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Abstract

In this memoire, we will explain the meromorphic continuation of the Ruelle
zeta function for Anosov flows using microlocal analysis. This extension is
done considering the generator of the flow acting on some anisotropic Sobolev
spaces introduced by Faure-Sjostrand. Then, we show that the Ruelle zeta
function of the geodesic flow on a negatively curved surface vanishes at zero
with order the Euler characteristic of the surface. This is a result due to S.
Dyatlov and M. Zworski.
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1 Introduction

Historical background. In 1956, Selberg | ] introduced a zeta function
associated to surface of constant negative curvature k = —1
CSelberg(S) = H H (1 - e—(s—l—k)é(y)) s %(8) > 1,
v k=0

where the first product runs over all primitive closed geodesics v. He showed
that Cgeberg €xtends to a meromorphic function on the whole complex plane
using a trace formula (today called Selberg’s trace formula), which links the
lengths () of the closed geodesics with the eigenvalues of the hyperbolic
Laplacian. For a compact hyperbolic surface ¥ = T'\H?, the Selberg’s trace
formula leads to the following dichotomy on the zeroes of (seiberg :

e The non-trivial zeroes of (gemerg, Which are of the form

1
8217 Szgizpy je]NZIa

where p? +1/4 =X and 0 = A\ < A\; < --- — 00 are the eigenvalues
of the hyperbolic Laplacian A. The vanishing order at s = % + p; is
w; if pj # 0 and 2u; otherwise, where p; is the multiplicity of A\; as an
eigenvalue of A ; the vanishing order at s = 1 is 1.

e The trivial zeroes of (gebers; Which are of the form
s=—m, meN,
with vanishing order 1 — x(X) for m = 0 and —(2m + 1)x(X) for m > 0.

The definition of (seiberg Of course generalizes to the case of surfaces with
variable negative curvature ; however we do not know any analogue of the
Selberg’s trace formula in the variable curvature setting, which restricts our
knowledge about (geiperg in this context.

In 1976, D. Ruelle associated to any Anosov flow ¢ a zeta function | ).
It can be thought as an analogue of the inverse of the Riemann zeta function

CRiernamn(S)i1 = H (1 —pis) s §R(8) > 1.
pEP

where P is the set of prime numbers, replacing the prime numbers by the
exponential of the lengths of the primitive periodic orbits of ¢ :

Cruee(s) =[] (1 - efsém) . R(s) > 0.
v primitive
Ruelle and Selberg zeta functions are linked by the formulae

CRuelle(S) - Csjskj:}(ri(j)ly CSelberg = I!;[O gRuelle(S + p) (11>
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As in number theory, the Ruelle zeta function is very useful to describe the
distribution of the primitive periodic orbits.

Ruelle showed that (ruene extends meromorphically to the whole complex
plane provided the flow and its stable and unstable bundles distributions (see
definitions in §2.1) are analytic ; then, first Rugh | | in dimension 3,
then Fried | | in all dimensions showed that we can remove the analyticity
assumption on the stable and unstable distributions (but not on the flow).
In the case of a C* flow, we know since a while that (ryene is analytic and
nonzero on R(s) > h(¢p), where h(¢) is the topological entropy of the flow,
with a simple pole at h(¢). It was also known that it extends meromorphically
to a neighborhood of {R(s) > h(¢)} if the flow is weak mixing, see | ,
Chapter 9] for more references and details. Those results are typically obtained
by coding the dynamics using Markov partitions, in order to relate the zeta
function to the dynamical determinant, or Fredholm determinant, of some
appropriate operators. However those methods do not take into account the
smoothness of the dynamics, and we know thanks to Kitaev | | (at least in
the case of Anosov diffeomorphisms) that the smoothness of the map is highly
related to how far we can extend the Fredholm determinant.

In the early 2000’s, Blank, Keller and Liverani | | introduced some
Banach spaces adapted to an hyperbolic diffeomorphism on which the transfer
operator is quasi-compact ; this led to a lot of developements in this direction
[ , , . Also some spaces adapted to Anosov flows | ,

] have been developed, on which the generator of the flow has a quasi-
compact resolvent. More recently, Faure-Roy-Sjostrand | | introduced a
microlocal approach to construct anisotropic Sobolev spaces adapted to Anosov
diffeomorphisms ; then Faure-Sjostrand | | constructed such spaces for
Anosov flows. Those spaces provide the right regularity to study the generator
X of the flow which appears to be Fredholm restricted to them ; this gives the

Theorem 1.1 (] , |). For an Anosov vector field X, the resolvent
(=X =\t C®(M) — D'(M) has a meromorphic extension to the whole
complex plane, with poles of finite multiplicity. Those poles are the Ruelle
resonances.

All those modern techniques finally allowed Giuletti-Liverani-Policott, then
Dyatlov-Zworski, to show

Theorem 1.2 (| , ). The Ruelle zeta function of a smooth Anosov
flow extends to a meromorphic function on the whole complex plane.

It is moreover showed in | ] that in C* regularity, that (ruene extends
meromorphically to the half plane $(s) > h(¢) — ck where the constant c is
determined by the Anosov splitting. This paper is an extension of | , ]
whereas the approach in | | uses semiclassical analysis and is based on
[ |. In this memoire, we will concentrate on this microlocal approach. Let
us briefly recall the main components of the proof of Dyatlov-Zworski. The
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first step is to relate the (log derivative of the) zeta function to the flat trace of
the (shifted) resolvent of the generator of the flow for $(s) > 0 thanks to the
Guillemin trace formula | ]. Then using the Faure-Sjostrand spaces and
microlocal analysis, they show that the meromorphic extension of the (shifted)
resolvent lie in an appropriate space on which the flat trace is continuous,
which guarantees the meromorphicity of the zeta function.

Later, Dyatlov-Zworski got interested in the behavior of (ruene at s =0 :

Theorem 1.3 (| ). For a smooth contact Anosov flow on a 3-manifold
M with orientable stable distribution, the Ruelle zeta function vanishes at zero
with order —x (M) where x(M) is the Euler characteristic of M.

In particular, for the geodesic flow on a closed negatively curved surface
Y. (which is an Anosov flow on the unitary tangent bundle) the meromorphic
extension of (ruene vanishes at s = 0, with a zero of order |x(X)|, where x(X)
is the Euler characteristic of 3. Note that thanks to (1.1), we recover the
special case of compact hyperbolic surfaces earlier mentioned : the pole at zero
of Cselberg 15 1 — x(X). This result shows in particular that for a negatively
curved surface, the length spectrum of the surface (that is, the set of lengths of
primitive geodesics) determines the genus of the surface. This result is proved
using the standard factorization of the zeta function and calculating the di-
mension of the spaces of generalized resonant states of the generator of the flow.

Further extensions. Very recently, the meromorphic extension of the zeta
function for Axiom A flows have been established by Dyatlov-Guillarmou
[ |, answering positively to a conjecture of Smale | ]. This is based
on their previous work [ ] about the zeta function for open systems. The
meromorphic extension of the zeta function was already proved in the case
of Grassmanian extensions of contact Anosov flows, which is a special case of
Axiom A flows, by Faure-Tsuji | ].

Guillarmou-Hilgert-Weich | | exhibited a correspondence between
classical resonant states (that is, Ruelle resonant states) and quantum reso-
nant states (that is, eigenfunctions of the Laplacian) for convex co-compact
hyperbolic surfaces. This highlights the deep link existing between classical
and quantum mechanics on hyperbolic surfaces ; such a link was already

known, as witnessed by the Selberg’s trace formula (see | ] for the convex
co-compact case), but only for resonances.
Also, Hadfield | ] proved that the Ruelle zeta function of the geodesic

flow on a negatively curved surface 3 with strictly convex boundary (which is
Axiom A) vanishes at zero with order 1 — x(X). We refer to the introduction
of | | for a more exhaustive overview of results about Policott-Ruelle
resonances and dynamical zeta functions.

Structure of the memoire. In section 2 we recall the definitions of some
dynamical notions and the Guillemin trace fomula. We give the construction of
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the microlocal Faure-Sjostrand spaces in section 3 and prove that the resolvent
of the generator of the flow extends meromorphically to the whole complex
plane. We give in section 4 some semiclassical estimates that allows to compute
the wavefront set of the extension of the resolvent. In section 5, we show the
meromorphic continuation of the Ruelle zeta function for Anosov flows whose
stable and unstable bundles are orientable. We compute the vanishing order
of CRruelle at zero in section 6. In appendix A we recall basic definitions about
pseudo-differential operators, semiclassical calculus and wavefront sets. In
appendix B we recall standard facts about operator theory and flat traces. In
appendix C we show some recurrence estimates to get a bound on the growth
of the number of periodic orbits.

