra. Then for any
integers © > 0 and k > 1, there are canonical identifications

RFét(Spec(S[%Dyﬂfﬁ) — hofib(¢; — 1 : Ag/a[3]/p" — Agyal31/0")
and
RTproet (Spec(S[1]), Zy (i) — hofib(¢; — 1 : bg/algly — bsyalzly)-

Proof. For i = 0 this is [BS22, Theorem 9.1]. When (A, (d)) is the perfected ¢g-de Rham prism
(Z]q"/P™ ](pq 1) ([plg)), [BL22, Theorem 8.5.1] and its proof extend [BS22, Theorem 9.1] to
the general case ¢ > 0. By independence of the perfect base prism for prismatic cohomology
[BL22, Theorem 5.6.2], the same result also holds for any perfect base prism (A, (d)) admits
a map from the perfected ¢-de Rham prism (Z[q"/?™ ](pq 1) , ([plg))- O
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11.3.2 The syntomic-étale comparison theorem in characteristic p

In this subsection, we review the description of the syntomic complexes in characteristic p
in terms of logarithmic de Rham-Witt forms (following [KM21, LM23|), and its consequence
on the syntomic-étale comparison map (Construction 11.3.2).

Proposition 11.3.5 (Syntomic-étale comparison theorem in characteristic p). Let R be perfect
Fp-algebra, and S be a Cartier smooth R-algebra. Then for any integers ¢ > 0 and k > 1,
there are canonical identifications

Z /pk(i)syn(s) ~ RT'¢(Spec(S), Wk’Qfog)[_i]

and
Zp(3)*"(S) ~ RIprost (Spec(S), WQng)[—z'].

Proof. The first equivalence follows from [LM23, Proposition 5.1 (ii)], the second by taking
limits over k > 1. O

Corollary 11.3.6. Let R be a perfect F,-algebra, and S be a Cartier smooth R-algebra. Then
for any integers 1 > 0 and k > 1, the syntomic-étale comparison maps

Z [p*(i)¥™(S) — RTe;(Spec(S[3]), 1iy)
and

Zp(i)*™(S) — Rlprost (Spec(S[3]), Zy (1))
have homotopy cofibres in degrees at least i — 1.

Proof. The syntomic complexes Z /p*(i)¥*(S) and Z,(i)*"(S) are in degrees at least i by
Proposition 11.3.5, and the generic fibre S[%] of S is zero. O

11.3.3 The syntomic-étale comparison theorem

In this subsection, we prove the syntomic-étale comparison theorem over a general perfec-
toid Z¥-algebra (Theorem 11.3.10), generalising Corollary 11.3.6.

The following result is a direct consequence of Theorem 11.1.16 (AZ) when the base prism
is perfect.

Lemma 11.3.7. Let (A, (d)) be a perfect prism, and S be a p-Cartier smooth A/d-algebra.
Then for every integer i > 0, the map

TSZ‘NZiAkg/A ﬂ) Tgiﬁs/A

18 an equivalence.

Proof. The diagram
i b
NZihg g ——= hg/a
Ny
d’L
d'hga

is commutative for any A/d-algebra S and the map d* : bgia — d%S/A is an equivalence.
Locally on the p-quasisyntomic site Ag/4 is a d-torsionfree A-module in degree zero and this
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is by definition of the divided Frobenius map ¢;, and in general this is true by descent on
the p-quasisyntomic site and left Kan extension. When S is p-Cartier smooth over A/d, the
Frobenius map ¢ : NZ%S/A — d'Ag/4 1s an isomorphism in degrees at most i, hence the
result. O

Lemma 11.3.8. Let (A, (d)) be a perfect prism, and S be a p-Cartier smooth A/d-algebra.
For all integers i > 0 and k < i — 1, define the map

¢; " H¥Bsya/p) — B (bs/a/p)

as the composite

¢i_1 i can
H"(Ag/a/p) —— HY (N Aga/p) = HF (Ag/a/p)

where the first map is given by the derived reduction modulo p of Lemma 11.8.7. Then for
every k <1 —2, the map qb;l is zero on the d-torsion subgroup Hk(AS/A/p) [d].8 Fork=i—1,
the map gb;l o qb;l s zero on the d-torsion subgroup Hiil(AS/A/p) [d].

Proof. First assume that & < ¢ — 2. In this case, the map
¢; 1 HE(Bgya/p) — B (bsya/p)

can be rewritten as the map dl/qui__ll, where gf)i__ll is defined as <f>¢_1~ Let x be a d-torsion
element of the A/p-module Hk(AS/A/p). Then

o7 H(z) = dYP Y (x) = ;) (dx) =0,

hence the result.
Now assume that k=1 —1, and let us prove that ((bi_l)2 = (bi_l o (bi_l is the zero map on
the A/p-module H’fl(AS/A/p) [d]. There is a natural short exact sequence of A/p-modules

0 — H ' (Ag/a)/p — H ' (Agya/p) — H'(Ag/a)[p] — O,

and compatible maps qﬁi_l on each of its terms. This short exact sequence induces, by the
snake lemma, an exact sequence of A/p-modules

0 — (H'™H(Bsya)/p)ld] — H' ™ (bsya/p)ld] — (H'(Bsya)[p])Ld],

and the maps ¢;” ! restrict to these A/p-modules. Tt suffices to prove that the map ¢;1 is zero
on both (HZ_I(AS/A)/p) [d] and (H'(Ag/4)[p])[d]. Indeed, if z is an element of HZ_I(AS/A/p) [d],
then gf)i_l(x) is naturally in the kernel of the canonical map

H'™ (Bgya/p)ld) — (H'(Agya)[p])[d].

So qﬁ;l(x) is in the subgroup (Hifl(AS/A)/p)[d] C Hiil(AS/A/p) [d], and thus gb;1(¢;1(x)) =0.

8Equivalently, by Lemma 11.3.7, the canonical map
can : H*(NZ' s a/p) — H* (bsya/p)

is zero on the d'/?-torsion subgroup H*(N=Ag,/4 /p)[d*/?].
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On the A/p-module Hi_l(AS/A)/p, the map d)i_l can be rewritten as the map dl/pqﬁi__ll,
and is thus zero on (Hi_l(AS/A)/p) [d], arguing as in the first paragraph of this proof. We
now prove that the map ¢; * is zero on the A/p-module (Hi(AS/A)[p])[d}. By definition of the
map ¢; ! it is equivalent to prove that the canonical map

can : Hi(NziAS/A)[P] — Hi(AS/A)[p]

is zero on the d'/P-torsion subgroup (H’ (NZ%S/A)[p])[dl/p]. By Theorem 11.1.16, there is a
commutative diagram

H (N2 g/ 4)[p] —a—> Hi(diBg/4) p]

ican lcan

H' (s4)[p] — > H*(Lnabsy1) [p),

where the right vertical map is defined in [BMS18, Lemma 6.9]. By [BMS18, Lemma 6.4] and
its proof, the canonical map

can : Hi(diAS/A) — Hi(LUdAS/A)

is surjective, with kernel given by the d-torsion subgroup Hi(d%s/ A)ld]. In particular, the
right vertical map in the previous diagram is surjective, with kernel given by the d-torsion
subgroup (H(d'A s/4)[p)[d]. The left vertical map of this diagram is thus also surjective, with
kernel given by the d'/P-torsion subgroup (Hi(/\/'Z%S/A)[p])[dl/p]. Hence the result. O

Remark 11.3.9. In the previous lemma, the result can be slightly improved if the perfectoid
base ring A/d is p-torsionfree. In this case, the map qbl-_l is zero on Hk(AS/A/p) [d], for every
integer k <14 — 1; see the proof of Theorem 11.3.12 below.

Theorem 11.3.10 (Syntomic-étale comparison theorem). Let R be a perfectoid Z,Y-algebra,
and S be a p-Cartier smooth R-algebra. Then for any integers i > 0 and k > 1, the homotopy
cofibres of the syntomic-étale comparison maps

Z [p"())¥(S) — RTey(Spec(S[3]), 1iy)
and

Zp(i)*™(S) — RTprocet(Spec(S[3]), Zy(i))
are in degrees at least i — 1.

Proof. We first prove the result modulo p. Let i > 0 be an integer, (A, (d)) the perfect prism
corresponding to the perfectoid ring R and R®(S,F,(i)) € D(F,) the homotopy cofibre of the
syntomic-étale comparison map

F (i)™ () — RTet(Spec(S[L]), ).

Following [BL22, Section 8.4] (see also Notation 6.2.1), the syntomic complex F,()¥*(S5),
where S is a not necessarily p-complete ring, is defined by the cartesian square

Fy(1)¥™(S) ——= Rlt(Spec(S[;]), uy”")

|

Fp(i)¥7(S,') — RTet(Spec(Sy[2]), u§),
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where the bottom horizontal map is the syntomic-étale comparison map (Construction 11.3.2).

In particular, the homotopy cofibre of the top horizontal map is naturally identified with that

of the bottom horizontal map. The desired statement depending only on this homotopy cofibre,

and in light of Remark 11.1.6, we assume for the rest of the proof that the ring S is p-complete.
By Theorem 11.3.4 and Remark 11.3.3, there is a commutative diagram

. n i Cbi*l
Fp(9)¥7(S) NZDg 4 /p——hg/a/p

| S

Ret (Spec(S[L), 1) —— bsyal3)/p 2= bgyal3)/p

| | l

R®(S, F,(i)) ——= hocofib(A;) 2> hocofib(\)

where all the horizontal maps are homotopy fibre sequences. The maps A; and A correspond
to inverting d.

