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Abstract

We find, using rather classical spaces of Lipschitz or Hölder functions, a bound on the spectral
radius of the transfer operator associated with Markov chains on countably many interacting
sites with synchronous updates. This gives us a Dobrushin-like criterion that guarantees the
uniqueness of a stationary measure, but also the exponential temporal decay of correlations for
nice observables and, under some additional assumptions, a spatial decay of correlations. Then,
the stability of the spectral radius is proved for suitable discrete systems or interacting particle
systems.

More than forty years ago, R.L. Dobrushin discovered a criterion which ensure that many models
of statistical physics have at most one equilibrium measure in the high temperature domain [3]. It
says, roughly, that if the state of the system on any given site does not depend too much on the
state of the other sites, then the equilibrium measure, provided it exists, is unique. This criterion is
remarkably elegant, in that it does not require any translation-invariance or finite range assumption,
it is easily computable, and can give rather sharp upper bound on the critical temperature when the
system exhibits a phase transition.

In this article, we focus on a dynamical version of this problem: instead of working with Gibbs
measures whose specifications are given, we look at a stochastic cellular automaton (i.e. a Markov
chain on the space of configurations). Starting from a given configuration, the updating process
change all the sites at the same time, independently. The techniques involved will not change
much, as we shall basically estimate the norm or the spectral radius of a given transfer operator,
as in Dobrushin’s original paper [3] or many following works [9], but will nevertheless add a time
perspective, introduce some new objects such as Markov chains, as well as change some more minor
matters (for example, the diagonal dependence coefficients cii, where i is a site, may not be null).
This time-dependent perspective is already present in an article by Mac Kay [10], but without
explicit reference to the Dobrushin coefficients. We also prove that systems on a discrete state
space or iterated function systems are stable, under some additional assumptions and provided the
perturbations are nice enough.

The criterions we get not only ensure the uniqueness of the stationary measure, but can also be
used with great effect to prove an exponential temporal decay of correlation (Corollary 1.15) or, with
additional assumptions, a spatial decay of correlations (Theorem 4.4). One could continue along this
way to prove, for instance, a central limit theorem, with perturbations of the transfer operator or
directly with the exponential decay of correlations.

As the last modifications were done to this article, a recent paper of Mac Kay [10] was brought
to my knowledge. It goes along the same line as the article you are now reading, and one of its
arguments (the Theorem 1) can doubtlessly be used in our setting to great effect. I chose not to

1



modify the article, since it would need a very thorough overhaul to handle those modifications, but
added some comments to point out what one could gain this way (in short : better and more explicit
bounds, and a little less computation).

In Section 1 we present the setting we chose, the tools we shall work with, and the equivalent
of Dobrushin uniqueness criterion (which is shown to be a upper bound on the norm of the transfer
operator). The tools come from the basic arsenal of optimal transport theory: minimizing couplings,
Wasserstein distances, and Kantorovich-Rubinstein Theorem. We hope it provides the reader with a
simple and almost optimal setting in which Dobrushin uniqueness criterion (Theorem 1.12) is valid -
and actually appears with little effort - in Subsection 1.2. In particular, it leaves a lot of freedom in
the way one chooses the state spaces, which are not required to be identical, and the distances, which
are only required to be lower semi-continuous (and actually only measurable if one looks for some
weaker results). Although the techniques involved are in nothing new (but seem to be frequently
re-discovered), the setting is slightly different, and in some ways more complete. We also obtain the
temporal decay of correlations for free (Corollary 1.15).

The Section 2 presents much more involved arguments. When one looks at dynamics where all the
sites behave independently, they can find trivial examples where Dobrushin criterion fails, but where
the transfer operator has exactly one eigenvalue of modulus 1: a product of mixing Markov chains
with a convenient transition matrix is enough. In the independent case, one can get past this problem
since the transfer operator can be trivially iterated. However, we want to know what happens when
one perturbs such a system: is there still at most one equilibrium measure? We answer this question
for some systems and nice perturbations, but only for discrete state space in Theorem 3.1 or iterated
function systems (for which we show a Lasota-Yorke inequality - Theorem 3.5) in Theorem 3.6. This
section concentrates most of the new results of this article.

Section 4 is devoted to the proof of a spatial decay of correlations for a unique equilibrium
measure, much in the same spirit as in [6], but intrinsically limited by the fact that we do not work
with lattices, and that we do not require the sites to be identical, so that it makes no sense speaking
of the translate of a function. In exchange, the main result we get - Theorem 4.4 - is much more
general.

Section 5 presents some variations on the Ising model, as examples on which our diverse results
apply.

1 Setting and tools
We give ourselves a countable index set V , typically infinite (our results are much less interesting if
one works with a finite index set). For some applications, it may be useful to see V either as the
vertices of a graph, or as the set of nonnegative integers N. Each element of V will be called a site.
For each i in V , let Ei be a Polish space, and di a lower semi-continuous distance on Ei. We put
Ω :=

∏
i∈V

Ei, and we endow it with the product topology and its Borel sets. Any element of Ω will

be called a configuration, and by induction a point of Ei may sometimes be called a configuration
(or a state) at site i. If ω ∈ Ω is a configuration, we denote by ωi ∈ Ei its value at site i, and by
ωi ∈

∏
j∈V
j 6=i

Ej = Ω
i the configuration induced outside of site i. Sometimes, we also use notations such

as ω>n, which denote a configuration on all sites whose label is strictly greater than n (when the
index set is N), and other similar objects.

The advantage of using lower-semi continuous distances on Polish spaces is that it encompasses
both the "Polish space with discrete distance" (i.e. total variation norm on measures) and the

2



"compact metric" settings.
We assume that the distances di are uniformly bounded, or that in other words there exists a

∆ > 0 such that, for all i in V , we have di ≤ ∆.

Definition 1.1 (Uniform continuity at infinity).
We say that a function f from Ω to a metric space (M,D) is uniformly continuous at infinity

(or shorter is UCAI) if, for every ε > 0, there exists an integer N such that, for every couple of
configurations ω1 and ω2 which are identical on the first N sites, D(f(ω1), f(ω2)) < ε.

For each i in V , let ω 7→ pi,ω be a measurable application from Ω to P(Ei). We define a Markov
chain on Ω in the following way. First, we give ourselves an initial distribution over Ω; then, if
(X i

n)i∈V is the configuration at time n, the law of (X i
n+1)i∈V knowing (X i

n)i∈V is
⊗
i∈V

pi,(Xj
n)j∈V

. In

other words, we choose the new state of all sites independently, but with a law which depends on
the previous state of all sites.

We define a transfer operator L∗ on the space of probability measures (and also on the space of
sign measures) by:

L∗µ :=

∫
Ω

⊗
i∈V

pi,ωµ( dω).

Equivalently, if µ is the law of (X i
0)i∈V , then L∗µ is the law of (X i

1)i∈V . We consider its dual operator,
which acts naturally on the space on continuous bounded functions. For any such function, we have:

Lf(ω) :=

∫
Ω

f(ω′)
⊗
i∈V

pi,ω( dω′).

1.1 Basic tools

We use in this article an approach oriented towards functional analysis. One of the main point is a
duality between Lipschitz functions and some finite measures, coming from Kantorovich-Rubinstein
Theorem. We need to define all the functions and measures space we work with. Since the norm we
shall use on measures spaces do not look very natural (at least at first sight) but are easily explained
by duality, we shall start by the functions spaces. Naturally, they are spaces of functions which are
Lipschitz in some sense; they were used in [9].

Definition 1.2 (Hölder functions).
Let i in V , and α in [0, 1]. The local Hölder spaces of index α are defined by:

L̃ipα(Ei) :=

{
f : Ei → R,measurable, sup

ωia,ω
i
b∈Ei

|f(ωia)− f(ωib)|
dαi (ωia, ω

i
b)

< +∞

}
, (1.1)

‖f‖gLipα(Ei)
:= sup

ωia,ω
i
b∈Ei

|f(ωia)− f(ωib)|
dαi (ωia, ω

i
b)

.

Now, we can go on an define global functions which are locally Hölder of index α:

L̃α(Ei) :=

{
f : Ω→ R,measurable,UCAI, sup

ωi∈Ω
i

∥∥f(ωi, ·)
∥∥gLipα(Ei)

< +∞

}
, (1.2)

‖f‖eLα(Ei)
:= sup

ωi∈Ω
i

∥∥f(ωi, ·)
∥∥gLipα(Ei)

.
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At last, we can define the globally Hölder functions:

L̃α(Ω) :=

{
f ∈

⋂
i∈V

L̃α(Ei) :
∑
i∈V

‖f‖eLα(Ei)
< +∞

}
, (1.3)

‖f‖eLα(Ω) :=
∑
i∈V

‖f‖eLα(Ei)
.

We did not define norms, but semi-norms: if two functions differ only by a constant, then the
Hölder semi-norm of their difference is zero. Here, the interest in Lipschitz functions lies only in
their variation: we shall quotient our spaces, saying that two functions are identical if they differ
only by a constant. This kind of quotient is used in many articles, although with some changes (one
may consider, for instance, Lipschitz functions whose value at some reference point is zero). One
advantage of our method is that we will not care about constants. The drawback is that, once the
quotient is done, it will forbid us to speak of the value of the function in any given point; however, we
will still be able to define the difference of the function evaluated in two points, since such differences
are the same for any two functions which differ only by a constant.

Definition 1.3.
Let i in V . For any two functions f and g from Ei (resp. Ω) to R, we write f ∼ g if there exists

some c in R such that f = g + c. The relation ∼ is obviously an equivalence relation on the set of
functions from Ei (resp. Ω) to R.

For any i in V , we define Lipα(Ei), ‖·‖Lipα(Ei)
, Lα(Ei), ‖·‖Lα(Ei)

, Lα(Ω) and ‖·‖Lα(Ω) as the
quotients of respectively L̃ipα(Ei), ‖·‖gLipα(Ei)

, L̃α(Ei), ‖·‖eLα(Ei)
, L̃α(Ω) and ‖·‖eLα(Ω) by the relation

∼.

Lemma 1.4.
‖·‖Lipα(Ei)

is a norm on Lipα(Ei) for every i in V and every α in [0, 1].
‖·‖Lα(Ω) is a norm on Lα(Ω).
Functions in L̃α(Ω) are bounded.

Proof.
We first focus on the two first statements. It is enough to prove that ‖·‖L1(Ω) is a norm on L1(Ω),

since the former statement is a particular case of this one (one only needs first to take dαi instead
of di to get the result for all α in [0, 1], and then to take V = {i} to get the result for Lipα(Ei)).
Showing that ‖·‖L1(Ω) is a semi-norm is trivial; all we need to prove is that, if ‖f − g‖L1(Ω) = 0 for

f and g in L1(Ω), then f = g. This is the same as proving that, if
∥∥∥f̃ − g̃∥∥∥eL1(Ω)

= 0 for f̃ and g̃ in

L̃1(Ω), then f̃ and g̃ differ only by a constant. Let f̃ and g̃ in L̃1(Ω) be such that
∥∥∥f̃ − g̃∥∥∥eL1(Ω)

= 0.

Let us fix some ω0 in Ω. Let ω in Ω. For any nonnegative integer n, we have:

f̃(ω)− f̃(ω0) =
n∑
k=0

(f̃(ω<k0 , ω≥k)− f̃(ω≤k0 , ω>k)) + f̃(ω≤n0 , ω>n)− f̃(ω0).

Since f̃ is continuous at infinity, we get by making n go to infinity:

f̃(ω)− f̃(ω0) =
+∞∑
n=0

f̃(ω<n0 , ω≥n)− f̃(ω≤n0 , ω>n). (1.4)
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Since the same holds for g̃, we have:

f̃(ω)− g̃(ω) = f̃(ω0)− g̃(ω0) +
+∞∑
n=0

(f̃ − g̃)(ω<n0 , ω≥n)− (f̃ − g̃)(ω≤n0 , ω>n).

For any integer n, by the definition of the Lipschitz norms:

|(f̃ − g̃)(ω<n0 , ω≥n)− (f̃ − g̃)(ω≤n0 , ω>n)| ≤
∥∥∥f̃ − g̃∥∥∥eL1(En)

dn(ωn, ωn0 ) = 0.