Acknowledgments. I would like to thank Colin Guillarmou for his very
precious advices and for answering a lot of my questions. I also thank Malo
Jézéquel and Thibault Lefeuvre for very helpful discussions.
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2 Preliminaries on dynamical systems

2.1 Anosov flows and dynamic on the cotan-
gent bundle

Let M be a smooth compact manifold.

Definition 2.1. A smooth vector field X on M will be called to be Anosov if
for each x in M, we have a decomposition

T,M = Ran(X,) ® Es(x) ® E,(x),

preserved by the flow, and satisfying that for any metric | - | on T'M there
exists C', 0 > 0 such that :

Al (ve)] < Ce™ o], 20, v, € By(x)
|dgt (va)] < Ce™Mv,|, <0, vy € Bulw).

Ey(¢'(r))

v Eu(¢'(x))

A

Figure 2.1. An illustration of an Anosov flow.

Remark 2.2. A typical situation is given by the case where M = S*X is the
cosphere bundle over a negatively curved surface ¥; in that case, this is a
well-known fact that the geodesic flow on M is Anosov | ].

Remark 2.3. One can always find a norm such that the previous constant C
is equal to 1, with a new constant 6 arbitrarily close to the first one. Indeed, it
suffices to average the metric along the flow : for T" large enough the metric
vl = Ji |d¢*v|ds satisfy those properties.



YANN CHAUBET

If p € Diff (M), we will denote by @ its lift to T*M :

P(,€) = (p(x), "(dp);" &), (2,€) € T*M,

where T denote the transposition. Let € be the canonical symplectic form on
T*M, that is Q = dp where p is the 1-form defined by p.¢)(v) = {(dm(ze) - v)
for v € Ty eyT"M. Here 7 : T*M — M is the natural projection. Note that for
any o € Diff(M), one has ¢*Q2 = Q. Let X be a smooth vector field on M, and
denote by H € C*(T*M) the Hamiltonian defined by H(z, &) = {(X,). Let X
be the Hamiltonian vector field of H with respect to €2, that is, 1x2 = dH,
where ¢ denotes the interior product. Differentiating with respect to ¢, we get
the following lemma which tells us that the lift of the flow of X on T*M is the
Hamiltonian flow of H.

Lemma 2.4. Let ¢' be the flow of X on M and denote its lift ;ﬁ on T*M by
®t. Then @' is the flow generated by the Hamiltonian vector field X.

We will denote by Ejj, E; and E; the dual decomposition of Ey, Es and E,, in
the following sense : Ef (E, & E;) =0, EX (E;® Ey) =0and E (E, ® Ey) =
0. Note that E} and E? do not correspond to the usual definition of dual
spaces (they are exchanged) but one would rather prefer this convention since
®' preserves this decomposition and we have, with the norm |- | on T*M
induced by the one on T'M :

' (z,&)| < Ce™™, t>0, &€ Ei(a),

) (2.1)
|P(x,&,)| < Ce™M, £ <0, & € Ej(x).

Those estimates motivate the following definition.

Definition 2.5. Let p: T*M \ 0 — S*M the natural projection, where S*M
is the unitary cotangent bundle, namely S*M = {(z,§) € T*M, [¢| = 1}.
Suppose L is a closed conic set invariant under the flow ®'. L will be called a

radial source if there exists an open conical neighborhood U of L in T*M \ 0
and C, 6 > 0 such that

dist (p (27'(U)) . p(L)) — 0;

t——+o00
@7 (2,6)] = CTe"[¢], (v,6) €U, t20.
Reversing the time of the flow we get the definition of a radial sink.

Remark 2.6. Tt is obvious from (2.1) that E? is a radial source whereas E
is a radial sink.
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2.2 Periodic orbits and the Ruelle zeta func-
tion

In the following, M is a compact manifold and X is an Anosov flow on M,
with @' its flow.

Lemma 2.7 (Growth of the number of periodic orbits). Let N(T') be the
number of periodic orbits of ¢' of length smaller than T. Then there exists
C, L > 0 such that

N(T) < Ce™, (2.2)

An elementary proof of this fact is given in section C. In fact, one has the
more precise statement (which we won’t need here, | 1) : N(T) grows
exponentially fast and there is h(¢) > 0 such that

h(@T
h($)T"
The number h(¢) is the topological entropy of the flow ¢'.

N(T) ~

Definition 2.8. Let {y”} be the primitive periodic orbits of X and denote
{0(v*)} their periods. Then the Ruelle zeta function ¢ of X is defined by the

formula
C(s) =T (1 —e 0™, (2.3)

’y#
where s € C has a big enough real part.

If 7 <7y < ... are the periods of ¢!, one has

T, 2 logn (2.4)

~Y

by (2.2), and this guarantees the convergence of (2.3) for R(s) > 0.

Let us now introduce the notion of linearized Poincaré map of a periodic
orbit.

Definition 2.9. Let v(t) = ¢'(x) be a periodic orbit of period 7. Then the
linearized Poincaré map of v is defined by

P, = (4677),

Es(2)®Eu(z)-

The Anosov property of the flow implies that periodic orbits are non
degenerate in the sense that I — P, is invertible. Indeed, if v € Es(z) & E,(z)
satisfies v = P,v, then v = PYv for all n € Z. Writing v = v, + v with
v, € Ey(x) and v, € Es(x), and noting that P, preserves E, and E,, we get
lv.| < Ce |, for all n so v, = 0. Similarly vy = 0, so v = 0.
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If we choose an other base point ' = ¢*(z), then the new linearized Poincaré
map P will be conjugated by d¢; to P,. In particular, the determinant
det(/ — P,) is well defined and does not depend of the base point. Moreover,
we have det(I — P,|g,) > 0 since the eigenvalues of P,|g, are of modulus
strictly less than 1 and therefore I — P,|g, and [ lie in the same connected
component of GL(E,). Similarly, we have det(I — P, !|g,) > 0. If Ej is
orientable, we obtain det(P,|g,) > 0 since d¢’ preserves the orientation of
the stable bundle. Letting ¢ = dim E, we get det(! — P,|g,) = det(P;!
I)det(P,y|g,) = (—1)%det(—P; '|g, + I)det(P,|p,) so that |det(I — P,
>0 >0
(—=1)9det(I — P,|g,). Writing det(I — P,) = det(I — P,|g,) det(I — P,|g,) we
get

Es —

B, =

|det(I — P,)| = (—1)7det(I — P,). (2.5)

2.3 The Ruelle transfer operator and the Guillemin

trace formula

For 0 < k < n, let Q* be the vector bundle of k-forms on M and define the
operator Py, : C°(M,QF) — C=(M, Q) by Pra = —iLxf. We will note for
simplicity Q = @, 2* and P = @, P. We also define Q% the vector bundle of
k-forms f with ¢xf = 0 where ¢ is the interior product. Let

T, : COO(M, Qg) — COO(IR,>0 X ]\47 W%Qg)

the operator defined by Ty (f) = (f;)ier., where f; = e Prf := (¢~")*f and
7 is the projection over M. The operator e #P* is called the Ruelle transfer
operator. The purpose of the Guillemin trace formula is to link the Ruelle
transfer operator to the linearized Poincaré maps of the periodic orbits:

Theorem 2.10 (Guillemin trace formula | ). The flat trace of Ty, is well
defined, and we have in D'(Rsy) :
() te(AF Py)dgy)
tr’ Ty, = SEALS LY (2.6)
ZY: | det(] — P,)]

where the sum goes over all periodic orbits v, £(v) is the period of v, £(y#) its
primitive period, Oy is the Dirac distribution at {(v), and P, is the linearized
Poincaré map of .

See § B.3 for the definition of the flat trace.
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Proof of Theorem 2.10. Denote by K is the Schwartz kernel of T with respect
to some density vol. Now note that K acting on 0-forms is a density on the
surface S = {(t,y,x) € Rogx M x M, y = ¢'(x)}. Therefore | , Example
8.2.5], WF(K) C N*S, that is

WE(K) C {(t, =0 X, ¢'(x),m,2,— "dél ) |t € Rog, & € M, 1 € Tye(nyM \ 0} .

Now to show the condition (B.2) (in order to define the flat trace of T), we
have to verify that WF(K) N {(¢,0,z,&, 2, =&)|t > 0, (x,&) € T*M \ 0} = 0.
But this is straightforward since - X, = 0, ¢!(z) = z and (I — Td¢.) - n
implies n = 0. Indeed the Poincaré return map of a closed orbit is invertible
restricted to Ey @ E, (see the discussion below Definition 2.9).

Let us now interest ourselves to the case k = 0. Let T'= Ty, K = K7 and
J:iRao X M — Rog x M x M, (t,x) — (t,z,x).

