
Chapitre 6

Espaces de Sobolev

On veut distinguer parmi les distributions (tempérées) celles qui sont plus régulières, par
exemple données par des fonctions Ck. On a vu que plus f est régulière, plus f̂ décroit
rapidement à l’infini, par exemple puisque

k⇠↵f̂kL2 = k bD↵fkL2 .

On aurait aussi pu écrire k⇠↵f̂kL1  k bD↵fkL1 , mais on va tirer parti de manière essentielle
de la structure d’espace de Hilbert de L2(Rn).

6.1 Espaces de Sobolev sur Rn

6.1.1 Définitions

Pour ⇠ 2 Rn, on note h⇠i =
p

1 + |⇠|2. La fonction ⇠ 7! h⇠i est C1, et il existe une constante
C > 0 telle que

1
C
|⇠|  h⇠i  C|⇠|.

Autrement dit h⇠i est une version régularisée de |⇠| qui à le même comportement à l’infini.

Définition 6.1.1 Soit s 2 R. On dit qu’une distribution tempérée u 2 S 0(Rn) appartient à
Hs(Rn) lorsque û 2 L1

loc et h⇠isû 2 L2(Rn).

Remarque 6.1.2 La distribution u 2 S 0(Rn) est dans Hs(Rn) si et seulement si il existe une
fonction g 2 L2(Rn) telle que û = h⇠i�sg.

Exemple 6.1.3 i) �
0

2 Hs(Rn) si et seulement si s < �n
2

. En e↵et �̂
0

= 1 donc h⇠is�̂
0

2
L2(Rn) si et seulement si 2s > �n.
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ii) Les fonctions constantes ne sont dans aucun Hs(Rn), puisque Ĉ = C�
0

n’est pas une
fonction L1

loc.

Proposition 6.1.4 La forme bilinéaire (·, ·)s sur Hs(Rn)⇥Hs(Rn) définie par

(u, v)s = (h⇠isû, h⇠isv̂)L2 =
Z

û(⇠)v̂(⇠)h⇠i2sd⇠

est un produit scalaire hermitien qui fait de Hs(Rn) un espace de Hilbert. On note

kuks =
p

(u, u)s = kh⇠isûkL2

la norme associée.

Preuve.— Soit (uj) une suite de Cauchy de Hs(Rn). La suite (h⇠isû) est une suite de
Cauchy de L2, donc converge vers un v 2 L2. Soit alors u la distribution tempérée définie par
u = F�1(h⇠i�sv̂). On a û = h⇠i�sv avec v 2 L2, donc u 2 Hs(Rn), et

kuj � uks = kh⇠isûj � vkL2 ! 0 quand j ! +1.

Donc (uj) converge dans Hs(Rn).

Il est important de noter que H0(Rn) = L2(Rn), où l’égalité a lieu entre espace de Hilbert.
On a aussi

s
1

 s
2

) Hs
2(Rn) ,! Hs

1(Rn)

puisque h⇠is1  h⇠is2 , où le symbole ,! désigne une injection continue. Les Hs forment donc
une famille décroissante d’espaces de Hilbert. En particulier, pour s � 0, on a Hs(Rn) ⇢
L2(Rn). On a même la

Proposition 6.1.5 (Interpolation) Soit s
0

 s  s
1

trois réels. Pour u 2 Hs
0(Rn)\Hs

1(Rn),
on a u 2 Hs(Rn) et

kuks  kuk(1�✓)
s
0

kuk✓
s
1

,

où ✓ 2 [0, 1] est défini par s = (1� ✓)s
0

+ ✓s
1

.

Preuve.— On écrit simplement

kuk2s =
Z
h⇠i2s|û|2d⇠ =

Z �h⇠i2(1�✓)s
0 |û|2(1�✓)

��h⇠i2✓s
1 |û|2✓

�
d⇠,

et on applique l’inégalité de Hölder avec p = 1/(1� ✓) et q = 1/✓.

On voit apparâıtre la notion de régularité que l’on cherche dans la proposition qui suit : plus
on dérive (donc moins l’objet que l’on considère est régulier), plus l’on descend dans l’échelle
des espaces de Sobolev.
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Proposition 6.1.6 Si u 2 Hs(Rn), alors @↵u 2 Hs�|↵|(Rn).

Preuve.— Soit u 2 Hs(Rn). On a d@ju = ⇠j û, donc d@ju est une fonction L1

loc. De plus

kh⇠is�1d@jukL2 = kh⇠is�1⇠j ûkL2  Ckh⇠isûkL2 ,

ce qui montre que @ju 2 Hs�1(Rn). Le cas général s’obtient par récurrence sur |↵|.
Voici une autre illustration du fait que les éléments des Hs sont de plus en plus singuliers
quand s diminue.