Hence, f̃(ω) − g̃(ω) = f̃(ω0) − g̃(ω0) for any configuration ω in Ω, and f̃ and g̃ differ only by a
constant. All is left to prove is the third statement. Starting from Equality 1.4, it is straightforward:

f̃(ω) = f̃(ω0) +
+∞∑
n=0

f̃(ω<n0 , ω≥n)− f̃(ω≤n0 , ω>n)

≤ f̃(ω0) +
+∞∑
n=0

∥∥∥f̃∥∥∥eL1(En)
dn(ωn, ωn0 )

≤ f̃(ω0) + ∆
∥∥∥f̃∥∥∥eL1(Ω)

.

Now that we have defined everything we need (at least for the current section) on the side of
observables, we turn to the measures side. While defining the functions spaces was made at the same
time we defined the norm on those spaces, here the measures spaces will be defined directly, but the
distances and norms (Wasserstein distances and Wasserstein-induced norms) we put on them will
require us to introduce a few tools, including Kantorovich-Rubinstein Theorem. The use of such
distances in the wording of Dobrushin uniqueness criterion dates back to a follow-up of Dobrushin’s
original article [3] a couple of years later [4], but the freedom one has in the choice of the cost function
is seldom noticed.

In the following, we denote by S any Polish space. We shall use occasionally the bra-ket notation.
Let us recall that, for any finite measure µ on S and any bounded, measurable function f from S to
R, one may write:

〈µ, f〉 :=

∫
S

f dµ.

We denote by P(S) the space of probability measures on S, and by M0(S) the space of finite
measure µ on S such that 〈µ, 1〉 = 0.

If µ belongs to M0(Ω) and f̃ to L̃1(Ω), then 〈µ, f̃〉 = 〈µ, f̃ + c〉 for any given c in R. Hence,
〈µ, f〉 is well-defined for f in L1(Ω).

Definition 1.5.
Let µ and ν be two probability measures on S. A coupling of µ and ν is a probability measure π

on S × S such that its first marginal is µ, and its second marginal ν.
We say that a measurable function c from S×S to R+ is a cost function if it is bounded, symmetric,

and if it is null on the diagonal. Then, we can define the optimal transport cost between µ and ν
with respect to c by:

Wc(µ, ν) := inf
coupling π

between µ and ν

∫
S×S

c dπ. (1.5)
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A classical interpretation of the quantityWc(µ, ν) is the following. We can see the two probability
measures µ and ν as two different way to spread a unity mass on the space S. Then, as is suggested
by its name, Wc(µ, ν) is the lowest cost needed to transport the mass from its repartition µ to its
repartition ν, given that the cost for transporting a unity mass from point x to point y is c(x, y).
If c(x, y) = 1x 6=y, the distance Wc between two probability measures is, up to a factor 2, the total
variation between these two measures.

We expose in the next lemma some of the well-known properties of the Wasserstein distance (see
for instance [11], Chapters 4 and 6).

Lemma 1.6.
If the cost function c is a distance on S, then the corresponding functional Wc(·, ·) is a distance

on the space P(S).
If the cost function c is lower semi-continuous, then for any two given probability measures µ and

ν on S, there exists an optimal coupling which realizes the infimum in Equation 1.5.
If c(x, y) = 1x 6=y, then Wc metrizes the strong topology on P(S).
If (S, d) is a Polish metric space, then Wd metrizes the weak topology on P(S). The distance Wd

is then called the Wasserstein distance on P(S).

All those definition and properties can be extended by taking nonnegative finite measures of the
same mass instead of probability measures. Then, they induce norms on the spacesM0:

Definition 1.7.
Let c be a distance on S. Let µ be inM0(S). The measure µ can be decomposed as a difference

of two nonnegative, finite measures: µ = µ+ − µ−. We define:

‖µ‖c := Wc(µ+, µ−).

Then, ‖·‖c is a norm onM0(S).

One of the essential tools of this article is the link between the measures and the observables. It
is indirectly provided by Kantorovich-Rubinstein Theorem:

Theorem 1.8 (Kantorovich-Rubinstein).
Let c be a lower semi-continuous metric on S, which is also used here to define the Lipschitz

functions space on S. Let µ be inM0(S). Then:

‖µ‖c = sup
f∈L1(S)
‖f‖L1(S)≤1

〈µ, f〉. (1.6)

We now move towards applying this theorem to our setting. For this purpose, we define `1(V,R+)
as the space of nonnegative, summable sequences on V ; for any (ui)i∈V in `1(V,R+), we put ‖u‖`1 =∑
i∈V

ui. We define also, for any (ui)i∈V in `1(V,R+), a pseudo-distance
∑
i∈V

uidi on Ω:

(∑
i∈V

uidi

)
(ωa, ωb) :=

∑
i∈V

uidi(ω
i
a, ω

i
b). (1.7)

Lemma 1.9.
Let (ui)i∈V in `1(V,R+). Then,

∑
i∈V

uidi is a lower semi-continuous pseudo-distance on Ω.
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Proof.
Let i in V . The pseudo distance defined on Ω by di(ωa, ωb) := di(ω

i
a, ω

i
b) is lower semi-continuous.

Hence, for every positive integer N , the pseudo-distance
∑
i≤N

uidi is also lower semi-continuous.

Moreover, since
∑
i∈V

‖uidi‖∞ ≤ ∆ ‖u‖`1 , the sequence of functions

(∑
i≤N

uidi

)
N∈N

is nondecreasing

and converges uniformly. As a consequence:∑
i∈V

uidi = sup
N∈N

∑
i≤N

uidi.

As a pointwise supremum of lower semi-continuous functions, the function
∑
i∈V

uidi is also lower

semi-continuous. The fact that it is a pseudo-distance is obvious.

At last, we define a convenient norm onM0(Ω), by putting for any µ inM0(Ω):

‖µ‖(d) := sup
u∈`1(V,R+)
‖u‖`1(V,R+)≤1

WP
i∈V uidi

(µ+, µ−). (1.8)

Lemma 1.10.
‖·‖(d) is a norm onM0(Ω), and:

‖µ‖(d) = sup
f∈L1(Ω)
‖f‖L1(Ω)≤1

〈µ, f〉. (1.9)

Proof.
Let µ be inM0(Ω).
Let u in `1(V,R+). First, we apply Kantorovich-Rubinstein Theorem 1.8 to the function

∑
i∈V

uidi,

which is a lower semi-continuous pseudo-distance on Ω× Ω by Lemma 1.9.

WP
i∈V uidi

(µ+, µ−) = sup
f∈Lip1(Ω,

P
i∈V uidi)

‖f‖Lip1(Ω,
P
i∈V uidi)

≤1

〈µ, f〉. (1.10)

The main issue here is to identify the space of Lipschitz functions with respect to the pseudo-
metric

∑
i∈V

uidi. Let f be 1-Lipschitz with respect to
∑
i∈V

uidi, where u belongs to `1(V,R+).

Obviously, for all i in V , we have ‖f‖gLip1(Ei)
≤ ui. Moreover, let N ∈ N and ωa, ωb in Ω be such

that ωia = ωib for all i ≤ N . Then, (∑
i∈V

uidi

)
(ωa, ωb) ≤ ∆

∑
i>N

ui.

The sequence (ui)i∈V being summable, this converges to 0 as N goes to infinity. Hence, f belongs to
L̃1(Ω), with ‖f‖eL1(Ω) ≤

∑
i∈V

ui and ‖f‖gLip1(Ei)
≤ ui for all i.
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Conversely, if f belongs to L̃1(Ω), as a consequence of Equation (1.4), for all ωa and ωb in Ω:

|f(ωa)− f(ωb)| ≤
∑
i∈V

‖f‖gLip1(Ei)
di(ω

i
a, ω

i
b) =

(∑
i∈V

‖f‖gLip1(Ei)
di

)
(ωa, ωb).

This proves that the set of functions which are 1-Lipschitz with respect to the pseudo-metric(∑
i∈V

uidi

)
for some u ∈ `1(V,R+) such that ‖u‖`1(V,R+) ≤ 1 is exactly the set of functions which are

of L̃1(Ω)-norm at most 1. Hence:

sup
f∈L1(Ω)
‖f‖L1(Ω)≤1

〈µ, f〉 = sup
u∈`1(V,R+)
‖u‖`1(V,R+)≤1

sup
f∈Lip1(Ω,

P
i∈V uidi)

‖f‖Lip1(Ω,
P
i∈V uidi)

≤1

〈µ, f〉

= sup
u∈`1(V,R+)
‖u‖`1(V,R+)≤1

WP
i∈V uidi

(µ+, µ−)

= ‖µ‖(d) .

We get that ‖·‖(d) is a pseudo-norm on M0(Ω). Let u be a positive summable sequence on V ,

with ‖u‖`1(V,R+) ≤ 1. Then
∑
i∈V

uidi is a distance on Ω, so that WP
i∈V uidi

(µ+, µ−) is non-zero for any

non-zero measure µ inM0(Ω) and ‖·‖(d) is a norm onM0(Ω).

1.2 Results

Now that the setting is clear, we can go on and prove a theorem akin to Dobrushin’s [3] or Klein’s [9].
So as to complete this goal, we introduce the interdependence coefficients cij, which quantify the
influence of the configuration of a site i at time t upon the configuration at site j at time t+ 1.

Definition 1.11 (Interdependence coefficients). Let i, j ∈ V be two sites. We define the coefficient
cij by:

cij := sup
ωi∈Ω

i

sup
ωia,ω

i
b∈Ei

ωia 6=ωib

Wdj(pj,ωi,ωia , pj,ωi,ωib)

di(ωia, ω
i
b)

. (1.11)

We shall call M := (cij)i,j∈V the dependence matrix (associated to the dynamics). Let n ∈ N∗.
This matrix can be iterated, so that if we put :

c
(n)
ij :=

∑
{i1,··· ,in−1}∈V n−1

cii1ci1i2 · · · cin−1j, (1.12)

then Mn := (c
(n)
ij )i,j∈V .

In the worst case, if the configuration at site i at time t is switched from ωia to ωib, the distribution
of the configuration at site j at time t+ 1 move at most by a distance of cijdi(ωia, ωib).

Theorem 1.12.

Assume that sup
j∈V

+∞∑
i=0

cij is finite. Then, L acts continuously on L1(Ω), and:

‖L‖L1(Ω)→L1(Ω) ≤ sup
j∈V

+∞∑
i=0

cij. (1.13)
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Proof.
First step:
We begin by choosing ωia, ω

i
b in Ei and ω

i in ωi, and writing Lf(ωi, ωia)−Lf(ωi, ωib) as a telescoping
sum. Let n be a nonnegative integer.

Lf(ωi, ωia)− Lf(ωi, ωib) =

∫
Ω

f(ω1)
⊗
j∈V

pj,ωi,ωia( dωj1)−
∫

Ω

f(ω1)
⊗
j∈V

pj,ωi,ωib( dωj1)

=
n∑
j=0

∫
Ω

f(ω1) (pj,ωi,ωia − pj,ωi,ωib)( dωj1)
⊗
k<j

pk,ωi,ωib( dωk1)
⊗
k>j

pk,ωi,ωia( dωk1)

+

∫
Ω

f(ω1)
⊗
k≤n

pk,ωi,ωib( dωk1)

(⊗
k>n

pk,ωi,ωia( dωk1)−
⊗
k>n

pk,ωi,ωib( dωk1)

)
.

We show that the remainder of this sum converges to 0 as n goes to infinity. Let Πn,ωi,ωia,ω
i
b
be

any coupling between
⊗
k>n

pk,ωi,ωia and
⊗
k>n

pk,ωi,ωib .

∫
Ω

f(ω1)
⊗
k≤n

pk,ωi,ωib( dωk1)

(⊗
k>n

pk,ωi,ωia( dωk1)−
⊗
k>n

pk,ωi,ωib( dωk1)

)

=

∫
Ω

f(ω1)− f(ω≤n1 , ω>n2 )
⊗
k≤n

pk,ωi,ωib( dωk1) Πn,ωi,ωia,ω
i
b
( dω>n1 , dω>n2 ).