Lemma 2.11. Let ty > 0 and xg € M such that ¢'(xy) = xo, and 7 the
associated orbit. Then there exists a small neighborhood U of xy and 6 > 0
such that all x € C°((to — 6,9 +0) x U) we have

1 to+6
(T, X) = 55 x(to, ¢°(0))ds.

| det(I — P,)| Jio—s

Proof. Take some local coordinates w : U; — B(0,e) C R™ such that w, X =
O, and w(xo) = 0. Let ¢' = w o ¢' o w™! (this is well defined for ¢ near
to) and take some W C B(0,¢) and § > 0 satisfying ¢~—*(W) C B(0,¢) for
every |t —to| < 0. Let p € C*(R", [0,1]) such that [g.p = 1. For d € N,
w = (wy, - ,wg) and € = (e1,--- ,&q), set p=(w) = I{_,e; " p(w;/e;). Now
define for £,2" € (0,00)" and g9 > 0, 0.,z = p. ® p= ® p=. Since the flat trace
does not depend of the density, we can assume that w, vol is the Lebesgue
measure on R"”. We have for ¢ € C2°(W) and x € C2°((to — 6,0 +9) :

G ((0aF) 0y 22) K@ 0) = [ Ouerlt =0 = 67(a"), 2 — &) X)) da'de dadl
— [ e = 2@ [ pualt = Opex = 677 (o)) At dada’dt,

Letting €9, — 0 this reads
G () (0 @ p 2 03)) X @ 0) = [ pele = 6 (2)) R()b(@)dadt, (2.7)

where 6% is the Dirac at 0 on R? for d € N. Write ¢~ (z) = (—t + to + T+
a(z),b(z)), where x = (x1, z), for some smooth functions a and b. If £ = (&1, h),
we obtain

[ palt = to + a()pr(z = ()R (B) (@) dtdrdz.
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Letting e — 0, one obtains [ p;(z — b(2))X(to — a(z))dz1dz. The change of
variable 2’ = z — b(z) = v(2) gives

/ | det(I — (1db) i ,))’pﬁ(zl)i(to —aov Y (INY(xy, v H(2))drdy.

Finally, letting i — 0, we get since v(0) = 0 and a(0) = 0 (indeed ¢' (zq) = xy),

~ 1
) qee T =@l /w(:vl,())dml.

We have w, X = 8y, and (db)g = (dd*)o|w,—o 50 (db)g is conjugated to P,. This
concludes the proof of the lemma, since j* ((w*K) * (g ® p= @ 561)) — Jrw. K
E—

in D'((to—9, to+0) x W). Indeed, convolution preserves the spaces Dy ; moreover
we can take the limit £ — 0 in an arbitrary order (of the ¢;) because of the
formula (ux(®;p;), ®;105) = (u, ®;(p;*;)) for u € D'(R?) and pj,¥; € C°(R),
where (®;1;) (1, -+, 2q) = ;9;(z;). O

Remark 2.12. Since K is a delta function on S, if ¢ € C°(U) with U an
open set satisfying ¢~ (U)NU = @ for t € (to — 9, to+0), then (F*T, x @) =0
for every x € C°(to — 6,10 + 9).

Now let x € C°(Rs¢) and ¢ € C>°(M). There exists a finite set v, -+, Yn
of periodic orbits of length less than supsupp y. Thanks to the preceding
remark, we can assume that ¢ is supported in Uj_; U; with U; N U; = () and
v; C U for all 1 <i,j < N, and that x is supported near the values {¢(7;)}.
Now decompose U; in neighborhoods that satisfy the assumptions of Lemma
2.11 (up to shrinking them a little) and take a partition of unity along this
decomposition to get

0(; CH)
5. (08 W)l = T o PO

This finally shows that for every y, 1, we have

GT X0 = T iy v

which is exactly (2.6) for k = 0.

To deal with the general case, we shall take the notations of appendix B.3
and calculate the Schwartz kernel of St,. Take xg € M, ty > 0 such that
P (zg) = z9, and (e;) a local basis of Qf on a small neighborhood U of .
Let f =Y, fie; € C(U,Qf), r = dim Qf and define (locally) the functions
bjl : COO((tO — (5, to + (S) X U) by

((07) £) (@) = X (07 ;) (@)bult, v)eu(a). (2.8)

Jil
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Then for ¢ € C*(U), we have St (t,x) = 3;bj;(t,x) ((¢~")*1) (x), which
implies that

Ky = (Z bjj> K (2.9)

locally in the sense of distributions, where K}, is the Schwartz kernel of S, .
Applying the previous lemma, one obtains

S X 90 = gt [ vl ) (; bl ¢s(fﬁo))) s,

for x € C*>((to — 0,tp + 0)). On the other hand, since tye; = 0, (2.8) shows

that
k

3 b (to, 8* (o) = tr A\ (( Tdoy )

F1aEi(6°(z0))) -

But now for all s, dgb;fgxo) Er@Ex(¢°(z0)) 1S conjugated to P, which concludes
the proof of Theorem 2.10. O]

For x € C°(Rso) let M, : C*°(M, ) — D'(M, ) the operator defined
by

_ [~ —t)*
M, f = /0 x() (67) " £dt.
We shall prove the following lemma which will be useful later.

Lemma 2.13. M, has a well defined flat trace and we have
{tr" T, x) = tr"M,. (2.10)

Proof. Fix a density vol on M and let K, € D'(M x M,niQy ® 7€) be
the Schartz kernel of M, with respect to vol, where m; : M x M — M
denotes the projection on the j-th factor, 7 = 1, 2. Define also the application
L:CX(Rso) = D'(M x M, m5Q @ w382 defined by L(x) = K. Then | :
Theorem 8.2.12] shows that WF(L(x)) C {(z,& y,n) € T*(M x M)|3t €
supp X, (t,0,x,&,y,nm) € WF(K)}, where K is the Schwartz kernel of L with
respect to vol. Using vol, we identify C*°(M, Q) with C>°(M, Qy ® D) where
D is the line bundle of densities. Take f € C*(M, ) and g € C(M, ).
We have by definition of the Schwartz kernels previously involved :

13
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which implies (up to reordering) that K = K. Now recall from the proof of
Theorem 2.10 that WF(K) N {(¢,0,z,&, 2, —&)[t > 0, (2,€) € T*M \ 0} = 0,
which implies that M, has a well defined flat trace. Finally, (2.10) is implied
by (2.7), letting € — 0. O
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3 Policott-Ruelle resonances

In what follows, M is a compact manifold and X is an Anosov vector field on
M. We start in §3.1 by constructing an escape funtion that decreases along
the flow (Proposition 3.5). We define anisotropic Sobolev spaces in §3.2. We
finish by showing in §3.3 that the resolvant (P — \)~! extends meromorphically
to the whole complex plane (Theorem 3.15). We follow here | ].

3.1 The escape function

The purpose of this subsection is to construct an "escape function" g on the
cotangent space. This escape function decreases in the direction of the flow,
which will guarantee nice properties of the operator e?P(9) . Recall from appendix
A5 the definition of the fiber-radially compactified cotangent space T M. Fix a
norm |-| on T*M and denote the projection T*M\0 — 0T M = S*M = {|¢| =
1} by p as in section 2. The Hamiltonian vector field X defined in subsection 2.1
satisfies dp(zae) (X (2, AE)) = dp(ze) (X(z,&)) for (z,&) € T*M \ 0 and A # 0
so it descends to a vector field X on S*M. For z € M and € € T*M \ 0,
we'll denote [¢] = p(&). The following lemma will be useful to define an order
function m:

Lemma 3.1. Suppose that v is a vector field on a compact manifold N, and
K, and K, are e®-invariant compact disjoint subsets such that

dist(e"(z), K,) e 0, z¢ K,

dist(e™ (1), K,) .0, z¢ K, (3:1)
We moreover ask that the convergence is locally uniform in N \ (KU K,,). Let
Vs and V,, be open neighborhoods of Ky and K., and fix € > 0.
Then there exists Wy C Vi and W, C Vi, neighborhoods of Ky and K,, a
function m € C*(N,[0,1]) taking the values 1 and 0 on neighborhoods of
K, and K, and n > 0 satisfying that v(m) > 0 on N, v(m) > n > 0 on
N\ (W, UW), v(m) > 1—¢ on Wy and v(m) < e on W,.

Proof. Schrinking a little V,, and V, we can assume that V,NV, = 0. For § > 0

and K C N, we set K° := {z € N|dist(z, K) < §} the §-neighborhood of K.