Proposition 6.1.7 Soit T 2 E 0(Rn) une distribution à support compact. Si p � est l’ordre
de T , alors T 2 Hs(Rn) pour tout s < �p� n

2

·

Preuve.— Pour T 2 E 0(Rn), on sait que T̂ 2 C1 ⇢ L1

loc. De plus

|h⇠isT̂ (⇠)| = |h⇠ishTx, e�ix·⇠i|  Ch⇠is
X

|↵|p

sup |@↵
x (e�ix·⇠)|  Ch⇠is+p

Donc T 2 Hs(Rn) dès que 2(s + p) > �n.

6.1.2 Densité des fonctions régulières

Proposition 6.1.8 Pour tout s 2 R, S(Rn) est dense dans Hs(Rn).

Preuve.— D’abord, l’application S(Rn) 3 u 7! h⇠isû 2 S(Rn) est une bijection pour tout
s 2 R. En particulier si u 2 S(Rn), h⇠isû 2 S(Rn) ⇢ L2(Rn), donc S(Rn) ⇢ Hs(Rn).

Soit alors u 2 Hs(Rn) telle que u 2 S(Rn)?. Pour toute fonction � 2 S(Rn), on a

0 = (u,�)s = (h⇠isû, h⇠is�̂)L2 .

Donc pour tout  2 S(Rn), on a (h⇠isû, )L2 = 0. Comme S(Rn) est dense dans L2(Rn) (cf.
le Corollaire 5.1.8), cela entraine u = 0. Ainsi

S(Rn) = (S(Rn)?)? = {0}? = Hs(Rn).

Remarque 6.1.9 On a donc S(Rn) ⇢ \s2RHs(Rn), mais l’inclusion inverse est fausse. Par
exemple, en dimension 1, si u(x) = 1

1+x2

on a û(⇠) = e�|⇠|, donc u 2 Hs(R) pour tout s 2 R,
mais u /2 S(Rn).

Notes du cours D4MA1U2, année 2011/2012. Version 1.03. Thierry Ramond



CHAPITRE 6. ESPACES DE SOBOLEV 68

Proposition 6.1.10 Pour tout s 2 R, C1
0

(Rn) est dense dans Hs(Rn).

Preuve.— Puisque S(Rn) est dense dans Hs(Rn), il su�t de montrer que C1
0

(Rn) est dense
dans S(Rn) pour la norme Hs(Rn). On raisonne par troncature : soit � 2 C1

0

(Rn) telle que
� = 1 sur B(0, 1). Pour k 2 N, on pose �k(x) = �(x/k). On a

k�k � �ks (
Z
h⇠i2s|�̂k(⇠)� �̂(⇠)|2d⇠)1/2

 sup
�h⇠is+(n+1)/2|�̂k(⇠)� �̂(⇠)|�(

Z
h⇠i�(n+1)d⇠)1/2

 CNp( \�k � �)  CNp+n+1

(�k � �),

où p 2 N est tel que p � s + (n + 1)/2. On a vu dans la preuve de la Proposition 5.1.9 que,
pour tout q, Nq(�k � �) ! 0 quand k ! +1.

6.1.3 Multiplicateurs de Hs

Proposition 6.1.11 Soit � 2 S(Rn). La multiplication par � est une opération continue dans
Hs(Rn).

Preuve.— Pour � 2 S(Rn) et u 2 Hs(Rn), on a �u 2 S 0(Rn) et, d’après la Proposition 5.6.6,

[̂� ⇤ û = b̂�b̂u = (2⇡)2n�̌ǔ.

En appliquant la transformation de Fourier inverse F�1 = (2⇡)�nF

b

, et en multipliant par
h⇠is, on obtient

h⇠isc�u = (2⇡)�nh⇠is�̂ ⇤ û.

Donc pour  2 C1
0

(Rn), on a

hh⇠isc�u, i = (2⇡)�nh�̂ ⇤ û, h⇠is i = (2⇡)�nhû, b̌� ⇤ (h⇠is )i.

Or h⌘isû est dans L2(Rn), et h⌘i�s(b̌� ⇤ (h⇠is ) est une fonction de S(Rn), donc

(6.1.1) hh⇠isc�u, i = (2⇡)�n

Z
h⌘isû(⌘)

⇣ Z
h⌘i�sb̌�(⇠ � ⌘)h⇠is (⇠)d⇠

⌘
d⌘.

On veut échanger les intégrales. Pour cela on doit montrer que la fonction

g : (⇠, ⌘) 7! h⌘isû(⌘)h⌘i�sb̌�(⇠ � ⌘)h⇠is (⇠)

appartient à L1(R2n). On a besoin du
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Lemme 6.1.12 (Lemme de Peetre) Pour (⇠, ⌘) 2 R2n, et pour tout s 2 R, on a

h⇠is  2|s|/2h⇠ � ⌘i|s|h⌘is.