Since f is continuous at infinity, |f(ω1)−f(ω≤n1 , ω>n2 )| decays to 0 when n goes to infinity uniformly
in ω1 and ω2, which implies that the remainder of the telescoping sum also vanishes at infinity. Hence,
we have:

Lf(ωi, ωia)− Lf(ωi, ωib) =
+∞∑
j=0

∫
Ω

f(ω1) (pj,ωi,ωia − pj,ωi,ωib)( dωj1)
⊗
k<j

pk,ωi,ωib( dωk1)
⊗
k>j

pk,ωi,ωia( dωk1).

(1.14)
Second step:
Now, we use (1.14) to get a upper bound on the norm of Lf . We keep the same notations as in

the first step, choose j in V , and an optimal coupling πj,ωi,ωia,ωib between pj,ωi,ωia and pj,ωi,ωib (following
Theorem 4.1 in [11], such a coupling always exists).

∣∣∣∣∫
Ω

f(ω1) (pj,ωi,ωia −pj,ωi,ωib)( dωj1)
⊗
k<j

pk,ωi,ωib( dωk1)
⊗
k>j

pk,ωi,ωia( dωk1)

∣∣∣∣∣
=

∣∣∣∣∣
∫

Ω

f(ωj1, ω
j
1)− f(ωj1, ω

j
2) πj,ωi,ωia,ωib( dωj1, dωj2)

⊗
k<j

pk,ωi,ωib( dωk1)
⊗
k>j

pk,ωi,ωia( dωk1)

∣∣∣∣∣
≤
∫

Ω

‖f‖L1(Ej)
dj(ω

j
1, ω

j
2) πj,ωi,ωia,ωib( dωj1, dωj2)

⊗
k<j

pk,ωi,ωib( dωk1)
⊗
k>j

pk,ωi,ωia( dωk1)

≤ ‖f‖L1(Ej)
Wdj(pj,ωi,ωia , pj,ωi,ωib)

≤ cij ‖f‖L1(Ej)
di(ω

i
a, ω

i
b).
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Now, we sum this inequality over all j in V , and get:∣∣Lf(ωi, ωia)− Lf(ωi, ωib)
∣∣ ≤∑

j∈V

cij ‖f‖L1(Ej)
di(ω

i
a, ω

i
b).

Since this is true for all ωi in Ω
i and all ωia and ωia in Ei, obviously,

‖f‖L1(Ei)
≤
∑
j∈V

cij ‖f‖L1(Ej)
,

and:

‖f‖L1(Ω) ≤
∑
i∈V

∑
j∈V

cij ‖f‖L1(Ej)
≤
∑
j∈V

‖f‖L1(Ej)

∑
i∈V

cij ≤

(
sup
j∈V

∑
i∈V

cij

)
‖f‖L1(Ω) .

However, we do not have proved yet that Lf belongs to L1(Ω).
Third step:
All we have to check now is that Lf is still continuous at infinity; this is where the assumption

that all the pi,ω are continuous at infinity will play its role. Let n be a nonnegative integer, and let
ωa and ωb in Ω such that ω≤na = ω≤nb (that is, these two configurations are the same on the first n
sites). For each i in V , we choose and optimal coupling πi,ωa,ωb between pi,ωa and pi,ωb . Let m be a
nonnegative integer.

Lf(ωa)− Lf(ωb)

=

∫
Ω

f(ω1)

(⊗
k∈V

pk,ωa( dωk1)−
⊗
k∈V

pk,ωb( dωk1)

)

=

∫
Ω

f(ω1)− f(ω
)
2

⊗
k∈V

πk,ωa,ωb( dωk1 , dωk2)

=
m∑
j=0

∫
Ω

f(ω<j2 , ω≥j1 )− f(ω≤j2 , ω>j1 )
⊗
k∈V

πk,ωa,ωb( dωk1 , dωk2)

+

∫
Ω

f(ω≤m2 , ω>m1 )− f(ω2)
⊗
k∈V

πk,ωa,ωb( dωk1 , dωk2).

As in the first step of this proof, the remainder vanishes as m goes to infinity; we use the same
kind of upper bound as in the second step.

|Lf(ωa)− Lf(ωb)| ≤
+∞∑
j=0

‖f‖L1(Ej)
Wdj(pj,ωa , pj,ωb). (1.15)

Moreover, we have for all j in V and nonnegative integer m:

Wdj(pj,ωa , pj,ωb) =
m∑
i=0

Wdj(pj,ω≤n+i
b ,ω>n+i

a
, p

j,ω≤n+i+1
b ,ω>n+i+1

a
) +Wdj(pj,ω≤n+m+1

b ,ω>n+m+1
a

, pj,ωb).

Since each pj,ω is continuous at infinity, the remainder vanishes as m goes to infinity. Hence:

Wdj(pj,ωa , pj,ωb) =
+∞∑
i=0

Wdj(pj,ω≤n+i
b ,ω>n+i

a
, p

j,ω≤n+i+1
b ,ω>n+i+1

a
) ≤

+∞∑
i=n+1

cijdi(ω
i
a, ω

i
b) ≤ ∆

+∞∑
i=n+1

cij. (1.16)
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Now, we apply Inequality (1.16) to Inequality (1.15), and obtain:

|Lf(ωa)− Lf(ωb)| ≤ ∆
+∞∑
j=0

+∞∑
i=n+1

cij ‖f‖L1(Ej)
.

For all nonnegative integer n, we have:

+∞∑
i=n+1

cij ‖f‖L1(Ej)
≤

(
sup
j∈V

+∞∑
i=0

cij

)
‖f‖L1(Ej)

,

the right hand side being a summable function of j as soon as the hypothesis of Theorem 1.12 is

satisfied. Moreover, lim
n→+∞

+∞∑
i=n+1

cij ‖f‖L1(Ej)
= 0 for all j. By the dominated convergence theorem,

lim
n→+∞

∆
+∞∑
j=0

+∞∑
i=n+1

cij ‖f‖L1(Ej)
= 0.

Since this upper bound also does not depend neither on ωa nor on ωb, the function Lf is continuous
at infinity and belongs to L1(Ω), which ends this proof.

The bound 1.13 is worth commenting. If all cij are finite, the dependence matrixM is an infinite,
nonnegative (in that all its coefficients are nonnegative) matrix. The operator norm of M when

acting on `1(V ) is sup
j∈V

+∞∑
i=0

cij; in particular, it acts continuously if and only if this expression if finite.

One could make M act on different Banach spaces and get different expressions for the operator
norm. It is not clear how one could translate such an action to a well-defined function space on Ω:
if one makes M act on `p(V ) for some p > 1, then the corresponding norm on functions on Ω do not
control the supremum norm, and by duality we can not get a good control of the norm of L∗ on the
wholeM0(Ω) space (although some control is still possible on some subspace ofM0(Ω)). However,
one can still hope for good properties of the system such as in [5], where it is enough to control some
operator norm of the dependence matrix.

Actually, the conclusion of Theorem 1.12 is valid under weaker assumptions. While we worked
here with di as lower semi-continuous metrics, the same conclusion holds with costs functions which
are merely nonnegative, symmetric, measurable, zero on the diagonal and uniformly bounded by
some ∆. In other words, neither the positive definiteness, the triangular inequality nor the lower
semi-continuity are necessary. However, those assumptions are needed for Corollary 1.13, and the
lower semi-continuity makes for a simpler proof (it ensures the existence of optimal couplings, and
spare us the use of couplings close to this optimum).

Corollary 1.13.

Assume that sup
j∈V

+∞∑
i=0

cij < 1. Then, there exists at most one stationary measure.

Proof.

11



Let µ1 and µ2 be two stationary measures. Since they are stationary, L∗(µ1 − µ2) = µ1 − µ2.

‖µ1 − µ2‖(d) = sup
f∈L1(Ω)
‖f‖L1(Ω)≤1

〈µ1 − µ2, f〉

= sup
f∈L1(Ω)
‖f‖L1(Ω)≤1

〈µ1 − µ2,Lf〉

≤ sup
f∈L1(Ω)

‖f‖L1(Ω)≤‖L‖L1(Ω)→L1(Ω)

〈µ1 − µ2, f〉

≤ ‖L‖L1(Ω)→L1(Ω) ‖µ1 − µ2‖(d)

≤

(
sup
j∈V

+∞∑
i=0

cij

)
‖µ1 − µ2‖(d) .

Hence, if sup
j∈V

+∞∑
i=0

cij < 1, then ‖µ1 − µ2‖(d) = 0 and µ1 = µ2.

This corollary states that, if the dependence matrix has an operator norm smaller than 1 when
acting on `1(V ), then there is at most one stationary measure. One can weaken this condition by
iterating this matrix: if its spectral radius is smaller than 1, then the conclusion of this corollary
holds. In other words, for the uniqueness of the stationary measure to be known it is enough to prove
that, for some n ∈ N∗,

sup
j∈V

+∞∑
i=0

c
(n)
ij < 1.

Remark 1.14.
One could also be interested in conditions which ensure that there exists at least one stationary

measure. This is the case if each Ei is compact. Then, Ω is compact, and so is P(Ω). Since L∗ act
continuously on P(Ω), it has a fixed point by Schauder’s theorem, and thus there exists at least one
stationary measure.

However, on can use alternative conditions in some cases. For instance, assume that ρ(L) is
strictly smaller than 1. Then, we take any probability measure µ on Ω and define a sequence (un) by:

un :=
1

n

n−1∑
k=0

L∗µ.

This is a Cauchy sequence, and if it has a limit then this limit is a stationary measure. All we need
is a condition to ensure that (P(Ω), ‖· − ·‖(d)) is complete. This is true if either each (Ei, di) is a
metric Polish space, or if for some δ we know, for every site i and every points x and y in Ei, that
di(x, y) ≥ δ1x 6=y (then, we may work with a stronger topology on P(Ω), which would still be complete).

A bound on the norm or on the spectral radius of the transfer operator can give much more than
the mere uniqueness of the stationary measure.

Corollary 1.15 (Temporal decay of correlations).
Assume that the system has a unique stationary probability measure µ. Let f and g be in L1(Ω).

Then:

|Eµ(f(X0)g(Xn))− Eµ(f)Eµ(g)| ≤ ‖f‖L1(Ω,µ) ‖g‖L1(Ω)

(
sup
j∈V

+∞∑
i=0

cij

)n

. (1.17)
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Proof.
By the definition of the transfer operator, we have:

|Eµ(f(X0)g(Xn))− Eµ(f)Eµ(g)| =
∣∣∣∣∫

Ω

f(ω) (Lng(ω)− Eµ(g))µ( dω)

∣∣∣∣
≤ ‖f‖L1(Ω,µ) ‖L

ng − Eµ(g)‖L∞(Ω,µ)

≤ ‖f‖L1(Ω,µ) ‖g‖L1(Ω)

(
sup
j∈V

+∞∑
i=0

cij

)n

,

where the last inequality comes from the fact that Lng converges exponentially fast to Eµ(g), which
is the projection of g onto the eigenspace of L corresponding to the eigenvalue 1.

2 Iteration of the transfer operator
In order to use the conclusion of Corollary 1.13, the transfer operator must be contracting, or at least
the spectral radius of the dependancies matrix must be strictly smaller than one. However, one can
easily find examples such that the dynamic has trivially a unique stationary measure and one has
exponential convergence towards this measure, while the dependence matrix has a spectral radius
greater than 1. For example, let us consider a sequence of independent and identically distributed
ergodic Markov chains on a finite state space. Let N be the transition matrix, and π1 the projection
on the eigenspace for the eigenvalue 1 of the matrix NT. Then, one has a unique stationary measure,
but Corollary 1.13 can be applied if and only if ‖NT − π1‖ is strictly smaller than 1.

In the case of a sequence of independent dynamics, a simple workaround is to iterate the dynamic:
thanks to the independence, the iterated dynamic keeps the property that the updates on every sites
are independent, and to apply the conclusion of Corollary 1.13 it is enough that ‖(Nn)T − π1‖ is
strictly smaller than 1 for some n - which is true if N is ergodic. However, this method can not be
adapted in the interesting cases, when there is even the slightest dependence between the different
sites. Our goal in this section is to iterate the transfer operator so as to get estimates of its spectral
radius which behave nicely when one slightly perturbs a sequence of independent dynamics.

