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Abstract

In this memoire, we will explain the meromorphic continuation of the Ruelle
zeta function for Anosov flows using microlocal analysis. This extension is
done considering the generator of the flow acting on some anisotropic Sobolev
spaces introduced by Faure-Sjöstrand. Then, we show that the Ruelle zeta
function of the geodesic flow on a negatively curved surface vanishes at zero
with order the Euler characteristic of the surface. This is a result due to S.
Dyatlov and M. Zworski.
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1 Introduction
Historical background. In 1956, Selberg [Sel56] introduced a zeta function
associated to surface of constant negative curvature κ = −1

ζSelberg(s) =
∏
γ

∞∏
k=0

(
1− e−(s+k)`(γ)

)
, <(s) > 1,

where the first product runs over all primitive closed geodesics γ. He showed
that ζSelberg extends to a meromorphic function on the whole complex plane
using a trace formula (today called Selberg’s trace formula), which links the
lengths `(γ) of the closed geodesics with the eigenvalues of the hyperbolic
Laplacian. For a compact hyperbolic surface Σ = Γ\H2, the Selberg’s trace
formula leads to the following dichotomy on the zeroes of ζSelberg :
• The non-trivial zeroes of ζSelberg, which are of the form

s = 1, s = 1
2 ± iρj, j ∈ N≥1,

where ρ2
j + 1/4 = λj and 0 = λ0 < λ1 < · · · → ∞ are the eigenvalues

of the hyperbolic Laplacian ∆. The vanishing order at s = 1
2 ± ρj is

µj if ρj 6= 0 and 2µj otherwise, where µj is the multiplicity of λj as an
eigenvalue of ∆ ; the vanishing order at s = 1 is 1.
• The trivial zeroes of ζSelberg, which are of the form

s = −m, m ∈ N,

with vanishing order 1− χ(Σ) for m = 0 and −(2m+ 1)χ(Σ) for m > 0.
The definition of ζSelberg of course generalizes to the case of surfaces with
variable negative curvature ; however we do not know any analogue of the
Selberg’s trace formula in the variable curvature setting, which restricts our
knowledge about ζSelberg in this context.

In 1976, D. Ruelle associated to any Anosov flow φt a zeta function [Rue76].
It can be thought as an analogue of the inverse of the Riemann zeta function

ζRiemann(s)−1 =
∏
p∈P

(
1− p−s

)
, <(s) > 1.

where P is the set of prime numbers, replacing the prime numbers by the
exponential of the lengths of the primitive periodic orbits of φt :

ζRuelle(s) =
∏

γ primitive

(
1− e−s`(γ)

)
, <(s)� 0.

Ruelle and Selberg zeta functions are linked by the formulae

ζRuelle(s) = ζSelberg(s)
ζSelberg(s+ 1) , ζSelberg =

∞∏
p=0

ζRuelle(s+ p). (1.1)
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As in number theory, the Ruelle zeta function is very useful to describe the
distribution of the primitive periodic orbits.

Ruelle showed that ζRuelle extends meromorphically to the whole complex
plane provided the flow and its stable and unstable bundles distributions (see
definitions in §2.1) are analytic ; then, first Rugh [Rug96] in dimension 3,
then Fried [Fri95] in all dimensions showed that we can remove the analyticity
assumption on the stable and unstable distributions (but not on the flow).
In the case of a C∞ flow, we know since a while that ζRuelle is analytic and
nonzero on <(s) > h(φ), where h(φ) is the topological entropy of the flow,
with a simple pole at h(φ). It was also known that it extends meromorphically
to a neighborhood of {<(s) ≥ h(φ)} if the flow is weak mixing, see [PP90,
Chapter 9] for more references and details. Those results are typically obtained
by coding the dynamics using Markov partitions, in order to relate the zeta
function to the dynamical determinant, or Fredholm determinant, of some
appropriate operators. However those methods do not take into account the
smoothness of the dynamics, and we know thanks to Kitaev [Kit99] (at least in
the case of Anosov diffeomorphisms) that the smoothness of the map is highly
related to how far we can extend the Fredholm determinant.

In the early 2000’s, Blank, Keller and Liverani [BKL02] introduced some
Banach spaces adapted to an hyperbolic diffeomorphism on which the transfer
operator is quasi-compact ; this led to a lot of developements in this direction
[Bal04, GL06, BT07]. Also some spaces adapted to Anosov flows [Liv04,
BL07] have been developed, on which the generator of the flow has a quasi-
compact resolvent. More recently, Faure-Roy-Sjöstrand [FRS08] introduced a
microlocal approach to construct anisotropic Sobolev spaces adapted to Anosov
diffeomorphisms ; then Faure-Sjöstrand [FS11] constructed such spaces for
Anosov flows. Those spaces provide the right regularity to study the generator
X of the flow which appears to be Fredholm restricted to them ; this gives the

Theorem 1.1 ([BL07, FS11]). For an Anosov vector field X, the resolvent
(−iX − λ)−1 : C∞(M) → D′(M) has a meromorphic extension to the whole
complex plane, with poles of finite multiplicity. Those poles are the Ruelle
resonances.

All those modern techniques finally allowed Giuletti-Liverani-Policott, then
Dyatlov-Zworski, to show

Theorem 1.2 ([GLP13, DZ13]). The Ruelle zeta function of a smooth Anosov
flow extends to a meromorphic function on the whole complex plane.

It is moreover showed in [GLP13] that in Ck regularity, that ζRuelle extends
meromorphically to the half plane <(s) > h(φ)− ck where the constant c is
determined by the Anosov splitting. This paper is an extension of [GL06, BL07]
whereas the approach in [DZ13] uses semiclassical analysis and is based on
[FS11]. In this memoire, we will concentrate on this microlocal approach. Let
us briefly recall the main components of the proof of Dyatlov-Zworski. The
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first step is to relate the (log derivative of the) zeta function to the flat trace of
the (shifted) resolvent of the generator of the flow for <(s)� 0 thanks to the
Guillemin trace formula [Gui77]. Then using the Faure-Sjöstrand spaces and
microlocal analysis, they show that the meromorphic extension of the (shifted)
resolvent lie in an appropriate space on which the flat trace is continuous,
which guarantees the meromorphicity of the zeta function.

Later, Dyatlov-Zworski got interested in the behavior of ζRuelle at s = 0 :

Theorem 1.3 ([DZ17b]). For a smooth contact Anosov flow on a 3-manifold
M with orientable stable distribution, the Ruelle zeta function vanishes at zero
with order −χ(M) where χ(M) is the Euler characteristic of M .

In particular, for the geodesic flow on a closed negatively curved surface
Σ (which is an Anosov flow on the unitary tangent bundle) the meromorphic
extension of ζRuelle vanishes at s = 0, with a zero of order |χ(Σ)|, where χ(Σ)
is the Euler characteristic of Σ. Note that thanks to (1.1), we recover the
special case of compact hyperbolic surfaces earlier mentioned : the pole at zero
of ζSelberg is 1 − χ(Σ). This result shows in particular that for a negatively
curved surface, the length spectrum of the surface (that is, the set of lengths of
primitive geodesics) determines the genus of the surface. This result is proved
using the standard factorization of the zeta function and calculating the di-
mension of the spaces of generalized resonant states of the generator of the flow.

Further extensions. Very recently, the meromorphic extension of the zeta
function for Axiom A flows have been established by Dyatlov-Guillarmou
[DG18], answering positively to a conjecture of Smale [Sma67]. This is based
on their previous work [DG16] about the zeta function for open systems. The
meromorphic extension of the zeta function was already proved in the case
of Grassmanian extensions of contact Anosov flows, which is a special case of
Axiom A flows, by Faure-Tsuji [FT17].

Guillarmou-Hilgert-Weich [GHW18] exhibited a correspondence between
classical resonant states (that is, Ruelle resonant states) and quantum reso-
nant states (that is, eigenfunctions of the Laplacian) for convex co-compact
hyperbolic surfaces. This highlights the deep link existing between classical
and quantum mechanics on hyperbolic surfaces ; such a link was already
known, as witnessed by the Selberg’s trace formula (see [PP+01] for the convex
co-compact case), but only for resonances.

Also, Hadfield [Had18] proved that the Ruelle zeta function of the geodesic
flow on a negatively curved surface Σ with strictly convex boundary (which is
Axiom A) vanishes at zero with order 1− χ(Σ). We refer to the introduction
of [DG16] for a more exhaustive overview of results about Policott-Ruelle
resonances and dynamical zeta functions.

Structure of the memoire. In section 2 we recall the definitions of some
dynamical notions and the Guillemin trace fomula. We give the construction of
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the microlocal Faure-Sjöstrand spaces in section 3 and prove that the resolvent
of the generator of the flow extends meromorphically to the whole complex
plane. We give in section 4 some semiclassical estimates that allows to compute
the wavefront set of the extension of the resolvent. In section 5, we show the
meromorphic continuation of the Ruelle zeta function for Anosov flows whose
stable and unstable bundles are orientable. We compute the vanishing order
of ζRuelle at zero in section 6. In appendix A we recall basic definitions about
pseudo-differential operators, semiclassical calculus and wavefront sets. In
appendix B we recall standard facts about operator theory and flat traces. In
appendix C we show some recurrence estimates to get a bound on the growth
of the number of periodic orbits.

Acknowledgments. I would like to thank Colin Guillarmou for his very
precious advices and for answering a lot of my questions. I also thank Malo
Jézéquel and Thibault Lefeuvre for very helpful discussions.
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2 Preliminaries on dynamical systems
2.1 Anosov flows and dynamic on the cotan-
gent bundle
Let M be a smooth compact manifold.
Definition 2.1. A smooth vector field X on M will be called to be Anosov if
for each x in M , we have a decomposition

TxM = Ran(Xx)⊕ Es(x)⊕ Eu(x),

preserved by the flow, and satisfying that for any metric | · | on TM there
exists C, θ > 0 such that :

|dφtx(vs)| ≤ Ce−θt|vs|, t ≥ 0, vs ∈ Es(x)
|dφtx(vu)| ≤ Ce−θ|t||vu|, t ≤ 0, vu ∈ Eu(x).

x
Eu(x)

Es(x)

φt(x)

Es(φ
t(x))

Eu(φ
t(x))

Figure 2.1. An illustration of an Anosov flow.

Remark 2.2. A typical situation is given by the case where M = S∗Σ is the
cosphere bundle over a negatively curved surface Σ; in that case, this is a
well-known fact that the geodesic flow on M is Anosov [Ano67].
Remark 2.3. One can always find a norm such that the previous constant C
is equal to 1, with a new constant θ̃ arbitrarily close to the first one. Indeed, it
suffices to average the metric along the flow : for T large enough the metric
‖v‖T =

∫ T
0 |dφsv|ds satisfy those properties.
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If ϕ ∈ Diff(M), we will denote by ϕ̃ its lift to T ∗M :

ϕ̃(x, ξ) = (ϕ(x), T (dϕ)−1
x · ξ), (x, ξ) ∈ T ∗M,

where T denote the transposition. Let Ω be the canonical symplectic form on
T ∗M , that is Ω = dp where p is the 1-form defined by p(x,ξ)(v) = ξ(dπ(x,ξ) · v)
for v ∈ T(x,ξ)T

∗M . Here π : T ∗M →M is the natural projection. Note that for
any ϕ ∈ Diff(M), one has ϕ̃∗Ω = Ω. Let X be a smooth vector field on M , and
denote by H ∈ C∞(T ∗M) the Hamiltonian defined by H(x, ξ) = ξ(Xx). Let X
be the Hamiltonian vector field of H with respect to Ω, that is, ιXΩ = dH,
where ι denotes the interior product. Differentiating with respect to t, we get
the following lemma which tells us that the lift of the flow of X on T ∗M is the
Hamiltonian flow of H.

Lemma 2.4. Let φt be the flow of X on M and denote its lift φ̃t on T ∗M by
Φt. Then Φt is the flow generated by the Hamiltonian vector field X.

We will denote by E∗0 , E∗s and E∗u the dual decomposition of E0, Es and Eu in
the following sense : E∗0 (Eu ⊕ Es) = 0, E∗s (Es ⊕ E0) = 0 and E∗u (Eu ⊕ E0) =
0. Note that E∗u and E∗s do not correspond to the usual definition of dual
spaces (they are exchanged) but one would rather prefer this convention since
Φt preserves this decomposition and we have, with the norm | · | on T ∗M
induced by the one on TM :

|Φt(x, ξs)| ≤ Ce−θt, t ≥ 0, ξs ∈ E∗s (x),
|Φt(x, ξu)| ≤ Ce−θ|t|, t ≤ 0, ξu ∈ E∗u(x).

(2.1)

Those estimates motivate the following definition.

Definition 2.5. Let ρ : T ∗M \ 0→ S∗M the natural projection, where S∗M
is the unitary cotangent bundle, namely S∗M = {(x, ξ) ∈ T ∗M, |ξ| = 1}.
Suppose L is a closed conic set invariant under the flow Φt. L will be called a
radial source if there exists an open conical neighborhood U of L in T ∗M \ 0
and C, θ > 0 such that

dist
(
ρ
(
Φ−t(U)

)
, ρ(L)

)
−→
t→+∞

0;

|Φ−t(x, ξ)| ≥ C−1eθt|ξ|, (x, ξ) ∈ U, t ≥ 0.

Reversing the time of the flow we get the definition of a radial sink.

Remark 2.6. It is obvious from (2.1) that E∗s is a radial source whereas E∗u
is a radial sink.
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2.2 Periodic orbits and the Ruelle zeta func-
tion
In the following, M is a compact manifold and X is an Anosov flow on M ,
with φt its flow.

Lemma 2.7 (Growth of the number of periodic orbits). Let N(T ) be the
number of periodic orbits of φt of length smaller than T . Then there exists
C,L > 0 such that

N(T ) ≤ CeLT . (2.2)

An elementary proof of this fact is given in section C. In fact, one has the
more precise statement (which we won’t need here, [Mar69]) : N(T ) grows
exponentially fast and there is h(φ) > 0 such that

N(T ) ∼ eh(φ)T

h(φ)T .

The number h(φ) is the topological entropy of the flow φt.

Definition 2.8. Let {γ#} be the primitive periodic orbits of X and denote
{`(γ#)} their periods. Then the Ruelle zeta function ζ of X is defined by the
formula

ζ(s) =
∏
γ#

(
1− e−s`(γ#)

)
, (2.3)

where s ∈ C has a big enough real part.

If τ1 ≤ τ2 ≤ ... are the periods of φt, one has

τn & log n (2.4)

by (2.2), and this guarantees the convergence of (2.3) for <(s)� 0.

Let us now introduce the notion of linearized Poincaré map of a periodic
orbit.

Definition 2.9. Let γ(t) = φt(x) be a periodic orbit of period τ . Then the
linearized Poincaré map of γ is defined by

Pγ =
(
dφ−τ

)
x
|Es(x)⊕Eu(x).

The Anosov property of the flow implies that periodic orbits are non
degenerate in the sense that I − Pγ is invertible. Indeed, if v ∈ Es(x)⊕ Eu(x)
satisfies v = Pγv, then v = P n

γ v for all n ∈ Z. Writing v = vu + vs with
vu ∈ Eu(x) and vs ∈ Es(x), and noting that Pγ preserves Eu and Es, we get
|vu| ≤ Ce−nτ |vu| for all n so vu = 0. Similarly vs = 0, so v = 0.
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If we choose an other base point x′ = φs(x), then the new linearized Poincaré
map P ′γ will be conjugated by dφsx to Pγ. In particular, the determinant
det(I − Pγ) is well defined and does not depend of the base point. Moreover,
we have det(I − Pγ|Eu) > 0 since the eigenvalues of Pγ|Eu are of modulus
strictly less than 1 and therefore I − Pγ|Eu and I lie in the same connected
component of GL(Eu). Similarly, we have det(I − P−1

γ |Es) > 0. If Es is
orientable, we obtain det(Pγ|Es) > 0 since dφt preserves the orientation of
the stable bundle. Letting q = dimEs, we get det(I − Pγ|Es) = det(P−1

γ |Es −
I) det(Pγ|Es) = (−1)qdet(−P−1

γ |Es + I)︸ ︷︷ ︸
>0

det(Pγ|Es)︸ ︷︷ ︸
>0

so that | det(I − Pγ|Es)| =

(−1)q det(I − Pγ|Es). Writing det(I − Pγ) = det(I − Pγ|Es) det(I − Pγ|Eu) we
get

| det(I − Pγ)| = (−1)q det(I − Pγ). (2.5)

2.3 The Ruelle transfer operator and the Guillemin
trace formula
For 0 ≤ k ≤ n, let Ωk be the vector bundle of k-forms on M and define the
operator Pk : C∞(M,Ωk) → C∞(M,Ωk) by Pkα = −iLXf . We will note for
simplicity Ω = ⊕

k Ωk and P = ⊕
k Pk. We also define Ωk

0, the vector bundle of
k-forms f with ιXf = 0 where ι is the interior product. Let

Tk : C∞(M,Ωk
0)→ C∞(R>0 ×M,π∗MΩk

0)

the operator defined by Tk(f) = (ft)t∈R>0 where ft = e−itPkf := (φ−t)∗f and
πM is the projection over M . The operator e−itPk is called the Ruelle transfer
operator. The purpose of the Guillemin trace formula is to link the Ruelle
transfer operator to the linearized Poincaré maps of the periodic orbits:

Theorem 2.10 (Guillemin trace formula [Gui77]). The flat trace of Tk is well
defined, and we have in D′(R>0) :

tr[Tk =
∑
γ

`(γ#)tr(∧k Pγ)δ`(γ)

| det(I − Pγ)|
, (2.6)

where the sum goes over all periodic orbits γ, `(γ) is the period of γ, `(γ#) its
primitive period, δ`(γ) is the Dirac distribution at `(γ), and Pγ is the linearized
Poincaré map of γ.

See § B.3 for the definition of the flat trace.
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Proof of Theorem 2.10. Denote by K is the Schwartz kernel of T with respect
to some density vol. Now note that K acting on 0-forms is a density on the
surface S = {(t, y, x) ∈ R>0×M ×M, y = φt(x)}. Therefore [Hör90, Example
8.2.5], WF(K) ⊂ N∗S, that is

WF(K) ⊂
{(
t,−η ·Xx, φ

t(x), η, x,− Tdφtx · η
)
| t ∈ R>0, x ∈M, η ∈ Tφt(x)M \ 0

}
.

Now to show the condition (B.2) (in order to define the flat trace of T), we
have to verify that WF(K) ∩ {(t, 0, x, ξ, x,−ξ)|t > 0, (x, ξ) ∈ T ∗M \ 0} = ∅.
But this is straightforward since η · Xx = 0, φt(x) = x and (I − Tdφtx) · η
implies η = 0. Indeed the Poincaré return map of a closed orbit is invertible
restricted to Es ⊕ Eu (see the discussion below Definition 2.9).

Let us now interest ourselves to the case k = 0. Let T = T0, K = KT and
j : R>0 ×M → R>0 ×M ×M, (t, x) 7→ (t, x, x).

Lemma 2.11. Let t0 > 0 and x0 ∈ M such that φt0(x0) = x0, and γ the
associated orbit. Then there exists a small neighborhood U of x0 and δ > 0
such that all χ ∈ C∞c ((t0 − δ, t0 + δ)× U) we have

〈j∗T, χ〉 = 1
| det(I − Pγ)|

∫ t0+δ

t0−δ
χ(t0, φs(x0))ds.

Proof. Take some local coordinates w : U1 → B(0, ε) ⊂ Rn such that w∗X =
∂w1 and w(x0) = 0. Let φ̃t = w ◦ φt ◦ w−1 (this is well defined for t near
t0) and take some W ⊂ B(0, ε) and δ > 0 satisfying φ̃−t(W ) ⊂ B(0, ε) for
every |t − t0| < δ. Let ρ ∈ C∞c (Rn, [0, 1]) such that

∫
Rn ρ = 1. For d ∈ N,

w = (w1, · · · , wd) and ε = (ε1, · · · , εd), set ρε(w) = Πd
j=1ε

−1
j ρ(wj/εj). Now

define for ε, ε′ ∈ (0,∞)n and ε0 > 0, θε0,ε,ε′ = ρε ⊗ ρε ⊗ ρε′ . Since the flat trace
does not depend of the density, we can assume that w∗ vol is the Lebesgue
measure on Rn. We have for ψ ∈ C∞c (W ) and χ̃ ∈ C∞c ((t0 − δ, t0 + δ) :

〈j∗
(
(w∗K) ∗ θε0,ε,ε′

)
, χ̃⊗ ψ〉 =

∫
θε0,ε,ε′(t− t′, x− φ̃−t(x′), x− x′)χ̃(t)ψ(x)dx′dt′dxdt

=
∫
ρε′(x− x′)ψ(x)χ̃(t)

∫
ρε0(t− t′)ρε(x− φ̃−t

′(x′))dt′dxdx′dt.