Preuve.— (du Lemme de Peetre) En échangeant ⇠ et ⌘ on voit qu’il su�t de prouver
l’inégalité pour s � 0. Or dans ce cas

h⇠is = (1 + |⇠|2)s/2 = (1 + |⇠ � ⌘ + ⌘|2)s/2  (1 + 2|⇠ � ⌘|2 + 2|⌘|2)s/2  2s/2h⇠ � ⌘ish⌘is,

par exemple en développant le terme de droite.

Revenons à la proposition. Avec le lemme de Peetre, on a

|g(⇠, ⌘)|  2|s|/2h⌘is|û(⌘)|h⇠ � ⌘i|s||�̂(⇠ � ⌘)| | (⇠)|.

Donc

(6.1.2)
ZZ

|g(⇠, ⌘)|d⇠d⌘  2|s|/2

Z
| (⇠)|(h⌘is|û| ⇤ h⌘i|s||�̂|)(⇠)d⇠.

Comme h⌘is|û| 2 L2 et h⌘i|s||�̂| 2 L1 (entre autres), l’inégalité de Young dit que le produit
de convolution de ces fonctions est dans L2, et, puisque  2 L2, on a bien g 2 L1(R2n).

L’équation (6.1.1) donne donc

hh⇠isc�u, i = (2⇡)�n

Z
 (⇠)

⇣ Z
h⌘i�sû(⌘)h⇠ish⌘i�s�̂(⇠ � ⌘)d⌘

⌘
d⇠,

et
h⇠isc�u(⇠) =

Z
h⌘i�sû(⌘)h⇠ish⌘i�s�̂(⇠ � ⌘)d⌘,

que l’on vient de montrer être une fonction L2. Donc �u 2 Hs(Rn), et on extrait facilement
de (6.1.2) que

k�uks  2|s|/2kh⌘i|s|�̂kL1kuks.

6.1.4 Injections de Sobolev

Les résultats ci-dessous peuvent être vus comme une réponse à la question ”qu’est-ce qui
n’est pas dans Hs(Rn)”, ou encore comme un pas supplémentaire dans la description de la
régularité des distributions tempérées.

On note Ck
!0

(Rn) l’espace des fonctions Ck sur Rn qui tendent vers 0 à l’infini ainsi que toutes
leurs dérivées d’ordre  k.
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Proposition 6.1.13 Si s > n
2

+ k, alors Hs(Rn) ,! Ck
!0

(Rn).

Preuve.— Soit u 2 Hs(Rn). Pour ↵ 2 Nn avec |↵|  k, on a ⇠↵û 2 L1. En e↵et

k⇠↵û(⇠)k =
|⇠||↵|

h⇠is h⇠i
s|û(⇠)|  h⇠ik�sh⇠is|û(⇠)|,

et h⇠ik�s 2 L2(Rn) puisque �2(k � s) > n. On a donc, par Cauchy-Schwartz,

(6.1.3) k⇠↵ûkL1  Cs,nkuks.

Ainsi D↵u = F�1(⇠↵û) 2 C0

!0

d’après la Proposition 5.4.10, et la continuité de l’injection de
Hs(Rn) dans Ck

!0

(Rn) n’est qu’une autre manière de formuler les inégalités

8|↵|  k, kD↵ukL1  k⇠↵ûkL1  Cs,nkuks.

Proposition 6.1.14 Soit s > n
2

. Si u, v 2 Hs(Rn), alors uv 2 Hs(Rn) et il existe une
constante Cs > 0, telle que, pour tout u, v 2 Hs(Rn),

kuvks  Cskukskvks.

Preuve.— La proposition précédente dit que u et v sont des fonctions continues, donc le
produit uv est bien défini. On a d’abord u, v 2 L2 \L1, puisque s � 0 d’une part, et puisque
u et v sont des fonctions continues qui tendent vers 0 à l’infini. Du coup f = uv est une
fonction de L1 \ L1, et on a f̂ = (2⇡)�nû ⇤ v̂. Donc

kfk2s = (2⇡)�2n

Z
h⇠i2s|û ⇤ v̂(⇠)d⇠  (2⇡)�2n

Z ⇣ Z
h⇠is|û(⇠ � ⌘)| |v̂(⌘)|d⌘

⌘
2

d⇠.

