Chapitre 6

Espaces de Sobolev

On veut distinguer parmi les distributions (tempérées) celles qui sont plus régulieres, par
exemple données par des fonctions C*¥. On a vu que plus f est réguliere, plus f décroit
rapidement a l'infini, par exemple puisque

1€% Fll 2 = |1 D* f| 2

On aurait aussi pu écrire |2 f|| L~ < |[D*f||1, mais on va tirer parti de maniére essentielle
de la structure d’espace de Hilbert de L?(R™).

6.1 Espaces de Sobolev sur R"

6.1.1 Définitions

Pour £ € R", on note (£) = /1 + |£|2. La fonction & — () est C*°, et il existe une constante
C > 0 telle que

Zlél <€) < Ol

Autrement dit (£) est une version régularisée de |£| qui & le méme comportement & 'infini.

Définition 6.1.1 Soit s € R. On dit qu'une distribution tempérée u € S’'(R™) appartient a
HS(R™) lorsque @ € L} et (€)%a € L*(R™).

Remarque 6.1.2 La distribution u € S’'(R™) est dans H*(R") si et seulement si il existe une
fonction g € L%(R") telle que & = {¢)~%g.

Exemple 6.1.3 i) 6o € H*(R") si et seulement si s < 5*. En effet o = 1 donc (€)%, €
L?(R"™) si et seulement si 25 > —n.
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~

ii) Les fonctions constantes ne sont dans aucun H?*(R"™), puisque C' = Cdp n'est pas une

. 1
fonction L.

Proposition 6.1.4 La forme bilinéaire (-,-)s sur H%(R™) x H*(R™) définie par

(u.0). = (€)°a,(€°0)12 = [ a(©TTEE)de
est un produit scalaire hermitien qui fait de H*(R™) un espace de Hilbert. On note

lulls = V/(u, u)s = (€)%l 2

la norme associée.

Preuve.— Soit (u;) une suite de Cauchy de H*(R"). La suite (({)*0) est une suite de
Cauchy de L?, donc converge vers un v € L%. Soit alors u la distribution tempérée définie par
u=F1{&)7%0). On a @ = (£)~*v avec v € L%, donc u € H*(R"), et

|lu; —ulls = [|(€)°t; — v||p2 — 0 quand j — +o0.

Donc (u;) converge dans H*(R™). O

Il est important de noter que H°(R") = L?(R"), ou I’égalité a lieu entre espace de Hilbert.
On a aussi
s1 < s = H”(R") — H*'(R")

puisque (£)*1 < (£)°2, ou le symbole — désigne une injection continue. Les H® forment donc
une famille décroissante d’espaces de Hilbert. En particulier, pour s > 0, on a H*(R") C
L?(R™). On a méme la

Proposition 6.1.5 (Interpolation) Soit so < s < s trois réels. Pour v € H*(R")NH**(R"),
onaué€ H5R") et
—0 0
lalls < el

817

ou 0 € [0, 1] est défini par s = (1 — 0)sg + 0s;.

Preuve.— On écrit simplement

wmz/@%W%z/wﬂ”mwm”mw%w%%

et on applique l'inégalité de Holder avec p = 1/(1 — ) et ¢ = 1/6. O

On voit apparaitre la notion de régularité que I'on cherche dans la proposition qui suit : plus
on dérive (donc moins l'objet que I'on considere est régulier), plus I'on descend dans ’échelle
des espaces de Sobolev.
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Proposition 6.1.6 Si v € H3(R"), alors 9%u € H*~l*I(R").

Preuve.— Soit u € H*(R™). On a @ = £;4, donc 5J\u est une fonction L} . De plus

1€) 1 95ull 2 = 1€)° ¢ il 2 < CII(E) il e,
ce qui montre que d;u € H*1(R"). Le cas général s’obtient par récurrence sur |a/. O

Voici une autre illustration du fait que les éléments des H® sont de plus en plus singuliers
quand s diminue.

Proposition 6.1.7 Soit T' € £'(R™) une distribution a support compact. Si p > est |'ordre
de T, alors T' € H*(R") pour tout s < —p — 5-

Preuve.— Pour T € £'(R"), on sait que T' € C*° C L} . De plus

loc*

(T = (& (Tuy e ™) < CLE* Y sup|dg (e %) < C(6)**7

la|<p

Donc T' € H*(R™) des que 2(s + p) > —n. O

6.1.2 Densité des fonctions régulieres

Proposition 6.1.8 Pour tout s € R, S(R™) est dense dans H*(R").