Letting ε0, ε
′ → 0 this reads

〈j∗
(
(w∗K) ∗ (δ1

0 ⊗ ρε ⊗ δn0 )
)
, χ̃⊗ ψ〉 =

∫
ρε(x− φ̃−t(x))χ̃(t)ψ(x)dxdt, (2.7)

where δd0 is the Dirac at 0 on Rd for d ∈ N. Write φ̃−t(x) = (−t + t0 + x1 +
a(z), b(z)), where x = (x1, z), for some smooth functions a and b. If ε = (ε1, h),
we obtain ∫

ρε1(t− t0 + a(z))ρh(z − b(z))χ̃(t)ψ(x)dtdx1dz.
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Letting ε1 → 0, one obtains
∫
ρh(z − b(z))χ̃(t0 − a(z))dx1dz. The change of

variable z′ = z − b(z) = ν(z) gives∫ 1
| det(I − (db)ν−1(z′))|

ρh(z′)χ̃(t0 − a ◦ ν−1(z′))ψ(x1, ν
−1(z′))dx1dz′.

Finally, letting h→ 0, we get since ν(0) = 0 and a(0) = 0 (indeed φt0(x0) = x0),

χ̃(t0) 1
| det(I − (db)0)|

∫
ψ(x1, 0)dx1.

We have w∗X = ∂w1 and (db)0 = (dφ̃−t)0|w1=0 so (db)0 is conjugated to Pγ . This
concludes the proof of the lemma, since j∗

(
(w∗K) ∗ (δ1

0 ⊗ ρε ⊗ δd0)
)
−→
ε→0

j∗w∗K

inD′((t0−δ, t0+δ)×W ). Indeed, convolution preserves the spacesD′Γ ; moreover
we can take the limit ε → 0 in an arbitrary order (of the εi) because of the
formula 〈u∗(⊗jρj),⊗jψj〉 = 〈u,⊗j(ρj∗ψj)〉 for u ∈ D′(Rd) and ρj, ψj ∈ C∞c (R),
where (⊗jψj) (x1, · · · , xd) = Πjψj(xj).

Remark 2.12. Since K is a delta function on S, if ψ ∈ C∞c (U) with U an
open set satisfying φ−t(U)∩U = ∅ for t ∈ (t0− δ, t0 + δ), then 〈j∗T, χ⊗ψ〉 = 0
for every χ ∈ C∞c (t0 − δ, t0 + δ).

Now let χ ∈ C∞c (R>0) and ψ ∈ C∞(M). There exists a finite set γ1, · · · , γN
of periodic orbits of length less than sup supp χ. Thanks to the preceding
remark, we can assume that ψ is supported in ⋃nj=1 Uj with Uj ∩ Ui = ∅ and
γj ⊂ Uj for all 1 ≤ i, j ≤ N , and that χ is supported near the values {`(γi)}.
Now decompose Ui in neighborhoods that satisfy the assumptions of Lemma
2.11 (up to shrinking them a little) and take a partition of unity along this
decomposition to get

〈j∗T, (χ⊗ ψ)|(`(γi)−δi,`(γi)+δi)×Ui〉 = χ(`(γi))
| det(I − Pγi)|

∫ `(γ#
i )

0
ψ(γi(t))dt.

This finally shows that for every χ, ψ, we have

〈j∗T, χ⊗ ψ〉 =
∑
γ

χ(`(γ))
| det(I − Pγ)|

∫ `(γ#)

0
ψ(γ(t))dt,

which is exactly (2.6) for k = 0.
To deal with the general case, we shall take the notations of appendix B.3

and calculate the Schwartz kernel of STk
. Take x0 ∈ M , t0 > 0 such that

φt0(x0) = x0, and (ej) a local basis of Ωk
0 on a small neighborhood U of x0.

Let f = ∑
j fjej ∈ C∞(U,Ωk

0), r = dim Ωk
0 and define (locally) the functions

bjl : C∞((t0 − δ, t0 + δ)× U) by((
φ−t

)∗
f
)

(x) =
∑
j,l

(
(φ−t)∗fj

)
(x)bjl(t, x)el(x). (2.8)
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Then for ψ ∈ C∞(U), we have STk
ψ(t, x) = ∑

j bjj(t, x) ((φ−t)∗ψ) (x), which
implies that

Kk =
∑

j

bjj

K (2.9)

locally in the sense of distributions, where Kk is the Schwartz kernel of STk
.

Applying the previous lemma, one obtains

〈j∗STk
, χ⊗ ψ〉 = χ(t0)

| det(I − Pγ)|

∫
t0−δ,t0+δ

ψ(φs(x0))
∑

j

bjj(t0, φs(x0))
 ds,

for χ ∈ C∞((t0 − δ, t0 + δ)). On the other hand, since ιXej = 0, (2.8) shows
that ∑

j

bjj(t0, φs(x0)) = tr
k∧((

Tdφ−t0φs(x0)

)
|E∗s⊕E∗u(φs(x0))

)
.

But now for all s, dφ−t0φs(x0)|E∗s⊕E∗u(φs(x0)) is conjugated to Pγ, which concludes
the proof of Theorem 2.10.

For χ ∈ C∞0 (R>0) let Mχ : C∞(M,Ω0) → D′(M,Ω0) the operator defined
by

Mχf =
∫ ∞

0
χ(t)

(
φ−t

)∗
fdt.

We shall prove the following lemma which will be useful later.

Lemma 2.13. Mχ has a well defined flat trace and we have

〈tr[T, χ〉 = tr[Mχ. (2.10)

Proof. Fix a density vol on M and let Kχ ∈ D′(M ×M,π∗1Ω0 ⊗ π∗2Ω∗0) be
the Schartz kernel of Mχ with respect to vol, where πj : M × M → M
denotes the projection on the j-th factor, j = 1, 2. Define also the application
L : C∞c (R>0)→ D′(M ×M,π∗1Ω0⊗π∗2Ω∗0) defined by L(χ) = Kχ. Then [Hör90,
Theorem 8.2.12] shows that WF(L(χ)) ⊂ {(x, ξ, y, η) ∈ T ∗(M × M)|∃t ∈
supp χ, (t, 0, x, ξ, y, η) ∈WF(KL)}, where KL is the Schwartz kernel of L with
respect to vol. Using vol, we identify C∞(M,Ω0) with C∞(M,Ω0 ⊗D) where
D is the line bundle of densities. Take f ∈ C∞(M,Ω0) and g ∈ C∞(M,Ω∗0).
We have by definition of the Schwartz kernels previously involved :

〈KL, χ⊗ f ⊗ g〉 = 〈L(χ), f ⊗ g〉
= 〈Kχ, f ⊗ g〉
= 〈Mχf ,g〉
= 〈Tf , χ⊗ g〉
= 〈K, χ⊗ g⊗ f〉,
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which implies (up to reordering) that KL = K. Now recall from the proof of
Theorem 2.10 that WF(K) ∩ {(t, 0, x, ξ, x,−ξ)|t > 0, (x, ξ) ∈ T ∗M \ 0} = ∅,
which implies that Mχ has a well defined flat trace. Finally, (2.10) is implied
by (2.7), letting ε→ 0.
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3 Policott-Ruelle resonances
In what follows, M is a compact manifold and X is an Anosov vector field on
M . We start in §3.1 by constructing an escape funtion that decreases along
the flow (Proposition 3.5). We define anisotropic Sobolev spaces in §3.2. We
finish by showing in §3.3 that the resolvant (P−λ)−1 extends meromorphically
to the whole complex plane (Theorem 3.15). We follow here [FS11].

3.1 The escape function
The purpose of this subsection is to construct an "escape function" g on the
cotangent space. This escape function decreases in the direction of the flow,
which will guarantee nice properties of the operator eOp(g). Recall from appendix
A.5 the definition of the fiber-radially compactified cotangent space T ∗M . Fix a
norm |·| on T ∗M and denote the projection T ∗M \0→ ∂T

∗
M = S∗M = {|ξ| =

1} by ρ as in section 2. The Hamiltonian vector field X defined in subsection 2.1
satisfies dρ(x,λξ) (X(x, λξ)) = dρ(x,ξ) (X(x, ξ)) for (x, ξ) ∈ T ∗M \ 0 and λ 6= 0
so it descends to a vector field X̃ on S∗M . For x ∈ M and ξ ∈ T ∗M \ 0,
we’ll denote [ξ] = ρ(ξ). The following lemma will be useful to define an order
function m:

Lemma 3.1. Suppose that v is a vector field on a compact manifold N , and
Ku and Ks are etv-invariant compact disjoint subsets such that

dist(etv(x), Ks) −→
t→+∞

0, x /∈ Ku

dist(etv(x), Ku) −→
t→−∞

0, x /∈ Ks.
(3.1)

We moreover ask that the convergence is locally uniform in N \ (Ks ∪Ku). Let
Vs and Vu be open neighborhoods of Ks and Ku, and fix ε > 0.
Then there exists Ws ⊂ Vs and Wu ⊂ Vs, neighborhoods of Ks and Ku, a
function m ∈ C∞(N, [0, 1]) taking the values 1 and 0 on neighborhoods of
Ks and Ku, and η > 0 satisfying that v(m) ≥ 0 on N, v(m) > η > 0 on
N \ (Wu ∪Ws), v(m) ≥ 1− ε on Ws and v(m) ≤ ε on Wu.

Proof. Schrinking a little Vu and Vs we can assume that Vs∩Vu = ∅. For δ > 0
and K ⊂ N , we set Kδ := {x ∈ N |dist(x,K) < δ} the δ-neighborhood of K.
We claim that there exist δ > 0 and R > 0 such that Kδ

s ⊂ Vs, Kδ
u ⊂ Vu and

for all t ≥ R, one has etv(Vs) ⊂ Kδ
s and e−tv(Vu) ⊂ Kδ

u. Indeed, this follows
immediately from the fact that the convergences in (3.1) are locally uniform in
M \ (Ks ∪Ku). Thus, considering Ṽs := ⋃

t≥R etv(Vs) and doing the same for
Vu, one can assume that

etv(Vs) ⊂ Vs, e−tv(Vu) ⊂ Vu, t ≥ 0.
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For T > 0 we set W T
s = eTv(N \ Vu) and W T

u = e−Tv(N \ Vs). According to
what precedes, if T is large enough, one has W T

u ⊂ Vu and W T
s ⊂ Vs. Choose

some m0 ∈ C∞(N, [0, 1]) satisfying m0 ≡ 1 on Vs and m0 ≡ 0 on Vu. Then
define mT ∈ C∞(N) by

mT (x) = 1
2T

∫ T

−T
m0(etv(x))dt, x ∈ N.

We have
v(mT ) = 1

2T (m0 ◦ eTv −m0 ◦ e−Tv). (3.2)

For x ∈ N, let I(x) = {t ∈ R | etv(x) ∈ N \ (Vs ∪ Vu)} and τ(x) be the
travel time between Vu and Vs, that is τ(x) = sup I(x) − inf I(x). One has
τ = supx∈N τ(x) < ∞, again because the convergence in the hypothesis is
locally uniform. From now on, we assume T > τ , which implies with (3.2) that
v(m)(x) = 1

2T > 0 for x /∈ W T
s ∪W T

u .

For x ∈ W T
u , one has eTv(x) /∈ Vs thus for t ≤ T − τ , we have etv(x) ∈ Vu

and m0(etv(x)) = 0. Therefore,

m(x) = 1
2T

∫ T−τ

−T
m0(etv(x))︸ ︷︷ ︸

=0

dt+
∫ T

T−τ
m0(etv(x))

 ≤ τ

2T .

Moreover, (3.2) gives v(mT )(x) ≥ 0 since m0(e−Tv(x)) = 0.

We show identically that for x ∈ W T
u , we have m(x) ≥ 1 − τ

2T and
v(mT )(x) ≥ 0. Thus, for T chosen large enough so that τ

2T < ε, we get
the desired objects with m = mT , Wu = W T

u , Ws = W T
s and η = 1

2T .

Now we are in position to make explicit the construction of our order
function m. In what follows, if C is a conical subset of T ∗M , its projection on
S∗M will be denoted by C̃.

Lemma 3.2 (The order function). Fix u < 0 ≤ n0 < s. We can find arbitrarily
small conical neighborhoods Γu,Γ0 and Γs of E∗u, E∗0 and E∗s in T ∗M and a
smooth order function m ∈ C∞(T ∗M, [u, s]) such that for |ξ| ≥ 1, m(x, ξ)
depends only of [ξ] ∈ S∗M and :

(i) m is equal to u (resp. s and n0) near Ẽ∗u (resp. Ẽ∗s and Ẽ∗0),
(ii) X(m) ≤ 0 globally,
(iii) X(m)(x, ξ) < −ηcm for (x, ξ) ∈ S∗M \ (Γ0 ∪ Γs ∪ Γu), where η > 0 does

not depend on u, n0, s, and cm = min(s− n0, n0 − u).

(iv) m > s/2 (resp. m < u/2) on Γ̃s (resp. Γ̃u).
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Proof. Let N = S∗M and v = X̃. Fix ε > 0 and construct m̃1 and m̃2
functions on N by applying lemma 6.2 to the two following situations :

1. K1
u = Ẽ∗s , K1

s = ˜E∗u ⊕ E∗0 .

2. K2
u = ˜E∗s ⊕ E∗0 , K2

s = Ẽ∗u.

Lemma 2.4 and (2.1) guarantees the locally uniform convergence required to
apply lemma 6.2. Indeed, for example in situation 1, let K be a compact subset
of S∗M \ (K1

u ∪K1
s ). There exists α > 0 such that

K ⊂ {[ξ] ∈ S∗M |α−1|ξs| ≤ |ξ0 + ξu| ≤ α|ξs|}.

Now (2.1) gives

|Φ−t(ξs)| ≥ C−1eθt|ξs| ≥ C−1eθtα−1|ξ0 + ξu|, [ξ] ∈ K, t > 0.

Again using (2.1) and the fact that E∗0 and E∗u are in direct sum we get c > 0
such that

|ξ0 + ξu| ≥ c|Φ−t(ξ0) + Φ−t(ξu)|, t > 0.
We therefore obtain

|Φ−t(ξs)| ≥ C−1eθtα−1c|Φ−t(ξ0) + Φ−t(ξu)|, t > 0,

which gives the locally uniform convergence towards K1
u in backward times ;

this is exactly the same in the future.

For j = 1, 2, we thus obtain arbirtrarily small neighborhoodsW j
u andW j

s of Kj
u

and Kj
s , a function m̃j and a constant ηj such that m̃j < ε on W j

u , m̃j > 1− ε
on W j

s , X̃(m̃j) > ηj on S∗M \ (W j
u ∪W j

s ) and X̃(m̃j) ≥ 0 globally.
We then define

m̃ = s+ (n0 − s)m̃1 + (u− n0)m̃2,

and we choose m ∈ C∞(T ∗M) such that m(x, ξ) = m̃(x, [ξ]) for |ξ| ≥ 1 and
m(x, ξ) = 0 for |ξ| ≤ 1/2 (for example by letting m(x, ξ) = m̃(x, [ξ])χ(|ξ|)
where χ ∈ C∞(R>0) satisfies χ ≡ 1 on [1,+∞[ and χ ≡ 0 on (0, 1/2)). Since m̃
takes the values s, n0 and u on Ẽ∗s , Ẽ∗0 and Ẽ∗u, m satisfies the point (i). The
point (ii) comes from the fact that X̃(m̃) = (n0−s)X̃(m̃1)+(u−n0)X̃(m̃2) ≤ 0.
Now let

Γ̃s = W 1
u ∩W 2

u , Γ̃0 = W 1
s ∩W 2

u , and Γ̃u = W 1
s ∩W 2

s .

Let η = min(η1, η2). On S∗M \ (Γ̃0 ∪ Γ̃s ∪ Γ̃u), we have X̃(m̃1) > η1 or
X̃(m̃2) > η2. Using X̃(m̃) = (n0 − s)X̃(m̃1) + (u − n0)X̃(m̃2), one gets
X̃(m̃) < −ηcm where cm is defined above, so m satisfies (iii) : indeed, one
has X(m)(x, ξ) = X̃(m̃)(x, [ξ]) for |ξ| ≥ 1. Now, since m̃j < ε on W j

u and
m̃j > 1− ε on W j

s for j = 1, 2, we obtain (iv) by letting ε small enough.
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We now introduce a norm f decreasing (resp. increasing) strictly along the
flow near the source E∗s (resp. the sink E∗u).

Lemma 3.3. For small enough conical neighborhoods Γs, Γu and Γ0 as in the
previous lemma, there exists C > 0 and f ∈ C∞(T ∗M \ 0,R>0), homogeneous
of degree 1, positive everywhere, such that

X(f) < −Cf on Γs, X(f) > Cf on Γu, and X(f) = 0 on Γ0.

Proof. By estimates (2.1), there exists small conical neighborhoods Γs ⊂ Vs
and Γu ⊂ Vu of E∗s and E∗u, and T > 0 such that :

|Φt(x, ξ)| ≤ 1
2 |ξ|, (x, ξ) ∈ Vs, t ≥ T

|Φ−t(x, ξ)| ≤ 1
2 |ξ|, (x, ξ) ∈ Vu, t ≤ T,

where Φt is the flow of X on T ∗M. Let f1 ∈ C∞(T ∗M \ 0,R>0) defined as
follows :

f1(x, ξ) =
∫ T

0
|Φs(x, ξ)|ds, (x, ξ) ∈ T ∗M.

Then f1 is an homogeneous function of degree 1 and there is c > 0 such that
c−1|ξ| ≤ f1(x, ξ) ≤ c|ξ| for all (x, ξ). We have that X(f1)(x, ξ) = |ΦT (x, ξ)|−|ξ|
which implies X(f1)(x, ξ) ≤ −1

2 |ξ| ≤ −
c−1

2 f1(x, ξ) for (x, ξ) ∈ Vs and similarly
X(f1)(x, ξ) ≥ c−1

2 f1(x, ξ) for (x, ξ) ∈ Vu. Now choose f an homogenous function
of degree 1 such that

f ≡ f1 on Γs ∪ Γu, f ≡ H on Γ0,

where H is the Hamiltonian that X is derived from. Then f satisfies the
requirements of the lemma with C = c−1

2 , since X(H) = 0.

Definition 3.4 (The escape function). Let m be an order function as in lemma
3.2 and f as in the previous lemma. Let

gm = m log〈f〉.

The function gm is called the escape function.

Proposition 3.5 (Uniform decreasing of the escape function outside Γ0). The
escape function, subordinate to a choice of vicinities Γs,Γu,Γ0 and a choice of
s, u, n0, satisfies that X(gm) ≤ 0 everywhere. Moreover, there is R > 0 such
that

X(gm)(x, ξ) ≤ −Cm, (x, ξ) /∈ Γ0, |ξ| ≥ R,

with Cm = cmin(|u|, s) for some c > 0 independent of s, u, n0.
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Proof. We have X(gm) = X(m) log〈f〉+mX (log〈f〉) .

On Γs ∪ Γu. Since X (log〈f〉) = f
〈f〉2 X(f), one gets that X(log〈f〉) ≤ −C f2

〈f〉2

on Γs by properties of f . Becausem > s/2 on Γs, we obtainm(x, ξ)X(log〈f〉)(x, ξ) ≤
−C̃s for |ξ| large enough and (x, ξ) ∈ Γs. Similarly m(x, ξ)X(log〈f〉)(x, ξ) ≤
−C̃|u| for |ξ| large enough and (x, ξ) ∈ Γu. Since X(m) ≤ 0 and log〈f〉 ≥ 0,
we have

X(gm)(x, ξ) ≤ −C̃ min(|u|, s)
for |ξ| large enough and (x, ξ) ∈ Γs ∪ Γu.

Outside Γs ∪ Γu ∪ Γ0. One has X(m) ≤ −ηcm. Moreover, mX(log〈f〉)
is globally bounded. Therefore, for |ξ| large enough, one has X(gm)(x, ξ) ≤
−ηcm log〈f〉(x, ξ) + C ≤ −C̃ min(|u|, s).

On Γ0. We have X〈f〉 = 0, since f(x, ξ) = H(x, ξ) for (x, ξ) ∈ Γ0. Therefore,
X(gm) = X(m) log〈f〉 ≤ 0. The constant C̃ involved is independent of s, u, n0,
which completes the proof with c = C̃.

Remark 3.6. We can rescale gm and consider gδm(x, ξ) = gm(x, ξ/δ) ; we have
X(gδm)(x, ξ) = X(gm)(x, ξ/δ) so gδm satisfies the properties announced in the
previous proposition, with δR instead of R (the constant Cm remains identical).