Or puisque s > 0, on a (a + b)s  2s(as + bs) pour tout (a, b) 2 R+. En écrivant l’inégalité
triangulaire, on obtient facilement

h⇠is  2s(h⇠ � ⌘is + h⌘is).
L’inégalité précédente donne alors

kfk2s  (2⇡)�2n22s

Z ⇣ Z
h⇠ � ⌘is|û(⇠ � ⌘)| |v̂(⌘)| + |û(⇠ � ⌘)|h⌘is|v̂(⌘)|d⌘

⌘
2

d⇠

 (2⇡)�2n22s+1

Z ⇣ Z
h⇠ � ⌘is|û(⇠ � ⌘)| |v̂(⌘)|d⌘

⌘
2

+
⇣ Z

|û(⇠ � ⌘)|h⌘is|v̂(⌘)|d⌘
⌘

2

d⇠

 (2⇡)�2n22s+1

�kh⌘is|û| ⇤ |v̂|k2L2

+ k|û| ⇤ h⌘is|v̂|k2L2

�

L’inégalité de Young dit que, pour le premier terme par exemple,

kh⌘is|û| ⇤ |v̂|k2L2

 kh⌘is|û|k2L2

kv̂|k2L1

 Cskuk2skvk2s,
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en utilisant aussi (6.1.3). Le second terme se traite de le même manière, et l’on obtient bien

kfk2s  Ckuk2skvk2s.

Proposition 6.1.15 Pour p � 2 et s � n(1

2

� 1

p), on a Hs(Rn) ,! Lp(Rn). Précisément, il
existe une constante Cn,s,p > 0 telle que

8u 2 Hs(Rn), kukLp  Cn,s,pkuks.

Remarque 6.1.16 i) Une façon équivalente de formuler les conditions ci-dessus liant s, p et
n est

0  s <
n

2
, 2  p  2n

n� 2s
·

Autrement dit, les deux propositions précédentes donnent ensemble une idée de la nature
des éléments de Hs(Rn) pour tout s � 0.

ii) Ces énoncés sont les meilleurs possibles. En particulier, Hn/2(Rn) n’est pas inclus dans
L1(Rn) (donc pas dans C0

!0

), ce qui est la cause d’un certain nombre de di�cultés tech-
niques.

Preuve.— On l’admet.

6.1.5 Dualité Hs
(Rn

)/H�s
(Rn

)

On s’intéresse maintenant de plus près aux espaces de Sobolev d’ordre négatif. Une façon
souvent commode de traiter l’espace H�s(Rn) avec s > 0, consiste à le considérer l’espace des
formes linéaires continues sur Hs(Rn). On a e↵et la

Proposition 6.1.17 Soit s 2 R, et u 2 H�s(Rn). La forme linéaire Lu définie sur S(Rn) par

Lu(�) = hu,�i,

se prolonge de manière unique en une forme linéaire continue sur Hs(Rn). De plus l’application
L : u 7! Lu est un isomorphisme bicontinu de H�s(Rn) dans (Hs(Rn))0.

Preuve.— Tout d’abord, pour � 2 S(Rn), on a

(6.1.4) |Lu(�)| = |hu,�i|  (2⇡)�nkuk�sk�ks

ce qui, compte tenu de la densité de S(Rn) dans Hs(Rn) donne le premier point.
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On montre maintenant que L est bijective. Elle est clairement injective, puisque

8� 2 S(Rn), Lu(�) = 0 ()8� 2 S(Rn),
Z
h⇠i�sû(⇠)h⇠is�̂(⇠)d⇠ = 0

()8 2 S(Rn),
Z
h⇠i�sû(⇠) (⇠)d⇠ = 0

()u = 0.

Soit � 2 (Hs(Rn))0 ; on cherche u 2 H�s(Rn) telle que Lu = �. Soit  la forme linéaire sur
L2(Rn) définie par

 (f) = �(F�1(h⇠i�sf)).

On a, pour tout f 2 L2(Rn),

| (f)|  CkF�1(h⇠i�sf)ks  CkfkL2 ,

donc  est continue sur L2(Rn). Par le théorème de Riesz, il existe g 2 L2(Rn) telle que
 (f) = (g, f̄)L2 , et on pose u = F(h⇠isg). On a

h⇠i�sû = (2⇡)nh⇠i�sh⇠isǧ 2 L2(Rn),

donc u 2 H�s(Rn). De plus pour � 2 S(Rn),

Lu(�) = hu,�i =
Z
h⇠isg(⇠)�̂(⇠)d⇠ =  (h⇠is�̂) = �(�).

Donc L est surjective. Enfin la continuité de L : u 7! Lu provient de (6.1.4) :

kLuk = sup
�2Hs,k�k

s

=1

|Lu(�)|  (2⇡)�nkuk�s,

et celle de L�1 est automatique puisque l’on travaille dans des espace de Banach.