We shall begin again with a boring list of miscellaneous definitions, starting with a new function
space and some operators. Let i in V and α in [0, 1]; we put:

Bα(Ei) :=
{
f : Ω

i × E2
i → R : ∃K ≥ 0,∀ωi, ωia, ωib ∈ Ω

i × E2
i , |f(ωi, ωia, ω

i
b)| ≤ Kdαi (ωia, ω

i
b)
}

(2.1)

‖f‖Bα(Ei)
:= sup

ωi∈Ω
i

sup
ωia,ω

i
b∈Ei

f(ωi, ωia, ω
i
b)

dαi (ωia, ω
i
b)

For any i in V , for any function f from Ω to R, we will denote f/i the function from Ω
i × E2

i to
R such that, for all ωi in Ω

i, for all ωia and ωib in Ei:

f/i(ω
i, ωia, ω

i
b) := f(ωi, ωia)− f(ωi, ωib)

Clearly, for any i in V and any f in Lα(Ei), we have ‖f‖Lα(Ei)
=
∥∥f/i∥∥Bα(Ei)

. We also have, for

any f in Lα(Ω), the equality ‖f‖Lα(Ω) =
∑
i∈V

‖f‖Lα(Ei)
.
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Let i and j in V . Let f in Bα(Ej). We write:

Pj,ωi,ωia,ωib :=
⊗
k<j

pk,ωi,ωib ⊗
⊗
k>j

pk,ωi,ωia ∈ P(Ω
j
).

We recall that πj,ωi,ωia,ωib denotes an optimal coupling between pj,ωi,ωia and pj,ωi,ωib . Let us define
the operators we shall use in the proof of Theorem 2.6:

(Lijf) (ωi, ωia, ω
i
b) =

∫
Ω

f(ωj1, ω
j
2, ω

j
3) πj,ωi,ωia,ωib( dωj2, dωj3)Pj,ωi,ωia,ωib( dωj1). (2.2)

Equation (1.14) becomes, for all i in V and f in L(Ω):

(Lf)/i =
∑
j∈V

Lijf/j. (2.3)

We now need some reference configuration, to help us decouple the dynamics. Let (ωi0,i)i∈V in Ω
be this reference; we put:

∆0 := sup
i∈V

sup
ωi∈Ei

di(ω
i, ωi0,i) ≤ ∆.

Let i in V and f in Bα(Ei). We define:(
L̃iif

)
(ωi, ωia, ω

i
b) :=

∫
Ω

f(ωi1, ω
i
2, ω

i
3) πi,ωi,ωia,ωib( dωi2, dωi3)Pi,ωi,ωi0,i,ωi0,i( dωi1), (2.4)

and:(
L̂iif

)
(ωi, ωia, ω

i
b) :=

∫
Ω

f(ωi1, ω
i
2, ω

i
3) πi,ωi,ωia,ωib( dωi2, dωi3) (Pi,ωi,ωia,ωib − Pi,ωi,ωi0,i,ωi0,i)( dωi1). (2.5)

Trivially, one has:
(Lf)/i =

∑
j∈V
j 6=i

Lijf/j + L̂iif/i + L̃iif/i. (2.6)

We need to decompose further these operators in order to prove Proposition 2.7. Let i in V , and
ωi0,i in Ω

i. Let f in Bα(Ei). We define:(˜̃Liif) (ωi, ωia, ω
i
b) :=

∫
Ω

f(ωi1, ω
i
2, ω

i
3) πi,ωi0,i,ωia,ωib( dωi2, dωi3)Pi,ωi,ωi0,i,ωi0,i( dωi1), (2.7)

and:(̂̂Liif) (ωi, ωia, ω
i
b) :=

∫
Ω

f(ωi1, ω
i
2, ω

i
3) (πi,ωi,ωia,ωib − πi,ωi0,i,ωia,ωib)( dωi2, dωi3)Pi,ωi,ωi0,i,ωi0,i( dωi1). (2.8)

Once again, we put:
∆t

0 = sup
i∈V

sup
j∈V
j 6=i

sup
ωj∈Ej

dj(ω
j, ωj0,i) ≤ ∆.

We also need to introduce some kind of reference dynamic on each site; they will be considered as
a dynamic we perturb. We create them by specifying some configurations, and then looking at the
dynamic on any site knowing this is the configuration outside of this site. Let i in V and ωi in Ω

i.
There is a Markov dynamic on Ei such that, if the configuration at time n is ωi, the configuration at
time n+ 1 is chosen with the probability measure pi,ωi,ωi . We call Lref,i,ωi its transfer operator acting
on Lipschitz functions on Ei. For any such function,(

Lref,i,ωif
)

(ωi) =

∫
Ei

f(ωi1)pi,ωii,ωi( dωi1).
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2.1 Operator norms

We now give some estimates of the operator norms for the operators previously defined. The first
lemma is the most straightforward, since the computation involved is almost the same as in the proof
of Theorem 1.12.

Lemma 2.1.
For all i and j in V , for all α in [0, 1],

‖Lij‖Bα(Ej)→Bα(Ei)
≤ cαij, (2.9)

and: ∥∥∥L̃ii∥∥∥
Bα(Ei)→Bα(Ei)

≤ cαii, (2.10)

Proof.
Let f in Bα(Ej), and (ωi, ωia, ω

i
b) in Ω

i × E2
i .

∣∣(Lijf) (ωi, ωia, ω
i
b)
∣∣ =

∣∣∣∣∫
Ω

f(ωj1, ω
j
2, ω

j
3)Pj,ωi,ωia,ωib( dωj1) πj,ωi,ωia,ωib( dωj2, dωj3)

∣∣∣∣
≤ ‖f‖Bα(Ej)

∫
E2
j

dαj (ωj2, ω
j
3)πj,ωi,ωia,ωib( dωj2, dωj3)

≤ ‖f‖Bα(Ej)

(∫
E2
j

dj(ω
j
2, ω

j
3) πj,ωi,ωia,ωib( dωj2, dωj3)

)α

= ‖f‖Bα(Ej)
Wα
dj

(pj,ωi,ωia , pj,ωi,ωib)

≤ cαij ‖f‖Bα(Ej)
dαi (ωia, ω

i
b).

Since this holds for every (ωi, ωia and ωib) in Ω
i ×E2

i , we have proven Inequality (2.9). The proof
for Inequality (2.10) is virtually the same.

Lemma 2.2 is the crux of the matter: if we can afford to lose some regularity, then the perturba-
tions can be adequately controlled by the non-diagonal terms.

Lemma 2.2.
For all i in V , for all α in [0, 1], for all f in L1(Ω),

∥∥∥L̂iif/i∥∥∥
Bα(Ei)

≤ 2∆1−α
0 cαii ‖f‖

α
L1(Ei)

∑
j∈V
j 6=i

cij ‖f‖L1(Ej)


1−α

. (2.11)

Proof.
Let i in V , f in L1(Ei) and (ωi, ωia, ω

i
b) in Ω

i × E2
i . Let η > 0.

If di(ωia, ω
i
b) ≤ η, we compute:∣∣∣(L̂iif/i) (ωi, ωia, ω

i
b)
∣∣∣ ≤ ∣∣∣∣∫

Ω

f/i(ω1
i, ωi2, ω

i
3) πi,ωi,ωia,ωib( dωi2, dωi3)Pi,ωi,ωia,ωib( dωi1)

∣∣∣∣
+

∣∣∣∣∫
Ω

f(ω1
i, ωi2, ω

i
3) πi,ωi,ωia,ωib( dωi2, dωi3)Pi,ωi,ωi0,i,ωi0,i( dωi1)

∣∣∣∣
≤ 2cii

∥∥f/i∥∥B1(Ei)
di(ω

i
a, ω

i
b)

≤ 2cii ‖f‖L1(Ei)
η1−αdαi (ωia, ω

i
b).
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If di(ωia, ω
i
b) ≥ η, we compute:∣∣∣(L̂iif/i) (ωi, ωia, ω

i
b)
∣∣∣ ≤ ∣∣∣∣∫

Ω

f(ωi1, ω
i
2) (Pi,ωi,ωia,ωib − Pi,ωi,ωi0,i,ωi0,i)( dωi1) pi,ωi,ωia( dωi2)

∣∣∣∣
+

∣∣∣∣∫
Ω

f(ωi1, ω
i
2) (Pi,ωi,ωia,ωib − Pi,ωi,ωi0,i,ωi0,i)( dωi1) pi,ωi,ωib( dωi2)

∣∣∣∣
≤ 2∆0

∑
j∈V
j 6=i

cij ‖f‖L1(Ej)



≤ 2∆0

∑
j∈V
j 6=i

cij ‖f‖L1(Ej)

 η−αdαi (ωia, ω
i
b).

Now, we optimize the parameter η by choosing:

η =
(
cii ‖f‖L1(Ei)

)−1

∆0

∑
j∈V
j 6=i

cij ‖f‖L1(Ej)

 .

Hence, we have :

∥∥∥L̂iif/i∥∥∥
Bα(Ei)

≤ 2
(
cii ‖f‖L1(Ei)

)α∆0

∑
j∈V
j 6=i

cij ‖f‖L1(Ej)


1−α

.

Lemma 2.3 is a mere translation of a natural hypothesis on the operators Lref,i,ωi .

Lemma 2.3.
Assume that there are some nonnegative real numbers K and λ such that, for all n in N, for all

i in V and all sequence of configurations ωi1, ..., ω
i
n in Ω

i:∥∥∥Lref,i,ωi
n
· · · Lref,i,ωi

1

∥∥∥
Lip1(Ei)→Lip1(Ei)

≤ Kλn. (2.12)

Then, for all i in V , all n in N and all f in L1(Ei),∥∥∥(L̃ii)n f/i∥∥∥
B1(Ei)

≤ Kλn ‖f‖L1(Ei)
. (2.13)

Proof.
Let i in V and n in N∗ . For f in L1(Ei) and (ωi, ωia, ω

i
b) in Ω

i × E2
i ,(

L̃ii
)n
f/i(ω

i, ωia, ω
i
b) =

∫
· · ·
∫
f(ωin, ω

i
a,n)− f(ωin, ω

i
b,n) πi,ωin−1,ω

i
a,n−1,ω

i
b,n−1

( dωia,n, dωib,n)

Pi,ωin−1,ω
i
0,i,ω

i
0,i

( dωin) · · · πi,ωi,ωia,ωib( dωia,1, dωib,1)Pi,ωi,ωi0,i,ωi0,i( dωi1)

=

∫
· · ·
∫
f(ωin, ω

i
a,n)− f(ωin, ω

i
b,n) πi,ωin−1,ω

i
a,n−1,ω

i
b,n−1

( dωia,n, dωib,n)

· · · πi,ωi,ωia,ωib( dωia,1, dωib,1)Pi,ωin−1,ω
i
0,i,ω

i
0,i

( dωin) · · ·Pi,ωi,ωi0,i,ωi0,i( dωi1).
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Let (ωi1, · · · , ωin) in (Ω
i
)n.∫

· · ·
∫
f(ωin, ω

i
a,n)− f(ωin, ω

i
b,n) πi,ωin−1,ω

i
a,n−1,ω

i
b,n−1

( dωia,n, dωib,n) · · · πi,ωi,ωia,ωib( dωia,1, dωib,1)

=

∫
Ei

f(ωin, ω
i
n)

(∫
· · ·
∫
pi,ωin−1,ω

i
n−1

( dωin) · · · pi,ωi,ωia( dωi1)

−
∫
· · ·
∫
pi,ωin−1,ω

i
n−1

( dωin) · · · pi,ωi,ωib( dωi1)

)
=
(
Lref,i,ωi

n−1
· · · Lref,i,ωi

1
Lref,i,ωif(ωin, ·)

)
(ωia)

−
(
Lref,i,ωi

n−1
· · · Lref,i,ωi

1
Lref,i,ωif(ωin, ·)

)
(ωib).

At this point, we use our hypothesis, and integrate:∣∣∣(L̃ii)n f/i(ωi, ωia, ωib)∣∣∣ ≤ Kλn ‖f‖L1(Ei)
di(ω

i
a, ω

i
b).

This is true for all ωia, ω
i
b and ω

i, which ends this proof.

Lemmas 2.4 and 2.5 (as well as their proofs) are very similar to Lemmas 2.2 and 2.3 respectively;
they shall allow us to work with a less stringent hypothesis on the operators Lref,i,ωi .