3.2 Anisotropic Sobolev spaces
Since the order function defined in the previous subsection is homogeneous
of degree 0, one has m ∈ S0(M). The class Smρ (M) is thus well defined
(recall from appendix A the definition of the classes Smρ for m ∈ S0(M)). Let
am = egm = 〈f〉m. We have the following lemma :
Lemma 3.7. The symbol am belongs to the class Smρ (M) for every ρ < 1 (we
will write am ∈ Sm1− for short), and the symbol gm lies in Sε(M) for all ε > 0.

Proof. We follow here [FRS08, Lemma 6]. We work in a coordinate chart U
and identify T ∗M |U with U × Rn. We write f(x, ξ) = c(x, ξ)|ξ| with some
c ∈ C∞(U × Rn \ U × 0) homogeneous of degree 0. We denote am by p for
simplicity. We proceed by induction on |α + β| to prove the estimates (A.2) ;
more precisely we will show that

(∂αξ ∂βxp)(x, ξ) = q(x, ξ)〈f〉m(x,ξ), (3.3)

with q ∈ S−ρ|α|+(1−ρ)|β|
ρ for all ρ < 1. We will use the following

Fact : log〈f〉 ∈ Sε for every ε > 0.
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Proof. Indeed for τ ∈ R let g(x, τ, ξ) =
√
τ 2 + f 2(x, ξ). Then g is homogeneous

of degree 1, so ∂αξ ∂βxg is homogeneous of degree 1−|α|. Taking τ = 1, we obtain
that ∂αξ ∂βx 〈f〉 lies in S1−|α|. Therefore, whenever (α, β) 6= (0, 0), ∂αξ ∂βx log〈f〉
lies in S−|α| since the log disappear as soon as we differentiate. Since log〈f〉 is
dominated by 〈ξ〉ε for all ε > 0, we get log〈f〉 ∈ Sε for all ε > 0, which proves
the fact.

Let us now prove (3.3). It is obvious for |α + β| = 0. Suppose |α + β| = 1.
If |α| = 1 and |β| = 0, then for some 1 ≤ i ≤ n, we have

∂αξ ∂
β
xp = ∂ξip = ((∂ξim) log〈f〉+m∂ξi(log〈f〉)) 〈f〉m.

Let ρ ∈ (0, 1). Since m is homogeneous of degree 0, one has ∂ξim ∈ S−1
ρ .

Using the fact, we get that ∂ξim log〈f〉 lies in S−1
ρ S1−ρ ⊂ S−1+1−ρ

ρ = S−ρρ =
S−ρ|α|+(1−ρ)|β|. Moreover by the fact, ∂ξi log〈f〉 ∈ S−1. Since m is in S0, this
implies m∂ξi(log〈f〉) ∈ S−1 ⊂ S−ρρ , which proves (3.3).
If |α| = 0 and |β| = 1, we have for some 1 ≤ i ≤ n:

∂αξ ∂
β
xp = ∂xip = ((∂xim) log〈f〉+m∂xi(log〈f〉)) 〈f〉m.

Since m is homogeneous of degree 0 we have ∂xim ∈ S0. Again, log〈f〉 ∈ S1−ρ

and ∂xim) log〈f〉 ∈ S0+1−ρ ⊂ S1−ρ
ρ . As before, we have m∂xi(log〈f〉) ∈ S1−ρ

ρ .
Let us now treat the induction step. Suppose (3.3) is true for every (α, β) with
|α + β| ≤ N . Suppose now |α + β| = N + 1.
If (α, β) = (α̃, β)+(a, 0) with |a| = 1, let us write (∂αξ ∂βxp)(x, ξ) = (∂aξ ∂α̃ξ ∂βxp)(x, ξ) =
∂aξ
(
q(x, ξ)〈f〉m(x,ξ)

)
for some q ∈ S−ρ|α̃|+(1−ρ)|β|

ρ . Therefore,

∂αξ ∂
β
xp = ((∂aξ q) log〈f〉+ q∂aξ log〈f〉)〈f〉m.

Using the fact and the assumption q ∈ S−ρ|α̃|+(1−ρ)|β|
ρ , we get as in the case

|α + β| = 1 that (∂aξ q) log〈f〉+ q∂aξ log〈f〉 lies in S−ρ|α|+(1−ρ)|β|
ρ .

The case (α, β) = (α, β̃) + (0, b) with |b| = 1 is similar. This proves the
estimates 3.3 and the first part of the lemma. The second part is very similar
and we leave it as an exercise.

Remark 3.8. We have Sm1−(M) ⊂ Sm+(M) := ⋂
ε>0 S

m+ε(M). Indeed, if ε > 0
and α, β ∈ Nn, then for ρ close enough to 1 so that (1− ρ) max(|α|, |β|) < ε/2,
one has 〈ξ〉m(x,ξ)−ρ|α|+(1−ρ)|β| ≤ 〈ξ〉m(x,ξ)+ε−|α|.

Choose an operator Gm such that σ(Gm)(x, ξ) = gm(x, ξ) mod S−1+(M).
We have e±Gm ∈ Ψs(M) (see appendix A.4 for exponentiation of ΨDO’s). We
can now give the
Definition 3.9 (The anisotropic Sobolev space HGm). The anisotropic Sobolev
space subordinated to m is

HGm = e−Gm
(
L2(M)

)
⊂ D′(M).
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Those spaces provide the right regularity (that is, we ask smoothness in
every direction except near the unstable ones) to study the spectrum of the
operator P = −iLX acting on D′(M,Ω0) by duality. If Hs(M) and Hu(M)
are usual Sobolev spaces, one has

Hs(M) ⊂ HGm ⊂ Hu(M).

Indeed s ≥ m ≥ u ; therefore 〈ξ〉−s〈f〉m ∈ S−sSmρ ⊂ S−s+mρ ⊂ S0
ρ for every

ρ < 1 thanks to Lemma 3.7. As a consequence (I −∆)−s/2 eGm is bounded on
L2 and thus for some R ∈ Ψ−∞(M), we have for u ∈ C∞(M) :

‖eGmu‖L2 ≤ ‖ (I −∆)s/2 (I −∆)−s/2 eGmu‖L2 + ‖ReGmu‖L2 ≤ C‖u‖Hs .

3.3 Ruelle-Pollicott resonances
Let us now study the spectrum of the restriction of the closed operator P =
−iLX to the anisotropic Sobolev space HGm(M,Ω0) (that is, the space of
currents of regularity HGm). Let

Q = eGmPe−Gm

be the conjugated operator to P, acting on L2(M,Ω0). The following lemma
gives us the symbol of Q:

Lemma 3.10. The principal symbol of Q is diagonal and is given by

q(x, ξ) = p(x, ξ) + iX(gm)(x, ξ) +Om(S−1+(M)),

where p is the symbol of P in the given chart. The notation Om is to keep in
mind that the rest depends on m.

Proof. Use lemma A.11 to get

Q = P + [Gm,P] +
[
Gm,

∫ 1

0
(Pt −P)dt

]
,

where Pt = etGmPe−tGm . Now, using Proposition A.3 and the fact that P is
diagonal with principal symbol H, we have σ ([Gm,P]) = 1

i
{σ(Gm), σ(P )} =

iX(Gm) since X is the Hamiltonian vector field defined by H. Now, Pt −P =∫ t
0

d
dτPτ lies in Ψ0+(M) since it is shown in the proof of lemma A.11 that

d
dτPτ = [Gm,Pτ ] and Gm ∈ Ψ0+(M), Pτ ∈ Ψ1(M). Therefore, the bracket[
Gm,

∫ 1
0 (Pt −P)dt

]
lies in Ψ−1+(M), which concludes.

We shall now be interested in the spectrum of the operator Q which
is a closed operator on L2(M) of domain D(Q) = {u ∈ L2(M,Ω0)|Qu ∈
L2(M,Ω0)}. We will write

Q = Q1 + iQ2



22 yann chaubet

with Q1 = 1
2 (Q + Q∗) and Q2 = 1

2i (Q−Q∗) . In what follows, we fix some
inner product 〈 , 〉 on the fibers of Ω0, which gives an inner product, still
denoted by 〈 , 〉, on L2(M,Ω0). We have the following

Lemma 3.11. There exists C0 > 0 such that for every complex number λ with
=(λ) > C0, the resolvent Rλ = (P− λ)−1 exists.

Proof. Lemma 3.10 gives us the expression

σ(Q2)(x, ξ) = q2(x, ξ) = X(gm)(x, ξ) +O(S0) +Om(S−1+), (3.4)

since σ(P)(x, ξ) = H(x, ξ) is real. By Proposition 3.5, one has C1 > 0
such that <(q2(x, ξ)) ≤ C1 for all (x, ξ). Since q2 ∈ S0+ ⊂ S1, the sharp
Gårding inequality (Theorem A.22) gives us a constant C2 > 0 such that for
u ∈ C∞(M,Ω0), 〈(Q2 − C1)u|u〉 ≤ C2||u||2 and therefore with C0 = C1 + C2
we get

〈(Q2 − C0)u|u〉 ≤ 0, u ∈ C∞(M,Ω0).
Now let =(λ) > C0 and let ε = =(λ)−C0.We claim that for u ∈ C∞(M,Ω0), we
have ||(Q−λ)u|| ≥ ε||u||. Indeed, one has = 〈(Q− λ)u|u〉 = 〈(Q2 − C0)u|u〉−
ε||u||2 ≤ −ε||u||2 so Cauchy-Schwarz inequality gives the claim.
We have proved that Q− λ is injective by density of C∞(M,Ω0) in D(Q− λ).
We can do exactly the same with the adjoint (with respect to any inner product
on the fibers) to show that Q∗ = Q1− iQ2 to show that Q∗− λ̄ is also injective.
Therefore, if u is orthogonal to Ran(Q− λ), then u ∈ Ker(Q∗ − λ̄) = 0. We
thus obtain Ran(Q− λ) = L2(M,Ω0). We then use lemma B.3 to conclude
that Q− λ is surjective.

We are now in position to prove the

Proposition 3.12. There exists a constant C independent of m such that Q
has discrete spectrum in the region {=(λ) > C−Cm}, where Cm is the constant
in Proposition 3.5.

Proof. The idea is to construct a perturbation χ̂ such that Q−iχ̂−λ is invertible
in the region =(λ) > C − Cm. First, let χ0 ∈ S0(M) such that χ2

0 ≡ Cm > 0
on Γ0 ∩ {|ξ| ≥ R}, where R and Γ0 are defined in the previous subsection
(Proposition 3.5). We thus have X(gm)(x, ξ) − χ2

0(x, ξ) ≤ −Cm for |ξ| ≥ R.
Equation (3.4) thus implies <(q2(x, ξ)) − χ2

0(x, ξ) ≤ −Cm + C + Om(S−1+),
where C comes from the term O(S0) in (3.4). Since this symbol lies in Sµ for
all µ > 0, we can apply sharp Gårding’s inequality (Theorem A.22) to get

〈(Q2 − χ̂∗0χ̂0 + Cm − C) u|u〉 ≤ Cµ||u||
H
µ−1

2
, u ∈ C∞(M,Ω0),

where χ̂0 = Op(χ0) for some Cµ > 0 ; the term Om(S−1+) has been absorbed
by the term Cµ||u||

H
µ−1

2
. Writing χ1(x, ξ) = C1/2

µ 〈ξ〉(µ−1)/2 ∈ S(µ−1)/2(M), we
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get Cµ||u||
H
µ−1

2
= =(iχ̂∗1χ̂1u|u), where Op(χ̂1) = χ1. Noting χ̂ = χ̂∗0χ̂0 + χ̂∗1χ̂1,

we get
〈(Q2 − χ̂+ Cm − C) u|u〉 ≤ 0, u ∈ C∞(M,Ω0).

As in the previous lemma, we obtain that the resolvant of (Q− iχ̂− λ)−1

exists for =(λ) > C − Cm. We now prove the following

Lemma 3.13. For =(λ) > C−Cm, the operator χ̂ (Q− iχ̂− λ)−1 is compact.

Proof. Denote Q− iχ̂ by Q̃. Since σ(χ̂) ∈ S0(M), we have thanks to Lemma
3.10 that Q is elliptic of order 1 on Γ0. Therefore Q̃ − λ is also elliptic on
Γ0 (they have the same principal symbol) and we can find (Theorem A.5)
B ∈ Ψ−1(M) such that

(Q̃− λ)B = R + L,

with R = Op(r), r ∈ S0, supp (χ0) ⊂ supp (r) (we can reduce the support of
χ0 and this does not affect the ellipticity of Q̃ since χ0 ∈ S0(M)), r ≡ 1 near
supp (χ0), and L ∈ Ψ−∞(M). Write

χ̂
(
Q̃− λ

)−1
= χ̂B + χ̂(1−R)

(
Q̃− λ

)−1
− χ̂L

(
Q̃− λ

)−1
.

L is smoothing thus χ̂L
(
Q̃− λ

)−1
is compact. B lies in Ψ−1(M) and is thus

compact on L2, so is χ̂B because χ is bounded on L2. Finally, χ̂(1 − R) =
χ̂∗0χ̂0(1 − R) + χ̂∗1χ̂1(1 − R) is also compact because χ̂∗1χ̂1 ∈ Ψµ−1(M) and
supp (1− r) ∩ supp (χ0) = ∅. This concludes the proof of the lemma.

We can now finish the proof of the Proposition. Indeed, write

Q− λ =
(
1 + iχ̂(Q̃− λ)−1

) (
Q̃− λ

)
.

By what precedes, 1 + iχ̂(Q̃−λ)−1 is Fredholm of index 0. Moreover,
(
Q̃− λ

)
is Fredholm of index 0 also since it is a bijective operator D(Q)→ L2(M,Ω0)
with bounded inverse. It directly implies that Q− λ is a holomorphic family
of Fredholm operators of index 0 and invertible for =(λ) > C − Cm. By the
analytic Fredholm continuation (see Theorem B.1), Q has discrete spectrum
on =(λ) > C − Cm with finite multiplicities.

By conjugation, we obtained that P has discrete spectrum on =(λ) >
C − Cm. Let us now prove that the poles of the resolvent Rλ = (P − λ)−1

are intrinsic to the vector field X. We have have showed that the resolvent
Rλ = (P− λ)−1 : HGm(M,Ω0)→ HGm(M,Ω0) well defined for =(λ) > C0 has
a meromorphic continuation to =(λ) > C −Cm. In fact, we have a formula for
Rλ :
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Proposition 3.14. For =(λ) big enough (depending on m, that is, depending
on s and u) we have the following formula

Rλ = i
∫ ∞

0
eiλt

(
φ−t

)∗
dt, (3.5)

where (φ−t)∗ is the pull-back C∞(M,Ω0) → C∞(M,Ω0) and the integral con-
verges in L(Hs(M), Hs(M)) and in L(Hu(M), Hu(M)).

Proof. The derivatives of φ−t grows at most exponentially with t so the integral
at the right hand side of (3.5) converges in operator norms Hs(M)→ Hs(M)
and Hu(M)→ Hu(M) if =(λ) is big enough. Moreover, for f ∈ HGm(M,Ω0),
we have eiλt(P− λ)

[
(φ−t)∗ f

]
= i d

dt

(
eiλt (φ−t)∗ f

)
. Therefore,

(P− λ)
(
i
∫ ∞

0
eiλt

(
φ−t

)∗
fdt

)
= f ,

which concludes.

Denote by Tλ the operator i
∫∞
0 eiλt (φ−t)∗ dt : C∞(M,Ω0) → D′(M,Ω0).

Fix a density vol on M , denote by πj : M ×M →M the projection on the jth
factor, j = 1, 2, and let Kλ ∈ D′(M ×M,π∗1Ω0⊗ π∗2Ω∗0) be the Schwartz kernel
of Tλ with respect to vol. Then Kλ is a holomorphic family of distributions for
=(λ) big enough. Moreover, since Tλ coïncide with Rλ|C∞(M,Ω0) for =(λ)� 0,
we obtain that the family Kλ extends to a meromorphic family of distributions
on =(λ) > C − Cm, whose poles coïncide with those of the Schwartz kernel
of Rλ|C∞(M,Ω0). Since C∞(M,Ω0) is dense in HGm(M,Ω0) we obtain that the
poles of the resolvent Rλ do not depend on the choices of the escape function
gm. Letting |u|, s→∞, we obtain the

Theorem 3.15. The family of operators λ 7→ Rλ (well defined for =(λ)� 0)
viewed as operators C∞(M,Ω0)→ D′(M,Ω0), has a meromorphic continuation
to C. The poles of this extension are the Ruelle resonances, and we will denote
the set of those by Res(P).

Remark 3.16. If u ∈ D′(M,Ω0) is an eigenvector of P, one has u ∈ HGm

for any order function m with large enough |u|, s. Since m can be chosen
big enough in any direction except in the unstable one, its wavefront set is
contained in the unstable direction.
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4 Microlocal structure of the resolvent
We start this section by giving standard semiclassical estimates in §4.1, namely
elliptic regularity and propagation of singularities. Then we prove in §4.2
some radial estimate which allows to control regularity near radial sources ;
this comes from the work of Melrose [Mel94] and Vasy [Vas13]. Finally, we
describe the microlocal structure of the resolvent in §4.3, following [DGRS18]
and [DZ13].

4.1 Standard semiclassical estimates
In this subsection we state two standard results about semiclassical calculus.
We start with an elliptic estimate which allows to control the regularity of u
by that of Pu where P is an elliptic operator. Recall from Appendix A.3 the
definitions of h-tempered distributions. In what follows, E is a vector bundle
over M .

Proposition 4.1. Let A ∈ Ψ0
h(M) acting diagonally on D′h(M,E). Let P ∈

Ψk
h(M,Hom(E)) be elliptic on WFh(A). Then for each µ ∈ R, there exists

C > 0 such that

||Au||Hµ
h

(M,E) ≤ C||Pu||Hµ−k
h

(M,E) +O(h∞)||u||H−N
h

(M,E),

for all h-tempered family of distributions u = (uh) ∈ D′h(M,E) and all N such
that the right hand side is well defined.

Corollary 4.2 (Elliptic regularity). We have for u h-tempered and P ∈
Ψk
h(M,Hom(E)),

WFh(u) ∩ ellh(P) ⊂WFh(Pu).

Proof. Suppose (x, ξ) lies in ellh(P) \WFh(Pu). Let us show (x, ξ) /∈WFh(u).
Let U be a neighborhood of (x, ξ) such that U b ellh(P) \WFh(Pu). Take
B ∈ Ψ0

h(M) such that WFh(B) ∩WFh(Pu) = ∅ and U ⊂ ellh(B). One has
that BP is elliptic on U . Moreover, the condition on the wavefronts implies
||BPu||Hµ−k

h
(M,E) ≤ O(h∞)||u||H−N

h
(M,E) for big enough N and all µ. Therefore,

by Proposition 4.1, one has

||Au||Hµ
h

(M,E) ≤ O(h∞)||u||H−N
h

(M,E),

for all Ψ0
h(M) satisfying WFh(A) ⊂ U . This concludes the proof of the

corollary.

Proposition 4.1 is a direct consequence of semiclassical microlocal inversion
of pseudo-differential operators :
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Proof of proposition 4.1. Apply Theorem A.21 to get Q ∈ Ψ−kh (M,Hom(E))
such that

QP = χ̂+ L,
where σh(χ̂) = IdE microlocally near WFh(A) and L ∈ h∞Ψ−∞h (M,Hom(E)).
Now take u ∈ D′h(M,E) ; we have for all N big enough that Au = A(1 −
χ̂)u +Aχ̂u = AQPu + (A(1− χ̂)− AL) u. But A(1− χ̂)−AL is OΨ−∞

h
(h∞)

since WFh(A) ∩ WFh(1 − χ̂) = ∅. Moreover we have ||AQPu||Hµ(M,E) ≤
C||Pu||Hµ−k(M,E), which concludes.

Theorem 4.3. Take P ∈ Ψ1
h(M,Hom(E)). Suppose that σh(P) is diagonal

and has the form
σh(P) = p− iq mod hS0

h(M),
where p ∈ S1(M) is homogeneous of degree 1 for large enough |ξ|, independent
of h and q ≥ 0. Denote by etXp be the Hamiltonian flow associated to p.
Let A,B,B1 ∈ Ψ0

h(M) such that for all (x, ξ) ∈ WFh(A), we can find T ≥ 0
such that e−TXp(x, ξ) ∈ ellh(B) and e−tXp(x, ξ) ∈ ellh(B1) for every t ∈ [0, T ].
Then for each µ, one has C > 0 such that

||Au||Hµ
h

(M,E) ≤ C||Bu||Hµ
h

(M,E) + Ch−1||B1Pu||Hµ
h

(M,E) +O(h∞)||u||H−N
h

(M,E),

(4.1)
for all h-tempered family of distributions u = (uh) ∈ D′h(M,E) and all N such
that the right hand side is well defined.

ellh(B) WFh(A)

ellh(B1)

Figure 4.1. Propagation of singularities (Theorem 4.3). The
dashed line is the wavefront set of the operator B2 used in the end
of the proof.