6.1.6 Trace d’un élément de Hs
(Rn

), s > 1/2

Lorsqu’une fonction f est continue, il n’y a aucune di�culté pour définir sa restriction à une
hypersurface, par exemple en utilisant une paramétrisation de celle-ci : la restriction de f à
l’hypersurface xn = 0 de Rn est la fonction �(f) : Rn�1 ! C définie par

(6.1.5) �(f)(x
1

, . . . , xn�1

) = f(x
1

, . . . , xn�1

, 0).

Il n’y a à priori rien d’équivalent pour les fonctions définies presque partout, puisqu’une
hypersurface est de mesure nulle. Lorsque u est dans un espace de Sobolev d’ordre pas trop
petit, sans pour autant être une fonction continue, on peut néanmoins donner un sens à cette
restriction.

Proposition 6.1.18 Pour tout s > 1

2

, l’opérateur � : S(Rn) ! S(Rn�1) défini par (6.1.5)
s’étend de manière unique en un opérateur linéaire continu et surjectif de Hs(Rn) dans
Hs�1/2(Rn�1).
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Preuve.— On veut montrer qu’il existe une constante C > 0 telle que pour tout � 2 S(Rn),

(6.1.6) k�(�)kHs�1/2

(Rn�1

)

 Ck�kHs

(Rn

)

.

L’existence de l’unique prolongement continu de � découlera alors de la densité de S(Rn) dans
Hs(Rn).

Pour � 2 S(Rn), on peut écrire

�(�)(x0) = �(x0, 0) =F�1

(⇠0,⇠
n

)!(x0,0)

(�̂(⇠0, ⇠n)) = (2⇡)�n

ZZ
eix0·⇠0 �̂(⇠0, ⇠n)d⇠0d⇠n

= (2⇡)�(n�1)

Z
eix0·⇠0

✓
1

(2⇡)

Z
�̂(⇠0, ⇠n)d⇠n

◆
d⇠0.

Donc, dans S(Rn�1),
d�(�)(⇠0) =

1
(2⇡)

Z
�̂(⇠0, ⇠n)d⇠n.

En particulier

| d�(�)(⇠0)|2  1
(4⇡)2

Z
h⇠is|�̂(⇠0, ⇠n)|h⇠i�sd⇠n  1

(4⇡)2

Z
h⇠i2s|�̂(⇠0, ⇠n)|2d⇠n ⇥

Z
h⇠i�2sd⇠n.

Or, en posant ⇠n = (1 + |⇠0|2)1/2 on obtient
Z
h⇠i�2sd⇠n =

Z
1

(1 + |⇠0|2 + |⇠n|2)s
d⇠n

=
Z

1
(1 + t2)s(1 + |⇠0|2)s

(1 + |⇠0|2)1/2dt

=h⇠0i�2s+1

Z
dt

(1 + t2)s
= Csh⇠0i�2s+1.(6.1.7)

Ainsi Z
h⇠0i2s�1| d�(�)(⇠0)|2d⇠0  Cs

(4⇡)2

Z
h⇠i2s|�̂(⇠)|2d⇠,

c’est-à-dire (6.1.6).

Il reste à montrer la surjectivité. On va exhiber pour cela un inverse à droite R de �. Pour
v 2 Hs�1/2(Rn�1), on pose

u(x) = Rv(x) = F�1

⇠!x

✓
KN

h⇠0i2N

h⇠i2N+1

v̂(⇠0)
◆

,

où N 2 N et KN > 0 seront fixés plus loin.

On a

kuk2s =
Z
h⇠i2sK2

N

h⇠0i4N

h⇠i4N+2

|v̂(⇠0)|2d⇠  K2

n

Z
h⇠0i4N |v̂(⇠0)|2(

Z
h⇠i2s�4N�2d⇠n)d⇠0

K2

nC

Z
h⇠0i2s�1|v̂(⇠0)|2d⇠0  K2

nCkvk2
Hs�1/2

(Rn�1

)

,
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où l’on a utilisé (6.1.7), en choisissant N > s/2� 1/4 pour que l’intégrale converge. Donc R
envoie bien Hs�1/2(Rn�1) dans Hs(Rn).

On calcule alors

\�(Rv)(⇠0) =
1

(2⇡)

Z
cR�(⇠0, ⇠n)d⇠n =

KN

(2⇡)

Z h⇠0i2N

h⇠i2N+1

v̂(⇠0)d⇠n

=v̂(⇠0)
KN

(2⇡)
h⇠0i2N

Z
h⇠i�(2N+1)d⇠n =

CKN

2⇡
v̂(⇠0) = v̂(⇠0),

en choisissant KN = 2⇡/CN , où CN est la constante dans (6.1.7). Donc � �R = Id.

6.2 Espaces de Sobolev sur ⌦

6.2.1 Espaces de Sobolev d’ordre entier sur Rn

On commence par quelques remarques simples : pour k 2 N les éléments de Hk(Rn) peuvent
être caractérisés par

u 2 Hk(Rn) () 8↵ 2 Nn, |↵|  k, @↵u 2 L2(Rn).

