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Abstract. Zd-extensions of probability-preserving dynamical systems are themselves dynamical systems
preserving an infinite measure, and generalize random walks. Using the method of moments, we prove a
generalized central limit theorem for additive functionals of the extension of integral zero, under spectral
assumptions. As a corollary, we get the fact that Green-Kubo’s formula is invariant under induction. This
allows us to relate the hitting probability of sites with the symmetrized potential kernel, giving an alternative
proof and generalizing a theorem of Spitzer. Finally, this relation is used to improve in turn the asumptions
of the generalized central limit theorem. Applications to Lorentz gases in finite horizon and to the geodesic
flow on abelian covers of compact manifolds of negative curvature are discussed.

Introduction

Given a random walk (Sn) on Zd, a natural question is how much time the walker spends in any region
of the space – the so-called occupation times. More generally, one may choose an observable f : Zd → R,
and consider the Birkhoff averages n−1

∑n−1
k=0 f(Sk). When f is summable and the walk is well-behaved, it

is known that a−1
n

∑n−1
k=0 f(Sk) converges in distribution to a Mittag-Leffler random variable, for well-chosen

coefficients (an)n≥0 [44]. This behaviour generalizes to null-recurrent Markov processes [20, 1].
When f has integral zero, this family of results is not sharp enough, and we must look at a higher order.

In the same way that a central limit theorem replaces the weak law of large numbers, one can get a general-
ized central limit theorem for observables of null-recurrent Markov processes. Typically, a−1/2

n
∑n−1

k=0 f(Sk)
converges in distribution, with an explicit limit. The story of these central limit theorems starts from Do-
brushin [22] where (Sn) is the simple random walk on Z. Then these results were generalized to Markov
processes [40, 35, 37], and later included invariance principles [36, 9, 10].

In this article, we are interested not in Markov processes, but in a family of dynamical systems preserving
an infinite measure: Zd-extensions, which are a generalization of random walks. Starting from a dynamical
system preserving a probability measure (A,µ, T ) and a function F : A→ Zd, we work with the transforma-
tion T̃ : (x, p) 7→ (T (x), p+ F (x)) on A× Zd. This class of systems include random walks on Zd, as well as,
for instance, Lorentz gases [14, 13] and the geodesic flow on abelian covers of complete manifolds [38, 57, 52].
Given an observable f : A× Zd → R, we want to understand the limit in distribution of

∑n−1
k=0 f ◦ T̃ k.

In two previous works by the second-named author [63, 64], adapting previous methods [17, 18, 19], the
case where (A,µ, T ) is a Gibbs-Markov map was investigated. In the current article, we are able to get
a generalized central limit theorem only under spectral hypotheses on the transfer operator of the system
(A,µ, T ), as long as the observable f(x, p) only depends on p and decay fast enough at infinity. This is
Theorem 1.4, which we prove using the method of moments (an approach which, to our knowledge, is new
for this problem), and apply to Lorentz gases with finite horizon.

An interesting corollary of Theorem 1.4 and [64, Theorem 6.8] is that, for Zd-extensions of Gibbs-Markov
maps, Green-Kubo’s formula – which appears as the asymptotic variance in the central limit theorem – is
invariant under induction. This is the content of Corollary 1.13. By choosing the observable f carefully, in
Theorem 1.7 we are able to related the probability that an excursion from A×{0} hits a site A×{p}, and the
symmetrized potential kernel associated to the Zd-extension. Our proof relies on the first hitting time of small
target statistics. This method provides a new proof of an earlier proposition by Spitzer [59, Chap. III.11,
P5], and generalizes it to Zd-extensions (for which harmonic analysis as used in [59] does not make sense).
Finally, the estimates from Theorem 1.7 are used to relax the assumptions from [64]: in Theorem 1.11, the
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observables need only to decay polynomially at infinity, instead of having bounded support. We apply it to
the geodesic flow on abelian covers of compact manifolds with negative curvature.

This article is organized as follow. We present our setting and our results in Section 1, as well as our
applications to Lorentz gases (Sub-subsection 1.4.1) and to geodesic flows (Sub-subsection 1.4.2). In Section 2
we present our spectral assumptions, and prove Theorem 1.4 using the method of moments. In Section 3 we
prove Theorems 1.7 and 1.11, and in Section 4 the two applications mentioned above. We discuss Green-
Kubo’s formula in the Appendix.
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1. Main results

1.1. Setting and goals. We consider conservative ergodic dynamical systems given by Zd-extensions of
probability-preserving dynamical systems, where the underlying dynamical system is sufficiently hyperbolic
and d ∈ {1, 2}. We shall deem a system hyperbolic enough if its transfer operator satisfies good properties.
For some applications, we use the stronger assumption that the underlying dynamical system is Gibbs-
Markov.

Let (A,µ, T ) be a probability-preserving dynamical system. Let F : A → Zd with d ∈ {1, 2} be a µ-
integrable function such that

∫
A F dµ = 0. The Zd-extension (Ã, µ̃, T̃ ) of (A,µ, T ) with step function F is

the dynamical system given by:
• Ã := A× Zd;
• µ̃ :=

∑
p∈Zd µ⊗ δp;

• T̃ (x, p) = (x, p+ F (x)).
Note that T̃ preserves the infinite measure µ̃. We shall always assume that (Ã, µ̃, T̃ ) is ergodic. If (A,µ, T )
has a Markov partition π, we may also asume that the step function F is σ(π)-measurable – that is, constant
almost everywhere on elements of the partition. We then say that (Ã, µ̃, T̃ ) is aMarkov extension of (A,µ, T ).

Let Sn := STnF :=
∑n−1

k=0 F ◦T k be the second coordinate of T̃n(x, 0). Heuristically, the sequence (Sn)n≥0,
under the distribution µ, behaves much like a random walk, the randomness being generated by the dynamical
system (A,µ, T ). Indeed, this family of extensions includes every random walk on Zd, as well as some
physically or geometrically interesting systems such as Lorentz gases (Sub-subsection 1.4.1) or the geodesic
flow on Zd-periodic manifolds of negative curvature (Sub-subsection 1.4.2) 1.

In the present paper, we will make assumptions ensuring the convergence in distribution of (Sn/an)n to a
Lévy stable distribution, for some normalizing sequence (an)n. Our main goals are the following:

(A) Given f : Ã→ R integrable and such that
∫
Ã
f dµ̃ = 0, we are interested in the asymptotic behaviour

of the ergodic sum

ST̃n f =
n−1∑
k=0

f ◦ T̃ k,

as n→ +∞. More precisely, we are looking for a non-trivial strong convergence in distribution:

ST̃n f

An

dist.⇒ σ(f)Y, with An :=

√√√√ n∑
k=1

a−dk , (1.1)

where σ(f) is some constant which depends on the pushforward of the measure µ̃ by (f ◦ T̃n)n≥0,
whereas the random variable Y depends only on2 the distribution of (F ◦ T k)k (with respect to µ).

1Up to some lengthy, but in our case not particularly challenging, legwork to go from discrete time to continuous time.
2Up to a constant, Y actually depends only on the index α of the Lévy stable distribution that is the limit of (Sn/an)n.
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(B) In the context of Gibbs-Markov maps, we consider the probability α(p)−1, starting from the A×{0}
endowed with the measure µ, to visit A×{p} before coming back to A×{0}. By applying the limit
theorems we have proved before to fp(x, q) := (1{p} − 1{0})(q), we are able to prove that

α(p) ∼ σ(fp)

2
as p goes to ∞,

which provides a new proof of [59, Chap. III.11, P5], and generalizes it to systems which are not
random walks.

The next sub-sections present in more details these two goals, and the precise statements we get.

1.2. Distributional limit theorems.

1.2.1. Convergence and limit distributions. When working with spaces endowed with an infinite measure,
there is no natural notion of convergence in distribution. We shall instead use the notion of strong convergence
in distribution. The reader may consult e.g. [1, Chapter 3.6] for an introduction to this notion and applications
to ergodic dynamical systems whose invariant measure is infinite.

Definition 1.1 (Strong convergence in distribution). Let (Ã, µ̃) be a measured space. Let (Xn)n≥0 be a
sequence of measurable functions from Ã to R. Let X be a real-valued random variable. We say that (Xn)
converges strongly in distribution to X if, for all probability measures ν � µ̃,

Xn →n→+∞ X in distribution on (Ã, ν).

Now that we have defined our mode of convergence, we introduce our limit objects: Mittag-Leffler random
variables, and Mittag-Leffler – Gaussian mixtures.

Definition 1.2 (ML and MLGM random variables). Let γ ∈ [0, 1]. Let X be a non-negative real-valued
random variable. We say that X follows a standard Mittag-Leffler distribution of index γ if, for all z ∈ C
(or all z ∈ B(0, 1) if α = 0),

E[ezX ] =

+∞∑
n=0

Γ(1 + γ)nzn

Γ(1 + nγ)
.

If this is the case, we shall write that X has a ML(γ) distribution.
Let X be a real-valued random variable. We say that X follows a standard Mittag-Leffler – Gaussian

mixture distribution of index γ if X =
√
Y · Z, where Y and Z are two independent random variables with

respective distribution ML(γ) and standard normal N (0, 1). If this is the case, we shall write that X has a
MLGM(γ) distribution. See [62, Chapitre 1.4] for a partial description of the MLGM distributions.

For γ = 0, these distributions take more common forms: a ML(0) distribution is an exponential dis-
tribution of parameter 1, while a MLGM(0) distribution is a Laplace distribution of parameter 1/

√
2. A

ML(1/2) random variable is the absolute value of a centered Gaussian of variance π/2.

1.2.2. Main distributional theorem. Mittag-Leffler distributions appear when one studies the distributional
convergence of the local time of null recurrent Markov processes, or chaotic enough σ-finite ergodic dynamical
systems. For the Brownian motion, the result goes back to P. Lévy [44], and to Darling-Kac’s theorem for
Markov chains [20]. We refer the reader to [46] for α-stable Lévy processes, and to [1, Corollary 3.7.3] for
dynamical systems in infinite ergodic theory. For instance [1, Corollary 3.7.3] and Hopf’s ergodic theorem [31,
§14, Individueller Ergodensatz für Abbildungen] yield:

Proposition 1.3. Let (Ã, µ̃, T̃ ) be a measure-preserving transformation of a σ-finite measure space. Assume
that T̃ is pointwise dual ergodic with return sequence (an)n (see [1, Chapter 3.5] for definitions). Assume
that (an)n has regular variation of index α ∈ [0, 1], i.e. an = n1/αL(n) for some sequence L which varies
slowly at infinity. Then, for all f ∈ L1(Ã, µ̃),

ST̃n f

an
⇒
∫
Ã
f dµ̃ · Y,

where Y is a standard ML(α) random variable and the convergence is strong in distribution.
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However, this kind of result is not sharp enough when the integral of the observable f is zero. We want
to get more precise asymptotics, that is to say, some kind of central limit theorem for observables of σ-finite
ergodic dynamical systems whose integral is 0. We need to add some regularity condition on the observable
f , as well as stronger integrability conditions – as is usual in ergodic theory, for instance to get a central
limit theorem [47, 48]. In this article, we shall prove the following result:

Theorem 1.4. Let (Ã, µ̃, T̃ ) be an ergodic and aperiodic Zd-extension of (A,µ, T ) with step function F and
α ∈ [d, 2]. Assume Hypothesis 2.1. Let (an)n be an α−1-regularly varying sequence of positive numbers and
Y be an α-stable random variable Y such that

Sn/an
distrib.⇒ Y.

Let An :=
√∑n

k=1 a
−d
k . Let β : Zd → R be such that:

•
∑

p∈Zd |p|
α−d

2
+ε|β(p)| < +∞ for some ε > 0;

•
∑

p∈Zd β(p) = 0.
Let f(x, p) := β(p). Then the following sums over k are absolutely convergent:

σ2
GK(f, Ã, µ̃, T̃ ) =

∫
Ã
f2 dµ̃+ 2

∑
k≥1

∫
Ã
f · f ◦ T̃ k dµ̃. (1.2)

Moreover,
ST̃n f√
Φ(0)An

⇒ σGK(f, Ã, µ̃, T̃ )Y, (1.3)

where Y is a standard MLGM(1 − d
α) random variable and the convergence is strong in distribution, and

where Φ is the continuous version of the density function of Y .

Under the hypotheses of Theorem 1.4, we have in addition:

σ2
GK(f, Ã, µ̃, T̃ ) =

∑
a∈Zd

β(a)2 + 2
∑
k≥1

∑
a,b∈Zd

β(a)β(b)µ(Sk = a− b). (1.4)

Remark 1.5. For a definition of aperiodicity, see Definition 3.9. It is not necessary in the statement in the
theorem, but appears as a result of Hypothesis 2.1, and we prefer to make this assumption explicit.

We do not expect aperiodicity to be necessary in the statement of Theorem 1.4, up to the necessary modifi-
cation in Hypotheses 2.1. Proving this generalization would be straightforward if f were allowed to depend on
x; however, allowing such a dependence would make the proof of Theorem 1.4 much more difficult. We choose
to leave the non-aperiodic case aside, except for a couple of later results, Theorem 1.7 and Theorem 1.11.

Theorem 1.4 shall be proved in Section 2 with the method of moments and is based on refinements of the
local limit theorem for Sn, which says that P(Sn = 0) ∼ Φ(0)an. Under our hypotheses, the normalization√

Φ(0)An is equivalent to
√∑n−1

k=0 µ(Sk = 0). See e.g. [4] for a spectral proof of the local limit theorem,
which holds under Hypotheses 2.1, and implies the equivalence of the normalizations.

In special cases, the normalization An can be made explicit:

An ∼


√

α
α−1

n
an

if d = 1 and α > 1
√

log n if d = α and an ∼ n1/α
√

log logn if d = α and an ∼ (n log n)1/α

.

1.2.3. Symmetrized potential kernel. The case when f = fp of Theorem 1.4 is especially interesting. Then
the computation of σGK(fp, Ã, µ̃, T̃ ) boils down to an estimation of the symmetrized potential kernel g of
the Zd-extension:

σ2
GK(fp, Ã, µ̃, T̃ ) = 2g(p)− 2,

with
g(p) :=

∑
n≥0

(2µ(Sn = 0)− µ(Sn = p)− µ(Sn = −p)) ,
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which is well defined under the assumptions of Theorem 1.4. We estimate the asymptotic growth of g(p) in
Subsection 2.5, adapting the methods of [59] to dynamical systems. We get:

Proposition 1.6. Let (Ã, µ̃, T̃ ) be an ergodic, aperiodic Zd-extension of (A,µ, T ) with step function F . Let
(B, ‖·‖B) be a complex Banach space of functions defined on A. Assume Hypothesis 2.1 holds with (B, ‖·‖B)
and α ∈ [d, 2]. If α = d, let I be the functions defined by Equation (2.54).

If d = 1 and α ∈ (1, 2],

g(p) ∼p→∞
1

ϑ(1 + ζ2)Γ(α) sin
(

(α−1)π
2

) |p|α−1

L(|p|)
.

If d = α = 1,

g(p) ∼p→∞
2

πϑ(1 + ζ2)
I(|p|−1).

If d = α = 2,

g(p) ∼p→∞
2

π
√

det(Σ)
I(|p|−1).

1.3. Hitting probabilities of excursions. We leave aside for a moment the distributional asymptotics
of the Birkhoff sums, and focus on the probability that an excursion hits a given site (Section 3). We
now assume that (A,µ, T ) is a Gibbs-Markov map. The leading theme of this section is the study of the
probability that an excursion from A× {0} hits A× {p}, and its asymptotics as p goes to infinity.

1.3.1. Induced transformations. Let us describe the terminology. We define ϕ{0} : A → N+ ∪ {∞}, where
ϕ{0}(x) is the length of an excursion starting from (x, 0):

ϕ{0}(x) := inf{k > 0 : Sk(x) = 0}.

Then, define the corresponding induced map by T̃{0}(x) := Tϕ{0}(x)(x), which is well-defined for almost
every x. Note that (A,µ, T̃{0}) is a measure-preserving ergodic dynamical system [33]. For any observable
f : Ã→ R, let:

f{0}(x) :=

ϕ{0}(x)−1∑
k=0

f ◦ T̃ k(x, 0).

Let us introduce a few more objects: the time Np that an excursion from A×{0} spends at A×{p}, and
the inverse probability α(p) that an excursion from A×{0} hits A×{p}, and the number of times N0,p that
the system goes back to A× {0} before hitting A× {p}. Formally,

Np(x) := #
{
k = 0, . . . , ϕ{0}(x)− 1 : Sk(x) = p

}
= 1 + fp,{0}(x),

α(p) := µ(Np > 0)−1 = µ(∃ 0 ≤ k < ϕ(x) : Sk(x) = p)−1,

and:
N0,p(x) := inf{n ≥ 0 : Tn{0}(x) ∈ {Np > 0}}.

The following theorem explains how these quantities are related in the limit p→∞.

Theorem 1.7. Let (Ã, µ̃, T̃ ) be a conservative and ergodic3 Markov Zd-extension of a Gibbs-Markov map
(A,µ, T ). Then:

• As p→ +∞,

α(p) ∼ α(−p) ∼ Eµ[Np|Np > 0] ∼ Eµ[N0,p] ∼
σ2
GK(fp,{0}, A, µ, T̃{0})

2
∼

Eµ[f2
p,{0}]

2
.

• The conditional distributions α(p)−1Np|{Np > 0} have exponential tails, uniformly in p: there exist
C ≥ 0 and κ > 0 such that, for every t > 0,

sup
p∈Zd

µ
(
(α(p))−1Np > t|Np > 0

)
≤ Ce−κt;

3The extension need not be aperiodic for this theorem.
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• α(p)−1Np|{Np > 0} converges in distribution and in moments to an exponential random variable of
parameter 1 as p goes to infinity. In particular, for all q > 1,

Eµ
[
|fp,{0}|q

]
∼ Γ(1 + q)α(p)q−1.

The proof of Theorem 1.7 rests on two main points: the exponential tightness of α(p)−1Np|{Np > 0}
(Subsection 3.3), and its convergence to an exponential random variable (Subsection 3.4). The later point is
an interesting application of the general fact that, for many hyperbolic dynamical systems, the hitting time
of small balls, once renormalized, converges in distribution to an exponential random variable (see e.g. the
reviews [16, 56, 29]). Once we have tightness and convergence in distribution, we can evaluate the moments
of Np.

For random walks, many estimates are more explicit. For instance, the distribution of Np|{Np > 0} is
geometric, so its moments are exactly known (as functions of α(p)). With this improvement, one can recover
part of [59, Chap. III.11, P5] – that is, the equivalents in Theorem 1.7 and Corollary 1.9 can be made into
equalities:

α(p) = α(−p) = Eµ[Np|Np > 0] = 1 + Eµ[N0,p] = 1 +
σ2
GK(fp,{0}, A, µ, T̃{0})

2
= 1 +

Eµ[f2
p,{0}]

2
= g(p).

1.3.2. Induction invariance of the Green-Kubo formula. While Theorem 1.7 gives asymptotic relationships
between many quantities, it does not provide any way to effectively compute them. For random walks, α(p)
and g(p) are related through a probabilistic interpretation of the symmetrized potential kernel:

Proposition 1.8. [59, Chap. III.11, P5]
Consider an ergodic aperiodic random walk on Z2. For all p ∈ Z2,

α(p) = g(p).

We are able to generalize this proposition to a larger class of dynamical systems. To our knowledge, our
proof of Proposition 1.8 is new even for random walks. We leverage Theorem 1.4 and [64, Theorem 6.8].
Whenever the hypotheses of theses theorems coincide, their conclusions must be the same. Hence, the scaling
factors before the MLGM distribution must be the same, that is,

σ2
GK(f, Ã, µ̃, T̃ ) = σ2

GK(f{0}, A, µ, T̃{0}). (1.5)

If we apply this observation to f = fp, we get:

Corollary 1.9. Let (Ã, µ̃, T̃ ) be an aperiodic Markov Zd-extension of a Gibbs-Markov map (A, π, λ, µ, T ) with
step function F . Assume that the extension is ergodic, conservative, and either of the following hypotheses:

• d = 1 and F is in the domain of attraction of an α-stable distribution, with α ∈ (1, 2].
• d = 1 and

∫
A e

iuF dµ = e−ϑ|u|[1−iζ sgn(u)]L(|u|−1) + o
(
|u|L(|u|−1)

)
at 0, for some real numbers ϑ > 0

and ζ ∈ R and some function L with slow variation.
• d = 2 and F is in the domain of attraction of a non-degenerate Gaussian random variable.

Then, as p→ +∞,
α(p) ∼ g(p).

Remark 1.10 (1-stable laws). The description of the distributions in the basin of attraction of a 1-stable
law is notoriously difficult [2]. As in Hypothesis 2.1, we choose to make a spectral assumption. It does not
capture all such distributions, but includes e.g. symmetric distributions. We believe that this assumption can
be significantly weakened if needed.

1.3.3. An improved distributional limit theorem. Proposition 1.6 provides a first-order estimate of α(p), de-
pending on the tails of F . We can use this estimate to run an (improved version of) an argument by
Csáki, Csörgő, Földes and Révész [17, Lemma 3.1]. we get more explicit integrability conditions than in [64,
Theorem 6.8] for observables of Zd-extensions, which yields a new distributional limit theorem. Note that
aperiodicity is not required for this result.

Theorem 1.11. Let (Ã, µ̃, T̃ ) be a Markov Zd-extension of a Gibbs-Markov map (A, π, λ, µ, T ) with step
function F . Assume that the extension is ergodic, conservative, and either of the following hypotheses:

• d = 1 and F is in the domain of attraction of an α-stable distribution, with α ∈ (1, 2].



POTENTIAL KERNEL, HITTING PROBABILITIES AND DISTRIBUTIONAL ASYMPTOTICS 7

• d = 1 and
∫
A e

iuF dµ = e−ϑ|u|[1−iζ sgn(u)]L(|u|−1) + o
(
|u|L(|u|−1)

)
at 0, for some real numbers ϑ > 0

and ζ ∈ R and some function L with slow variation.
• d = 2 and F is in the domain of attraction of a non-degenerate Gaussian random variable.

Let f : Ã→ R be such that:
• the family of function (f(·, p))p∈Zd is uniformly locally η-Hölder for some η > 0;
•
∫
Ã

(1 + |p|)
α−d

2
+ε ‖f(·, p)‖Lq(A,µ) dµ̃(x, p) < +∞ for some ε > 0 and q > 2;

•
∫
Ã
f dµ̃ = 0.

Then:
ST̃n f√∑n−1

k=0 µ(Sk = 0)
⇒ σGK(f{0}, A, µ, T̃{0})Y, (1.6)

where Y is a standard MLGM(1− d
α) random variable, the convergence is strong in distribution, and:

σ2
GK(f{0}, A, µ, T̃{0}) := lim

n→+∞

∫
A
f2
{0} dµ+ 2

n∑
k=1

∫
A
f{0} · f{0} ◦ T̃ k{0} dµ,

where the limit is taken in the Cesàro sense.

Remark 1.12 (Optimal exponent in the summability assumption). We consider the case when d = 1 and
α = 2. In [17] and some subsequent works by the same authors, the condition required for f is:∑

p∈G
|p|1+ε|β(p)| < +∞. (1.7)

The reason is that the authors used Jensen’s inequality in their proof [17, Lemma 2.1], which is in this context
less efficient than Minkowski’s inequality, which we used in the proof of Lemma 3.18. This small modification
can be implemented in their proof, which improves by a factor 2 some requirements in their works, e.g. [17,
Theorem 1] and [18, Example 3.3].

Finally, the hypotheses of Theorem 1.4 and of Theorem 1.11 have a greater overlap than those of Theo-
rem 1.4 and [64, Theorem 6.8], so we can improve the observation in Equation (1.5):

Corollary 1.13 (Induction Invariance of the Green-Kubo formula). Let (A, π, λ, µ, T ) be an ergodic Gibbs-
Markov map. Assume that the step function F : A→ Zd is σ(π)-measurable, integrable, aperiodic, and that∫
A F dµ = 0. We also assume that the distribution of F with respect to µ is in the domain of attraction of
an α-stable distribution, and that the Markov extension (Ã, µ̃, T̃ ) is conservative and ergodic.

Let β : Zd → R be such that:

•
∑

p∈Zd |p|
α−d

2
+ε|β(p)| < +∞ for some ε > 0;

•
∑

p∈Zd β(p) = 0.
Let f(x, p) := β(p). Then:

σGK(f, Ã, µ̃, T̃ ) = σGK(f{0}, A, µ, T̃{0}). (1.8)

See Appendix A for a discussion of this corollary.

1.4. Applications. To finish this introduction, we present some applications of our results to more concrete
dynamical systems : the geodesic flow on abelian covers in negative curvature, and Lorentz gases (i.e. periodic
planar billiards). The proofs can be found in Section 4.

