SOLUTIONS GENERALISEES POUR L'EQUATION
 DE HAMILTON-JACOBI
 DANS LE CAS D'EVOLUTION.

Alberto OTTOLENGHI - Claude VITERBO

1.Introduction

En 1986 J.C.Sikorav [S] a prouvé des théorèmes d'existence pour les fonctions génératrices de variétés lagrangiennes et M. Chaperon [Ch1] a indiqué comment utiliser ces résultats pour chercher des solutions de l'équation d'HamiltonJacobi:

$$
F(y, D u)=\frac{\partial u}{\partial t}+H\left(t, x, D_{x} u\right)=0 \quad(H-J)
$$

où $x \in \mathbf{R}^{n} \quad y=(x, t) \quad H \in C^{2}$ et la condition initiale est donnée par

$$
u(x, 0)=u_{0}(x) \in C^{1}\left(\mathbf{R}^{n}\right) \quad(C-I)
$$

La méthode utilise l'idée de Maslov selon laquelle une solution généralisée de (H-J) est une sous-variété lagrangienne Λ de $F^{-1}(0)=\Sigma$ telle que

$$
\Lambda \cap\{t=0\}=\Lambda_{0} \simeq \Gamma\left(D_{x} u_{0}\right)
$$

où $\Gamma\left(D_{x} u_{0}\right)$ est le graphe de $\left(D_{x} u_{0}\right)$.
Si ϕ_{t} est le flot hamiltonien de H, on a alors $\Lambda \simeq \cup_{t} \phi_{t}\left(\Lambda_{0}\right)$. Au lieu de chercher à décrire ϕ_{t}, et donc de résoudre les équations de Hamilton, on peut poser le problème d'un point de vue variationel : on fixe le point d'arrivée \bar{x} au temps $t=\bar{t}$ et on cherche les points de Λ_{0} pour lesquels la variation de la fonctionnelle d'action classique est critique. Les méthodes du type "géodésiques brisées" [Ch2] permettent de réduire la fonctionnelle d'action à une fonction S définie sur un espace de dimension finie, appelée fonction génératrice. S dépend alors de \bar{x}, \bar{t}, des variables auxiliaires correspondant à la variation du chemin choisi pour calculer l'action et de $u_{0}(x)$.

Si , à (x, t) fixé, on cherche S comme fonction quadratique à l'infini, son existence a été démontrée par J.C.Sikorav [S], et C.Viterbo [V] a montré que S est essentiellement unique.

A cause de l'existence des points focaux on peut cependant avoir des chemins avec des points de départ différents dans Λ_{0} qui arrivent sur \bar{x} au temps $t=\bar{t}$ et qui sont critiques pour l'action.

En d'autres termes on peut avoir plusieurs valeurs critiques pour S à (x, t) fixé.

L'avantage d'avoir une fonction S qui définit Λ c'est alors que, pour (x, t) fixé, S a un niveau critique "naturel" qui sera la solution $u(t, x)$. Ce choix du niveau critique de S permet d'avoir le résultat suivant.

THEOREME. (C.Viterbo)
(1) Il y a une application

$$
\begin{aligned}
& J: C^{1}\left(\mathbf{R}^{n} ; \mathbf{R}\right) \times C^{2}\left([0, T] \times \mathbf{R}^{2 n} ; \mathbf{R}\right) \longrightarrow C^{L i p}\left([0, T] \times \mathbf{R}^{n} ; \mathbf{R}\right) \\
& \quad\left(u_{0}, H\right) \longrightarrow u
\end{aligned}
$$

telle que u satisfait ($C-I$) et ($H-J$) sauf sur un ensemble fermé d'intérieur vide.
(2) L'application J est continue si tout les espaces sont munis de la topologie $C^{\text {Lip }}$. Elle s'étend donc en une application

$$
J^{\prime}: C^{L i p}\left(\mathbf{R}^{n} ; \mathbf{R}\right) \times C^{L i p}\left([0, T] \times \mathbf{R}^{2 n} ; \mathbf{R}\right) \longrightarrow C^{L i p}\left([0, T] \times \mathbf{R}^{n} ; \mathbf{R}\right)
$$

Remarques

1) La lipschitzianité de H en p est une condition nécessaire pour l'élimination des dynamiques par lesquelles il y a des points dont la projection x sur la base \mathbf{R}^{n} va à l'infini dans un temps $t \leq T$.
2) Dans le cas d'une base compacte, la lipschitzianité de H en p elimine les dynamiques qui permettent l'existence de points dont la projection traverse la base un nombre infini de fois dans un temps fini.
3) Si l'hamiltonien H est défini sur \mathbf{R}^{n} mais il est à support compact, la lipschitzianité en p n'est pas nécessaire: à l'extérieur du support les points ne bougent pas et il y a pas des dynamiques qui peuvent porter la projection d'un point à l'infini dans un temps fini.

On se propose alors d'expliquer la construction de l'application J; de donner la démonstration, due à C.Viterbo, du théorème, et d'étudier les relations entre ces solutions et les solutions de viscosité pour ($\mathrm{H}-\mathrm{J}$) définies par Krutzkov, Crandall, Lions (voir par exemple [C-L]).

2.Fonctions génératrices

DEFINITION

Soit Λ une sous-variété lagrangienne de $T^{*} M$. Soit $E \rightarrow M$ un fibré vectoriel sur M (on peut se limiter au cas de $E=M \times \mathbf{R}^{k}$) et soit $S:(x, \xi) \in E \longrightarrow$ $S(x, \xi) \in \mathbf{R}$ une fonction C^{2} telle que

$$
\Sigma_{S}=\left\{(x, \xi) \in E \left\lvert\, \begin{array}{l|l}
\partial \xi \\
\partial, & x, \xi)=0
\end{array}\right.\right\}
$$

est une sous-variété de E (ou que $d\left(\frac{\partial S}{\partial \xi}\right)$ est injective). On appellera S fonction génératrice pour Λ si Λ est l'image de Σ_{S} par l'application

$$
i_{S}:(x, \xi) \longrightarrow\left(x, \frac{\partial S}{\partial x}(x, \xi)\right)
$$

On dira que S est une fonction génératrice quadratique à l'infini (F.G.Q.I.) si en plus

$$
S(x, \xi)=B(\xi) \quad \forall|\xi| \geq R>0
$$

où B est une forme quadratique non-dégénérée.
Remarques
(1) $\Lambda_{0}=\Gamma\left(D_{x} u_{0}\right)$, le graphe de $D u_{0}$, a u_{0} comme F.G.Q.I. avec $E=M$;
(2) Etant donnée une F.G.Q.I. S pour Λ, il est facile construire d'autres F.G.Q.I. pour Λ :
(i) si $C(\eta)$ est une forme quadratique non-dégénéré dans \mathbf{R}^{l} et

$$
S^{\prime}(x, \xi, \eta)=S(x, \xi)+C(\eta)
$$

alors S^{\prime} est aussi une F.G.Q.I. pour Λ;
(ii) si $(x, \xi) \longrightarrow(x, \psi(x, \xi))$ est un difféomorphisme qui préserve les fibres et

$$
S^{\prime \prime}(x, \xi)=S(x, \psi(x, \xi))
$$

alors $S^{\prime \prime}$ est aussi une F.G.Q.I. pour Λ.

DEFINITION

On dira que deux F.G.Q.I. S_{1} et S_{2} sont stablement équivalentes si en appliquant des opérations du type (i) et (ii) à S_{1} et S_{2} on obtient la même fonction S.

La proposition suivante affirme l'existence et l'unicité à stabilisation prés (c'est à dire de l'application de (i) et (ii)) de F.G.Q.I. pour des sous-variétés lagrangiennes isotopes à travers d'une isotopie hamiltonienne à une variété qui possède déjà une F.G.Q.I. : le résultat d'existence est contenu dans $[\mathrm{S}]$, alors que l'unicité a été prouvé dans [V].

PROPOSITION I.