In other words, the singularities of u near (x, ξ) on a flow line of Xp can
be controlled by its singularities near e−TXp(x, ξ) and by those of Pu along
the past flow line :

Corollary 4.4 (Propagation of semiclassical singularities). Let u bu an h-
tempered family of distributions and P as in the previous proposition. Let γ(t) be
a flow line of Xp and T > 0. Assume γ(−T ) /∈WFh(u) and γ(−t) /∈WFh(Pu)
for all t ∈ [0, T ]. Then γ(0) /∈WFh(u).
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Proof. We take B microlocalized near γ(−T ) and B1 microlocalized near
γ([−T, 0]), such that WFh(B) ∩WFh(u) = ∅ and WFh(B1) ∩WFh(Pu) =
∅. We thus obtain that the terms ||Bu||Hµ

h
(M,E) and ||B1Pu||Hµ

h
(M,E) are

O(h∞)||u||H−N
h

. We conclude as in the proof of Corollary 4.2.

The proof of the propagation of semiclassical singularities is very similar
to the classical one ; it relies on a positive commutator argument induced by
Garding’s inequality.

Proof of Theorem 4.3. Take A,B,B1 as in the hypothesis of the theorem. We
can assume that WFh(A) is contained in a small neighborhood of some (x0, ξ0) ∈
T
∗
M. Denote by Φt the flow of Xp on T ∗M . Up to shrinking a little bit A, we

can assume that

Φ−T (WFh(A)) ⊂ ellh(B) and Φ−t(WFh(A)) ⊂ ellh(B1) for all t ∈ [0, T ].
(4.2)

Fix an inner product on the fibers of E. This way we make L2(M,E) an
Hilbert space with scalar product 〈·, ·〉. Set

<(P) = P + P∗

2 , =(P) = P−P∗

2i .

We have that <(P),=(P) ∈ Ψ1
h(M,E) are symmetric. We will need an escape

function, given by the following

Lemma 4.5. For all c > 0, there exists an escape function g ∈ C∞(T ∗M) with
supp g ⊂ ellh(B1), g ≥ 0 everywhere, such that
(i) g > 0 near WFh(A),
(ii) Xp(g) ≤ −cg in ellh(B1) \ ellh(B).

Proof. Take a tubular neighborhood B(0, 1) × (−T − δ, δ) ⊂ R2n−1
θ × Rτ of

{Φ−t(x0, ξ0), t ∈ [0, T ]} contained in ellh(B1) for small δ and B(0, 1) = {|θ| <
1}, in a way so that Xp ≡ ∂τ . Now take ψ ∈ C∞c (B(0, 1), [0, 1]) such that ψ ≡ 1
on B(0, 1/2) and χ ∈ C∞c (−T − δ, δ,R+) such that χ(0) > 0 and χ′ < −cχ
outside (−T − δ,−T + δ). Such a χ exists : on can take χ(τ) = χ0(τ)e−cτ for
some χ0 ∈ C∞(−T − δ, δ) such that χ0(0) = 1 and χ′0 ≤ 0 on (−T + δ, δ). Now
the function g(θ, τ) = ψ(θ)χ(τ) satisfies the requirements of the lemma.

We now assume B1u ∈ Hµ−1/2(M,E) and BPu ∈ Hµ(M,E). We choose
for every ε > 0 an operator Sε ∈ Ψµ−ε

h (M) with σh(Sε)(x, ξ) = 〈ξ〉µ〈εξ〉−1.
Now define Gε = SεG where G ∈ Ψ0

h(M) quantizes the escape function g as in
the previous lemma (the constant c will be chosen later), that is σh(G) = g.
We have of course σh(Gε)(x, ξ) = 〈ξ〉µ〈εξ〉−1g(x, ξ). Now take χ̂ ∈ Ψ0

h(M)
such that χ := σh(χ̂) ≡ 1 on WFh(Gε) and χ ≡ 0 outside ellh(B1) so that
WFh(Gε) ⊂ ellh(χ̂) ⊂ WFh(χ̂) ⊂ ellh(B1). Since WFh(Gε) ⊂ ellh(B1) and
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B1u ∈ Hµ−1/2, we have G∗εGεu ∈ H−µ+3/2. On the other hand B1Pu ∈ Hµ ⊂
Hµ−3/2. We can therefore compute

= 〈χ̂Pu, G∗εGεu〉 = i

2〈 [χ̂<(P), G∗εGε] u,u〉

+ 1
2〈(G

∗
εGεχ̂=(P) + χ̂=(P)G∗εGε) u,u〉.

(4.3)

Now set Tε = i
2h [χ̂<(P), G∗εGε] ∈ Ψ2µ−2

h (M,Hom(E)). We have thanks to
Proposition A.8 and the fact that χ ≡ 1 on WFh(Gε) :

σh(Tε) = 1
2Xp(g2

ε) = gεXpgε = 〈ξ〉µ〈εξ〉−1gεXpg + g2
εXp

(
〈ξ〉µ〈εξ〉−1

)
= 〈ξ〉µ〈εξ〉−1gεXpg + g2

ε

(
µ

2 〈ξ〉
−2 − ε2

2 〈εξ〉
−2
)

Xp(|ξ|2)

≤ −cg2
ε + Cg2

ε + C̃|〈ξ〉µb|2,

(4.4)

where b = σh(B). The last inequality stands because of the point (ii) of Lemma
4.5, and the fact that

(
µ
2 〈ξ〉

−2 − ε2

2 〈εξ〉
−2
)

Xp(|ξ|2) is uniformly bounded in
ξ, ε by a constant C. Now take c big enough so that c− C > c/2 to get

σh(Tε) + c

2g
2
ε ≤ C̃|〈ξ〉µb|2.

Now apply the sharp Gårding’s inequality to obtain〈(
Tε + c

2G
∗
εGε − C̃(S0B)∗(S0B)

)
χ̂u, χ̂u

〉
≤ Ch‖χ̂u‖

H
µ−1/2
h

+O(h∞)‖u‖H−N
h
,

which reads with differents constants

〈Tεu,u〉+
c

2‖Gεu‖2
L2 ≤ C‖Bu‖2

Hµ
h

+Ch‖B1u‖2
Hµ−1/2 +O(h∞)‖u‖H−N

h
, (4.5)

where we could remove the terms in χ̂ because WFh(χ̂) ⊂ ellh(B1) and
WFh(Gε) ⊂ ellh(χ̂).
Let us now interest ourselves to the second term of the right hand side of (4.3).
It reads

〈χ̂=(P)Gεu,u〉+ 1
2 〈(G

∗
ε [Gε, χ̂=(P)]− [G∗ε, χ̂=(P)]Gε) u,u〉 .

We have σh(=(P)) = −q ≤ 0, which imply 〈χ̂=(P)Gεu,u〉 ≤ C ′h‖Gεu‖2
L2

by Gårding’s inequality (Theorem A.22). On the other hand, we have that
G∗ε [Gε, χ̂=(P)]− [G∗ε, χ̂=(P)]Gε lies in h2Ψ2µ−1

h uniformly in ε thanks to prin-
cipal symbol calculus. As a consequence,

1
2 〈(G

∗
ε [Gε, χ̂=(P)]− [G∗ε, χ̂=(P)]Gε) u,u〉 ≤ C ′′h2‖B1u‖2

H
µ−1/2
h

+O(h∞)‖u‖H−N
h
.
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Combining those estimates with (4.5) and letting c > 4C ′ we get

= 〈χ̂Pu, G∗εGεu〉 ≤ −
c

4h‖Gεu‖2
L2 + Ch‖Bu‖2

Hµ
h

+ Ch2‖B1u‖2
H
µ−1/2
h

+O(h∞)‖u‖H−N
h
.

Now we have−=〈χ̂Pu, G∗εGεu〉 ≤ ‖Gεχ̂Pu‖L2‖Gεu‖L2 ≤ C‖B1Pu‖Hµ
h
‖Gεu‖L2+

O(h∞)‖u‖H−N
h

uniformly in ε since Gε is uniformly bounded in Ψµ
h. We thus

obtain
c

4‖Gεu‖2
L2 ≤ Ch−1‖B1Pu‖Hµ

h
‖Gεu‖L2 + C‖Bu‖2

Hµ
h

+ Ch‖B1u‖2
H
µ−1/2
h

+O(h∞)‖u‖H−N
h
,

which finally imply uniformly in ε :

‖Gεu‖L2 ≤ Ch−1‖B1Pu‖Hµ
h

+ C‖Bu‖Hµ
h

+ Ch1/2‖B1u‖Hµ−1/2
h

+O(h∞)‖u‖H−N
h
.

Recall that Sε → S0 ∈ Ψµ
h ⊂ Ψµ+1/2

h . Since B1u ∈ Hµ−1/2
h and WFh(Gε) ⊂

ellh(B1) we get that Gεu→ S0Gu in H−1
h . On the other hand, Gεu is bounded

in L2 from the estimate above. Moreover, the unit ball in L2 is compact for the
weak topology ; this implies S0Gu ∈ L2, that is, Gu ∈ Hµ

h . We thus obtain,
noting noting that G is elliptic on WFh(A) :

‖Au‖Hµ
h
≤ Ch−1‖B1Pu‖Hµ

h
+ C‖Bu‖Hµ

h

+ Ch1/2‖B1u‖Hµ−1/2
h

+O(h∞)‖u‖H−N
h
.

(4.6)

Note that this estimate is almost what we demanded, except we have in addition
the term h1/2‖B1u‖Hµ−1/2

h

. We claim that we can make it disappear. More
precisely, let us prove that for all ` ∈ N∗, one has

‖Au‖Hµ
h
≤ C`h

−1‖B1Pu‖Hµ
h

+ C`‖Bu‖Hµ
h

+ C`h`/2‖B1u‖Hµ−`/2
h

+O`(h∞)‖u‖H−N
h
,

(4.7)

where
C` =

∏̀
k=1

(
1 + hk/2Ck

)
for some C not depending on `. We will use induction on `, noting that for ` = 1
this estimate is exactly (4.6). Assume that (4.7) holds for some ` ≥ 1. Take
B2 ∈ Ψ0

h is such that both triplets (A,B,B2) and (B2, B,B1) satisfy the as-
sumptions of the theorem. One has, with C = max{CA,B,B1 , CB2,B,B1 , CA,B,B2},
by (4.6) applied to (B2, B,B1) (we can assume the constants involved do not
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depend on µ because we can stop the process whenever ` > 2µ+N and keep
iterating with ‖B1u‖H−N

h
instead of ‖B1u‖Hµ−`/2

h

in (4.7)):

‖B2u‖Hµ−`/2
h

≤ Ch−1‖B1Pu‖
H
µ−`/2
h

+ C‖Bu‖
H
µ−`/2
h

+ Ch1/2‖B1u‖Hµ−(`+1)/2
h

+O(h∞)‖u‖H−N
h
.

(4.8)

On the other hand, by (4.7) applied to (A,B,B2) :

‖Au‖Hµ
h
≤ C`h

−1‖B2Pu‖Hµ
h

+ C`‖Bu‖Hµ
h

+ C`h`/2‖B2u‖Hµ−`/2
h

+O(h∞)‖u‖H−N
h
.

(4.9)

It suffices to combine (4.8) and (4.9) to get (4.7) for ` + 1, assuming that
‖B2Pu‖Hµ ≤ ‖B1Pu‖Hµ

h
for all µ, which we can do up to consider B2/C̃ for

some big C̃, because WFh(B2) ⊂ ellh(B1).
This concludes the proof of the theorem since the constants C` are bounded
with `, provided h is small enough.

4.2 Control of singularities near radial sources
Recall from subsection 2.1 the definition of radial sources and radial sinks. We
will state two estimates that allows us to control the wavefront set of sufficiently
regular (resp. singular) distributions near radial sources (resp. sinks).

Proposition 4.6. Let P ∈ Ψ1
h(M,Hom(E)) as in Proposition 4.3, and assume

that L ⊂ T ∗M \ 0 is a radial source for the Hamiltonian flow etXp. Then there
is a threshold µ0 > 0 such that if B1 ∈ Ψ0

h(M) is elliptic on ρ(L) ⊂ ∂T
∗
M ,

there exists some A ∈ Ψ0
h(M) elliptic on ρ(L) satisfying that for every µ ≥ µ0,

there is C such that

||Au||Hµ
h

(M,E) ≤ Ch−1||B1Pu||Hµ
h

(M,E) +O(h∞)||u||H−N
h

(M,E)

for every h-tempered family of distributions u ∈ D′h(M,E) such that Au ∈
Hµ0
h (M,E) and all N .

In other words, if Pu has no wavefront near ρ(L) and u is sufficiently
regular near ρ(L), then u has no wavefront near ρ(L). As in the previous
subsection, we get easily the following

Corollary 4.7. Let µ0 be as in the previous proposition. Assume u ∈ D′h(M,E)
is h-tempered with WFh(Pu) ∩ ρ(L) = ∅. If B1 ∈ Ψ0

h is elliptic near ρ(L) and
verifies B1u ∈ Hµ0

h (M,E), then WFh(u) ∩ ρ(L) = ∅.

Proof of Proposition 4.6. As in Theorem 4.3, we will make use of escape func-
tions. Let U be a small conical neighborhood of L such that ρ(U) ⊂ ellh(B1).
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A

B1

L ∂T
∗
M

Figure 4.2. Regularity near radial sources (Proposition 4.6).

Using Lemma 3.3, we obtain a norm f ∈ C∞(T ∗M \ 0,R>0) such that
Xp(f) ≤ −cf on U . Arguing exactly as in Lemma 6.2 and Lemma 3.2,
we obtain m ∈ C∞(T ∗M \ 0, [0, 1]) such that m ≡ 1 near L, Xp(m) ≤ 0
and supp m ⊂ U . Consider some R > 0 with U ∩ {f ≥ R} ⊂ ellh(B1) and
χ ∈ C∞(R, [0, 1]) such that supp χ ⊂ (R,∞), χ ≡ 1 on [2R,∞) and χ′ ≥ 0
everywhere. Set

g = m(χ ◦ f) ∈ C∞(T ∗M).
Take some f̃ ∈ C∞(T ∗M) such that f ≡ f̃ on {f ≥ R}. We choose, as in the
proof of the propagation of singularities, Sε ∈ Ψµ−1

h (M,E) such that

σh(Sε) = f̃m〈εξ〉−1.

Put Gε ∈ Ψµ−1
h such that σh(Gε) = σh(Sε)g. Let Tε = i

2h [χ̂<(P), G∗εGε]. We
have as in (4.4) :

σh(Tε) = gεXp(gε) = f̃〈εξ〉−1gεXp(g) + g2
ε

(
µ

Xp(f̃)
f̃
− ε2Xp(|ξ|2)

2 〈εξ〉−2
)
.

Since Xpf̃ ≤ −cf̃ < 0 on supp g, for all C0 > 0, there exists µ0 such that for
µ ≥ µ0 we have on supp g :

(
µXp(f̃)

f̃
− ε2Xp(|ξ|2)

2 〈εξ〉−2
)
≤ −C0. Moreover, µ0

does not depend on supp g because the constant c can be taken uniform for U
close enough to ρ(L). Note that Xp(g) ≤ 0 (because χ′ ≥ 0). We obtain with
what precedes

σh(Tε) ≤ −C0g
2
ε ,

to get thanks to sharp Gårding’s inequality (Theorem A.22), because WFh(Gε) ⊂
ellh(B1) :

〈Tεu,u〉+ C0‖Gεu‖2
L2 ≤ Ch‖B1u‖2

Hµ−1/2 +O(h∞)‖u‖H−N
h
,

uniformly in ε. Exactly as in the proof of Theorem 4.3, we obtain, with A = G,

‖Au‖Hµ
h
≤ Ch−1‖B1Pu‖Hµ

h
+ Ch1/2‖B1u‖Hµ−1/2

h

+O(h∞)‖u‖H−N
h
. (4.10)
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Again, we claim that we can make disappear the term Ch1/2‖B1u‖Hµ−1/2
h

.
Indeed, because of elliptic regularity, we can assume that there is WFh(B1) ⊂
U ′ where U ′ is a neighborhood of ρ(L) as in Definition 2.5, so that for all
(x, ξ) ∈ WFh(B1) there is T > 0 such that e−TXp(x, ξ) ∈ ellh(A). Now if B̃1
elliptic on ρ(L) satisfies WFh(B1) ⊂ ellh(B̃1) and WFh(B̃1) ⊂ U ′, then by
Theorem 4.3 we have

‖B1u‖Hµ−1/2
h

≤ C‖Au‖
H
µ−1/2
h

+ Ch−1‖B̃1Pu‖
H
µ−1/2
h

+O(h∞)‖u‖H−N
h
.

This estimate combined with (4.10) imply using elliptic regularity that for
every B̃1 elliptic on ρ(L) there is A elliptic on ρ(L) such that for all µ > µ0:

‖B̃1u‖Hµ
h
≤ Ch−1‖B̃1Pu‖Hµ

h
+ Ch1/2‖Au‖

H
µ−1/2
h

+O(h∞)‖u‖H−N
h
,

with a different constant C. Now we iterate this estimate to get for every
` ∈ N∗ :

‖B̃1u‖Hµ
h
≤ Ch−1‖B̃1Pu‖Hµ

h

(∑̀
k=0

Ckhk/2
)

+C`h`/2‖Au‖
H
µ−`/2
h

+O`(h∞)‖u‖H−N
h
,

which concludes since the sum is bounded provided h is small enough.

4.3 Microlocal structure of Rλ

The purpose of this subsection is to show that for small t0 > 0, e−it0PRλ lies
in a space where we can take the flat trace. This will be implied by the

Theorem 4.8 (Microlocal structure of the resolvent). Let λ0 such that =(λ0) >
C − Cm for some order function m (discussed in the previous section). For λ
close to λ0, one has

Rλ = Yλ −
J(λ0)∑
j=1

(P− λ0)j−1Π
(λ− λ0)j

with Yλ holomorphic near λ0, Π is the projection HGm(M,Ω)→ ker
(
(P− λ0)J(λ0)

)
,

and we have the following description of the microlocal structures :

WF′(Yλ) ⊂ ∆(T ∗M \ 0) ∪ Char(P)+ ∪ (E∗u × E∗s ),
WF′(Π) ⊂ E∗u × E∗s ,

(4.11)

locally uniformly in λ, where ∆(T ∗M) is the diagonal in T ∗M × T ∗M and
Char(P)+ = {(Φt(x, ξ), (x, ξ)) | t ≥ 0, H(x, ξ) = 0}.
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Proof. In what follows, we assume that λ is a complex number varying in
compact region Z of C \ Res(P), and we take an order function gm as in
Propostion 3.5, with |u|, s to be well chosen later.
We will introduce a semiclassical parameter h in order to use Lemma A.16. Let
Pλ,h = h(P−λ), and taking notations of Remark 3.6 we take Gm,h = Oph(gδm).

Qδ,h = eGδm,h(hP)e−Gδm,h .

We can compute as in Lemma 3.10 :

Qδ,h = hP + [Gδ
m,h, hP] +O(h2)Ψ−1+

h
. (4.12)

Let Γ0 and R > 0 be as in Propostion 3.5 and χ0 ∈ S0(M) such that :
• χ2

0 ≡ Cm on Γ0 ∩ {|ξ| ≥ R},
• χ2

0 ≡ Cm on {|ξ| ≤ R}
• χ0 ≡ 0 on {ξ ≥ 3R/2} outside a small conical neighborhood of Γ0.

Take also χ1 ∈ C∞c (T ∗M) such that χ1 ≡ 1 near 0 and supp χ1 ⊂ {|ξ| ≤ 3R/2}.
and choose some χ̂1 ∈ Ψ0(M) with σ(χ̂1) = χ1. For δ > 0 and j = 1, 2 set

χj,δ(x, ξ) = χj(x, ξ/δ).

Choose some χ̂j,δ ∈ Ψ0(M) such that σ(χ̂j,δ) = χj,δ, define χ̂δ,h = h (χ̂0,δ)∗ χ̂0,δ+
(χ̂1,δ)∗ χ̂1,δ and put

Qχ
δ,h(λ) = Qδ,h − hλ− iχ̂δ,h.

Lemma 4.9. For all ε > 0 and =(λ) > −Cm + ε, we have that for h small
enough, Qχ

δ,h(λ) is inversible D(Q)→ L2 with inverse bound∥∥∥∥(Qχ
δ,h(λ)

)−1
∥∥∥∥
L2→L2

≤ Cε/h.

Proof. One has, for u ∈ C∞(M,Ω0),〈([
Gδ
m, hP

]
− h=(λ)− χ̂δ,h

)
u,u

〉
= −‖χ̂1,δu‖L2 − h (=(λ)− Cm) ‖u‖2

L2

+
〈([

Gδ
m, hP

]
− hχ̂∗0,δχ̂0,δ − hCm

)
u,u

〉
.