Preuve.— D’abord, 'application S(R") 3 u — (£)°u € S(R™) est une bijection pour tout
s € R. En particulier si u € S(R"), (¢)*a € S(R") C L*(R"), donc S(R™) C H*(R").

Soit alors u € H*(R") telle que u € S(R™)*. Pour toute fonction ¢ € S(R™), on a
0= (u,8)s = ((€)", (§)°9) 2.

Donc pour tout ¢ € S(R™), on a ((£)*@, )2 = 0. Comme S(R™) est dense dans L?(R™) (cf.
le Corollaire 5.1.8), cela entraine u = 0. Ainsi

SR") = (S(R™)1)* = {0} = H*(R").
O

Remarque 6.1.9 On a donc S(R") C NgerH*(R™), mais I'inclusion inverse est fausse. Par

exemple, en dimension 1, si u(z) = —L5 on a (¢) = e I, donc u € H*(R) pour tout s € R,

1+22
mais u ¢ S(R™).
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Proposition 6.1.10 Pour tout s € R, C5°(R") est dense dans H*(R").

Preuve.— Puisque S(R") est dense dans H*(R"), il suffit de montrer que C§°(R") est dense
dans S(R™) pour la norme H*(R™). On raisonne par troncature : soit x € C5°(R") telle que
x = 1 sur B(0,1). Pour £ € N, on pose xi(z) = x(x/k). On a

e — lls <( / (€)2101(6) — d(e)Pde)?
<sup (1 H2(30(6) — SN[ (©) Vg

—

< CNp(Cbk‘ - ¢) < CNp+n+1(¢k: - Cb)a

oup € Nest tel que p> s+ (n+1)/2. On a vu dans la preuve de la Proposition 5.1.9 que,
pour tout g, Ny(¢p — ¢) — 0 quand k — +o0. O

6.1.3 Multiplicateurs de H*®

Proposition 6.1.11 Soit ¢ € S(R™). La multiplication par ¢ est une opération continue dans
H*(R™).

Preuve.— Pour ¢ € S(R") et u € H*(R"), on a ¢u € §'(R™) et, d’apres la Proposition 5.6.6,

b+ d = ot = 2m) .

En appliquant la transformation de Fourier inverse F~! = (2%)_"‘7: , et en multipliant par
(€)*®, on obtient

(€)5du = (2m) (€)% * i

Donc pour ¢ € C§°(R™), on a

() Bu, ) = (2m) ™™ * 1, (€)™ = (2m) " (i1, & % ({€)*)).

Or (n)*@ est dans L?(R"), et (n)_s(g * ((€)%1)) est une fonction de S(R™), donc

o~

oLy (@) =@ [wrae( o) dE - @)

On veut échanger les intégrales. Pour cela on doit montrer que la fonction

~

g (&m) = ) a(n){n) o —n)(§)*¥(§)

appartient & L'(R?"). On a besoin du
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Lemme 6.1.12 (Lemme de Peetre) Pour (£,7) € R??, et pour tout s € R, on a

(€)° < 2926 —n)ll(n)*.

Preuve.— (du Lemme de Peetre) En échangeant £ et n on voit qu’il suffit de prouver
I'inégalité pour s > 0. Or dans ce cas

(€)= (L+[EP)? = M+ 1€ —n+nl*)*? < (L+20& =l +2n*)** < 2°7%(¢ = n)*(n)*,

par exemple en développant le terme de droite. O

Revenons a la proposition. Avec le lemme de Peetre, on a

g€, m)| < 22y [a(m)€ —mPloE —n)l [ ().

Donc
(6.1.2) / / lg(&,m)|dedy < 25V / () () 1a] * (n)*!|B]) (€)de.

Comme (n)|a| € L? et (n)ls!|¢| € L' (entre autres), 'inégalité de Young dit que le produit
de convolution de ces fonctions est dans L2, et, puisque 1) € L?, on a bien g € L!(R?").