1.4.1. Periodic planar billiard systems. Lorentz gases – that is, periodic or quasi-periodic convex billiards –
are classical dynamical systems, whose initial motivation comes from the modelization of a gas of electrons
in a metal. The electron is then seen as bouncing on the atoms of the metal, which act as scatterers.

In the plane and with a finite horizon, Lorentz gases exhibit classical diffusion, and the trajectory of
a particle behaves much like a random walk in the Euclidean space. For instance, the trajectories are
chaotic [58], satisfy a central limit theorem [14, 13], a local limite theorem [60], an almost sure invariance
principle [26] (i.e. the renormalized trajectories converge in a strong sense to the trajectories of a Brownian
motion), etc. We refer the reader to [15] for more informations of billiards. While the infinite horizon case
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is also well-known [61, 21], it presents many non-trivial difficulties, so we shall restrict ourselves to finite
horizon planar billiards.

Choose a Z2-periodic locally finite configuration of obstacles (p+Oi : i ∈ I, p ∈ Z2), where I is a finite
set. We assume that the obstacles Oi + p are convex open sets, with pairwise disjoint closures (so that there
is no cusp), that their boundaries are C3 and have non-vanishing curvature. We assume moreover that the
horizon is finite: every line in R2 meets at least one obstacle. The billiard domain is the complement in R2

of the union of the obstacles Q := R2 \
⋃
i∈I, p∈Z2(p+Oi).

Figure 1. A Sinai billiard with finite horizon.

We consider a point particle moving at unit speed in the billiard domain Q, bouncing on obstacles with the
classical Descartes reflexion law: the incident angle equals the reflected angle and going straight on between
two collisions. This is the billiard flow, whose configuration space is (up to a set of zero measure) Q × S1.
Now, consider this model at collision times; the configuration space is then given by Ω := ∂Q× [−π/2, π/2].
The space Ω is endowed with the Liouville measure ν̃, which has density cos(φ) in (x, φ) with respect to the
Lebesgue measure (see the picture), and is invariant under the collision map.

φ

q
V

Figure 2. A single collision.

For every p ∈ Z2, we call cell any set Cp :=
⋃
i∈I(p+∂Oi) and attribute to this cell a value β(p) given by a

function β : Z2 → R. We assume that the particle wins the value β(p) associated to Cp each time it touches
it. We are interested in the behaviour, as n → +∞, of the total amount Yn won by the particle after the
n-th reflection.

We write Sn(x) for the index in Z2 of the cell touched at the n-th reflection time by a particle starting
from x ∈ Ω. Recall that (Sn/

√
n)n converges strongly in distribution (with respect to the Lebesgue measure

on Ω) to a centered gaussian random variable with positive definite covariance matrix Σ [14, 13, 65].

If β is summable and
∑

p∈Z2 β(p) 6= 0, then Yn/ log(n) converges strongly in distribution to
(∑

p∈Z2 β(p) 6= 0
)
E ,

where E has a non-degenerate exponential distribution. This follows e.g. from [1, Corollary 3.7.3] and Young’s
construction [65], and is also done in [21]. In another direction, if (β(p))p∈Z2 is a sequence of independent
identically distributed random variables independent of the billiard, the asymptotic behavior of (Yn) is
markedly different [50].
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����

β(0,0) β(1,0)

β(1,0)

β(1,1)

β(0,0)

β(2,0)

β(2,0)

β(−1,0)β(−2,0)

β(−2,−1) β(−1,−1) β(0,−1) β(1,−1) β(2,−1)

β(−1,−1) β(0,−1) β(1,−1) β(2,−1)

β(−1,0)

β(−2,1) β(−1,1) β(0,1) β(1,1) β(2,1)

β(2,1)β(0,1)β(−1,1)

β(−2,2) β(−1,2) β(0,2) β(1,2) β(2,2)

β(2,2)β(1,2)β(0,2)β(−1,2)

β(−2,3) β(−1,3) β(0,3) β(1,3) β(2,3)

β(−1,3) β(0,3) β(1,3) β(2,3)

β(−2,−2) β(−1,−2) β(0,−2) β(1,−2) β(2,−2)

β(2,−2)β(1,−2)β(0,−2)β(−1,−2)

Figure 3. A periodic billiard table, and the observable β.

We present two applications of Theorem 1.4, the first for (hidden) Z-extensions, and the second for Z2-
extensions.

Corollary 1.14. With the above notations, assume that:

• β(a, b) = β̃(a) for some function β̃;
• there exists ε > 0 such that

∑
p∈Z |p|

1
2

+ε|β̃|(p) < +∞;
•
∑

p∈Z β̃(p) = 0.

Then:

lim
n→+∞

1

n
1
4

Yn = σ(f)Y,

where the convergence is strong in distribution on (Ω,Leb), the random variable Y follows standardMLGM(1/2)
distribution, and:

σ(f)2 =

√
2

πΣ1,1

∑
k∈Z

∑
a,b∈Z2

β(a)β(b)ν̃(Sk = a− b|C0).

In addition, σ(f) = 0 if and only if f is a coboundary.

Corollary 1.15. With the above notations, assume that:

• there exists ε > 0 such that
∑

p∈Z2 |p|ε|β|(p) < +∞;
•
∑

p∈Z2 β(p) = 0.

Then:

lim
n→+∞

1√
log(n)

Yn = σ(f)Y,

where the convergence is strong in distribution on (Ω,Leb), the random variable Y follows a Laplace distri-
bution of parameter 1/

√
2, and:

σ(f)2 =
1

2π
√

det(Σ)

∑
k∈Z

∑
a,b∈Z2

β(a)β(b)ν̃(Sk = a− b|C0).

In addition, σ(f) = 0 if and only if f is a coboundary.
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1.4.2. Geodesic flow on abelian covers. The geodesic flow on a connected, compact manifold with negative
sectional curvature is a well-known example of a hyperbolic dynamical system. The geodesic flow on abelian
covers of such manifolds provides a class of dynamical systems which preserve a σ-finite measure, for instance
the Liouville measure. They are also more tractable than billiards, as they do not have singularities. These
geodesic flows have been studied by extensively, for instance to count periodic orbits on the basis manifold
of given length in a given homology class [38, 57, 52]. There are extensions to Anosov flows [7] as well as to
surfaces with cusps [3]. Finally, let us mention that the geodesic flow on periodic manifolds is also used to
study the horocycle flow on the same manifolds [6, 41, 42, 43].

Limit theorems for observables with integral zero have already been obtained in this context [64], but the
improvement we get with Theorem 1.11 translates into a limit theorem which is valid for a wider class of
observables. Instead of having compact support, the observables need only to decay polynomially fast at
infinity.

LetM be a compact, connected manifold with a Riemannian metric of negative sectional curvature. Given
a Hölder potential F : T 1M → C, let F̂ (x, v) := F (x,−v). We say that the potential is reversible if F and
F̂ are cohomologuous, that is, if there exists a Hölder function u such that

∫ t
0 f ◦ gs ds = u ◦ gt − u for all t.

In this case, we also say that F − F̂ is a Hölder coboundary. For instance, both the Liouville measure and
the maximal entropy measure are Gibbs measures for a reversible potential.

Let $ : N → M be a connected Zd-cover of M . Given a Gibbs measure µM on T 1M , we endow T 1N
with a σ-finite measure µN by lifting µM locally. We refer the reader to [49, Chapter 11.6] for more details
about Gibbs measures in this context.

Let (gt)t∈R be the geodesic flow on T 1N . In Subsection 4.2, we shall prove the following proposition,
which is a generalization of [64, Proposition 6.12]:

Proposition 1.16. Let µN be the lift of a Gibbs measure µM corresponding to a reversible Hölder potential.
Fix x0 ∈ T 1N . Let f be a real-valued Hölder function on T 1N . Assume that:

• there exists ε > 0 such that
∫
T 1N d(x0, x)1− d

2
+ε|f |(x) dµN (x) < +∞;

•
∫
T 1N f dµN = 0.

If d = 1, there exists σ(f) ≥ 0 such that:

lim
t→+∞

1

t
1
4

∫ t

0
f ◦ gs(x, v) ds = σ(f)Y1/2,

where the convergence is strong in distribution on (T 1N,µN ), and Y1/2 follows a standard MLGM(1/2)
distribution.

If d = 2, there exists σ(f) ≥ 0 such that:

lim
t→+∞

1√
log(t)

∫ t

0
f ◦ gs(x, v) ds = σ(f)Y0,

where the convergence is strong in distribution on (T 1N,µN ), and Y0 follows a standard MLGM(0) distri-
bution.

In both cases, σ(f) = 0 if and only if f is a measurable coboundary.

The only difference with [64, Proposition 6.12] is that the assumption that f has compact support is
relaxed to

∫
T 1N d(x0, x)1− d

2
+ε|f |(x) dµN (x) < +∞ for some ε > 0.

Note that our work gives us more information on this system; for instance, Theorem 1.7 can be adapted
to yield an asymptotic equivalence of the probability that, starting from some nice Poincaré section A1,
the geodesic flow reaches a faraway Poincaré section A2 before returning to A1. However, the geometric
interpretation of these sections is less evident than for others systems, such as billiards.

2. Theorem 1.4: assumptions and proof

This Section is mostly devoted to the proof of Theorem 1.4. It is organized as follows. The spectral
hypotheses are presented in Subsection 2.1. The following three subsections contain respectively a sketch of
the proof of Theorem 1.4, the full proof of the theorem, and a proof of the more technical estimates we use.
Finally, in Subsection 2.5 we prove Proposition 1.6.
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2.1. General spectral assumptions. Let P be the transfer operator associated to h 7→ h ◦ T , that is,∫
A
Pf · g dµ =

∫
A
f · g ◦ T dµ ∀f ∈ L1(A,µ), ∀g ∈ L∞(A,µ).

We consider the family (Pu)u of operators defined by Pu : h 7→ P (ei〈u,F 〉h), where 〈·, ·〉 stands for the usual
scalar product in Rd. Note that:

P ku (h) = P k
(
ei〈u,Sk〉h

)
. (2.1)

We make the following assumptions. Thanks to perturbation theorems (see namely [47, 48, 27, 39, 30]
for the general method, and [4] for an application to Gibbs-Markov maps), they hold for a wide variety of
hyperbolic dynamical systems.

Hypothesis 2.1 (Spectral hypotheses). The stochastic process (Sn)n is recurrent. There exists an integer
M ≥ 1 and a µ-essential partition of A in M measurable subsets (Aj)j∈Z/MZ such that T (Aj) = Aj+1 for all
j ∈ Z/MZ (M = 1 if T is mixing).

There exists a complex Banach space (B, ‖·‖B) of functions defined on A, on which P acts continuously,
and such that:

• B ↪→ L1(A,µ).
• 1 ∈ B and for every j, the multiplication by 1Aj belongs to L(B,B), where

(
L(B,B), ‖·‖L(B,B)

)
stands

for the Banach space of linear continuous endomorphisms of B.
• There exist a neighbourhood U of 0 in Td, two constants C > 0 and r ∈ (0, 1), two continuous
functions λ· : U → C and Π· : U → L(B,B) such that

Pu = λuΠu +Ru, (2.2)

with:

ΠuRu = RuΠu = 0, (2.3)

ΠM+1
u = Πu, (2.4)
λ0 = 1, (2.5)

Π0 = M
∑

j∈Z/MZ

Eµ[1Aj ·]1Aj+1 , (2.6)

sup
u∈U

∥∥∥Rku∥∥∥L(B,B)
≤ Crk, (2.7)

sup
u∈[−π,π]d\U

∥∥∥P ku∥∥∥L(B,B)
≤ Crk. (2.8)

• If d = 1, there exists α ∈ [1, 2] such that, for all u ∈ U ,

λu = e−ψ(u)L(|u|−1) + o
(
|u|αL(|u|−1)

)
,

as u goes to 0, where ψ(u) = ϑ|u|α[1 − iζ sgn(u)] for some real numbers ϑ > 0 and ζ ∈ R such that
|ζ| ≤ tan πα

2 if α > 1. We set Σ := 1.
• If d = 2, there exists an invertible positive symmetric matrix Σ such that, for all u ∈ U ,

λu = e−ψ(
√

Σu)L(|
√

Σu|−1) + o
(
|u|2L(|u|−1)

)
,

as u goes to 0, where ψ(u) := |u|2
2 and L is slowly varying at infinity. We set ϑ := 1/2.

Hypothesis 2.1 implies the ergodicity of T and the mixing of (TM )|Aj for all j ∈ Z/MZ as soon as
B is dense in L1(A,µ). If the system is not mixing, then it is expected that the transfer operators has
multiple eigenvalues of modulus 1. The following proposition asserts that, in this case, the standard spectral
techniques yield a decomposition as in Equation (2.2).

Proposition 2.2. Assume the begining of Hypothesis 2.1 and its first two items, and that (A0, µ(·|A0), (TM )|A0
)

is mixing. Assume in addition that there exist a neighbourhood U of 0 in Td, two constants C > 0 and
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r ∈ (0, 1) and continuous functions λ̃·, λ0,·, . . . , λK−1,· : U → C and Π̃·,Π0,·, . . . ,ΠK−1,·, R̃·, R· : U → L(B,B)
such that:

Pu =
∑

j∈Z/KZ

λj,uΠj,u +Ru,

Πj,uRu = RuPj,u = 0,

Πj,uΠj′,u = δj,j′Πj,u,

|λj,0| = 1

sup
u∈U

∥∥∥Rku∥∥∥L(B,B)
≤ Crk,

and 1A0P
M
u (1A0) = λ̃uΠ̃u + R̃u, with:

λ̃0 = 1,

Π̃2
u = Π̃u,

Π̃0 = µ(·|A0)1A0 ,

Π̃uR̃u = R̃uΠ̃u = 0,∥∥∥R̃ku∥∥∥L(B,B)
≤ Crk.

Then Pu = λuΠu +Ru, and the equations (2.3), (2.4), (2.5), (2.6), (2.7) are satisfied. If moreover u 7→ Pu
is continuous on Td and Pu admits no eigenvalue of modulus 1 for u 6= 0, then Equation (2.8) is also satisfied,
up to increase of C > 0 and r ∈ (0, 1).

Proof. Up to taking a smaller U , we assume that |λj,·| > C1/Mr and |λ̃·| > CrM . Then λ̃u = λMj,u for every
j ∈ Z/MZ, and Π̃u =

∑
j∈Z/MZ 1A0Πj,u(1A0 ·). Hence we can take K = M and, up to a permutation of

indices, we assume that λj,u = λuξ
j with ξ := e2iπ/M and λ0 = 1 (P1 = 1 ensures that 1 is an eigenvalue of

P0, and this convention yields Equation (2.5)). Hence Pu = λuΠu +Ru, with:

λu := λ0,u,

Πu :=
∑

j∈Z/MZ

ξjΠj,u.

Note that ΠuRu = RuΠu = 0 and that ΠM+1
u =

∑
j∈Z/MZ ξ

j(M+1)Πj,u = Πu, which proves equations (2.3)
and (2.4). In the general case, it remains to prove (2.6).

Let f be an eigenvector for the eigenvalue ξj of P . For all k ∈ Z/MZ,

P (1Akf) = ξj1Ak+1
f, (2.9)

so that PM (1Akf) = 1Akf . Since TM is mixing, f must be constant on each Ak; using Equation (2.9), we
get that f is proportional to

∑
k∈Z/MZ ξ

−jk1Ak . We conclude that:

Πj,0 =
∑

k∈Z/MZ

ξ−jk1AkEµ

 ∑
`∈Z/MZ

ξj`1A` ·

 ,
and from there that Π0 = M

∑
j∈Z/MZ ξ

jΠj,0 =
∑

k∈Z/MZ 1Ak+1
Eµ[1Ak ·].

Finally, Equation (2.8) comes from [4]. �

For every n, we set
an := inf{x > 0 : n|x|−αL(x) ≥ 1}, (2.10)

so that nL(an) ∼ aαn. The sequence (an) is then regularly varying of index 1
α . Under Hypothesis 2.1,

Eµ[ei〈t,Sn〉/an ] ∼ (λt/an)n ∼ e−ψ(
√

Σt) for every t ∈ Rd. Thus, the sequence (Sn/an)n converges in distribution
to an α-stable random variable with characteristic function e−ψ(

√
Σ·).
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2.2. Strategy of the proof. Given the length of the proof and the technicality of some of its parts, we give
here a brief outline of how the method of moments can be applied to our problem.

The proof consists in showing the convergence for every m of the following quantity:

Eµ
[(
Zn
An

)n]
= Eµ

[(∑n
k=1

∑
a∈Zd β(a)1{Sk=a}

An

)m]
= A−mn

n∑
k1,...,km=1

β(a1) · · ·β(am)µ(Sk1 = a1, . . . , Skq = aq).

Hence we have to deal with quantities of the following form:∑
1≤k1<···<kq≤n

∑
a1,...,aq∈Zd

β(a1)N1 · · ·β(aq)
Nqµ(Sk1 = a1, . . . , Skq = aq),

where N1 + . . .+Nq = m. Let us write An;q;N1,...,Nq for this quantity, which behaves roughly as:∑
1≤k1<···<kq≤n

∑
a1,...,aq∈Zd

β(a1)N1 · · ·β(aq)
Nqµ(Sk1 = a1)µ(Sk2−k1 = a2 − a1) · · ·µ(Skq−kq−1 = aq − aq−1).

This equation would actually be exact if (Sn)n were a random walk. Then, put k0 := 0 and `i := ki− ki− 1,
so that:

An;q;N1,...,Nq ∼
∑

`1+...+`q≤n

∑
a1,...,aq∈Zd

q∏
i=1

(
β(ai)

Niµ(S`i = ai − ai−1)
)
.

We prove that
An;q;N1,...,Nq = O(Amn )

and even that
An;q;N1,...,Nq = o(Amn )

except if (N1, . . . , Nq) is made of 2s and of pairs of consecutive 1s and of nothing else, which implies that m
is even. In particular, for all odd m,

Eµ[Zmn ] = o(Amn ).

This is the content of Lemma 2.4, which is by far the most technical part of our proof. This is also the
point where we use the fact that β has zero sum; otherwise, we would get An;q;N1,...,Nq = Θ(A2m

n ) for
(N1, . . . , Nq) = (1, . . . , 1).

If (N1, . . . , Nq) is made of 2s and disjoint pairs of consecutive 1, then it contains (m− q) times the value
2 and (q −m/2) pairs (Ni, Ni+1) = (1, 1). Then, we shall prove that:

An;q;N1,...,Nq ∼
∑

`1+...+`m/2≤n

m−q∏
i=1

∑
a∈Zd

β(a)2µ(S`i = a)


×

m/2∏
i=m−q+1

∑
`≥1

∑
a,b∈Zd

β(a)β(b)µ(S` = b− a)µ(S`i = a)


∼

∑
`1+...+`m/2≤n

m−q∏
i=1

∑
a∈Zd

β(a)2ca−d`i

 m/2∏
i=m−q+1

∑
`≥1

∑
a,b∈Zd

β(a)β(b)µ(S` = b− a)ca−d`i


∼ cm/2

∑
a∈Zd

β(a)2

m−q∑
`≥1

∑
a,b∈Zd

β(a)β(b)µ(S` = b− a)

q−m/2 ∑
`1+...+`m/2≤n

m/2∏
i=1

a−d`i

∼ Km,q

(
n∑
`=1

a−d`

)m/2
= Km,qA

m
n ,

where the constants c and Km,q are explicit and yield the MLGM random variables.
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2.3. Proof of Theorem 1.4. In this section we prove Theorem 1.4. To prove the strong convergence in
distribution, it is actually sufficient to prove the convergence in distribution with respect to some absolutely
continuous probability measure [67, Theorem 1]. At first, we prove the convergence of (ST̃n f/An)n under
the probability measure µ0 := µ⊗ δ0, i.e. the convergence of (Zn(β)/An)n under the probability measure µ,
where:

Zn(β) =
n−1∑
k=0

β(STnF ).

We use the method of moments. Let m ≥ 0 be an integer, which is fixed for the remainder of this proof.
Then, for all n:

Eµ [Zn(β)m] = Eµ

[(
n∑
k=1

β(Sk)

)m]

=

n∑
k1,...,km=1

∑
d1,...,dm∈Zd

Eµ

[
m∏
s=1

β(ds)1{Sks=ds}

]
.

We delete the terms which are null, and regroup those which are equal. Let us consider one of the terms∏m
s=1 β(ds)1{Sks=ds}. We may assume that ds = ds′ as soon as ks = ks′ ; otherwise, 1{Sks=ds}1{Sks′=ds′}

= 0

and the whole product is zero. Let q := #{k1, . . . , km}. Then {k1, . . . , km} = {n1, . . . , nq} with 1 ≤ n1 <
. . . < nq ≤ n. We set Nj := #{i = 1, . . . ,m : ki = nj} for the multiplicity of nj in (k1, . . . , km), and aj = di
if ki = nj . We write a := (a1, . . . , aq), N := (N1, . . . , Nq) and n := (n1, . . . , nq), and set, by convention,
n0 := 0 and a0 := 0. Observe that

m∏
s=1

β(ds)1{Sks=ds} =

q∏
j=1

β(aj)
Nj1{Snj=aj}

and that the number of m-uplets (k1, . . . , km) giving the same pair (n,N) is equal to the number cN of maps
φ : {1, . . . ,m} → {1, . . . , q} such that |φ−1({j})| = Nj for all j ∈ {1, . . . , q}. Hence:

Eµ [Zn(β)m] =

m∑
q=1

∑
Nj≥1

N1+...+Nq=m

cN
∑

1≤n1<...<nq≤n

∑
a∈(Zd)q

Eµ

 q∏
j=1

(
β(aj)

Nj1{Snj=aj}

) .
For all n ≥ 1, for all 1 ≤ q ≤ m and for all N = (Nj)1≤j≤q such that Nj ≥ 1 and

∑q
j=1Nj = m, we define:

An;q;N :=
∑

1≤n1<...<nq≤n

∑
a∈(Zd)q

Eµ

 q∏
j=1

(
β(aj)

Nj1{Snj=aj}

)
=

∑
1≤n1<...<nq≤n

∑
a∈(Zd)q

Eµ

 q∏
j=1

(
β(aj)

Nj1{Snj−Snj−1=aj−aj−1}

) ,
so that:

Eµ [Zn(β)m] =

m∑
q=1

∑
Nj≥1

N1+···+Nq=m

cNAn;q,N. (2.11)

Instead of working with a sequence of times (nj) and positions (aj), it shall be more convenient to work
with time increments and position increments. Let 1 ≤ n1 < . . . < nq ≤ n. We can describe this sequence
with integers (`1, . . . , `q) by taking `1 = n1 and `j = nj − nj−1 for all 2 ≤ j ≤ q. Let Eq,n be the set defined
by:

Eq,n =

` = (`1, . . . , `q) ∈ {1, . . . , n}q :

q∑
j=1

`j ≤ n

 .
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Then summing over all n = (n1, . . . , nq) such that 1 ≤ n1 < . . . < nq ≤ n is the same as summing over all `
in Eq,n, whence:

An;q;N =
∑

a∈(Zd)q

 q∏
j=1

β(aj)
Nj

 ∑
`∈Eq,n

Eµ

 q∏
j=1

1{S`j=aj−aj−1} ◦ T
nj−1

 . (2.12)

A single coefficient An;q;N is the contribution to the mth moment of Zn(β) by paths of length q and with
weights (Nj). Our goal is to find a sub-family of such weighted paths which is manageable enough so that
we can estimate the behaviour of the An;q;N, and large enough so that it makes for almost all Eµ [Zn(β)m] as
n goes to infinity. However, in order to benefit from the fact that

∑
a∈Zd β(a) = 0, we use transfer operators,

and a decomposition which leverages this equality to make some further simplifications4.

For all ` ∈ N and a ∈ Zd, we define an operator Q`,a acting on B by:

Q`,a(h) := P `
(
1{S`=a} h

)
=

1

(2π)d

∫
[−π,π]d

e−i〈u,a〉P `u(h) du .

where we used (2.1) to establish the second formula. For 1 ≤ q′ ≤ q, we write:

Dq′ :=

q′∏
j=1

(
1{S`j=aj−aj−1} ◦ T

nj−1

)
.

Recall that P k(g ◦ T k · h) = gP k(h). Hence, by induction,

Pnq (Dq) = Pnq
(
1{S`q=aq−aq−1} ◦ T

nq−1 ·Dq−1

)
= Pnq−nq−1(1{S`q=aq−aq−1}P

nq−1(Dq−1))

= Q`q ,aq−aq−1 (Pnq−1 (Dq−1))

= . . .

= Q`q ,aq−aq−1 · · ·Q`1,a1−a0(1).

Plugging this identity into Equation (2.12) yields:

An;q;N =
∑

a∈(Zd)q

 q∏
j=1

β(aj)
Nj

 ∑
`∈Eq,n

Eµ
[
Q`q ,aq−aq−1 · · ·Q`1,a1−a0(1)

] . (2.13)

We further split the operators Q`,a. Let us write:

Q`,a = Q
(0)
`,a +Q

(1)
`,a , (2.14)

with:

Q
(0)
`,a := Φ(0)

Π`
0

ad`

Q
(1)
`,a = ε`,a +

Φ(a/a`)− Φ(0)

ad`
Π`

0 with ‖ε`,a‖ = o(a−d` ),

which we know is possible thanks to Lemma 2.6.