(4.13)
For all µ ∈ (0, 1), we have in Sµh (M)/hSµ−1

h (M):

σh
([
Gδ
m, hP

])
= ihX(gδm).

Thanks to properties of χ0 and gδm, we have in Sµh (M)/hSµ−1
h (M) :

σh

(1
h

[
Gδ
m, hP

]
− χ̂∗0,δχ̂0,δ

)
(x, ξ) ≤ −Cm, (x, ξ) ∈ T ∗M.
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Now we apply sharp Gårding’s inequality (Theorem A.22) to obtain〈([
Gδ
m, hP

]
− hχ̂∗0,δχ̂0,δ − hCm

)
u,u

〉
≤ Cµh

2‖u‖2
H

(µ−1)/2
h

≤ C̃µh
2‖u‖2

L2 .

We obtain with (4.13)〈([
Gδ
m, hP

]
− h=(λ)− χ̂δ,h

)
u,u

〉
≤ −h

(
=(λ)− Cm + hC̃µ

)
‖u‖2

L2

≤ −hε2‖u‖
2
L2 ,

provided h < ε/2C̃µ. We conclude as in Lemma 3.11, using (4.12).

Now fix (y, η) ∈ T ∗M ∩ {|ξ| ∈ [R, 2R]} and take (fh)h and h-tempered
family of compactly supported functions on M with WFh(fh) localized near
(y, η). We set uh = Rλfh. We know that uh lies in D(P) ∩ HGm , so that
(P− λ)uh = fh and Qδ,h(λ)ũh = f̃h with ũh = eGm,h(uh) and f̃h = eGm,h(hfh).
We will also denote for h small enough :

ũχh = Qχ
δ,h(λ)−1f̃h.

We have
ũh = ũχh −Qδ,h(λ)−1χ̂δ,hũ

χ
h. (4.14)

We will distinguish four cases according to where is located (y, η) ; for each
one we will take some (x, ξ) ∈ {|ξ| ∈ [R, 2R]} such that (x, ξ, y, η) does not lie
in ∆(T ∗M \ 0) ∪ Char(P)+ ∪ (E∗u × E∗s ) and find some neighborhoods U and
V of (y, η) and (x, ξ) such that if WFh(fh) ⊂ U we have

WFh(uh) ∩ V = ∅, uniformly in λ. (4.15)

Case 1 : (y, η) ∈ {H 6= 0}. We have that Qδ(λ) = (Qδ,h(λ))h is elliptic on
{H 6= 0}. Thanks to Proposition 4.1, for every (x, ξ) ∈ {H 6= 0} \ {(y, η)},
there is U, V neighborhoods of (y, η) and (x, ξ) such that

WFh(ũh) ∩ V = ∅

uniformly in λ, which implies (4.15). Now take (x, ξ) ∈ {H = 0} \ E∗u with
|ξ| ∈ [R, 2R]. Take Ũ a small conical neighborhood of E∗s as in definition 2.5.
There exists T > 0 such that Φ−T (x, ξ) ∈ Ũ . Let µ0 be the threshold involved
in Proposition 4.6. Taking the order function gm so that s > µ0, we know
that u ∈ Hs

h(M) ⊂ Hµ0
h (M) microlocally near E∗s . We can thus use Corollary

4.7 to get Φ−T (x, ξ) /∈WFh(uh) provided WFh(fh) ∩ ρ(Ũ) = ∅ (which will be
the case if WFh(fh) is close enough to (y, η)). Now take a neighborhood U
of (y, η) small enough so that Φ−t(x, ξ) /∈ U for all t ∈ [0, T ] ; we can then
apply Corollary 4.4 to obtain that (x, ξ) /∈ WFh(uh). This is also true for
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neighbors of (x, ξ) ; thus we found V such that (4.15) is valid. Finally, assume
(x, ξ) ∈ E∗u with |ξ| ∈ [R, 2R]. We first assume here that (y, η) /∈ Γ0. We can
apply propagation of singularities with the operator Qχ

δ (λ) to obtain that

WFh(ũχh) ∩ V = ∅

uniformly in λ for some small neighborhood V of (x, ξ), provided δ is small
enough, and WFh(fh) ⊂ U where U is a neighborhood of (y, η) small enough
so that U ∩ {|ξ| < δR} = ∅. Indeed, Qχ

δ (λ) is elliptic on {|ξ| < δR} and there
is T > 0 such that Φ−T (x, ξ) lies in {|ξ| < δR} so we can apply Proposition
4.1. To show that WFh(uh)∩ V = ∅ uniformly in λ, it suffices thanks to (4.14)
to show that

W := WFh(χ̂δ) ∩WFh(ũχh) = ∅. (4.16)
Since (y, η) /∈WFh(χ̂) and Qχ

δ (λ) is elliptic on {H 6= 0}∪ {|ξ| < δR} (because
of the term −iχ̂∗1,δχ̂1,δ), we only need to show that

W ∩ {H = 0} ∩ {Rδ ≤ |ξ| ≤ 3Rδ/2} = ∅

uniformly in λ. We have W ∩ E∗u = ∅ with what precedes ; doing exactly as
in the case (x, ξ) ∈ {H = 0} \ E∗u with Qχ

δ (λ) in place of Qδ(λ) (ũχ and ũ
have same regularity near ρ(E∗s ) because χ̂ is supported far away from E∗s ), we
obtain

WFh(ũχh) ∩ ({H = 0} \ E∗u) = ∅
uniformly in λ. We thus obtained (4.16) provided (y, η) /∈ Γ0. Since we can
take Γ0 as close of E∗0 as desired, we obtain (4.15) for (y, η) ∈ {H 6= 0} \ E∗0
and (x, ξ) ∈ E∗u.

Case 2 : (y, η) ∈ {H = 0} \ (E∗u ∪ E∗s ). Since P is elliptic on {H 6= 0}
we get that for every (x, ξ) ∈ {H = 0} ∩ {|ξ| ∈ [R, 2R]}, we can find a neigh-
borhood V such that for U small enough : WFh(uh) ∩ V = ∅ uniformly in
λ. Assume now (x, ξ) ∈ {H = 0} \ E∗u with Φ−t(x, ξ) 6= (y, η) for all t ≥ 0.
Then as before, using propagation of singularities (Corollary 4.4) and control
of singularities near radial sources (Corollary 4.7) we obtain that there exists a
neighborhood V of (x, ξ) such that WFh(uh)∩V = ∅ uniformly in λ provided U
is small enough. Finally, assume that (x, ξ) lies in E∗u. Taking a neighborhood
U of (y, η) small enough, one can easily show using 2.1 that there exists δ > 0
such that

(z, ζ) ∈ {H = 0} ∩ {|ξ| ≤ 3Rδ/2}, (z, ζ) /∈ E∗u =⇒ ∀t ≥ 0, Φ−t(z, ζ) /∈ U.

We can thus apply exactly the same proof as in the case 1 to get

WFh(ũχh) ∩ V = ∅, WFh(χ̂δ) ∩WFh(uχδ,h) = ∅,

for some small neighborhood V of (x, ξ) uniformly in λ which implies with
(4.14) that (4.15) is valid.
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Case 3 : (y, η) ∈ E∗s . As before, the case (x, ξ) ∈ {H 6= 0} is solved us-
ing ellipticity of P. If (x, ξ) lies in {H = 0} \ E∗u, then we can again apply
propagation of singularities and regularity near radial sources to obtain that
if Φ−t(x, ξ) 6= (y, η) for all t ≥ 0, we have a neighborhood V near (x, ξ) such
that (4.15) is valid provided WFh(fh) is close enough to (y, η).

Case 4 : (y, η) ∈ E∗u. If (x, ξ) does not lie in E∗u, then dealing as in case
3 we can find V a neighborhood of (x, ξ) such that (4.15) is valid provided
WFh(fh) is close enough enough to (y, η). Now assume (x, ξ) ∈ E∗u satisfies
Φ−t(x, ξ) 6= (y, η) for all t ≥ 0. Again, we can deal exactly as in the case 1
(using propagation of singularities with Qχ

δ (λ)) to obtain V such that (4.15) is
valid provided WFh(fh) is close enough to (y, η). Compiling those four cases
and applying Lemma A.16, we obtain

WF′(Rλ) ⊂ ∆(T ∗M \ 0) ∪ Char(P)+ ∪ (E∗u × E∗s ) ∪ (E∗u × E∗0). (4.17)

Note that we made the arguments with C∞(M) and not C∞(M,Ω0) ; but we
can do exactly same (with an adapted version of Lemma A.16), so that (4.17)
is also valid for the resolvent acting on forms.

To remove the term (E∗u×E∗0), we proceed as follows. Fix a volume form ω on
M and identify C∞(M,Ωk

0)′ with D′(M,Ωn−1−k
0 ) via the pairing

〈〈α, β〉〉 =
∫
M

Ψ(α ∧ β̄)ω, α ∈ C∞(M,Ωk
0), β ∈ C∞(M,Ωn−1−k

0 ),

where Ψ : C∞(M,Ωn−1
0 )→ C∞(M) is the map defined by

Ψ(ν)ιXω = ν, ν ∈ C∞(M,Ωn−1
0 ).

A computation and (3.5) give, for =(λ) large enough,

〈〈Rλ,kα, β〉〉 = 〈〈α,−R̃−λ̄,n−1−kβ〉〉, α ∈ C∞(M,Ωk
0), β ∈ C∞(M,Ωn−1−k

0 ),

where R̃µ,j is the resolvent (−P− µ)−1|C∞(M,Ωj0) of −P. This writes

R∗λ,k = −R̃−λ̄,n−1−k, (4.18)

where the adjoint is taken with respect to the pairing 〈〈 , 〉〉, and this is true
for every complex number λ by analytic continuation. But now (4.17) applied
to −P imply (we reverse the time)

WF′(R̃µ) ⊂ ∆(T ∗M \ 0) ∪ Char(−P)+ ∪ (E∗s × E∗u) ∪ (E∗s × E∗0).

Therefore with (4.18) we finally obtain

WF′(Rλ) ⊂ ∆(T ∗M \ 0) ∪ Char(P)+ ∪ (E∗u × E∗s ). (4.19)
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Now note that

Yλ =
∑
m≥0

Am(λ− λ0)m, Am = 1
2πi

∫
∂Dε

Rλ

(λ− λ0)m+1 dλ,

where Dε = {λ, |λ − λ0| ≤ ε} and ε > 0 is small enough. Thus with
(4.19) we obtain the first part of (4.11). Therefore it remains to see that
WF′(Π) ⊂ E∗u × E∗s . A simple verification gives the following
Lemma 4.10. Suppose A, χ̂ are operators such that A and B := A− iχ̂ are
invertible. Then

A−1 = B−1 − iB−1χ̂B−1 −B−1χ̂A−1χ̂B−1.

This lemma applied with A = Qδ,h − hλ and χ̂δ,h gives for h small enough

(Qδ,h − hλ)−1 = Qχ
δ,h(λ)−1 −Qχ

δ,h(λ)−1χ̂δ,hQχ
δ,h(λ)−1

−Qχ
δ,h(λ)−1χ̂δ,h(Qδ,h − hλ)−1χ̂δ,hQχ

δ,h(λ)−1.

This reads

Rλ = he−Gδm,h
(
Qχ
δ,h(λ)−1 −Qχ

δ,h(λ)−1χ̂δ,hQχ
δ,h(λ)−1

)
eGδm,h

− e−Gδm,hQχ
δ,h(λ)−1χ̂δ,heG

δ
m,hRλe−G

δ
m,hχ̂δ,hQχ

δ,h(λ)−1eGδm,h .

Therefore we get for every δ > 0 and h small enough

Π = −e−Gδm,hQχ
δ,h(λ0)−1χ̂δ,heG

δ
m,hΠe−Gδm,hχ̂δ,hQχ

δ,h(λ0)−1eGδm,h . (4.20)

Now note that our proof of (4.17) actually shows that

WFh(Qχ
δ,h) ∩ (T ∗M \ 0) ⊂ ∆(T ∗M \ 0) ∪ Char(P)+.

Combining this with (4.20), we have using (A.4) that WF′(Π) ⊂ Υδ for every
δ > 0, where

Υδ = {(ρ′, ρ), ∃t, s ≥ 0, Φt(ρ) ∈WFh(χ̂δ), Φ−s(ρ′) ∈WFh(χ̂δ)}.

We have ⋂δ>0 Υδ ⊂ (E∗u ×E∗s )∪ (Γ+
0 × Γ−0 )∪ (E∗u × Γ−0 )∪ (Γ+

0 ×E∗s ), where Γ0
is the cone in Proposition 3.5 and

Γ±0 = {(x, ξ) ∈ T ∗M \ 0, ∃t ≥ 0, Φ±t(x, ξ) ∈ Γ0}.

As a consequence, we have using Π = − 1
2πi
∫
∂Dε

Rλdλ and (4.17) we obtain

WF′(Π) ⊂ (E∗u × E∗s ) ∪
(
(Γ+

0 × Γ−0 ) ∩ (∆(T ∗M))
)
.

This shows the second part of (4.11) since (P− λ0)J(λ0)Π = 0 and P is elliptic
on {H 6= 0}.
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5 Meromorphic continuation of the Ru-
elle zeta function
The purpose of this section is to prove the
Theorem 5.1 ([DZ13, GLP13]). The Ruelle zêta function of an Anosov flow
on a compact manifold with orientable stable bundle has a meromorphic con-
tinuation to the whole complex plane.

We first state some results that will help us take limits into flat traces ; as
a consequence we will obtain a formula (Lemma 5.5 below) that links the flat
trace of the resolvent and the logarithmic derivatives of the zeta function.

5.1 Limit of flat traces
Recall from section 2.3 the definition of the operator Mχ for χ ∈ C∞c (R>0).
We still denote its Schwartz kernel by Kχ. Denote by Mχ,λ the operator Mχeiλ·

and Kχ,λ its kernel. We have the following lemma :
Lemma 5.2. Let t0 > 0. There exists Γ ⊂ T ∗M × T ∗M a closed conic
set not intersecting the conormal to the diagonal, such that for all N ∈ N,
Γ̃ ⊂ T ∗M × T ∗M with Γ̃ ∩ Γ = ∅, Γ̃ is a subset of T ∗(U × U) for some open
set U ⊂M , Ψ ∈ C∞c (πM×M(Γ̃)) and =(λ) big enough (depending on N), there
is CN,λ such that for all χ ∈ C∞(t0,∞) :∣∣∣ΨKk,χ,λ

∧
(ξ, η)

∣∣∣ ≤ CN,λ‖χ‖CN (R)

(1 + |ξ|+ |η|)N , (ξ, η) ∈ Γ̃, 0 ≤ k ≤ n− 1, (5.1)

where Kk,χ,λ is the kernel of SMk,χ,λ
(with the notations of subsection 2.3).

Proof. Thanks to (2.9) we only need to prove the lemma for k = 0. Take U
some open of trivialization of T ∗M . We shall identify T ∗M |U with its image
V ×Rn for some V ⊂ Rn. Let Ψ ∈ C∞(V × V ). For (ξ, η) ∈ Rn ×Rn, we have
by definition of Kχ,λ :

Ψ̂Kχ,λ(−ξ, η) =
∫
V

∫
R>0

eiλtχ(t)Ψ(φ−t(x), x)e−i(−ξ·φ−t(x)+η·x)dxdt.

We will assume that (−ξ, η) is near the diagonal, that is∣∣∣∣∣ ξ|ξ| + η

|η|

∣∣∣∣∣ < ε and 1− ε < |ξ|
|η|

< 1 + ε, (5.2)

for some parameter ε we will choose later. For simplicity we define g(t, x) =
−i (−ξ · φ−t(x) + η · x). Let δ, ν > 0 satisfying that for any t ≥ t0, x ∈ V and
ξ such that |ξ ·Xx| < 2δ|ξ| we have

|(I −T dφ−tx ) · ξ| ≥ ν|ξ|. (5.3)
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The existence of such constants comes from (2.1). Up to shrinking V one can
assume we are in the following two cases :

Case 1 : |ξ · Xy| ≥ δ|ξ| for any y ∈ V . Then we get the estimate (5.1)
by integrating by part in the variable t. Indeed, we have ∂teg = (∂tg)eg with
∂tg(t, x) = −iξ ·Xφ−t(x). Take L to be the operator 1

∂tg
∂t ; then L(eg) = eg and

integrating by parts we get for all N :

Ψ̂Kχ,λ(−ξ, η) =
∫
V

∫
R>0

(TL)N
{

eiλtχ(t)Ψ(φ−t(x), x)
}

eg(t,x)dtdx,

where TL is the operator defined by TL(ϕ) = −∂t (ϕ/∂tg) . Now one can easily
show by induction on N that if ϕ(t, x) = eiλtχ(t)Ψ(φ−t(x), x) we have :

(
(TL)Nϕ

)
(t, x) = ϕN,λ(t, x, ξ)

(−iξ ·Xφ−t(x))N
,

where |ϕN,λ(t, x, ξ)| ≤ CN,λ‖χ‖CN and ϕN,λ is homogeneous of degree 0 in ξ. We
have, thanks to (5.2), |− iξ ·Xφ−t(x)| ≥ δ|ξ| ≥ δ(1−ε)

2 (|ξ|+ |η|). This shows (5.1).

Case 2 : |ξ · Xy| < 2δ|ξ| for any y ∈ V . With the same g as before,
one has L̃(eg) = eg where L̃ = ∇g·∇

‖∇g‖2 and ∇ is the usual gradient on Rn. Note
that L̃ is well defined thanks to (5.3). Then once again we have for all N

Ψ̂Kχ,λ(−ξ, η) =
∫
R>0

eiλtχ(t)
∫
V

(T L̃)N
{

Ψ(φ−t(x), x)
}

eg(t,x)dtdx,

where T L̃ is the operator defined by T L̃(ϕ) = −∑n
i=1 ∂i {ϕ(∂ig)/|∇g|2} . Now

one can easily show by induction on N , because ∇g(t, x) = −i(η+T dφ−tx · ξ),
that if ϕ(t, x) = Ψ(φ−t(x), x) we have :

(
(T L̃)Nϕ

)
(t, x) = ϕN(t, x, ξ, η)

(η +T dφ−tx · ξ)N
,

where |ϕN(t, x, ξ, η)| ≤ CNeCN t and ϕN,λ is homogeneous of degree 0 in (ξ, η).
The term eCN t comes from the derivatives of φ−t which cannot grow more
than exponentially fast. Now using (5.2) and (5.3) we have |η +T dφ−tx · ξ| ≥
|(I −T dφ−tx ) · ξ| − |η + ξ| ≥ ν|ξ| − ε(|η|+ |ξ|) ≥ ν

3 (|ξ|+ |η|) provided ε is small
enough. We therefore get (5.1) for =(λ) big enough (depending on N) so that
the integral converges.

This fact combined with the following lemma will be useful to take the
limit into flat traces.

Lemma 5.3. Let Γ be a closed conical subset of T ∗M × T ∗M not intersecting
the conormal to the diagonal. Assume (KT )T is a family of distributions of
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order 0 in D′Γ(M ×M) (not necessarily bounded) satisfying for all Γ̃ and Ψ as
in the previous lemma :∣∣∣Ψ̂KT (ξ, η)

∣∣∣ ≤ C

(1 + |ξ|+ |η|)2n+1 , (ξ, η) ∈ Γ̃, (5.4)

for some C independant of T . Assume also that KT → K in D′(M ×M) for
some K ∈ D′Γ(M ×M) as T →∞. Then

lim
T→∞

tr[KT = tr[K.

Proof. We first note that if i : M →M ×M, x 7→ (x, x), one has for any local
chart U of M , ϕ ∈ C∞(U) and ψ ∈ C∞(U) such that supp ϕ b supp ψ,

〈i∗KT , ϕ〉 = 〈i∗KT , ϕψ〉 = 1
(2π)2n

∫
U

∫
Rn×Rn

ΨKT

∧
(ξ, η)eix(ξ+η)dηdξdx,

where Ψ = ϕ⊗ ψ. Indeed, this formula is obviously true for smooth functions
thanks to the Fourier inversion formula. Thus it is also true for KT since (5.4)
shows that the integral over Rn × Rn is well defined near {−ξ = η} ; away
from it |η + ξ| is big so we can use the non stationary phase method to get
enough decreasing in ξ, η. Since the constant in (5.4) is independent of T and
Ψ̂KT → Ψ̂K pointwise, we get thanks to the dominated convergence theorem
〈i∗KT , ϕ〉 → 〈i∗K,ϕ〉. We conclude using a partition of unity.