We want to prove that R®(S,F,(i)) € D="1(F,), i.e., that R®(S,F,(i)) is zero in degrees
at most ¢ — 2. This statement depends only on

Tgifzhocoﬁb()\i) Li_l Tgi*Qhocoﬁb()\) )

and thus only on the commutative diagram

TSN NZ g 4 /D) Sl sis Y(bg/a/p)

lfsw J=n

TS (hg A [3]/p) 2 7S (g a2 /p).

In terms of this diagram, we want to prove that the map

hocofib(7<t71);) RN hocofib(7=71))

is an isomorphism in degrees at most ¢ — 3 and is injective in degree ¢ — 2.
By Lemma 11.3.7, the divided Frobenius map ¢; : NZ%S/A/p — hg/a/p is an isomorphism
in degrees at most ¢ — 1. Define

L= g7 757 Bgya/p) — 77 (Bsya/p)

as the map ¢; — 1 : TSi_l(Nz%S/A/p) — 7SI I(AS/A/])) precomposed with the inverse of
the divided Frobenius map ¢; : 79*1(]\/’2%5/14/19) = Tgifl(AS/A/p). Similarly the divided
Frobenius map ¢; : Ag/a[3]/p — Ag/al}]/p is an equivalence by Theorem 11.1.16 (Lp), and
we define

1—¢; " Tsi_l(AS/A[l]/p) — 7= Y(bsyaldl/p)

as the map ¢; — 1 : 75~ I(AS/A[é}/p) — 7SI I(AS/A[E}/ ) precomposed with the inverse of the
~ <i—

divided Frobenius map ¢; : Tgifl(AS/A[ |/p) — 7=
that the induced map

(AS/A[ |/p). We thus want to prove

—1

hocofib(7=71)) 1, hocofib(7=1))
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is an isomorphism in degrees at most ¢ — 3 and is injective in degree ¢ — 2. We prove that it
is an isomorphism in degrees at most ¢ — 2.
Let k be an integer such that k < i — 2. There is a short exact sequence of A/p-modules:

0 — Coker(H*(\)) — H(hocofib(\)) — Ker(H*1()\)) — 0.

To prove that 1 — gzﬁi_l is an isomorphism on H¥(hocofib()\)), let us prove that it is an isomor-
phism on both Ker(H**1(\)) and Coker(H*())).
First consider the map

HYH(N) : H*  (Agya/p) — B (Ag/a/p)[3].

Its kernel is given by the d-power torsion subgroup of HkH(AS/A/p), so we want to prove
that the map 1 — ¢; ! is an isomorphism on the A/p-module HkH(AS/A/p) [d>°]. The re-
lation ¢4(d) = dP holds in the ring A/p. So for every integer j > 1 and every element
x € H" ™ (Ag/a/p)dP]:

@ @) = o Hd ) =0,

]

and thus ¢; ' (z) € Hk‘H(AS/A/p)[dpjil]. By Lemma 11.3.8, the map (¢; ')? is zero on the
A/p-module HFF! (As/a/p)ld]. So the map 1 — ¢; ' is an isomorphism on the A/p-module
HkH(AS/A/p) [dP’], for each integer j > 1, with inverse given by the map

I R (0 L

So the map 1 — <bi_1 is an isomorphism on the A/p-module HkH(AS/A/p) [d>].
Now consider the map

HY(\) : H¥(Ag/a/p) — H* (Bsya/p)[3].
It is the filtered colimit over m > 0 of the maps
A Ngya/p — hgyafp

given by multiplication by d™. The A/p-module Coker(H*(\)) and the map 1 — ¢; ! acting

on it can be rewritten as the colimit over m > 0 of the A/p-modules Hk(AS/A/p)/dm with
(p—1)m

maps 1 —d P gb;l. Let m > 0 be an integer. We claim that the map

(p—1)m
d » ¢t :H¥ (bga/p)/d™ — H*(Dga/p)/d™

(p—1)m
is nilpotent. Because k < ¢ — 2, thismapd P gb;l is naturally identified with the map

(p=1m 1
d » +p¢;11 tHY(Ag a/p)/d™ — H¥(Ag/a/p)/d™,

where
Gi1 T TN T A g — TS T A

is the equivalence of Lemma 11.3.7. Composing with itself k times for some integer £ > 1 and
(*—1m _pF—1
using the gb;ll—linearity of gb;_ll gives the map d P p*(p—1) (gb;_ll)k. This map is zero for
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(PF-1)m

o > m, that is p*¥ > m(p — 1) + 1. The map

every integer k > 1 satisfying 4 2l

p*(p—1)
1- d(p ;)m qﬁi_l is thus a sum of an isomorphism and a nilpotent map, so it is an equivalence.
Taking the colimit over m > 0, the map 1 — ¢; ! is an isomorphism on Coker(H¥())). This
concludes the proof of the result modulo p.
We now prove the result for integral coeflicients. Let R®(S,Zy(i)) € D(Zy) be the homo-
topy cofibre of the syntomic-étale comparison map

Zp(1)¥"(8) — Rproet(Spec(S[;1), Zp(i))-

We want to prove that R®(S,Z,(i)) € D="Y(Z,), i.e., that 7="2R®(S,Z,(i)) ~ 0. The
truncation of a derived p-complete object is derived p-complete ([Stal9, 091N]). By derived
Nakayama, it thus suffices to prove that

(T=""2R®(S, Zy(1)))/p ~ 0.
For every integer k < i — 3, the natural map
HF((r=""2R®(S, Zy(1))) /p) — H*(RD(S, Z,(i)) /p) = H* (R®(S, Fy(i)))

is an isomorphism, and its target is zero by the first part of the proof. In degree i — 2
the cohomology group H™2((1==2R®(S, Z,(1)))/p) is naturally identified with the (classical)
reduction modulo p of the cohomology group H?(R®(S,Z,(4))), and there is a short exact
sequence of abelian groups:

0 — H2(RO(S, Z,(1)))/p — H2(RO(S.F,(0))) — B (RO(S, Z,(0))) ] — 0.

The middle term of this short exact sequence is zero by the first part of the proof; so the left
one also is, which concludes the proof for integral coefficients. The result modulo p* can be
proved like the result for integral coefficients, or deduced from it by reduction modulo p*. [

11.3.4 The syntomic-étale comparison theorem over a p-torsionfree base

In this subsection, we prove a refined version of the syntomic-étale comparison theorem
(Theorem 11.3.12), assuming the perfectoid base ring is p-torsionfree.

Lemma 11.3.11. Let (A, (d)) be a perfect prism such that A/d is p-torsionfree, and S be a
p-Cartier smooth A/d-algebra. Then for every integer i > 0, the Frobenius maps and divided
Frobenius map

¢:bgia/p — Lna(bs/a/p)
¢ : TS (NZ hgya/p) — T (d'Dg/a/D)
¢i : T (N Bg/a/p) — 7 (hsya/p)

are equivalences.

Proof. By Theorem 11.1.16 (Ln), the Frobenius map

¢ BDsja — Lnabs/a

is an equivalence, thus so is its derived reduction modulo p. Note that p is a nonzerodivisor
in the ring A (|BS22, Lemma 2.28 (1)]). Moreover, S is p-cotangent smooth over A/d, so the

164



groups (0§ oy d));)\ are p-flat modules over the p-torsionfree ring A/d and are in particular

p-torsionfree. The groups H"(Ag,4) are thus also p-torsionfree (Proposition 11.1.14(3)), and
the natural map

(Lnghga)/p — Lna(bg/a/p)

is an equivalence in the derived category D(A/p) (|Bhal8, Lemma 5.16]), which proves the
first statement.
The proof of Theorem 11.1.16 (Ln) = (N'=), where we use that the short exact sequence

0 — H ' (Agya/p)/d — H ' (Lgya/(p,d)) — B (Bgya/p)ld) — 0
to prove that HY(A s/4/P) is d-torsionfree, then adapts readily to prove that the Frobenius map

¢ T (NZhgya/p) — 7= (d'bs/a/p)

is an equivalence in the derived category D(A/p). The proof of the third statement is the
same as in Lemma 11.3.7. ]

Theorem 11.3.12 (Syntomic-étale comparison theorem over a p-torsionfree base). Let R be
a p-torsionfree perfectoid Z,Y-algebra, and S be a p-Cartier smooth R-algebra. Then for any
integers i > 0 and k > 1, the homotopy cofibres of the syntomic-étale comparison maps

Z [p"(i)*"(S) — RTe(Spec(S[;]). 1o7y)

and

Zp(i)*™(S) — RTproet(Spec(S[3]), Zy(i))
are in degrees at least i.