Soit ϕ_{t} le flot hamiltonien de $H \in C^{2}$ dans $T^{*} M$; soit S_{0} une F.G.Q.I. pour Λ_{0} et $\Lambda_{t}=\phi_{t}\left(\Lambda_{0}\right)$. Alors
(i) Λ_{t} a une F.G.Q.I.
(ii) Si S_{1} et S_{2} sont F.G.Q.I. pour Λ_{t} alors elles sont stablement équivalentes.

On va donner ici une raison heuristique pour l'existence, qui peut être rendue rigoureuse (cf.[Ch]).

Soit $E^{\prime}=H^{1}\left([0,1], T^{*} M\right)$ l'espace de Sobolev usuel; soit $\gamma(s)=(x(s), p(s))$ une fonction de E^{\prime}. Soit encore $S_{0}(x, \xi)$ la F.G.Q.I. de $\Lambda_{0} ;(x, \xi) \in M \times \mathbf{R}^{n}=E$ et

$$
S_{t}(\gamma, \xi)=S_{0}(x(0), \xi)+\int_{0}^{t}[p(s) \dot{x}(s)-H(s, x(s), p(s))] d s
$$

On peut regarder S_{t} comme une fonction génératrice avec "variables fibres" $\eta=(\{\gamma(s) \mid s \in[0, t[\}, p(t), \xi)$ et on peut en réalité étendre la théorie de F.G.Q.I. au cas où $E \longrightarrow B$ est un fibré de Banach.

$$
S_{t}=S_{t}(x(t), \eta)
$$

On cherche alors la variation de S_{t} sur $\left\{\tilde{\gamma} \in E^{\prime} \mid x(t)=x\right\} \times \mathbf{R}^{n}$:

$$
\begin{aligned}
d S_{t}(\tilde{\gamma}, \xi)(\delta \tilde{\gamma}, \delta \xi)= & \\
=\frac{\partial S_{0}}{\partial \xi}(x(0), \xi) \delta \xi+ & \frac{\partial S_{0}}{\partial x(0)} \delta(x(0))+\int_{0}^{t}\left(\dot{x}-\frac{\partial H}{\partial p}\right) \delta p(s) d s+ \\
& +\int_{0}^{t}\left(\frac{\partial}{\partial x}[p(s) \dot{x}(s)]-\frac{\partial H}{\partial x}\right) \delta x(s) d s= \\
=\frac{\partial S_{0}}{\partial \xi}(x(0), \xi) \delta \xi+ & \frac{\partial S_{0}}{\partial x(0)} \delta x(0)+\int_{0}^{t}\left(\dot{x}-\frac{\partial H}{\partial p}\right) \delta p(s) d s- \\
& -\int_{0}^{t}\left(\dot{p}-\frac{\partial H}{\partial x}\right) \delta x(s) d s+p(t) \delta x(t)-p(0) \delta x(0)
\end{aligned}
$$

Comme $x(t)=x, \delta x(t)=0$ et $\Sigma_{S_{t}}$ est définie par les équations

$$
\frac{\partial S_{0}}{\partial \xi}(x(0), \xi)=0 \quad p(0)=\frac{\partial S_{0}}{\partial x(0)} \quad \text { donc } \quad(x(0), p(0)) \in \Lambda_{0}
$$

et

$$
(x(s), p(s))=\phi_{s}(x(0), p(0)) \quad \forall s \in[0, t]
$$

où ϕ_{t} est le flot de H. Alors S_{t} joue le rôle de F.G.Q.I. de Λ_{t}. Une réduction dimensionnelle du problème variationel pour S_{t} peut être faite par exemple avec une méthode du type "géodésiques brisées" pour obtenir une vraie F.G.Q.I.

Comme, dans $T^{*}(M \times \mathbf{R}), \Lambda \simeq \cup_{t} \phi_{t}\left(\Lambda_{0}\right)$ est une variété lagrangienne et le flot ψ de F est toujours transversal à $\phi_{t}\left(\Lambda_{0}\right)$, on obtient $S(t, x, \eta)=S_{t}(x, \eta)$ qui est F.G.Q.I. pour Λ.

3.Construction de la solution

On va maintenant expliquer un peu de topologie algébrique élémentaire, utile pour la construction.

Soit f une fonction C^{2} sur une variété compacte X, soit

$$
X^{c}(f)=X^{c}=\{x \in X \mid f(x) \leq c\}
$$

l'ensemble des points de niveau f inférieur ou égal à c. Si α est une classe de cohomologie non-nulle dans $H^{*}\left(X^{b}, X^{a}\right)$, où $a<b$, on définit

$$
\gamma(\alpha, f)=\inf \left\{\lambda \mid \alpha \text { induit une classe non-nulle dans } H^{*}\left(X^{\lambda}, X^{a}\right)\right\}
$$

On a alors

LEMME I.

Le nombre $\gamma(\alpha, f)$ est une valeur critique pour f
Démonstration
L'assertion du lemme est une conséquence simple et classique de l'existence du flot de $-\frac{\nabla f}{\|\nabla f\|^{2}}$ (cf. $\left.[\mathrm{M}]\right)$ pour laquelle, si $\gamma(\alpha, f)$ n'est pas critique pour f on a que $H^{*}\left(X^{\gamma+\epsilon}, X^{a}\right) \sim H^{*}\left(x^{\gamma-\epsilon}, X^{a}\right)$ pour $\epsilon>0$ assez petit et α induit une classe non-nulle dans $H^{*}\left(X^{\gamma-\epsilon}, X^{a}\right)$ ce qui contredit la définition de $\gamma(\alpha, f)$.

Remarque : La condition de compacité sur X peut être éliminée si f satisfait à la condition de Palais-Smale :
(P-S) : Chaque suite $\left(x_{n}\right)$ telle que $f^{\prime}\left(x_{n}\right) \rightarrow 0$ et $\left|f\left(x_{n}\right)\right| \leq C$ avec C constant, a une sous-suite convergente

La condition est satisfaite en particulier si $X=\mathbf{R}^{m}$ et $f \sim Q$ à l'infini, où Q est une forme quadratique non-dégénérée qui est le cas si $f(\eta)=S_{t, x}(\eta)=S_{t}(x, \eta)$.

Pour une telle fonction et pour c assez grand on a

$$
H^{k}\left(X^{c}, X^{-c}\right) \simeq\left\{\begin{array}{l}
\mathbf{R} \text { si } k \text { est l'indice de } Q \\
0 \text { si non }
\end{array}\right.
$$

Si α est le générateur de $H^{*}\left(X^{c}, X^{-c}\right)$ on obtient un nombre $\gamma(\alpha, f)$. Alors pour $f(\eta)=S_{t, x}(\eta)=S_{t}(x, \eta)$, avec S_{t} F.G.Q.I. de Λ_{t} on pose

$$
u_{S}(t, x)=\gamma\left(\alpha, S_{t, x}\right)
$$

4.Propriétés de u_{S}

PROPOSITION II.

Soit L une sous-variété lagrangienne de $T^{*} M, S$ une F.G.Q.I. de L. Alors il y a un ensemble Z_{L} dans M tel que:
(1) Z_{L} est fermé et d'intérieur vide
(2) u_{S} est C^{k} dans $M \backslash Z_{L}$ avec $k \geq 1$ et pour $x \in M \backslash Z_{L}$ on a que

$$
\left(x, D_{x} u_{S}(x)\right) \in L
$$

Démonstration
Soit Z_{L}^{1} l'ensemble des valeurs singulières de la projection $\pi: L \longrightarrow M$. Par le lemme de Sard Z_{L}^{1} est fermé et a mesure nulle. Si U est une composante connexe de $M \backslash Z_{L}^{1}$, la projection π restreinte à $\pi^{-1}(U)$ est un revêtement. On pose

$$
\begin{gathered}
Z_{L}^{2}=\left\{x \in M \backslash Z_{L}^{1} \mid \exists \eta \neq \eta^{\prime} \text { t.q. } \frac{\partial S}{\partial \eta}(x, \eta)=\frac{\partial S}{\partial \eta}\left(x, \eta^{\prime}\right)=0\right. \\
\left.S(x, \eta)=S\left(x, \eta^{\prime}\right) ; \frac{\partial S}{\partial x}(x, \eta) \neq \frac{\partial S}{\partial x}\left(x, \eta^{\prime}\right)\right\}
\end{gathered}
$$

Z_{L}^{2} est fermé dans $M \backslash Z_{L}^{1}$ et est d'intérieur vide.
Montrons que Z_{L}^{2} est fermé dans $M \backslash Z_{L}^{1}$. Soit $x_{n} \in Z_{L}^{2}$ ayant une limite $x \in M$. Supposons que cette limite ne soit pas dans Z_{L}^{2}. On veut montrer qu'elle est dans Z_{L}^{2}.