We introduce these operators Q(0)
`,a and Q(1)

`,a into (2.13), creating new data we need to track: the index of
the operator we use at each point in the weighted path. Fix n, q and N. Given ε = (ε1, . . . , εq) ∈ {0, 1}q

4If β has non-zero integral, different terms dominate, and the moments grow faster. It is thus essential to cancel out these
“first order terms”.
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and s ∈ Zd, write:

Bε
s,`,N :=

∑
a0,...,aq∈Zd

a0=s

(
q∏
i=1

β(ai)
Ni

)
Q

(εq)
`q ,aq−aq−1

· · ·Q(ε1)
`1,a1−a0

,

bεs,`,N(·) :=
∑

a∈(Zd)q

[(
q∏
i=1

β(ai)
Ni

)
Eµ
[
Q

(εq)
`q ,aq−aq−1

. . . Q
(ε1)
`1,a1−s(·)

]]
= Eµ

[
Bε
s,`,N(·)

]
,

Aε
n;q;N :=

∑
`∈Eq,n

bε0,`,N(1),

so that:
An;q;N =

∑
ε∈{0,1}q

Aε
n;q;N =

∑
ε∈{0,1}q

∑
`∈Eq,n

bε0,`,N(1).

Now, the main question is: for which data (q,N, ε) do the coefficients Aε
n;q;N, seen as functions of n, grow

the fastest? One would want to use the larger operator Q(0)
`,a whenever possible, and to use the lowest possible

weights whenever possible (because lower weights means larger value of q, so a faster combinatorial growth). A
priori, the best possible choice would be ε = (0, . . . , 0) andN = (1, . . . , 1). That is indeed true for observables
β with non-zero integral. However, in our case, the fact that

∑
a∈Zd β(a) = 0 induces a cancellation, which

makes the corresponding coefficient vanish. This can be seen with the following elementary properties.

Properties 2.3. Consider a single linear form bεs,`,N. For all 1 ≤ i ≤ q, the terms on the right side of

Q
(εi)
`i,ai−ai−1

depend only on a1, . . . , ai−1, and the terms on its left side only depend on ai, . . . , aq. Hence:

(I) Since Q(0)
`,a does not depend on a, the value of b(0,ε)

s,(`0,`),(N0,N) does not depend on s. Without loss of
generality, we shall choose s to be 0 when ε1 = 0.

(II) b(0)
s,(`),(1)(·) = Φ(0)a−d`

∑
a∈Zd β(a)Eµ[·] = 0 and b

(0)
s,(`),(N)(·) = Φ(0)a−d`

∑
a∈Zd β(a)NEµ[·] for all `,

N ≥ 1.

(III) b(ε,0,ε
′)

s,(`,`0,`
′),(N,N0,N′)

=
∑

j∈Z/MZ Eµ[1AjB
ε
s,`,N(·)]Eµ[B

(0,ε′)
0,(`0,`

′),(N0,N′)
(1Aj+`0 )], i.e.

b
(ε,0,ε′)
s,(`,`0,`

′),(N,N0,N′)
(·) =

∑
j∈Z/MZ

bεs,`,N(1Aj ·)b
(0,ε′)
0,(`0,`

′),(N0,N′)
(1Aj+|`|1),

since Q(εi)
`i,ai−ai−1

(1Aj ·) = 1Aj+`iQ
(εi)
`i,ai−ai−1

(·).

(IV) In particular, b(ε,0)
s,(`,`0),(N,1) = 0, and:

b
(ε,0,0,ε′)
s,(`,`0,`′0,`

′),(N,1,N ′0,N
′)

=
∑

j∈Z/MZ

bεs,`,N(1Aj ·)b
(0)
0,(`0),(1)(1Aj+|`|1)b

(0,ε′)
0,(`′0,`

′),(N ′0,N
′)

(1Aj+|`|1+`0) = 0.

(V)
b
(0,1,...,1)
s,(`1,...,`q),(N1,N2,...,Nq)

(1Aj ) = Φ(0)a−d`1

∑
a1∈Zd

β(a1)N1b
(1,...,1)
a1,(`2,...,`q),(N2,...,Nq)

(1Aj+`1 ).

(VI) Applying Point (V ) and the fact that
∑

a,b∈Zd β(a)β(b)Eµ
[
Q

(0)
`′,a−b(1)

]
= 0, we get:

b
(0,1)
s,(`,`′),(1,1)(1Aj ) = Φ(0)a−d`

∑
a,b∈Zd

β(a)β(b)Eµ
[
Q`′,a−b(1Aj+`)

]
= Φ(0)a−d`

∑
a,b∈Zd

β(a)β(b)µ(Aj+`; S`′ = a− b).

Given a sequence ε ∈ {0, 1}q, we can iterate Point (III) above to cut bεs,`,N into smaller pieces, for which 0

may only appear at the beginning of the associated sequences of indices, and then use Point (V ) to transform
the heading εi = 0. Write m1 < m2 < · · · < mK for the indices i ∈ {1, . . . , q} such that εi = 0. We use the
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conventions that mK+1 := q + 1 and εq+1 := 0, that bεs,`,N ≡ 1 if q = 0, and that an empty product is also
equal to 1. Then:

bεs,`,N(1) =
∑

j∈Z/MZ

b
(1,...,1)
s,(`1,...,`m1−1),(N1,...,Nm1−1)(1Aj )

K∏
i=1

b
(0,1,...,1)
0,(`mi ,...,`mi+1−1),(Nmi ,...,Nmi+1−1)(1Aj+`1+...+`mi

)

= (MΦ(0))K
∑

j∈Z/MZ

b
(1,...,1)
s,(`1,...,`m1−1),(N1,...,Nm1−1)(1Aj )

×
K∏
i=1

a−d`mi

∑
a∈Zd

β(a)Nmi b
(1,...,1)
a,(`mi+1,...,`mi+1−1),(Nmi+1,...,Nmi+1−1)(1Aj+`1+...+`mi

).

We sum over ` ∈ Eq,n, and get:∣∣Aε
n,q,N

∣∣ ≤ ∑
`∈{1,...,n}q

∣∣bε0,`,N(1)
∣∣

≤ (MΦ(0))K

 ∑
(`1,...,`m1−1)

∈{1,...,n}m1−1

sup
j∈Z/MZ

∣∣∣b(1,...,1)
0,(`1,...,`m1−1),(N1,...,Nm1−1)(1Aj )

∣∣∣
 (2.15)

×
K∏
i=1

A2
n

∑
(`mi+1,...,`mi+1−1)

∈{1,...,n}mi+1−mi−1

sup
j∈Z/MZ

∣∣∣∣∣∣
∑
a∈Zd

β(a)Nmi b
(1,...,1)
a,(`mi+1,...,`mi+1−1),(Nmi+1,...,Nmi+1−1)(1Aj )

∣∣∣∣∣∣
 .

(2.16)

Fix ω ∈ (0, 1] such that α−d
2 < ω < α−d

2 + ε, and η ∈ (0, ω] such that ω + η ≤ α−d
2 + ε. The control

of (2.15) and of (2.16) shall be done with the following technical lemma, the proof of which is postponed
until Subsection 2.4.

Lemma 2.4. Under the assumptions of Theorem 1.4 and with the previous notations, for every q ≥ 1 and
N = (N1, . . . , Nq) ∈ Nq+, for every j ∈ Z/MZ,

sup
a∈Zd

1

1 + |a|η
∑

`∈{1,...,n}q

∣∣∣b(1,...,1)
a,`,N (1Aj )

∣∣∣ = o
(
A
N1+...+Nq
n

)
, (2.17)

n∑
`=1

∣∣∣∣∣∣
∑
a∈Zd

β(a)b
(1)
a,(`),(N)(1Aj )

∣∣∣∣∣∣ =

{
O (1) if q = 1, N = 1
o (An) if q = 1, N ≥ 2

, (2.18)

∑
`∈{1,...,n}q

∣∣∣∣∣∣
∑
a∈Zd

β(a)b
(1,...,1)
a,`,N (1Aj )

∣∣∣∣∣∣ = o
(
A
N1+...+Nq−1
n

)
if q ≥ 2. (2.19)

We consider the following condition on the sequences ε and N:

m1 = 1,

∀i ∈ {1, . . . ,K},

 Nmi ∈ {1, 2}
Nmi = 1 ⇒ mi+1 = mi + 2, N1+mi = 1
Nmi = 2 ⇒ mi+1 = mi + 1

.
(2.20)

Note that this condition imply that m = 2K.

Corollary 2.5. Use the assumptions of Theorem 1.4 and the previous notations. Let m ≥ 1, q ≥ 1 and
N1, . . . , Nq ∈ N+ be such that N1 + . . .+Nq = m. If Condition (2.20) holds, then∣∣Aε

n,q,N

∣∣ = O(Amn );
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otherwise: ∣∣Aε
n,q,N

∣∣ = o(Amn ).

In particular, {
Eµ [Zn(β)m] = O (Amn ) ∀m ∈ 2N
Eµ [Zn(β)m] = o (Amn ) ∀m ∈ 2N + 1

. (2.21)

Proof. Due to Equation (2.17), the term (2.15) is an o(AN1+...+Nm1−1
n ) ifm1 6= 1, and anO(1) = O(A

N1+...+Nm1−1
n )

if m1 = 1.

Let us now estimate the term (2.16). Due to Equation (2.17), since
∑

a∈Zd |a|η|β(a)| < +∞, for all N0 ≥ 2
and q ≥ 1, for all N1, . . . , Nq ≥ 1,

A2
n

∑
`∈{1,...,n}q

sup
j∈Z/MZ

∣∣∣∣∣∣
∑
a∈Zd

β(a)N0b
(1,...,1)
a,`,(N1,...,Nq)

(1Aj )

∣∣∣∣∣∣ = o
(
A
N0+N1+...+Nq
n

)
.

Due to Equation (2.18), this estimate holds when N0 ≥ 3 and q = 0; due to Equation (2.19), this estimate
holds when N0 = 1 and q ≥ 2.

The two remaining cases are N0 = 2, q = 0 and N0 = q = 1. When N0 = 2 and q = 0, we have
a upper bound in O(A2

n) = O
(
A
N0+...+Nq
n

)
. When q = N0 = N1 = 1, the same upper bound is given

by Equation (2.18). If q = N0 = 1 and N1 ≥ 2, then Equation (2.18) yields a upper bound in o(A3
n) =

o
(
A
N0+...+Nq
n

)
.

Hence, the term (2.16) is in O
(
A2K
n

)
= O

(
A
Nm1+...+Nq
n

)
if, for every i ∈ {1, . . . ,K}, we are in one of two

cases:

• Nmi = 1, mi+1 = mi + 2 and N1+mi = 1;
• Nmi = 2, mi+1 = mi + 1.

Otherwise, (2.16) is in o
(
A
Nm1+...+Nq
n

)
. In particular,∣∣Aε

n,q,N

∣∣ = O(Amn ).

Furthermore, if Condition (2.20) is not satisfied, either (2.15) is an o(A
N1+...+Nm1−1
n ) or one of the terms

in (2.16) is an o
(
A
Nm1+...+Nmi+1−1

n

)
, so

∣∣∣Aε
n,q,N

∣∣∣ = o(Amn ). This is the case, in particular, if m is odd. �

Condition (2.20) can be rewritten:

• maxiNi ≤ 2;
• εi = 0 as soon as Ni = 2;
• there exists J ⊂ {1, . . . , q} such that {i : Ni = 1} =

⊔
j∈J {j, j + 1};

• εj = 0 and εj+1 = 1 for all j ∈ J .

Assume now that m ≥ 0 is even. Let us write G(q) for the set of N = (N1, . . . , Nq) ∈ {1, 2}q such that
N1 + . . .+Nq = m and {i ∈ {1, . . . , q} : Ni = 1} is the disjoint union of pairs of the form {j, j + 1}. Given
N ∈ G(q), there exists a unique ε(N) ∈ {0, 1}q such that (ε(N),N) satisfies Condition (2.20). Note that
q = |{i : εi = 0, Ni = 2}|+2|{i : εi = 0, Ni = 1}| andm/2 = |{i : εi = 0, Ni = 2}|+|{i : εi = 0, Ni = 1}|,
so that |{i : εi = 0, Ni = 1}| = q −m/2 and |{i : Ni = 2}| = m− q. Then:

b
ε(N)
0;`,N(1) =

∑
j∈Z/MZ

 ∏
i :Ni=2

b
(0)
(`i),(2)(1Aj+`1+...+`i

)

 ∏
i :Ni=1,εi=0

b
(0,1)
(`i,`i+1),(1,1)(1Aj+`1+...+`i

)

 .
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Let Ẽq,n be the set of q-uplets of integers (`1, . . . , `q) ∈ {1, . . . , n}q such that M
∑q

i=1d`i/Me ≤ n. Using
Points (II) and (V I) in Properties 2.3, we get:

A
ε(N)
n;q;N = (MΦ(0))

m
2

∑
j∈Z/MZ

∑
`∈Eq,n

 ∏
i:Ni=2

∑
a∈Zd β(a)2

Mad`i


×

 ∏
i:Ni=1,εi=0

∑
a,b∈Zd β(a)β(b)µ(Aj+`1+...+`i ; S`i+1

= a− b)
ad`i


= o(Amn ) + Φ(0)

m
2

∑
j∈Z/MZ

∑
`∈Ẽq,n

 ∏
i:Ni=2

∑
a∈Zd β(a)2

ad`i


×

 ∏
i:Ni=1,εi=0

∑
a,b∈Zd β(a)β(b)

∑M
k=1 µ(Aj+`1+...+b`i/McM+k; S`i+1

= a− b)
add`j/MeM


= o(Amn ) + Φ(0)

m
2

∑
`∈Ẽq,n

 ∏
i:Ni=2

∑
a∈Zd β(a)2

ad`i

 ∏
i:Ni=1,εi=0

∑
a,b∈Zd β(a)β(b)µ(S`i+1

= a− b)
add`i/MeM


= o(Amn ) + Φ(0)

m
2

∑
a∈Zd

β(a)2

m−q ∑
`1,...,`q−m/2≥1

q−m/2∏
i=1

∑
a,b∈Zd

β(a)β(b)µ(S`i = a− b)



×

 ∑
`′∈E

m/2,n−
∑q−m/2
i=1

`i

m/2∏
i=1

1

ad
`′i


 .

The sequence (An) has regular variation. Due to Lemma 2.7, for all `1, . . . , `q−m/2 ≥ 1,

∑
`′∈E

m/2,n−
∑q−m/2
i=1

`i

m/2∏
j=1

a−d
`′j
∼ Amn

Γ
(
1 + α−d

α

)m
2

Γ
(
1 + m

2
α−d
α

) as n→ +∞.

Hence, by the dominated convergence theorem,

A
ε(N)
n;q;N ∼ Amn Φ(0)

m
2

∑
a∈Zd

β(a)2

m−q∑
`≥1

∑
a,b∈Zd

β(a)β(b)µ(S` = a− b)

q−m
2

Γ
(
1 + α−d

α

)m
2

Γ
(
1 + m

2
α−d
α

) .
If N /∈ G(q), or N ∈ G(q) but ε 6= ε(N), we have already seen that Aε(N)

n;q;N � Amn . Therefore, by Equa-
tion (2.11),

Eµ [Zn(β)m] ∼
m∑
q=1

∑
N∈G(q)

cNA
ε(N)
n;q;N.

For fixed q, the value of cN does not depend onN, as the multiset of weights is the same. There are 2−(m−q)m!
maps from {1, . . . ,m} to {1, . . . , q} such that 1, . . . ,m− q each have 2 preimages, and m− q+ 1, . . . , q each
have 1 preimage. Thus,

∀m ∈ 2Z, Eµ [Zn(β)m] ∼ m!

m∑
q=1

2−(m−q)
∑

N∈G(q)

A
ε(N)
n;q;N.
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For fixed q, there are
( m/2
q−m/2

)
sequences N ∈ G(q): each such sequence is the concatenation of m/2 blocs of

two different kinds, with r := q −m/2 blocs of one kind. Thus, for even m,

Eµ [Zn(β)m] ∼ Amnm!Φ(0)
m
2

Γ
(
1 + α−d

α

)m
2

Γ
(
1 + m

2
α−d
α

)
×

m
2∑

r=0

(
m/2

r

)(∑
a∈Zd β(a)2

2

)m
2
−r
∑
`≥1

∑
a,b∈Zd

β(a)β(b)µ(S` = a− b)

r

∼ Amnm!
Γ
(
1 + α−d

α

)m
2

Γ
(
1 + m

2
α−d
α

)
Φ(0)

2

∑
a∈Zd

β(a)2 + 2
∑
`≥1

∑
a,b∈Zd

β(a)β(b)µ(S` = a− b)

m
2

= Amn
m!Γ

(
1 + α−d

α

)m
2

2
m
2 Γ
(
1 + m

2
α−d
α

)Φ(0)
m
2 σGK(β, Ã, µ̃, T̃ )m

Let Y be a random variable with a standard MLGM(1−α/d) distribution. Its distribution function is even,
so all its odd moments are 0. Let Y have a standard Mittag-Leffler distribution of parameter 1 − α/d and
N be a standard Gaussian random variable. Then the even moments of Y are:

E[Ym] = E[Y
m
2 ]E[Nm] =

(m/2)!Γ
(
1 + α−d

α

)m
2

Γ
(
1 + m

2
α−d
α

) m!

2
m
2 (m/2)!

=
m!Γ

(
1 + α−d

α

)m
2

2
m
2 Γ
(
1 + m

2
α−d
α

) ,
so that, for even m:

Eµ [Zn(β)m] ∼ Amn E
[(√

Φ(0)σGK(β, Ã, µ̃, T̃ )Y
)m]

.

We already know that Eµ [Zn(β)m] � Amn for odd m. Hence, all the moments of (Zn(β)/An)n converge to
the moments of

√
Φ(0)σGK(β, Ã, µ̃, T̃ )Y. Since:

∑
m≥0

[
Γ
(
1 + m

2
α−d
α

)
m!Γ

(
1 + α−d

α

)m
2

] 1
2m

= +∞,

Carleman’s criterion is satisfied [23, Chap. XV.4], so (Zn(β)/An)n converges in distribution to
√

Φ(0)σGK(β, Ã, µ̃, T̃ )Y,
when A× Z is endowed with the probability measure µ× δ0.

Finally, remark that: ∣∣∣∣Zn(β)

An
◦ T̃ − Zn(β)

An

∣∣∣∣ ≤ 2 ‖β‖∞
An

→n→+∞ 0,

so by [67, Theorem 1], the sequence (Zn(β)/An)n converges strongly in distribution to
√

Φ(0)σGK(β, Ã, µ̃, T̃ )Y.

2.4. Technical lemmas. In the previous section, we used three technical lemmas, whose proofs would have
been to long to include into our main line of reasoning. Their statements and proofs follow.

We begin with Lemma 2.6, which we used to control each part of the decomposition Q`,a = Q
(0)
`,a + Q

(1)
`,a .

Recall that Φ is the continuous version of the density function of the stable distribution with characteristic
function e−ψ(

√
Σ·). Since µ(S` = a) = Eµ [Q`,a(1)] for a ∈ Zd, the following lemma can be understood as a

strong form of the the local limit theorem for (S`)`≥1.

Lemma 2.6. We assume that the Hypotheses 2.1 hold.
Let a ∈ Zd. For every positive integer `,

Q`,a(h) =
Φ
(
a
a`

)
ad`

Π`
0(h) + ε`,a(h),

with supa∈Zd ‖ε`,a‖B→B = o
(
a−d`

)
.
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Moreover, for every ω ∈ (0, 1],

sup
a,p∈Zd
p 6=0

|p|−ω ‖Q`,a −Q`,a−p‖ = O
(
a
−(d+ω)
k

)
, (2.22)

and:

‖Q`,a−p −Q`,a −Q`,−p +Q`,0‖ = O
(

(|a| |p|)ωa−(d+2ω)
`

)
. (2.23)

Proof of Lemma 2.6. Recall that Q`,a(h) = 1
(2π)d

∫
Td e

−i〈u,a〉P `u(h) du. From Hypothesis 2.1, and up to taking
a smaller neighborhood U , there exist constants C0, c0 > 0 such that ‖Pu‖L(B) ≤ C0 and:

max
{
|λu|,

∣∣∣e−`ψ(
√

Σu)L(|
√

Σu|−1)
∣∣∣} ≤ e−c0|u|αL(|u|−1),

for all u ∈ U .

Let ε ∈ (0, α). Since L is slowly varying at infinity and Σ is invertible, by Karamata [34] (or Potter’s
bound [8, Theorem 1.5.6]), there exists `0 ≥ 0 such that, for every ` ≥ `0 and v ∈ U ,

2

|v|ε
≤
∣∣∣∣L(a`/|v|)
L(a`)

∣∣∣∣ ≤ |v|ε2
.

Since nL(an) ∼ aαn, up to choosing a larger `0, for every ` ≥ `0 and v ∈ U ,

|v|α−ε ≤ ` |v|
α

aα`
L

(
a`
|v|

)
≤ |v|α+ε. (2.24)

We begin with the first point of the lemma. Let a ∈ Zd and ` ≥ `0 be an integer. By Hypothesis 2.1,

Q`,a =
1

(2π)d

∫
Td
e−i〈u,a〉P `u du =

1

(2π)d

∫
U
e−i〈u,a〉λ`uΠ`

u du+O(r`), (2.25)

and, for every u ∈ U ,∥∥∥λ`uΠ`
u − e−`ψ(

√
Σu)L(|

√
Σu|−1)Π`

0

∥∥∥ ≤ |λu|` ∥∥∥Π`
u −Π`

0

∥∥∥
L(B,B)

+
∣∣∣λ`u − e−`ψ(

√
Σu)L(|

√
Σu|−1)

∣∣∣ ∥∥∥Π`
0

∥∥∥
L(B,B)

≤ C
(
1 + `|u|αL(|u|−1)

)
e−c0`|u|

αL(|u|−1)ξ(u) ‖h‖B , (2.26)

where ξ is bounded and limu→0 ξ(u) = 0, due to the asymptotic expansion of u 7→ λu, to the continuity of
u 7→ Πu at 0 and since Π`

u = Π
{`/M}M
u (see Equation (2.4)). Hence:∥∥∥∥ 1

(2π)d

∫
U
e−i〈u,a〉λ`uΠ`

u du − 1

(2π)d

∫
U
e−i〈u,a〉e−`ψ(

√
Σu)L(|

√
Σu|−1)Π`

0 du

∥∥∥∥
≤ C

∫
U

(
1 + `|u|αL(|u|−1)

)
e−c0`|u|

αL(|u|−1)ξ(u) du

≤ Ca−d`
∫
a`U

(
1 + `

|v|α

aα`
L

(
a`
|v|

))
e
−c0` |v|

α

aα
`
L
(

a`
|v|

)
ξ

(
v

a`

)
dv

≤ Ca−d`
∫
a`U

(
1 + |v|α+ε

)
e−c0|v|

α−ε
ξ

(
v

a`

)
dv

= o(a−d` ), (2.27)
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due to (2.24) and to the Lebesgue dominated convergence theorem. Finally,∣∣∣∣ 1

(2π)d

∫
U
e−i〈u,a〉e−`ψ(

√
Σu)L(|

√
Σu|−1) du− 1

ad`
Φ

(
a

a`

)∣∣∣∣
=

∣∣∣∣ 1

(2π)dad`

∫
a`U

e
−i 〈v,a〉

a` e
−`ψ

(
v
a`

)
L
(

a`
|v|

)
− 1

(2π)dad`

∫
Rd
e
−i 〈v,a〉

a` e−ψ(v) dv

∣∣∣∣
=

∣∣∣∣ 1

(2π)dad`

∫
a`U

e
−i 〈v,a〉

a`

(
e
−`ψ

(
v
a`

)
L
(

a`
|v|

)
− e−ψ(v)

)
dv

∣∣∣∣+ o
(
a−d`

)
≤ 1

(2π)dad`

∫
a`U

∣∣∣∣e−`ψ(v)
aα
`
L
(

a`
|v|

)
− e−ψ(v)

∣∣∣∣ dv + o
(
a−d`

)
= o

(
a−d`

)
, (2.28)

using again the Lebesgue dominated convergence theorem (with (2.24) for the necessary upper bound). Note
that the majorations we used are independent of a, whence:

sup
a∈Zd

∣∣∣∣ 1

(2π)d

∫
U
e−i〈u,a〉e−`ψ(

√
Σu)L(|

√
Σu|−1) du− 1

ad`
Φ

(
a

a`

)∣∣∣∣ = o
(
a−d`

)
.