Lemma 2.4.
For all i in V , for all α in [0, 1], for all f in L1(Ω),

∥∥∥∥̂̂Liif/i∥∥∥∥
Bα(Ei)

≤ 2(∆t
0)1−αcαii

∑
j∈V
j 6=i

cji


1−α

‖f‖L1(Ei)
. (2.14)

Proof.
This proof is very close to the proof of Lemma 2.2; we highlight the main differences. Let i in V ,

f in L1(Ei) and (ωi, ωia, ω
i
b) in Ω

i × E2
i . Let η > 0.

If di(ωia, ω
i
b) ≤ η, we still have:∣∣∣∣(̂̂Liif/i) (ωi, ωia, ω

i
b)

∣∣∣∣ ≤ 2cii ‖f‖L1(Ei)
η1−αdαi (ωia, ω

i
b).

If di(ωia, ω
i
b) ≥ η, we compute:∣∣∣∣(̂̂Liif/i) (ωi, ωia, ω

i
b)

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

f(ωi1, ω
i
2) (pi,ωi,ωia − pi,ωi0,i,ωia)( dωi2)Pi,ωi,ωi0,i,ωi0,i( dωi1)

∣∣∣∣
+

∣∣∣∣∫
Ω

f(ωi1, ω
i
2) (pi,ωi,ωib − pi,ωi0,i,ωib)( dωi2)Pi,ωi,ωi0,i,ωi0,i( dωi1)

∣∣∣∣
≤ 2∆t

0

∑
j∈V
j 6=i

cji ‖f‖L1(Ei)



≤ 2∆t
0

∑
j∈V
j 6=i

cji ‖f‖L1(Ei)

 η−αdαi (ωia, ω
i
b).

We get the wanted result by optimizing the parameter η.
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Lemma 2.5.
Assume that there are some nonnegative real numbers K and λ such that, for all i in V there

exists a configuration ωii in Ω
i such that, for all n in N:∥∥∥Lnref,i,ωi

∥∥∥
Lip1(Ei)→Lip1(Ei)

≤ Kλn. (2.15)

Assume furthermore that we use this reference configuration in order to decompose L̃ii into
̂̂Lii +˜̃Lii, i.e. that ωii = ωi0,i. Then, for all i in V , all n in N and all f in L1(Ei),∥∥∥∥(˜̃Lii)n f/i∥∥∥∥

B1(Ei)

≤ Kλn ‖f‖L1(Ei)
. (2.16)

The proof of this lemma is essentially the same as the proof of Lemma 2.3.

2.2 Evaluating the norm of the transfer operator

Since we are interested in the behavior of product systems which are perturbed by some coupling
between the dynamics at different site, it is convenient to quantify the perturbation. Let α be in
[0, 1]. We define:

ε(α) := sup
j∈V

∑
i∈V
i 6=j

cαij, (2.17)

and:
ε := ε(1). (2.18)

When working in the setting of Proposition 2.7, we shall need a control not only on the columns
of the dependence matrix, but also on its rows. Thus, we put:

εt := sup
i∈V

∑
j∈V
j 6=i

cij. (2.19)

The next two propositions give, under different assumptions on the restricted dynamics, a bound
on the norm of Ln when mapping L1 to Lα which behaves nicely when ε goes to 0. The loss of
smoothness can not be avoided in such a general setting, and will be addressed later for two special
cases (discrete state spaces and iterated function systems).

Proposition 2.6.
Assume that there are some nonnegative real numbers K and λ such that, for all n in N, for all

i in V and all sequence of configurations ωi1, ..., ω
i
n in Ω

i:∥∥∥Lref,i,ωi
n
· · · Lref,i,ωi

1

∥∥∥
Lip1(Ei)→Lip1(Ei)

≤ Kλn. (2.20)

If K ≥ 1 and λ > 0, then for all α ∈ [0, 1] and n ∈ N,

‖Ln‖L1(Ω)→Lα(Ω) ≤ ∆1−αKλn + n∆1−α

(
ε

λ
+ 2

(
∆0ε

∆Kλ

)1−α
)

max(Kαλα + ε(α), Kλ+ ε)n. (2.21)

18



Proof.
We shall evaluate ‖Lnf‖Lα(Ω), with n an nonnegative integer, using a decomposition into elemen-

tary operators such as (2.6). We iterate this decomposition, stopping whenever we encounter some
L̂ii or when we can not decompose anything anymore (that is, when we have iterated this operation
n times). We then get (in all the following sums, and for all i, one shall read L̃ii instead of Lii):

(Lnf)/i0 =
∑
i1∈V

Li0i1
(
Ln−1f

)
/i1

+ L̂i0i0
(
Ln−1f

)
/i0

= · · ·

=
∑

(i1,··· ,in)∈V n
Li0i1 · · · Lin−1inf/in

+
n−1∑
k=0

∑
(i1,··· ,ik)∈V k

Li0i1 · · · Lik−1ikL̂ikik
(
Ln−k−1f

)
/ik
.

We now take the Lα(Ei0) norm and sum over all i0:

‖Lnf‖Lα(Ω) ≤ ∆1−α
∑

(i0,··· ,in)∈V n+1

∥∥Li0i1 · · · Lin−1inf/in
∥∥

B1(Ei0 )
(2.22)

+
n∑
k=1

∑
(i0,··· ,ik−1)∈V k

∥∥∥Li0i1 · · · Lik−2ik−1
L̂ik−1ik−1

(
Ln−kf

)
/ik−1

∥∥∥
Bα(Ei0 )

. (2.23)

First step:
We take care of the first part of this decomposition (2.22). Let (i0, ...in) in V n+1. We split the

whole sum into different parts, each one corresponding to a certain number of identical operators
L̃inin in a row at the rigt end of the string of operators. If in−k = · · · = in, an application of
Lemma 2.1 and Lemma 2.3 gives us:∥∥Li0i1 · · · Lin−1inf/in

∥∥
B1(Ei0 )

≤ ci0i1 · · · cin−k−1in−kKλ
k ‖f‖L1(Ein ) .

Hence, we get:∑
(i0,··· ,in)∈V n+1

∥∥Li0i1 · · · Lin−1inf/in
∥∥

B1(Ei0 )

≤
∑

(i0,··· ,in)∈V n+1

in−1 6=in

ci0i1 · · · cin−1in ‖f‖L1(Ein )

+K

n∑
k=1

∑
(i0,··· ,in−k)∈V n−k+1

in−k−1 6=in−k

ci0i1 · · · cin−k−1in−kλ
k ‖f‖L1(Ein−k ) .
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Now, let us fix some i in V and some integer k between 0 and n− 1. Then:∑
(i0,··· ,in−k)∈V n−k+1

in−k−1 6=in−k=i

ci0i1 · · · cin−k−1in−k ‖f‖L1(Ei)

=

 ∑
in−k−1∈V
in−k−1 6=i

cin−k−1i

∑
in−k−2∈V

cin−k−2in−k−1
· · ·
∑
i0∈V

ci0i1

 ‖f‖L1(Ei)

≤

(
sup
i1∈V

∑
i0∈V

ci0i1

) ∑
in−k−1∈V
in−k−1 6=i

cin−k−1i

∑
in−k−2∈V

cin−k−2in−k−1
· · ·
∑
i1∈V

ci1i2

 ‖f‖L1(Ei)

≤ · · ·

≤

(
sup
i1∈V

∑
i0∈V

ci0i1

)n−k−1
sup
i1∈V

∑
i0∈V
i0 6=i1

ci0i1

 ‖f‖L1(Ei)

≤ ε(Kλ+ ε)n−k−1 ‖f‖L1(Ei)
,

where we use the fact that supi∈V cii ≤ Kλ (this inequality, by far not optimal, let us reduce the
number of constants in our formulas). We sum this inequality over all k:∑

(i0,··· ,in)∈V n+1

in=i

∥∥Li0i1 · · · Lin−1inf/i
∥∥

B1(Ei0 )

≤

(
ε(Kλ+ ε)n−1 +Kε

n−1∑
k=1

λk(Kλ+ ε)n−k−1 +Kλn

)
‖f‖L1(Ei)

≤
(
n
ε

λ
(Kλ+ ε)n +Kλn

)
‖f‖L1(Ei)

.

At last, summing over all i the last inequality gives us:∑
(i0,··· ,in)∈V n+1

∥∥Li0i1 · · · Lin−1inf/i
∥∥

B1(Ei0 )
≤
(
n
ε

λ
(Kλ+ ε)n +Kλn

)
‖f‖L1(Ω) . (2.24)

Second step:
We now compute estimates for the second part of the decomposition (2.23). For this part, we lose

some regularity: hence, we control its α-Hölder norm instead of its Lipschitz norm. Let 1 ≤ k ≤ n
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and i in V . Let f in L1(Ω). Applying Lemma 2.1 and Lemma 2.2 gives us:∑
(i0,··· ,ik−1)∈V k

∥∥∥Li0i1 · · · Lik−2ik−1
L̂ik−1ik−1

f/ik−1

∥∥∥
Bα(Ei0 )

≤
∑

(i0,··· ,ik−1)∈V k
cαi0i1 · · · c

α
ik−2ik−1

∥∥∥L̂ik−1ik−1
f/ik−1

∥∥∥
Bα(Eik−1

)

≤ 2
∑

(i0,··· ,ik−1)∈V k
cαi0i1 · · · c

α
ik−2ik−1

(
cik−1ik−1

‖f‖L1(Eik−1
)

)α∆0

∑
j∈V
j 6=ik−1

cik−1j ‖f‖L1(Ej)


1−α

≤ 2

 ∑
(i0,··· ,ik−1)∈V k

cαi0i1 · · · c
α
ik−2ik−1

cik−1ik−1
‖f‖L1(Eik−1

)

α

×

∆0

∑
(i0,··· ,ik−1)∈V k

cαi0i1 · · · c
α
ik−2ik−1

∑
j∈V
j 6=ik−1

cik−1j ‖f‖L1(Ej)


1−α

≤ 2

(
(Kαλα + ε(α))k−1Kλ

∑
i∈V

‖f‖L1(Ei)

)α(
∆0ε (Kαλα + ε(α))k−1

∑
j∈V

‖f‖L1(Ej)

)1−α

≤ 2(Kλ)α(∆0ε)
1−α (Kαλα + ε(α))k−1 ‖f‖L1(Ω) .

Now, we use this inequality with Ln−kf , and sum over all k:

n∑
k=1

∑
(i0,··· ,ik)∈V k

∥∥∥Li0i1 · · · Lik−2ik−1
L̂ik−1ik−1

(
Ln−kf

)
/ik−1

∥∥∥
Bα(Ei0 )

≤ 2(Kλ)α(∆0ε)
1−α

n−1∑
k=0

(Kαλα + ε(α))k (Kλ+ ε)n−k−1 ‖f‖L1(Ω) (2.25)

≤ 2n

(
∆0ε

Kλ

)1−α

max(Kαλα + ε(α), Kλ+ ε)n ‖f‖L1(Ω) .

Finally, we sum the inequalities (2.24) and (2.25):

‖Ln‖L1(Ω)→Lα(Ω) ≤ ∆1−αKλn + n∆1−α

(
ε

λ
+ 2

(
∆0ε

∆Kλ

)1−α
)

max(Kαλα + ε(α), Kλ+ ε)n.

Now, we provide another version of this proposition under a condition which is less restrictive
and easier to check.

Proposition 2.7.
Assume that there are some nonnegative real numbers K and λ such that, for all i in V there

exists a configuration ωii in Ω
i such that, for all n in N:∥∥∥Lnref,i,ωi

∥∥∥
Lip1(Ei)→Lip1(Ei)

≤ Kλn. (2.26)
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If K ≥ 1 and λ > 0, then for all α ∈ [0, 1] and n ∈ N,

‖Ln‖L1(Ω)→Lα(Ω) ≤ ∆1−αKλn + n∆1−α

(
ε

λ
+ 2

(
∆0ε+ ∆t

0ε
t

∆Kλ

)1−α
)

max(Kαλα + ε(α), Kλ+ ε)n.