L’équation (6.1.1) donne donc

(& au ) = @07 [w(©( [ )€t a(¢ — ndn)

et
() Fu(€) = / () 4() (€)° ()~ D(E — ),

que 'on vient de montrer étre une fonction L2. Donc ¢u € H*(R"), et on extrait facilement
de (6.1.2) que
gulls < 251721 n) #1311

6.1.4 Injections de Sobolev

Les résultats ci-dessous peuvent étre vus comme une réponse a la question ”qu’est-ce qui
n’est pas dans H*(R™)”, ou encore comme un pas supplémentaire dans la description de la
régularité des distributions tempérées.

On note C* ,(R™) I'espace des fonctions C¥ sur R™ qui tendent vers 0 & I'infini ainsi que toutes
leurs dérivées d’ordre < k.
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Proposition 6.1.13 Si s > % + k, alors H*(R") — CF ;(R™).

Preuve.— Soit u € H*(R"). Pour a € N" avec |a| < k, on a £%4 € L'. En effet

EE
BE

et (€)F= € L2(R™) puisque —2(k — s) > n. On a donc, par Cauchy-Schwartz,

1€%a(E)] (©)°la(€)l < (") la)l,

(6.1.3) €%l 1 < Csmllulls.

Ainsi D% = F~1(¢%a) € C°,, d’apres la Proposition 5.4.10, et la continuité de I'injection de
H*(R™) dans C* ,(R™) n’est quune autre maniere de formuler les inégalités

Vla| <k, [|D%l|ze < [[€%0] 1 < Conllulls.

Proposition 6.1.14 Soit s > 5. Si u,v € H*(R"), alors uv € H*(R") et il existe une

constante C > 0, telle que, pour tout u,v € H*(R"),

[uvls < Csflulls]lvlls-

Preuve.— La proposition précédente dit que u et v sont des fonctions continues, donc le
produit uv est bien défini. On a d’abord u,v € L? N L™, puisque s > 0 d’une part, et puisque
u et v sont des fonctions continues qui tendent vers 0 a l'infini. Du coup f = wuwv est une
fonction de L' N L, et on a f = (2) @ * 0. Donc

113 = 2m > [(%1a v (@) < my [ ( [(@¥late —mllotnlan) e

Or puisque s > 0, on a (a + b)* < 25(a® + b%) pour tout (a,b) € RT. En écrivant I'inégalité
triangulaire, on obtient facilement

(€ <2°((€ —m)> + (m)°)-

L’inégalité précédente donne alors
2 —2no2s S|4 ~ ~ S| 2
1712 < @m) =222 [ (] (e = m)lace = )l )] + a(§ = m)lm* o(n)ldn ) "dg
2 2
< (2t [ [t mtate = llodn)+ ( [ 1a(e - nln*lo(mldn) de
< (2m) 7222 ([ n)*lal = [o]l172 + Nl * (n)°]o]][72)
L’inégalité de Young dit que, pour le premier terme par exemple,

K=l = [o[[1Z2 < Im*lalliZ2 0]z < Csllull 2012,
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en utilisant aussi (6.1.3). Le second terme se traite de le méme maniere, et 'on obtient bien

IF1IZ < Cllulllvll3.

Proposition 6.1.15 Pour p > 2 et s > n(1 — %) on a H*(R™) — LP(R"™). Précisément, il
existe une constante C), 5, > 0 telle que

Vu € H*(R"), [[ullr < Cnsp

Julls-

Remarque 6.1.16 i) Une fagon équivalente de formuler les conditions ci-dessus liant s, p et

n est
2n

n—23'

0§s<§,2§p<

Autrement dit, les deux propositions précédentes donnent ensemble une idée de la nature
des éléments de H*(R™) pour tout s > 0.

ii) Ces énoncés sont les meilleurs possibles. En particulier, H™/2(R™) n'est pas inclus dans
L>®(R™) (donc pas dans C° ), ce qui est la cause d'un certain nombre de difficultés tech-
niques.

Preuve.— On 'admet. O

6.1.5 Dualité H*(R")/H*(R")

On s’intéresse maintenant de plus pres aux espaces de Sobolev d’ordre négatif. Une fagon
souvent commode de traiter 'espace H5(R™) avec s > 0, consiste & le considérer I’espace des
formes linéaires continues sur H*(R"™). On a effet la

Proposition 6.1.17 Soit s € R, et u € H %(R"). La forme linéaire L,, définie sur S(R™) par

Lu(¢) = (u,¢),

se prolonge de maniére unique en une forme linéaire continue sur H*(R"™). De plus I'application
L : uw L, est un isomorphisme bicontinu de H*(R") dans (H*(R™))’.