We claim that there exist § > 0 and R > 0 such that K? C Vi, K3 C V,, and
for all t > R, one has e®(V;) C K? and e~®(V,) C K?. Indeed, this follows
immediately from the fact that the convergences in (3.1) are locally uniform in

M\ (K, U K,). Thus, considering V, := U;>z €"(V;) and doing the same for
V., one can assume that

(V) C Vi, e (V) CV,, t>0.
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For T > 0 we set WI = e"(N\V,) and WI = e T?(N \ V;). According to
what precedes, if T is large enough, one has W c V,, and W C V,. Choose
some mgy € C®(N, [0, 1]) satisfying my = 1 on V; and mg = 0 on V. Then
define my € C*(N) by

() = ;T / TT mo(c(2))dt, € N.

We have

1
v(imr) = ﬁ(mo oel —mgoe ™). (3.2)

For z € N, let Z(x) = {t € R | e"(x) € N\ (V;UV,)} and 7(x) be the
travel time between V,, and Vj, that is 7(x) = supZ(x) — inf Z(x). One has
T = sup,eny 7(2) < 00, again because the convergence in the hypothesis is

locally uniform. From now on, we assume 7" > 7, which implies with (3.2) that
v(m)(x) = 57 > 0 for x ¢ W UW].

For z € W, one has e??(x) ¢ V, thus for t <T — 7, we have e"¥(z) € V,,
and mg(e'(x)) = 0. Therefore,

m(x) = 21T /_:;_T mo (e (z))dt + /TT_T mo(e(z)) | < %

Moreover, (3.2) gives v(mr)(x) > 0 since mo(e=1°(x)) = 0.

We show identically that for € W[, we have m(z) > 1 — 7= and
v(mr)(x) > 0. Thus, for T chosen large enough so that 7= < e, we get
the desired objects with m = mp, W, = WuT, W, = WST and n = % O

Now we are in position to make explicit the construction of our order
function m. In what follows, if C' is a conical subset of T*M, its projection on
S*M will be denoted by C.

Lemma 3.2 (The order function). Fizu < 0 < ny < s. We can find arbitrarily
small conical neighborhoods I',, Ty and I's of £, Ef and EY in T*M and a
smooth order function m € C>®(T*M, [u,s]) such that for |§| > 1, m(z,§)
depends only of [£] € S*M and :

(i) m is equal to u (resp. s and ng) near E* (resp. E* and Ef),
(ii) X(m) <0 globally,

(iii) X(m)(x,&) < —nem for (x,€) € S*M\ (IT'yUTsUTLYy,), where n > 0 does
not depend on u,ng, s, and ¢, = min(s — ng, ng — u).

(iv) m > s/2 (resp. m < u/2) on Ty (resp. T,).
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Proof. Let N = S*M and v = X. Fix ¢ > 0 and construct my and my
functions on N by applying lemma 6.2 to the two following situations :

| K' = B*, K! = B & B,
9. K?= E* & B, K? = E~.

s

Lemma 2.4 and (2.1) guarantees the locally uniform convergence required to
apply lemma 6.2. Indeed, for example in situation 1, let K be a compact subset
of S*M \ (K} U K}). There exists o > 0 such that

K c{lg] € S*M |a™&] < &+ &ul < alél}.
Now (2.1) gives
[@71(&) > C7e™E > O e a T G + &, [ e, t>0.

Again using (2.1) and the fact that Ej and E are in direct sum we get ¢ > 0
such that
|§0 + §u| > C|q)_t(§0) + q)_t(é.u”a t>0.

We therefore obtain
[D7(&)| > C e a | @ (&) + D&, t> 0,

which gives the locally uniform convergence towards K! in backward times ;
this is exactly the same in the future.

For j = 1,2, we thus obtain arbirtrarily small neighborhoods W7 and W7 of K
and K7, a function m; and a constant 7; such that m; <eon W, m; >1—¢
on W7, X(i;) > n; on S*M \ (Wi UWJ) and X(m17;) > 0 globally.
We then define

m = s+ (ng — s)my + (u— ng)ma,
and we choose m € C>®(T*M) such that m(z, &) = m(z,[£]) for [{] > 1 and
m(z,§) = 0 for |{] < 1/2 (for example by letting m(x,&) = m(z, [£])x(]€])
where y € C(Rs) satisfies x = 1 on [1,400[ and x = 0 on (0,1/2)). Since m
takes the values s, ng and u on Ev;‘, EE; and Ev;;, m satisfies the point (i). The
point (i) comes from the fact that X(m) = (ng— )X (1m71)+ (u—ne)X(7113) < 0.
Now let

T,=W'NnW2 Ty=W!NnW2 and T,=W!nW2

Let n = min(n, 7). On S*M \ (FNO U, U I:), we have i(ﬁﬁ) > 1 or
X(mz) > 1. Using X(m) = (ng — s)X(m1) + (u — 1o)X (73), one gets
X(m) < —ne, where ¢, is defined above, so m satisfies (iii) : indeed, one
has X (m)(z,€&) = X(m)(x, [€]) for €] > 1. Now, since m, < ¢ on W/ and
m; >1—¢con W/ for j = 1,2, we obtain (iv) by letting ¢ small enough. [
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We now introduce a norm f decreasing (resp. increasing) strictly along the
flow near the source E* (resp. the sink EY).

Lemma 3.3. For small enough conical neighborhoods I's, T, and 'y as in the
previous lemma, there exists C > 0 and f € C*®(T*M \ 0,R~o), homogeneous
of degree 1, positive everywhere, such that

X(f)<=CfonTs, X(f)>CfonT,, and X(f)=0 onT,.

Proof. By estimates (2.1), there exists small conical neighborhoods I's C Vj
and I'y, C V,, of E} and E}, and T' > 0 such that :

@26 < 5l (@6 €V +2T
07w ) < 56l (w6 eV (ST,

where @ is the flow of X on T*M. Let f; € C®°(T*M \ 0,R~() defined as
follows :

T

fl(xvf) :/0 |q)s(x7£)|d3’ (C(],g) S T°M.
Then f; is an homogeneous function of degree 1 and there is ¢ > 0 such that
¢ Ml < filw,€) < ef¢] forall (z,€). We have that X(f1)(x,€) = &7 (z, )| - [¢]
which implies X(f1)(z, &) < —3]¢| < =5~ f1(x,€) for (x,£) € V, and similarly

X(f1)(x, &) > %fl (x,&) for (z,&) € V,,. Now choose f an homogenous function
of degree 1 such that

f=fionl'y,ul'y, f=Honl,,

where H is the Hamiltonian that X is1 derived from. Then f satisfies the
requirements of the lemma with C' = -, since X(H) = 0. O

Definition 3.4 (The escape function). Let m be an order function as in lemma
3.2 and f as in the previous lemma. Let

gm = mlog <f >
The function g, is called the escape function.

Proposition 3.5 (Uniform decreasing of the escape function outside I'y). The
escape function, subordinate to a choice of vicinities I's, Iy, g and a choice of
s, u, ng, satisfies that X(g,) < 0 everywhere. Moreover, there is R > 0 such
that

X(gm)(.lf,f) S _Cmv (xag) ¢ FOa |€| Z R,

with Cp, = cmin(|ul, s) for some ¢ > 0 independent of s, u, ny.
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Proof. We have X(g,,) = X(m)log(f) + mX (log(f)).

On I’y UT,. Since X (log(f)) = #X(f), one gets that X(log(f)) < —C-5

on I's by properties of f. Because m > s/2 on I, we obtain m(z, £) X (log(f)
—C's for |¢] large enough and (z,£) € I'y. Similarly m(z, &)X (log(f))(z, &
—C||ul for |€] large enough and (z,&) € T,. Since X(m) < 0 and log(f
we have

X (gm) (2, &) < =Cmin(Jul, s)
for |£| large enough and (z,§) € [y UT,,.

Outside I';UT', UTy. One has X(m) < —ncy,. Moreover, mX(log(f))
is globally bounded. Therefore, for || large enough, one has X(g,,)(z,§) <
—nem log(f)(z,§) + € < —Cmin(|ul, s).

On T'y. We have X(f) =0, since f(z,§) = H(z,§) for (z,§) € I'y. Therefore,
X(gm) = X(m)log(f) <0. The constant C' involved is independent of s, u, ny,
which completes the proof with ¢ = C. O]

Remark 3.6. We can rescale g,, and consider ¢° (z,&) = g, (,£/6) ; we have
X(g2)(x,€) = X(gm)(1,£/5) so ¢, satisfies the properties announced in the
previous proposition, with d R instead of R (the constant C,,, remains identical).

3.2 Anisotropic Sobolev spaces

Since the order function defined in the previous subsection is homogeneous
of degree 0, one has m € S°(M). The class S;*(M) is thus well defined
(recall from appendix A the definition of the classes S7* for m € S%(M)). Let
Ay, = €9m = (f)™. We have the following lemma :

Lemma 3.7. The symbol a,, belongs to the class SJ*(M) for every p <1 (we
will write a,, € ST for short), and the symbol g, lies in SE(M) for all e > 0.