(2.27)

Proof.
The proof for this theorem is essentially the same as the proof of Theorem 2.6. The only difference

is the introduction of a new member in the decomposition, similar to (2.23). Now, for all i, one shall

read ˜̃Lii instead of Lii:

(Lnf)/i0 =
∑
i1∈V
i1 6=i0

Li0i1
(
Ln−1f

)
/i1

+ L̂i0i0
(
Ln−1f

)
/i0

+
̂̂Li0i0 (Ln−1f

)
/i0

= · · ·

=
∑

(i1,··· ,in)∈V n
Li0i1 · · · Lin−1inf/in

+
n−1∑
k=0

∑
(i1,··· ,ik)∈V k

Li0i1 · · · Lik−1ikL̂ikik
(
Ln−k−1f

)
/ik

+
n−1∑
k=0

∑
(i1,··· ,ik)∈V k

Li0i1 · · · Lik−1ik
̂̂Likik (Ln−k−1f

)
/ik
.

Then, we use Lemma 2.5 instead of Lemma 2.3. This new part is treated exactly the same way
as the part (2.23), except that we use Lemma 2.4 instead of Lemma 2.2, and that the computation
is simpler (we need not use the Hölder inequality).

The products Kλ is larger than 1 in the interesting cases; indeed, ‖L‖L(Ω)→L(Ω) ≤ Kλ, so if
Kλ is smaller than 1 then the spectral radius of the transfer operator stays smaller than 1 under
small perturbations. Hence, Propositions 2.6 and 2.7 do not express any meaningful exponential
convergence by themselves.

In the next section, we shall focus on some corollaries of Propositions 2.6 and 2.7. Since we
have two very close sets of hypotheses, we shall state the following results only in the setting of
Proposition 2.7. To get the corresponding result in the setting of Proposition 2.6 is straightforward:
just erase the ∆t

0ε
t in all the formulas.

3 Applications

3.1 Discrete metrics

A first interesting case is when the metrics di are uniformly bounded from below (and, as such metrize
the discrete topology on each set), so that:

δ = inf
i∈V

inf
ωia,ω

i
b∈Ei

ωia 6=ωib

di(ω
i
a, ω

i
b) > 0.

Since we have in such a situation δ1x 6=y ≤ d(x, y) ≤ ∆1x 6=y, we work in this subsection with
avatars of the total variation norm.
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When this inequality holds, the Hölder and Lipschitz spaces are the same, and are endowed with
equivalent norms. Hence, we do not actually lose any regularity when we apply the method explained
in Subsection 2.2. More precisely, the following holds for any Lipschitz function f and any α in [0, 1]:

δ1−α ‖f‖L1(Ω) ≤ ‖f‖Lα(Ω) ≤ ∆1−α ‖f‖L1(Ω) . (3.1)

This allows us to derive the following theorems:

Theorem 3.1.
Assume that there are some real numbers K ≥ 1 and 0 ≤ λ ≤ 1 such that, for all i in V there

exists a configuration ωii in Ω
i such that, for all n in N:∥∥∥Lnref,i,ωi

∥∥∥
Lip1(Ei)→Lip1(Ei)

≤ Kλn. (3.2)

If we put ρ(L) := inf
n∈N∗
‖Ln‖

1
n

L1(Ω)→L1(Ω), then, for fixed K, λ and α,

ρ(L) ≤ λ+ (1 + ε(α))OK,λ,α

(
1

| ln(ε+ εt)|

)
. (3.3)

Actually, our proof will provide explicit (although not simple, and obviously not optimal) bounds
on ρ(L).

Proof.
Up to the choice of a higher λ, we can assume that λ > 0. An application of the norm equivalence

(3.1) to the result of Proposition 2.7 gives us:

‖Ln‖L1(Ω)→L1(Ω) ≤
(

∆

δ

)1−α

Kλn

+ n

(
∆

δ

)1−α
(
ε

λ
+ 2

(
∆0ε+ ∆t

0ε
t

∆Kλ

)1−α
)

max(Kαλα + ε(α), Kλ+ ε)n.

Since, for all integer n, the function x → x
1
n is concave, it is smaller than its tangent in any point.

Hence:

‖Ln‖
1
n

L1(Ω)→L1(Ω) ≤

((
∆

δ

)1−α

K

) 1
n

λ

+

((
∆

δ

)1−α

K

) 1
n
(
ε

K
+ 2

λ

K

(
∆0ε+ ∆t

0ε
t

∆Kλ

)1−α
)

×max

(
Kαλα + ε(α)

λ
,K +

ε

λ

)n
≤

((
∆

δ

)1−α

K

) 1
n

λ (3.4)

+

(
ε

(
∆

δ

)1−α

+ 2λα
(

∆0ε+ ∆t
0ε
t

δK

)1−α
)

×max

(
1,
Kαλα + ε(α)

λ
,K +

ε

λ

)n
.
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The second inequality above is very crude. It does not affect our computation of the asymptotic
bounds and makes the computations easier, but one might want to avoid it when they look for a
quantitative bound on ρ(L).

Now, let us take any four nonnegative real numbers A, B, C and D such that B ≥ 1, C < 1 and
D ≥ 1; we shall consider the quantity ρ := inf

n∈N∗
A · B

1
n + C ·Dn. First, since the function n 7→ B

1
n

is nonincreasing and the function n 7→ Dn is nondecreasing, we know that:

ρ = inf
n∈N∗

A ·B
1
n + C ·Dn ≤ inf

n∈N∗
inf

n−1<x≤n
A ·B

1
x + CD ·Dx = inf

x>0
A ·B

1
x + CD ·Dx.

Now, everything is up to a good choice of x. One should remember that, in our setting, C can
be seen as a small parameter (perturbation). As C goes to 0, everything else being constant, the
corresponding choice of x should go to infinity so as to minimize A · B

1
x . We shall try to choose a

x small enough that CD · Dx still vanishes as C goes to 0 (for instance, it decays polynomially in
terms of C), but not too small so that A · B 1

x still converges towards A. Let R ∈ (0, 1); we pick for
instance:

x = −R lnC

lnD
.

This particular estimate gives us the following inequality:

ρ ≤ A ·B−
lnD
R lnC +DC1−R.

Now, one can get a quantitative bound on ρ(L) by replacing A, B, C and D by the corresponding
parameters. One can go even a small step further when it comes to asymptotics, at the cost of even
huger and less intelligible non-asymptotic bounds, by basically removing the parameter R. For this,
we pick:

x = − lnC + 2 ln | lnC|
lnD

,

which gives us, for C close to 0 and after the development of the exponential:

ρ ≤ A+
A lnB lnD

| lnC|
+ oA,B,D

(
1

| lnC|

)
.

This is a more precise version of the bound of Theorem 3.1, provided one replaces all the param-
eters with those of Equation (3.4).

Remark 3.2.
These bounds could most probably be improved by using Theorem 1 of [10], for a bound which does

not involve any α and is of the form :

‖L‖L1(Ω)→L1(Ω) ≤ λ+O(ε+ εt).

Most of our computations remain necessary, so as to control the distance of the transfer operator
L to the transfer operator for the product of independent systems and prove it is in, say, O(ε+ εt).

A simple consequence of these quantitative bounds is the following qualitative corollary, which
addresses the issue of the uniqueness of stationary measures:

Corollary 3.3.
Assume that there are some real numbers K ≥ 1 and 0 ≤ λ < 1 such that, for all i in V there

exists a configuration ωii in Ω
i such that, for all n in N:∥∥∥Lnref,i,ωi

∥∥∥
Lip1(Ei)→Lip1(Ei)

≤ Kλn. (3.5)

Then, if ε, εt and ε(α) are close enough to 0, the system has at most one stationary measure.
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The proof is roughly the same as the proof of Corollary 1.13: all we need is to take a higher
iterate of L, so that the norm of Ln is smaller than 1.

Despite what is written in this corollary, ε and ε(α) play different roles. Let us take a family
of systems depending on a parameter, let say a temperature T , such that the strength of the inter-
action max(ε(T ), εt(T )) goes to 0 as T goes to infinity, and such that all those systems satisfy the
assumptions of Corollary 3.3 with the same K and λ. Then, the conclusion of Corollary 3.3 is valid
as long as ε(α)(T ) stays bounded for some α < 1 and for T large enough. Actually, ε(α) mays even
go to infinity as T goes to infinity, though at a very slow rate. To put it simply, ε and εt really need
to go to 0, while ε(α) only needs to be bounded, or at least not to increase too quickly.

3.2 A Lasota-Yorke inequality for coupled iterated function systems

Now we shall study iterated function systems. Instead of working directly on the space of con-
figurations (that is, we choose the next configuration at random), we work on the space of local
contractions (that is, at each site we choose a contraction at random, and we apply it to the current
configuration). Essentially nothing changes: one can, from an iterated function system, induce a
classical system on the space of configurations Ω. However, this additional layer can be useful, here
mainly thanks to a Lasota-Yorke (or Döblin-Fortet) inequality.

For each i in V and σ in [0, 1], let Contσ(Ei) be the set of contraction mappings from Ei to Ei
whose Lipschitz constant is at most σ, i.e. the set of functions T from Ei to Ei such that:

sup
ωia,ω

i
b∈Ei

ωia 6=ωib

di(T (ωia), T (ωib))

di(ωia, ω
i
b)

≤ σ.

We define for each i in V and σ in [0, 1] the uniform distance on Contσ(Ei) by:

d∗i (Ta, Tb) = sup
ωi∈Ei

di(Ta(ω
i), Tb(ω

i)).

For all i in V , let (Fi, d
∗
i ) be a compact subset of Cont1(Ei) with its Borel σ-algebra. We put

σ = sup
i∈V

inf{λ ∈ [0, 1] : Fi ⊂ Contλ(Ei)}, and Ω∗ =
∏
i∈V

Fi.

Let P(Fi) be the space of probability measures on Fi. For each i in V , let ω → p∗i,ω be a
measurable and uniformly continuous at infinity application from Ω to P(Fi). The dynamic we
study is the following: first, we choose an initial configuration ω0 in Ω. Then, at time t, if the current
configuration is ω, we choose for each site i a transformation T with distribution p∗i,ω independently
for each site, and apply this transformation to ωi to get the configuration at time t+ 1 at site i. We
construct this way a Markov process on Ω.

For every i and j in V , we define:

c∗ij = sup
ωi∈Ω

i

sup
ωia,ω

i
b∈Ei

ωia 6=ωib

Wd∗j
(p∗
j,ωi,ωia

, p∗
j,ωi,ωib

)

di(ωia, ω
i
b)

,

and for very α in [0, 1]:

C∗(α) = sup
j∈V

∑
i∈V

(c∗ij)
α, ε∗(α) = sup

j∈V

∑
i∈V
i 6=j

(c∗ij)
α, (εt)∗(α) = sup

i∈V

∑
j∈V
j 6=i

(c∗ij)
α,
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We will denote C∗(1) by C∗, then ε∗(1) by ε∗, and at last (εt)∗(1) by (εt)∗. As in Section 1, we
will apply the transfer operator L to the set of globally Lipschitz functions L1(Ω):

Lf(ω) =

∫
Ω∗
f(T0ω

0, T1ω
1, ...)

⊗
i∈V

p∗i,ω( dTi).

Remark 3.4.
As we have said at the beginning of this subsection, we may look at an iterated function system

in two different ways: either we choose a transformation randomly, an then apply it, or we choose
directly the image of a configuration at random, which is equivalent to projection the probability
measures from Fi onto Ei, by:

pi,ω = T (ωi)∗p
∗
i,ω.

Thus, we can go back to the setting we have used since the beginning of this article. Conversely, we
can go from the "classical" setting to the iterated function systems setting by putting Tωi := ωi, and:

p∗i,ω := (Tωi)∗pi,ω.

Note that the fact that the set Ei are Polish, and not necessarily compact, is not an issue: it is
straightforward to generalize what we did with compact subsets of contractions to Polish subsets of
contractions.

A particularly interesting consequence is that, for every i and j, we have cij ≤ c∗ij, where the
former correspond to the "classical" system and the later to the iterated function systems. This can
be proven easily by projecting an optimal coupling from Fi onto Ei.

Theorem 3.5 (Lasota-Yorke inequality).
Let α ∈ [0, 1]. For all f in L1(Ω), we have:

‖Lf‖L1(Ω) ≤ σ ‖f‖L1(Ω) + C∗(α) ‖f‖Lα(Ω) . (3.6)

Proof.
Theorem 1.12 ensures that L acts continuously on L1(Ω) as soon as C is finite. Following Re-

mark 3.4, this is the case whenever C∗ is finite. Hence, the continuity at infinity of Lf is proved.
Let f be in L1(Ω). Let ωi ∈ Ω

i, as well as ωia and ω
i
b ∈ Ei. We put ωa = (ωi, ωia) and ωb = (ωi, ωib).