Preuve.— Tout d’abord, pour ¢ € S(R"), on a

(6.1.4) [ Lu(@)] = [{u, @) < (2m) 7" ||ull s[5

ce qui, compte tenu de la densité de S(R™) dans H*(R"™) donne le premier point.
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On montre maintenant que L est bijective. Elle est clairement injective, puisque
Vo € S(R"), Lu(d) = 0 +=¥6 € SEY), [(©)*a(e)(€)°d(6)dg =0
v e SR, [ (O u(Ou(E)ds =0

<—=u = 0.
Soit ® € (H*(R™))’"; on cherche v € H—*(R") telle que L, = ®. Soit ¥ la forme linéaire sur
L?*(R™) définie par
U(f) = 2(F () F)).
On a, pour tout f € L%(R"),

[T < CIFHEO T Hlls < Ol e

donc ¥ est continue sur L*(R™). Par le théoréme de Riesz, il existe g € L2(R") telle que

(f) = (9. )2, et on pose u = F({€)"g). On a
()7 a = (2m)™€)7*(€)°g € L*(R"),
donc u € H~*(R™). De plus pour ¢ € S(R"),

Lu() = (u, ) = / (€)°g(©)D(E)dE = T((£)°B) = B(4).

Donc L est surjective. Enfin la continuité de L : u — L, provient de (6.1.4) :

[Lull = sup  [Lu(9)] < (2m)""[Jul| s,
dEH?,||plls=1
et celle de L™ est automatique puisque I'on travaille dans des espace de Banach. O

6.1.6 Trace d’un élément de H*(R"), s > 1/2

Lorsqu’une fonction f est continue, il n’y a aucune difficulté pour définir sa restriction a une
hypersurface, par exemple en utilisant une paramétrisation de celle-ci : la restriction de f a
I'hypersurface x,, = 0 de R™ est la fonction «(f) : R"~! — C définie par

(6.1.5) YN x1, .o 1) = f(z1, ..., 20—1,0).

Il n’y a a priori rien d’équivalent pour les fonctions définies presque partout, puisqu’une
hypersurface est de mesure nulle. Lorsque u est dans un espace de Sobolev d’ordre pas trop
petit, sans pour autant étre une fonction continue, on peut néanmoins donner un sens a cette
restriction.

Proposition 6.1.18 Pour tout s > 3, I'opérateur v : S(R”) — S(R""!) défini par (6.1.5)
s'étend de maniére unique en un opérateur linéaire continu et surjectif de H*(R™) dans
Hs—l/Z(Rn—l)_

Notes du cours D4AMA1U2, année 2011/2012. Version 1.03. Thierry Ramond



CHAPITRE 6. ESPACES DE SOBOLEV 73

Preuve.— On veut montrer qu'il existe une constante C' > 0 telle que pour tout ¢ € S(R"),

(6.1.6) V() g2y < Cllblzs .

L’existence de I'unique prolongement continu de vy découlera alors de la densité de S(R™) dans
H*(R™).
Pour ¢ € S(R™), on peut écrire
NO)@) = $,0) =Figle,) 200 (9(E &) = (2m)7" / / G &) dE ey
= (2m)~ "V [ ( / o & d£n> dg’.

Donc, dans S(R™1),

En particulier

V(@) (E)? <

o 19 I 6 < o (@10 6P x [ (67 as,

Or, en posant &, = (1 + [€'|?)!/2 on obtient

1
—25d n = d n
/ (&) de / AT e e

1 !
:/ GrEea ey LR
(6-1.7 =)0 [ s = ey,
Ainsi - .
[ e < = [@*iora

c’est-a-dire (6.1.6).

Il reste & montrer la surjectivité. On va exhiber pour cela un inverse a droite R de ~. Pour
v e H=Y2(R" 1), on pose

1 <€,>2N !
u(z) = Rv(z) = Few <KN<§>2N+1U(€ )) ,
ou N € N et Ky > 0 seront fixés plus loin.

On a

4N
Jul? = / > K2, <§§4>N+2 8(e)|2de < K2 / (€N o (e / (6)2 N2, )de!

<K,C / (&> Ho(E) P < KnCllolFemijo@n1y,
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ou l'on a utilisé (6.1.7), en choisissant N > s/2 — 1/4 pour que l'intégrale converge. Donc R
envoie bien H*~1/2(R"~1) dans H*(R").