En e↵et

kh⇠ikû(⇠)k2L2

=
Z

(1 + |⇠|2)k|û(⇠)|2d⇠ =
X

|↵|k

k!
↵!

Z
⇠2↵|û(⇠)|2d⇠

=
X

|↵|k

k!
↵!

Z
⇠↵û(⇠)⇠↵û(⇠)d⇠

=
X

|↵|k

k!
↵!
k dD↵uk2L2

=
X

|↵|k

k!
↵!
kD↵uk2L2

(6.2.8)

Donc h⇠ikû 2 L2(Rn) si et seulement si kD↵ukL2 < +1 pour tout |↵|  k.

L’égalité (6.2.8) dit même davantage :

Proposition 6.2.1 Pour k 2 N, l’espace de Hilbert (Hk(Rn), (·, ·)s) est égal à l’espace

{u 2 S 0(Rn), 8↵ 2 Nn, @↵u 2 L2Rn}

muni du produit scalaire
((u, v))k =

X

|↵|k

(@↵u, @↵v)L2 .

On notera kukHk

=
p

((u, u))k la norme associée, qui est donc équivalente à la norme k · kk.

Pour les entiers négatifs, en utilisant la Proposition 6.1.17, et la densité de C1
0

(Rn) dans
Hk(Rn), on obtient la caractérisation suivante :
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Proposition 6.2.2 Soit k 2 N. L’espace H�k(Rn) est l’espace des formes linéaires u sur
Hk(Rn) telles qu’il existe une constante C > 0 pour laquelle

8� 2 C1
0

(Rn), |hu,�i|  Ck�kHk

.

6.2.2 Espaces de Sobolev d’ordre entier sur ⌦

Un des intérêts principaux de ces remarques, est qu’elles permettent de définir une échelle
d’espaces de Hilbert, qui doit permettre de mesurer la régularité des distributions, sans recours
à la transformation de Fourier. En particulier, pour k 2 Z, on peut parler d’espace de Sobolev
d’ordre k sur n’importe quel ouvert ⌦ ⇢ Rn.

Définition 6.2.3 Soit ⌦ ⇢ Rn un ouvert, et k 2 N. On dit que u 2 D0(Rn) appartient à
l’espace Hk(⌦) lorsque pour tout |↵|  k, @↵u 2 L2(Rn). On note (·, ·)k la forme bilinéaire
définie sur Hk(⌦)⇥Hk(⌦) par

(u, v)k =
X

|↵|k

(@↵u, @↵v)L2 .

Proposition 6.2.4 Muni du produit scalaire hermitien (·, ·)k, l’espace Hk(⌦) est un espace
de Hilbert.

Preuve.— Soit (uj) une suite de Cauchy de Hk(⌦). Pour chaque |↵|  k, la suite (@↵uj)
est une suite de Cauchy de L2, donc converge vers un v↵ 2 L2. En particulier uj ! v

0

dans
D0(⌦), donc @↵uj ! @↵v

0

= v↵ 2 L2(⌦), et (uj) ! v
0

dans Hk(⌦)

Lorsque ⌦ 6= Rn, l’espace des fonctions test C1
0

(⌦) n’est pas toujours dense dans Hk(⌦). On
est donc conduit à la

Définition 6.2.5 On note Hk
0

(⌦) l’adhérence de C1
0

(⌦) dans Hk(⌦). C’est un espace de
Hilbert.

Exemple 6.2.6 Soit I =]� a, a[2 R. On va décrire H1(I) et H1

0

(I).
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– Pour f 2 H1(I), on a f 0 2 L2(I) ⇢ L1(I). Donc la fonction g : I ! C définie par

g(x) =
Z x

�a
f 0(t)dt

est continue. De plus g0�f 0 = 0 donc la distribution g�f est constante. Comme g se prolonge
en une fonction continue sur [�a, a], f aussi.

– La fonction x 7! |f(x)| est continue sur [�a, a], donc atteint son minimum en b 2 [�a, a].
Comme

2a|f(b)|2 =
Z a

�a
|f(b)|2dt 

Z a

�a
|f(t)|2dt,

on a
p

2a|f(b)|  kfkL2 . Enfin puisque

f(x) = f(b) +
Z x

b
f 0(t)dt,

on obtient

|f(x)|  1
2
p

a
kfkL2 +

p
2akf 0kL2  CkfkH1 .