Lf(ωi, ωia)−Lf(ωi, ωib)

=

∫
Ω∗
f(T0ω

0
a, T1ω

1
a, ...)

⊗
k∈V

p∗k,ωi,ωia( dTk)−
∫

Ω∗
f(T0ω

0
b , T1ω

1
b , ...)

⊗
k∈V

p∗k,ωi,ωib
( dTk)

=
+∞∑
j=0

∫
Ω∗
f(T0ω

0
a, T1ω

1
a, ...)

⊗
k<j

p∗k,ωi,ωib
( dTk)

⊗ (p∗j,ωi,ωia( dTj)− p∗j,ωi,ωib( dTj))⊗
⊗
k>j

p∗k,ωi,ωia( dTk)

+

∫
Ω∗
f(T0ω

0
a, T1ω

1
a, ...)− f(T0ω

0
b , T1ω

1
b , ...)

⊗
k∈V

p∗k,ωi,ωib
( dTk).
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Let j in V . Let π∗j,ωi,ωia,ωib be an optimal coupling between p∗j,ωi,ωia and p∗j,ωi,ωib . Then:∫
Ω∗
f(T0ω

0
a, T1ω

1
a, ...)

⊗
k<j

p∗k,ωi,ωib
( dTk)⊗ (p∗j,ωi,ωia( dTj)− p∗j,ωi,ωib( dTj))⊗

⊗
k>j

p∗k,ωi,ωia( dTk)

=

∫
Ω∗
f(T0ω

0
a, T1ω

1
a, ..., Tjω

j
a, ...)− f(T0ω

0
a, T1ω

1
a, ..., T

′
jω

j
a, ...)⊗

k<j

p∗k,ωi,ωib
( dTk)⊗ π∗j,ωi,ωia,ωib( dTj, dT ′j)⊗

⊗
k>j

p∗k,ωi,ωia( dTk)

≤ ‖f‖Lα(Ei)

∫
Fj

dαj (Tjω
j
a, T

′
jω

j
a) π

∗
j,ωi,ωia,ω

i
b
( dTj, dT ′j) (3.7)

≤ ‖f‖Lα(Ei)

∫
Fj

(d∗j)
α(Tj, T

′
j) π

∗
j,ωi,ωia,ω

i
b
( dTj, dT ′j)

= ‖f‖Lα(Ei)
W(d∗j )α(p∗j,ωi,ωia , p

∗
j,ωi,ωib

)

≤ ‖f‖Lα(Ei)
c∗ij(α)di(ω

i
a, ω

i
b).

On the other hand, we also have:∫
Ω∗
f(T0ω

0
a, T1ω

1
a, ...)− f(T0ω

0
b , T1ω

1
b , ...)

⊗
j∈V

p∗j,ωi,ωib
( dTj) ≤ σ ‖f‖L1(Ei)

di(ω
i
a, ω

i
b). (3.8)

With (3.7) and (3.8) together, we get:

‖Lf‖L1(Ei)
≤ σ ‖f‖L1(Ei)

+
∑
j∈V

c∗ij(α) ‖f‖Lα(Ei)
. (3.9)

The sum of (3.9) over all i in V gives us:

‖Lf‖L1(Ω) ≤ σ ‖f‖L(Ω) + C∗(α) ‖f‖Lα(Ω) .

Usually, one works with iterated function systems on spaces for which the injection from L1(Ω)
into Lα(Ω) is compact. Then, the Lasota-Yorke inequality is enough, with standard arguments (such
as a theorem by H. Hennion [7]), to prove that the transfer operator acting on L̃1(Ei) is quasi-compact.
Even if it does not ensure that the system has a unique stationary measure, the consequences of this
argument are in general more than satisfying. However, we do not benefit here of such features; we
shall nevertheless show that this Lasota-Yorke inequality remains useful.

3.3 Application to coupled iterated function systems

We have proved in Section 2 that, given a slightly perturbed product system, for any function f
and for n large enough, we have a nice control of the Hölder norm of Lnf in term of the Lipschitz
norm of f . Of course, this is not sufficient in general. In Subsection 3.1 we have shown that, if the
Lipschitz and Hölder norm are equivalent, the uniqueness of the stationary measure is preserved by
small perturbations of some systems. Now, we shall use the Lasota-Yorke inequality (3.6) to get
back, in a different fashion, the regularity we lost in Proposition 2.7. Hence, we shall get results
similar to the ones of Subsection 3.1, but for different systems and when discrete distances are not
suitable.
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Theorem 3.6.
Assume that there are some real numbers K ≥ 1 and 0 ≤ λ ≤ 1 such that, for all i in V there

exists a configuration ωii in Ω
i such that, for all n in N:∥∥∥Lnref,i,ωi

∥∥∥
Lip1(Ei)→Lip1(Ei)

≤ Kλn. (3.10)

If we put ρ(L) := inf
n∈N∗
‖Ln‖

1
n

L1(Ω)→L1(Ω), then, for fixed K, λ, σ and α,

ρ(L) ≤ max (λ, σ) + (1 + ε∗(α))OK,λ,σ,α

(
1

| ln(ε∗ + (εt)∗)|

)
. (3.11)

In particular, if ε∗, (εt)∗ and ε∗(α) are close enough to 0, the system has at most one stationary
measure.

Proof.
Let us take some integer n. We iterate the Lasota-Yorke type inequality of Theorem 3.5.

‖Lnf‖L1(Ω) ≤ σ
∥∥Ln−1f

∥∥
L1(Ω)

+ C∗(α)
∥∥Ln−1f

∥∥
Lα(Ω)

≤ · · ·

≤ σn ‖f‖L1(Ω) + C∗(α)
n−1∑
k=0

σk
∥∥Ln−k−1f

∥∥
Lα(Ω)

.

Now, we apply Proposition 2.7:

‖Lnf‖L1(Ω) ≤ σn ‖f‖L1(Ω)

+ C∗(α)
n−1∑
k=0

σk∆1−α

[
Kλn−k−1 + (n− k − 1)

(
ε

λ
+ 2

(
∆0ε+ ∆t

0ε
t

∆Kλ

)1−α
)

×max(Kαλα + ε∗(α), Kλ+ ε)n−k−1

]
‖f‖L1(Ω)

≤

[
(1 + nK∆1−αC∗(α)) max(σ, λ)n + n2∆1−α

(
ε

λ
+ 2

(
∆0ε+ ∆t

0ε
t

∆Kλ

)1−α
)

×max(Kαλα + ε∗(α), Kλ+ ε, σ)

]
‖f‖L1(Ω) .

Since cij is smaller than c∗ij for any i and j, we can replace ε and εt by ε∗ and (εt)∗ respectively.
This upper bound on the norm of the operator Ln is slightly different from the one we studied in the
proof of Theorem 3.1. We actually have to look at bounds which look like:

ρ := sup
n∈N∗

A ·B
1
n + n · C ·Dn,

However, even if the value of n we choose and the precise estimates we get do change a little, the
conclusions of Theorem 3.1 and Corollary 3.3 still hold.

Remark 3.7.
Some better bounds and less cumbersome computations may be achieved using perturbation theory

alongside Lasota-Yorke inequalities. The work by G. Keller and C. Liverani [8] is central, although
the hypotheses used in said article can be slightly weakened (mostly to avoid having to control the
spectrum of the perturbated operator).

28



4 Spatial decay of correlations
We have developed in all the previous sections methods to prove that the spectral radius of the
transfer operator L is smaller than 1. In other words, we are able to prove inequalities such that
‖Ln‖L(Ω)→L(Ω) ≤ Kλn, with 0 ≤ λ < 1, for suitable systems. We shall now use these results to show
a feature of the corresponding systems, the spatial decay of correlations.

We recall that for any i and j in the vertex set V , the coefficient c(n)
ij can be interpreted as an

evaluation of the influence of the configuration at site i at any time t on the configuration at site j
at time t+ n. We can define the basin of influence of a given site for a given time:

Definition 4.1 (Basin of influence).
Let i be a site, and n a positive integer. The basin of influence of site i at time n is:

I(i, n) := {j ∈ V : c
(n)
ji > 0}.

Now, we start two prove a spatial decay of correlation for the stationary measure, assuming that
it exists and that it is attractive at exponential speed (a feature we have now many ways to prove
for suitable systems). We shall proceed in two steps. With Lemma 4.2, we prove that if µ is a
product measure, then (L∗)nµ show some kind of spatial decay of correlation for any given n. With
Lemma 4.3, we estimate the error between (L∗)nµ and the stationary measure.

Lemma 4.2.
Let µ =

⊗
i∈V

µi be a product measure on Ω. Let ((X i
n)i∈V )n∈N be the Markov process such that

the distribution of (X i
0)i∈V is µ and the transition process is the one we have studied so far. Let us

choose two distinct sites i and j in V . Let f be a Lipschitz function on Ei, and g a Lipschitz function
on Ej. Then:

|E(f(X i
n)g(Xj

n))− E(f(X i
n))E(g(Xj

n))| (4.1)

≤ ∆ ‖f‖Lip1(Ei)
‖g‖∞

∑
k∈I(i,n)∩I(j,n)

c
(n)
ki ≤c

(n)
kj

c
(n)
ki + ∆ ‖g‖Lip1(Ej)

‖f‖∞
∑

k∈I(i,n)∩I(j,n)

c
(n)
ki >c

(n)
kj

c
(n)
kj .

Proof.
By recurrence, one can show that the law of X i

n depends only on those Xk
0 such that k belongs

to I(i, n). In particular, if i and j are two sites such that I(i, n) and I(j, n) are disjoint, then X i
n

and Xj
n are independent.

Now, let ((X̃k
n)k∈V )n∈N be a process whose law is the same that ((Xk

n)k∈V )n∈N, such that X̃k
0 is

independent of (X l
0)l∈V for all k in I(i, n)∩I(j, n) with c(n)

ki ≤ c
(n)
kj , and such that X̃k

0 = Xk
0 otherwise.

We define the same way a process ((X̂k
n)k∈V )n∈N whose law is the same that ((Xk

n)k∈V )n∈N, such that
X̂k

0 is independent of (X l
0)l∈V and (X̃ l

0)l∈V for all k in I(i, n)∩ I(j, n) with c(n)
ki > c

(n)
kj , and such that

X̂k
0 = Xk

0 otherwise. By construction, we have:

E(f(X̃ i
n)g(X̂j

n)) = E(f(X i
n))E(g(Xj

n)). (4.2)

We need an evaluation of the error term:

|E((f(X̃ i
n)− f(X i

n))g(X̂j
n))| ≤ ‖f‖Lip1(Ei)

‖g‖∞ E(di(X
i
n, X̃

i
n)) ≤ ∆ ‖f‖Lip1(Ei)

‖g‖∞
∑

k∈I(i,n)∩I(j,n)

c
(n)
ki ≤c

(n)
kj

c
(n)
ki ,

(4.3)
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since any change in the value ofXk
0 changes the law ofX i

n knowingXk
0 of at most ∆c

(n)
ki in Wasserstein

distance. We get a similar upper bound for |E(f(X i
n)(g(X̂j

n)−g(Xj
n)))|. The equations (4.2) and (4.3)

imply the lemma.

Lemma 4.3.
Let µ =

⊗
i∈V

µi be a product measure on Ω. Let ((X i
n)i∈V )n∈N be the Markov process such that

the distribution of (X i
0)i∈V is µ and the transition process is the one we have studied so far. Let us

choose two distinct sites i and j in V . Let f be a Lipschitz function on Ei, and g a Lipschitz function
on Ej.

Let K and λ be such that ‖Ln‖L1(Ω)7→L1(Ω) ≤ Kλn, and assume that the system has a stationary
probability measure ν. Then:

|Eµ(f(X i
n)g(Xj

n))− Eν(f(X i
n)g(Xj

n))| ≤ ∆(‖f‖Lip1(Ei)
‖g‖∞ + ‖g‖Lip1(Ej)

‖f‖∞)Kλn (4.4)

Proof.
First, we point out that, for any x1, x2 in Ei and any y1, y2 in Ej,

|f(x1)g(x1)− f(x2)g(x2)| ≤ ‖f‖Lip1(Ei)
‖g‖∞ dj(y1, y2) + ‖g‖Lip1(Ej)

‖f‖∞ di(x1, x2).