This ends the proof of the first point.
Let β > −1. Let F : Td → C be a measurable function, with |F (u)| ≤ K|u|β for all u ∈ U . Then, for all

large enough `, ∥∥∥∥ 1

(2π)d

∫
Td
F (u)P `u du

∥∥∥∥ ≤ ∥∥∥∥ 1

(2π)d

∫
U
F (u)λ`uΠ`

u du

∥∥∥∥ + ‖F‖L1 O(r`)

≤ KC0

(2π)d

∫
U
|u|βe−c0`|u|αL(|u|−1) du+KO(r`)

≤ KC0

(2π)dad+β
`

∫
a`U
|v|βe

−c0` |v|
α

aα
`
L
(

a`
|v|

)
du+KO(r`)

≤ KC0

(2π)dad+β
`

∫
R
|v|βe−c0|v|α−ε du+KO(r`)

= K.O
(
a
−(d+β)
`

)
, (2.29)

where the O
(
a
−(d+β)
`

)
depends on β but not on K.

With |F (u)| =
∣∣e−i〈u,a〉 − e−i〈u,a−p〉∣∣ ≤ min(2, |u| |p|) ≤ 21−ω|p|ω|u|ω, Equation (2.29) yields:

sup
a∈Zd
‖Q`,a −Q`,a−p‖ = O

(
|p|ωa−(d+ω)

`

)
,

which is Equation (2.22).
With |F (u)| =

∣∣e−i〈u,a〉 − 1
∣∣ ∣∣ei〈u,p〉 − 1

∣∣ ≤ min(2, |u| |p|)·min(2, |u| |a|) ≤ 41−ω|a|ω|p|ω|u|2ω, Equation (2.29)
yields:

‖Q`,a−p −Q`,a −Q`,−p +Q`,0‖ = O
(
|a|ω|p|ωa−(d+2ω)

`

)
,

which is Equation (2.23). �

We now give a proof of Lemma 2.4, which was stated in the previous section. This lemma allowed us to
control various sums involving the coefficients b(1,...,1)

a,`,N , depending on N, and was central in the proof of the
main theorem. For the convenience of the reader, what we have to prove is reformulated at the begining of
the proof.

Proof of Lemma 2.4. Let us introduce the following operators on B:

Cb,a,(`1,...,`q),(N1,...,Nq−1) :=
∑

a0,...,aq∈Zd
a0=a, aq=b

β(aq−1)Nq−1Q
(1)
`q ,aq−aq−1

· · ·β(a1)N1Q
(1)
`2,a2−a1

Q
(1)
`1,a1−a0

,
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and
Da,(`1,...,`q),(N1,...,Nq) :=

∑
a0,...,aq∈Zd

a0=a

β(aq)
NqQ

(1)
`q ,aq−aq−1

· · ·β(a1)N1Q
(1)
`1,a1−a0

.

Note that:

b
(1,...,1)
a;`,N (·) = Eµ[Da,`,N(·)] and

∑
a∈Zd

β(a)b
(1,...,1)
a,`,N (·) =

∑
a∈Zd

β(a)Eµ [Da,`,N(·)] .

Hence, it is sufficient to prove that:

sup
a∈Zd

(1 + |a|η)−1
∑

`∈{1,...,n}q
‖Da,`,N‖ = o

(
A
N1+...+Nq
n

)
, (2.30)

n∑
`=1

∥∥∥∥∥∥
∑
a∈Zd

β(a)Da,(`),(N)

∥∥∥∥∥∥ =

{
O (1) if q = 1, N = 1
o (An) if q = 1, N ≥ 2

, (2.31)

∑
`∈{1,...,n}q

∥∥∥∥∥∥
∑
a∈Zd

β(a)Da,`,N

∥∥∥∥∥∥ = o
(
A
N1+...+Nq−1
n

)
if q ≥ 2. (2.32)

• Restriction of the problem. We first observe that we can restrict our study to the case where all
the Nj ’s are equal to 1. The price to pay will be that we will have to consider both Da,`,(1,...,1) and
Cb,a,`,(1,...,1). Equation (2.31) shall be proved separately with the next step (Case q = 1).

We shall prove the estimates (2.30) and (2.32) in the particular case where (N1, . . . , Nq) = (1, ., 1)
(or equivalently N1 + . . .+Nq = q), that is:

sup
a∈Zd

(1 + |a|η)−1
∑

`∈{1,...,n}q

∥∥Da,`,(1,...,1)

∥∥ = o (Aqn) , (2.33)

∑
`∈{1,...,n}q

∥∥∥∥∥∥
∑
a∈Zd

β(a)Da,`,(1,...,1)

∥∥∥∥∥∥ = o
(
Aq−1
n

)
if q ≥ 2, (2.34)

together with the following estimates:

sup
a∈Zd

(1 + |a|η)−1
∑

`∈{1,...,n}q

∑
b∈Zd
|β(b)|

∥∥Cb,a,`,(1,...,1)

∥∥ = o
(
Aq+1
n

)
, (2.35)

and: ∑
`∈{1,...,n}q

∑
b∈Zd
|β(b)|

∥∥∥∥∥∥
∑
a∈Zd

β(a)Cb,a,`,(1,...,1)

∥∥∥∥∥∥ = o(Aqn). (2.36)

Assume these estimates to be proved. If (N1, . . . , Nq) 6= (1, . . . , 1), let j be the largest index such
that Nj 6= 1. Then:∥∥Da,`,(N1,...,Nq)

∥∥ ≤ ∑
aj∈Zd

|β(aj)|Nj
∥∥∥Daj ,(`j+1,...,`q),(1,...,1)

∥∥∥ ∥∥∥Caj ,a,(`1,...,`j),(N1,...,Nj−1)

∥∥∥ , (2.37)

and∥∥Cb,a,`,(N1,...,Nq−1)

∥∥ ≤ ∑
aj∈Zd

|β(aj)|Nj
∥∥∥Cb,aj ,(`j+1,...,`q),(1,...,1)

∥∥∥ ∥∥∥Caj ,a,(`1,...,`j),(N1,...,Nj−1)

∥∥∥ . (2.38)

Let us iterate this decomposition. Given (N1, . . . , Nq−1) 6= (1, . . . , 1), let J := {1 ≤ j < q : Nj ≥
2} = {j1, . . . , jJ}, with j1 < · · · < jJ and J = |J |. We also use the convention j0 = 0. Iterating
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Equations (2.37) and (2.38) then yields:

sup
a0∈Zd

(1 + |a0|η)−1
∑

`∈{1,...,n}q

∥∥Da0,`,(N1,...,Nq−1)

∥∥
≤
∑
aJ∈Zd

n∑
`1+jJ

,...,`q=1

|β(aJ)|NjJ
∥∥∥DajJ ,(`1+jJ

,...,`q),(1,...,1)

∥∥∥
×

J∏
k=2

 ∑
ajk−1

∈Zd

n∑
`1+jk−1

,...,`jk=1

∑
ajk∈Z

d

|β(ajk)|Njk |β(ajk−1
)|Njk−1

∥∥∥Cajk ,ajk−1
,(`1+jk−1

,...,`jk ),(1,...,1)

∥∥∥


×

 sup
a0∈Zd

n∑
`1,...,`j1=1

(1 + |a0|η)−1
∑

aj1∈Zd
|β(aj1)|Nj1

∥∥∥Caj1 ,a0,(`1,...,`jk ),(1,...,1)

∥∥∥
 . (2.39)

Recall that, since η < α−d
2 + ε and β is bounded, |β(a)|x = O(|β(a)|) = O((1 + |a|η)−1) for all x ≥ 1.

Using (2.33) on the first term and (2.35) on the others, we get (2.30):

sup
a0∈Zd

(1 + |a0|η)−1
∑

`∈{1,...,n}q

∥∥Da0,`,(N1,...,Nq−1)

∥∥
= o

(
Aq−jJn

) J∏
k=1

o
(
A
jk−jk−1+1
n

)
= o

(
Aq+Jn

)
= o

(
A
N1+...+Nq
n

)
.

We use the same decomposition to get (2.32). The only difference is that the last term in the
decomposition becomes:

n∑
`1,...,`j1=1

∑
aj1∈Zd

|β(aj1)|Nj1

∥∥∥∥∥∥
∑
a0∈Zd

β(a0)Caj1 ,a0,(`1,...,`j1 ),(1,...,1)

∥∥∥∥∥∥ ,
which by (2.36) is an o

(
Aj1n
)
. The exponent in the estimate is improved by 1, which is what we

wanted.

• First estimates. We first provide some general inequalities. From Lemma 2.6 and the definition of
Q

(1)
`,a , ∥∥∥Q(1)

`,a

∥∥∥ = o
(
a−d`

)
+O

(
Φ(a−d` a)− Φ(0)

ad`

)
.

Since Φ is proportional to the Fourier transform of e−ψ(
√

Σ·), it is η-Hölder for all η ∈ (0, 1], whence:∥∥∥Q(1)
`,a

∥∥∥ = o
(
a−d`

)
+O

(
|a|ηa−d−η`

)
= o

(
(1 + |a|η)a−d`

)
. (2.40)

Due to (2.22),

sup
b 6=0
|b|−ω

∥∥∥Q(1)
`,b−a −Q

(1)
`,−a

∥∥∥ = sup
b6=0
|b|−ω ‖Q`,b−a −Q`,−a‖ = O

(
a
−(d+ω)
`

)
. (2.41)

In particular, since
∑

b∈Zd |b|ω|β(b)| < +∞,

sup
a∈Zd

∥∥∥∥∥∑
b

β(b)Q
(1)
`,b−a

∥∥∥∥∥ = sup
a∈Zd

∥∥∥∥∥∑
b

β(b)(Q
(1)
`,b−a −Q

(1)
`,−a)

∥∥∥∥∥ = O
(
a
−(d+ω)
`

)
. (2.42)
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Due to (2.23), and since
∑

a∈Zd β(a) = 0,

sup
a6=0

(|a| |b|)−ω
∥∥∥∥∥∥
∑
b∈Zd

β(b)(Q
(1)
`,b−a −Q

(1)
`,b )

∥∥∥∥∥∥ = sup
a6=0

(|a| |b|)−ω
∥∥∥∥∥∥
∑
b∈Zd

β(b)(Q`,b−a −Q`,b)

∥∥∥∥∥∥
= sup

a6=0
(|a| |b|)−ω

∥∥∥∥∥∥
∑
b∈Zd

β(b)(Q`,b−a −Q`,b −Q`,−a +Q`,0)

∥∥∥∥∥∥
= O

(
a
−(d+2ω)
`

)
. (2.43)

In particular, using again the fact that
∑

b∈Zd |b|ω|β(b)| < +∞,∥∥∥∥∥∥
∑
a,b∈Zd

β(a)β(b)Q
(1)
`,b−a

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
a,b∈Zd

β(a)β(b)(Q`,b−a −Q`,b)

∥∥∥∥∥∥
= O

(
a
−(d+2ω)
`

)
. (2.44)

We will also repeatedly use the two following facts:∑
`≥1

a
−(d+2ω)
` < +∞ and

∑
`≥1

a
−(d+ω)
` = o(An), (2.45)

since (a`)`≥0 is 1/α-regular and ω > (α− d)/2 ≥ 0.

• Case q = 1. We prove separately the case q = 1, which either involves different inequalities, or
shall provide the base case for a recursion. We have to prove four estimates, which shall be in order:
(2.31), (2.33), (2.35) and (2.36).

We begin with (2.31). Due to (2.44), if N = 1,

n∑
`=1

∥∥∥∥∥∥
∑
a∈Zd

β(a)Da,(`),(1)

∥∥∥∥∥∥ =
n∑
`=1

∥∥∥∥∥∥
∑
a,b∈Zd

β(a)β(b)Q
(1)
`,b−a

∥∥∥∥∥∥
=

n∑
`=1

O
(
a
−(d+2ω)
`

)
= O(1).

If N ≥ 2, we use (2.42) instead:

n∑
`=1

∥∥∥∥∥∥
∑
a∈Zd

β(a)Da,(`),(N)

∥∥∥∥∥∥ ≤
n∑
`=1

∑
b∈Zd
|β(b)|N

∥∥∥∥∥∥
∑
a∈Zd

β(a)Q
(1)
`,b−a

∥∥∥∥∥∥
=

∑
b∈Zd
|β(b)|N

 n∑
`=1

O
(
a
−(d+ω)
`

)
= o(An).

Now, consider (2.33) for q = 1. Using (2.42) and (2.45),

sup
a∈Zd

(1 + |a|η)−1
n∑
`=1

∥∥Da,(`),(1)

∥∥ ≤ n∑
`=1

sup
a∈Zd

∥∥∥∥∥∥
∑
b∈Zd

β(b)Q
(1)
`,b−a

∥∥∥∥∥∥
=

n∑
`=1

O
(
a
−(d+ω)
`

)
= o(An). (2.46)
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Next, we prove (2.35) for q = 1. Note that Cb,a,(`),∅ = Q
(1)
`,b−a, and that (1 + |b − a|η) ≤ (1 +

|a|η)(1 + |b|η) since η ≤ 1. Hence, by (2.40),
n∑
`=1

∑
b∈Zd
|β(b)|

∥∥Cb,a,(`),∅∥∥ =

n∑
`=1

∑
b∈Zd
|β(b)|o

(
(1 + |b− a|η)a−d`

)

=

∑
b∈Zd
|β(b)|(1 + |b|η)

 (1 + |a|η)
n∑
`=1

o
(
a−d`

)
= o

(
(1 + |a|η)A2

n

)
.

Finally, we deal with (2.36) for q = 1. Due to (2.42) and (2.45),

n∑
`=1

∑
b∈Zd
|β(b)|

∥∥∥∥∥∥
∑
a∈Zd

β(a)Cb,a,`,∅

∥∥∥∥∥∥ =

∑
b∈Zd
|β(b)|

 n∑
`=1

O
(
a
−(d+ω)
`

)
= o (An) .

• Case q ≥ 2. It remains to check four estimates, which shall be in order: (2.33), (2.34), (2.35)
and (2.36), for q ≥ 2. To simplify the notations, we omit (1, . . . , 1) in indices, and use the convention
Da,`,∅ = 1 for all a and `.

We shall prove (2.33) and (2.34) with recursive bounds involving the functions:

uq,n(a) :=
n∑

`1,...,`q=1

∥∥Da,(`1,...,`q)

∥∥ and vq,n(a) :=
n∑

`1,...,`q=1

∥∥Da,(`1,...,`q) −D0,(`1,...,`q)

∥∥ .
Note that (2.33) is equivalent to the statement that uq,n(a) = o((1 + |a|η)Aqn), while (2.34) is implied
by the bound vq,n(a) = o(|a|ωAq−1

n ) for q ≥ 2 (since
∑

a∈Zd β(a) = 0). We shall express uq,n and vq,n
in terms of uq−1,n, vq−1,n, uq−2,n and vq−2,n.

We start with the sequence (uq,n). For all q ≥ 2,

Da0,(`1,...,`q) =
∑
a1,a2

β(a1)β(a2)Da2,(`3,...,`q)Q
(1)
`2,a2−a1

Q
(1)
`1,a1−a0

=
∑
a1,a2

β(a2)
[
D0,(`3,...,`q) +Da2,(`3,...,`q) −D0,(`3,...,`q)

]
×
(
β(a1)Q

(1)
`2,a2−a1

[
Q

(1)
`1,−a0

+Q
(1)
`1,a1−a0

−Q(1)
`1,0−a0

])
= D0,(`3,...,`q)

[(∑
a1,a2

β(a1)β(a2)Q
(1)
`2,a2−a1

)
Q

(1)
`1,−a0

(2.47)

+
∑
a1,a2

β(a1)β(a2)
(
Q

(1)
`2,a2−a1

−Q(1)
`2,−a1

)(
Q

(1)
`1,a1−a0

−Q(1)
`1,0−a0

)]
+
∑
a2

β(a2)
(
Da2,(`3,...,`q) −D0,(`3,...,`q)

)
×

[(∑
a1

β(a1)Q
(1)
`2,a2−a1

)
Q

(1)
`1,−a0

+
∑
a1

β(a1)Q
(1)
`2,a2−a1

(
Q

(1)
`1,a1−a0

−Q(1)
`1,0−a0

)]

since
∑

a2
β(a2)Q

(1)
`2,−a1

= 0. Note that
∑

p |p|η+ω|β(p)| < +∞ and (1 + |a2 − a1|η)|a1|ω ≤ 2(1 +

|a1|η+ω)(1 + |a2|η). Therefore, using in addition (2.40), (2.41), (2.43) and (2.44), we get that, for all
q ≥ 2,∥∥Da0,(`1,...,`q)

∥∥ =
∥∥D0,(`3,...,`q)

∥∥O ((1 + |a0|η)a−(d+2ω)
`2

o(a−d`1 ) + (a`1a`2)−(d+ω)
)

+
∑
a2

|β(a2)|
∥∥Da2,(`3,...,`q) −D0,(`3,...,`q)

∥∥ O ((1 + |a0|η)a−(d+ω)
`2

o(a−d`1 ) + (1 + |a2|η)o(a−d`2 )a
−(d+ω)
`1

)
,
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uniformly in a0. If q = 2, this simplifies to:∥∥Da0,(`1,`2)

∥∥ = O
(

(1 + |a0|η)a−(d+2ω)
`2

o(a−d`1 ) + (a`1a`2)−(d+ω)
)
.

These estimates, combined with (2.45), yield for all q ≥ 3:

uq,n(a) = O

(1 + |a|η)

uq−2,n(0)o(A2
n) +

∑
a2∈Zd

|β(a2)|(1 + |a2|η)vq−2,n(a2)o(A3
n)

 , (2.48)

and, for q = 2,
u2,n(a) = o

(
(1 + |a|η)A2

n

)
. (2.49)

Now, let us consider the sequence (vq,n). For all q ≥ 2,

Da0,(`1,...,`q) −D0,(`1,...,`q) =
∑
a1

β(a1)Da1,(`2,...,`q)(Q
(1)
`1,a1−a0

−Q(1)
`1,a1

)

= D0,(`2,...,`q)

∑
a1

β(a1)(Q
(1)
`1,a1−a0

−Q(1)
`1,a1

)

+
∑
a1

β(a1)
(
Da1,(`2,...,`q) −D0,(`2,...,`q)

) (
Q

(1)
`1,a1−a0

−Q(1)
`1,a1

)
. (2.50)

From (2.43) and (2.41), we get that, for all q ≥ 2,∥∥Da0,(`1,...,`q) −D0,(`1,...,`q)

∥∥ =
∥∥D0,(`2,...,`q)

∥∥O (|a0|ωa−(d+2ω)
`1

)
+
∑
a1∈Zd

|β(a1)|
∥∥Da1,(`2,...,`q) −D0,(`2,...,`q)

∥∥O (|a0|ωa−(d+ω)
`1

)
,

so that, using (2.45).

vq,n(a) = O

|a|ω
uq−1,n(0) +

∑
a1∈Zd

|β(a1)|vq−1,n(a1)o(An)

 . (2.51)

From (2.43) and (2.45), we also obtain:

v1,n(a) = O (|a|ω) . (2.52)

Equation (2.33) can be reformulated as uq,n(a) = o((1 + |a|η)Aqn) for q ≥ 1, while Equation (2.34)
is a straightforward consequence of the fact that

∑
a∈Zd |β(a)|vq,n(a) = o(Aq−1

n ) for q ≥ 1 (since∑
a∈Zd β(a) = 0). We prove these two identities recursively, and more precisely that:

uq,n(a) = o ((1 + |a|η)Aqn) and sup
a6=0
|a|−ωvq,n(a) =

{
O(1) if q = 1

o(Aq−1
n ) if q ≥ 2

.

This follows from (2.48) and (2.51) by an induction of degree 2 for uq,n and of degree 1 for vq,n. The
initialization is given by (2.46), (2.49) and (2.52) (for respectively u1,n, u2,n and v1,n).

It remains to prove Equations (2.35) and (2.36). Note that (2.47) and (2.50) hold true if we replace
D... by Caq ,.... Hence (2.48) and (2.51) also hold if we replace uq,n and vq,n by, respectively, ũq,n and
ṽq,n, which are given by:

ũq,n(a) :=

n∑
`1,...,`q=1

∑
aq∈Zd

|β(aq)|
∥∥Caq ,a,(`1,...,`q)∥∥ ,

ṽq,n(a) :=
n∑

`1,...,`q=1

∑
aq∈Zd

|β(aq)|
∥∥Caq ,a,(`1,...,`q) − Caq ,0,(`1,...,`q)∥∥ .

Note that (2.35) is equivalent to the statement that ũq,n(a) = o((1 + |a|η)Aq+1
n ), while (2.36) is

implied by the bound ṽq,n(a) = o(|a|ωAqn) for q ≥ 2.
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The first terms are the following. For ũ1,n(a), we get:

ũ1,n(a) =

n∑
`=1

∑
b∈Zd
|β(b)|

∥∥∥Q(1)
`,b−a

∥∥∥
=

n∑
`=1

∑
b∈Zd
|β(b)|(1 + |b|η)o

(
(1 + |a|η)a−d`

)
= o

(
(1 + |a|η)A2

n

)
.

For ũ2,n(a), we get:

ũ2,n(a) =
n∑

`1,`2=1

∑
b∈Zd
|β(b)|

∥∥∥∥∥∥
∑
a1∈Zd

β(a1)Q
(1)
`2,b−a1

Q
(1)
`1,a1−a

∥∥∥∥∥∥
≤

n∑
`1,`2=1

∑
b∈Zd
|β(b)|

∥∥∥∥∥∥Q(1)
`2,b

∑
a1∈Zd

β(a1)Q
(1)
`1,a1−a

∥∥∥∥∥∥ +

∥∥∥∥∥∥
∑
a1∈Zd

β(a1)
(
Q

(1)
`2,b−a1

−Q(1)
`2,b

)
Q

(1)
`1,a1−a

∥∥∥∥∥∥
=

n∑
`1,`2=1

∑
b∈Zd
|β(b)|

o((1 + |b|η)a−(d+ω)
`1

a−d`2

)
+
∑
a1∈Zd

|β(a1)|o
(

(1 + |a|η)(1 + |a1|ω+η)a−d`1 a
−(d+ω)
`2

)
= o

(
(1 + |a|η)A3

n

)
,

where we used (2.41) and (2.43) for the first part, (2.41) and (2.42) for the second part, and (2.45)
to finish. Finally, for ṽ1,n(a), we get:

ṽ1,n(a) =

n∑
`=1

∑
b∈Zd
|β(b)|

∥∥∥Q(1)
`1,b−a −Q

(1)
`1,b

∥∥∥ = o (|a|ωAn) ,

due to (2.41) and (2.45).

By induction, we obtain

ũq,n(a) = o
(
(1 + |a|η)Aq+1

n

)
and sup

a6=0
|a|−ωṽq,n(a) = o(Aqn),

which ends the proof of Lemma 2.4.

�

The third and last lemma of this sub-section gives a simple formula for the asymptotic growth of the
quantity

∑
`∈Eq,n

∏q
j=1 a

−d
kj

.

Lemma 2.7. Let 1 ≤ d ≤ α ≤ 2 be and integer and a real number respectively. Recall that, for every q ≥ 1,

Eq,n =

` ∈ {1, . . . , n}q :

q∑
j=1

`j ≤ n

 .

Let (a`)`≥0 be a sequence of positive real numbers with regular variation of index 1/α, and An :=
√∑n

`=1 a
−d
` .

Assume that limn→+∞An = +∞.

For every q ≥ 1, ∑
`∈Eq,n

q∏
j=1

a−dkj ∼ A2p
n

Γ
(
1 + α−d

α

)q
Γ
(
1 + qα−dα

) .
Proof. We deal separately with the cases d = α (where (An) has slow variation) and d < α.
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• Case d = α. If d = α ∈ {1, 2}, then ad` is 1-regularly varying, so An has slow variation. By the
pigeonhole principle, for all ` ∈ {1, . . . , n}p \Ep,n, there is always one `i such that `i ≥ dn/pe. Hence:∣∣∣∣∣∣
∑

`∈Ep,n

p∏
j=1

a−d`j −
∑

`∈{1,...,n}p

p∏
j=1

a−d`j

∣∣∣∣∣∣ ≤ p
 n∑
`1=dn/pe

a−d`1

 n∑
`2,...,`p=1

p∏
j=2

a−d`j

 = O

(
n∑
k=1

A2(p−1)
n

)
,

and thus
∑

`∈Ep,n
∏p
j=1 a

−d
`j
∼ A2p

n .

• Case d < α. If d = 1 < α,∑
`∈Ep,n

p∏
j=1

(
a`j
an

)−1

=

∫
{dnu1e+...+dnupe≤n}

p∏
j=1

(
adnuje

an

)−1

du1 · · · dup.