En particulier la forme linéaire �x est continue sur H1(I).
– H1

0

(I) = {f 2 H1(I), f(�a) = f(a) = 0}. En e↵et on a vu que les formes linéaires �±a sont
continues sur H1(I), et sont nulles sur C1

0

(I). Donc si f 2 H1

0

(I), on a f(�a) = f(a) = 0.
Réciproquement, soit f 2 H1(I) vérifiant f(a) = f(�a) = 0. Soit aussi g la fonction qui
vaut f sur [�a, a] et 0 ailleurs. On a g0 = f 01

[

� a, a], donc g0 2 L2(R), et g 2 H1(R). Pour
� < 1, la suite g� = g(x/�) tendent vers f dans H1(I) quand � ! 1, et sont à support dans
[�a�, a�] ⇢ I. Si (�✏) est une approximation de l’identité, g� ⇤ �✏ appartient à C1

0

(I) pour
✏ > 0 assez petit, et converge vers g� dans H1(R). Donc g� 2 H1

0

(I) et f 2 H1

0

(I).

Remarque 6.2.7 L’orthogonal F de H1

0

(⌦) dans H1(⌦) est le sous-espace constitué des fonc-
tions f telles que

(1��)f = 0 dans D0(⌦).

En e↵et la fonction f appartient à F si et seulement si pour tout u 2 H1

0

(⌦), et par densité pour
toute u 2 C1

0

(⌦),

0 = (f, ū)H1 =
Z

⌦

fudx +
nX

j=1

Z

⌦

@jf@judx = hf ��f, ui.

Définition 6.2.8 Soit k 2 N. L’espace H�k(⌦) est l’espace des formes linéaires u sur
Hk

0

(⌦) telles qu’il existe une constante C > 0 pour laquelle

8� 2 C1
0

(⌦), |hu,�i|  Ck�kHk

.

On note kukH�k

la plus petite constante C possible dans l’inégalité ci-dessus.
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Exemple 6.2.9 Si f 2 L2(⌦), on a @jf 2 H�1(⌦). En e↵et, pour � 2 C1
0

(⌦), on a

|h@jf,�i| = |hf, @j�i| 
Z

|f | |@j�|dx  kfkL2k�kH1 .

On a d’ailleurs au passage k@jfkH�1  kfkL2 .

On peut en fait démontrer le résultat suivant

Proposition 6.2.10 Soit k 2 N. Une distribution u 2 D0(⌦) appartient à H�k(⌦) si et
seulement si il existe des fonctions f↵ 2 L2(⌦) telles que

u =
X

|↵|k

@↵f↵.

6.2.3 L’inégalité de Poincaré

Proposition 6.2.11 Soit ⌦ ⇢ Rn un ouvert, borné dans une direction. Il existe une constante
C > 0 telle que

8u 2 H1

0

(⌦),
Z

⌦

|u|2dx  C

Z

⌦

|ru|2dx.

Preuve.— L’hypothèse signifie qu’il existe R > 0 tel que, par exemple ⌦ ⇢ {|xn| < R}. Pour
� 2 C1

0

(Rn), on a alors

�(x0, xn) =
Z

1
[�R,x

n

]

(t)@n�(x0, t)dt.

En utilisant Cauchy-Schwartz, on a alors

|�(x0, xn)|2  2R

Z R

�R
|@n�(x0, t)|2dt.

On intègre cette inégalité sur ⌦, et on obtient
Z

⌦

|�(x0, xn)|2dx  2R

Z R

�R

Z

Rn�1

Z R

�R
|@n�(x0, t)|2dtdxndx0

 4R2

Z
|@n�(x)|2dx  4R2

Z
|r�(x)|2dx.

On obtient alors le résultat dans H1

0

(⌦) par densité.

Remarque 6.2.12 L’inégalité de Poincaré n’est pas vraie pour les u constantes non-nulles, qui
n’appartiennent donc pas à H1

0

(⌦) pour ⌦ borné (dans une direction).
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On notera que l’inégalité de Poincaré entraine que pour un ouvert borné (au moins dans une
direction), l’application

u 7!
X

|↵|=k

k@↵ukL2 ,

est une norme sur Hk
0

(⌦) équivalente à la norme k · kHk

.

6.2.4 Le problème de Dirichlet

On termine par la résolution du très classique problème de Dirichlet dans un ouvert ⌦ borné
de Rn. Soit (aij(x))

1i,jn une famille de fonctions de L1(⌦). On suppose que la matrice
A = (aij) est symétrique, i.e. que aij = aji, et qu’il existe une constante c > 0 telle que

8x 2 ⌦,8⇠ 2 Cn, c|⇠|2  Re(
X

i,j

aij(x)⇠i⇠j)  1
c
|⇠|2

On note alors �a l’opérateur di↵érentiel

�a(f) =
nX

i,j=1

@i(ai,j(x)@jf)

Lorsque A = Id, �a n’est autre que le Laplacien habituel.