Proof. We follow here | , Lemma 6]. We work in a coordinate chart U
and identify T*M|y with U x R". We write f(z,£) = c(x,§)|¢| with some
c € C®(U x R™\ U x 0) homogeneous of degree 0. We denote a,, by p for
simplicity. We proceed by induction on |« + | to prove the estimates (A.2) ;
more precisely we will show that

(0207p)(x,€) = q(a,€)( )™=, (3.3)
with g € S;”"“H(l_p)'ﬂ‘ for all p < 1. We will use the following

Fact : log(f) € S° for every € > 0.
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Proof. Indeed for 7 € R let g(x, 7,£) = /72 + f2(x,€). Then g is homogeneous
of degree 1, so 6?8,3? g is homogeneous of degree 1 — |«|. Taking 7 = 1, we obtain
that 9297 (f) lies in S'71°l. Therefore, whenever (o, 8) # (0,0), 9¢0% log(f)
lies in S~1°l since the log disappear as soon as we differentiate. Since log(f) is

dominated by (£)¢ for all € > 0, we get log(f) € S¢ for all ¢ > 0, which proves
the fact. O

Let us now prove (3.3). It is obvious for |« + | = 0. Suppose |a + | = 1.
If |o| =1 and |3] = 0, then for some 1 < i < n, we have

0e0;p = Oep = ((De;m) log(f) + mdg, (log(f))) ()™

Let p € (0,1). Since m is homogeneous of degree 0, one has dg,m € S
Using the fact, we get that d¢,mlog(f) lies in S, *S'7 C S r = 577 =
S=plal+(1=P)I8l - Moreover by the fact, O, log(f) € S~1. Since m is in S, this
implies mdg, (log(f)) € S~ C S, #, which proves (3.3).

If || = 0 and |5] = 1, we have for some 1 < i < n:

0e07p = Ou,p = ((9zim) log(f) +my, (log{f))) (f)™.

Since m is homogeneous of degree 0 we have d,,m € S°. Again, log(f) € S'~
and 0,,m)log(f) € S**'=* C S)7*. As before, we have md,, (log(f)) € S,~*.
Let us now treat the induction step. Suppose (3.3) is true for every (a, §) with
o + 8| < N. Suppose now |a+ 3| = N + 1.

If (a, B) = (&, B)+(a, 0) with |a| = 1, let us write (O¢ 05 p)(x, &) = (9¢0gAp)(x,€) =

of (q(m,f)(f)m($’5)) for some ¢ € Sp_p‘é"“l_p)'ﬂ'. Therefore,

0202p = (02q) log(f) + a0 los( 1)) ()™

Using the fact and the assumption ¢ € S;p‘d|+(1_p)‘f3|, we get as in the case
o+ 8] = 1 that (0¢q) log(f) + q0¢ log(f) lies in S, Plel+(1=r)IAl,

The case (a,3) = (a,§) 4 (0,b) with |b| = 1 is similar. This proves the
estimates 3.3 and the first part of the lemma. The second part is very similar

and we leave it as an exercise. O

Remark 3.8. We have S7* (M) C S™F (M) := Noso S™(M). Indeed, if e > 0
and «, f € IN", then for p close enough to 1 so that (1 — p) max(|a|, |5]) < /2,
one has <£>m(w7§)—p|a|+(1—p)\6| S <£>m(w,§)+e—|o¢\

Choose an operator Gy, such that o(G,,)(z, &) = gm(x,€) mod ST (M).
We have et¢m € U*(M) (see appendix A.4 for exponentiation of ¥DO’s). We
can now give the

Definition 3.9 (The anisotropic Sobolev space Hg,,). The anisotropic Sobolev
space subordinated to m is

Hg,, = e (L*(M)) C D'(M),
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Those spaces provide the right regularity (that is, we ask smoothness in
every direction except near the unstable ones) to study the spectrum of the
operator P = —iLx acting on D'(M, ) by duality. If H*(M) and H"(M)
are usual Sobolev spaces, one has

H*(M) C Hg,, C H*'(M).

Indeed s > m > u ; therefore (§)~*(f)™ € S™°S* C S,*t™ C S} for every

p < 1 thanks to Lemma 3.7. As a consequence (I — A)fs/ ?e%m is bounded on
L? and thus for some R € U~°(M), we have for u € C®(M) :

el 2 < || (1 = A" (1 = A)72 | 2 + | RS ul| 2 < Ofu]

Hs-

3.3 Ruelle-Pollicott resonances

Let us now study the spectrum of the restriction of the closed operator P =
—iLx to the anisotropic Sobolev space Hg,, (M, ) (that is, the space of
currents of regularity Hg, ). Let

Q = CmPeGm

be the conjugated operator to P, acting on L*(M, ). The following lemma
gives us the symbol of Q:

Lemma 3.10. The principal symbol of Q is diagonal and is given by
q(x,€) = p(, &) +iX(gm) (2, €) + O (STH(M)),

where p is the symbol of P in the given chart. The notation O, is to keep in
mind that the rest depends on m.

Proof. Use lemma A.11 to get

1

Q=P +[Gn,P|+ [Gm/ (P, — P)dt} ,
0
where P, = ¢/“nPe~*m Now, using Proposition A.3 and the fact that P is
diagonal with principal symbol H, we have o (|G,,, P]) = %{U(Gm), o(P)} =
iX(G,,) since X is the Hamiltonian vector field defined by H. Now, P, — P =
Jo 2P, lies in WOT(M) since it is shown in the proof of lemma A.11 that
d

4P, =[G, P;] and G,, € VT (M), P, € W!'(M). Therefore, the bracket
|G, Jo (P = P)dt] lies in W~ (M), which concludes. O

We shall now be interested in the spectrum of the operator Q which
is a closed operator on L?*(M) of domain D(Q) = {u € L*(M,Q)|Qu €
L*(M, Q) }. We will write

Q=Q: +1iQ
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with Q; = % (Q+ Q") and Q, = % (Q — Q") . In what follows, we fix some
inner product (, ) on the fibers of {y, which gives an inner product, still
denoted by (, ), on L*(M, Q). We have the following

Lemma 3.11. There exists Cy > 0 such that for every complexr number \ with
S(N) > Cy, the resolvent Ry = (P — \)~! emists.

Proof. Lemma 3.10 gives us the expression

7(Qz2)(2,€) = ¢2(2,§) = X(gm)(2,€) + O(S°) + Om(S™), (3.4)

since o(P)(z,£) = H(x,§) is real. By Proposition 3.5, one has C; > 0
such that R(q(z,€)) < C) for all (z,€). Since ¢ € St C S', the sharp
Garding inequality (Theorem A.22) gives us a constant Cy > 0 such that for
u € C®(M,Q), {(Qs — Cy)ulu) < Cyl|ul|? and therefore with Cy = C; + Cy
we get

(Qa — Ch)ulu) <0, wuweClC*(M,Q).

Now let (N) > Cj and let € = (X)) —Cp. We claim that for u € C*(M, ), we
have ||(Q—A)ul|| > ¢||ul|. Indeed, one has I ((Q — A)uju) = ((Qz — Cp)uju) —
e|[u]|? < —¢||u||* so Cauchy-Schwarz inequality gives the claim.

We have proved that Q — X is injective by density of C*°(M, ) in D(Q — A).
We can do exactly the same with the adjoint (with respect to any inner product
on the fibers) to show that Q" = Q; —iQ to show that Q* — X is also injective.
Therefore, if u is orthogonal to Ran(Q — A), then u € Ker(Q* — ) = 0. We
thus obtain Ran(Q — \) = L*(M, Q). We then use lemma B.3 to conclude
that Q — X is surjective. n

We are now in position to prove the

Proposition 3.12. There exists a constant C' independent of m such that Q
has discrete spectrum in the region {S(\) > C' —C,, }, where C,, is the constant
in Proposition 3.5.

Proof. The idea is to construct a perturbation x such that Q—iy—A\ is invertible
in the region I(\) > C' — C,,. First, let xo € S°(M) such that 2 = C,, > 0
on I'y N {|¢| > R}, where R and I’y are defined in the previous subsection
(Proposition 3.5). We thus have X(g,,)(x, &) — x3(z, &) < —C,, for |¢| > R.
Equation (3.4) thus implies R(q2(z,&)) — xa3(7,€) < —Cp + C + O, (S71T),
where C' comes from the term O(S°) in (3.4). Since this symbol lies in S* for
all > 0, we can apply sharp Garding’s inequality (Theorem A.22) to get

((Qz = XoXo + C = C)ujw) < Cyljuf] ws, we C(M, ),

where {9 = Op(xo) for some C,, > 0 ; the term O,,(S~") has been absorbed
by the term C’HHuHHHT—l. Writing x1(z, &) = CL/2(€)W=D/2 € SW=D2(M), we
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get Cyllul| w1 = I(ixiR1ulu), where Op(R1) = x1. Noting ¥ = XX + i1,
we get
(Qe =X+ Cpr—C)uju) <0, ueClC>®(M,Q).