Proof. As in the proof of Theorem 11.3.10, we first reduce to the case where S is a p-complete
ring and, by derived Nakayama, it suffices to prove the result modulo p. We keep the same
notation as in the proof of Theorem 11.3.10. We want to prove that

R®(S,F,(i)) € D=4(TF,),
i.e., that R®(S,F,(7)) is zero in degrees at most ¢ — 1. This statement depends only on

7S Thocofib();) RN 7= Thocofib()),

and thus only on the commutative diagram

= $i—1 i
TS N2 g 4 /p) — 75 (hg/a/p)

lTﬁi)\i \LTQ)\

S (Bgyal3)/p) 2 T (Bsyalb]/p)-
In terms of this diagram, we want to prove that the map
hocofib(r<7);) 2% hocofib(751))
is an isomorphism in degrees at most ¢ — 2 and is injective in degree ¢ — 1.
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The divided Frobenius map ¢; : NZ%S/A/p — MAg/a/p is an isomorphism in degrees at
most ¢ by Lemma 11.3.11. Define

1= ¢; " e 75 (Bsya/p) — 7= (bs/a/p)

as the map ¢; — 1 : 75/(NZ'Ag/u/p) — 7= (AS/A/p) precomposed with the inverse of the
divided Frobenius map ¢; : 75/(NZA s/4/p) = TS A s/4/p). Similarly the divided Frobenius
map ¢; : AS/A[ |/p— AS/A[ |/p is an equivalence (Theorem 11.1.16 (L)), and we define

1— ;' 75 (hgyald]/p) — 75 (Bs)al3]/p)

as the map ¢; — 1 : TSi(AS/A[ 1/p) — 7= (AS/A[ |/p) precomposed with the inverse of the

divided Frobenius map ¢; : (AS/A[ 1/p) = 7= (AS/A[ |/p). We thus want to prove that

the induced map
—1

) 11— .
hocofib(75%)) T, hocofib(7=%))
is an isomorphism in degrees at most ¢ — 2 and is injective in degree ¢ — 1. We prove that it

is an isomorphism in degrees at most ¢ — 1.
Let k be an integer such that k < i — 1. There is a short exact sequence of A/p-modules:

0 — Coker(H*(\/p)) — H¥(hocofib(\/p)) — Ker(H*1(\/p)) — 0.

To prove that 1 — qﬁ;l is an isomorphism on HF¥(hocofib(A\/p)), let us prove that it is an
isomorphism on both Coker(H¥(\/p)) and Ker(H*1(\/p)).

For Coker(H*(\/p)), the argument is the same as in the proof of Theorem 11.3.10, where
we need Lemma 11.3.11 for the case of k =14 — 1.

For Ker(H*T1(\/p)), we follow the lines of the proof of Theorem 11.3.10. It suffices to prove
the case of k =i—1, i.e., that 1 — <Z>i is an isomorphism on the A/p-module HZ(AS/A/p)[ ]

It then suffices to prove that ¢; " is nilpotent on the A/p-module HZ(AS/A/p)[ |; we prove that
it is zero. By definition of the map gbi_l, it is equivalent to proving that the canonical map

can : H/(N='Ag/a/p) — H'(Ag/a/p)

is zero on the d'/P-torsion subgroup Hi(./\/ZZAS/A/p)[dl/p]. By Lemma 11.3.11, there is a
commutative diagram

I (W >bg4)/p) H'(d'bs/4/p)

[V
lcan lcan

Hi(ﬂs/A/p) Z Hi(Lnd(AS/A/p))a

where the right vertical map is defined in [BMS18, Lemma 6.9]. As in the proof of 11.3.8, the
right vertical map of this diagram is surjective, with kernel given by the d-torsion subgroup of
H’(d%S/A/p). So the left vertical map is also surjective, with kernel given by the d*/P-torsion

subgroup H'((NZAg/4)/p)[d"/?]. Hence the result. O

Remark 11.3.13 (Comparison with [BMS19]). Let C be a complete and algebraically closed
extension of Q,, and O¢ be its ring of integers. In particular, O¢ is a p-torsionfree perfectoid

166



ring. When S is a smooth O¢-algebra, the previous result was already proved by Bhatt—
Morrow—Scholze (|[BMS19, Theorem 10.1]). In this situation, their result is slighlty stronger,
as they prove that the syntomic-étale comparison map is an isomorphism in degree i (and
is thus not only injective). Note that this fact does not hold for general p-Cartier smooth
Oc-algebras, e.g., for general valuation ring extensions of O¢.

Remark 11.3.14. Without assuming that the perfectoid base is p-torsionfree, the previous
result would be false: for instance, in characteristic p, the homotopy cofibre of the syntomic-
étale comparison map is typically nonzero in degree i — 1 (Proposition 11.3.5).

11.4 Motivic cohomology of valuation rings

In this section, we describe the motivic cohomology of valuation rings (Theorems 11.4.1
and 11.4.6). We start with the following result, stating that the motivic complexes Z(i)™°%, on
henselian valuation rings, have a description purely in terms of algebraic cycles. See [EM23,
Section 9] for related results over a field.

Theorem 11.4.1. Let V be a henselian valuation ring. Then for every integer i > 0, the
motivic complex Z(i)™°Y (V') € D(Z) is in degrees at most i, and the lisse-motivic comparison
map (Definition 8.1.1)

Z(i)lisse(v) N Z(i)mOt(V)

is an equivalence in the derived category D(Z).

Proof. The second statement already appears in the proof of Lemma 10.3.1. Asin Lemma 10.3.1
or Corollary 8.1.12, the first statement is then a consequence of [Gei04, Corollary 4.4]. O

Example 11.4.2. Let V be a henselian valuation ring. By Example 5.6.8, there is a natural
equivalence

Z(0)™! (V) = Z[0]

in the derived category D(Z). Similarly, Theorem 11.4.1, Example 4.2.4, and the fact that
the Picard group of a local ring is zero, imply that the motivic complex Z(1)™°(V') € D(Z) is
concentrated in degree one, where it is given by

Henot (V. Z(1)) = V™.

We now apply the results of the previous sections to give an alternative description of the
motivic cohomology of valuation rings with finite coefficients. The following proposition will
be used to reformulate the results of the previous sections on syntomic cohomology in terms
of motivic cohomology.

Proposition 11.4.3. Let p be a prime number, and V' be a henselian valuation ring. Then
for any integers ¢ > 0 and k > 1, there is a natural equivalence

Z[p" @) (V) = TSV PR (V)
in the derived category D(Z /pF).

Proof. Henselian valuation rings are local rings for the cdh topology, so this is a consequence
of Theorem 6.2.4. O
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The following result is an analogue for valuation rings of Geisser—Levine’s description of
motivic cohomology of smooth Fp-algebras [GL00]. It can be deduced from the results of
Kelly-Morrow [KM21| and Elmanto-Morrow [EM23].

Theorem 11.4.4. Let p be a prime number, and V be a henselian valuation ring of charac-
teristic p. Then for any integers i > 0 and k > 1, there is a natural equivalence

Z [p" (@)U (V) > Wil 1og 1]
in the derived category D(Z /p*).

Proof. Valuation rings of characteristic p are Cartier smooth over F,, (Theorem 11.2.4), so this
is a consequence of Propositions 11.3.5 and 11.4.3. ]

We then prove a mixed characteristic version of Theorem 11.4.4, starting with the following
{-adic general result.

Proposition 11.4.5. Let p be a prime number, and V be a henselian valuation ring such
that p is invertible in V. Then for any integers i > 0 and k > 1, the Beilinson—Lichtenbaum
comparison map (Definition 6.1.3) naturally factors through an equivalence

Z [p* ()™ (V) = 7='RTe (Spec(V), i)

in the derived category D(Z [p*).

Proof. By Proposition 11.4.3, the motivic complex Z /p* (i)™ (V') € D(Z /p*) is in degrees at
most ¢, so the result is a consequence of Corollary 6.1.6. ]

The following result generalises Proposition 11.4.5 when p is not necessarily invertible in
the valuation ring V', at least over a perfectoid base.

Theorem 11.4.6 (Motivic cohomology of valuation rings with finite coefficients). Let p be
a prime number, Vi be a p-torsionfree valuation ring whose p-completion is a perfectoid ring,
and V be o henselian valuation ring extension of Vo. Then for any integers i > 0 and k > 1,
the Beilinson—Lichtenbaum comparison map (Definition 6.1.3) induces a natural map

Z [p" (i)' (V) — 7='RTe(Spec(V [}]), i)

in the derived category D(Z /p*), which is an isomorphism in degrees at most i — 1. On H',
this map is injective, with image generated by symbols, via the symbol map

(V>)®" = Hyy (Spec(V, 1), 1)

Proof. The fact that the Beilinson—Lichtenbaum comparison map factors through the complex
T='Rle(Spec(V[}]), 15y) € D(Z /p")

is a consequence of Proposition 11.4.3. The isomorphism in degrees at most ¢ — 1 and the
injectivity in degree ¢ of this map are then a consequence of Theorems 11.2.1 and 11.3.12. The
last statement is a consequence of the isomorphism

K (V) /p* — Hiyot (V. Z /0" (0))

mot

of abelian groups (Theorem 8.2.6 and Corollary 8.1.10). t

168



Remark 11.4.7. The generation by symbols appearing in Theorem 11.4.6 was also stud-
ied in the context of syntomic cohomology of general p-torsionfree F-smooth schemes by
Bhatt-Mathew [BM23]. Note that all valuation rings are conjecturally F-smooth (see Con-
jecture 12.2.1), and that the proof of Theorem 11.4.6 adapts more generally to any henselian
F-smooth valuation ring.
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Chapter 12
Al-invariant motivic cohomology

The theory of classical motivic cohomology of smooth schemes over a mixed characteristic
Dedekind domain [Blo86, Lev01, Gei04], as a theory of Al-invariant motivic cohomology, ad-
mits a natural generalisation to general qcgs schemes. More precisely, Spitzweck constructed
in [Spil8], for every qcqs scheme X, an Al-motivic spectrum H Z°P' € SH(Z), which rep-
resents Bloch’s cycle complexes on smooth Z-schemes, and whose pullback to SH(B), for B
a field or a mixed characteristic Dedekind domain, still represents Bloch’s cycle complexes
on smooth B-schemes. Bachmann then proved in [Bac22| that Spitzweck’s construction coin-
cides with the zeroth slice of the homotopy K-theory motivic spectrum KGL € SH(Z). Finally,
Bachmann—Elmanto—Morrow recently proved in [BEM24] that the slice filtration is compatible
with arbitrary pullbacks, thus defining a well-behaved Al-motivic spectrum H Zyx € SH(X)
for arbitrary qcgs schemes X. The associated Al-invariant motivic complexes

Z(i)* (X) € D(Z)

are related to the homotopy K-theory KH(X) by an Al-invariant Atiyah-Hirzebruch spectral
sequence. For our purposes, we will only use that there is a natural map

1

Z(i)*™(X) — Z(i)* (X)

which exhibits the target as the Al-localisation of the source, and which is an equivalence if
the qcgs scheme X satisfies the condition Val(X) (see Theorem 12.3.1).