The sequence (an)n is 1/α-regular; by the dominated convergence theorem (the domination coming
e.g. from [8, Theorem 1.5.6]),

lim
n→+∞

1

np

∑
`∈Ep,n

p∏
j=1

(
a`j
an

)−1

=

∫
∆p

p∏
j=1

uj
− 1
α du1 · · · dup,

where ∆p = {(u1, ..., up) ∈ (0, 1)p :
∑p

j=1 uj ≤ 1}. Finally, na−1
n ∼ (1 − α−1)A2

n by Karamata’s
theorem [34], [8, Proposition 1.5.8], so that, as n goes to +∞:

∑
`∈Ep,n

p∏
j=1

a−1
`j

= (na−1
n )p

n−p ∑
`∈Ep,n

p∏
j=1

(
a`j
an

)−1


∼ A2p
n

(
α− 1

α

)p ∫
∆p

p∏
j=1

uj
− 1
α du1 · · · dup. (2.53)

All that remains is to estimate this later integral. Note that, for all t ≥ 0,∫
t∆p

p∏
j=1

uj
− 1
α du1 · · · dup = tp

α−1
α

∫
∆p

p∏
j=1

uj
− 1
α du1 · · · dup.

Hence, using Fubini-Tonnelli’s theorem,∫
∆p

p∏
j=1

uj
− 1
α du1 · · · dup =

1

Γ
(
1 + pα−1

α

) ∫ +∞

0
t
α−1
α
pe−t

∫
Rp+

p∏
j=1

uj
− 1
α1{∑p

j=1 uj≤1} du1 · · · dup dt

=
1

Γ
(
1 + pα−1

α

) ∫
Rp+

p∏
j=1

uj
− 1
α

∫ +∞

0
e−t1{∑p

j=1 uj≤t} dt du1 · · · dup

=
1

Γ
(
1 + pα−1

α

) (∫ +∞

0
u−

1
α e−u du

)p
=

Γ
(
1− 1

α

)p
Γ
(
1 + pα−1

α

) .
Finally, using the identity Γ(z + 1) = zΓ(z),∑

`∈Ep,n

p∏
j=1

a−1
`j
∼ A2p

n

Γ
(
1 + α−1

α

)p
Γ
(
1 + pα−1

α

) �

2.5. Renewal properties. The goal of this Subsection is to prove Proposition 1.6. We assume without loss
of generality that the function L appearing in Hypothesis 2.1 is continuous on (x−1

0 ,+∞) for some x0 > 0,
and that u 7→ uL(u−1) is increasing on this set [8, Theorem 1.5.3]. When α = d, we set for all x ∈ (0, x0):

I(x) :=

∫ x0

x

1

tL(t−1)
dt. (2.54)
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We compute the asymptotics of g(p) according to the method in [59, Chapter III.12, P3], which yields
Proposition 1.6. Before starting the proof, though, we use the Fourier transform to represent g in an integral
form.

Lemma 2.8. For all u ∈ Td, let Ψ(u) :=
∑

n≥0 Eµ[ei〈u,Sn〉]. Under Hypothesis 2.1, the function Ψ is
continuous on Td \ {0}, and, for every p ∈ Zd,

g(p) =
2

(2π)d

∫
Td

(1− cos(〈u, p〉))Ψ(u) du. (2.55)

In addition, for all small enough neighborhoods U of 0,

sup
p∈Zd

∣∣∣∣∣g(p)− 2

(2π)d
<
∫
U

1− cos(〈u, p〉)
1− λMu

M−1∑
k=0

λkuEµ[Πk
u(1)] du

∣∣∣∣∣ < +∞. (2.56)

Proof. Using the Fourier transform, we know that:

g(p) = 2µ(Sn = 0)− µ(Sn = p)− µ(Sn = −p) =
2

(2π)d

∫
Td

(1− cos(〈u, p〉))Eµ[ei〈u,Sn〉] du

Thanks to the Lebesgue dominated convergence theorem, it is then enough to prove that:∑
n≥0

∫
Td
|1− cos(〈u, p〉)|

∣∣∣Eµ[ei〈u,Sn〉]
∣∣∣ du < +∞.

Note that Eµ[ei〈u,Sn〉] = Eµ[Pnu 1]. Hence, for any small enough neighborhood U of 0,

sup
u∈Uc

∑
n≥0

|Eµ[ei〈u,Sn〉]| ≤
∑
n≥0

Crn ‖1‖B = O(1),

which proves the continuity of Ψ on Td \ {0}, as it is the uniform limit of a sequence of continuous functions.
In addition, for every u ∈ U ,∑

n≥0

|Eµ[ei〈u,Sn〉]| =
∑
n≥0

(|λu|n |Eµ[Πn
u(1)]|+ Crn ‖1‖B) ≤ C ′

1− |λu|
+O(1).

Finally,
|1− cos(〈u, p〉)|

1− |λu|
≤ C ′′ |p|

2|u|2−α

L(|
√

Σu|−1)
,

since 1− |λu| ∼ ϑ|
√

Σu|αL(|
√

Σu|−1) as u goes to 0, and |1− cos(〈u, p〉)| ≤ |u|2|p|2. Since α ∈ [1, 2] and that
L is slowly varying, this yields Equation (2.55). Moreover, due to (2.4),∑

n≥0

λnuΠn
u =

∑
n≥0

λMn
u

M−1∑
k=0

λkuΠk
u =

1

1− λMu

M−1∑
k=0

λkuΠk
u.

As can be seen in this proof, the error terms which come from integrating over U (instead of Td) and using
Πu instead of Pu are uniformly bounded in p, so that:

sup
p∈Zd

∣∣∣∣∣g(p)− 2

(2π)d

∫
U

1− cos(〈u, p〉)
1− λMu

M−1∑
k=0

λkuEµ[Πk
u(1)] du

∣∣∣∣∣ < +∞.

This equation stays true a fortiori if we take its real part, which yields Equation (2.56). �

Now, let us begin the proof of Proposition 1.6 in earnest.

Proof of Proposition 1.6. We use the same conventions as in the proof of Lemma 2.8. For all small enough
δ > 0, put U(δ) :=

√
Σ
−1
B(0, δ). By Equation (2.56), for any small enough neighborhood U of 0,

sup
p∈Zd

∣∣∣∣∣g(p)− 2

(2π)d
<
∫
U

1− cos(〈u, p〉)
1− λMu

,

M−1∑
k=0

λkuEµ[Πk
u(1)] du

∣∣∣∣∣ < +∞. (2.57)
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Fix ε ∈ (0, 1). Under Hypothesis 2.1, for all small enough δ > 0, for all u ∈ U(δ),∣∣∣λu − 1 + ψ(
√

Σu)L(|
√

Σu|−1)
∣∣∣ ≤ ε|ψ(

√
Σu)|L(|

√
Σu|−1),

and max0≤k≤M−1

∥∥Πk
u −Πk

0

∥∥
L(B)
≤ ε. Note also that

∑M−1
k=0 λku = (1− λMu )/(1− λu). Then:∣∣∣∣ 1

1− λu
− 1

ψ(
√

Σu)L(|
√

Σu|−1)

∣∣∣∣ ≤ ε

|1− λu|
≤ ε

1− ε
1

|ψ(
√

Σu)|L(|
√

Σu|−1)
,

and ∣∣∣∣∣
∫
U(δ)

1− cos(〈u, p〉)
1− λMu

M−1∑
k=0

λkuE[Πk
u(1)] du−

∫
U(δ)

1− cos(〈u, p〉)
ψ(
√

Σu)L(|
√

Σu|−1)
du

∣∣∣∣∣
≤ ε

(
(1 + ε) ‖1‖B

1− ε
+ 1

)∫
U(δ)

1− cos(〈u, p〉)
|ψ(
√

Σu)|L(|
√

Σu|−1)
du

≤ 2ε

(
(1 + ε) ‖1‖B

1− ε
+ 1

)√
1 + ζ2Hδ(p),

where:

Hδ(p) :=
2

(2π)d

∫
U(δ)
<
(

1− cos(〈u, p〉)
ψ(
√

Σu)L(|
√

Σu|−1)

)
du.

Hence,

lim
ε→0

sup
p∈Zd

Hδ(p)
−1

∣∣∣∣∣
∫
U(δ)

1− cos(〈u, p〉)
1− λMu

M−1∑
k=0

λkuE[Πk
u(1)] du−Hδ(p)

∣∣∣∣∣ = 0. (2.58)

Assume that there exists a function h : Zd → R such that, for all δ > 0 small enough, Hδ(p) ∼ h(p) as p
goes to infinity. If in addition lim∞ h = +∞, then Equations (2.57) and (2.58) imply that g(p) ∼ h(p).

Now, let us simplify those integrals. First, note that:

<
(

1

ψ(
√

Σu)

)
=

1

ϑ(1 + ζ2)|
√

Σu|α
.

Let e1 := (1, 0, . . . , 0). Then:

Hδ(p) =
2

(2π)dϑ(1 + ζ2)

∫
√

Σ
−1
B(0,δ)

1− cos(〈u, p〉)
|
√

Σu|αL(|
√

Σu|−1)
du

=
2

(2π)dϑ(1 + ζ2)
√

det(Σ)

∫
B(0,δ)

1− cos(〈v,
√

Σ
−1
p〉)

|v|αL(|v|−1)
dv

=
2

(2π)dϑ(1 + ζ2)
√

det(Σ)

∫
B(0,δ)

1− cos(|
√

Σ
−1
p|〈v, e1〉)

|v|αL(|v|−1)
dv

=
2|
√

Σ
−1
p|α−1

(2π)dϑ(1 + ζ2)
√

det(Σ)

∫
B(0,|

√
Σ
−1
p|δ)

1− cos(〈w, e1〉)
|w|αL(|

√
Σ
−1
p| |w|−1)

dw.

We shall now distinguish between three sub-cases: d = 1 and α ∈ (1, 2], then d = α = 1 (in the basin of
Cauchy distributions), and finally d = α = 2.

• Case d = 1, α ∈ (1, 2]. In this case, most of the mass in the integral representation of g(p) is present
in a small neighborhood of 0, of size roughly 1/|p|.

Let η ∈ (0, α − 1). By Potter’s bound [8, Theorem 1.5.6], if δ is small enough, there exists a
constant C such that, for all p ∈ Z with a large enough absolute value, for all |w| < |p|δ,

C−1 min{|w|η, |w|−η} ≤
∣∣∣∣L(|p| |w|−1)

L(|p|)

∣∣∣∣ ≤ C max{|w|η, |w|−η}.

For w ∈ [−1, 1], we get:

L(p)
1− cos(w)

|w|αL(|p| |w|−1)
≤ C|w|2−α−η

2
,
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while for 1 < |w| < |
√

Σ
−1
p|δ:

L(p)
1− cos(w)

|w|αL(|p| |w|−1)
≤ 2C

|w|α−η
.

In addition, L(p)(1 − cos(w))|w|−α/L(|p| |w|−1) converges pointwise, as p goes to infinity, to (1 −
cos(w))|w|−α. By the Lebesgue dominated convergence theorem:

Hδ(p) ∼p→∞
2|p|α−1

πϑ(1 + ζ2)L(|p|)

∫ +∞

0

1− cos(w)

wα
dw.

Since limp→∞Hδ(p) = +∞ and the right hand-side does not depend on δ, by (2.58),

g(p) ∼p→∞
2|p|α−1

πϑ(1 + ζ2)L(|p|)

∫ +∞

0

1− cos(w)

wα
dw.

Finally, using an integration by parts and [23, Chap. XVII.4, (4.11)], we get:∫ +∞

0

1− cos(w)

wα
dw =

π

2Γ(α) sin
(

(α−1)π
2

) .
• Case d = α = 1. First, by the same computations and the monotone convergence theorem:∑

n≥0

µ(Sn = 0) =
1

2π

∫
T

Ψ(u) du =
1

2πϑ(1 + ζ2)

∫
U

1

|u|L(|u|−1)
du(1 + o(1)) +O(1),

where U is any small neighborhood of 0 in T. But Halmos’ recurrence theorem [28] and the conser-
vativity of (Ã, µ̃, T̃ ) implies that the left hand-side is infinite, so the right hand-side is also infinite,
and lim0 I = +∞.

Let us go back to the study of g. If α = d = 1, a neighborhood of size 1/|p| of the origin makes
for a negligible part of the mass of g(p). We must look at a larger scale, where the oscillations makes
the cosine ultimately vanish (much as with Riemann-Lebesgue’s lemma).

Let R > 0. using again Potter’s bound (in the same way as in the previous case), we get that:

sup
p∈Z

L(|p|)
∫
B(0,R)

1− cos(w)

|w|L(|p| |w|−1)
dw < +∞,

whence:

πϑ(1 + ζ2)

2
Hδ(p) =

∫ δ

R
|p|

1− cos(|p|v)

|v|L(|v|−1)
dv +O(L(|p|)−1)

= I(R/|p|)− I(δ)−
∫ δ

R
|p|

cos(|p|v)

|v|L(|v|−1)
dv +O(L(|p|)−1).

By [8, Theorem 1.5.9a], I(R/|p|) � L(|p|)−1. Set F (v) := 1/(vL(v−1)), which is monotonous
on a neighborhood of 0. Remark that, by [8, Theorem 1.5.9a] again, |p|−1F (δ) � |p|−1F (R/|p|) �
I(R/|p|) as p goes to infinity. Then, using the Riemann-Stieltjes version of the integration by parts [5,
Theorem 7.6]:∣∣∣∣∣

∫ δ

R
|p|

cos(|p|v)

|v|L(|v|−1)
dv

∣∣∣∣∣ =

∣∣∣∣∣ 1

|p|
[sin(|p|v)F (v)]δR

|p|
− 1

|p|

∫ δ

R
|p|

sin(|p|v) dF (v)

∣∣∣∣∣
≤ 2

|p|
(F (R/|p|) + F (δ)) . (2.59)

Hence, Hδ(p) ∼ 2
πϑ(1+ζ2)

I(R/|p|) ∼ 2
πϑI(|p|−1) as p goes to infinity. Since limp→∞Hδ(p) = +∞ and

I(|p|−1) does not depend on δ, using the remark following (2.58), we get the claim of the proposition.
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• Case d = α = 2. The method is much the same as for d = α = 1, but the oscillations happen along
one axis in the plane. Hence, there is cancellation in almost all directions, but not uniformly. Using
again Potter’s bound, we get that:

π
√

det(Σ)

2
Hδ(p) =

1

2π

∫
B(0,δ)\B(0, R

|
√

Σ
−1

p|
)

1− cos(|
√

Σ
−1
p|〈v, e1〉)

|v|2L(|v|−1)
dv +O(L(|p|)−1)

= I(R/|
√

Σ
−1
p|)− I(δ)− 1

2π

∫ 2π

0

∫ δ

R

|
√

Σ
−1

p|

cos(|
√

Σ
−1
p|r cos(t))

rL(r−1)
dr dt+O(L(|p|)−1).

Fix η > 0. On {| cos(t)| > η}, as in (2.59),∣∣∣∣∫ 2π

0

∫ δ

R

|
√

Σ
−1

p|

cos(|
√

Σ
−1
p|v cos(t))

vL(v−1)
dv dt

∣∣∣∣∣∣
≤ 2 Leb(| cos(t)| > η)

η|
√

Σ
−1
p|

(
F (R/|

√
Σ
−1
p|) + F (δ)

)
+ Leb(| cos(t)| < η)I(|

√
Σ
−1
p|/R).

Since this holds for all η > 0, and since F (δ)/|
√

Σ
−1
p| � F (R/|

√
Σ
−1
p|)/|
√

Σ
−1
p| � I(|

√
Σ
−1
p|−1),

we get that Hδ(p) ∼ 2

π
√

det(Σ)
I(R/|

√
Σ
−1
p|) ∼ 2

π
√

det(Σ)
I(|p|−1) as p goes to infinity. Again, this is

what we claimed in the proposition.

�

3. Theorems 1.7 and 1.11: context and proofs

Theorem 1.4 yields a limit theorem using only spectral methods. If the factor (A,µ, T ) is Gibbs-Markov,
then we also have the limit theorems from [62, 63]. Comparing the expressions of the limits yields Corol-
lary 1.9.

Using the structure of Gibbs-markov map, we can leverage Corollary 1.9 to get an estimate of the prob-
ability that an excursion from A × {0} hits A × {p}, with p ∈ Zd. This is the content of Theorem 1.7.
Finally, Theorem 1.7 allows us to improve the main theorems from [63], yielding Theorem 1.11. In turn, this
improves Corollary 1.9, yielding Corollary 1.13.

We present our strategy in Subsection 3.1. In Subsection 3.2, we present Gibbs-Markov maps, and their
main properties of interest. Subsections 3.3 and 3.4 deal with the tightness and convergence in distribution
of the (renormalized) number of hits of A×{p} by an excursion, and from there the convergence in moments.
Finally, Theorem 1.7 and Theorem 1.11 are proved in Subsections 3.5 and 3.6 respectively.

3.1. Strategy: Working with excursions. Our end goal is Theorem 1.11. Let us describe the strategy
behing our proof.

The method used in [63] to get a distributional limit theorem for observables of a Markov Zd-extension was
the following. To keep things simple, we ignore Lévy stable distributions and stay in dimension d = 1. Let
(Ã, µ̃, T̃ ) be an ergodic and conservative Markov Z-extension of a Gibbs-Markov map (A,µ, T ) with a square
integrable step function F with asymptotic variance σ2

GK(F,A, µ, T ) := Eµ[F 2] + 2
∑

k≥1 Eµ[F · F ◦ T k].

As in Subsection 1.3, let ϕ{0} be the first return time to A × {0}, and T̃{0} be the induced map on
A× {0} ' A. Recall that, for any measurable function f : A× Zd → R and almost every x ∈ A, we define

f{0}(x) :=

ϕ{0}(x)−1∑
k=0

f ◦ T̃ k(x, 0),

that is, f{0}(x) is the sum of f along the excursion from A× {0} starting from (x, 0).
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For every n ≥ 0 and x ∈ A, let τn(x) be the number of visits of (T̃ k(x, 0))k≥1 to A × {0} before time n.
Then, for x in A :

ST̃n f(x, 0) =
n−1∑
k=0

f ◦ T̃ k(x, 0) '
τn(x)−1∑
k=0

f{0} ◦ T̃ k{0}(x),

where, under reasonable assumptions on f and on the extension, the error terms are negligible for large n. If
f is integrable and has zero integral, then so does f{0}. If in addition |f |{0} belongs to Lp for some p > 2 and
if f is regular enough, then (τn) and (

∑N−1
k=0 f{0} ◦ T̃ k{0}) are asymptoticaly independent [63, Theorem 1.7],

and we have a generalized central limit theorem [64, Corollary 6.9], which has the following form when d = 1:

lim
n→+∞

ST̃n f

n
1
4

=

(
2

πσ2
GK(F,A, µ, T )

) 1
4

σGK(f{0}, A, µ, T̃{0})L,

where the convergence is strong in distribution and where L is a parameter 1/
√

2 centered Laplace random
variable and where5:

σ2
GK(f{0}, A, µ, T̃{0}) = Eµ

[
f2
{0}

]
+ 2Eµ

[
f{0} · f{0} ◦ T̃n{0}

]
. (3.1)

Similar limit theorems hold in dimension two or when the jumps are in the basin of attraction of a Lévy
stable distribution.

Due to [63, Theorem 1.11], we already know that the limit theorem holds for observables f which are
Hölder and such that |f |{0} ∈ Lq for some q > 2. However, this condition is hard to check, and we would
like to get a condition which may be stronger, but more manageable. Our idea is to leverage what we know
about the observables fp : Ã→ {±1}, which we recall are defined for p ∈ Zd by fp(x, q) := (1{p} − 1{0})(q).

Note that fp,{0}(x) = Np(x)−1, where Np(x) is the number of visits to A×{p} starting from (x, 0) before
coming back to A× {0}. In addition, for any observable f and any q ≥ 1,∥∥|f |{0}∥∥Lq(A,µ)

≤
∑
p∈Zd
‖f(·, p)‖L∞(A,µ) ‖Np‖Lq(A,µ) . (3.2)

Hence, we are led to the study of ‖Np‖Lq(A,µ) for q > 2. Note that ‖Np‖Lq(A,µ) =
∥∥fp,{0}∥∥Lq(A,µ)

+O(1).

First, we will see that ‖Np‖L2(A,µ) ∼ σGK(fp,{0}, A, µ, T̃{0}). Moreover, comparing the conclusions of

Theorem 1.4 of the present paper with a previous result, we obtain that σ2
GK(fp,{0}, A, µ, T̃{0}) = 2(g(p)− 1)

for every p. The control on higher moments (q > 2) of fp,{0} helps us to extend Theorem 1.4 to a wider class
of observables, thanks to the argument in [17].

Our main issue is then to control ‖Np‖Lq(A,µ) for any q > 2 with the weaker norm ‖Np‖L2(A,µ). For random
walks, there is a simple argument, which we will replicate in the context of Gibbs-Markov maps. Recall that
α(p)−1 := µ(Np > 0) is the probability to visit A× {p} before coming back to A× {0}, when starting from
0.

To identify the distribution of Np, it is enough to consider the Markov chain corresponding to the times
at which the random walk is in {0, p}, which is given by:

0 p1− α(p)−1

α(p)−1

1− α(−p)−1

α(−p)−1

Since the random walk spends as much time in A × {0} and A × {p}, we get α(p) = α(−p). Hence, the
random variable Np|{Np > 0} has a geometric distribution of parameter α(p)−1. So

∥∥fp,{0}∥∥Lq is determined
by
∥∥fp,{0}∥∥L2 for all q.

In the context of Markov Zd-extensions of Gibbs-Markov maps, we cannot expect to know the explicit
distribution of Np; however, the same results will hold asymptotically, which is enough for our purposes. The

5Assuming (A,µ, T̃{0}) is mixing, otherwise the formula differs slightly
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main idea is that Np − 1|{Np > 0} is the hitting time of the event {T̃{0,p} ∈ A× {0}}, which becames small
as p goes to infinity, so α(−p)−1Np|{Np > 0} converges in distribution to an exponential random variable of
parameter 1. Exponential tightness gives the convergence of the moments of Np, which is what we want.

3.2. Recalls on Gibbs-Markov maps. Throughout this Section, (A, π, λ, µ, T ) denotes a Gibbs-Markov
map. These models provide a large enough family of dynamical systems, including many important examples,
most notably inductions of Markov maps with respect to a stopping time. Together with the construction of
Young towers [65], Gibbs-Markov maps appear in a variety of subjects, including intermittent chaos [54, 25,
45], Anosov flows [11], or hyperbolic billiards [65]. Their definition is flexible enough to allow Zd-extensions
with large jumps [4]. Yet, Gibbs-Markov maps have a very strong structure which makes them tractable. We
refer the reader to [1, Chapter 4] and [25, Chapitre 1] for more general references on Gibbs-Markov maps,
and to Subsection 3.2 for some more specialized results. Let us recall their definition.

Definition 3.1 (Measure-preserving Gibbs-Markov maps).
Let (A, d,B, µ) be a probability, metric, bounded Polish space. Let π be a partition of A in subsets of positive
measure (up to a null set). Let T : A→ A be a µ-preserving map, that is exact and Markov with respect to
the partition π. Such a map is said to be Gibbs-Markov if it also satisfies:

• Big image property: infa∈π µ(Ta) > 0;
• Expansivity: there exists λ > 1 such that d(Tx, Ty) ≥ λd(x, y) for all a ∈ π and (x, y) ∈ a× a;
• Bounded distortion: there exists C > 0 such that, for all a ∈ π, for almost every (x, y) ∈ a× a:∣∣∣∣ dµ

dµ ◦ T
(x)− dµ

dµ ◦ T
(y)

∣∣∣∣ ≤ Cd(Tx, Ty)
dµ

dµ ◦ T
(x). (3.3)

A measure-preserving Gibbs-Markov map is thus the data (A, π, d, µ, T ) of five objects: a topological
space, a partition, a distance, a measure and a measure-preserving transformation. We will sometimes abuse
notations, and say for instance that (A,µ, T ) is a Gibbs-Markov map.

Later on, we shall use liberally many fine properties of Gibbs-markov maps. We put them together in this
subsection, which is divided in three parts:

• Fundamental definitions and facts: what is a Gibbs-Markov map, and what are stopping times.
• Good Banach spaces: the Banach spaces we work with, and the properties of the transfer operator.
• Extensions and induction: what happens when we induce a Markov extension (Ã, µ̃, Ã) on a nice set,
and a distortion estimate.

3.2.1. Fundamental definitions and facts. Let (A, π, d, µ, T ) be a Gibbs-Markov map. For all x and y in A,
we define the separation time of x and y as:

s(x, y) := inf{n ≥ 0 : ∀ a ∈ π, Tnx /∈ a or Tny /∈ a}.
Let λ be the expansion constant of the Gibbs-Markov map. Then (A, π, τ−s, µ, T ) is Gibbs-Markov for all
τ ∈ (1, λ]. Without loss of generality, we assume that the distance d belongs to this family of distances,
and (if needed) we specify the parameter τ instead of the distance d. This simplifies greatly the induction
processes.