As in the previous lemma, we obtain that the resolvant of (Q —ix — \)
exists for S(\) > C' — C,,. We now prove the following

-1

Lemma 3.13. For $(\) > C — C,,, the operator ¥ (Q —ix — )\)_1 is compact.

Proof. Denote Q — ix by Q. Since o(§) € S°(M), we have thanks to Lemma
3.10 that Q is elliptic of order 1 on I'y. Therefore Q — X\ is also elliptic on

[y (they have the same principal symbol) and we can find (Theorem A.5)
B € U1 (M) such that

(Q—NB=R+1L,

with R = Op(r), r € S°, supp (xo) C supp (r) (we can reduce the support of
Yo and this does not affect the ellipticity of Q since xo € S°(M)), r = 1 near
supp (xo), and L € W=°(M). Write

(Q-N) " =B+r1-R)(Q-A) —xL(Q-1) .

L is smoothing thus xL (6 — /\> " s compact. B lies in ¥~1(M) and is thus
compact on L?, so is YB because x is bounded on L?. Finally, ¥(1 — R) =
LXo(l — R) + i (1 — R) is also compact because Yix; € W+ 1(M) and
supp (1 —7) Nsupp (xo) = 0. This concludes the proof of the lemma. ]

We can now finish the proof of the Proposition. Indeed, write
Q-A=(1+ix(Q-N"")(Q-1).

By what precedes, 1+ 2)2(6 — A)~!is Fredholm of index 0. Moreover, (6 — )\)

is Fredholm of index 0 also since it is a bijective operator D(Q) — L*(M, Q)
with bounded inverse. It directly implies that Q — X is a holomorphic family
of Fredholm operators of index 0 and invertible for S(\) > C' — C,,. By the
analytic Fredholm continuation (see Theorem B.1), Q has discrete spectrum
on (A) > C' — C,, with finite multiplicities. O

By conjugation, we obtained that P has discrete spectrum on &(\) >
C — C,,. Let us now prove that the poles of the resolvent Ry = (P — \)™!
are intrinsic to the vector field X. We have have showed that the resolvent
Ry = (P -\ Hg, (M, Qo) — Hg,, (M, Q) well defined for S(A\) > Cj has
a meromorphic continuation to () > C' — C,,. In fact, we have a formula for
R)\ .
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Proposition 3.14. For S(\) big enough (depending on m, that is, depending
on s and u) we have the following formula

Ry—i /0 T (67 ar, (3.5)

where (¢~%)" is the pull-back C=(M, ) — C>(M, ) and the integral con-
verges in L(H*(M), H*(M)) and in L(H"(M), H*(M)).

Proof. The derivatives of ¢~* grows at most exponentially with ¢ so the integral
at the right hand side of (3.5) converges in operator norms H*(M) — H*(M)
and H*(M) — H*“(M) if I(N) is blg enough. Moreover, for f € Hg, (M, ),
we have (P — \) { O f } & (e”‘t (p7H)" f) . Therefore,

P -\ (z / T (g fdt) ¥,

which concludes. OJ

Denote by T the operator i [;° e (¢p~t)" dt : C°(M, Q) — D'(M, Q).
Fix a density vol on M, denote by m; : M x M — M the projection on the jth
factor, 7 = 1,2, and let K, € D'(M x M, 7{Q @ 732 be the Schwartz kernel
of T, with respect to vol. Then K, is a holomorphic family of distributions for
() big enough. Moreover, since Ty coincide with Ry |ce(ar,0,) for S(A) > 0,
we obtain that the family K, extends to a meromorphic family of distributions
on §(A\) > C' — C,,, whose poles coincide with those of the Schwartz kernel
of Ry|ceo(ar,00)- Since C*(M, €)) is dense in Hg,, (M, €)y) we obtain that the
poles of the resolvent R do not depend on the choices of the escape function
gm. Letting |ul, s — oo, we obtain the

Theorem 3.15. The family of operators A — Ry (well defined for F(\) > 0)
viewed as operators C*°(M,Qy) — D'(M,Qq), has a meromorphic continuation
to C. The poles of this extension are the Ruelle resonances, and we will denote

the set of those by Res(P).

Remark 3.16. If u € D'(M, <)) is an eigenvector of P, one has u € Hg,,
for any order function m with large enough |u|,s. Since m can be chosen
big enough in any direction except in the unstable one, its wavefront set is
contained in the unstable direction.
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4 Microlocal structure of the resolvent

We start this section by giving standard semiclassical estimates in §4.1, namely
elliptic regularity and propagation of singularities. Then we prove in §4.2
some radial estimate which allows to control regularity near radial sources ;
this comes from the work of Melrose | | and Vasy | |. Finally, we
describe the microlocal structure of the resolvent in §4.3, following | ]
and | ]-

4.1 Standard semiclassical estimates

In this subsection we state two standard results about semiclassical calculus.
We start with an elliptic estimate which allows to control the regularity of u
by that of Pu where P is an elliptic operator. Recall from Appendix A.3 the
definitions of h-tempered distributions. In what follows, E is a vector bundle
over M.

Proposition 4.1. Let A € W)(M) acting diagonally on D, (M,E). Let P €
Uk (M, Hom(E)) be elliptic on WF,(A). Then for each u € R, there exists
C > 0 such that

||AU—||H;:(M,E) < OHPUHH;Z*’“(M,E) + (’)(h"o)||u||H;N(M7E),

for all h-tempered family of distributions u = (uy,) € D}, (M, E) and all N such
that the right hand side is well defined.

Corollary 4.2 (Elliptic regularity). We have for u h-tempered and P €
W5 (M, Hom(E)),
WF,(u) Nell,(P) C WF,(Pu).

Proof. Suppose (z,£) lies in ell,(P) \ WEF,(Pu). Let us show (x,&) ¢ WF,(u).
Let U be a neighborhood of (z,¢) such that U € ell,(P) \ WF,(Pu). Take
B € ¥)(M) such that WF,(B) N WF,(Pu) = ) and U C ell;(B). One has
that BP is elliptic on U. Moreover, the condition on the wavefronts implies
HBPUHH;:*’C(M,E) < O(hoo)HuHH;N(M’E) for big enough N and all . Therefore,
by Proposition 4.1, one has

[ Au| e ar) < O(hoo)Hu“H;N(M,E)?

for all W) (M) satisfying WF,(A) C U. This concludes the proof of the
corollary. [

Proposition 4.1 is a direct consequence of semiclassical microlocal inversion
of pseudo-differential operators :
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Proof of proposition 4.1. Apply Theorem A.21 to get Q € ¥, *(M,Hom(E))
such that
QP =X+ L,

where 0 (X) = Idg microlocally near WF,(A) and L € h*°¥, (M, Hom(E)).
Now take u € Dj (M, E) ; we have for all N big enough that Au = A(1 —
X)u+ Axyu = AQPu+ (A(1 — X) — AL)u. But A(1 —)) — AL is Olp;oc(hoo)
since WE,(A) N WE,(1 — X) = 0. Moreover we have ||[AQPu||gup <
C||Pul|gu-rar, gy, which concludes. O

Theorem 4.3. Take P € U},(M,Hom(E)). Suppose that o,(P) is diagonal
and has the form

on(P) = p—ig mod ASI(M),
where p € SY(M) is homogeneous of degree 1 for large enough |€|, independent
of h and g > 0. Denote by eX» be the Hamiltonian flow associated to p.
Let A, B, By € V9 (M) such that for all (z,&) € WF,(A), we can find T > 0
such that e T%»(x,€) € ell,(B) and e™Xr(z,€) € ell,(By) for every t € [0,T].
Then for each p, one has C > 0 such that

||Au||H,f(M,E) < C||Bu||H;;(M,E) + Ch—1||31P11||H;‘(M,E) + O(hoo)HuHHhN((M,]_«;)a

4.1
for all h-tempered family of distributions u = (uy) € Dj,(M, E) and all N such
that the right hand side is well defined.

Figure 4.1. Propagation of singularities (Theorem 4.3). The
dashed line is the wavefront set of the operator By used in the end
of the proof.

In other words, the singularities of u near (x,&) on a flow line of X, can
be controlled by its singularities near e 2% (z, £) and by those of Pu along
the past flow line :

Corollary 4.4 (Propagation of semiclassical singularities). Let u bu an h-
tempered family of distributions and P as in the previous proposition. Let ~y(t) be
a flow line of X, and T > 0. Assume v(=T) ¢ WFp,(u) and v(—t) ¢ WEF,,(Pu)
for allt € [0, T]. Then v(0) ¢ WFy(u).