5.2 Proof of the meromorphic continuation of
the Ruelle zeta function
Take the notations of subsections 2.2 and 2.3. For a periodic orbit γ and its
linearized Poincaré map Pγ we have det(I − Pγ) = ∑n−1

k=0(−1)ktr(∧k Pγ). This
fact combined to exp

(
−∑l≥1

1
l
ezl
)

= 1− ez for <(z) < 0 gives, thanks to (2.4),

ζ(s) =
∏
γ#

(
1− e−s`(γ#)

)
=
∏
γ#

exp
−∑

l≥1

1
l
(e−s`(γ#))l


= exp

−∑
γ#

∑
l≥1

1
l
e−sl`(γ#)

 = exp
(
−
∑
γ

`(γ#)
`(γ) e−s`(γ)

)

=
n−1∏
k=0

exp
(
−
∑
γ

`(γ#)e−s`(γ)tr∧k Pγ
`(γ)| det(I − Pγ)|

)(−1)k+q

,

(5.5)

where q = dimEs comes from (2.5). To show the meromorphic continuation of
ζ, it is thus sufficient to show that for k = 0, . . . , n− 1, the function

fk(s) = ζ ′k(s)/ζk(s) =
∑
γ

`(γ#)e−s`(γ)tr∧k Pγ
| det(I − Pγ)|

,
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where ζk(s) = exp
(
−∑γ

`(γ#)e−s`(γ)tr
∧k

Pγ
`(γ)|det(I−Pγ)|

)
, extends meromorphically to the

complex plane with simple poles and residues that are integer. Indeed, we have
the elementary

Lemma 5.4. Let h be a meromorphic function on a simply connected domain
D ⊂ C, with simple poles and residues that are integer. Then there exists a
meromorphic function g on D such that h = g′/g. Moreover if the residues are
nonnegative, then g can be chosen holomorphic.

Therefore, if fk extends meromorphically with the desired properties, we
have ζ ′k/ζk = g′k/gk on <(s) � 0 for some meromorphic function gk on C.
This gives ζk = λkgk for some λk, and ζk extend meromorphically on C, so do
ζ = ∏

k ζ
(−1)k+q

k .

Fix some t0 > 0 such that t0 < `(γ) for all periodic orbit γ. The following
lemma is central for the proof of the meromorphic continuation :

Lemma 5.5. For <(s)� 0, we have

fk(s) = −itr[
(
e−t0se−it0PRis|C∞(M,Ωk0)

)
. (5.6)

Proof. For T > 0, define χT ∈ C∞c (t0 − 1/T, T + 1/T ) such that χT ≡ 1 on
[t0, T ]. Let χT,s(t) = χT (t)e−st for s ∈ C. We have according to Theorem 2.10 :

〈tr[Tk, χT,s〉 =
∑
γ

`(γ#)e−s`(γ)tr∧k Pγ
| det(I − Pγ)|

χT (`(γ)).

Therefore, for <(s)� 0, one has
〈
tr[Tk, χT,s

〉
−→
T→+∞

fk(s). We have, according

to (2.10),
〈
tr[Tk, χT,s

〉
= tr[(Mk,χT,s). Therefore, letting T →∞, we get thanks

to Lemma 5.2 and Lemma 5.3 that for <(s)� 0 :

fk(s) = tr[
(∫ ∞

t0
e−st

(
φ−t

)∗
dt|C∞(M,Ωk0)

)
. (5.7)

Using (3.5), we conclude.

We shall make the change of variable λ = is and set

f̃k(λ) =
(

d
dλζk(−iλ)

)
/ζk(−iλ) = −ifk(−iλ),

which also writes fk(s) = if̃k(is). Then fk has simple poles with integer residues
iff it is the case for f̃k (and in this case we have Ress0(fk) = Resis0(f̃k) for any
pole s0 of fk). We use Proposition 4.8 and the continuity of the flat trace on
D′Γ(M ×M,π∗1Ω0 ⊗ π∗2Ω∗0) (see [Hör90, Theorem 8.2.4] or §B.3) for any Γ not
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intersecting the conormal of the diagonal in T ∗M × T ∗M , to obtain thanks to
the Cauchy formula that f̃k is holomorphic in the region C \ Res(P). To show
that f̃k is meromorphic, take λ0 ∈ Res(P). Choose an order function m with
C − Cm < =(λ0) so that P : D(P)→ HGm(M,Ω0) satisfies the conditions of
Theorem B.2 to get

Rλ = Yλ −
J(λ0)∑
j=1

(P− λ0)j−1Π
(λ− λ0)j , Π = − 1

2πi

∫
∂Dε

Rλdλ, (5.8)

where Dε = {λ ∈ C, |λ− λ0| < ε} for some 0 < ε� 1, Yλ is holomorphic near
λ0, [Π,P] = 0, Π2 = Π and (P − λ0)J(λ0)Π = 0. Now adapting the proof of
Proposition 4.8 we show that the Schwartz kernel of e−it0PkRλ|C∞(M,Ωk0) lies
in D′Γ(M ×M,π∗1Ωk

0 ⊗ π∗2Ωk∗
0 ) uniformly in λ near λ0 for some Γ not inter-

secting the conormal to the diagonal, and the formula (5.8) gives also that
the Schartz kernel of e−t0PkΠ|C∞(M,Ωk0) lies in D′Γ(M ×M,π∗1Ωk

0 ⊗ π∗2Ωk∗
0 ). We

then apply the continuity of the flat trace to get that f̃k is meromorphic near λ0.

It remains to see that fk has simple poles with integer residues. Let
Πk = Π|C∞(M,Ωk0) and Pk = P|C∞(M,Ωk0). We have according to (5.6) :

f̃k(λ) = −tr[
(
eit0λe−it0PkRλ|C∞(M,Ωk0)

)
= −tr[

eit0λe−it0Pk

Yλ,k −
J(λ0)∑
j=1

(Pk − λ0)j−1Πk

(λ− λ0)j


= −eit0λtr[

(
e−it0PkYλ,k

)
+ eit0λtrHGm (M,Ωk0)

e−it0Pk
J(λ0)∑
j=1

(Pk − λ0)j−1Πk

(λ− λ0)j

 ,
since the flat trace and the usual trace agree on operators of finite rank,
which Πk is (note that Πk also acts on HGm thanks to (5.8)). Let A =
PkΠk|ker(Pk−λ0)J(λ0)|HGm

. The last term on the right hand side reads

eit0λtrker(Pk−λ0)J(λ0)|HGm

e−it0A
∑
j

(A− λ0)j−1

(λ− λ0)j

 , (5.9)

where e−it0A is given by the power series extension of the exponential map
at λ = λ0 (which is finite since (A − λ0)J(λ0) = 0). But for l ≥ 1 one has
tr (A− λ0)l = 0. Therefore, the term (5.9) is just −eit0λtr (−α0Id/(λ− λ0)),
where e−it0λ = ∑

l αl(λ − λ0)l near λ0. Since tr (α0Id) = mk(λ0)e−it0λ0 with
mk(λ0) = dim

(
ker(Pk − λ0)J(λ0)

)
, we get (because eit0λtr[

(
e−it0PkYλ,k

)
is

holomorphic near λ0) :

lim
λ→λ0

(λ− λ0)f̃k(λ) = mk(λ0), (5.10)
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which concludes the proof of Theorem 5.1.

Remark 5.6. As a consequence of (5.10) together with Lemma 5.4, we have

ζ(s) =
n−1∏
k=0

ζk(s)(−1)k+q
,

where the ζk are holomorphic functions. The order of ζ at a resonance λ0 ∈
Res(P) is∑n−1

k=0(−1)k+qmk(λ0) wheremk(λ0) = dim ker
(
(Pk − λ0)J(λ0)|HGm (M,Ωk0)

)
=

dim Ran(Πk).
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6 The Ruelle zeta function at zero for
surfaces
In this section, (Σ, g) will denote a negatively curved orientable closed surface.
Denote by φt the geodesic flow on the unitary cotangent bundle M = S∗Σ =
{(x, ξ) ∈ T ∗M, |ξ|g = 1}. Recall that since Σ is negatively curved, φt is an
Anosov contact flow onM . In fact, it is a contact flow associated to the contact
form α = j∗p (see [GHL04]) where j : S∗Σ → T ∗Σ is the inclusion and p is
the one form defined by p(x,ξ)(v) = ξ

(
dπ(x,ξ) · v

)
where π : T ∗Σ → Σ is the

natural projection. We have

ιXα = 1, ιXdα = 0. (6.1)

Also recall that the form vol = α∧dα is a volume form on S∗Σ with LX vol = 0.
The stable and unstable bundles of φt are orientable (see [GLP13], Lemma
B.1) and thus by Theorem 5.1 the associated Ruelle Zeta function ζ has a
meromorphic continuation to the whole complex plane. The purpose of this
section is to prove the
Theorem 6.1 ([DZ17b]). The Ruelle Zeta function ζ of (Σ, g) is holomorphic
at zero and vanishes with order |χ(Σ)| where χ(Σ) = 2 − 2g is the Euler
characteristic of Σ.

The starting point is Remark 5.6 which gives with (2.5), because dimE∗s = 1,

ζ(s) = ζ1(s)
ζ0(s)ζ2(s) .

The order of ζ at zero is thus

−m0(0) +m1(0)−m2(0), (6.2)

where mk(0) = dim Ran(Πk). To compute the numbers mk(0), we show that
the spaces Ran(Πk) actually correspond to the space of generalized resonant
states (that is, there is no Jordan bloc) using Lemma 6.2 below ; on the other
hand, we can compute directly those spaces (Propositions 6.4 and 6.5) using the
fact that smoothness of Pu implies smoothness of u under a certain nonpositive
quantum flux condition (Lemma 6.3), which allows us to use hyperbolicity of
the flow to conclude.

6.1 Preliminaries
Let P = −iLX where X is the geodesic vector field and λ0 ∈ Res(P), and Φt

is the flow of X lifted to T ∗M . Define the space of the generalized resonant
states at λ0,

Sk(λ0) =
{
u ∈ D′E∗u(M,Ωk

0), Pu = λ0u
}
.
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The following lemma shows that under a semisimplicity condition, the geometric
multiplicity of λ0 coincides with its algebraic one.

Lemma 6.2. Assume the following condition :

∀u ∈ D′E∗u(M,Ωk
0), (P− λ0)2 u = 0 ⇒ (P− λ0)u = 0. (6.3)

Then dimSk(λ0) = mk(λ0), where mk(λ0) is defined in Remark 5.6.

Proof. We first show that we have Sk(λ0) ⊂ Ran(Πk). Indeed, take u ∈ Sk(λ0).
Take µ � 0 so that u ∈ H−µ(M,Ωk

0). For an appropriate choice of order
function (namely, |u| > µ), we have u ∈ HGm(M,Ωk

0) because m ≡ u near E∗u.
Since u ∈ Sk(λ0) we have u ∈ D(P) and we can write Rλu = (λ − λ0)−1u.
Using the Laurent series expansion (5.8) we obtain Πku = u.
Now assume u ∈ Ran(Πk). We have Πku = u and u ∈ D′E∗u(M) thanks to
Theorem 4.8. Therefore, (P − λ0)J(λ0)u = 0 since (P − λ0)J(λ0)Π = 0. Now
iterating (6.3), we conclude that u ∈ Sk(λ0). Thus Ran(Πk) ⊂ Sk(λ0), which
concludes.

In what follows, we will consider the pairing 〈·, ·〉 on L2(M) associated with
the volume form vol. Let P = P0 = P|C∞(M) = −iX. The following lemma
shows that smoothness of Pu imply smoothness of u provided a sign condition
on the quantum flux of u is satisfied (see the discussion in [DZ17b] preceding
Lemma 2.3).

Lemma 6.3. Assume that u ∈ D′E∗u(M) satisfies Pu ∈ C∞(M) and =〈Pu, u〉 ≥
0. Then u ∈ C∞(M).

Proof. Take u ∈ D′E∗u(M) and N > 0 such that u ∈ H−N (M). Thanks to (A.4),
it suffices to show that for every (x, ξ) ∈ T ∗M \ 0 and all A ∈ Ψ0

h(M) microlo-
calized near (x, ξ), one has ‖Au‖L2 = O(h∞)‖u‖H−N

h
. As in Lemma 4.5 (E∗u

is a radial source for φ−t), we can find an escape function g ∈ C∞c (T ∗M, [0, 1])
such that
(i) g ≡ 1 near 0,
(ii) X(g) ≤ 0 near E∗u,
(iii) X(g) < 0 on E∗u ∩WFh(A).
We then choose some symmetric operator G ∈ Ψ0

h(M) such that σh(G) = g,
WFh(G) ⊂ supp g and G = I microlocally near 0. Because X(g) < 0 on
WFh(A)∩E∗u, we can find C > 0 and a compactly microlocalized A1 ∈ Ψ0

h(M)
with WFh(A1) ∩ E∗u = ∅ such that

|σh(A)|2 ≤ −C2 X(g) + C|σh(A1)|2. (6.4)
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Moreover, thanks to Proposition A.8 and the fact that σh(hP ) = H where
H(x, ξ) = ξ ·Xx, we have −σh([P,G]) = 1

h
ihX(g) = iX(g) which reads

σh

( 1
2i [P,G]

)
= −1

2X(g). (6.5)

Combining this fact with (6.4) and (6.5) we get using sharp Gårding’s inequality
(Theorem A.22) applied to the operator −C

2i [P,G] + CA∗1A1 − A∗A :〈(
−C2i [P,G] + CA∗1A1 − A∗A

)
χ̂u, χ̂u

〉
≥ −Ch‖χ̂u‖L2 ,

where χ̂ lies in Ψ0
h(M) and satisfies WFh(χ̂) ⊂ T ∗M \ 0 and

χ̂ = I microlocally near WFh([P,G]) ∪WFh(A1) ∪WFh(A).

We therefore obtain

‖Aχ̂u‖2
L2 ≤ C‖A1χ̂u‖2

L2 + C

2i〈χ̂
∗[P,G]χ̂u, u〉+ Ch‖χ̂u‖L2 . (6.6)

Note that since LX vol = 0, P is symmetric on L2(M). Because G is also
symmetric,

=〈GPu, u〉 = − 1
2i 〈[P,G]u, u〉 , (6.7)

and we know that WFh(Pu) ∩ (T ∗M \ 0) = ∅ thanks to Remark A.14. As a
consequence, since GP = (G − I)P + P and I = G microlocally near 0 we
obtain with =〈Pu, u〉 ≥ 0 :

=〈GPu, u〉 ≤ O(h∞)‖u‖H−N
h
. (6.8)

Thanks to the restrictions of the wavefront set of χ̂, we obtain that A1χ̂u =
A1u + O(h∞)C∞ (and idem for A) and χ̂∗[P,G]χ̂u = [P,G]u + O(h∞)C∞ .
Moreover, WFh(A1) ∩ E∗u = ∅ which implies since u ∈ D′E∗u that A1u =
O(h∞)C∞ . Those remarks together with (6.7), (6.8) and (6.6) leads to

‖Au‖L2 ≤ C̃h1/2‖χ̂u‖L2 +O(h∞)‖u‖H−N .

Iterating this estimate we obtain ‖Au‖L2 = O(h∞)‖u‖H−N , which concludes.

6.2 Calculus of the spaces of generalized reso-
nant states
In this subsection we prove Theorem 6.1. It suffices, thanks to the discussion
following the Theorem, to calculate the numbers mk(0) for k = 0, 1, 2. To do
so, we will calculate the dimensions of the spaces Sk(0) and show that the
conditions of Lemma 6.2 are fulfilled. We first deal with the cases k = 0, 2.
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Proposition 6.4. We have

S0(0) = {c, c ∈ C}, S2(0) = {cdα, c ∈ C}.

Proof. We start by showing that S0(0) is the space of constant function on
M . Take u ∈ S0(0). We have Pu = 0, and we can apply Lemma 6.3 to get
u ∈ C∞(M). Therefore, u ◦ Φt = u for all t, which implies in particular that

dux · v = duφt(x)
(
dφtx · v

)
, (x, v) ∈ TM.

Taking vs ∈ Es(x) and letting t→ +∞, we obtain dux · vs = 0 thanks to (2.1).
Similarly (letting t → −∞) we have dux · vu = 0 for vu ∈ Eu(x). Therefore
du|Es⊕Eu = 0. Recall that we are in the case where X is a geodesic flow, which
is a contact flow (see beginning of section 6). As a consequence, Eu⊕Es = kerα
and we can write (two linear forms with same kernels are colinear)

du = ϕα

where ϕ ∈ C∞(M). But now we have

du ∧ dα = ϕα ∧ dα = α ∧ d(ϕα) = 0,

which implies that ϕ = 0 and thus du = 0 which concludes the case k = 0.
Now take u ∈ S2(0). We have ιXu = 0 which implies that we can write (since
ιXdα = 0)

u = udα,
for some u ∈ D′E∗u(M). We have

0 = LXu = dιXu + ιXdu = ιXd(udα) = (Xu)dα,

so Xu = 0 and we can apply the case k = 0 to obtain that u is constant, which
concludes.

We show in the next proposition that dimS1(0) = b1(M) where b1(M) =
dimCH

1(M,C) is the first Betti number of M .

Proposition 6.5. There exists an isomorphism of vector spaces

S1(0) ∼= H1(M,C).

Proof. First note that if u ∈ S1(0), then du = 0. Indeed, we have 0 = LXu =
ιXdu, which implies that du ∈ S2(0), because LXdu = dιXdu = 0. Thanks to
Proposition 6.4, we have du = cdα for some c ∈ C. Moreover, we have the
formula

u ∧ dα = (ιXu) vol . (6.9)
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To see this, write u = ϕα + ιXw for some w ∈ D′(M,Ω1) ; then ιXu = ϕ
which gives the formula. Since ιXu = 0, we have u ∧ dα = 0. But now

c vol(M) = c
∫
M
α ∧ dα =

∫
M
α ∧ du =

∫
M

u ∧ dα = 0

thanks to Stokes’s theorem. Thus c = 0 and du = 0. Take u ∈ S1(0) ; since
du = 0 we have thanks to Lemma B.6 the existence of ϕ ∈ D′E∗u(M) such that
u− dϕ is smooth. If ϕ̃ ∈ D′E∗u(M) also satisfies that u− dϕ̃ is smooth, then
d(ϕ̃− ϕ) is smooth and again by Lemma B.6, we obtain that ϕ− ϕ̃ is smooth,
which implies that u− dϕ = u− dϕ̃+ dψ, where ψ = ϕ− ϕ̃ is smooth. As a
consequence, we have a well defined morphism

Ψ : S1(0)→ H1(M,C), u 7→ [u− dϕ].

Let u ∈ S1(0) such that Ψ(u) = 0. Then there is ϕ ∈ D′E∗u and ψ ∈ C∞(M)
such that u − dϕ = dψ, which reads u = dϕ̃ with ϕ̃ = ϕ + ψ. One has
0 = LXu = LXdϕ̃ = ιXdϕ̃ = Xϕ̃. By Proposition 6.4, ϕ̃ is constant and u = 0,
which proves that Ψ is injective. Now take a smooth closed one form v. We
know thanks to Proposition 6.4 and (5.8) that

Rλ,0 = Yλ,0 −
Π0

λ
,

where Yλ,0 is holomorphic near 0. Set f = −ιXv and ϕ = −iY0,0f ∈ HGm(M).
We know thanks to Theorem 4.8 that ϕ ∈ D′E∗u(M). We have

Xϕ = iPϕ = PY0,0f = f + Π0f, (6.10)

since (P − λ)Rλ,0 = I on HGm(M) and PΠ0 = 0. Now note that thanks to
(3.5), we have :

(Rλ,0)∗ = −R̃−λ̄,0
with respect to the vol-pairing on L2(M), where R̃λ,0 is the resolvent of −P0.
Now Proposition 6.4 applied for −X instead of X gives that the range of Π∗0
also consists of constant functions. Therefore for g ∈ C∞(M), since Π2

0 = Π0 :

〈Π0g, 1〉 = 〈g,Π∗01〉 = 〈g, 1〉.

As a consequence, using (6.1),

−Π0f = −
∫
M
f vol =

∫
M
ιXv vol =

∫
M

v∧ιX vol =
∫
M

v∧dα =
∫
M

dv∧α = 0.

Therefore, (6.10) gives −ιXv = Xϕ. Let u = v + dϕ. We have du = 0 and

ιXu = ιXv + ιXdϕ = ιXv +Xϕ = 0,

which proves that u ∈ S1(0) and Ψ(u) = [v] ∈ H1(M,C). Thus Ψ is surjective.
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We are now in position to compute the vanishing order of ζ at zero.

Proof of Theorem 6.1. We first show that the condition of Lemma 6.3 is satis-
fied, that is for every u ∈ D′E∗u(M,Ωk

0) such that P2u = 0, then Pu = 0. We
first deal with the case k = 0. Take u ∈ D′E∗u(M) such that P 2u = 0, that
is ιXdιXdu = 0. We want to show that ιXdu = 0. Since ιXdu ∈ S0(0), we
have thanks to Proposition 6.4 that ιXdu is constant. On the other hand,
integrating by parts,

c vol(M) =
∫
M
ιXdu = 0.