12.1 Comparison to Al-invariant motivic cohomology

In this section, we prove that the Al-localisation of the motivic complexes Z(4)™°!

Bachmann-Elmanto-Morrow’s Al-invariant motivic complexes Z(i)Al (Theorem 12.1.5). This
is a motivic refinement of [Elm21, Theorem 1.0.1|, and implies that the motivic complexes
Z(1)™°! recover the classical motivic complexes Z(i)® on smooth schemes over a mixed char-
acteristic Dedekind domain after Al-localisation (Corollary 12.1.9).

recover

Lemma 12.1.1. Let C be a presentable stable co-category, and F : Sch¥®BP — C be a
presheaf. Then the natural map

LA1LthF — LA1LthLA1F
induced by A'-localisation is an equivalence of C-valued presheaves.

171



Proof. A filtered colimit of cdh sheaves is a cdh sheaf (Lemma 5.5.12). In particular, the
Al-localisation of a cdh sheaf is a cdh sheaf, so the natural composites

LAILthF — LA1LthLA1F — LAlLthLA1LthF

and
LAILthLAIF — LA1LthLA1LthF — LA1LthLA1LthLA1F

are equivalences in the oo-category C. This implies the desired result. O
Lemma 12.1.2. For every integer i > 0, the Al-localisation of the presheaf

R4 (—, LQf; /Q) : dSch¥¢®°P . D(Q)
1S 2ero.

Proof. By Zariski descent, it suffices to prove the result on animated commutative rings. The
functor LO< /@ from animated commutative rings to the derived category D(Q), is left Kan
extended from polynomial Z-algebras. Equivalently, it commutes with sifted colimits. This
property being preserved by A'-localisation, the functor L4 LQfé/Q is also left Kan extended
from polynomial Z-algebras. As it is also constant on polynomial Z-algebras, and zero on the
zero ring, it is the zero functor. O

Corollary 12.1.3. Let X be a gcgs derived scheme. Then for every integer i > 0, the natural
map

> —
(LAl]L‘Q—@/Q) (X) — (LAlLQ—Q/Q) (X)
is an equivalence in the derived category D(Q).

Proof. There is a natural fibre sequence
Tork e <i
(LaL” o) (X) — (LarlQ-g/0)(X) — (LunlQ= q)
in the derived category D(Q). The result is then a consequence of Lemma 12.1.2. O

Lemma 12.1.4. Let p be a prime number. Then for every integer i > 0, the Al-localisation
of the presheaf
F,(i)PM5(—) : dSchI°®°P s D(F,)

18 2ero.

Proof. The presheaf F,,(i)BM5 is a Zariski sheaf, and its restriction to animated commutative

rings is left Kan extended from polynomial Z-algebras (Corollary 3.2.12). The result then

follows by the same argument as in Lemma 12.1.2. O

Theorem 12.1.5. Let X be a gcgs scheme. Then for every integer i > 0, the natural map
(L Z(i)™) (X) — (L1 Z(i)* M) (X) ~ Z(i)™ (X)

is an equivalence in the derived category D(Z).
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Proof. 1t suffices to prove the result rationally, and modulo p for every prime number p. By
Lemma 12.1.2, the object
(Lar BT zar (X, 1O, ) (X)

is zero in the derived category D(Q). Lemma 12.1.1 then implies that the object
(LAercdh(_aLQfg/Q))(X)
is zero in the derived category D(Q). In particular, the natural map

(Lat BT z0 (= LO! 1)) (X) — (Lat Rlean(—, LQ= o)) (X)

is an equivalence in the derived category D(Q), which implies the desired result rationally
by Corollary 5.6.7. Similarly, for every prime number p, the syntomic complex F(i)BMS
vanishes after A'-localisation by Lemma 12.1.4, which implies the desired result modulo p by
Lemma 12.1.1 and Corollary 4.3.12. O

Remark 12.1.6. Let X be a qcgs derived scheme. One can prove, using similar arguments
and Corollary 5.2.16, that there is a natural fibre sequence

(LAl Z(i)TC)(X) — Rz, (X,m_@/(@) — Rl'z.r (X, H l@—Qp/Qp)
peP

in the derived category D(Z). Note that this implies Theorem 12.1.5 on qcgs classical schemes,
via the cdh descent results [EM23, Lemma 4.5] and Corollary 5.4.4.

Theorem 12.1.7. Let X be a smooth scheme over a mized characteristic Dedekind domain.
Then the natural map
Fil?,K(X) — (LaiFilf oK) (X)

1s an equivalence of filtered spectra.

Proof. By Proposition 7.1.2 and its proof, this natural map is an equivalence rationally, so it
suffices to prove that it is an equivalence modulo every prime number p. Let p be a prime
number. By [BEM24], the natural map

Fil%,K(X) — (LaiFilfg, KH)(X)
is an equivalence of filtered spectra, so it suffices to prove that the natural map
(LarFily oK) (X)/p — (LarFiliy, KH)(X)/p

is an equivalence of filtered spectra. By Proposition 4.3.11, this is equivalent to the fact that
the natural map

(LprFilfygTC(—;Fp) ) (X) — (L a1 LeanFilys TC(—; Fp)) (X)

is an equivalence of filtered spectra. The filtered spectrum (LiFiljgTC(—;Fp))(X) is
complete by the connectivity bound of Lemma 3.2.7, and its graded pieces are zero by
Lemma 12.1.4, so it is zero. By Lemma 12.1.1, the target (L1LeanFilfsTC(—;Fp))(X)
of the previous map is then also zero, and this map is in particular an equivalence. O

173



Remark 12.1.8. We expect that the Al-localisation in Theorem 12.1.7 is not necessary, i.e.,
that the natural map
Fil}

mot

K(X) — (L Filf K) (X)

mot

is an equivalence of filtered spectra for smooth schemes X over a torsionfree Dedekind domain.
By Theorem 12.1.5, this is equivalent to the fact that the composite

L
Filt K (X) 2oty pilt, KH(X) —25 (LarFilly, KH)(X)

is an equivalence of filtered spectra, where the second map is expected to be an equivalence
for every qcgs scheme X ([BEM24]).

Corollary 12.1.9. Let X be a smooth scheme over a mized characteristic Dedekind domain.
Then for every integer i > 0, there is a natural equivalence

Z'(X, )[-2i] =~ (Ly1 Z(i)™*")(X)
in the derived category D(Z).

Proof. This is a consequence of Theorem 12.1.7. O

12.2 F-smoothness of valuation rings

In this section, we formulate the key hypothesis used in the work of Bachmann—Elmanto—
Morrow [BEM24] on Al-invariant motivic cohomology (Definition 12.2.3). This hypothe-
sis relies on the following conjecture, implicit in the work of Bhatt—Mathew [BM23| on
F-smoothness.

Conjecture 12.2.1 (Bhatt-Mathew). Every valuation ring is F-smooth.

The following theorem summarizes the known cases of Conjecture 12.2.1. Note that the
notion of F-smoothness implicitly depends on a fixed prime number p, and that a commutative
ring with bounded p-power torsion is F-smooth if and only if its p-completion is F-smooth.

Theorem 12.2.2. Let V' be a valuation ring, and p be a prime number.
(1) (Bhatt-Mathew [BM23]) If V is a discrete valuation ring, then V is F-smooth.

(2) (Gabber—-Ramero [GRO3], Gabber [KST21], Kelly-Morrow [KM21]) If V is a valuation

ring extension of Fy,, then V is F-smooth.

(8) (Bouis [Bou23]) If V is a valuation ring extension of a p-torsionfree perfectoid valuation
ring of mized characteristic (0,p), then V is F-smooth.

Definition 12.2.3. (1) Let p be a prime number (on which the notion of F-smoothness
implicitly depends). A qcqs scheme X satisfies the condition Val(X, p) if every valuation
ring V with a map Spec(V) — X is F-smooth.

(2) A qcgs scheme X satisfies the condition Val(X) if it satisfies the condition Val(X,p) for
every prime number p.

Examples 12.2.4. Let p be a prime number.
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(1) Every qcgs Z[%]—scheme satisfies the condition Val(X,p) because every valuation ring in
which p is invertible is vacuously F-smooth. Consequently, every qcgs Q-scheme satisfies

the condition Val(X).

(2) Every qcgs Fp-scheme satisfies the condition Val(X) (Theorem 12.2.2(2)). More gener-
ally, for every integer N > 1, every qcqs Z /N-scheme satisfies the condition Val(X).

(3) Every qcgs V-scheme, where V' is a commutative ring with bounded p-power torsion and
whose p-completion is a perfectoid valuation ring of mixed characteristic (0, p), satisfies
the condition Val(X) (Theorem 12.2.2(3) for the condition Val(X,p), and (1) for the
condition Val(X,¢) at all other primes ¢).