Soient $\eta_{n}, \eta_{n}^{\prime}$ les vecteurs associés à x_{n}. On a, quitte à extraire une sous-suite, $\eta=\lim _{n} \eta_{n}, \quad \eta^{\prime}=\lim _{n} \eta_{n}^{\prime}$. On distinguera plusieurs cas
(i) soit $\eta \neq \eta^{\prime}$ et alors,
(a) soit $\frac{\partial S}{\partial x}(x, \eta)=\frac{\partial S}{\partial x}\left(x, \eta^{\prime}\right)$, mais ceci est impossible, car i_{S} ne serait pas un plongement (car ne serait pas injective!)
(b) soit $\frac{\partial S}{\partial x}(x, \eta) \neq \frac{\partial S}{\partial x}\left(x, \eta^{\prime}\right)$. Alors la limite est bien dans Z_{L}^{2} et iln'y a rien à démontrer
(ii) soit $\eta=\eta^{\prime}$ et alors il existe une suite de point u_{n}, v_{n} sur x_{n} et t.q. $\lim _{n} u_{n}=\lim _{n} v_{n}=z$. Comme L est fermé, bien sûr $z \in L$. On prétend alors que la projection p a z comme point singulier. En effet, si z était régulier, p donnerait un difféomorphisme entre W voisinage de z dans L, et X voisinage de x dans N. Mais alors u_{n} et v_{n} seraient, pour n assez grand, dans W, mais cela obblige u_{n} et v_{n} à être égaux, une contradiction.

Donc z est singulier et $x=p(z)$ est dans Z_{L}^{1}.
Donc Z_{L}^{2} est fermé dans $M \backslash Z_{L}^{1}$.
Supposons maintenant que Z_{L}^{2} n'est pas d'intérieur vide dans $M \backslash Z_{L}^{1}$. Alors $\exists U \subset Z_{L}^{2}$ ouvert, t.q. $\tilde{x} \in U$; donc

$$
\exists \eta, \eta^{\prime} t . q .\left\{\begin{array}{l}
\frac{\partial S}{\partial \eta}(\tilde{x}, \eta)=\frac{\partial S}{\partial \eta}\left(\tilde{x}, \eta^{\prime}\right)=0 \\
S(\tilde{x}, \eta)=S\left(\tilde{x}, \eta^{\prime}\right)
\end{array}\right.
$$

Comme $S \in C^{\infty}$, pour ϵ assez petit on a :
$\forall x \in U$ t.q. $|x-\tilde{x}|<\epsilon \exists \delta(\epsilon)>0$ et $\eta(x), \eta^{\prime}(x)$ t.q.

$$
\begin{aligned}
& \text { (a) }|\eta(x)-\eta|<\delta(\epsilon)\left|\eta^{\prime}(x)-\eta\right|<\delta(\epsilon) \\
& \text { (b) }\left\{\begin{array}{l}
\frac{\partial S}{\partial \eta}(x, \eta(x))=\frac{\partial S}{\partial \eta}\left(x, \eta^{\prime}(x)\right)=0 \\
S(x, \eta(x))=S\left(x, \eta^{\prime}(x)\right)
\end{array}\right.
\end{aligned}
$$

Comme $S(x, \eta(x))=S\left(x, \eta^{\prime}(x)\right) \forall x$ t.q. $|\tilde{x}-x|<\epsilon$, on a aussi que

$$
\frac{\partial S}{\partial x}(x, \eta(x))=\frac{\partial S}{\partial x}\left(x, \eta^{\prime}(x)\right)
$$

Donc $x \notin Z_{L}^{2}$, qui donne la contradiction cherché : Z_{L}^{2} est bien fermé dans $M \backslash Z_{L}^{1}$ et est d'intérieur vide.

Considérons maintenant U voisinage de x_{0}. Si $x_{0} \notin Z_{L}^{1} \cup Z_{L}^{2}, \pi$ est un revêtement trivial de $\pi^{-1}(U)$ sur U. On cherche alors une section C^{k} de π sur
U, telle que $u_{S}(x)=S(x, \eta(x))$ pour $x \in U$. On sait que pour chaque $x \in M$ il y a un η tel que $u_{S}(x)=S(x, \eta)$ et $\frac{\partial S}{\partial \eta}=0$, donc $\left(x, \frac{\partial S}{\partial x}(x, \eta)\right) \in \pi^{-1}(\{x\})$.

Si $x_{0} \notin Z_{L}^{2}$ un tel $\eta(x)$ est unique dans un voisinage de x_{0} donc est C^{k} dans x_{0} avec au moins $k=1$ et u_{S} est aussi C^{k}.

Donc, pour chaque x_{0} dans $M \backslash\left(Z_{L}^{1} \cup Z_{L}^{2}\right)$

$$
\left\{\begin{array}{l}
D u_{S}(x)=\frac{\partial S}{\partial x}(x, \eta(x)) \\
\left(x, D u_{S}(x)\right) \in L
\end{array}\right.
$$

On a alors démontré la proposition II avec $Z_{L}=Z_{L}^{1} \cup Z_{L}^{2}$.
Si on régarde maintenant (H-J), pour t fixé on est dans le cas de la proposition II avec $\Lambda_{t}=L, S_{t}=S$ et en plus l'ensemble $Z_{\Lambda}=\cup_{t} Z_{\Lambda_{t}}$ est fermé et a intérieur vide. Donc

$$
\left(x, t, D_{x} u_{S}(x, t),-H\left(t, x, D_{x} u_{S}(x, t)\right)\right) \in \Lambda_{t} \quad \forall t, \forall x \notin Z_{\Lambda}
$$

et u_{S} satisfait (H-J) dehors Z_{Λ}.
Comme S dépend de $S_{0}=u_{0}$ et de H, on peut écrire $u_{S}=u_{\left(u_{0}, H\right)}=u$. On a comme ça bien construit l'application $J:\left(u_{0}, H\right) \longrightarrow u_{\left(u_{0}, H\right)}$.

Voyons alors les propriétés de continuité de u.
LEMME II.
Si $X^{b}(f)=X^{b}(g)$ et $X^{a}(f)=X^{a}(g)$ alors
(i) $f \leq g \Rightarrow \gamma(\alpha, f) \leq \gamma(\alpha, g)$
(ii) $|\gamma(\alpha, f)-\gamma(\alpha, g)| \leq|f-g|_{C^{0}}=\sup |f-g|$

Démonstration
(i) Si $f \leq g$ alors $X^{\lambda}(g) \subset X^{\lambda}(f)$ et on a les applications entre les groupes de cohomologie

$$
H^{*}\left(X^{b}, X^{a}\right) \longrightarrow H^{*}\left(X^{\lambda}(f), X^{a}\right) \longrightarrow H^{*}\left(X^{\lambda}(g), X^{a}\right)
$$

Alors si l'image de α est non-nulle dans $H^{*}\left(X^{\lambda}(g), X^{a}\right)$, elle doit aussi etre non-nulle dans $H^{*}\left(X^{\lambda}(f), X^{a}\right)$. Donc

$$
\gamma(\alpha, f) \leq \gamma(\alpha, g)
$$

(ii) Si $\delta=|f-g|_{C^{0}}$ alors $f \leq g+\delta$ et $X^{\lambda+\delta}(g) \subset X^{\lambda}(f)$ ou

$$
\gamma(\alpha, f) \leq \gamma(\alpha, g)+\delta
$$

pour l'argument déjà donné. En échangeant f et g

$$
|\gamma(\alpha, f)-\gamma(\alpha, g)| \leq \delta
$$

On a alors la proposition suivante

PROPOSITION III.