Thus c = 0 and ιXdu = 0. The case k = 2 is similar ; if ιXdu ∈ S2(0), then
ιXdu = cdα for some c ∈ C thanks to Proposition 6.4. Since LXα = 0 we have

c vol(M) =
∫
M
α ∧ ιXdu = −

∫
M
LX(α ∧ u) = 0,

which concludes the case k = 2. Now we deal with the case k = 1, which is
more difficult. Take u ∈ D′E∗u(M,Ω1

0) such that ιXdu ∈ S1(0). We want to
show that ιXdu = 0. Take u ∈ D′E∗u such that α ∧ du = u vol . We have thanks
to (6.9) :

〈u, vol〉 = 〈α ∧ du, 1〉 = 〈dα ∧ u, 1〉 = 〈ιXu, vol〉 = 0.

Letting v = ιXdu, we have dv = 0 thanks to the proof of Proposition 6.5
because v ∈ S1(0). Since LX(α) = 0 and LX(dα) = 0, we have

(Xu) vol = LX(α ∧ du) = α ∧ dv = 0.

Thus Xu = 0 and Proposition 6.4 implies that u is a constant function, but
since 〈u, vol〉 = 0 we have u = 0. This implies α ∧ du = 0. Thus, one has
0 = ιX(α ∧ du) = (ιXα) ∧ du− α ∧ ιXdu, which reads since ιXα = 1 :

du = α ∧ ιXdu = α ∧ v. (6.11)

Apply (the proof of) Proposition 6.5 to obtain ϕ ∈ D′E∗u(M), w ∈ C∞(M,Ω1)
such that dw = 0 and

v = w + dϕ.
Moreover, since v ∈ S0(1), one has ιXv = 0 which leads to

ιXw +Xϕ = 0. (6.12)

We have du ∧ w̄ = d(u ∧ w̄) ; thus with (6.11) we have

0 = 〈du ∧ w̄, 1〉 = 〈α ∧ dϕ ∧ w̄, 1〉+ 〈α ∧w ∧ w̄, 1〉

We have 〈α ∧w ∧ w̄, 1〉 ∈ iR. Therefore, taking real part and using (6.9) and
(6.12):

0 = <〈ϕw̄ ∧ dα, 1〉 = <〈ϕιXw̄, vol〉 = −<〈Xϕ,ϕ〉.
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Noting that P = −iX, we can use Lemma 6.3 to obtain that ϕ is smooth,
and thus v is also smooth. Since LXv = 0, we have (φt)∗ v = v for all t. In
particular, 〈

vφt(x), dφtx · v
〉

= 〈vx, v〉 (x, v) ∈ TM, t ∈ R.

Letting t→ +∞, we obtain 〈vx, vs〉 = 0 for vs ∈ Es(x). Letting t→ −∞, we
obtain 〈vx, vu〉 = 0 for vu ∈ Eu(x). Therefore v|Es⊕Eu = 0 ; since ιXv = 0,
we obtain v = 0, which concludes the case k = 1. We have thus proved that
the order at zero of ζ is m1(0)−m0(0)−m2(0) = b1(M)− 2. To conclude it
thus suffices to show that b1(M) = b1(Σ). Let π̃ : S∗Σ → Σ be the natural
projection. Recall that we have the Gysin exact sequence ([Hat02, p. 438]):

0 −→ H1(Σ,C) π̃∗−→ H1(S∗Σ,C) −→ H0(Σ,C) ^e(Σ)−→ H2(Σ,C), (6.13)

where ^ is the cup product and e(Σ) ∈ H2(Σ,C) is the Euler class of Σ,
characterized by

〈e(Σ), [Σ]〉 = χ(Σ),
where [Σ] ∈ H2(Σ,C) is the fundamental class of Σ. Here we have χ(Σ) =
2−2g < 0 thanks to Gauss-Bonnet theorem. As a consequence, the last arrow in
(6.13) is an isomorphism because e(Σ) 6= 0 and H0(Σ,C) ∼= H2(Σ,C) = C, and
thus π̃∗ : H1(Σ,C)→ H1(S∗Σ,C) is also an isomorphism. Thus b1(M) = b1(Σ),
which concludes.
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A Microlocal and semiclassical calcu-
lus
A.1 Pseudo-differential operators on Rn

We refer to [Ler17] or [Hör94] for a complete description of pseudo-differential
operators.
Definition A.1. Let m ∈ R and ρ ∈ (0, 1]. We will say that a smooth function
a ∈ C∞(Rn ×Rn) lies in Smρ if for all multi-indices α, β ∈ Nn, there exists Cαβ
such that

∀x, ξ ∈ Rn, |∂αξ ∂βxa(x, ξ)| ≤ Cαβ〈ξ〉m−ρ|α|+(1−ρ)|β|,

where 〈ξ〉 =
√

1 + |ξ|2. We will denote Sm1 by Sm, and a ∈ Sm will be called a
symbol of order m, and S−∞ρ = ∩m∈RSmρ .
Remark A.2. One can also define the class Smρ if m ∈ S0 is an order function,
replacing 〈ξ〉m−ρ|α|+(1−ρ)|β| by 〈ξ〉m(x,ξ)−ρ|α|+(1−ρ)|β| in the previous estimate.

A symbol a ∈ Sm induces a pseudo-differential operator A = â = Op(a) =
a(x,D) : S → S, where S is the Schwarz space on Rn, by

(Au)(x) = 1
(2π)n

∫
Rn

eixξa(x, ξ)û(ξ)dξ, u ∈ S, x ∈ Rn. (A.1)

One can extend A to the Sobolev spaces Hs so that A : Hs → Hs−m is
continuous for all s ∈ R. Here is a little summary of the properties of pseudo-
differential operators.
Proposition A.3 (Basic properties of ΨDO’s). Let m,m′ ∈ R, ρ ∈ (1/2, 1],
a ∈ Smρ and b ∈ Sm′ρ . We have the following properties:

• ab ∈ Sm+m′ and Op(a)Op(b) = Op(a�b) with a�b = ab mod Sm+m′−(2ρ−1)
ρ .

• Op(a)∗ = Op(a∗) where a∗ ∈ Smρ and a∗ = a mod Sm−(2ρ−1)
ρ .

• a � b− b � a = 1
i
{a, b} mod Sm+m′−2(2ρ−1)

ρ , where {·, ·} denotes the usual
Poisson bracket on Rn.

Remark A.4. These properties also works for classes with variable order
m ∈ S0.

The following result [Ler17, Theorem 8.6] allows us to (almost) invert
microlocally the ΨDO’s.
Theorem A.5 (Microlocal inversion). Let χ ∈ S0 and a ∈ Sm such that a is
elliptic on supp χ, namely inf(x,ξ)∈supp χ |a(x, ξ)|〈ξ〉−m > 0. Let ψ ∈ S0 such
that supp ψ ⊂ int{χ = 1}. Then there exists b ∈ S−m such that

b � a = ψ + l,

where l lies in S−∞.
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A.2 Pseudo-differential operators on Manifolds
In the following, M will denote a smooth compact manifold of dimension n,
and N another compact manifold.

Definition A.6. Let A : C∞(M) → C∞(M) be an operator. We’ll say that
A is a pseudo-differential operator or order m if for any coordinate chart
κ : U ⊂M → V ⊂ Rn, one has for any ψ, φ ∈ C∞c (U) and u ∈ C∞(M) :

ψAφu = ψκ∗aκ(x,D)κ∗(φu),

for some aκ ∈ Sm. We’ll denote by Ψm(M) the set of such operators.

We also define Smρ (M) the class of symbols a ∈ C∞(T ∗M) such that there
exists CKαβ such that

∀(x, ξ) ∈ K × Rn, |∂αξ ∂βx (κ∗a)(x, ξ)| ≤ CKαβ〈ξ〉m−ρ|α|+(1−ρ)|β|, (A.2)

for any trivialization chart κ : U → V and any compact subset K ⊂ V . For
a ∈ Sm(M), we can quantize a by the following process. Let (Uκ, κ) be some
atlas of M and ψκ be a subordinate partition of unity. For u ∈ C∞(M), let

Op(a)u :=
∑
κ

χκκ
∗Aκχκκ∗u,

where Aκ = (κ∗a)(x,D). This quantization depends of the coordinate charts.
However, one can show that using a different atlas, we obtain the same operator
modulo Ψm−1(M). Thus, we have a well defined bijection

Ψm(M)/Ψm−1(M) ∼= Sm(M)/Sm−1(M);

the image of an operator A under this map is called its principal symbol and
will be denoted by σ(A). It carries a geometrical meaning. Note that every
point of A.3 also works for pseudo-differential operators on manifolds, with
principal symbols.

One can define pseudo-differential operators acting on a vector bundle E
as follows : we say that A : C∞(M,E)→ D′(M,E) lies in Ψk(M,Hom(E)) if
in every local frame e1, · · · er of E over an open set U ⊂M one has

A(fel) =
r∑
j=1

(Ajlf)ej, f ∈ C∞c (U), l ∈ {1, · · · , r},

where Ajl ∈ Ψk(U). In this case the principal symbol σ(A) of A lies in the
class Sk(M,Hom(E))/Sk−1(M,Hom(E)).
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A.3 Semiclassical calculus
Let us now introduce semiclassical pseudodifferential operators. We refer here
to [Zwo12] or [DZ17a] for more details.
Definition A.7. Let A = (Ah)h∈(0,1), Ah : C∞(M) → C∞(M) be a family
of operators. We’ll say that A is a semiclassical ΨDO of order m if for any
coordinate chart κ : U ⊂ M → V ⊂ Rn, one has for any ψ, φ ∈ C∞c (U) and
u ∈ C∞(M) :

ψAhφu = ψκ∗aκ,h(x, hD)κ∗(φu),
for some aκ,h ∈ Sm. We will use the notation Oph(a) := a(x, hD) for a in Sm
and we demand that the semi norms of aκ,h in Sm are bounded uniformly in h.
The dependance of h of the symbols will not usually be explicit. We’ll denote
by Ψm

h (M) the set of such operators.
Note that every A ∈ Ψk(M) define an operator (Ah) ∈ Ψk

h(M) with
Ah = Oph(A). The semiclassical principal symbol of a semiclassical operator A
will be denoted by σh(A) and lies in Smh (M)/hSm−1

h (M), where Smh (M) is the
set of families a = (ah) with ah ∈ Sm(M) uniformly in h. Quantizing a symbol
a ∈ Smh as in the previous subsection gives us a bijection (with (κ∗a)(x,D)
replaced by (κ∗ah)(x, hD)):

Ψm
h (M)/Ψm−1

h (M) ∼= Sm(M)/hSm−1
h (M).

We have the following version of A.3 for semiclassical ΨDO’s (we removed the
ρ’s for simplicity):
Proposition A.8 (Basic properties of semiclassical ΨDO’s). Let A ∈ Ψm

h (M)
and B ∈ Ψm′

h (M). Then
• AB ∈ Ψm+m′

h (M) and σh(AB) = σh(A)σh(B) mod hSm+m′−1
h (M),

• σh(A∗) = σh(A) mod hSm−1
h (M),

• σh([A,B]) = h
i
{σh(A), σh(B)} mod h2Sm+m′−2

h (M), where {·, ·} is the
canonical Poisson bracket on T ∗M.

The semiclassical norms ||·||Hµ
h
are defined locally as follows: for u supported

in a coordinate patch let ||u||Hµ
h

:= (2π)−n||〈hξ〉µû(ξ)||L2 = (2πh)−n||Fh(u)||Hµ ,
where Fh is the semiclassical Fourier transform, namely Fh(u)(ξ) = û(ξ/h).
Semiclassical ΨDO’s act between semiclassical Sobolev spaces Hµ

h , which means
that if A ∈ Ψk

h, one has ||Ahu||Hµ+k
h
≤ C||u||Hµ

h
for u ∈ Hµ and C independent

of h. The norms on Hµ
h (M) are defined globally using partitions of unity,

mainly let (Uκ, κ : Uκ → Rn) is a finite atlas on M and (ψκ) is a partition of
unity subordinated to (Uκ), then

‖u‖2
Hµ
h

:=
∑
κ

‖κ∗(ψκu)‖2
Hµ
h
.

For a different choice of atlas the norm will be equivalent.
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Definition A.9. We will call a family of distributions u = (uh)h∈(0,1) to be
h-tempered if there is µ ∈ R, N ≥ 0 such that

||uh||Hµ
h

= O(h−N)

as h → 0. We will denote by Dh(M) the set of h-tempered distributions (or
D′h(M,E) for those with values in a vector bundle E).

Similarly, we introduce h-tempered families of operators which are families
B = (Bh)h, Bh : C∞(M)→ D′(M) such that there is N ≥ 0 satisfying

||Bh||Hµ
h
→Hµ−N

h
= O(h−N)

as h→ 0.

Distributions independent of h are h-tempered. We allow h-tempered dis-
tributions to become singular as h→ 0, but if so it is at a controlled rate. As
we have seen before, if A ∈ Ψk

h and u is h-tempered, then Au = (Ahuh)h is
also h-tempered.

One can define semiclassical pseudo-differential operators acting on a vec-
tor bundle E as follows : we say that A = (Ah)h : C∞(M,E) → D′(M,E)
lies in Ψk

h(M,Hom(E)) if in every local frame e1, · · · er of E over an open set
U ⊂M one has

A(fel) =
r∑
j=1

(Ajlf)ej, f ∈ C∞c (U), l ∈ {1, · · · , r},

where Ajl ∈ Ψk
h(U). In this case the semiclassical principal symbol σh(A) of A

lies in the class Skh(M,Hom(E))/Sk−1
h (M,Hom(E)).

A.4 Exponentiation of pseudo-differential op-
erators
Adapting the proof of [Zwo12, Theorem 8.6] for classes of symbols Sm we have
the following

Theorem A.10. Let g be an escape function for an order function m as in
section 3, and G ∈ Ψ0+

h (M) such that σh(G) = g. Then there is a unique
family of pseudo differential operators B(t) : C∞(M)→ C∞(M) such that

∂tB(t) = GB(t), B(0) = I.

B(t) is a ΨDO with symbol σh(B(t)) = bt ∈ Stm+
h . We will denote B(t) by

exp (tG).
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This exponentiation will be useful to construct anisotropic Sobolev spaces
and to conjugate operators. We have the following

Lemma A.11. Let P ∈ Ψ1
h(M), and G ∈ Ψ0+

h (M) as in the previous theorem.
Let Pt = exp(tG)P exp(−tG).

Pt = P + t [G,P ] +
[
G,
∫ t

0
(Ps − P )ds

]
, t ∈ [0, 1].

Proof. Note that etG and G commute. Therefore,

d
dtPt = GetGP e−tG − etGPGe−tG

= [G,Pt]
= [G,P ] + [G,Pt − P ].

Integrating between 0 and t, we get the lemma.

A.5 Classical and semiclassical wavefront set
The wavefront set of a distribution is a very useful tool to describe its singular-
ities in the phase space. Let π : T ∗M →M denote the canonical projection.

Definition A.12. For u ∈ D′(Rn), we define its wavefront set WF(u) as
follows : (x, ξ) ∈ T ∗Rn \ 0 does not lie in WF(u) if there exists a conical
neighborhood U × Γ ⊂ T ∗Rn \ 0 of (x, ξ) and χ ∈ C∞c (Rn) supported in U
with χ(x) 6= 0 such that for all N ≥ 0 there exists CN > 0 satisfying

χ̂u(η) ≤ CN〈η〉−N , η ∈ Γ. (A.3)

The wavefront set is a closed conical subset of T ∗Rn\0. If u is a distribution
on M instead, we define WF(u) ⊂ T ∗M \ 0 as follows : let (Uκ, κ) be an atlas
of trivialization of T ∗M , with χκ a subordinate partition of unity and set
WF(u) := ⋃

κ κ
∗WF(κ∗(χκu)). More generally, if u ∈ D′(M,E) is distribution

with values in a vector bundle E, we say that (x, ξ) ∈WF(u) if for some local
basis e1, . . . , er of E near x, writing u|U = ∑

i uiei, one has (x, ξ) ∈ WF(uj)
for some j. For a closed conical subset Γ of T ∗M , we define as in [Hör90,
Definition 8.2.2] :

D′Γ(M) = {u ∈ D′(M),WF(u) ⊂ Γ}.

Recall that the topology of D′Γ is defined as follows : we say um → u in D′Γ if
uj → u in D′ and the constants in (A.3) are uniform in m.

For a ΨDO A ∈ Ψk(M), we define the wavefront set WF(A) as follows :
(x, ξ) ∈ T ∗M \0 does not lie in WF(A) iff one can find a conical neighborhood Γ
of (x, ξ) such that a(x, ξ′) = O(〈ξ′〉−∞) in Γ, where A = Op(a) with a ∈ Sk(M).
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If A ∈ Ψk(M,Hom(E)) acts on sections of a vector bundle E, we say that
(x, ξ) /∈ WF(A) iff a(x, ξ′) = O(〈ξ′〉) for ξ′ in some conical neighborhood of
(x, ξ), where Op(a) = A and a ∈ Sk(M,Hom(E)).

For an operator B : C∞(M) → D′(N), fixing a non-vanishing density
µ on M , one gets the Schwartz Kernel KB ∈ D′(N × M) of B with re-
spect to µ defined by the relation 〈KB, (φµ) ⊗ ν〉 = 〈Bφ, ν〉 for φ ∈ C∞(M)
and ν ∈ C∞(N,D), where D is the line bundle of densities. We show that
WF(KB) does not depend of the choice of the density µ and we can thus
define WF′(B) := {(y, η, x,−ξ)|(y, η, x, ξ) ∈ WF(KB)}. More generally, if
B : C∞(M,E) → D′(N,F ) works with vector bundles E and F over M and
N (that is, in a local frame, B (∑i uiei) = ∑

jlBjlujfl for some operators Bjl),
its Schwartz kernel KB lies in D′(N ×M,π∗NF ⊗ π∗ME∗) and we can define its
wavefront set WF(KB); as before we get WF′(B).

To introduce the semiclassical wavefront set, let us consider the fiber-
radially compactified cotangent bundle T ∗M modeled by the ball B∗M =
{(x, ξ) ∈ T ∗M s.t. |ξ| ≤ 1} for some smooth norm on T ∗M . Then we have an
embedding ι : T ∗M → int(T ∗M) defined by ι(x, ξ) = (x, ξ

〈ξ〉), so that T ∗M is
a manifold with boundary S∗M = (T ∗M \ 0)/R>0 and with interior T ∗M.

Definition A.13. The semiclassical wavefront set WFh(u) of an h-tempered
family of distributions (uh) ⊂ D′(M) is defined as follows : we’ll say that
(x, ξ) ∈ T ∗M does not lie in WFh(u) if there exists χ ∈ C∞(M) supported in
a trivialization chart, χ(x) 6= 0, and a neighborhood U of (x, ξ) in T ∗M , and
h0 > 0 such that for all N ≥ 0, there is CN > 0 satisfying

χ̂u(η/h) ≤ CNh
N〈η〉−N , η ∈ U ∩ T ∗M, 0 < h < h0,

where we identified U with its image in Rn ×Rn.

Remark A.14. The semiclassical wavefront set away from the fibers infinity
does not tell any information about the smoothness of the distributions; how-
ever, it captures oscillations in h. For an h-independent distribution u, we
have

WF(u) = WFh(u) ∩ T ∗M \ 0. (A.4)
Moreover, if u is smooth, then WFh(u) ∩ (T ∗M \ 0) = ∅.

We define as before the wavefront set of a semiclassical ΨDO A ∈ Ψk
h(M),

replacing O(〈ξ′〉−∞) by O(h∞〈ξ′〉−∞).

Definition A.15. If A ∈ Ψk
h(M) satisfies WFh(A) ∩ ∂T ∗M = ∅, we’ll say

that A is compactly microlocalized. Note that every compactly microlocalized
semiclassical pseudodifferential operator lies in ∩kΨk

h(M).
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Using Schwartz kernels, we can similarly define the wave front set of h-
tempered family of operators Bh : C∞(M) → D′(N), which is a subset of
T
∗(N ×M).

We have the following useful characterization of the classical wavefront set :

Lemma A.16. Let (Kλ)λ be a bounded family in D′(M ×M), and Kλ its
operator associated onM . Let Γ is a closed conic set in T ∗M×T ∗M and R > 0.
Assume that for each (y, η, x,−ξ) ∈ T ∗(M ×M) \ Γ with |η|, |ξ| ∈ [R, 2R] we
can find relatively compact neighborhoods U of (x, ξ) and V of (y, η) in T ∗M
such that for all h-tempered family of functions fh ∈ C∞c (πM(U)),

WFh(f) ⊂ U =⇒WFh(Kλf) ∩ V = ∅. (A.5)

uniformly in λ, that is, for every N and χ ∈ C∞c (πM(V )), there exists CN,χ,f
independant of λ such that |Fh(χKλfh)(ζ)| ≤ CN,χ,fh

N for all ζ ∈ V and λ.
Then (Kλ)λ is a bounded family in D′Γ(M ×M).