For n ≥ 0, a cylinder of length n is a non-trivial element of πn :=
∨n−1
k=0 T

−kπ. It is given by a unique
finite sequence (ak)0≤k<n of elements of π such that T (ak) ∩ ak+1 is non-neglectable for all 0 ≤ k < n − 1.
Such a cylinder shall be denoted by [a0, . . . , an−1].

With any Markov maps comes a natural filtration given by Fn := σ(πn) for all n ≥ 0. From this filtration
we define stopping times.

Definition 3.2 (Stopping time). Let (A, π, d, µ, T ) be a Gibbs-Markov map. Let ϕ : A → N ∪ {+∞} be
measurable. We say that ϕ is a stopping time if {ϕ ≤ n} ∈ Fn for all n ≥ 0.

If ϕ is a stopping time which is almost surely positive and finite, the associated countable partition of A is
given by:

πϕ :=
⋃
n≥1

{a ∈ πn : µ(a) > 0 and a ⊂ {ϕ = n}},

and the associated transformation is:
Tϕ(x) := Tϕ(x)(x),
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which is well-defined almost everywhere if ϕ is finite almost everywhere.

One of the great advantages of the class of Gibbs-Markov maps is that it is stable by induction, and that
ergodic Gibbs-Markov maps admits some iterate which is mixing on ergodic components, as the following
results assert.

Lemma 3.3. [1, Proposition 4.6.2]
Let (A, π, λ, µ, T ) be a Gibbs-Markov map, and ϕ be a stopping time for the associated filtration (Fn)n≥0.
Assume that ϕ is almost surely positive and finite, and that Tϕ preserves µ. Then (A, πϕ, λ, µ, Tϕ) is a

mesure-preserving Gibbs-Markov map.

Proposition 3.4. [25, Proposition 1.3.14]
Let (A, π, λ, µ, T ) be an ergodic Gibbs-Markov map. Then there exists an integer M ≥ 1 and a σ(π)-

measurable partition (Ak)k∈Z/MZ of A such that:
• T (Ak) = Ak+1 for all k ∈ Z/MZ;
• each (Ak, πM , λ, µ(·|Ak), TM ) is a mixing Gibbs-Markov map.

3.2.2. Good Banach spaces. Let P : L1(A,µ) → L1(A,µ) be the transfer operator associated with T . For
any bounded measurable function h : A→ R, let:

Ph :

{
L1(A,µ) → L1(A,µ)
f 7→ P (hf)

.

For any a ∈ π and any measurable function f : A→ R, we define the Lipschitz exponent of f on a by:

|f |Lip(a,d) := Einf{C ≥ 0 : |f(x)− f(y)| ≤ Cd(x, y) ∀(x, y) ∈ a2}.

Definition 3.5. Let us define the following two norms:
‖f‖Lip1(A,π,d,µ) := ‖f‖L1(A,µ) +

∑
a∈π µ(a)|f |Lip(a,d);

‖f‖Lip∞(A,π,d,µ) := ‖f‖L∞(A,µ) + supa∈π |f |Lip(a,d).

The spaces Lip1(A, π, d, µ) and Lip∞(A, π, d, µ) are the spaces of measurable functions whose respective norms
are finite. The space Lip∞ is the space of all globally Lipschitz functions, while Lip1 is the space of all locally
Lipschitz functions.

A family of observables is uniformly globally (respectively, locally) Lipschitz if the Lip∞ norm (respectively,
the Lip1 norm) is bounded on this family.

Let θ ∈ (0, 1]. If we replace d by dθ, we get spaces of globally or locally θ-Hölder observables. Any result
about Lipschitz observables can be generalized freely to θ-Hölder observables.

The transfer operator P acts quasi-compactly on Lip∞. If the transformation is mixing, then the transfer
operator has a spectral gap, which implies an exponential decay of correlation for Lipschitz (and, by extension,
Hölder) observables [25, Corollaire 1.1.21]:

Proposition 3.6 (Exponential decay of correlations). Let (A, π, d, µ, T ) be a mixing Gibbs-Markov map.
Then there exist constants C, κ > 0 such that, for all n ≥ 0, for all g ∈ Lip∞(A),∥∥∥∥Png − ∫

A
g dµ · 1

∥∥∥∥
Lip∞(A)

≤ Ce−κn ‖g‖Lip∞(A) .

In addition, P maps continuously Lip1 into Lip∞ [25, Lemme 1.1.13]. This feature (that P maps a large
space of integrable functions into a space of bounded functions) is specific to Gibbs-Markov maps.

3.2.3. Extensions and induction. Let (A, π, λ, µ, T ) be a measure-preserving Gibbs-Markov map. Let G be
a discrete countable Abelian group with counting measure ν. Let F : A → G be σ(π)-measurable. If
(A × G,µA×G, T̃ ) is conservative and ergodic, then for any non-empty subset S ⊂ G and any p ∈ G, the
function:

ϕp,S :

{
A× S → N+

x 7→ inf{n ≥ 1 : T̃n(x, p) ∈ A× S}
is a stopping time which is almost surely positive and finite.

Let S ⊂ G be non-empty and finite. Set:
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• a partition πS := {a× {p} : p ∈ S, a ∈ πϕp,S};
• a measure µS := ν(S)−1µ⊗ ν|S ;
• a transformation:

TS :

{
A× S → A× S
(x, p) 7→ T̃ϕp,S(x)(x)

.

Proposition 3.7 (Inductions of extensions of Gibbs-Markov maps are Gibbs-Markov). Let (Ã, µ̃, T̃ ) be an
ergodic and conservative Markov extension of a Gibbs-markov map (A, π, λ, µ, T ).

Then, for any non-empty finite subset S ⊂ G, the dynamical system (A × S, πS , λ, µS , TS) is a measure-
preserving ergodic Gibbs-Markov map.

Proof. Up to straightforward modifications, the proof is the same as in [1, Proposition 4.6.2]. �

We can then define a transfer operator PS associated to any non-trivial and finite S ⊂ G.
For the remainder of the section, we assume that (A, π, λ, µ, T ) is a measure-preserving and ergodic

Gibbs-Markov map, G a discrete countable Abelian group with counting measure ν, and F : A → G a
σ(π)-measurable function. We assume that (Ã, µ̃, T̃ ) is conservative and ergodic.

In our proof, we will sometimes have to control the distortion of Tϕ : x 7→ Tϕ(x)(x) for various stopping
times ϕ. This is done with the next lemma, which generalizes [25, Lemme 1.1.13]. We write P (ϕ) for the
transfer operator associated with Tϕ.

Lemma 3.8. Let (A, π, λ, µ, T ) be a measure-preserving Gibbs-Markov map. Then there exists a constant
K > 0 with the following property. Let ϕ be a stopping time which is finite with positive probability as well
as almost surely positive. Let A ⊂ {ϕ < +∞} be σ(πϕ)-measurable and non-trivial. Then:∥∥∥∥∥P (ϕ)1A

µ(A)

∥∥∥∥∥
Lip∞(A,π,λ)

≤ K.

Proof. Let n ≥ 1, and let a be a cylinder of length n for the Gibbs-Markov map (A, π, λ, µ, T ). By a
strengthening of the Distortion lemma, e.g. [25, Lemme 1.1.13], there is a constant K independent of n and
a such that:

‖Pn(1a)‖Lip∞(A,π,λ) ≤ Kµ(a).

By additivity, this inequality remains true whenever a is σ(πn)-measurable. For all n ≥ 1, let An := A∩{ϕ =

n}. Then (An)n≥1 is a partition of A. In addition, each An is σ(πn)-measurable, and P (ϕ) = Pn for functions
supported by An, so that:

P (ϕ)1A
µ(A)

= µ(Aϕ)−1
∑
n≥1

Pn1An .

By additivity again, the Lip∞ norm of the right-hand side is at most:

Kµ(Aϕ)−1
∑
n≥1

µ(An) = Kµ(A)−1µ(A) = K. �

3.2.4. Fulfillment of the spectral hypotheses. The spectral hypotheses 2.1 are used in our main theorems, and
Gibbs-Markov maps appear in a variety of applications. We provide here a simple sufficient criterion to
ensure that the spectral hypotheses are satisfied for Gibbs-markov maps. The hypothesis of aperiodicity will
be central.

Definition 3.9 (Aperiodic extensions). Let (A,µ, T ) be a dynamical system preserving a probability measure.
Let d ≥ 0 and F : A→ Zd a measurable function. The corresponding extension (Ã, µ̃, T̃ ) is said to be aperiodic
if the coboundary equation:

F = k + u ◦ T − u mod Λ,

where Λ is a proper sublattice of Zd, k ∈ (Zd)/Λ, and u : A→ (Zd)/Λ is measurable.

We prove the following:
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Proposition 3.10. Let (Ã, µ̃, T̃ ) be an aperiodic Markov Zd-extension of a Gibbs-Markov map (A, π, λ, µ, T )
with step function F . Assume that the extension is ergodic, conservative, and either of the following hypothe-
ses:

• d = 1 and F is in the domain of attraction of an α-stable distribution, with α ∈ (1, 2].
• d = 1 and

∫
A e

iuF dµ = e−ϑ|u|[1−iζ sgn(u)]L(|u|−1) + o
(
|u|L(|u|−1)

)
at 0, for some real numbers ϑ > 0

and ζ ∈ R and some function L with slow variation.
• d = 2 and F is in the domain of attraction of a non-degenerate Gaussian random variable.

Then the Hypotheses 2.1 are satisfied with B := Lip∞.

Proof. The recurrence of the extension is among the hypotheses. Since the extension is ergodic, so is (A,µ, T ).
The existence of an integerM ≥ 1 and a decomposition of A intoM measurable subsets (Ai)i∈Z/MZ on which
TM is mixing follows [25, Théorème 1.1.8].

We choose the Banach space Lip∞ ⊂ L∞(A,µ) ⊂ L1(A,µ). Then 1 ∈ Lip∞, and P cts continuously on
Lip∞. In addition, the subsets Ai are σ(π)-measurable, so for all f ∈ Lip∞:

‖1Aif‖Lip∞(A,π,d,µ) = ‖1Aif‖L∞(A,µ) + sup
a∈π
|1Aif |Lip(a,d) ≤ ‖f‖Lip∞(A,π,d,µ) ,

so the multiplication by 1Ai acts continuously on Lip∞.
We use Proposition 2.2 to check the third item. The function F is constant on elements of the partition

π, so, with the notations of [25] Dτf(a) ≡ 0. Hence, by [25, Corollaire 4.1.3], the application u 7→ Pu, as
a function with values in L(Lip∞,Lip∞), is continuous in 0. But multiplication by ei〈u,F 〉 is continuous on
Lip∞, and Pv(f)− Pu(f) = (Pv−u − P )(ei〈u,F 〉}f). Hence, u 7→ Pu is continuous for all u.

The action of P on Lip∞ is quasi-compact: the spectrum of P is included in the closed unit ball, its
intersection with the unit circle is exactly the set ofMth roots of the unity, and the remainder of the spectrum
lies in a ball of smaller radius. Hence, the eigendecomposition of P is continuous for small parameters u.
The hypotheses of Proposition 2.2 follow, except for the last one (that Pu has no eigenvalue of modulus one
for u 6= 0).

Since the extension is assumed to be aperiodic, the spectral radius of Pu acting on Lip∞ is strictly smaller
than 1 for u 6= 0, by [64, Lemma 2.6]. We point out that the later lemma uses the hypotheses that T
be mixing and F integrable, but these assumptions are not used in its proof. We have checked all the
assumptions of Proposition 2.2, and thus the third item of Hypotheses 2.1.

The expansion of the main eigenvalue for Gibbs-Markov maps is done in [4] in the 1-dimensional case. If
F ∈ L2, then it is an instance of the central limit theorem by spectral methods, as in [47]; otherwise, the
expansion ultimately satisfies:

1− λu ∼ 1−
∫
A
ei〈u,F 〉 dµ, (3.4)

and the formulas comes from [23].
Note that, if α ∈ (1, 2], Birkhoff’s theorem and the conservativity of the extension imply that F has no

drift, which finishes this case. For α = 1, the expansion of
∫
A e

iuF dµ is part of the hypothesis. �

3.3. Tightness. In this subsection and the next, for any metric space (E, d), any x ∈ E and any R > 0, we
write BE(x,R)for the closed ball in (E, d) of center x and of radius R, and SE(x,R) for the corresponding
sphere.

Recall that, for all p ∈ G, for all x ∈ A, we put Np(x) = |{0 ≤ k < ϕ{0}(x) : T̃ k(x, 0) ∈ A × {p}}| and
N0,p(x) = inf{n ≥ 0 : Tn{0}(x) ∈ {Np > 0}}. The goal of this section is to obtain an upper bound for the
tail distribution of N0,p. This estimate will be used later to prove the tightness of α(p)−1Np|{Np > 0}.

Since T is ergodic, we consider M ∈ N+ and (Ak)k∈Z/MZ as in Proposition 3.4. For all k ∈ Z/MZ and
f ∈ L1(A,µ), let Πk be the projection f 7→

∫
Ak
f dµ · 1Ak . For all K > 0, we set:

SK := {h : A→ [0, 1]} ∩BLip∞(A)(0,K).
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Proposition 3.11. Let (A, π, λ, µ, T ) be an ergodic Gibbs-Markov map. Then for all K > 0, there exist
constants C, κ > 0 such that for all h ∈ SK , for all n ≥ 0,

‖Pnh (1)‖L1(A,µ) ≤ Ce
−κ‖1−h‖L1(A,µ)n. (3.5)

Proof. • First, let us assume that (A,µ, T ) is mixing. We only need to prove the assertion for K ≥ 1.
Let h ∈ SK .

If h < 1/2 somewhere, since SK is convex and 1 ∈ SK , the function h′ := (1 + h)/2 also
belongs to SK and satisfies h′ ≥ 1/2. In addition, Pnh (1) ≤ Pnh′(1) for all n, so any upper
bound for

∥∥Pnh′(1)
∥∥
L1(A,µ)

is also an upper bound for ‖Pnh (1)‖L1(A,µ). Moreover, ‖1− h‖L1(A,µ) =

2 ‖1− h′‖L1(A,µ). Hence, if we get the bound (3.5) for h′, up to dividing κ by 2, we also get the
bound (3.5) for h. Hence, without loss of generality, we assume from now on that h ≥ 1/2.

Let f ∈ BLip∞(A)(1, 1/2) ∩ SL1(A,µ)(0, 1). Then, on the one hand, for all h ∈ SK ,∣∣∣∣∫
A
Ph(f) dµ

∣∣∣∣ =

∣∣∣∣∫
A
hf dµ

∣∣∣∣ ≥ ∫
A
h dµ−

∫
A
h|1− f | dµ ≥

‖h‖L1(A,µ)

2
. (3.6)

On the other hand,∣∣∣∣∫
A
Ph(f) dµ

∣∣∣∣ ≤ ∫
A
|f | dµ+

∫
A

(1− h)|1− f | dµ−
∫
A

(1− h) dµ

≤ ‖f‖L1(A,µ) −
‖1− h‖L1(A,µ)

2

= 1−
‖1− h‖L1(A,µ)

2
.

(3.7)

From (3.6), we compute:∥∥∥∥ Ph(f)∫
A Ph(f) dµ

∥∥∥∥
Lip∞(A)

≤
2 ‖P‖L(Lip∞(A)) ‖hf‖Lip∞(A)

‖h‖L1(A,µ)

≤
2 ‖P‖L(Lip∞(A))K

‖h‖L1(A,µ)

‖f‖Lip∞(A)

≤ 4 ‖P‖L(Lip∞(A))K ‖f‖Lip∞(A)

≤ 6 ‖P‖L(Lip∞(A))K.

Due to Proposition 3.6, there exists m ≥ 1 such that, for any h fitting our assumptions, for all
f ∈ BLip∞(A)(1, 1/2), ∥∥∥∥ Pm−1Ph(f)∫

A Ph(f) dµ
− 1

∥∥∥∥
Lip∞(A)

≤ 1

2
.

We fix such a value of m. Then, the following map is well-defined:

F :

{
BLip∞(A)(1, 1/2) ∩ SL1(A,µ)(0, 1) → BLip∞(A)(1, 1/2) ∩ SL1(A,µ)(0, 1)

f 7→ Pm−1Ph(f)∫
A Ph(f) dµ

.

Furthermore, by virtue of (3.7), for all n ≥ 0,∣∣∣∣∫
A

(
Pm−1Ph

)n
f dµ

∣∣∣∣ =

∣∣∣∣∣
∫
A
Fn(f) dµ ·

n−1∏
k=0

∫
A
Ph(F k(f)) dµ

∣∣∣∣∣ ≤
(

1−
‖1− h‖L1(A,µ)

2

)n
.

Remark that 0 ≤ Pnh f ≤ Pnf for all non-negative f ∈ L1, for all n ≥ 0 and all h ∈ SK . In addition,
F preserves the subset of real-valued functions. Fix h ∈ SK . Then, for all n ≥ 0,

0 ≤
∫
A
Pnmh (1) dµ ≤

∫
A

(
Pm−1Ph

)n
(1) dµ ≤

(
1−
‖1− h‖L1(A,µ)

2

)n
≤ e−

‖1−h‖L1(A,µ))
2

n,
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so that:

‖Pnh (1)‖L1(A,µ) ≤
√
e max

0≤k<m
sup
h∈SK

∥∥∥P kh∥∥∥
L(Lip∞(A))

e−
‖1−h‖L1(A,µ)

2m
n.

We have proved that the conclusion of the lemma holds if (A,µ, T ) is assumed to be mixing.
• Finally, assume that (A,µ, T ) is ergodic but not necessarily mixing. Let (Ak)k∈Z/MZ be its decom-
position in components on which TM is mixing, and write µk := Mµ|Ak . Let K ≥ 0, and let h ∈ SK .
Let k0 be such that ‖1− h‖L1(Ak0

,µk0
) ≥ ‖1− h‖L1(A,µ). Note that h ·1Ak0

is in SK when we replace

Lip∞(A, π, λ) by Lip∞(Ak0 , πM , λ). Let P̃h(f) := PM (hf) for f ∈ Lip∞(Ak0 , πM , λ). Then, there
exist positive constants C0, κ0 depending only on K such that, for all n ≥ 0,∥∥∥P̃nh (1)

∥∥∥
L1(Ak0

,µk0
)
≤ C0e

−κ0‖1−h‖L1(Ak0
,µk0

)n ≤ C0e
−κ0‖1−h‖L1(A,µ)n.

But then, for all k ∈ Z/MZ, for all n ≥ 1,∥∥PnMh (1)
∥∥
L1(Ak,µk)

≤
∥∥∥P (n−1)M

h (1)
∥∥∥
L1(Ak0

,µk0
)

≤
∥∥∥P̃n−1

h (1)
∥∥∥
L1(Ak0

,µk0
)

≤ C0e
−κ0‖1−h‖L1(A,µ)(n−1)

≤ C0e
κ0e
−κ0‖1−h‖L1(A,µ)n,

so that, for all n ≥ 0:

‖Pnh (1)‖L1(A,µ) =
1

M

∑
k∈Z/MZ

‖Pnh (1)‖L1(Ak,µk) ≤ C0e
2κ0e

−κ0
M
‖1−h‖L1(A,µ)n. �

Proposition 3.11 yields an upper bound on the probability that the orbits do not visit a given subset of A
before a given time.

Corollary 3.12. Let (A, π, λ, µ, T ) be an ergodic Gibbs-Markov map. Let G be a set, and (ap)p∈G be a family
of non-trivial σ(π)-measurable subsets. Let C, κ > 0 be constants associated with S1 in Proposition 3.11. Let
K > 0. Let (µp)p∈G be a family of probability measures on A such that µp � µ and ‖dµp/dµ‖Lip∞(A) ≤ K

for all p. Then, for all n ≥ 0,

µp

(
n−1⋂
k=0

{T k(x) /∈ ap}

)
≤ KCe−κµ(ap)n. (3.8)

Proof. We compute:

µp

(
n−1⋂
k=0

{T k(x) /∈ ap}

)
=

∫
A

n−1∏
k=0

1acp ◦ T
k · dµp

dµ
dµ

≤ K
∫
A
Pn1−1ap (1) dµ.

But 1− 1ap ∈ S1 for all p. All remains is to use Proposition 3.11. �

3.4. Convergence in distribution. Let (A,µ, T ) be a sufficiently hyperbolic measure-preserving dynamical
system, and let (Ap) be a family of measurables subsets such that limp→∞ µ(Ap) = 0. Let ϕp be the first
hitting time of Ap. As p goes to infinity, hitting this set becomes a rare event. Knowing that a trajectory
has not hit the set until some time gives us little information about later times, which implies that any limit
distribution exhibits a loss of memory characteristic of the exponential distributions. Hence, one can usually
prove that µ(Ap)ϕp converges in distribution to a exponential random variable of parameter 1. There is an
extensive litterature on the subject; we refer the interested reader to the reviews [16, 56, 29]. Note that
this family of results can usually be strenghtened, for instance to show convergence to a Poisson process [55,
Théorème 3.6]. More promisingly, there are also ways to get a rate of convergence [24], which may be adapted
to get rates of convergence in Theorem 1.7.
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In the previous Subsection, we showed that, under any probability measure with uniformly bounded
density, the tail of the hitting time of a σ(π)-measurable set decays exponentially, at a speed which is at
most inversely proportional to the size of the set. Now, we shall prove that, as the size of the sets goes to
0, the distribution of the renormalized hitting time is asymptotically exponential. This is the content of
Proposition 3.13. Due to some specificities of our situation (the hitting sets are not exactly cylinders, and
the distribution changes with the sets), we prove the convergence ourselves, instead of using some already
established theorem.

Afterwards, we shall prove Lemma 3.15, which is useful in the proof of Theorem 1.11 and whose proof
uses ideas very similar to the proof of Proposition 3.13.

Proposition 3.13. Let (A, π, λ, µ, T ) be an ergodic Gibbs-Markov map. Let G be a locally compact space,
and (ap)p∈G be a family of non-trivial σ(π)-measurable subsets such that limp→∞ µ(ap) = 0. For all p ∈ G
and x ∈ A, let Np(x) := inf{k ≥ 0 : T k(x) ∈ ap}. Let (µp)p∈G be a family of probability measures on A such
that µp � µ for all p, and:

sup
p∈G

∥∥∥∥dµp
dµ

∥∥∥∥
Lip∞(A)

< +∞.

Then the family of random variables (µ(ap)Np)p∈G defined on the probability space (A,µp) converges in
distribution to an exponential random variable of parameter 1.

Proof. At first, we assume that the system is mixing. We work with the distribution function 1−Fp,f of Np

under the distribution fdµ, that is, for all t ≥ 0:

Fp,f (t) =

∫
A
1{Np≥t}f dµ.

In a first step, we prove that Fp,f does not depend too much on the density f . This will imply the loss of
memory: in the second step, we prove that any limit distribution of µ(ap)Np is exponential, and that the limit
points do not depend on the choice of f . Then, we have to identify the parameter of the limit distribution,
which is done in the third and fourth steps. In the third step, we prove that some Z/2Z-extension of the
system is ergodic, at least for large p’s and, in the fourth step, we use Kac’s formula to prove that, for a good
choice of f (depending on p), the expectation of µ(ap)Np is 1. Finally, in the last step we extend this result
to dynamical systems which are merely ergodic. We assume in the first four steps that (A,µ, T ) is mixing.

• Step 1 (mixing case): Loss of memory. First, let us prove that Fp,f does not depend on f as p
goes to infinity. Let hp := 1− 1ap . Then hp ∈ S1 for all p. Let K ≥ 1. Let f ∈ BLip∞(A)(0,K) with

f ≥ 0 and
∫
A f dµ = 1. Let n, k ∈ N and p ∈ G. Note that Fp,f (n) =

∥∥∥Pnhp(f)
∥∥∥
L1(A,µ)

. Since each

Php is a weak contraction when acting on L1(A,µ),∣∣Fp,f (n+ k)− Fp,Pkf (n)
∣∣ =

∣∣∣∣∫
A
Pn+k
hp

(f)− Pnhp(P
kf) dµ

∣∣∣∣
≤
∣∣∣∣∫
A
P khp(f)− P kf dµ

∣∣∣∣
≤ 1− Fp,f (k).

In addition, ∣∣Fp,Pkf (n)− Fp,1(n)
∣∣ ≤ ∥∥∥P kf − 1

∥∥∥
L∞
≤ K

∥∥∥P k −Π0

∥∥∥
L(Lip∞(A))

,

and:
1− Fp,f (k) ≤ k ‖f‖L∞(A,µ) µ(ap) ≤ Kkµ(ap).

Hence, we finally get:

|Fp,f (n+ k)− Fp,1(n)| ≤ Kkµ(ap) +K
∥∥∥P k −Π0

∥∥∥
L(Lip∞(A))

.
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Since (A,µ, T ) is a mixing Gibbs-Markov map,
∥∥P k −Π0

∥∥
L(Lip∞(A))

converges to 0 as k goes to

infinity (Proposition 3.6). Taking n = bµ(ap)
−1tc and k := b

√
µ(ap)−1c yields:

Fp,f

(
bµ(ap)

−1tc+ b
√
µ(ap))c

)
= Fp,1(bµ(ap)

−1tc) + o(1) as p→∞, (3.9)

uniformly for f in BLip∞(A)(0,K) and t ≥ 0.