THE RUELLE ZETA FUNCTION FOR ANOSOV FLOWS

Proof. We take B microlocalized near v(—7") and B; microlocalized near
v([=T,0]), such that WF,(B) N WF,(u) = ) and WF,(B;) N WF,(Pu) =
(. We thus obtain that the terms |[Bul|ysm,e) and |[BiPullgsa,e are
O(hOO)HUHH;N. We conclude as in the proof of Corollary 4.2. O

The proof of the propagation of semiclassical singularities is very similar
to the classical one ; it relies on a positive commutator argument induced by
Garding’s inequality.

Proof of Theorem 4.53. Take A, B, By as in the hypothesis of the theorem. We
can assume that WF,(A) is contained in a small neighborhood of some (¢, &) €
T"M. Denote by ®* the flow of X, on T"M. Up to shrinking a little bit A, we
can assume that

dT(WF,(A)) C ell(B) and @ “(WF,(A)) C ell,(By) for all t € [0, 7).
(4.2)
Fix an inner product on the fibers of E. This way we make L*(M, E) an
Hilbert space with scalar product (-, ). Set

_P+P P - P
-, ,

We have that R(P), S(P) € U} (M, E) are symmetric. We will need an escape
function, given by the following

R(P)

Lemma 4.5. For all ¢ > 0, there exists an escape function g € C(T" M) with
supp g C ell,(By), g > 0 everywhere, such that

(i) g > 0 near WE,(A),
(i) X,(g) < —cg in elly(By) \ ell(B).

Proof. Take a tubular neighborhood B(0,1) x (=T — §,8) C RJ" " x R, of
{® " (xg,&),t € [0, 7]} contained in ell,(By) for small § and B(0,1) = {|6] <
1}, in a way so that X, = 0,. Now take ¢ € C°(B(0, 1), [0, 1]) such that ¢ =1
on B(0,1/2) and x € C®(—=T — 6,0, Ry) such that x(0) > 0 and x' < —cy
outside (=7 — §,—T + 0). Such a x exists : on can take x(7) = xo(7)e™" for
some xo € C®(—=T — 4, 6) such that x(0) =1 and x; < 0on (=74 9,). Now
the function g(0,7) = 1(0)x(7) satisfies the requirements of the lemma. [

We now assume Bju € H*~Y2(M, E) and BPu € H*(M, E). We choose
for every € > 0 an operator S. € W, (M) with 0,(S:)(z,&) = (£)*(e&) .
Now define G. = S.G where G € ¥)(M) quantizes the escape function g as in
the previous lemma (the constant ¢ will be chosen later), that is 0,(G) = g.
We have of course 0,(G.)(x,&) = (£)*(e€)7tg(z,&). Now take x € W9 (M)
such that y := o,(X) = 1 on WF,(G.) and x = 0 outside ell,(B;) so that
WF,(G:) C elly(X) € WFL(X) C elly(By). Since WF,(G.) C ell,(B;) and
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Biu € H*Y2 we have G*G.u € H™#*3/2_ On the other hand B,Pu € H* C
H#=3/2 We can therefore compute

S (YPu, G:G.u) = S ([TR(P), GG.] u,u) )
, .
+ 5 (GGS(P) + ¥(P)GIG2) . u).

Now set T. = 3 [YR(P), G:G.] € U2 ?(M,Hom(E)). We have thanks to
Proposition A.8 and the fact that y =1 on WF,(G,) :

7(T) = 5%,(07) = 0.X,00 = (©M6) " 0.X,0 + X, (€46 )

— e a2 (107 - S0 Xer (9
< —cg2 + CgZ + C(E"I,

where b = 0,(B). The last inequality stands because of the point (ii) of Lemma
4.5, and the fact that (%(@*2 - %(55)”) X, (]€]?) is uniformly bounded in
&, e by a constant C. Now take ¢ big enough so that ¢ — C' > ¢/2 to get

c ~
on(Te) + 592 < C(E)"DP.
Now apply the sharp Garding’s inequality to obtain
C s =~ * ~ ~ ~ o
(T + 562G = C(SoBY (S5B)) T, u ) < ChlRull v +O() .
which reads with differents constants
c o0

(Tew,u) + S [|Geul[z2 < Cl|Bullf + Chl| Brul[ju-s/2 + O(h) [u]l v, (4.5)
where we could remove the terms in X because WF(Y) C ell,(B;) and
WFh(GE) C ellh(y)

Let us now interest ourselves to the second term of the right hand side of (4.3).
It reads

1
(X3(P)Geu,u) + 5 (G2 [Ge, X3(P)] = [G2,x3(P)] Ge) w, 1)
We have o,(3(P)) = —¢ < 0, which imply (YS(P)Geu,u) < C'h||G.ul3,
by Garding’s inequality (Theorem A.22). On the other hand, we have that

G* [G., XS (P)] — [G%, XS(P)] G, lies in R?U7*~" uniformly in e thanks to prin-
cipal symbol calculus. As a consequence,

1 - £ o / o
5 {(GE G XS(P)] = [G2, XS(P)] Ge) u,w) < "R Brulf -1/ +O(R%) .
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Combining those estimates with (4.5) and letting ¢ > 4C" we get

3 (¥Pu, GXG.u) < —EhHGEuH%Q + Ch|| Bul |2
+ Ch?||Brulf 172 + O(h*)[ul| v,
h h

Now we have —3 (YPu, GiG.u) < [|GxPul|r2[|Goul|r2: < O BiPul| || Goul| 2+
O(h>)||lu| -~ uniformly in e since G is uniformly bounded in Ul We thus
obtain .
FIGullze < CHIBPu| | Genl 2 + Cl Buly
+ Chl|Brufl -1z + O(h™) v,

which finally imply uniformly in € :

|Gaul[z2 < Ch7H| BiPul| g + C| Bu| g
+ CRY2| By ypsss + O(h)ful .

Recall that S. — Sy € U ¢ W42 Since Byu € H''/? and WF,(G.) C
ell,(B;) we get that Gou — SpGu in H, . On the other hand, G.u is bounded
in L? from the estimate above. Moreover, the unit ball in L? is compact for the
weak topology ; this implies SyGu € L?, that is, Gu € H}'. We thus obtain,
noting noting that G is elliptic on WF(A) :

[Au]| g < Ch™H | BiPul| gy + C|| Bul|

4.6
+C’h1/2||B1u||H571/2 +O(h°o)||u||H;N ( )

Note that this estimate is almost what we demanded, except we have in addition
the term h1/2HBlu||Hp—1/2. We claim that we can make it disappear. More
h

precisely, let us prove that for all £ € IN*, one has

[Aull g < Coh™ | BiPull gy + Col| Bul|

4.7
OByl e+ Ol P

where ,
Cr =TT (14 nM2CF)
k=1
for some C' not depending on ¢. We will use induction on ¢, noting that for £ = 1
this estimate is exactly (4.6). Assume that (4.7) holds for some ¢ > 1. Take
By € WY is such that both triplets (A, B, By) and (By, B, B;) satisfy the as-
sumptions of the theorem. One has, with C' = max{Ca g 5,,Cp,.5,5:-Ca.BB, },
by (4.6) applied to (Bg, B, By) (we can assume the constants involved do not
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depend on u because we can stop the process whenever ¢ > 2 + N and keep
iterating with HB111||H;N instead of || Byul| u—e2 in (4.7)):
h

HBQUHHSJ/z < Ch™! HBlPuHH54/2 + CHBUHHZLJ&

12 . (4.8)
+Ch ||Blu||HS_(e+1)/2 —I—O(h )HUHH;N.
On the other hand, by (4.7) applied to (A, B, By) :
[Aul| e < Coh™ || BoPul| g + Cyl| Bul| g (49)

1 cfhf/QHBQuHHw/Q +O(h™)[ull -~

It suffices to combine (4.8) and (4.9) to get (4.7) for £ + 1, assuming that
| BoPu sz < [|BiPul[ gz for all p, which we can do up to consider B,/C for

some big C', because WF,(B,) C ell,(By).
This concludes the proof of the theorem since the constants C, are bounded
with ¢, provided h is small enough. O]

4.2 Control of singularities near radial sources

Recall from subsection 2.1 the definition of radial sources and radial sinks. We
will state two estimates that allows us to control the wavefront set of sufficiently
regular (resp. singular) distributions near radial sources (resp. sinks).