12.3 Motivic regularity

By Quillen’s fundamental theorem of algebraic K-theory, the algebraic K-theory of a
regular noetherian ring is Al-invariant. Vorst conjectured a partial converse of this result,
i.e., that an essentially finite type algebra over a field whose K-groups are Al-invariant is
regular ([Vor79|). The conjecture was proved in characteristic zero by Cortinas—Haesemeyer—
Weibel ([CHWO08|). Kerz-Strunk-Tamme then proved a variant of the conjecture in positive
characteristic ([KST21, Theorem Al), and asked if Vorst’s conjecture holds for general excellent
noetherian rings ([KST21, Question DJ).

In this section, we study the extent to which these questions have a natural analogue in
motivic cohomology. More precisely, given a qcgs scheme X and an integer ¢ > 0, and in light
of Theorem 12.1.5, we will be interested in when the natural map

1

Z(i)™N(X) — Z(i)* (X)

is an equivalence in the derived category D(Z). We will use repeatedly the following result of
[BEM24].

Theorem 12.3.1 (|[BEM24|). Let i > 0 be an integer.

(1) For every qcqs scheme X, the natural map

1

Qi) (X) — Q)™ (X)
is an equivalence in the derived category D(Q).

(2) For every prime number p and every qcqs Z[%]—scheme X, the natural map

1

Fp (i) (X) — Fp(i)* (X)
is an equivalence in the derived category D(Fp).

(3) For every qcgs scheme X satisfying the condition Val(X) (Definition 12.2.3), the natural
map

Z(i)*™(X) — Z(i)* (X)
is an equivalence in the derived category D(Z).

Theorem 12.3.2 (Rational motivic regularity). Let X be a qcgs scheme. Then for every
integer © > 0, the following are equivalent:
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(1) the natural map Q(i)™"(X) — Q(i)2 (X) is an equivalence in the derived category
D(Q);

(2) the natural map Qi)™ (Xg) — QG (Xq) is an equivalence in the derived category
D(Q).

Moreover, (1) or (2) for all integers i > 0 is equivalent to each of the following statements:

(8) for every integer j > 0, the natural map RUza (X, L’
equivalence in the derived category D(Q);

@/Q) — RFth(X,Qj_@/Q) is an

(4) the natural map K(X;Q) — KH(X; Q) is an equivalence of spectra;
(5) the natural map HC(Xq/ Q) = LeanHC(—q/ Q)(X) is an equivalence of spectra.

Proof. (4) and (5) are equivalent by Corollary 5.6.7. Theorem 12.3.1(1) and the Adams
decompositions Corollary 5.5.11 and

H(X;Q) ~ (P Qi)™ (X)

120

then imply that (1) for all integers ¢ > 0 and (4) are equivalent. By Corollary 5.6.7, (1) is
equivalent to the fact that the natural map

Rz, (X, mfé y o) — BTean (X, Qfé /Q)

is an equivalence in the derived category D(Q), which is in turn equivalent to (2), and implies
that (1) for all integers ¢ > 0 is equivalent to (3). O

Corollary 12.3.3 (Motivic regularity in characteristic zero). Let X be a qcgs Q-scheme. Then
the following are equivalent:

(1) for every integer i > 0, the natural map Z (i)™ (X) — Z(i)» (X) is an equivalence in
the derived category D(Z);

(2) for every integer j > 0, the natural map RI'z5 (X, ]Lj_/@) — Rleqn(X, Qj_/@) is an
equivalence in the derived category D(Q);

(8) the natural map K(X) — KH(X) is an equivalence of spectra;
(4) the natural map HC(X/ Q) — LeghnHC(—/ Q)(X) is an equivalence of spectra.
Proof. For every prime number p, the natural map
K(X;Fp) — KH(X;Fp)

is an equivalence of spectra on qcqs Q-schemes ([Wei89, Proposition 1.6]). Similarly, for any
prime number p and integer ¢ > 0, the natural map

Fp (i) (X) — Fp(i)°"(X)

is an equivalence in the derived category D(F,) (Remark 4.3.13). In particular, the natural
map
K(X) — KH(X) (resp. Z(i)™"(X) — Z(i)*"(X))
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is an equivalence of spectra (resp. in the derived category D(Z)) if and only if the natural
map

K(X;Q) — KH(X;Q) (resp. Q(i)™*(X) — Q(i)*"(X))

is an equivalence of spectra (resp. in the derived category D(Q)). The result then follows from
Theorems 12.3.1 (1) and 12.3.2. O

Proposition 12.3.4 ({-adic motivic regularity). Let ¢ be a prime number, and X be a qcgs
Z[%]—scheme. Then for any integers i > 0 and k > 1, the natural map

Z [0 (X) — 26 (X)
is an equivalence in the derived category D(Z JCF).
Proof. This is a consequence of Remark 4.3.13 and Theorem 12.3.1 (2). O

Recall the following known result at the level of K-theory in positive characteristic.

Corollary 12.3.5. Let N > 1 be an integer, and X be a qcqs Z /N -scheme. Then the natural
map K(X) — KH(X) is an equivalence of spectra if and only if for every prime number p
dividing N, the natural map TC(X;Fp) = LeanTC(—;Fp)(X) is an equivalence of spectra.

Proof. For every prime number p, the functor TC(—;F,) is zero on qcgs Z[%]—schemes. The
natural map K(X) — KH(X) is an equivalence if and only if it is an equivalence rationally,
and modulo p for every prime number p. The result is then a consequence of Theorems 2.1.1
and 12.3.2 (4)-(5). 0

The following result is a motivic analogue of Corollary 12.3.5.

Corollary 12.3.6 (Motivic regularity in positive characteristic). Let N > 1 and i > 0 be
integers, and X be a qcgs 7 /N-scheme. Then the natural map Z (i)™ (X) — Z(i)A' (X) is
an equivalence in the deriwed category D(Z) if and only if for every prime number p divid-
ing N, the natural map Fp(i)BM5(X) = (Lean Fp(i)BMS)(X) is an equivalence in the derived
category D(F)).

Proof. By Theorem 12.3.1 (3) and Example 12.2.4 (2), the natural map
Z(i)" (X) — Z()* (X)

is an equivalence if and only if the natural map Z(i)™%(X) — Z(i)°?(X) is an equivalence.
The natural map Z(i)™°(X) — Z(i)°"(X) is an equivalence if and only if it is an equivalence
rationally, and modulo p for every prime number p. For every prime number p, the functor
F,(i)BMS is zero on qeqs Z[1]-schemes. The result is then a consequence of Corollary 4.3.12
and Theorem 12.3.2 (1)-(2). O

The following result is [EM23, Theorem 6.1 (2)], where we use Theorem 12.3.1 and Exam-
ple 12.2.4 (2) to identify cdh-local and Al-invariant motivic cohomologies in characteristic p.

Theorem 12.3.7 (|[EM23|). Let p be a prime number, and X be an ind-regular F,-scheme.
Then for every integer i > 0, the natural map

Z(i)™H(X) — Z(i)* (X)

is an equivalence in the derived category D(Z).
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Corollary 12.3.8. Let p be a prime number, V be a characteristic p perfect valuation ring,
and X be an ind-smooth scheme over V. Then for every integer i > 0, the natural map

Z(i)™* (X) — Z(0)* (X)
is an equivalence in the derived category D(Z).

Proof. By |[AD21, Proposition 4.1.1], the perfect valuation ring V' is the filtered colimit of its
smooth [F)-subalgebras. So the scheme X is in particular ind-smooth over F,, and the result
is a consequence of Theorem 12.3.7. 0

We now study motivic regularity in mixed characteristic.

Proposition 12.3.9 (Motivic regularity of valuation rings). Let V' be a henselian valuation
ring. If V' satisfies the condition Val(V') (e.g., if V is an extension of a perfectoid valuation
ring), then for every integer i > 0, the natural map

Z(i)"H (V) — Z(0)* (V)
is an equivalence in the derived category D(Z).

Proof. 1f the ring V satisfies the condition Val(V'), the natural map
Z(i)™ (V) — Z(D)* (V)

is naturally identified with the natural map
Z(i)™ (V) — Z(i) (V)

in the derived category D(Z) (Theorem 12.3.1(3)). This latter map is an equivalence by
Remark 4.3.10, and because henselian valuation rings are local for the cdh topology. O

Proposition 12.3.10 ([BEM24|). Let p be a prime number, S be a gcqs scheme of finite
valuative dimension and satisfying the condition Val(S,p), and X be a qcgs S-scheme. Then
for any integers i > 0 and k > 1, the fibre of the cdh-local Beilinson—Lichtenbaum comparison
map (Definition 6.1.2)

Z /(i) (X) — R (X[Y], i)

in the derived category D(Z /pF) is in degrees at least i.

Proof. The presheaves Z /p*(i)°4(—) and Rl“ét(—[]%], u?,f) are finitary cdh sheaves on qecgs
S-schemes (|[BEM24] and Theorem 6.1.1), so it suffices to prove the result on henselian valua-
tion rings V' with a map Spec(V) — S ([EHIK21, Corollary 2.4.19]). If the henselian valuation
ring V' is p-torsionfree, the condition Val(S,p) and Corollary 6.2.6 imply that the fibre of the
Beilinson—Lichtenbaum comparison map

Z [p" (@)™ (V) — RLa(VI], 1)

is in degrees at least ¢ + 1. If the henselian valuation ring V is not p-torsionfree, then it
is an [Fp-algebra, and it is F-smooth (Theorem 12.2.2(2)). In particular, there is a natural
equivalence

Z [p"(i)PM3(V) = RTey(V, WiiSlog) [ ]

in the derived category D(Z /p*) ([LM23, Proposition 5.1 (i7)]), and Theorem 6.2.4 implies
that the fibre of the Beilinson—Lichtenbaum comparison map is in degrees at least i. O
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Theorem 12.3.11. Let p be a prime number, V be a valuation ring whose p-completion is
perfectoid, and X be a p-torsionfree F-smooth scheme over Spec(V). Then for any integers
1 >0 and k > 1, the fibre of the natural map

Z [p" ()™ (X) — Z /9 ()" (X)
in the derived category D(Z /p¥) is in degrees at least i + 1.