Proof. Take (y, η, x,−ξ) /∈ Γ with |ξ|, |η| ∈ [R, 2R]. Take neighborhoods U
and V of (x, ξ) and (y,−η) such that (A.5) is valid. Up to shrinking a little
bit U and V we may assume that πM(U) and πM(V ) are supported in a
trivialization patch and identifying their image under the trivialization we
have U, V ⊂ Rn × Rn. Take χx ∈ C∞c (πM(U)) and χy ∈ C∞(πM(V )). Put
fh(x′, ξ′) = χx(x′)eix

′·ξ′/h for (x′, ξ′) ∈ πM(U)×Rn. One has

χxχyKλ

∧
(η′/h,−ξ′/h) = χyKλfh
∧

(η′/h).

Now we have WFh(f) ⊂ U (this is an exercise) and it follows from (A.5) that
WFh(Kλf)∩V = ∅. Therefore for all N there is CN such that χyKλfh

∧
(η′/h) ≤

CNh
N for all (η′/h, ξ′/h) ∈ V × U, which implies that χxχyKλ

∧
(η′,−ξ′) ≤

C̃N〈ξ′〉−N〈η′〉−N for every (η′, ξ′) in some conical neighborhood of (η, ξ). This
concludes.

A.6 Microlocal and semiclassical inversion
We recall here some facts about ellipticity and microlocal inversion that will
be helpful. See [DZ17a, Appendix E] for more details.

Definition A.17. Let A ∈ Ψk(M) and (x, ξ) ∈ T ∗M . We’ll say that (x, ξ) ∈
ell(A) if there exists a conical neighborhood U of (x, ξ) in T ∗M and c > 0 such
that |σ(A)|(y, η) ≥ c〈η〉k for all (y, η) ∈ U . If A ∈ Ψk(M,Hom(E)) acts on
vector bundles, we ask that | detσ(A)|(y, η) ≥ c〈η〉k instead.

Theorem A.18. Let A ∈ Ψk(M,Hom(E)) and χ̂ ∈ Ψ0(M,Hom(E)) such
that WF(χ̂) ⊂ ell(A). Then there exists B ∈ Ψ−k(M,Hom(E)) such that
AB = χ̂+ L where L lies in Ψ−∞(M,Hom(E)).
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Definition A.19. Let A ∈ Ψk
h(M) and (x, ξ) ∈ T ∗M . We’ll say that (x, ξ) ∈

ellh(A) if there exists a neighborhood U of (x, ξ) in T ∗M and c > 0 independant
of h such that |σh(A)|(y, η) ≥ c〈η〉k for all (y, η) ∈ U∩T ∗M and h small enough.
If A ∈ Ψh(M,Hom(E)) acts on vector bundles, we ask that | detσh(A)|(y, η) ≥
c〈η〉k instead.

Remark A.20. Note that as in the definition of the wavefront set, the semi-
classical set of elliptic points need not be conical, contrarily of the classical
one.

Theorem A.21. Let A ∈ Ψk
h(M,Hom(E)) and χ̂ ∈ Ψ0

h(M,Hom(E)) such
that WFh(χ̂) ⊂ ellh(A). Then there exists B ∈ Ψ−kh (M,Hom(E)) such that
AB = χ̂+ L where L lies in h∞Ψ−∞h (M,Hom(E)).

A.7 Gårding’s inequality
The Gårding’s inequality is a result of positivity which will be crucial in the
developements of certains of our estimates.

Theorem A.22 (Sharp Gårding’s inequality, [Zwo12] Theorem 9.11). Let
A ∈ Ψk

h(M) such that < (σh(A)) ≥ 0 everywhere. Then there is C such that

<〈Au, u〉 ≥ −Ch‖u‖
H
k−1

2
h

(M)
, u ∈ C∞(M).
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B A few results in operator theory
B.1 Fredholm theory
Theorem B.1 (Fredholm analytic continuation). Let X and Y be Banach
spaces, Ω ⊂ C a connected open set, and P : Ω → L(X, Y ), λ 7→ Pλ be a
holomorphic family of Fredholm operators. Suppose that there exists µ ∈ Ω
such that Pλ is invertible. Then there exists a discrete subset S ⊂ Ω such that
Pλ is invertible for all λ /∈ S, and λ 7→ P−1

λ extends to a meromorphic function
on Ω, that is, for every pole λ0 ∈ S, there exists k > 0 and a neighborhood U
of z0 such that for all z ∈ U , we have

P−1
λ = Yλ +

J(λ0)∑
j=1

Aj
(λ− λ0)j ,

where Yλ is holomorphic near λ0. Moreover, the Aj are of finite rank.

In fact, if Pλ is of the form P − λ, we have a more precise statement :

Theorem B.2. Suppose X = Y and P satisfies the conditions of the previous
theorem. Assume P is of the form Pλ = P − λ. Then near a pole λ0, the
resolvent satisfies

(P − λ)−1 = Yλ −
J(λ0)∑
j=1

(P − λ0)j−1Π
(λ− λ0)j ,

where
Π = 1

2πi

∫
∂Dε

(λ− P )−1dλ

with Dε = {λ ∈ C, |λ − λ0| < ε} for small enough ε. Moreover, Π2 = Π,
[P,Π] = 0 and (P − λ)J(λ0)Π = 0.

Proof. We set Rλ = (P − λ)−1. We write thanks to the previous theorem
Rλ = Yλ +∑J(λ0)

j=1
Aj

(λ−λ0)j near a pole λ0 of P . The equation Rλ(P − λ) = IdX
shows that if λ, µ ∈ U \ S,

RλRµ = Rλ −Rµ

λ− µ
.

Therefore, if γj(t) = λ + rjeit, t ∈ [0, 2π], j = 1, 2, are two circles with
0 < r1 < r2 < ε, one has

Π2 = 1
(2πi)2

∫
γ2

∫
γ1
Rz1Rz2dz1dz2

= 1
(2πi)2

∫
γ2

∫
γ1

Rz1 −Rz2

z1 − z2
dz1dz2.
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Now, since r1 < r2, we have
∫
γ1
Rz2/(z1 − z2)dz1 = 0 thanks to Cauchy’s

theorem. Therefore,

Π2 = 1
(2πi)2

∫
γ1
Rz1

(∫
γ2

dz2

z1 − z2

)
dz1 = Π.

Writing An = 1
2πi
∫
γ(λ− λ0)n−1Rλdλ and noting that PRλ = Id + λRλ we get

(P − λ)An = An+1,

which concludes.

B.2 On closed operators
Let H be an Hilbert space and suppose T : H → H is an unbounded closed
operator with domain D(T ) dense in H.

Lemma B.3. Assume Ran(T ) = H and there exists ε > 0 such that

‖Tu‖ ≥ ε‖u‖, u ∈ D(T ).

Then T : D(T )→ H is surjective.

Proof. Take v ∈ H. Since Ran(T ) = H, we can take a sequence un in D(T )
such that Tun → v as n→∞. Then ‖T (up − uq)‖ ≥ ε‖up − uq‖ so un is also
a Cauchy sequence in H, and there is u ∈ H such that un → u as n→∞. But
now T is closed so u ∈ D(T ) and v = Tu, which concludes.

B.3 The flat trace
Given two compact manifolds M and an operator B : C∞(M) → D′(M)
satisfying

WF′(B) ∩∆(T ∗M) = ∅, (B.1)
where ∆(T ∗M) is the diagonal in T ∗M × T ∗M , we define its flat trace tr[B
as follows. First, fix a density vol on M and let KB ∈ D′(M ×M) be the
Schwartz kernel of B with respect to vol. The condition on the wavefront
set of B means that WF(KB) does not intersect the conormal bundle to the
diagonal in M ×M . Let ι : M →M ×M,x 7→ (x, x) be the inclusion in the
diagonal. According to [Hör90, Theorem 8.2.4], one can define the pullback
ι∗KB ∈ D′(M). In fact, if Γ ⊂ T ∗M × T ∗M is a closed conical subset not
intersecting the conormal to the diagonal, then ι∗ is continuous D′Γ → D′ι∗Γ.

Definition B.4. The quantity

tr[B := 〈ι∗KB, vol〉

does not depend of the density vol and is called the flat trace of B.
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Now, let T : C∞(M) → D′(R>0 ×M) be an operator satisfying that its
Schwartz kernel KT ∈ D′(R>0×M ×M) with respect to a density vol satisfies

WF(KT ) ∩ {(t, 0, x, ξ, x,−ξ)|t > 0, (x, ξ) ∈ T ∗M \ 0} = ∅. (B.2)
Then again one can define its pullback j∗KT ∈ D′(R>0×M) where j : (t, x) 7→
(t, x, x).
Definition B.5. The distribution tr[T ∈ D′(R>0) defined by

〈tr[T, χ〉 := 〈j∗KT , (π∗1χ) vol〉, χ ∈ C∞(R>0),
where π1 : R>0 ×M → R>0 is the projection over the first factor, does not
depend of the choice of the density vol and is called the flat trace of T .

More generally if T : C∞(M,E) → D′(M,E) acts on sections of a vector
bundle E, then we can define an operator ST defined locally as ST = ∑

i Tii,
where the operators Tkl are defined in a local frame (ei) by T

(∑
j ujej

)
=∑

kl Tklukel. The definition of ST does not depend of the local frame, and we
write tr[T := tr[ST.

B.4 Cohomology with distributions
Let M be a smooth manifold. Recall the definition of the cohomology groups

Hk(M,C) = {u ∈ C
∞(M,Ωk), du = 0}

{dv,v ∈ C∞(M,Ωk−1)} .

The following lemma shows that the classes D′Γ are also useful to deal with
cohomology.
Lemma B.6. Let Γ ⊂ T ∗M \ 0 a closed conic set. Take u ∈ D′Γ(M,Ωk) such
that du is smooth. Then there exists v ∈ C∞(M,Ωk) and w ∈ D′Γ(M,Ωk−1)
such that

u = v + dw.

Proof. Take a Riemannian metric g on M ; Hodge theory gives us the Hodge
Laplacian ∆ = dd∗ + d∗d : C∞(M,Ω) → C∞(M,Ω), ∆ ∈ Ψ2(M,Ω), with a
Green operator G : C∞(M,Ω)→ C∞(M,Ω), G ∈ Ψ−2(M,Ω), such that G∆−I
and ∆G− I are smoothing. Set w = d∗Gu ∈ D′Γ(M,Ωk−1). We have

dw = dd∗Gu = ∆Gu− d∗dGu = u + (∆G− I) u− d∗dGu.
Since ∆G − I is smoothing, it suffices to show that d∗dGu is smooth. But
one has ∆(dGu) = d∆Gu = d (∆G− I) u + du, which implies that ∆(dGu)
is smooth because du is, and thus dGu is smooth thanks to elliptic regularity
because the principal symbol of ∆

σ(∆)(x, ξ) = |ξ|gIdΩ

is elliptic. Therefore d∗dGu is also smooth, which concludes.
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C Recurrence estimates
We shall prove in this section Lemma 2.2. To do so, we will first need the
following lemma which will guarantee that two different closed trajectories of
nearby periods cannot be too close. In the following, X is an Anosov flow on a
compact manifold M , and we denote by φt its flow. We fix some metric on M .

Lemma C.1. Fix t0 > 0. There exists C,L, δ, ε0 > 0 such that for every
t, s ≥ t0 and x, y ∈M with

|t− s| < δ and d(x, y) ≤ δe−Lt,

we have for every ε < ε0

d(x, φt(x)) ≤ ε, d(y, φs(y)) ≤ ε =⇒ |t−s| ≤ Cε,∃τ ∈ (−1, 1), d(x, φτ (y)) ≤ Cε.

Proof. First note that since φt is a one-parameter group, one has for some
C,L > 0

‖φt‖Diff2(M) ≤ CeL|t|, t ∈ R. (C.1)

where ‖ · ‖Diff2(M) is some norm on the space of diffeomorphisms on M with C2

regularity. In particular, one has

d(φt(x), φt(y)) ≤ C0eL|t|d(x, y), x, y ∈M, t ∈ R. (C.2)

Take x in M and δ > 0 small enough so that there is a coordinate chart U
near x with {z ∈ M, d(z, x) ≤ 2C0δ} ⊂ U . Now note that thanks to (C.2),
d(φt(x), φt(z)) ≤ C0δ whenever d(x, z) ≤ δe−Lt with t ≥ t0. As a consequence,
if ε < C0δ/2, then d(x, φt(x)) ≤ ε implies φt(z) ∈ U for every z such that
d(x, z) ≤ δe−Lt. We identify U with its image in Rn, and take y ∈ B(x, δe−Lt).
The constants C appearing in the following considerations might evolve. We
have thanks to (C.1) and the preceding remarks :

∂xi∂xjφ
t(z) ≤ CeLt, z ∈ B(x, δe−Lt).

This implies with the Taylor expansion of z 7→ φt(z) :

|φt(y)− φt(x)− (dφt)x · (y − x)| ≤ CeLt|y − x|2.

On the other hand, ∂2
t φ

t(y) is bounded in t, y (this is the direction of the flow)
which implies with the Taylor expansion of t 7→ φt(y) :

|φs(y)− φt(y)− (s− t)Xφt(y)| ≤ C|s− t|2.

We therefore obtain

|φs(y)− φt(x)− (dφt)x · (y − x)− (s− t)Xφt(y)| ≤ C
(
eLt|y − x|2 + |s− t|2

)
,
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which gives∣∣∣((dφt)x − I) · (y − x) +Xφt(y)(s− t)
∣∣∣ ≤ C

(
eLt|y − x|2 + |s− t|2

)
+ |φs(y)− y|+ |φt(x)− x|.

(C.3)
Now we will use the following

Lemma C.2. If δ is small enough there exists a continuous family of invertible
linear transformations Tx,z : TxM → TzM , z ∈ B(x, 2C0δ), such that Tx,x = I
and

Tx,z (E•(x)) = E•(z), • = u, s, 0.
Moreover, one has C, ε0 > 0 such that∣∣∣((dφt)x − Tx,φt(x)

)
· v
∣∣∣ ≥ C−1|v|, d(x, φt(x)) < ε0, t ≥ t0. (C.4)

Admitting the lemma, one obtains since y 7→ Tx,y is continuous :∣∣∣(I − Tx,φt(x)
)
· (y − x)

∣∣∣ ≤ C|φt(x)− x||y − x|.

Moreover
∣∣∣Xφt(y) −Xφt(x)

∣∣∣ ≤ C|φt(y) − φt(x)|. Those remarks together with
(C.3) give :∣∣∣((dφt)x − Tx,φt(x)

)
· (y − x) + (s− t)Xφt(x)

∣∣∣ ≤ C
(
eLt|y − x|2 + |s− t|2

)
+ |φs(y)− y|

+ |φt(x)− x|+ C|φt(x)− φt(y)||s− t|
+ C|φt(x)− x||y − x|.

Moreover d(x, y) < δe−Lt, thus we have if ε < ε0, d(x, φt(x)) < ε and
d(y, φt(y)) < ε :∣∣∣((dφt)x − Tx,φt(x)

)
· (y − x) + (s− t)Xφt(x)

∣∣∣ ≤ Cδ (|y − x|+ |s− t|) + Cε.

(C.5)
Now since Es(x) ⊕ Eu(x) is transverse to X, we have (if δ is small enough)
τ ∈ (−1, 1) such that φτ (y)− x ∈ Es(x)⊕Eu(x). As a consequence, using that
X is non vanishing and the fact that Tx,z preserves the distribution Es⊕Eu⊕E0,
we have with (C.4) :∣∣∣((dφt)x − Tx,φt(x)

)
· (φτ (y)− x) + (s− t)Xφt(x)

∣∣∣ ≥ C−1 (|s− t|+ |φτ (y)− x|) .

Combining this with (C.5) applied to φτ (y) instead of y this gives the desired
result.

It remains to prove Lemma C.2. If 2C0δ is smaller than the injectivity
radius of the exponential map at x, we can define

Tx,z = (Πs(z) ◦ γz ◦ Πs(x))⊕ (Πu(z) ◦ γz ◦ Πu(x))⊕ (Π0(z) ◦ γz ◦ Π0(x))
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where Π•(z) are the projections on E•(z) with respect to the distribution
Es(z) ⊕ Eu(z) ⊕ E0(z), and γz is the parallel transport from x to z. Since
Tx,x = I we have that Tx,z is invertible if z is close enough to x. Now for
sufficiently large t, one has by the Anosov property :

|(dφt)xvs| ≤
1
2 |vs|, |vu| ≤

1
2 |(dφ

t)xvu|, vs ∈ Es(x), vu ∈ Eu(x).

We have 2|vu| ≤ |(dφt)xvu−Tx,φt(x)vu|+|Tx,φt(x)vu| and thus |vu| ≤ C|(dφt)xvu−
Tx,φt(x)vu| if ε0 is small enough so that ‖Tx,φt(x)‖ and ‖Tx,φt(x)‖−1 are close to
1. Similarly |vs| ≤ C|(dφt)xvs − Tx,φt(x)vs|. This implies

|v| ≤ |vu|+ |vs| ≤ C|(dφt)xvu − Tx,φt(x)vu|+ C|(dφt)xvs − Tx,φt(x)vs|

if ε0 is small enough. Since Tx,φt(x) sends E•(x) on E•(φt(x)) for • = s, u, we
obtain (C.4) for t big enoug, say for t ≥ Nt0. Now let t ≥ t0. Then for ε̃0 small
enough, we have d(x, φt(x)) < ε̃0 =⇒ d(x, φNt(x)) < ε0. Moreover, we have
|
(
(dφNt)x − I

)
v| ≤ C| ((dφt)x − I) v|, for v ∈ Eu ⊕ Es. As a consequence, we

have with (C.4) applied to φNt :

|v| ≤ C
∣∣∣(dφt)x − I)v

∣∣∣+ C
(∣∣∣(Tx,φNt(x) − I)v

∣∣∣+ ∣∣∣(Tx,φt(x) − I)v
∣∣∣) .

This shows (C.4) for all t ≥ t0, provided ε̃0 is small enough so that we have
C
(
‖(Tx,φt(x) − I)‖+ ‖Tx,φNt(x) − I‖

)
< 1/2. This completes the proof.

We are now in position to prove the bound on the number of closed orbits.

Proof of Lemma 2.2. Let µ be the Riemannian volume on M and define a
measure on M ×R by ν = µ⊗ dt. Let t0 > 0 and set

Aε = {(x, t) ∈M ×R+, d(x, φt(x)) < ε, t ≥ t0}.

Take δ > 0 be the constant of Lemma C.1 and fix T > 0. Let x1, · · · , xN be a
maximal set of points in M (with N depending on T ) such that d(xi, xj) ≥
δe−LT/2, that is for every x ∈M , one has d(x, xj) ≤ δe−LT/2 for some j. We
have

Aε ⊂
N⋃
j=1

M⋃
k=1

Aεj,k, Aεj,k = Aε ∩
(
B(xj, δe−LT/2)× [τk − δ/2, τk + δ/2]

)
,

where τ1 < · · · < τM are such that [t0, T ] ⊂ ∪k[τk − δ/2, τk + δ/2], with M
depending on T and M ≤ CT . If Aεj,k is nonempty, fix (x, t) ∈ Aεj,k. Then for
all (y, s) ∈ Aεj,k, one has |t − s| < δ and d(x, y) ≤ δe−LT . Then Lemma C.1
gives that for ε small enough :

Aεj,k ⊂ VCε ({(φτ (x), t), |τ | < 1}) ,
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where Vε(B) = {ρ, d(ρ,B) < ε} is the ε tubular neighborhood of a set B. As
a consequence, we obtain ν(Aεj,k) ≤ C̃εn. Now note that N ≤ CenLT because

vol(M) ≥ vol
 N⋃
j=1

B(xj, δe−LT/4)
 =

N∑
j=1

vol
(
B(xj, δe−LT/4)

)
≥ C ′e−nLTN.

We finally obtain for ε small enough

ν(Aε) ≤ CT enLT εn ≤ CenL̃T εn. (C.6)

Now take γ(t) = φt(x0) a closed trajectory of period τ no more that T . We
know by (C.2) that for ε > 0 :

|t− τ | ≤ ε, ∃s : d(γ(s), x) ≤ εe−Lτ =⇒ d(x, φt(x)) ≤ Cε.

Now for ε small enough depending on T , the tubular neighborhood defined in
the left hand side do not intersect any such tubular neighborhood of a different
closed orbit of period less than T . Moreover, this tubular neighborhood has a
volume in (x, t) bounded from below by C−1εne−(n−1)Lτ . As a consequence, for
ε small enough, we get with (C.6) :

N(T )C−1εne−(n−1)LT ≤ vol(ACε) ≤ CenL̃T (Cε)n,

which concludes.
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