Pour f 2 H1

0

(⌦),�af a bien un sens et appartient à H�1(⌦), puisque @jf 2 L2 et aij@jf 2 L2,
donc @i(aij@jf) 2 H�1(⌦). On va montrer que, pour ⌦ borné, �a est un isomorphisme de
H1

0

(⌦) dans H�1(⌦). Pour prouver ce résultat, on va utiliser un résultat général abstrait qui
à un intérêt en lui-même.

Proposition 6.2.13 (Théorème de Lax-Milgram) Soit H un espace de Hilbert sur C, et
a(x, y) une forme sesquilinéaire sur H (anti-linéaire par rapport à x et linéaire par rapport à y).
On suppose que

i) la forme sesquilinéaire a est continue, i.e. il existe M > 0 tel que |a(x, y)|  Mkxk kyk
pour tout x, y 2 H.

ii) la forme sesquilinéaire a est coercive, i.e. il existe c > 0 tel que |a(x, x)| > ckxk2 pour
tout x 2 H.

Alors pour tout forme linéaire continue � sur H, il existe un unique x 2 H tel que

8y 2 H, �(y) = a(x, y).

De plus kxk  k�k/c.

Preuve.— Pour tout x 2 H, la forme linéaire y 7! a(x, y) est continue. D’après le théorème
de Riesz, il existe un unique A(x) 2 H tel que

8y 2 H, a(x, y) = A(x) · y.
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L’application A : x 7! A(x) est anti-linéaire puisque, pour tout y 2 H,

A(↵
1

x
1

+ ↵
2

x
2

) · y = a(↵
1

x
1

+ ↵
2

x
2

, y) = ↵
1

a(x
1

, y) + ↵
2

a(x
2

, y) = (↵
1

A(x
1

) + ↵
2

A(x
2

)) · y.

L’application A est aussi continue puisque kA(x)k  Mkxk.
Soit maintenant � une forme linéaire continue sur H. Encore avec le théorème de Riesz, il
existe z 2 H tel que

8y 2 H,�(y) = z · y.

Donc il s’agit de résoudre l’équation A(x) = z pour z 2 H donné, et on va montrer que A est
une bijection sur H.

Puisque a est coercive, on a

ckxk2  |A(x) · x|  kA(x)k kxk,
donc

(6.2.9) kA(x)k � ckxk,
ce qui montre que A est injectif.

De plus ImA est un sous-espace fermé de H. En e↵et, si (yj) 2 Im A converge vers y dans H,
notant yj = Axj , on a grâce à (6.2.9)

ckxp � xqk  kyp � yqk,
donc (xj) est une suite de Cauchy. Puisque H est un Hilbert, elle converge vers un certain
x 2 H et puisque A est continue, on a

y = lim
j!+1

yj = lim
j!+1

A(xj) = A( lim
j!+1

xj) = Ax.

Donc y 2 Im A.

Maintenant si x 2 (Im A)?, on a 0 = |A(x) · x| � ckxk2, donc (Im A)? = {0}, et Im A = H.

Proposition 6.2.14 Soit ⌦ ⇢ Rn un ouvert borné. Pour tout f 2 H�1(⌦), l’équation �u =
f admet dans l’espace H1

0

(⌦) une unique solution.

Preuve.— L’équation �au = f dans D0(⌦) signifie

(6.2.10) 8� 2 C1
0

(⌦), h�au,�i = hf,�i.
ou encore

8� 2 C1
0

(⌦),
X

i,j

hu, @i(aij(x)@j�)i = hf,�i.

Pour u 2 H1

0

(!), cela équivaut à

8� 2 C1
0

(⌦),
X

i,j

Z

⌦

aij(x)@iu(x)@j�(x)dx = �hf,�i.
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On note alors a(u, v) la forme sesquilinéaire sur H1

0

(⌦)⇥H1

0

(⌦) définie par

a(u, v) =
X

i,j

Z

⌦

aij(x)@iu(x)@jv(x)dx,

et � la forme linéaire sur H1

0

(⌦) donnée par �(v) = �hf, vi. L’équation (6.2.10) s’écrit

8� 2 C1
0

(⌦), a(u,�) = �(�),

et l’on veut montrer qu’elle admet une unique solution u 2 H1

0

(⌦). Il su�t pour cela de
prouver que a est continue et coercive.

La continuité découle facilement du fait que les aij sont bornées. Pour la coercivité, on a,
d’abord pour u 2 C1

0

(⌦), puis, par densité, pour u 2 H1

0

(⌦),

|a(u, u)| � Re a(u, u) =
Z

⌦

Re

0

@
X

i,j

ai,j@ju@iu

1

A dx � c

Z

⌦

X

j

|@ju|2dx.

Il reste donc à établir que Z

⌦

X

j

|@ju|2dx � kuk2H1

,

ce qui est une conséquence immédiate du Lemme de Poincaré.
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