Proof. By Theorem 12.3.1 (3) and Example 12.2.4 (3), this is equivalent to the fact that the
fibre of the left vertical map in the natural commutative diagram

Z [P ()" (X) ———— Rle(X[}], 1))

Z [p*()™(X) —— (LeanBTet(—[3], 1)) (X)

is in degrees at least ¢ 4 1, ¢.e., that it is an isomorphism on cohomology groups in degrees at
most i — 1, and injective in degree i. The right vertical map is an equivalence (Theorem 6.1.1).
The fibre of the top horizontal map is in degrees at least i+ 1 (Corollary 6.2.6). The fibre of the
bottom horizontal map is in degrees at least ¢ (Proposition 12.3.10 and Theorem 12.2.2 (3)).
This implies the desired result, by the following elementary argument. On cohomology groups
in degrees at most ¢ — 2, all but the left vertical map are isomorphisms, so the left vertical map
is an isomorphism. In degree ¢—1, the top horizontal and right vertical maps are isomorphisms,
so the left vertical map is injective; the bottom horizontal map is moreover injective, so the
left vertical map is an isomorphism. In degree ¢, the top horizontal map is injective and the
right vertical map is an isomorphism, so the left vertical map is injective. O

Corollary 12.3.12. Let V' be a valuation ring whose p-completion is perfectoid for every
prime number p,' and X be an ind-smooth V -scheme. Then for every integer i > 0, the fibre

of the natural map
Z(i)™H (X) — Z()* (X)

in the derived category D(Z) is in degrees at least i + 2.
Proof. By [AMM?22, Corollary 2.3 and Proposition 2.4.2|, the natural map

K(X) — KH(X)

is an equivalence of spectra for every ind-smooth scheme over a general valuation ring V. By
Theorem 10.1, this implies that the natural map

Q)™ (X) — Qi)™ (X)

is an equivalence in the derived category D(Q). That is, the cohomology groups of the fibre

of the natural map X
Z(i)™N(X) — Z(0)* (X)

are torsion. In degrees at most ¢ + 2, and if the p-completion of the valuation ring V is
perfectoid for every prime number p, then these cohomology groups are also p-torsionfree for
every prime number p by Theorem 12.3.11, and are thus zero. O

'Note that this condition is vacuously true for every prime number p different from the residue characteristic
of the valuation ring V.
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Chapter 13
Examples

In this chapter, we revisit certain known results on algebraic K-theory in terms of the
motivic complexes Z(i)™°t.

13.1 Perfect and semiperfect rings

Let p be a prime number. It was proved by Kratzer [Kra80, Corollary 5.5| that for every
perfect Fp-algebra R and every integer n > 1, the K-group K, (R) is uniquely p-divisible
(see also [AMMZ22] for a mixed characteristic generalisation). It was also proved by Kelly—
Morrow that for every [F,-algebra R with perfection Rper, the natural map K(R) — K(Rperr)
is an equivalence after inverting p (|[KM21, Lemma 4.1|, see also [EK20, Example 2.1.11] and
[Cou23, Theorem 3.1.2 and Proposition 3.3.1] for different proofs). The following result is a
motivic refinement of these two facts.

Theorem 13.1.1 (Motivic cohomology of perfect F)-schemes, after [EM23]). Let X be a gcgs
Fp-scheme.

(1) For every integer i > 0, the natural map

20 (X)[L] —> Z0)™H Xperr)[1]
is an equivalence in the derived category D(Z[%]).
(2) For every integer i > 1, the natural map
(i)™ (Xpert) — Z(0)™" (Xpers) [
is an equivalence in the derived category D(Z).
Proof. By [EM23, Theorem 4.24 (5)],! for every integer i > 0, the natural map
¢+ Z(0)"™N(X) — Z(i)™(X)

induced by the absolute Frobenius ¢ x : X — X of a qcgs Fp-scheme X is multiplication by Pt
In particular, this natural map is an equivalence after inverting p, and (1) is a consequence of

!This result is proved as a consequence of the same result in classical motivic cohomology [GL00] and in
syntomic cohomology [AMMN22], and ultimately goes back to the fact that the Frobenius acts by multiplication
by p* on the logarithmic de Rham-Witt sheaf WQj,,.
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this and the fact that the presheaf Z(i)™°" is finitary (|[EM23, Theorem 4.24 (4)]). Similarly,
the same result applied to the perfect Fp-scheme X,err implies that multiplication by p’ on the
complex Z ()™ (Xpert) € D(Z) is an equivalence. If i > 1, this is equivalent to the fact that
the natural map

Z(i)™ (Xpert) — Z(0)™" (Xperr) ]

is an equivalence in the derived category D(Z). O

Remark 13.1.2 (Negative K-groups of perfect F)-algebras). It is possible to construct exam-
ples of perfect [F,-algebras whose negative K-groups are not p-divisible (|[Cou23, Section 3.3]).
Theorem 13.1.1 (2) states that the only non-p-divisible information in the negative K-groups
of a perfect Fp-algebra R actually come from weight zero motivic cohomology, ¢.e., from the
complex Rlcqn(R,Z) (Example 5.6.8).

Recall that a Fp-algebra is semiperfect if its Frobenius is surjective.

Corollary 13.1.3 (Motivic cohomology of semiperfect F,-algebras). Let S be a semiperfect
Fp-algebra. Then for every integer ¢ > 1, the natural commutative diagram

Z(i)"U(S) ——— Zp(i)¥™(S5)

| |

(i)™ (Sperf) — Zp(i)*"(Spext)

is a cartesian square in the derived category D(Z).

Proof. 1t suffices to prove the result modulo p, and after inverting p. After inverting p,
the vertical maps become equivalences by Theorem 13.1.1(1) (and the same argument for
syntomic cohomology). We prove now the result modulo p. By Theorem 13.1.1(2) (and the
same argument for syntomic cohomology), the bottom terms of the commutative diagram are
zero modulo p, so it suffices to prove that the natural map

Fp (i)™ (S) — Fp(i)¥(S)

is an equivalence in the derived category D(F,). By [EM23, Corollary 4.32] (see also Theo-
rem 6.2.4 for a mixed characteristic generalisation), this is equivalent to the fact that

RTcan(S,v(i))[—i — 1] ~ 0

in the derived category D(F,). By definition, the Frobenius map ¢g : S — S is surjective,
and has nilpotent kernel. The presheaf RI'cqn(—,7(i))[—¢ — 1] is a finitary cdh sheaf, so the
natural map

chdh(Sy fVV(Z))[—Z — 1] — chdh(sperf, ;(Z))[—Z — 1]

is then an equivalence in the derived category D(F,). The target of this map is zero by The-
orem 13.1.1(2) (where we use that ¢ > 1, and the same argument for syntomic cohomology),
and applying [EM23, Corollary 4.32| to the perfect F,-algebra Spert. O
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13.2 Finite chain rings

Finite chain rings are commutative rings Ok /7", where Ok is a mixed characteristic
discrete valuation ring with finite residue field, 7 is a uniformizer of Ok, and n > 1 is an
integer. Examples of finite chain rings thus include finite fields, rings of the form Z /p", and
truncated polynomials over a finite field.

Lemma 13.2.1. Let Ok be a discrete valuation ring of mized characteristic (0,p) and with
finite residue field Fq, m be a uniformizer of Ok, and n > 1 be an integer. Then for every
wnteger © > 0, there is a natural equivalence

o . Z[0] ifi=0
Z(i)" " (Ok [ )2{ Z,y(i)PVS (O /1) & Z(i) ™ (F)[3] if i > 1

in the derived category D(Z).

Proof. The result for ¢ = 0 follows from the equivalences
Z(0)™"(Ok /7") ~ RTcan(Ok /7", Z) =~ Rl can(Fy, Z) ~ Z[0]

in the derived category D(Z), the first equivalence being Example 5.6.8, the second equivalence
being nilpotent invariance of cdh sheaves, and the last equivalence being a consequence of the
fact that fields are local for the cdh topology.

For every integer ¢ > 0, the commutative diagram

Z(i)"(O [7") —— Lp(i) M3 (O /7™)

! |

Z(i)"Y(Fy) ——— Zp(i)BMS (Fq)

is a cartesian square in the derived category D(Z) (Theorem 4.3.15). If i > 1, the bottom
right term vanishes (use for instance the description of Bhatt—Morrow—Scholze’s syntomic
cohomology in characteristic p in terms of logarithmic de Rham—Witt forms), and there is a
natural equivalence

Z(i)™ (Fq) — Z(i)™" (Fq)[;]

in the derived category D(Z) (by a classical result in motivic cohomology, see also Theo-
rem 13.1.1 (2) for a more general statement), hence the desired result. O

Proposition 13.2.2. Let O be a mized characteristic discrete valuation ring with finite
residue field, m be a uniformizer of Ok, and n > 1 be an integer. Then for every integer
m € 7, there is a natural isomorphism

Z ifm=0
HL (Ox /7" Z(i) fm=2i—1,i>1
H2 (O /7", Z(i)) ifm=2i—2 i>2
0 fm<0

K (O /7") =

of abelian groups.