On calcule alors

— I\2N
WEDE) =5 / Roe' &) = 25 [ Edroteae,
( Vs € [l g, =

o(¢) = 0(¢),
en choisissant Ky = 27/Cy, ou Cy est la constante dans (6.1.7). Donc v o R = Id. O

6.2 Espaces de Sobolev sur )

6.2.1 Espaces de Sobolev d’ordre entier sur R”

On commence par quelques remarques simples : pour k € N les éléments de H*(R™) peuvent
étre caractérisés par

u € HY(R") <= Va € N |a| < k,9%u € L*(R").

En effet
& a7 = [ (1+ [P |aE)Pde = £ a(&)2d¢
" / | |<k /
k! T
.a% / a()EaE)de
k!l —— k!
(6:28) = 3 GIDmulk = Y Siptult:
laj<k lol<k

Donc (€)% € L*(R™) si et seulement si || D%ul| 2 < +o0o pour tout |a| < k.

L’égalité (6.2.8) dit méme davantage :

Proposition 6.2.1 Pour k € N, I'espace de Hilbert (H*(R"), (-,-)s) est égal a I'espace
{u € S'(R"), Yo € N", 9% € L*R"}

muni du produit scalaire

(w,0)r = > (0u,00) 2

lal <k

On notera ||[ul|gx = v/((u,u)); la norme associée, qui est donc équivalente a la norme || - [|.

Pour les entiers négatifs, en utilisant la Proposition 6.1.17, et la densité de C5°(R"™) dans
H¥(R™), on obtient la caractérisation suivante :
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Proposition 6.2.2 Soit k € N. L'espace H¥(R") est I'espace des formes linéaires u sur
HF(R™) telles qu'il existe une constante C' > 0 pour laquelle

Vo € Co (R™), [{u, ¢)| < C||o| -

6.2.2 Espaces de Sobolev d’ordre entier sur ()

Un des intéréts principaux de ces remarques, est qu’elles permettent de définir une échelle
d’espaces de Hilbert, qui doit permettre de mesurer la régularité des distributions, sans recours
a la transformation de Fourier. En particulier, pour k € Z, on peut parler d’espace de Sobolev
d’ordre k sur n’importe quel ouvert 2 C R™.

Définition 6.2.3 Soit 2 C R™ un ouvert, et k € N. On dit que u € D'(R"™) appartient a
I'espace H¥(§2) lorsque pour tout |a| < k, 0%u € L?(R™). On note (-,-) la forme bilinéaire
définie sur H*(Q) x H*(Q) par

(u,v) = Z (0%, 0%) 2.

| <k

Proposition 6.2.4 Muni du produit scalaire hermitien (-,-);, I'espace H*() est un espace
de Hilbert.

Preuve.— Soit (u;) une suite de Cauchy de H¥(Q). Pour chaque |a| < k, la suite (0%u;)
est une suite de Cauchy de L?, donc converge vers un v, € L?. En particulier u; — vo dans
D'(Q), donc d%uj — 0%y = v € L*(Q), et (uj) — vo dans H¥(Q) O

Lorsque €2 # R™, I'espace des fonctions test C§°(£2) n’est pas toujours dense dans H*($2). On
est donc conduit a la

Définition 6.2.5 On note H}(Q) I'adhérence de C5°(92) dans H¥(f2). C'est un espace de
Hilbert.

Exemple 6.2.6 Soit I =] — a,a[€ R. On va décrire H(I) et H}(I).

Notes du cours D4AMA1U2, année 2011/2012. Version 1.03. Thierry Ramond



CHAPITRE 6. ESPACES DE SOBOLEV 76

— Pour f € HY(I), on a f" € L*(I) C L'(I). Donc la fonction g : I — C définie par
g(z) = [ [(t)dt

est continue. De plus ¢’ — f’ = 0 donc la distribution g — f est constante. Comme g se prolonge
en une fonction continue sur [—a,a], f aussi.
— La fonction = +— |f(x)| est continue sur [—a,a], donc atteint son minimum en b € [—a,al.

Comme
2l = [

—a

a a

U%Wﬁgflﬂm%a

—a

on a v2a|f(b)] < | fllz2. Enfin puisque

ﬂm:ﬂw+Lﬁww,

on obtient

WMSQ%wm+wmwmsmmm.

En particulier la forme linéaire §, est continue sur H*(I).