The contraction property of the operator L can be translated, on the measures side, to:

‖ν − (L∗)nµ‖(d) ≤ ∆Kλn.

Let π be an optimal coupling between (X i
n, X

j
n) taken under the initial law µ and the same couple

taken under the initial law ν, with respect to the distance ‖f‖Lip(Ei)
‖g‖∞ dj + ‖g‖Lip(Ej)

‖f‖∞ di. By
Equation (1.8), we know that:∣∣∣∣∣

∫
(Ei×Ej)2

f(x1)g(y1)− f(x2)g(y2) dπ

∣∣∣∣∣ ≤ ∆(‖f‖Lip1(Ei)
‖g‖∞ + ‖g‖Lip1(Ej)

‖f‖∞)Kλn.

Now, we can state the main theorem of this section.

Theorem 4.4.
Let K and λ be such that ‖Ln‖L(Ω) 7→L(Ω) ≤ Kλn for all positive integer n, and assume that the

system has a stationary probability measure ν. Let i and j be two distinct sites. Let f be a Lipschitz
function on Ei, and g a Lipschitz function on Ej. Then:

|Eν(fg)− Eν(f)Eν(g)| ≤ ∆2 ‖f‖Lip1(Ei)
‖g‖Lip1(Ej)

inf
n∈N∗

Kλn +
1

2

∑
k∈I(i,n)∩I(j,n)

min(c
(n)
ki , c

(n)
kj )

 .

(4.5)

Proof.
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If we glue Lemma 4.2 and Lemma 4.3 together, we get:

|Eν(fg)− Eν(f)Eν(g)| ≤ inf
n∈N∗

∆ ‖f‖Lip1(Ei)
‖g‖∞

Kλn +
∑

k∈I(i,n)∩I(j,n)

c
(n)
ki ≤c

(n)
kj

c
(n)
ki



+∆ ‖g‖Lip1(Ej)
‖f‖∞

Kλn +
∑

k∈I(i,n)∩I(j,n)

c
(n)
ki >c

(n)
kj

c
(n)
kj


 .

However, adding a constant to f or to g does not change the quantity Eν(fg) − Eν(f)Eν(g).
Hence, we might as well assume that f satisfies ‖f‖∞ ≤ ∆ ‖f‖Lip1(Ei)

/2, and that g satisfies a
similar inequality. This concludes the proof of this theorem.

This theorem takes a very interesting form when one deals with systems with finite range inter-
action. We define a distance D on V by:

D(i, j) := min{n ∈ N∗ : min(c
(n)
ij , c

(n)
ij ) > 0}, i 6= j. (4.6)

Let n be a positive integer, and choose two sites i and j. If D(i, j) ≥ 2n+ 1, then for each site k,
either D(k, i) > n or D(k, j) > n. Hence, k can not belong to I(i, n) and to I(j, n) at the same time,
which shows that the correlation may decay exponentially. This is what we state in the following
corollary.

Corollary 4.5.
Let K and λ be such that ‖Ln‖L(Ω) 7→L(Ω) ≤ Kλn for all positive integer n, and assume that the

system has a stationary probability measure ν. Let i and j be two distinct sites. Let f be a Lipschitz
function on Ei, and g a Lipschitz function on Ej. Then:

|Eν(fg)− Eν(f)Eν(g)| ≤ ∆2 ‖f‖Lip1(Ei)
‖g‖Lip1(Ej)

Kλ
D(i,j)−1

2 . (4.7)

If λ is strictly smaller than 1, we shall refer to the property described in Equation (4.7) as the
"exponential spatial decay of correlations".

Remark 4.6.
In the same spirit, one can prove a spatial decay of correlations for functions which depend on a

finite number of sites, or even for functions which depend on an infinite numbers of sites but not too
much on sites far enough.

5 Examples
As for applications of our results, we present two versions of Ising model with synchronous update;
the first one is a direct application of our Dobrushin-like uniqueness criterion, and the second one
involves iterated function systems. In both cases, we shall show that for high enough temperatures,
there is at most one equilibrium measure.
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5.1 Discrete Ising model

Here, we shall work on Zd, and each site will have a spin of +1 or −1. Hence, for all i in Zd, we take
Ei := {−1,+1}, and di(1,+1) = 1. Our distance on Zd, that we will denote by |i− j| for any sites i
and j, will be the l1 distance (or, equivalently, the lentgh of the shortest path between i and j). Let
X i
n be the configuration at site i and at time n. We want the process ((X i

n)i∈Zd)n∈N to be a Markov
chain on Ω :=

⊗
i∈Zd Ei. We put:

P(X i
n+1 = σ|(Xj

n)j∈Zd) =
e−

E(Xn,σ)
RT

e−
E(Xn,σ)
RT + e

E(Xn,σ)
RT

,

where E(Xn, σ) := −
∑
j∈Zd

JjiσX
j
n, with sup

j∈Zd

∑
i∈Zd
|Jij| being finite. The parameter T is the temperature.

Neither do we impose that Jii be 0, so that the configuration of a given site at time n+1 may depend
on its configuration at time n, nor do we assume that the law of the Markov chain be translation-
invariant (which is equivalent to the property that Ji,j = J0,j−i for all i and j).

A particular Ising model is the one with Jij = 1|i−j|=1; we shall call this model the Ising model
with closest neighbors interaction.

Let i and j be two sites of the lattice. We now compute the coefficients cij:

cij = sup
ωi∈Ω

i

1

1 + e2
E(ωi,1)
RT e−

2|Jij |
RT

− 1

1 + e2
E(ωi,1)
RT e

2|Jij |
RT

.

Very easily, one shows that the influence of site i onto site j is maximal when the cumulated influence
of all other sites is zero, or in other words that:

cij ≤
1

1 + e−
2|Jij |
RT

− 1

1 + e
2|Jij |
RT

=
sinh

(
2|Jij |
RT

)
1 + cosh

(
2|Jij |
RT

) ≤ tanh

(
2|Jij|
RT

)
. (5.1)

As a corollary of Theorem 1.12, we have:

Corollary 5.1 (Ising model).

If sup
j∈Zd

∑
i∈Zd

sinh
(

2|Jij |
RT

)
1 + cosh

(
2Jij
RT

) < 1, then the process has a unique stationary measure.

In particular, if T is high enough there exists a unique stationary measure.
For the Ising model with closest neighbors interaction, there is a unique stationary measure ν as

soon as T >
2

k argtanh(1
d
)
. Moreover, for any function f from Ei to R and any function g from Ej

to R, we have:

|Eν(fg)− Eν(f)Eν(g)| ≤ (δf)(δg)

(
d tanh

(
2

RT

)) |i−j|−1
2

, (5.2)

where δf = |f(1)− f(−1)| (and the same for g).

Actually, we get much stronger results if the conditions of Theorem 1.12 are satisfied. For instance,
the probability measures, when transported by the dynamic, get close to the unique stationary
measure at exponential speed. Moreover, the precise estimate we have for the Ising model with
closest neighbors interaction on Zd can be generalized to any Ising model with closest neighbors
interaction on a graph with finite maximum degree, such that the degree of any vertex is even.
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Proof.
The first statement is a direct application of Corollary 1.13.
The second one is straightforward if we have a look at the following inequality:

cij ≤ sup
j∈Zd

∑
i∈Zd

tanh

(
2|Jij|
RT

)
≤ 2

RT
sup
j∈Zd

∑
i∈Zd
|Jij|.

The third one is basically an application of our Dobrushin-like criterion, but with a small change.
Since we gain a factor 2, we need a slightly better bound for the coefficients cij than the one in
equation (5.1). We can actually compute these coefficients explicitly, and we find then:

cij =
1

2
tanh

(
21|i−j|=1

RT

)
,

which is what we want. The gain of a factor 2 is due to the fact that, for any sites i and j such that
Jij is nonzero, the value of the energy E(ωi)(1) can never be zero (because there is an odd number
of equal influences), which leads to this improved bound.

The exponential spatial decay of correlations is a direct application of Corollary 4.5.

Actually, if we apply directly Theorem 4.4 to the Ising model with closest neighbors interaction,
we can prove that Eν(fg) = Eν(f)Eν(g) if |i− j| is odd.

5.2 Ising model and iterated function systems

We propose at last another version of the Ising model, with an iterated function systems flavor. In
order to simplify some of the arguments, we shall work on Zd with translation-invariant systems.

For all i in V , we take Ei := [−1,+1], and di(x, y) = |x− y|. We also define two transformations
on each Ei: f−1(x) = −1+(x+1)/3, and f1(x) = 1+(x−1)/3. When we choose f1, the configuration
gets closer to 1, while it gets closer to −1 if we choose f−1. Let X i

n be the configuration at site i and
at time n. We still want the process ((X i

n)i∈Zd)n∈N to be a Markov chain on Ω :=
⊗

i∈Zd Ei. We put:

P(X i
n+1 = fσ(X i

n)|(Xj
n)j∈Zd) =

e−
E(Xn,σ)
RT

2 cosh
(
E(Xn,σ)
RT

) ,
where:

E(Xn, σ) := −
∑
j∈Zd
j 6=i

JjiσX
j
n − JiiTσX i

n,

with sup
j∈Zd

∑
i∈Zd
|Jij| being finite. We also assume that the system is translation-invariant, which can

be translated by Ji,j = J0,j−i.
Now, we shall match this system with the diverse assumptions of Theorem 3.6. Let ω0 be the

configuration (0, 0, · · · ). Let i be any site. The Markov chain induced on Ei is defined by the following
formula:

P(X i
n+1 = fσ(X i

n)|X i
n) =

e
JiiσX

i
n

R

2 cosh
(
JiiσXi

n

R

) ,
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This iterated function system satisfies the assumptions of Theorem 1 in [1], and hence has a unique,
attractive stationary probability measure. Moreover, the operator Lref,i,ω0

i acting on Lipschitz func-
tions on Ei is quasicompact. It comes for instance from a theorem of H. Hennion [7], and the remark
that this operator satisfies a Lasota-Yorke inequality (for a proof of this inequality, see Subsection 3.2):

∥∥Lref,i,ω0
if
∥∥gLip1(Ei)

≤ 1

3
‖f‖gLip1(Ei)

+
|Jii|
R
‖f‖∞ .

Thus, Lref,i,ω0
i has a unique eigenvalue on the unit circle, 1, when it acts on L̃ip1(Ei), and any

other eigenvalue is of modulus strictly smaller than 1. Once we make this operator act on Lip1(Ei),
the eigenvalue 1 disappears, and its spectral radius is strictly smaller than 1. Hence, there exists
some K ≥ 1 and λ < 1 such that:∥∥∥Lnref,i,ω0

i

∥∥∥
Lip1(Ei)7→Lip1(Ei)

≤ Kλn.

Since the system is translation-invariant, we can take the same constants K and λ for all operators
Lref,i,ω0

i . They are also independent of the temperature. Some computations lead to the estimates:

cij ≤
|Jij|
RT

, j 6= i;

cii ≤
|Jii|
R

.

Now, we can state a result for such Ising models:

Corollary 5.2 (Iterated Function System Ising model).
Assume that

∑
i∈Zd
|J0i|α is finite for some α < 1. Then, if the temperature T is high enough, the

process has a unique stationary measure.
Assume that J0i = 0 if |i| is large enough. Then, if the temperature is high enough, the systems

exhibits an exponential spatial decay of correlations.

It is nothing more than an application of Theorem 3.6. Juste notice that, since the system is
translation-invariant, we have ε∗ = (εt)∗, and that the assumption of this theorem imply that both
ε∗ and ε∗(α) go to zero as T grows to infinity.

Remark 5.3.
Let C be the Cantor set. Let us write Ci := 2C − 1, with the usual conventions about set

multiplication and addition. Then, any stationary measure for the Ising model we defined here is
supported by

⊗
i∈Zd Ci. This shows, in particular, that it would be impossible to get a convergence for

the total variation norm starting from every probability measure. If µi, the marginal of the probability
measure µ on Ei, has a density with respect to the Lebesgue measure, then so does (Lnµ)i for any n,
so that the distance in total variation between Lnµ and the stationary measure is always 2. Hence,
it is paramount to work with softer norms.
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