Proof. Let p be the residue characteristic of the discrete valuation ring O . The result with
p-adic coefficients is [AKN24, Corollary 2.16]. The result with Z[%]—coefﬁcients reduces to the
case n = 1, where the result follows from the description of the (classical) motivic cohomology
of finite fields. The integral result is then a consequence of Lemma 13.2.1. O
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Theorem 13.2.3 (Motivic cohomology of finite chain rings, after [AKN24]|). Let Ok be a
discrete valuation ring of mized characteristic (0,p) and with finite residue field Fy, © be a
uniformizer of O, and n > 1 be an integer. Then for every integer i > 4p™,% the motivic
complex

Z(i)™" (O [/7") € D(Z)
is concentrated in degree one, where it is given by a group of order (q* — l)qi(”*l).

Proof. This is a consequence of Lemma 13.2.1, the classical computation of the motivic coho-
mology of Fy, and [AKN24, Theorem 1.4 and Proposition 1.5]. O

Remark 13.2.4 (Nilpotence of v1). Antieau—Krause-Nikolaus also determine the nilpotence
degree of the element v; in the mod p syntomic cohomology of Z /p™ (|JAKN24, Theorem 1.8]).
This is a refinement of the key result in the study of K (1)-local K-theory of Bhatt—Clausen—
Mathew [BCM20|. Note that this result on the nilpotence degree of v; can be reformulated,
via Lemma 13.2.1, as a statement on the mod p motivic cohomology of Z /p".

13.3 (C*-algebras

By Gelfand representation theorem, the commutative C*-algebras are exactly the algebras
of continuous complex-valued functions € (X;C) on a compact Hausdorff space X. An impor-
tant theorem of Cortinas—Thom states that commutative C*-algebras are K-regular ([CT12,
Theorem 1.5]). This result was further generalised recently by Aoki to all smooth algebras
over commutative C*-algebras, and over a general local field (JAok24, Theorem 8.7]). The
following result is a motivic analogue of the latter result.

Theorem 13.3.1 (C*-algebras are motivically regular, after [CT12, Aok24|). Let X be a com-
pact Hausdor(f space, F' be a characteristic zero local field, and A be a smooth € (X; F')-algebra.
Then for any integers © > 0 and n > 0, the natural map

Z(i)"Y(A) — Z(i)™(A[TY, ..., T))
is an equivalence in the derived category D(Z).
Proof. By |Aok24, Theorem 8.7 (2)], the natural map
K(A[Ty,...,T,]) — KH(A[T, ..., T,])

is an equivalence of spectra for every integer n > 0. By Corollary 12.3.3, this implies that the
vertical maps in the commutative diagram

Z(i)™(A) —— Z(i)™Y(A[T,...,Ty))

| |

ZEA (A) —— Z)A (AT, ..., T))

are equivalences in the derived category D(Z). The bottom horizontal map is an equivalence in
the derived category D(Z) by definition of the presheaf Z(z’)Al (|BEM24], see also Chapter 12).
So the top horizontal map is an equivalence in the derived category D(Z). O

*Note that this is not an optimal lower bound on the integer i. See [AKN24, Theorem 1.4] for a more
precise result, in terms of the ramification index of O.
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13.4 Truncated polynomials

In this section, we study the motivic cohomology of truncated polynomials, ¢.e., the motivic
cohomology of commutative rings of the form R[x]/(z¢). Given a D(Z)-valued functor F(—),
a commutative ring R, and an integer e > 1, we use the notation

F(R[z]/(2%), (x)) = fib(F(R[x]/(2%)) — F(R)),

where the map is induced by the canonical projection R[x]/(z¢) — R.

The relative K-theory K(k[z]|/(x¢), (x)) of truncated polynomials over a perfect field k of
positive characteristic was computed by Hesselholt—-Madsen [HM97b, HM97a|, using topolog-
ical restriction homology. Their calculation was reproved by Speirs [Spe20| using Nikolaus—
Scholze’s approach to topological cyclic homology [NS18], and by Mathew [Mat22| and Sulyma
[Sul23| using Bhatt-Morrow—-Scholze’s filtration on topological cyclic homology [BMS19|. This
last approach was then extended to mixed characteristic by Riggenbach |Rig22]. More pre-
cisely, Riggenbach used computations in prismatic cohomology to extend the previous result
to a computation of the p-adic relative K-theory K(R[z]/(x), (x);Zy) of perfectoid rings R,
and also reproved the p-adic part of the known description of K(Z[x]/(z¢), (x)), originally due
to Angeltveit—Gerhardt-Hesselholt [AGHO09].

This recent progress would seem to indicate that K-theory calculations using equivariant
stable homotopy may be pushed further by using cohomological techniques. Note however that
the calculations in [Mat22, Sul23, Rig22]| are purely p-adic ones, as they rely on (instances of)
prismatic cohomology. In fact, all of the previous integral calculations in mixed characteristic
(i.e., for R the ring of integers of a number field) rely on a rational result of Soulé [Sou81]| and
Staffeldt [Sta85|, who compute the ranks of the associated relative K-groups using equivariant
homotopy theory. In this section, we revisit and extend this rational computation, and discuss
some natural motivic refinements of the previous results.

All of the above calculations use trace methods, via the Dundas—Goodwillie-McCarthy
theorem. We first state the corresponding results at the level of cohomology theories.

Lemma 13.4.1. Let R be a commutative ring, and e > 1 be an integer. Then for every
integer ¢ > 0, the natural map

Z(i)™" (Rlz]/(x%), () — Z(i)"“ (Rlz]/(z%), (x))
is an equivalence in the derived category D(Z).

Proof. This is a direct consequence of Remark 4.3.7, and the fact that cdh sheaves are invariant
under nilpotent extensions. O

Corollary 13.4.2. Let R be a commutative ring, e > 1 be an integer, and p be a prime
number. Then for every integer i > 0, the natural map

Zy(i)™ (R[z]/(a°), () — Zp(i))* (R[z]/ (%), ()
is an equivalence in the derived category D(Zy).

Proof. This is a consequence of Lemma 13.4.1. O

Corollary 13.4.3. Let R be a commutative ring, and e > 1 be an integer. Then for every
wnteger © > 0, there is a natural equivalence

Q)™ (R[a]/ (x°), (z)) =~ LQFé[m]/(me),(I))@/@[_l]

in the derived category D(Q).
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Proof. This is a consequence of Lemma 13.4.1 and cdh descent for the presheaf Lo /Q on
commutative Q-algebras ([EM23, Lemma 4.5|).

Lemma 13.4.4. For every commutative ring R and integer e > 1, the object

Z(0)™" (R[z]/(2°), ()
is zero in the derived category D(Z).

Proof. This is a consequence of the fact that the motivic complex Z(0)™° is a cdh sheaf
(Example 5.6.8). O

Lemma 13.4.5. For any integers e > 1 and i > 0, the complex

<i
L/ @), (2@ € P(Q)

1s concentrated in degree zero, given by a Q-vector space of dimension e — 1.

Proof. This follows from a standard argument using the natural grading of the Q-algebra
Q[z]/(x¢) and the Q-linear derivation d : Q[z]/(x¢) — Q[z]/(z°) given by d(2’) = jx?; see for
instance the proof of [Sta85, Proposition 5]. O

Theorem 13.4.6. Let R be a commutative ring such that the cotangent compler Lrg,0)/ 0
vanishes (e.g., if R ®z Q is ind-étale over Q),> and e > 1 be an integer. Then for every
integer © > 1, there is a natural equivalence

Qi)™ (R[z]/(z°), (z)) ~ (R ®z Q) '[~1]
in the derived category D(Q).

Proof. By Corollary 13.4.3, there is a natural equivalence

Q1) (R[a]/(2°), (z)) =~ LQFé[m]/(me),(z))@/@[_l]

in the derived category D(Q). By the Kiinneth formula for derived de Rham cohomology, and
because all the positive powers of the cotangent complex L(gg,q)/@ vanish, there is a natural
equivalence

<1 ~ <1
L /@) )0/ @ = T (@) /(@) (1) 0 BQ B
in the derived category D(Q). The result is then a consequence of Lemma 13.4.5. O
When R is the ring of integers of a number field, the following result is due to Soulé [Sou81|
when e = 2, and to Staffeldt [Sta85] for e > 2 a general integer. Their proof uses rational
homotopy theory, and ultimately reduces to a computation in cyclic homology.

Corollary 13.4.7. Let R be a commutative ring such that the cotangent compler L(ge,0)/0
vanishes, and e > 1 be an integer. Then for every integer n € Z, there is a natural isomorphism

R = if n is odd and
K (R[z]/(z), (x); Q) z{ é 2z Q) s odd an n>1

of abelian groups.

3See [MM22] for more on this condition.
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Proof. This is a consequence of Theorem 13.4.6 and Corollary 5.5.11. 0

Remark 13.4.8. Let K be a number field, Ok be its ring of integers, and e > 1 be an integer.
The orders in the torsion part of the relative K-theory K(Og|x]/(z€), (x)) were completely de-
termined in [Rig22, Remark 1.8]. It would be interesting to use this result and Theorem 13.4.6
to obtain an integral description of the relative motivic complexes Z(i)™*(Ok[z]/(x¢), (x)) for
all ¢ > 0. This would in particular reprove and generalise the result for K = Q of Angeltveit—
Gerhardt-Hesselholt [AGHO09].