- HY(I)={f € H'(I), f(—a) = f(a) = 0}. En effet on a vu que les formes linéaires d., sont
continues sur H'(I), et sont nulles sur C5°(I). Donc si f € HZ(I), on a f(—a) = f(a) = 0.
Réciproquement, soit f € H!(I) vérifiant f(a) = f(—a) = 0. Soit aussi g la fonction qui
vaut f sur [—a,a] et 0 ailleurs. On a ¢’ = f'1; — a,a], donc ¢’ € L*(R), et g € H'(R). Pour
A < 1, la suite gy = g(x/)\) tendent vers f dans H'(I) quand A — 1, et sont a support dans
[—aX,a\] C I.Si (x.) est une approximation de l'identité, gy * x. appartient a C3°(I) pour
€ > 0 assez petit, et converge vers g, dans H'(R). Donc g\ € Hi(I) et f € HE(I).

Remarque 6.2.7 L'orthogonal F' de H}(2) dans H'(f2) est le sous-espace constitué des fonc-
tions f telles que
(1—A)f =0dans D'(Q).

En effet la fonction f appartient a F' si et seulement si pour tout u € Hol(Q) et par densité pour
toute u € C§°(92),

Oz(f,ﬁ)Hl:/qudx+2/ﬂajf8judx:<f—Af,u>.
j=1

Définition 6.2.8 Soit & € N. L'espace H *(Q) est I'espace des formes linéaires u sur
HE(Q) telles qu'il existe une constante C' > 0 pour laquelle

Vo € 5o (), [{u, ¢)| < Cl|o]| -

On note ||u|| -+ la plus petite constante C' possible dans I'inégalité ci-dessus.
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Exemple 6.2.9 Si f € L*(Q2), on a 9;f € H1(Q). En effet, pour ¢ € C§°(£2), on a

0 f, 9)| = ([, ;)] S/If |0j¢ldx < [ fll 2ol mr-

On a d'ailleurs au passage ||0; f| g-1 < || fllz2-

On peut en fait démontrer le résultat suivant

Proposition 6.2.10 Soit k& € N. Une distribution u € D'(Q) appartient 3 H*(Q) si et
seulement si il existe des fonctions f, € L*(Q) telles que

U= Z 0% fa.

| <k

6.2.3 L’inégalité de Poincaré

Proposition 6.2.11 Soit 2 C R™ un ouvert, borné dans une direction. Il existe une constante
C > 0 telle que

Yu € Hé(Q),/ lu|?dx < C’/ |Vu|?dz.
Q Q

Preuve.— L’hypothese signifie qu’il existe R > 0 tel que, par exemple Q2 C {|z,| < R}. Pour
¢ € C°(R™), on a alors

¢($/,$n) = /1[R,xn](t)an¢(x/at)dt'
En utilisant Cauchy-Schwartz, on a alors

R
6(a’, )2 < 2R / 10,00 ).

On integre cette inégalité sur 2, et on obtient

R R
/ 2 / 2 /
/ﬂ]d)(a:,mnﬂ dx < QR/RAn_I/R\8n¢(x,t)| dtdx,dx

g4R2/\an¢(x)|2dx < 4R2/yv¢(x)2dx.

On obtient alors le résultat dans H} () par densité. O

Remarque 6.2.12 L'inégalité de Poincaré n'est pas vraie pour les u constantes non-nulles, qui
n'appartiennent donc pas 3 H}(Q2) pour Q borné (dans une direction).
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On notera que 'inégalité de Poincaré entraine que pour un ouvert borné (au moins dans une
direction), l’application
(0%
w0 ][0%u 2,

|a|=F

est une norme sur H¥(Q) équivalente & la norme | - || gx.

6.2.4 Le probleme de Dirichlet

On termine par la résolution du tres classique probleme de Dirichlet dans un ouvert £2 borné
de R™. Soit (ai;j(x))i<ij<n une famille de fonctions de L°°(£2). On suppose que la matrice
A = (ai;) est symétrique, i.e. que a;; = aj;, et qu’il existe une constante ¢ > 0 telle que

— 1
Vo € QVE € C", el < Re() ] ai(2)65) < ~[¢f

i?j

On note alors A, l'opérateur différentiel

Au(f) = Z 9i(a;;(2)0;f)

ij=1
Lorsque A = Id, A, n’est autre que le Laplacien habituel.
Pour f € H}(Q), A, f abien un sens et appartient & H—1(Q), puisque 0;f € L? et a;;0; f € L?,
donc 9;(a;;0;f) € H1(Q). On va montrer que, pour Q borné, A, est un isomorphisme de

H}(Q) dans H~1(Q). Pour prouver ce résultat, on va utiliser un résultat général abstrait qui
a un intéret en lui-méme.