(i) Si $\left|S_{t, x}-S_{t^{\prime}, x^{\prime}}\right| \leq K\left(\left|t-t^{\prime}\right|,\left|x-x^{\prime}\right|\right)$ avec K module de continuité, c'est-\dot{a}-dire $K(0,0)=0$ et K continu, alors

$$
\left|u_{S}(t, x)-u_{S}\left(t^{\prime}, x^{\prime}\right)\right| \leq K\left(\left|t-t^{\prime}\right|,\left|x-x^{\prime}\right|\right)
$$

(ii) $\left|u_{S}(t, x)-u_{S^{\prime}}(t, x)\right| \leq\left|S_{t, x}-S_{t, x}^{\prime}\right|_{C^{0}} \quad \forall S, S^{\prime}$ F.G.Q.I. de $\Lambda_{t}, \Lambda_{t}^{\prime}$

Démonstration
(i) est le lemme II (i) pour $f=S_{t, x}$ et $g=S_{t^{\prime}, x^{\prime}}$
(ii) est le lemme II (ii) pour $f=S_{t, x}$ et $g=S_{t, x}^{\prime}$

Pour $H \in C^{2}$ et $u_{0} \in C^{1}, S$ est au moins C^{1} et (i) implique la partie (1) du théorème du paragraphe 1 .

LEMME III.

Soient ϕ_{t}, ψ_{t} les flots des hamiltoniens $H, K \in C^{\text {Lip }}$. Alors pour chaque t il existe S_{H}^{t}, S_{K}^{t} F.G.Q.I. de $\phi_{t}\left(\Lambda_{0}\right), \psi_{t}\left(\Lambda_{0}\right)$ telles que
i) quelque soit λ_{0}

$$
H \leq K \Rightarrow\left|S_{t}^{K}-S_{t}^{H}\right|_{C^{0}} \leq t C|H-K|_{C_{p}^{L i p}}
$$

ò̀

$$
\begin{gathered}
C_{0}=\sup \left\{\left|p_{0}\right|:\left(x_{0}, p_{0}\right) \in \Lambda_{0}\right\} \\
C=C_{0}+1 \\
|H-K|_{C_{p}^{L i p}}=\sup \left\{|H-K|_{C^{0}} ; \sup \left\{\left|\frac{\partial H}{\partial p}-\frac{\partial K}{\partial p}\right|\right\}\right\}
\end{gathered}
$$

ii) Si Λ_{0} est la section nulle alors

$$
H \leq K \Rightarrow\left\{\begin{array}{l}
S_{t}^{K} \leq S_{t}^{H} \\
\left|S_{t}^{K}-S_{t}^{H}\right|_{C^{0}} \leq t|H-K|_{C^{0}}
\end{array}\right.
$$

Démonstration
Soit $H_{\lambda}=(1-\lambda) H+\lambda K$ avec $\lambda \in[0,1]$ et soit $S_{t}^{\lambda}(x, \eta)$ une famille de F.G.Q.I. de $\phi_{t}^{\lambda}\left(\Lambda_{0}\right)$, où ϕ_{t}^{λ} est le flot de H_{λ}. L'existence de S_{t}^{λ} est garantie par la proposition I.

Pour chaque $\left(x_{t}^{\lambda}, p_{t}^{\lambda}\right) \in \phi_{t}^{\lambda}\left(\Lambda_{0}\right)$ on peut ecrire

$$
\left(x, \frac{\partial S_{t}^{\lambda}}{\partial x}\left(x_{t}^{\lambda}, \eta_{\lambda}\right)\right)=\phi_{t}^{\lambda}\left(x_{0}, p_{0}\right)
$$

pour quelque $\left(x_{0}, p_{0}\right) \in \Lambda_{0}$, soit $x_{0}=x_{0}\left(t, \lambda, x, \eta_{\lambda}\right)$ et $p_{0}=\frac{\partial u_{0}}{\partial x}\left(x_{0}\right)$.
Donc

$$
d S_{t}^{\lambda}\left(x_{t}^{\lambda}, \eta_{\lambda}\right)=p_{t}^{\lambda} d x_{t}^{\lambda}-H_{\lambda}\left(t, x_{t}^{\lambda}, p_{t}^{\lambda}\right) d t
$$

et on veut calculer la variation de $S_{t}^{\lambda}\left(x_{t}^{\lambda}, \eta_{\lambda}\right)$ en faisant varier λ et en fixant une valeur de t, de x_{t}^{λ} et la variété initiale Λ_{0}.

$$
\frac{d S_{t}^{\lambda}}{d \lambda}=-\int_{0}^{t} \frac{\partial H_{\lambda}}{\partial \lambda} d t^{\prime}+\frac{\partial u_{0}}{\partial \lambda}\left(x_{0}\right)=-\int_{0}^{t}(K-H) d t^{\prime}+\frac{\partial u_{0}}{\partial x}\left(x_{0}\right) \frac{\partial x_{0}}{\partial \lambda}
$$

Si Λ_{0} est la section nulle $\frac{\partial u_{0}}{\partial x}=0$ et

$$
\frac{d S_{t}^{\lambda}}{d \lambda}=\int_{0}^{t}(K-H) d t^{\prime} \leq 0
$$

et on obtient

$$
S_{t}^{K}=S_{t}^{1} \leq S_{t}^{0}=S_{t}^{H}
$$

et

$$
\left|S_{t}^{K}-S_{t}^{H}\right|_{C^{0}} \leq \int_{0}^{t}\left|H_{t^{\prime}}-K_{t^{\prime}}\right|_{C^{0}} d t^{\prime}=t|H-K|_{C^{0}}
$$

où $H_{t}(x, p)=H(t, x, p), K_{t}(x, p)=K(t, x, p)$.
On peut faire aussi le calcul dans le cadre d'un fibré de Banach.
On considère alors la fonctionnelle

$$
S^{\Lambda)}[x(s), p(s)]=\int_{0}^{t}\left[p(s) \dot{x}(s)-H^{\lambda}(x(s), p(s), s)\right] d s
$$

avec domaine

$$
D_{S^{\lambda}, \gamma(0)}=\{\gamma(s)=(x(s), p(s)), s \in[0, t] \mid(x(0), p(0)) \in \Lambda\}
$$

La trajectoire de $D_{S^{\lambda}, \gamma(0)}$ qui est critique pour S^{λ} c'est bien la solution des equations d'Hamilton d'Hamiltonienne H^{λ}, de point initial $x_{0}=x(0)$ et avec energie initiale $H^{\lambda}(x(0), p(0), 0)$. En faisant varier $(x(0), p(0)) \in \Lambda_{0}$ on obtient toutes les trajectoires dont l'union est bien

$$
\Lambda_{[0, t]}=\cup_{s \in[0, t]} \phi_{s}^{\lambda}\left(\Lambda_{0}\right)
$$

Si on fait varier λ chaque trajectoire aura une variation

$$
\begin{aligned}
& x^{\lambda+\delta \lambda}(s)=x^{\lambda}(s)+\delta x^{\delta \lambda}(s) \\
& p^{\lambda+\delta \lambda}(s)=p^{\lambda}(s)+\delta p^{\delta \lambda}(s)
\end{aligned}
$$