We also deduce from the work of Riggenbach the following motivic interpretation of the
analogous result in K-theory (|Rig22, Theorem 1.1]).

Theorem 13.4.9 (Truncated polynomials over perfectoids, after [Rig22]). Let R be a perfec-
toid ring, and e > 1 be an integer. Then for every integer ¢ > 1, there is a natural equivalence

Zy(i)" " (Rlz]/(2°), () = Wei (R)/VeW; (R)[—1]

in the derived category D(Z,), where W(R) denotes the big Witt vectors of R, and V the
associated Verschiebung operator.

Proof. This is a consequence of [Rig22, proof of Corollary 6.5] and Corollary 13.4.2. O

Remark 13.4.10 (Cuspidal curves). The algebraic K-theory of cuspidal curves (i.e., curves
that are defined by an equation of the form y® — z®, for a,b > 2 coprime integers) was com-
pletely determined over a perfect Fj-algebra by Hesselholt—Nikolaus [HN20|, using Nikolaus—
Scholze’s approach [NS18] to topological cyclic homology. This result was then generalised
to mixed characteristic perfectoid rings by Riggenbach [Rig23|, ultimately relying on com-
putations in relative topological Hochschild homology. It would seem that the associated
Atiyah—Hirzebruch spectral sequence should degenerate in this context, thus providing a sim-
ilar computation of the motivic cohomology of cuspidal curves. An interesting question would
be whether these results can be reproved, or even extended to more general base rings, using
techniques from prismatic cohomology and derived de Rham cohomology.
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Notation

Algebraic K-theory

By default, algebraic K-theory means non-connective algebraic K-theory, as introduced
by Thomason—Trobaugh [TT90]. By a theorem of Blumberg-Gepner-Tabuada [BGT13],
non-connective algebraic K-theory is the universal localizing invariant.

Al-invariance

A presheaf F/(—) on schemes is called A'-invariant if for every scheme X and every inte-
ger m > 0, the natural map F(X) — F(A%) is an equivalence. Given a presheaf F(—) on
schemes, the A'-localisation Ly F(—) of F/(—) is the initial A'-invariant presheaf with a map
from F(—). The Al-localisation functor Ly commutes with colimits.

Base change

Given a commutative ring R, an R-algebra S, and a scheme X over Spec(R), denote by Xg
the base change X Xgpec(r) Spec(S) of X from R to S. If X is a derived scheme, this base
change is implicitly the derived base change from R to S. We sometimes use the derived base
even on classical schemes, and say explicitly when we do so.

Bounded torsion

An abelian group A is said to have bounded torsion if there exists an integer N > 1 such
that the multiplication by N of every element of A is zero.

Given a commutative ring R and an element d of R, an R-module M is said to have bounded
d-power torsion if there exists an integer n > 1 such that M[d™] = M[d"] for all m > n; this
assumption guarantees that the derived d-completion of M is in degree zero, given by the
classical d-completion of M.

Cdh topology

The cdh topology is a Grothendieck topology introduced by Voevodsky [SV00, Voel0]; see
[EHIK21] for the definition and properties of the cdh topology in the generality of qcqs schemes.
It is a completely decomposed version of the topology generated by Deligne’s hypercoverings.
The cdh sheafification functor L¢gn preserves multiplicative structures.

Coeflicients

Given a functor F(—) (resp. Fil*F(—)) taking values in spectra (resp. filtered spectra) and
a prime number p, we denote the rationalisation of F'(—) by F(—;Q), its reduction modulo p
by F(—;F,), its derived reduction modulo powers of p by F(—;Z /p¥), its p-completion by
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F(—;7Zy), and the rationalisation of its p-completion by F'(—;Q,). We adopt a similar notation
for a functor Fil*F(—) taking values in filtered spectra, e.g., we denote its rationalisation by
Fil*F(—; Q). Similarly, if Z(i)F'(—) is a functor taking values in the derived category D(Z),
we denote the rationalisation of Z(i)¥ (=) by Q(i)¥'(-), its derived reduction modulo p by
F, (i)' (—), etc. Following the same notation, we also write

[[F—Q) = (HF(—;ZP))Q (resp. [[FirF(—Q,) = (HFﬂ*F(—;Zp))Q).

peP p€EP pEP p€EP

Derived categories and spectra

Denote by Sp the category of spectra. Given a commutative ring R, denote by D(R) the
derived category of R-modules; it is implicitly the derived oo-category of R-modules, and is in
particular naturally identified with the category of R-linear spectra. Our convention for degrees
is by default cohomological. In this context, the notions of fibre and cofibre sequences agree,
and the fibre and cofibre of a given map satisfy the relation fib ~ cofib[—1]. Given an element
d of R, also denote by (—)/ the d-adic completion functor in the derived category D(R).

Extension by zero j

Given a prime number p (which is typically clear from context) and a scheme X, denote by
J: X[%] — X the open immersion of the p-adic generic fibre of X, and by j : (X[%])ét — Xt
the associated extension by zero functor.

Filtrations

By default, a filtration with values in a category C is a Z-indexed decreasing filtered
object in the category C, i.e., a functor from the category (Z,>)°? to the category C. A
filtration is called N-indexed if it is constant in non-positive degrees. Given a filtered object
Fil* C and for each integer n € Z, let gr™ C' € D(R) denote the cofibre of the transition map
Fil"t' C — Fil"C. A filtered object Fil* C is said to be complete if the limit lim, Fil" C
vanishes. For instance, The Hodge filtration on the de Rham complex is given for each n € Z
by Filll,q Qg = Q7" ; the Hodge filtration mﬁj & on the derived de Rham complex LQ_ /5
is defined as the left Kan extension of this filtration. It is N-indexed, but not always complete.
Its completion, the Hodge-completed derived de Rham complex, is denoted by ﬁfj R

Given a commutative ring R, denote by DF(R) := Fun((Z, >)°?, D(R)) the filtered derived
category of R-modules. Also denote by FilSp the category of filtered spectra, and by biFilSp
the category of bifiltered spectra (i.e., the category of filtered objects in the category of filtered
spectra).

Henselian rings

Given a commutative ring R and an ideal I of R, the pair (R, I) is called henselian if it
satisfies Hensel’s lemma. A local ring R is called henselian if the pair (R, m) is henselian,
where m is the maximal ideal of R. Henselian local rings are the local rings for the Nisnevich
topology. A commutative ring R is called d-henselian, for d an element of R, if the pair (R, (d))
is henselian.
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Ind-smooth schemes

Given a scheme S, a scheme X is called ind-smooth (resp. ind-regular, ind-étale) over S if
it is a cofiltered limit of smooth (resp. regular, étale) S-schemes.

Left Kan extensions

Given a commutative ring R, an oco-category D which admits sifted colimits (e.g., D(R)
or DF(R)), and a functor

F :Smp := {smooth R-algebras} — D,

define
LF: R-Alg— D

S +—— colim F(P),
P—S

where the colimit is taken over all free R-algebras P mapping to .S. The functor LF is called
the left I{an extension from polynomial R-algebras of F. For instance, the cotangent complex
L_/p:= LOY /R is the left Kan extension from polynomial R-algebras of the module of K&hler

differentials Q' r» and the derived de Rham complex L{)_/p is the left Kan extension from
polynomial R-algebras of the de Rham complex 2_,r. We also consider more general left Kan
extensions (e.g., from smooth R-algebras), which are defined similarly —see [EM23, Section 2.3
and Remark 3.4] for a quick review of this formalism. The left Kan extension from a category C

to a category C’, when this makes sense, is denoted by Leijc.

Quasisyntomic rings

A morphism R — S of commutative rings is called p-discrete, for p a prime number, if the
derived tensor product S ®]1é R/p € D(R/p) is concentrated in degree zero, where it is given
by S/p. Tt is called p-flat if it is p-discrete and if its reduction R/p — S/p modulo p is flat. It
is called p-quasisyntomic if it is p-flat and if the cotangent complex L(g/p)/(r/p) € D(S/p) has
Tor-amplitude in [—1;0].

A commutative ring R is called p-quasisyntomic if it has bounded p-power torsion and if the
complex L/ ®% R/p € D(R/p) has Tor-amplitude in [—1;0]. Beware that p-quasisyntomic
Z-algebras are p-quasisyntomic rings, but the converse is not true: for instance, F, is a
p-quasisyntomic ring, but the morphism Z — F, is not p-discrete. We refer to [BMS19]
for the definition of the associated p-quasisyntomic topology on p-quasisyntomic rings.

Rigid functor

A functor F(—) on commutative rings is called rigid if for every henselian pair (R, ), the
natural map F(R) — F(R/I) is an equivalence.

Rings and schemes

Quasi-compact quasi-separated (derived) schemes are called qcgs (derived) schemes. These
include all affine (derived) schemes, i.e., (animated) commutative rings. Denote by Sch9°%® the
category of qcgs schemes, dSch9“®® the category of qcgs derived schemes, Rings the category
of commutative rings, AniRings the category of animated commutative rings. Schemes, resp.
commutative rings, are sometimes called classical to emphasize that we are not working in the
generality of derived schemnes, resp. animated commutative rings. Given a commutative base
ring R, also denote by Smp the category of smooth schemes over Spec(R), SchfP the category
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of finitely presented schemes over Spec(R), Polyp the category of polynomial R-algebras, and
Ei-Ringsp the category of associative R-linear ring spectra.

Sheafification

We use several Grothendieck topologies, including the Zariski, Nisnevich, étale, and cdh
topologies. Denote by Lyzay, Lnis, Lét, and Legn the sheafification functors for these topologies.
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