• Step 2 (mixing case): Limit distributions. Now, we prove that any limit distribution of µ(ap)Np

is δ0 or exponential, and that the limit distributions do not depend on the choice of the measures
µp. For every p ∈ G, we set gp for the density of µp with respect to µ. By Corollary 3.12, there exist
positive constants C, κ such that, for all t ≥ 0 and for all p ∈ G,

µp(µ(ap)Np ≥ t) =

∫
A
1{µ(ap)Np≥t}gp dµ ≤ CKe−κt.

Hence, the sequence (µ(ap)Np)p∈G defined on (A,µp) is tight. Let F be the tail distribution function
of one of its limit points, and let GF ⊂ G be such that the distribution function of µ(ap)Np converges
to F for p ∈ GF . By Equation (3.9), F does not depend on f . Note that F is non-increasing and
càdlàg.

If F (t) = 0 for all t > 0, then the limit distribution is δ0, and we are done. Let us assume that
there exists T > 0 with F (T ) > 0, and let t ∈ [0, T ). Then Fp,1(dµ(ap)

−1te) > 0 for all large
enough p ∈ GF . We apply Lemma 3.8 with the stopping time np(t) := dµ(ap)

−1te and the event
A :=

⋂np(t)−1
k=0 T−kacp, which has positive probability if p is large enough. There exists a constant K ′

such that Pnp(t)
hp

(1)/Fp,1(np(t)) belongs to BLip∞(A)(0,K
′) for all large engouh p. But then, for all

k ∈ N+ and for all p ∈ GF :

Fp,1

(
np(t) + b

√
µ(ap)−1c+ k

)
= Fp,1(np(t)) · F

p,
P
np(t)
hp

(1)

Fp,1(np(t))

(b
√
µ(ap)−1c+ k).

Let t′ ≥ 0 and k = dµ(ap)
−1t′e. Letting p go to infinity in GF , by Equation (3.9),

F (t+ t′) = F (t)F (t′).

In addition, trivially, F = 1 on R−. Hence, 1 − F is the distribution function of an exponential
random variable with parameter in [0,∞].

• Step 3 (mixing case): Ergodicity of a Z/2Z-extension. We have proved that any limit distri-
bution of (µ(ap)Np)p∈G is exponential; now, we show that its parameter must be 1. To this end, we
first prove that a certain Z/2Z-extension is ergodic. This fact shall allow us to apply Kac’s formula
in the next step, and from there to identify the parameter of the limit exponential distribution.

Consider the dynamical system:

Tp :

 A× Z/2Z → A× Z/2Z

(x, q) 7→
{

(T (x), q) if x /∈ ap,
(T (x), q + 1) otherwise

.

Let πp be the canonical projection from A × Z/2Z onto A, which is a factor map. We shall prove
that this extension is ergodic for all large enough p. The idea is that otherwise, we could divide A
into two subsets which communicate only through ap; as the ap get smaller, this would make the
communication more difficult, and the mixing arbitrarily slow, which is absurd.

Assume that (A × Z/2Z, µ ⊗ (δ0 + δ1)/2, Tp) is not ergodic. Let Ip be a Tp-invariant non-trivial
measurable subset. Then, since πp(Ip) = πp ◦ Tp(Ip) = T ◦ πp(Ip), we see that πp(Ip) is a non-trivial
T -invariant subset, so πp(Ip) = A. Doing the same with Icp, we see that there exists a measurable
partition (Ip,0, Ip,1) of A such that Ip = Ip,0 × {0} ∪ Ip,1 × {1}. In addition, neither A × {0} nor
A × {1} are Tp-invariant, so Ip cannot be either, and neither Ip,0 nor Ip,1 are trivial. Finally, since
the Z/2Z-extension is still Gibbs-Markov, its partition into ergodic components is coarser than its
underlying partition, so both Ip,0 and Ip,1 are σ(π)-measurable.
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The map Tp sends Ip,0 ∩ ap into Ip,1 and Ip,1 ∩ ap into Ip,0. By the big image property of Gibbs-
Markov maps, there exists a constant m > 0 such that µ(Ip,i) ≥ m for all p ∈ G and i ∈ Z/2Z. Let
fp := µ(Ip,0)−11Ip,0 . Then (fp)p∈G is uniformly bounded in Lip∞(A) by m−1. Hence, there exist
constants C ′, κ′ > 0 such that ‖Pnfp − 1‖Lip∞(A) ≤ C

′e−κ
′n for all p, n. Hence,∫

Ip,1

Pnfp dµ ≥ m(1− C ′e−κ′n).

But we know that:∫
Ip,1

Pnfp dµ = µ(T−nIp,1|Ip,0) ≤
n−1∑
k=0

µ
(
T−(k+1)Ip,1

∣∣∣T−kIp,0)
≤ nµ(T−1Ip,1|Ip,0) ≤ nµ(ap ∩ Ip,0)

µ(Ip,0)
≤ m−1µ(ap)n.

There is a contradiction for some n ≥ 0 and all large enough p ∈ G.

• Step 4 (mixing case): Computation of the parameter of the exponential distribution.
Now, let us apply Kac’s formula. For all large enough p, the system (A×Z/2Z, µ⊗ (δ0 + δ1)/2, Tp) is
ergodic. Let ϕp be the first return time for Tp to A× {0} starting from A× {0}. By Kac’s formula,∫

A
ϕp dµ = 2.

But ϕp ≡ 1 on acp, and ϕp ≡ 1 +Np ◦ T on ap. Hence,

1 =

∫
ap

Np ◦ T dµ =

∫
A
Np · P (1ap) dµ =

∫
A

(µ(ap)Np) ·
P (1ap)

µ(ap)
dµ.

Let X be a limit in distribution of (µ(ap)Np)p∈G, and let GX ⊂ G be such that (µ(ap)Np)p∈GX
converges to X in distribution. We already know that X has an exponential distribution of parameter
at most κ. By Lemma 3.8, using the stopping time 1, there exists a constant K such that, for all
p ∈ G, the density P (1ap)/µ(ap) lies in BLip∞(A)(0,K). Hence, due to (3.9), the limit distribution
of (µ(ap)Np) on (A,µ(ap)

−1P (1ap)) is the limit distribution of (µ(ap)Np) on (A,µ), that is, the
distribution of X. Furthermore, the tail of (µ(ap)Np) on (A,µ(ap)

−1P (1ap)) is dominated by a
decaying exponential, so all the moments converge to those of X. In particular, E[X] = 1, so X
follows an exponential distribution of parameter 1.

• Step 5: General case. We have proved the proposition under the assumption that (A,µ, T ) is
mixing. Now, let us assume that the system is only ergodic, but not mixing. Let M ≥ 1 and
(Ak)k∈Z/MZ be as in Proposition 3.4. Let (ap, νp) be a sequence satisfying the hypotheses of the
proposition. Let k ∈ Z/MZ, and let (νp) be a sequence of probability measures on Ak, absolutely
continuous with respect to µk := µ(·|Ak) = Mµ(· ∩ Ak), and with densities uniformly bounded in
Lip∞(Ak, πM , λ). We define:

ap := {x ∈ Ak : ∃ 0 ≤ i < M, T i(x) ∈ ap} ∈ πM .

Note that µk(ap) ≤ M
∑M−1

i=0 µ(Ak+i ∩ ap) = Mµ(ap). Let 0 ≤ i1 < i2 < M . Then, by [25,
Lemme 1.1.13], P i2−i1 maps continuously Lip1 into Lip∞, and:

µk
(
T−i1(ap ∩Ak+i1)∩ T−i2(ap ∩Ak+i2)

)
≤
∫
Ak+i1

P i2−i11ap∩Ak+i1
· 1ap∩Ak+i2

dµk+i1

≤ Cµk+i1(ap)µk+i2(ap).
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and so, by Bonferroni’s inequality,

µk(ap) ≥
∑

0≤i<M
µk(T

−i(ap ∩Ak+i))−
∑

0≤i1<i2<M
µk
(
T−i1(ap ∩Ak+i1) ∩ T−i2(ap ∩Ak+i2)

)
≥Mµ(ap)−

CM4

2
µ(ap)

2.

Hence, µk(ap) ∼Mµ(ap).

Let Np be the first hitting time of ap for TM . Note that |Np −MNp| ≤ M − 1 on Ak. Since
Proposition 3.13 holds for mixing transformations, the sequence (µk(ap)Np)p∈G defined on (Ak, νp)
converges in distribution to an exponential random variable of parameter 1. But µk(ap) ∼ Mµ(ap)

and MNp = Np + O(1), so (µ(ap)Np)p∈G defined on (Ak, νp) converges in distribution to the same
exponential random variable of parameter 1.

Finally, let (νp)p be a sequence of probability measures on A whose densities (hp)p with respect
to µ are bounded in Lip∞(A, π, λ). For any x ∈ A, let 0 ≤ i < M be such that T i(x) ∈ Ak, and
set P (x) := (x, T i(x)) ∈ A × Ak. Then νp 7→ ν̄p := P∗νp is a transference plan between νp and a
probability measure νp on Ak, with density:

hp :=
dνp
dµk

=
1

M

M−1∑
i=0

P i(1Ak−ihp).

This transference plan yields a coupling between Np (seen as a random variable on (A, νp)) and Np

(seen as a random variable on (Ak, νp)). For the sake of clarity, we shall call the second random
variable Ñp.

The sequence (hp) is bounded in Lip∞(Ak, πM , λ). Hence, (µ(ap)Ñp)p∈G converges in distribution
to an exponential random variable of parameter 1.

Let x ∈ A. Let 0 ≤ i < M be such that T i(x) ∈ Ak. If Np(x) ≥ i, then Np(x) = i + Np(T
i(x)),

so Np = i+ Ñp. The event {Np < i} has probability O(µ(ap)), and |µ(ap)Np − µ(ap)Ñp| ≤ Mµ(ap)

outside of this event, so (µ(ap)Np)p∈G has the same limit in distribution as (µ(ap)Ñp)p∈G. �

Remark 3.14. In our applications, ap will be the set of points x ∈ A such that the trajectory (SnF (x))n≥0 of
(x, 0) under the action of T̃ goes to A×{p} before coming back to A×{0}. If the Zd-extension is ergodic, then
the Z/2Z-extension used in the proof is also automatically ergodic, as it is the induced system on A×{0, p}.
Hence, the stage in the proof above where we proved that such a Z/2Z-extension is ergodic for all large enough
n is not necessary for our applications. This detour however made for a cleaner and more general statement
in the proposition.

The following lemma allows us to control the Lq(A,µ) norm of the Birkhoff sum of an observable until
Np.

Lemma 3.15. Let (A, π, λ, µ, T ) be an ergodic Gibbs-Markov map. Let G be a locally compact space, and
(ap)p∈G be a family of non-trivial σ(π)-measurable subsets such that limp→∞ µ(ap) = 0. For all p ∈ G and
x ∈ A, let Np(x) := inf{k ≥ 0 : T k(x) ∈ ap}. Let (µp)p∈G be a family of probability measures on A such that
µp � µ for all p. Let C > 1. Then for all q ∈ [1,∞), for all f ∈ Lq(A,µ), for all large enough p ∈ G,∥∥∥∥∥∥

Np−1∑
k=0

f ◦ T k
∥∥∥∥∥∥
Lq(A,µp)

≤ Cqα(p) sup
p∈G

∥∥∥∥dµp
dµ

∥∥∥∥
L∞(A,µ)

‖f‖Lq(A,µ) . (3.10)

Proof. Let ε > 0. Let f ∈ Lq(A,µ), which we can assume without loss of generality to be non-negative. Fix
p ∈ G and N > (1 + ε)N > 0, such that εN is a multiple of the period M of the Gibbs-Markov map. Define
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N ′p(x) := inf{n ≥ 0 : n /∈ [N, 2N), Tn(x) ∈ ap} ≥ Np. Then:∥∥∥∥∥∥
N∧Np−1∑
k=0

f ◦ T k
∥∥∥∥∥∥
Lq(A,µ)

≤

∥∥∥∥∥∥
N∧N ′p−1∑
k=0

f ◦ T k
∥∥∥∥∥∥
Lq(A,µ)

≤

∥∥∥∥∥∥
((1+ε)N)∧N ′p−1∑

k=0

f ◦ T k
∥∥∥∥∥∥
Lq(A,µ)

+

∥∥∥∥∥∥
N∧N ′p−1∑
k=(1+ε)N

f ◦ T k
∥∥∥∥∥∥
Lq(A,µ)

≤ (1 + ε)N ‖f‖Lq(A,µ) +

∥∥∥∥∥∥
(2N+N )∧N ′p−1∑

k=2N

f ◦ T k
∥∥∥∥∥∥
Lq(A,µ)

.

Now, focus on the right hand-side. We get:

Eµ

((1+ε)N+N )∧N ′p−1∑
k=2N

f ◦ T k
p = Eµ

N∧Np−1∑
k=0

f ◦ T k
p

P (1+ε)N (1Np≥N )

 .
By Lemma 3.8, applied to the stopping time whose value is N − 1 if Np < N (and +∞ otherwise), and to
the set A := {Np < N}, we get

∥∥PN−1(1Np≥N )
∥∥

Lip∞(A)
≤ K. Hence:∥∥∥P (1+ε)N (1Np≥N )

∥∥∥
L∞(A,µ)

≤
(

1 +KCρ−
εN
M

)∥∥PN−1(1Np≥N )
∥∥

Lip1(A)

=
(

1 +KCρ−
εN
M

)∥∥1Np≥N∥∥L1(A,µ)

=
(

1 +KCρ−
εN
M

)
µ(Np ≥ N),

whence:∥∥∥∥∥∥
N∧Np−1∑
k=0

f ◦ T k
∥∥∥∥∥∥
Lq(A,µ)

≤ (1 + ε)N ‖f‖Lq(A,µ) +
(

1 +KCρ−
εN
M

) 1
q
µ(Np ≥ N)

1
q

∥∥∥∥∥∥
N∧Np−1∑
k=0

f ◦ T k
∥∥∥∥∥∥
Lq(A,µ)

.

We choose N(p) ∼ εα(p). Then ρ−
ε2N(p)
M converges to 0, while by Proposition 3.13, µ(Np ≥ N(p)) converges

to e−ε < 1. For all large enough p, this yields:∥∥∥∥∥∥
N∧Np−1∑
k=0

f ◦ T k
∥∥∥∥∥∥
Lq(A,µ)

≤ εα(p)(1 + ε+ o(1))

1− e−
ε
q

‖f‖Lq(A,µ) .

The o(1) is independent from N . We choose ε small enough that ε(1 + 2ε) < Cq(1 − e−
ε
q ), and then take

the limit as N goes to infinity. Finally, notice that dµp/dµ is uniformly bounded (in L∞(A,µ) norm and in
p), so that this inequality, up to the constant supp∈G

∥∥∥dµp
dµ

∥∥∥
L∞(A,µ)

, extends to
∥∥∥∑Np−1

k=0 f ◦ T k
∥∥∥
Lq(A,µp)

. �

3.5. Hitting probabilities and limit theorems. In this subsection, we work with ergodic, discrete
Abelian, Markov extensions of Gibbs-Markov maps. Let G be an infinite countable Abelian group. Let
(A, π, λ, µ, T ) be a Gibbs-Markov map, and let F : A → G be σ(π)-measurable. We shall assume that the
associated extension (Ã, µ̃, T̃ ) is conservative and ergodic.

First, we shall relate the probability that an excursion from 0 hits a specific point p with the moments of
the time spent in p. This is where the results from Subsections 3.3 and 3.4 are used directly.

For p ∈ G, let Ap := {x ∈ A : T̃{0,p}(x, 0) ∈ A × {p}} be the set of points x such that the excursion
starting from (x, 0) reaches A × {p} before A × {0}. Let α(p) := µ(Ap)

−1. The function α is well-defined
because the extension is conservative and ergodic. The next lemma asserts that it converges to infinity as p
goes to infinity.

Lemma 3.16. Let G be an infinite countable Abelian group. Let (Ã, µ̃, T̃ ) be a conservative and ergodic
Markov G-extension of a measure-preserving dynamical system (A,µ, T ). Then limp→∞ α(p) = +∞.
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Proof. Let (Kn)n≥0 be an exhaustion of G by an increasing sequence of finite subsets of G. For all x ∈ A
such that ϕ{0}(x) is finite, set:

N(x) := max
0≤k<ϕ{0}(x)

min{n ≥ 0 : T̃ k(x, 0) ∈ A×Kn}.

Then A =
⋃
n≥0N

−1(n) up to set of measure 0, so that limn→+∞ µ (N > n) = 0. But, if p /∈ Kn, then
Ap ⊂ {N > n}, so limn→+∞ supp∈Kc

n
µ(Ap) = 0, i.e. limn→+∞ infp∈Kc

n
α(p) = +∞. �

Let us go back to the study of the local time. Recall that, for p ∈ G and x ∈ A, we set:

fp,{0}(x) := Np(x)− 1 =

ϕ{0}(x)−1∑
k=0

1{SkF (x)=p}

− 1,

which is the difference between the time spent in A× {p} and A× {0} in the excursion starting from (x, 0).
Our next goal in this subsection is to evaluate the tail and moments of fp,{0} as p goes to infinity.

Proposition 3.17. Let (A, π, d, µ, T ) be a Gibbs-Markov map, and G be a countable Abelian group. Let
(Ã, µ̃, T̃ ) be a conservative and ergodic Markov G-extension of (A, π, d, µ, T ).

The conditional distributions α(−p)−1Np|{Np > 0} have exponential tails, uniformly in p. In addition,
α(−p)−1Np, seen as a random variable on (A,µ(·|Ap)), converges in distribution and in moments to an
exponential distribution of parameter 1.

Proof. The random variable Np(x) counts the time the process starting from (x, 0) spends in p before going
back to 0. On Ap, it is positive. For x in Ap, let Tp(x) be such that T̃{0,p}(x, 0) = (Tp(x), p). Then, on Ap,

Np(x) = inf{k ≥ 1 : T̃ k{0,p}(Tp(x), p) ∈ A× {0}}

= 1 + inf{k ≥ 0 : T̃ k{0,p}(Tp(x), p) ∈ A−p × {p}}.

But, if y /∈ A−p, then the first return time of (T̃ k(y, p)) to A× {0, p} is the first return time of (T̃ k(y, p))

to A× {p}. Hence, T̃{0,p}(y, p) = (T̃{0}(y), p), and:

Np(x) = 1 + inf{k ≥ 0 : T̃ k{0}(Tp(x)) ∈ A−p}.

Let N (0)
p be the hitting time of A−p for the process (T̃ k{0}(x))k≥0. Then the random variable Np seen on

(A,α(p)1Ap dµ) has the same distribution as the random variable 1 + N
(0)
p seen on (A,α(p)P{0,p}1Ap dµ).

We write π{0} := πϕ{0} . In addition, each A−p is non trivial (as the extension is conservative and ergodic),
and each A−p is σ(π{0})-measurable (because σ(π{0}) contains all the information about the sites visited in
an excursion, and in particular whether −p is visited or not).

Due to Lemma 3.8 with the stopping time ϕ{0,p}, the sequence of densities (α(p)P{0,p}1Ap)p∈G\{0} is
uniformly bounded in Lip∞(A, π{0,p}, λ). Since π{0} ≤ π{0,p}, it is also uniformly bounded in Lip∞(A, π{0}, λ).
By Proposition 3.13, the sequence of random variables µ(A−p)Np(·) seen on (A,α(p)P{0,p}1Ap dµ) converges
in distribution to an exponential random variable of parameter 1. By Corollary 3.12, this sequence of
random variables is also exponentially tight, so it converges in moments, which proves the first part of
Proposition 3.17. Since (α(−p))p∈G goes to infinity as p goes to infinity, (α(−p)−1Np)p∈G, with respect
to (µ(·|Ap))p∈G, converges in distribution and in moments to an exponential random variable of parameter
1. �

Proposition 3.17 yields directly a rough description of the distribution of fp,{0} for large p’s: it is −1 with
probability 1− α(p)−1, and an exponential random variable of parameter α(−p) on the remaining set. This
is part of Theorem 1.7.

Proof of Theorem 1.7. Let (Ã, µ̃, T̃ ) be a conservative and ergodic Markov Zd-extension of a Gibbs-Markov
map (A,µ, T ). We prove the second item, then the third, and we finish by the first item.
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Let p ∈ Zd \{0}. The dynamical system (A×{0, p}, µ⊗ (δ0 + δp)/2, T{0,p}) is ergodic. In this new system,
by Kac’s formula, ∫

A×{0}
(1 +Np) d

µ⊗ (δ0 + δp)

2
=

∫
A×{0}

ϕ{0} d
µ⊗ (δ0 + δp)

2
= 1.

Hence,

1 + Eµ[Np] =

∫
A

1 +Np dµ = 2,

so Eµ[Np] = 1. But, by Proposition 3.17,

Eµ[Np] =
α(−p)
α(p)

Eµ[α(−p)−1Np|Ap] ∼p→∞
α(−p)
α(p)

.

Hence, α(p) ∼ α(−p) as p goes to infinity. Together with Proposition 3.17, this yields the second item of
Theorem 1.7.

Let q > 1, and apply Proposition 3.17 to the moments of order q of Np. This yields:∥∥fp,{0} + 1
∥∥q
Lq(A,µ)

=

∫
Ap

N q
p dµ = α(p)−1α(−p)q

∥∥α(−p)−1Np

∥∥q
Lq(A,µ(·|Ap))

∼ α(p)q−1α(−p)qE[Eq],

where E is a random variable with an exponential distribution of parameter 1. Finally, we use the fact that
α(−p) ∼ α(p) and that E[Eq] = Γ(1 + q) to get the third item of Theorem 1.7.

We have proved that α(p) ∼ α(−p) ∼ Eµ[f2
p,{0}]/2. Due to Proposition 3.17, α(−p)−1Eµ[Np|Np > 0] ∼

α(p)−1Eµ[Np|Np > 0] = Eµ[Np] = 1. Due to Proposition 3.13 and 3.11, the random variable N0,p, which is
the first hitting time of Ap for T{0}, once divided by α(p), converges in distribution and in moments to an
exponential random variable of parameter 1. Hence,

Eµ[N0,p] ∼ α(p),

Now let us prove the link with σ2
GK(fp,{0}, A, µ, T{0}). Note that fp,{0} is constant on elements on π{0}, and

that
∥∥fp,{0}∥∥L1(A,µ)

≤ 1+‖Np‖L1(A,µ) ≤ 2. Hence,
∥∥fp,{0}∥∥Lip1(A,π{0},λ,µ)

, as a function of p, is bounded. Since

P{0} sends Lip1(A, π{0}, λ, µ) continuously into Lip∞(A, π{0}, λ, µ), and PM{0} contracts exponentially fast on
the subspace of functions in Lip∞(A, π{0}, λ, µ) with zero average on each of the M ergodic components of
TM , all the terms

∫
A fp,{0} ◦ T̃

k
{0} · fp,{0} ◦ T̃

`
{0} dµ with k 6= ` have a bounded contribution. Hence,

sup
p∈G

∣∣∣σ2
GK(fp,{0}, A, µ, T̃{0})− Eµ[f2

p,{0}]
∣∣∣ < +∞.

Note that, if the system is a random walk, then P{0} sends any function which is constant on elements of
the partition to its average, which is 0 for fp,{0}. In this case, the supremum above is actually 0. �

3.6. Proof of Theorem 1.11. In this section we prove Theorem 1.11. Our goal is mostly to get a more
explicit integrability condition in the statement of [64, Theorem 6.8]. We first give a lemma which gives a
good sufficient condition for this integrability condition to hold.

Lemma 3.18. Let (Ã, µ̃, T̃ ) be a conservative and ergodic Markov G-extension of a Gibbs-Markov map
(A,µ, T ). Let f : A×G→ R be measurable. Let q ∈ [1,∞). Assume that:∑

p∈G
α(p)

1− 1
q ‖f(·, p)‖Lq(A,µ) < +∞. (3.11)

Then f{0} ∈ Lq(A,µ).

Proof. Now, consider a function f satisfying the condition (3.11). Without loss of generality, we can assume
f to be non-negative. Note that:

∥∥f{0}∥∥Lq(A,µ)
=

∥∥∥∥∥∥
∑
p∈Zd

(f1p){0}

∥∥∥∥∥∥
Lq(A,µ)

≤
∑
p∈Zd

∥∥(f1p){0}
∥∥
Lq(A,µ)

.
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Then, for all p ∈ G \ {0},

∥∥(f1p){0}
∥∥q
Lq(A,µ)

=

∫
Ap

N−p−1∑
k=0

f ◦ T̃ k{0} ◦ T̃{0,p}

q

dµ

=
1

α(p)

∫
A

N−p−1∑
k=0

f ◦ T̃ k{0}

q

dT̃{0,p}∗µ(·|Ap).