On va considerer alors les trajectoires avec $x(t)=x$:

$$
\begin{gathered}
S_{t}^{\lambda+\delta \lambda}\left[x^{\lambda+\delta \lambda}(s), p^{\lambda+\delta \lambda}(s)\right]=\int_{0}^{t}\left\{\left[p^{\lambda}(s)+\delta p^{\delta \lambda}(s)\right]\left[\dot{x}^{\lambda}(s)+\delta \dot{x}^{\delta \lambda}(s)\right]-\right. \\
-H^{\lambda+\delta \lambda}\left(x^{\lambda}(s)+\delta x^{\delta \lambda}(s), p^{\lambda}(s)+\delta x^{\delta \lambda}(s), s\right) d s= \\
=\int_{0}^{t}\left[p^{\lambda}(s) \dot{x}^{\lambda}(s)+p^{\lambda}(s) \delta \dot{x}^{\delta \lambda}(s)+\dot{x}^{\lambda}(s) \delta p^{\delta \lambda}(s)-H^{\lambda}\left(x^{\lambda}(s), p^{\lambda}(s)\right)\right. \\
-\left\{\frac{\partial H^{\lambda}}{\partial x}\left(x^{\lambda}(s), p^{\lambda}(s)\right) \delta x^{\delta \lambda}(s)+\frac{\partial H^{\lambda}}{\partial p}\left(x^{\lambda}(s), p^{\lambda}(s)\right) \delta p^{\delta \lambda}(s)\right\}+O\left((\delta \lambda)^{2}\right)- \\
-\delta \lambda\left\{K\left(x^{\lambda+\delta \lambda}(s), p^{\lambda+\delta \lambda}(s)\right)-H\left(x^{\lambda+\delta \lambda}(s), p^{\lambda+\delta \lambda}(s)\right)\right\} d s= \\
=S_{t}^{\lambda}\left[x^{\lambda}(s), p^{\lambda}(s)\right]+\int_{0}^{t}\left[\dot{x}^{\lambda}(s)-\frac{\partial H^{\lambda}}{\partial p}\left(x^{\lambda}(s), p^{\lambda}(s)\right)\right] \delta p^{\delta \lambda}(s) d s- \\
-\int_{0}^{t}\left[\dot{p}^{\lambda}(s)+\frac{\partial H^{\lambda}}{\partial x}\left(x^{\lambda}(s), p^{\lambda}(s)\right)\right] \delta x^{\delta \lambda}(s) d s+\left[p^{\lambda}(s) \delta x^{\delta \lambda}(s)\right]_{0}^{t}- \\
\quad-\delta \lambda \int_{0}^{t}\left[K\left(\gamma^{\lambda+\delta \lambda}(s)\right)-H\left(\gamma^{\lambda+\delta \lambda}(s)\right)\right] d s+O\left((\delta \lambda)^{2}\right)
\end{gathered}
$$

Mais $\gamma^{\lambda}(s)$ est solution des equations de Hamilton avec Hamiltonienne H^{λ} et donc

$$
\begin{gathered}
S_{t}^{\lambda+\delta \lambda}\left(\gamma^{\lambda+\delta \lambda}(s)\right)-S_{t}^{\lambda}\left(\gamma^{\lambda}(s)\right)= \\
=-\delta \lambda \int_{0}^{t}(K-H)\left(\gamma^{\lambda}(s)\right) d s-p^{\lambda}(0) \delta x^{\delta \lambda}(0)+O\left((\delta \lambda)^{2}\right)
\end{gathered}
$$

On arrive enfin à une expression pour la variation en λ de S^{λ} :

$$
\delta_{\lambda} S=-\int_{0}^{t}(K-H)\left(\gamma^{\lambda}(s)\right) d s-p^{\lambda}(0) \frac{d x_{0}}{d \lambda}(\lambda)
$$

ou aussi

$$
S_{t}^{1}-S_{t}^{0}=-\int_{0}^{1} d \lambda\left\{\int_{0}^{t}(K-H)\left(\gamma^{\lambda}(s)\right) d s-p^{\lambda}(0) \delta x^{\delta \lambda}\right\}
$$

On indiquera

$$
C_{0}=\sup _{\Lambda_{0}}\left\{\left|\frac{\partial u_{0}}{\partial x}\right|\right\}
$$

On peut extimer la variation du point initial par

$$
\left|\delta x^{\lambda=1}(0)\right| \leq t \sup \left\{\left|\frac{\partial H^{1}}{\partial p}-\frac{\partial H^{0}}{\partial p}\right|\right\}=t \sup \left\{\left|\frac{\partial K}{\partial p}-\frac{\partial H}{\partial p}\right|\right\}
$$

On a alors l'extimation pour la variation de S_{t} :

$$
\left|S_{K}^{t}-S_{H}^{t}\right|_{C^{0}} \leq t\left\{|H-K|_{C^{0}}+C_{0} \sup \left\{\left|\frac{\partial K}{\partial p}-\frac{\partial H}{\partial p}\right|\right\}\right\}
$$

et le lemme est démontré.

COROLLAIRE I.

$$
\left|u_{\left(u_{0}, H\right)}^{t}-u_{\left(u_{0}, K\right)}^{t}\right| C_{C^{0}} \leq t C|H-K|_{C_{p}^{L i p_{p}}}
$$

Démonstration
Par la proposition III(ii)

$$
\left|u_{\left(u_{0}, H\right)}^{t}-u_{\left(u_{0}, K\right)}^{t}\right| \leq\left|S_{K}^{t, x}-S_{H}^{t, x}\right|_{C^{0}}
$$

où $S_{t, x}(\eta)=S(t, x, \eta)$; alors

$$
\left|u_{\left(u_{0}, H\right)}^{t}-u_{\left(u_{0}, K\right)}^{t}\right| C_{C^{0}} \leq\left|S_{t}^{K}-S_{t}^{H}\right|_{C^{0}} \leq t C|H-K|_{C_{p}^{L i p}}
$$

donc J est continue en topologie $C^{L i p}$ et la partie (2) du théorème est démontré.
On a aussi le resultat suivant

COROLLAIRE II.

Si Λ_{0} est la section nulle

> (i) $\left|u_{\left(u_{0}, H\right)}^{t}-u_{\left(u_{0}, K\right)}^{t}\right|_{C^{0}} \leq t|H-K|_{C^{0}}$
> (ii) $H \leq K \Rightarrow u_{\left(u_{0}, H\right)}^{t} \geq u_{\left(u_{0}, K\right)}^{t}$

Démonstration
(i) pour la proposition II (ii)

$$
\left|u_{\left(u_{0}, H\right)}^{t}-u_{\left(u_{0}, K\right)}^{t}\right| \leq\left|S_{K}^{t, x}-S_{H}^{t, x}\right|_{C^{0}}
$$

où $S_{t, x}(\eta)=S(t, x, \eta)$; comme Λ_{0} est la section nulle

$$
\left|u_{\left(u_{0}, H\right)}^{t}-u_{\left(u_{0}, K\right)}^{t}\right|_{C^{0}} \leq\left|S_{t}^{K}-S_{t}^{H}\right|_{C^{\circ}} \leq t|H-K|_{C^{\circ}}
$$

Pour prouver (ii) on aura besoin de un lemme de [V]

LEMME IV.

Soit f_{λ} une famille continue de fonctions et soit $c(\lambda)=\gamma\left(\alpha, f_{\lambda}\right)$ obtenu par minimax. Soit f_{λ} telle que $d f_{\lambda}(x)=0$ implique $\frac{d f_{\lambda}}{d \lambda} \leq 0$. Alors $c(\lambda)$ est noncroissant.