Proposition 6.2.13 (Théoreme de Lax-Milgram) Soit H un espace de Hilbert sur C, et
a(x,y) une forme sesquilinéaire sur H (anti-linéaire par rapport a x et linéaire par rapport a y).
On suppose que

i) la forme sesquilinéaire a est continue, i.e. il existe M > 0 tel que |a(z,y)| < M||z| ||yl
pour tout z,y € H.

i) la forme sesquilinéaire a est coercive, i.e. il existe ¢ > 0 tel que |a(z,z)| > c||z||* pour
tout x € H.

Alors pour tout forme linéaire continue ® sur H, il existe un unique x € H tel que
Vy € H, ®(y) =a(z,y).

De plus [lz] <[]/

Preuve.— Pour tout x € H, la forme linéaire y — a(x,y) est continue. D’apres le théoreme
de Riesz, il existe un unique A(x) € H tel que

Vy € H, a(z,y) = A(z) - y.
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L’application A : x — A(x) est anti-linéaire puisque, pour tout y € H,

Aloqzy + aoxa) -y = a(oaz1 + oz, y) = ara(ry, y) + awa(ze,y) = (arA(z1) + a2A(z2)) - y.

L’application A est aussi continue puisque ||A(z)|| < M||z||.

Soit maintenant ® une forme linéaire continue sur H. Encore avec le théoreme de Riesz, il
existe z € H tel que
Yye H,®(y) =z-y.

Donc il s’agit de résoudre ’équation A(x) = z pour z € H donné, et on va montrer que A est
une bijection sur H.

Puisque a est coercive, on a
cllzl* < [A(z) - x| < [[A@)[| ],
donc
(6.2.9) [A@)]| = |z,
ce qui montre que A est injectif.

De plus Im A est un sous-espace fermé de H. En effet, si (y;) € Im A converge vers y dans H,
notant y; = Ax;j, on a grace a (6.2.9)
cllzp — zqll < llyp — yqll,

donc (z;) est une suite de Cauchy. Puisque H est un Hilbert, elle converge vers un certain
x € H et puisque A est continue, on a

y= lim y; = lim A(x;) = A( lim z;) = Ax.

Jj—+oo Jj—+oo Jj—+oo
Donc y € Im A.
Maintenant si x € (Im A)*, on a 0 = |A(x) - z| > c||z?, donc (Im A)*+ = {0}, et ImA = H. O

Proposition 6.2.14 Soit 2 C R™ un ouvert borné. Pour tout f € H~(Q), I'équation Au =
f admet dans I'espace H}(£2) une unique solution.

Preuve.— L’équation A,u = f dans D'(Q) signifie
(6.2.10) Vo € C5°(Q), (Auu, d) = (f, ¢).

ou encore
Vo € C5o(Q), D (u, di(aij(2)0;0)) = (f, ¢)-
i,J

Pour u € H}(w), cela équivaut &

¥ € (@), 3 | au(@diut@)oilade = ~(£.0)
i,J
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On note alors a(u,v) la forme sesquilinéaire sur H}(Q) x H{(Q) définie par

a(u,v) = ai;(x)Ou(z)d;v(zr)de,
2 Je ;

et ® la forme linéaire sur H{ () donnée par ®(v) = —(f,v). L’équation (6.2.10) s’écrit

Vo € C° (), a(u, ¢) = (¢),

et 'on veut montrer qu'elle admet une unique solution u € H}(€2). 1l suffit pour cela de
prouver que a est continue et coercive.

La continuité découle facilement du fait que les a;; sont bornées. Pour la coercivité, on a,
d’abord pour u € C§°(£2), puis, par densité, pour u € HJ (L),

la(u,u)| > Rea(u,u) = / Re E a; jOjudiu | dx > c/ E |0jul*dz.
i.j J

Il reste donc a établir que

/ S 05ul2ds > [lull2s,
&y

ce qui est une conséquence immédiate du Lemme de Poincaré. O
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