By Lemma 3.8, T̃{0,p}∗µ(·|Ap)� µ, with a density which is bounded in Lip∞ norm, and a fortiori in L∞(A,µ)
norm. We can thus apply Lemma 3.15 : there exists a constant C, independent from p, such that:∥∥(f1p){0}

∥∥q
Lq(A,µ)

≤ Cqα(−p)q

α(p)
‖f1p‖qLq(A,µ) .

Since α(p) ∼p→∞ α(−p) by Theorem 1.7, up to taking a larger value of C,∥∥(f1p){0}
∥∥
Lq(A,µ)

≤ Cα(p)
1− 1

q ‖f(·, p)‖Lq(A,µ) ,

whence: ∥∥f{0}∥∥Lq(A,µ)
≤ C

∑
p∈Zd

α(p)
1− 1

q ‖f(·, p)‖Lq(A,µ) . �

Finally, we prove Theorem 1.11.

Proof of Theorem 1.11. Let (A, π, λ, µ, T ) be an ergodic Gibbs-Markov map. Let F : A → Zd be σ(π)-
measurable, integrable, and such that

∫
A F dµ = 0. Assume that the distribution of F with respect to µ is in

the domain of attraction of an α-stable distribution, and that the Markov extension (Ã, µ̃, T̃ ) is conservative
and ergodic.

We first assume that the extension (Ã, µ̃, T̃ ) is aperiodic.

Aperiodic case. By Proposition 3.10, this extension satisfies Hypothesis 2.1. We can thus apply Theo-
rem 1.4. Let β : Zd → R be such that:

• β has finite support;
•
∑

p∈Zd β(p) = 0.
Let f(x, p) := β(p). Then:

ST̃n f√∑n−1
k=0 µ(Sk = 0)

⇒ σGK(f, Ã, µ̃, T̃ )Y,

where Y is a standard MLGM(1− d
α) random variable and the convergence is strong in distribution.

We can also apply [64, Theorem 6.8], with r ≡ 1. The regularity conditions are satisfied, since f and r
are constant on the subsets of the Markov partition. The integrability condition “|f |{0} ∈ Lp(A,µ) for some
p > 2” is satisfied thank to [64, Lemma 6.6]. Hence,

ST̃n f√∑n−1
k=0 µ(Sk = 0)

⇒ σ(f)Y,

where Y is a standard MLGM(1 − d
α) random variable and the convergence is strong in distribution, and

where:

σ(f) = lim
N→+∞

1

N

∫
A

(
n−1∑
k=0

f{0} ◦ T̃ k{0}

)2

dµ.

Following the proof of Lemma A.2, σ(f{0}) = σGK(f{0}, A, µ, T̃{0}).

Hence, for any function β on Zd with finite support and which sums to 0,

σGK(f, Ã, µ̃, T̃ ) = σGK(f{0}, A, µ, T̃{0}).
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Take β := 1p − 10. Then, for all q ∈ (1,∞),

g(p) ∼p→∞
σ2
GK(fp, Ã, µ̃, T̃ )

2
=
σ2
GK(fp,{0}, A, µ, T̃{0})

2
∼p→∞ α(p),

where we used Theorem 1.7 to get the last equivalence. Note that we already obtain Corollary 1.9.
Let ε > 0. Let δ > 0 and q > 2 be small enough such that:

(α− d+ δ)

(
2− 2

q

)
≤ α− d+ 2ε. (3.12)

By Proposition 1.6 and Potter’s bound, g(p) = O((1 + |p|)α−d+δ), so α(p) = O((1 + |p|)α−d+δ).
We are now ready to apply again [64, Theorem 6.8]. Let f : Ã→ R be such that:
• the family of function (f(·, p))p∈Zd is uniformly locally η-Hölder for some η > 0;
•
∫
Ã

(1 + |p|)
α−d

2
+ε ‖f(·, p)‖Lq(A,µ) dµ̃(x, p) < +∞ for some ε > 0 and q > 2;

•
∫
Ã
f dµ̃ = 0.

To apply [64, Theorem 6.8], we only need to check that:
• Eµ(supp∈Zd D(f(·, p)) < +∞;
• |f |{0} ∈ Lq(A,µ);

where D(f)(x) is the Lipschitz norm of f restricted to the Markov subset to which x belongs.
Without loss of generality, we can use the metric dη on A, so that (f(·, p))p∈Zd is uniformly locally

Lipschitz. Then D(f(·, p)) is, by hypothesis, bounded uniformly in p. Hence, supp∈Zd D(f(·, p)) is bounded,
and a fortiori integrable: the first point holds.

All is left is to check the second point. We adapt an argument by Csáki, Csörgő, Földes and Révész [17,
Lemma 3.1] to control the norm of |f |{0}. Up to choosing a smaller value of q, there exists δ > 0 which
satisfies the condition (3.12). Then:∑

p∈Zd
α(p)

1− 1
q ‖f(·, p)‖Lq(A,µ) ≤ C

∑
p∈Zd

(1 + |p|)(α−d+δ)(1− 1
q

) ‖f(·, p)‖Lq(A,µ)

≤ C
∑
p∈Zd

(1 + |p|)
α−d

2
+ε ‖f(·, p)‖Lq(A,µ) < +∞.

By Lemma 3.18, |f |{0} ∈ Lq(A,µ). This proves the theorem for aperiodic extensions.

Non-aperiodic case. For the remainder of this proof, we do not assume that the extension is aperiodic.
Let Λ ⊂ Zd be the set of the essential values of the extension [1]. Since the extension is ergodic, Λ ' Zd

is a cocompact lattice. Let 0 ∈ B ⊂ Zd be a fundamental domain for this lattice. Let:
• AB := A×B;
• µB := |B|−1µ⊗

∑
b∈B δb;

• TB(x, b) = (T (x), b+ F (x)[Λ]).
Since (Ã, µ̃, T̃ ) is ergodic, (AB, µB, TB) is a measure-preserving ergodic dynamical system, which is Gibbs-
Markov. There exists FΛ : AB → Λ, constant on the elements of the Gibbs-Markov partition, such that
(Ã, µ̃, T̃ ) is isomorphic to the extension (ÃB, µ̃B, T̃B) with step function FΛ. The later extension is a conser-
vative, ergodic, aperiodic Markov extension of a Gibbs-Markov map.

The function f still satisfies our assumptions for the new system (it is uniformly locally Hölder, decays
at a sufficient rate at infinity, and has zero integral). Thus, we can apply the version of Theorem 1.11 for
aperiodic systems; this yields:

ST̃n f√∑n−1
k=0 µ(Sk ∈ B)

⇒ σGK(fB, AB, µB, T̃B,{0})Y,

where Y is a standard MLGM(1− d
α) random variable, the convergence is strong in distribution, and:

σ2
GK(fB, AB, µB, T̃B,{0}) := lim

n→+∞

∫
AB

f2
B dµB + 2

n∑
k=1

∫
AB

fB · fB ◦ T̃ kB,{0} dµB,



POTENTIAL KERNEL, HITTING PROBABILITIES AND DISTRIBUTIONAL ASYMPTOTICS 50

where the limit is taken in the Cesàro sense.
The proof of [1, Lemma 3.7.4] can be adapted to ergodic Gibbs-markov maps (instead of continued fraction

mixing maps), by replacing T̃ kA with M−1
∑M−1

k=0 T̃ kA, which can be done up to a uniformly bounded error
term. As T̃B is an ergodic Gibbs-markov map, A × B is thus also a Darling-Kac set, and a set on which
Rényi’s inequality is satisfied. By [1, Theorem 3.3.1],

lim
n→+∞

∑n−1
k=0 µ(Sk ∈ B)∑n−1
k=0 µ(Sk = 0)

= lim
n→+∞

∑n−1
k=0 µ̃(A× {0} ∩ T̃−k(A×B))∑n−1
k=0 µ̃(A× {0} ∩ T̃−k(A× {0}))

= |B|. (3.13)

Using the induction invariance of the Green-Kubo formula (Lemma A.2) with the observable fB on (AB, µB, T̃B,{0}),
noting that the induced transformation on A× {0} is T̃{0}, we get:

σ2
GK(fB, AB, µB, T̃B,{0}) = lim

n→+∞

∫
A
f2 dµB + 2

n∑
k=1

∫
A
f · f ◦ T̃ k{0} dµB

= |B|−1σ2
GK(f,A, µ, T̃{0}), (3.14)

where the limit is taken in the Cesàro sense. Equations (3.13) and (3.14) together yield the claim. �

4. Applications

In this section, we prove our claims of Subsection 1.4, starting with the geodesic flow and finishing with
the billiards.

4.1. Periodic planar billiard in finite horizon. Recall that the billiard table is R2 \
⋃
i∈I, p∈Z2(p+Oi),

where (Oi)i∈I corresponds to a finite family of open convex subsets of T2, whose boundaries are non-
overlapping, C3, and with non-vanishing curvature. For the collision map, the phase space is Ω := ∂Q ×
[−π/2, π/2]. The invariant measure is the Liouville measure cos(φ) dx dφ in (x, φ), where x is the curvilinear
coordinate on ∂Q.

A particle has configuration (x, φ, i, p) if it is located in p + ∂Oi, with curvilinear coordinate x on ∂Oi
(for some counterclockwise curvilinear parametrization of ∂Oi) and if its reflected vector V makes the angle
φ with the inward normal vector to ∂Oi. The billiard map T̃0 : Ω → Ω maps a configuration in Ω to the
configuration corresponding to the next collision time. This transformation preserves the Liouville measure
ν̃, which has infinite mass.

We consider a particle starting from the original cell C0 =
⋃
i∈I Oi with initial distribution ν := ν̃(·|C0).

The associated compact billiard is the system (M,ν, T0), with M := C0 and T̃0(x, φ, i, p) = (T0(x, φ, i), p+

H(x, φ, i)) Then (Ω, ν̃/ν̃(C0), T̃0) is the Z2-extension of (M,ν, T0) with step function H : M → Z2 corre-
sponding to the change of cells. The quantity STnH(y) :=

∑n−1
k=0 H ◦ T k0 (y) corresponds to the index of the

cell containing T̃n0 (y), for all y ∈ C0.
Let ε > 0, and β : Z2 → R be such that

∑
p∈Z2 β(p) = 0. We associate the value β(p) to the cell Cp, and

put for y ∈ C0:

Yn(y) :=
n∑
k=1

β
(
ST0
k H(y)

)
.

Proof of Corollaries 1.14 and 1.15. Due to Young’s towers [65], we know that there exists a dynamical system
(A,µ, T ) such that (A,µ, T ) and (M,ν, T0) are both factors of another dynamical system (Â, µ̂, T̂ ). This
means that there exist two maps π̂ : (Â, µ̂, T̂ )→ (A,µ, T ) and π : (Â, µ̂, T̂ )→ (M,ν, T0) such that:

π̂ ◦ T̂ = T ◦ π̂,

π ◦ T̂ = T0 ◦ π,
π̂∗µ̂ = µ,

π∗µ̂ = ν.

Moreover, there exist F : A→ Zd and β : A→ Z2 such that F ◦ π̂ = H ◦ π and β̂ ◦ π̂ = β ◦ π.
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The properties of the family of transfer operators Pu = P (ei〈u,F 〉) for such step function F have been
studied: see for instance [60, 21, 50, 51], in which local limit theorems with various remainder terms have
been established. The matrix Σ corresponds to the asymptotic variance matrix of (STnF/

√
n)n≥1 with respect

to µ, which is the same as the asymptotic variance matrix of (ST0
n H/

√
n)n≥1 with respect to ν, and is given

by:
Σ =

∑
k∈Z

C(H,H ◦ T k),

where C(H,H ◦ T k) denotes the matrix of covariances of H and H ◦ T k with respect to ν. Recall that
(ST0
n H/

√
n)n≥1 converges in distribution to a centered gaussian random variable with variance matrix Σ.

Let Zn : M → R be defined by Zn(x) :=
∑n−1

k=0 β̂(STk F (x)). This function satisfies Zn ◦ π̂ = Yn ◦ π
on Â. Applying Theorem 1.4 to the dynamical system (A,µ, T ), step function F (respectively, the first
coordinate F1 : A → Z of F ) and β̂ (respectively, p 7→ β̂(p, 0)), we obtain Corollary 1.15 (respectively,
Corollary 1.14). �

4.2. Geodesic flow on periodic hyperbolic manifolds. We recall that M is a compact, connected
manifold with a Riemannian metric of negative sectional curvature, and $ : N → M be a connected Zd-
cover of M , with d ∈ {1, 2}. The manifold T 1N is endowed with the σ-finite lift µN of a Gibbs measure
µM corresponding to a reversible Hölder potential. The geodesic flow on T 1N is denoted by (gt)t∈R. Under
these assumptions, the geodesic flow on (T 1N,µN ) is both ergodic and recurrent (see [53] for the constant
curvature case, although the proof works as well in variable curvature).

Let (A,µ, T ) be a Markov section for the geodesic flow on T 1M , as constructed by Bowen [11], [12,
Theorem 3.12]. The section A is constructed by carefully choosing a finite number of pieces of strong
unstable manifolds (W u(a))a∈π, then, for all x ∈W u(a), adding a piece of strong stable manifold W s(x) to
get rectangles. We shall denote by p+ the projection onto unstable manifolds, defined by p+(y) = x whenever
y ∈ W s(x) and x ∈ W u(a). Let r be the return time to A; by Bowen’s construction, r(x) depends only on
the future (the non-negative coordinates) of x. Finally, we put A+ :=

⋃
a∈πW

u(a) as the state space of the
one-sided transformation.

The set Ã := $−1(A) is a section for the geodesic flow on T 1N , with return time r̃ = r ◦ $. The
induced map on Ã is the Zd-extension of the natural extension of a Gibbs-Markov map, with step function
F . Without loss of generality, we may refine the Markov partition on A so that F depends only on the first
coordinate of the shift; then, the extension (Ã, µ̃, T̃ ) is Markov. The geodesic flow on T 1N is thus isomorphic
to the suspension flow over (Ã, µ̃, T̃ ) with roof function r̃. In particular, T 1N ' {(x, q, t) : x ∈ A, q ∈
Zd, t ∈ [0, r(x))}.

Let f : T 1N → R be Hölder. The following lemma asserts that, up to adding a coboundary, we can
assume that f depends only on the future, which allows us to work with Gibbs-Markov maps instead of their
natural extension. While this lemma is classic [12, Lemma 1.6], we give a statement which is valid in the
context of Zd-extensions.

Lemma 4.1. Let (A, π, λ, µ, T ) be the natural extension of an ergodic Gibbs-Markov map6. Let (A×Zd, µ̃, T̃ )
be a Markov Zd-extension with step function F . Let f be a measurable real-valued function on A×Zd. Assume
that:

‖D(f)‖∞ := ‖f‖∞ + sup
q∈Zd

sup
a∈π
|f |Lip(a×{q}) < +∞.

Then there exists a function u which is bounded by λ(λ − 1)−1 ‖D(f)‖∞, uniformly 1/2-Hölder, and such
that the function f+ := f + u ◦ T − u is B+-measurable, with B+ :=

(∨
n≥0 T

−nπ
)
⊗ P(Zd).

Proof. Let p̃+(x, q) := (p+(x), q) be defined on Ã. We put:

u :=
+∞∑
n=0

f ◦ T̃n − f ◦ T̃n ◦ p̃+.

6The metric being defined by λ−s, where s is the two-sided separation time.
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The proof then proceeds as in [64, Lemma 6.11]: the function u satisfies the conclusion of the lemma. Most
changes in the proof of [64, Lemma 6.11] are straightforward; the only observation needed is that, if x and y
are in the same cylinder of length n in A, then T̃ k(x, q) and T̃ k(y, q) are in the same set A× {SkF (x)} for
|k| ≤ n, so that we can use the Lipschitz estimate for each f(·, SkF (x)). �

We are now ready to prove Proposition 1.16.

Proof of Proposition 1.16. The proof follows the one in [64, Proposition 6.12], with a few significant modifi-
cations. The first step is to eliminate to past, that is, add a coboundary to get an observable which depends
only on the future, to be able to use [64, Proposition 6.1]. Let η ∈ (0, 1]. Let f : T 1N → R be a η-Hölder
observable, which satisfies the hypotheses of the proposition. We put:

• f
Ã

(x, q) :=
∫ r(x)

0 f(x, q, s) ds;
• u

Ã
the function obtained from f

Ã
by the construction of Lemma 4.1;

• f
+,Ã

:= f
Ã

+ u
Ã
◦ T̃ − u

Ã
;

• f+(x, q, t) := r(x)−1f
+,Ã

(x, q).

By Lemma 4.1, the function u
Ã

is η/2-Hölder and bounded. Then, using the fact that f
+,Ã
− f

Ã
is a

coboundary,

sup
t≥0

∥∥∥∥∫ t

0
f ◦ gs ds−

∫ t

0
f+ ◦ gs ds

∥∥∥∥
∞
≤ 2

∥∥u
Ã

∥∥
∞ + 2

∥∥∥f+,Ã

∥∥∥
∞

+ 2 ‖r‖∞ ‖f‖∞ < +∞. (4.1)

Hence, it is enough to prove the limit theorem for f+. Note that f+ is a coboundary if and only if f is a
coboundary.

Let ϕA×{0} be the first return time to A× {0} for the geodesic flow, and ϕA×{0} the first return time to
A× {0} for T̃ . The proof then proceeds as in [64], with the same weakened criterion: we only need to check
that, for some δ > 0,

sup
0≤t≤ϕA×{0}

∣∣∣∣∫ t

0
f+ ◦ gs ds

∣∣∣∣ ∈ L2+δ(A× {0}); (4.2)

Now, we shall go back to the initial (invertible) system to use the integrability assumption on f . Equa-
tions (4.1) and (4.2) together yield:

sup
0≤t≤ϕA×{0}

∣∣∣∣∫ t

0
f ◦ gs ds

∣∣∣∣ ∈ L2+δ(A× {0}). (4.3)

Finally, once again, we go to the non-invertible factor. Let f
Ã

(x, q) :=
∥∥∥∫ r(·)0 |f |(·, q, t) dt

∥∥∥
∞

. Then:

sup
0≤t≤ϕA×{0}

∣∣∣∣∫ t

0
f ◦ gs(x, 0, 0) ds

∣∣∣∣ ≤ ϕA×{0}(x,0)−1∑
n=0

f
Ã
◦ T̃n(x).

The function f
Ã
is an upper bound on |f |

Ã
which depends only on q, and thus not on the past. Hence, it

factorizes as a function of A+ × Zd. In addition, the integrability assumptions yields:∑
q∈Zd
|q|1−

d
2

+ε
∥∥f

Ã
(·, q)

∥∥
∞ < +∞.

By Lemma 3.18, f
Ã
belongs to L2+δ(A× {0}) for all small enough δ > 0, which yields Equation (4.3). �

Appendix A. About Green-Kubo’s formula

The spirit behind Corollary 1.13, and thus of our alternative proof of Spitzer’s theorem [59, Chap. III.11,
P5], is that Green-Kubo’s formula satisfies an invariance by induction which is reminiscent of Kac’s theorem.
We shall draw this parallel here, as well as prove a specific instance of this phenomenon which is useful in
the proof of Theorem 1.11. In what follows, the measure may be finite or σ-finite.
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Given an ergodic, conservative, measure-preserving dynamical system (A,µ, T ) and a measurable subset
B ⊂ A such that µ(B) > 0, one may define the system induced on B by (B,µ|B, TB). Given any measurable
observable f : A→ C, we also define the induced observable fB by:

fB(x) =

ϕB(x)−1∑
k=0

f(T k(x)),

where ϕB is the first return time to B. Then, a generalization of Kac’s theorem [32] asserts that the integral
is invariant by induction.

Theorem A.1 (Kac’s theorem: induction invariance of the integral). Let (A,µ, T ) be an ergodic, conserva-
tive, measure-preserving dynamical system. Let B ⊂ A be a measurable subset with 0 < µ(B) < +∞. Then,
for all f ∈ L1(A,µ), ∫

A
f dµ =

∫
B
fB dµ. (A.1)

A consequence is that the map f 7→ fB is a weak contraction from L1(A,µ) to L1(B,µ). There are two
different ways to prove this theorem:

• Using the fact that the system is measure-preserving [33]: up to going to the natural extension, we
can define ϕ−1,B(x) := inf{n ≥ 0 : T−n(x) ∈ B}, and then using, for all n ≥ 0,∫

A
f1ϕ−1,B=n dµ =

∫
B
f ◦ Tn1ϕB≥n dµ.

• Using a convergence theorem, such as Hopf’s ergodic theorem [31, §14, Individueller Ergodensatz für
Abbildungen], and the preservation of the measure for the induced system. Setting g := 1B, one can
identify the almost sure limit of (STn f)/(STn g) with that of (STBn fB)/n, and conclude.

Green-Kubo’s formula7, at least at a formal level, behaves the same. For any square-integrable function
f with zero integral,∫

A
f2 dµ+ 2

+∞∑
n=1

∫
A
f · f ◦ Tn dµ =

∫
B
f2
B dµ+ 2

+∞∑
n=1

∫
B
fB · fB ◦ TnB dµ. (A.2)

The reader may compare Equations (A.1) and (A.2). As with Kac’s theorem, we may choose different
strategies to prove rigorously such an identity. Using the fact that the system is meaure-preserving, and
cutting in a well-chosen way the integrals above, one can see that they are formally the same. However, to
get a rigorous proof, one would have to use Fubini’s theorem, which fails in this case. This is not surprising,
as the infinite sum may not be well-defined, or a periodicity of the system may require us to take a weaker
kind of limit (e.g. in the Cesàro sense, as in Theorem 1.11). One cannot hope (A.2) to hold for any dynamical
system, or any square-integrable centered function.

Another strategy is to use a distributional limit theorem: for sufficiently hyperbolic systems and nice
enough observables, Green-Kubo’s formula is the asymptotic variance in a central limit theorem. Working
at two different time scales (with the initial system and with the induced system), one can prove that this
invariance holds. A very simple example is given by the following lemma.

Lemma A.2. Let (A, π, λ, µ, T ) be a Gibbs-Markov map. Let f ∈ L2(A,µ) be a real-valued function such
that:

• f is locally Hölder:
∑

a∈π µ(a)|f |Lip(a) < +∞;
•
∫
A f dµ = 0.

Let B ⊂ A, with µ(B) > 0, be σ(π)-measurable. Assume that ϕB is essentially constant. Then:

lim
n→+∞

∫
A
f2 dµ+ 2

n∑
k=1

∫
A
f · f ◦ T k dµ = lim

n→+∞

∫
B
f2
B dµ+ 2

n∑
k=1

∫
B
fB · fB ◦ T kB dµ,

where both limits are taken in the Cesàro sense.

7The discussion can be generalized by taking two different observables: what is invariant is actually the underlying bilinear
form.
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Proof. Let M := ϕB almost everywhere. Under the assumptions, the Birkhoff sums (for T ) of f satisfy a
central limit theorem (see e.g. [25, Théorème 4.1.4], and use the Taylor expansion of (I − P )−1):

STn f√
n
→ σN ,

where the convergence is in distribution on (A,µ), N follows a standard Gaussian distribution, and:

σ2 = lim
n→+∞

1

n

∫
A

(STn f)2 dµ.

By [67, Theorem 1], the same central limit theorem holds strongly in distribution, that is, when the initial
measured space is (A, ν), with ν � µ. This holds in particular on (B,Mµ|B).

Under the same assumptions, the Birkhoff sums (for TB) of fB satisfy a central limit theorem. Then:

STBn fB√
n
→ σ′N ,

where the convergence is in distribution on (B,Mµ|B), N follows a standard Gaussian distribution, and:

(σ′)2 = lim
n→+∞

M

n

∫
B

(STBn fB)2 dµ.

Note that STBn fB = STMnf , whence σ
′ =
√
Mσ. This yields:

lim
n→+∞

1

n

∫
A

(STn f)2 dµ = lim
n→+∞

1

n

∫
B

(STBn fB)2 dµ.

Finally, note that:

1

N

∫
A

(STNf)2 dµ =
1

N

N−1∑
k,n=0

∫
A
f ◦ T k · f ◦ Tn dµ

=
1

N

N−1∑
n=0

[∫
A
f2 dµ+ 2

n∑
k=1

∫
A
f · f ◦ T k dµ

]
.

Hence, σ2 is the Cesàro-limit of (
∫
A f

2 dµ + 2
∑n

k=1

∫
A f · f ◦ T

k dµ)n≥1. The same manipulation with
1
n

∫
B(STBn fB)2 dµ yields the lemma. �

In this article, the proof of Corollary 1.13 relies on this approach: we obtain two distributional limit
theorems by working at two different time scales, and then identify the limits. However, as can be seen,
obtaining these limit theorems gets much more challenging when working with null recurrent processes.
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