On renvoie à $[\mathrm{V}]$ pour la démonstration qui n'est pas difficile.
Si $f_{\lambda}(\eta)=S_{t}^{\lambda}(t, x, \eta)$ la forme α est donnée par la forme quadratique equivalente de S à l'infinie; le point critique $c(\lambda)$ c'est la solution u_{t}^{λ}, donc

$$
d f_{\lambda}=0 \Leftrightarrow \frac{\partial S_{t}^{\lambda}}{\partial \eta}=0 \Leftrightarrow\left(x, \frac{\partial S_{t}^{\lambda}}{\partial x}\right) \in \phi_{t}^{\lambda}\left(\Lambda_{0}\right)
$$

Mais par le Lemme $\operatorname{III}($ ii $) S_{t}^{\lambda}$ est non-croissante, donc u_{t}^{λ} est aussi non-croissante pour le lemme IV et

$$
H \leq K \Rightarrow u_{\left(u_{0}, H\right)}^{t} \geq u_{\left(u_{0}, K\right)}^{t}
$$

On veut montrer maintenant que si H et u_{0} sont Lipschitz, alors u_{H} est Lipschitz.

LEMME V.

Soit S une F.G.Q.I. associé à une sous-variété Lagrangienne L de $T^{*} M$. Si $C_{L}=\sup \{|p|:(x, p) \in L\}$ alors u_{S} est Lipschitz avec constante C_{L}.

Démonstration
Soit U le complément de l'ensemble des singularités de la projection $\pi: L \longrightarrow$ M. Soient x_{0}, x_{1} dans la même composante connexe de U, alors il y a un chemin $x(s)$, contenu dans U, qui joint $x(0)=x_{0}$ à $x(1)=x_{1}$. Alors, sur un voisinage dans U de $x([0,1]), \pi$ est un revêtement trivial et $u(t, x(s))=S_{t}\left(x(s), \eta_{t}(x(s))\right)$ avec $s \longrightarrow \eta_{t}(x(s)) \in C^{1}$. Comme résultat on a que

$$
\frac{\partial u}{\partial x}(t, x(s))=\frac{\partial S_{t}}{\partial x}\left(x(s), \eta_{t}(x(s))\right)=p(s)
$$

et

$$
\left|\frac{\partial u}{\partial x}\right| \leq C_{L}
$$

Donc, dans U, u est Lipschitz avec constant de Lipschitz C_{L}. Comme u est dans C^{0} et l'ensemble des singularités de π est fermé et a intérieur vide, u est Lipschitz de constant C_{L} sur tout M.

Si H et u_{0} sont Lipschitz

$$
\left|\frac{\partial H}{\partial p}\right| \leq C_{H}^{p}<\infty
$$

$$
\left|\frac{\partial H}{\partial x}\right| \leq C_{H}^{x}<\infty \quad \text { et } \quad\left|D_{x} u_{0}\right| \leq C_{0}<\infty
$$

La lipschitzianité de H en x et en p garanti l'existence de $\Lambda_{t} \forall t \leq T$ et on a que

$$
(x, p) \in \phi_{t}\left(\Lambda_{0}\right) \Rightarrow|p|=\left|p_{0}+\int_{0}^{t} \dot{p} d s\right| \leq C_{0}+t C_{H}^{x}=C_{L}<\infty
$$

donc S est telle que $C_{L}<\infty$ et u est bien Lipschitz.

5.Solutions de viscosité

On va maintenant rappeler quelque notion concernante les solutions de viscosité introduites par Kruzkov, Crandall, Lions. On renvoie à [C-L] pour le cas plus général et on regarde le cas d'évolution considéré jusqu'ici :

$$
\left\{\begin{array}{l}
F(y, D u)=0 \\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

avec $y \in \Omega \subset M \times \mathbf{R}, \Omega$ ouvert.
Soient

$$
\begin{gathered}
D(\Omega)^{+}=\left\{\psi \in C_{c}^{\infty}(\Omega) \mid \psi \geq 0\right\} \\
E_{+}(\psi)=\{y \in \Omega \mid \psi(y)=\max \psi>0\} \\
E_{-}(\psi)=\{y \in \Omega \mid \psi(y)=\min \psi<0\}
\end{gathered}
$$

DEFINITION

(1) $u \in C(\Omega)$ est une sous-solution de viscosité de (H-J) si

$$
\begin{gathered}
\forall \phi \in D(\Omega)^{+}, \forall k \in \mathbf{R} \\
E_{+}(\phi(u-k)) \neq \emptyset \Rightarrow\left\{\begin{array}{c}
\exists y \in E_{+}(\phi(u-k)) \text { tel que } \\
F\left(y, u(y),-\frac{u(y)-k}{\phi(y)} D \phi(y)\right) \leq 0
\end{array}\right.
\end{gathered}
$$

(2) $u \in C(\Omega)$ est une sur-solution de viscosité de ($\mathrm{H}-\mathrm{J}$) si

$$
\begin{gathered}
\forall \phi \in D(\Omega)^{+}, \forall k \in \mathbf{R} \\
E_{-}(\phi(u-k)) \neq \emptyset \Rightarrow\left\{\begin{array}{l}
\exists y \in E_{-}(\phi(u-k)) \text { tel que } \\
F\left(y, u(y),-\frac{u(y)-k}{\phi(y)} D \phi(y)\right) \geq 0
\end{array}\right.
\end{gathered}
$$

(3) u est une solution de viscosité si (1) et (2) sont satisfaits.

Si on considère une fonction u, C^{1} par morceaux, il en résulte que les conditions par lesquelles u est une solution de viscosité sont des conditions sur ses dérivées. Soit alors $\Omega=\Omega_{+} \cup \Gamma \cup \Omega_{-}$avec Γ surface de classe C^{1} qui divise Ω par deux parties ouvertes Ω_{+}, Ω_{-}. Soit $y_{0} \in \Gamma$,soit $n\left(y_{0}\right)$ la normale unitaire à Γ qui pointe vers Ω_{+}et soit $u \in C(\Omega)$ donnée comme $u_{+} \in C\left(\Omega_{+} \cup \Gamma\right)$ dans $\Omega_{+} \cup \Gamma$ et comme $u_{-} \in C\left(\Omega_{-} \cup \Gamma\right)$ dans $\Omega_{-} \cup \Gamma$; on a le théorème suivant (cf.[C-L]) :

THEOREME.

(1) u est une sous-solution de viscosité de $F=0$ si

$$
\begin{gathered}
\forall y_{0} \in \Gamma, \forall \xi \in\left[D u_{+}\left(y_{0}\right) \cdot n\left(y_{0}\right), D u_{-}\left(y_{0}\right) \cdot n\left(y_{0}\right)\right] \\
F\left(y_{0}, u\left(y_{0}\right), p_{T} D u_{ \pm}\left(y_{0}\right)+\xi n\left(y_{0}\right)\right) \leq 0
\end{gathered}
$$

(2) u est une sur-solution de viscosité de $F=0$ si

$$
\begin{gathered}
\forall y_{0} \in \Gamma, \forall \xi \in\left[D u_{-}\left(y_{0}\right) \cdot n\left(y_{0}\right), D u_{+}\left(y_{0}\right) \cdot n\left(y_{0}\right)\right] \\
F\left(y_{0}, u\left(y_{0}\right), p_{T} D u_{ \pm}\left(y_{0}\right)+\xi n\left(y_{0}\right)\right) \geq 0
\end{gathered}
$$

où p_{T} est la projection sur $T_{y_{0}} \Gamma$.
(3) u est une solution de viscosité de $F=0$ dans Ω si et seulement si $u_{ \pm}$ sont solutions classiques (C^{1}) dans $\Omega_{ \pm}$et si (1) et (2) sont satisfaites.

Remarques:
(1) notons que si par exemple $D u_{-}\left(y_{0}\right) \cdot n\left(y_{0}\right)>D u_{+}\left(y_{0}\right) \cdot n\left(y_{0}\right)$ alors (2) est une condition vide.
(2) échanger Ω_{+}avec Ω_{-}, corresponde à échanger u_{+}avec u_{-}et $n\left(y_{0}\right)$ avec $-n\left(y_{0}\right)$, donc les conditions restent les mêmes.

Pour la première caractérisation des solutions de viscosité on a besoin de une fonction de test ϕ pour définir les dérivées de u, même où elles n'existent pas, par le fait que y est un maximum ou un minimum de $\phi(u-k)$. Dans le deuxième cas, la restriction de u à Γ est C^{1} et on peut caractériser u comme solution de viscosité par des conditions sur le saut du vecteur des dérivées et sur les valeurs relatives de la fonction F.

6.Rapport entre solutions de viscosités et solutions généralisées "lagrangiennes"

On veut maintenant regarder ces deux classes de solutions de l'équation (H-J) et essayer de les relier. On considère d'abord les solutions généralisées lagrangiennes.

On appellera $p_{y}=\left(p_{x}, p_{t}\right)$ les variables fibres dans $T^{*}(M \times \mathbf{R})$. Les conditions initiales pour (H-J) correspondent au choix de $p_{x}(0, x)=D_{x} u_{0}(x)$ et $p_{t}(0, x)=$ $-H\left(0, x, D_{x} u_{0}(x)\right)$ ou, ce qui est équivalent, au choix dans $T^{*}(M \times \mathbf{R})$ de la section pour $t=0$ de Λ :

$$
\Lambda_{0}=\left\{\left(x, 0, D_{x} u_{0}(x),-H\left(0, x, D_{x} u_{0}(x)\right)\right) \mid x \in M\right\}
$$

Si on appelle ϕ_{t} le flot de H dans $T^{*} M$ ou si on dit que

$$
\left(x(t), p_{x}(t)\right)=\phi_{t}\left(x(0), p_{x}(0)\right)
$$

est la solution du problème de Cauchy pour les équations d'Hamilton

$$
\left\{\begin{array}{l}
\dot{x}=D_{p_{x}} H \\
\dot{p}_{x}=-D_{x} H
\end{array}\right.
$$

on peut alors écrire Λ explicitement :

$$
\Lambda=\left\{\left(\phi_{t}\left(x, D_{x} u_{0}(x)\right), t,-H\left(t, \phi_{t}\left(x, D_{x} u_{0}(x)\right)\right)\right) \mid x \in M, t \in \mathbf{R}\right\}
$$

où on a changé l'ordre d'écriture des variables dans $T^{*}(M \times \mathbf{R})$ pour simplifier.
On considère aussi

$$
\begin{gathered}
\Sigma=\left\{\left(y, p_{y}\right) \in T^{*}(M \times \mathbf{R}) \mid F\left(y, p_{y}\right)=p_{t}+H\left(t, x, p_{x}\right)=0\right\} \\
\Sigma_{\bar{t}}=\left\{\left(y, p_{y}\right) \in \Sigma \mid t=\bar{t}\right\} \quad \Sigma_{\bar{y}}=\left\{\left(y, p_{y}\right) \in \Sigma \mid y=\bar{y}\right\} \\
\Lambda_{\bar{t}}=\left\{\left(y, p_{y}\right) \in \Lambda \mid t=\bar{t}\right\} \quad \Lambda_{\bar{y}}=\left\{\left(y, p_{y}\right) \in \Lambda \mid y=\bar{y}\right\}
\end{gathered}
$$

Si $n=\operatorname{dim} M$ on a

$$
\begin{gathered}
\operatorname{dim} \Sigma=2 n+1 \\
\operatorname{dim} \Sigma_{t}=2 n \\
\operatorname{dim} \Lambda=n+1 \\
\Lambda_{y} \subset \Sigma_{y}
\end{gathered} \Lambda_{t} \subset \Sigma_{t} \quad \operatorname{dim} \Lambda_{t}=n \quad \operatorname{dim} \Lambda_{y}=0
$$

$\Lambda_{\bar{y}}$ c'est alors l'ensemble des points sur \bar{y} qui corresponde aux points critiques de S pour $(x, t)=\bar{y}$.

Si card $\Lambda_{\bar{y}}=1$ on est dans le cas d'un point où u est C^{1}.
Si card $\Lambda_{\bar{y}}>1$ la construction de $u(\bar{y})$ corresponde au choix de deux points de $\Lambda_{\bar{y}}$ qui peuvent éventuellement coïncider. Quand ils ne coïncident pas on a un saut du vecteur des dérivées. Dans le cas où les points de saut constituent une surface, Γ, on voit facilement le lien avec les solutions de viscosité de la façon suivante : soient $\left(\bar{y}, p_{-}\right)\left(\bar{y}, p_{+}\right) \in \Lambda_{\bar{y}}$ deux tels points, avec $\bar{y} \in \Gamma$ et Γ qui divise $M \times \mathbf{R}$ en deux parties $\Omega_{-}, \Omega_{+} \cdot p_{-}, p_{+}$correspondent aux limites de $D u$ respectivement du côté "gauche" et "droite" de Γ, où gauche et doite sont définies par le choix de Ω_{-}, Ω_{+}. En utilisant le formalisme du paragraphe précédent on a

$$
\frac{p_{-}-p_{+}}{\left\|p_{-}-p_{+}\right\|}= \pm n(\bar{y})
$$

où $\|\cdot\|$ est la norme usuelle dans \mathbf{R}^{n+1}.
Si

$$
\frac{p_{-}-p_{+}}{\left\|p_{-}-p_{+}\right\|}=+n(\bar{y})
$$

on obtient

$$
p_{-} \cdot n(\bar{y}) \geq p_{+} \cdot n(\bar{y})
$$

donc u est sur-solution de viscosité comme la condition (2) du théorème du paragraphe précédent est vide.

Si en plus le segment entre (\bar{y}, p_{-}) et (\bar{y}, p_{+}) est situé entièrement dans le côté $\{F \leq 0\}$ de $\Sigma_{\bar{y}}$, on aura

$$
F\left(\bar{y}, p_{-}+s\left(p_{+}-p_{-}\right)\right) \leq 0 \quad \forall s \in[0,1]
$$

qui corresponde à la condition (1) du théorème du paragraphe précédent.
C'est pour exemple le cas de $\Sigma_{\bar{y}}$ convexe, donc de

$$
\operatorname{Hess}_{p_{y}} F\left(\bar{y}, p_{y}\right) \geq 0
$$

ou, qui est la même chose, de

$$
\operatorname{Hess}_{p_{x}} H\left(\bar{y}, p_{x}\right) \geq 0
$$

En effet

$$
F\left(\bar{y}, p_{+}\right)=F\left(\bar{y}, p_{-}\right)=0
$$

et pour convexité, la valeur de F sur les points du segment joignant (\bar{y}, p_{+}) à (\bar{y}, p_{-}) est plus petite ou, le pire, égal.

La situation est tout à fait similaire si

$$
\frac{p_{+}-p_{-}}{\left\|p_{+}-p_{-}\right\|}=-n(\bar{y}) \quad \text { et } \quad \operatorname{Hess}_{p_{x}} H\left(\bar{y}, p_{x}\right) \leq 0
$$

On peut alors résumer ces conclusions avec le lemme suivant :

LEMME V.

$$
\begin{aligned}
& H_{\operatorname{Hess}_{p_{x}} H\left(\bar{y}, p_{x}\right) \geq 0}^{p_{-}-p_{+}} \\
& \left\|p_{-}-p_{+}\right\|
\end{aligned} \quad \Rightarrow n(\bar{y}) \quad \Rightarrow \quad u \text { est solution de viscosité dans } y=\bar{y}
$$

Remarque 1: ces conditions ne sont pas nécessaires.
On peut voir que si pour la construction de u on part de une sous-variété lagrangienne et on veut avoir une solution de viscosité, un hamiltonien convexe permit points où u est non-différentiable seulement si ils sont déformables en maximums locaux par la moyenne de une fonction de test positive ϕ (voir la définition générale de solution de viscosité). De même pour un hamiltonien concave et minimums locaux.

Remarque 2: Si on prend $F^{\prime}=-F$ en place de F, c'est comme avoir une u^{\prime} telle que $\partial_{t} u^{\prime}=-\partial_{t} u$ et une H tel que $H^{\prime}=-H$. Si on regarde les équations de Hamilton on s'aperçoit que c'est la même chose qu'échanger t en $t^{\prime}=-t$. Donc, par rapport aux solutions généralisées considérées, l'équation (H-J) pour F^{\prime} corresponde à "renverser la direction du temps" dans l'équation (H-J) pour F.

7.Un exemple

On veut ici considérer un exemple très simple, mais déjà non-trivial. Soit

$$
H\left(t, x, p_{x}\right)=\frac{p_{x}^{2}}{2}-\cos \pi x
$$

l'hamiltonien autonome du pendule. Ici $x \in \mathbf{R}=M$ et $T^{*} M \simeq \mathbf{R}^{2}$. L'équation de Hamilton-Jacobi est dans ce cas

$$
\begin{equation*}
\partial_{t} u+\frac{1}{2}\left(\partial_{x} u\right)^{2}-\cos \pi x=0 \tag{H-J*}
\end{equation*}
$$

et on prend comme conditions initiales

$$
\begin{equation*}
u(x, 0)=u_{0}(x)=\frac{x^{2}}{2} \tag{C-I*}
\end{equation*}
$$

On pense à $T^{*} M=\left\{\left(x, p_{x}\right)\right\}$ feuilleté en surfaces d'énergie constante

$$
\left\{\left(x, p_{x}\right) \mid H\left(x, p_{x}\right)=E\right\}
$$

Il y a des points fixes sur la droite $\left\{p_{x}=0\right\}$. Ils sont stables pour $x=2 k, k \in \mathbf{Z}$ et instables pour $x=2 k+1, k \in \mathbf{Z}$. La séparatrice $\{H=0\}$ passe par les pointes fixes instables et divise le plan en trois: la partie supérieure du plan avec $E>0$, la partie inférieure du plan avec $E>0$ et la partie avec $E \leq 0$, qui contient $\left\{p_{x}=0\right\}$.

Entre $x=-1$ et $x=1$ et pour $E<0$, les surfaces à énergie constante sont topologiquement des cercles, centrés en $x=0$, point fixe stable (voir figure 1).

Pour (C-I*) on a

$$
\left.\Lambda_{0} \simeq\{(x, x) \mid x \in M=\mathbf{R}\}=T^{*} M\right\}
$$

Donc pour la partie de Λ_{0} contenue dans $\{|x| \geq 1\}$, la dynamique est triviale : la partie à droite se déplace vers la droite et la partie à gauche se déplace vers la gauche.

Si $\Lambda_{t}^{1}=\phi_{t}\left(\Lambda_{0}\right) \cap\{|x| \geq 1\}$, on a alors que Λ_{t}^{1} est un graphe, où $\pi: \Lambda_{t} \longrightarrow M$ est toujours la projection sur M.

Si on regarde tout dans $T^{*}(M \times \mathbf{R})$

$$
\begin{gathered}
\Lambda_{0}=\left\{\left.\left(x, x, 0,-\frac{x^{2}}{2}+\cos x\right) \right\rvert\, x \in \mathbf{R}\right\} \\
\Lambda_{t}=\left\{\left.\left(\phi_{t}(x, x), t,-\frac{x^{2}}{2}+\cos x\right) \right\rvert\, x \in \mathbf{R}\right\}
\end{gathered}
$$

Comme H est autonome, l'évolution de p_{t} est triviale et il est facile d'analyser l'évolution générale dans $T^{*} M$ (voir figures 2 et 3).

Regardons maintenant $\Lambda_{t}^{2}=\phi_{t}\left(\Lambda_{0}\right) \cap\{|x| \leq 1\}$. Les points de $\Lambda_{0} \cap\{E<0\}$ tournent dans le sens horaire autour du point fixe $x=0$. Donc, à côté de la séparatrice, après un temps t^{\prime}, apparaissent deux plis en forme de S, qui permanent dans le temps et qui, pour $t \longrightarrow \infty$ tendent à disparaître, comme les points sur la séparatrice tombent graduellement sur les points fixes instables ± 1. En plus, comme $\phi_{t}\left(\Lambda_{0}\right)$ se visse de plus en plus autour de $x=0$, on aura après un temps t " un pli "centré" en $x=0$ en forme de S renversé, qui se visse de plus en plus et qui forme ensuite des plis plus compliqués.

En présence d'un pli, la construction de u_{S} corresponde à la construction de Maxwell pour la transition de phase du premier ordre d'un gaz réel; il faut choisir le point de saut à travers du pli en sorte que u_{S} soit continue (voir par exemple [A], paragraphe 46) : soient $\left(x, p_{-}\right),\left(x, p_{+}\right)$les points choisis pour le saut, l un chemin sur $\phi_{t}\left(\Lambda_{0}\right)$ entre eux et g le segment qui les joint; la requête pour u_{S} d'être continue correspond à :

$$
\int_{l \cup g} \partial_{x} S=u_{S}^{+}(x, t)-u_{S}^{-}(x, t)=0
$$

où $u_{S}^{+}(x, t), u_{S}^{-}(x, t)$ sont les deux valeurs de S correspondantes aux points $\left(x, p_{-}\right)$et $\left(x, p_{+}\right)$. La condition c'est alors de couper le pli en sorte que les aires des deux oreilles soient égales.

Dans l'exemple considéré, F est convexe en p pour chaque (x, t). Donc

$$
F\left(x, t, p_{-}+s\left(p_{+}-p_{-}\right)\right) \leq 0 \quad \forall(x, t) \text { points de saut }
$$

A chaque instant t la solution obtenue à travers Λ est alors sous-solution de viscosité.

Si on considère maintenant le pli central, il a la forme de un S renversé; donc on saute de une valeur plus grande (à gauche) à une valeur plus petite (à droite). On a alors que

$$
\left[D u_{-} \cdot n, D u_{+} \cdot n\right]=\emptyset
$$

et u est aussi sur-solution de viscosité (voir théorème du paragraphe 5).
Au contraire, pour les deux plis sur la séparatrice, on saute à l'inverse et

$$
\left[D u_{+} \cdot n, D u_{-} \cdot n\right] \neq \emptyset
$$

Donc la solution donnée par le théorème n'est pas une solution de viscosité.

Remarques

1) L'existence d'un tel exemple peut être comprise grâce au fait que la condition initiale n'est pas la section nulle et dans un tel cas l'assertion du Corollaire II (ii) ne peut pas être démontrée.
2) Un des auteurs (A.Ottolenghi) souhaite porter l'attention sur deux phénomènes physiques qui pourraient être reliés à l'example mentionné. Il s'agit de la viscosité negative $(\epsilon<0)$ [St] (connue en dynamique des mileus continues dans des systèmes de grandes dimensions) et des transitions de phases vers des états quantiques macroscopiques, où la variable η est complexe et un saut vers le haut peut être obtenu par un saut vers le bas du module de η plus un saut de π de l'argument.

Bibliographie

[A] Arnold,V.I. : Les Méthodes Mathématiques de la mécanique classique. Editions Mir; Moscou,1976.
[Ch1] Chaperon,M. : Lois de conservation et géométrie symplectique. Comptes Rendus Acd.Sci.Paris 312 Serie I (1991),345-348.
[Ch2] Chaperon,M. : Une idée du type géodésiques brisées pour les systèmes hamiltoniens. Comptes Rendus Acd.Sci.Paris 298 (1984),293-296.
[C-L] Crandall,G.;Lions,P.L.: Viscosity solutions of Hamilton-Jacobi equations. Trans.Am.Math.Soc. 277 No. 1 (1983),1-42.
[M] Milnor,J. : Morse theory. Princeton University Press :Princeton,N.J.(1963).
[S] Sikorav,J.C. : Sur les immersions lagrangiennes admettant une phase génératrice globale. Comptes Rendus Acad.Sci.Paris (1) 302 (1986), 119-122.
[St] Starr,V.P.: Physics of Negative Viscosity Phenomena; Pergamon Press (1968).
[V] Viterbo,C. : Symplectic topology as the geometry of generating functions. Math.Annalen. 292 No. 4 (1992),685-710.