Proposition 4.6. Let P € U} (M,Hom(E)) as in Proposition 4.3, and assume
that L C T*M \ 0 is a radial source for the Hamiltonian flow eX». Then there
is a threshold py > 0 such that if By € V(M) is elliptic on p(L) C 0T M,
there exists some A € WY (M) elliptic on p(L) satisfying that for every p > i,
there is C' such that

[ Au|zearm) < Ch*lHBlPuHH;‘(M,E) + O(hoo)HuHH;N(M,E)

for every h-tempered family of distributions u € Dj (M, E) such that Au €
H°(M,E) and all N.

In other words, if Pu has no wavefront near p(L) and u is sufficiently
regular near p(L), then u has no wavefront near p(L). As in the previous
subsection, we get easily the following

Corollary 4.7. Let pgy be as in the previous proposition. Assume u € D} (M, E)
is h-tempered with WF,(Pu) N p(L) = 0. If By € VY is elliptic near p(L) and
verifies Byu € H)°(M, E), then WFp,(u) N p(L) = 0.

Proof of Proposition /.6. As in Theorem 4.3, we will make use of escape func-
tions. Let U be a small conical neighborhood of L such that p(U) C ell,(By).
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L oT* M

Figure 4.2. Regularity near radial sources (Proposition 4.6).

Using Lemma 3.3, we obtain a norm f € C>®(T*M \ 0,R.o) such that
X,(f) < —cf on U. Arguing exactly as in Lemma 6.2 and Lemma 3.2,
we obtain m € C®(T*M \ 0,[0,1]) such that m = 1 near L, X,(m) < 0
and supp m C U. Consider some R > 0 with U N {f > R} C ell,(B;) and
x € C*(R, [0,1]) such that supp y C (R,00), x = 1 on [2R,0) and x' > 0
everywhere. Set
g=m(xof)€CT M).

Take some f € C(T M) such that f = f on {f > R}. We choose, as in the
proof of the propagation of singularities, S. € \I/‘,f_l(M , E) such that

on(Se) = fr(e€) ™

Put G. € U}~ such that 03,(G.) = 03,(S.)g. Let T. = 2 [YR(P), G:G.]. We
have as in (4.4) :

X)) _ X EP)
f 2 '
Since X, f < —cf <0onsupp g, for all Cy > 0, there exists o such that for

on(T2) = 9.%,(0.) = F(6) g U+%<u

i > po we have on supp g : (,u pf(f) QXP () (e€)~ ) < —Cp. Moreover, g

does not depend on supp g because the constant ¢ can be taken uniform for U
close enough to p(L). Note that X,(g) < 0 (because x’ > 0). We obtain with
what precedes

0h<Ts) S _00927

to get thanks to sharp Garding’s inequality (Theorem A.22), because WF,(G.) C
elly(B,) :

(Tew,u) + Col|Geul[Z: < Chl|Brulf 2 + O(h>)|[ul| -,

uniformly in . Exactly as in the proof of Theorem 4.3, we obtain, with A = G,

| Aullmy < ChH | ByPullgy + ChY2|| Buul| ymse + O(h%) u]| yon. - (4.10)
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Again, we claim that we can make disappear the term Ch'?||Byul|,u-1/2.
h

Indeed, because of elliptic regularity, we can assume that there is WF,(B;) C
U’ where U’ is a neighborhood of p(L) as in Definition 2.5, so that for all

(x,€) € WF,(By) there is T > 0 such thatffTXP(x,f) € ell,(4). Now if B
elliptic on p(L) satisfies WF,(By) C ell,(B;) and WF,(B;) C U’, then by
Theorem 4.3 we have

Bl o2 < CllAul e+ CH I BiPu yecsso + O [l v

This estimate combined with (4.10) imply using elliptic regularity that for
every By elliptic on p(L) there is A elliptic on p(L) such that for all p > pug:

|Buully < Ch | BPully + ChY2 | Aullyuesse + O() ful v,

with a different constant C'. Now we iterate this estimate to get for every
(e IN* .

N N 4
[Buallg < OBl (3 CH )+ Cn2 Al 010 ol
k=0

which concludes since the sum is bounded provided h is small enough. O

4.3 Microlocal structure of R

The purpose of this subsection is to show that for small t, > 0, e PR, lies
in a space where we can take the flat trace. This will be implied by the

Theorem 4.8 (Microlocal structure of the resolvent). Let Ao such that I(\g) >
C — C,, for some order function m (discussed in the previous section). For \
close to \g, one has

J(Xo) (P )\ )j—lH
Ry=Y,— A VA
jz:; (A= Xo)
with Y 5 holomorphic near o, 11 is the projection Hg,, (M, ) — ker ((P — )\O)J(*O)),
and we have the following description of the microlocal structures :

WF'(Y,) C A(T*M \ 0) U Char(P), U (E* x E¥),

4.11
WF'(Il) C B x EI, (4.11)

locally uniformly in X, where A(T*M) is the diagonal in T*M x T*M and
Char(P); = {(®'(z,), (z,£)) [t >0, H(z,{) = 0}.
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Proof. In what follows, we assume that A is a complex number varying in
compact region Z of C\ Res(P), and we take an order function g,, as in
Propostion 3.5, with |u|, s to be well chosen later.

We will introduce a semiclassical parameter h in order to use Lemma A.16. Let
P, = h(P —)), and taking notations of Remark 3.6 we take G,,,, = Opj,(¢2,).

Qsp = eSmn(hP)e Cmn,
We can compute as in Lemma 3.10 :

Qs = hP + [y, WP + O(h?) -1+ (4.12)

m,h>

Let Ty and R > 0 be as in Propostion 3.5 and xo € S°(M) such that :

e \:=C,, onToN{E| > R},

* Xg = Cn on {[¢| < R}

e o =0on {{>3R/2} outside a small conical neighborhood of T'y.
Take also x; € C°(T*M) such that y; = 1 near 0 and supp x1 C {|¢] < 3R/2}.
and choose some Y1 € WO(M) with o(X1) = x1. For 6 > 0 and j = 1,2 set

Xj,5(x7£) = X]<I,£/5)

Choose some ¥, s € WO(M) such that o(X;5) = X;s, define X5, = h (Ros)" Ros+
(X1.6)" X156 and put
QY (N) = Qs — hA — iXsn.

Lemma 4.9. For all € > 0 and I(\) > —C,, + €, we have that for h small
enough, Q5 ,(X) is inversible D(Q) — L* with inverse bound

< C./h.

L2—L2

(@)™

Proof. One has, for u € C*(M, ),

(([G5., hP] = AS(N) = %) w,u) = || Rugullre — 2 (S(N) = Co) [Julf3

T <([an’ hP} — hXosX0.6 — hCm) u, u> .

(4.13)
For all 11 € (0,1), we have in S¥(M)/hSE (M):

on (|G5, hP]) = ihX(g),).

Thanks to properties of yo and g° , we have in S&(M)/hSL™ (M) :

1
o <h (G PP] = *3«5*@ (2,8) < —Chm, (2,6) €T"M.
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Now we apply sharp Garding’s inequality (Theorem A.22) to obtain
(([Gon IP] = X5 s%05 = WO ) w0) < Cub® [0} o < Cul|Ju.
We obtain with (4.13)

(([G5,, hP] = hS(N) — Ras) wu) < —h (S(N) = G + BCL) u 3

€
< —hZ Jul

provided h < £/2C,,. We conclude as in Lemma 3.11, using (4.12). O

Now fix (y,n) € T*M N {|¢| € [R,2R]} and take (f,), and h-tempered
family of compactly supported functions on M with WF,(f;) localized near
(y,m). We set u, = Ryfr. We know that w;, lies in D(P) N Hg,,, so that
(P — )\)Uh = fh and Q§7h(/\)lt~h = fh with ﬂh = eGm’h (uh) and fh = eGmﬁ(hfh).

We will also denote for h small enough :
ity = Q?{h(A)_lfh

We have
iy = U — Qsn(N) " Rontiy. (4.14)

We will distinguish four cases according to where is located (y,n) ; for each
one we will take some (z, &) € {|¢| € [R,2R]} such that (x,&, y,n) does not lie
in A(T*M \ 0) U Char(P), U (£ x E¥) and find some neighborhoods U and
V of (y,n) and (x,&) such that if WF,(f,) C U we have

WF,(up) NV =0, uniformly in . (4.15)

Case 1 : (y,n) € {H # 0}. We have that Qs(\) = (Qsr()))n is elliptic on
{H # 0}. Thanks to Proposition 4.1, for every (z,£) € {H # 0} \ {(v,n)},
there is U,V neighborhoods of (y,7n) and (z,£) such that

WFh(’ELh) M V — (Z)

uniformly in A, which implies (4.15). Now take (z,&) € {H = 0} \ EI with
€| € [R,2R]. Take U a small conical neighborhood of E* as in definition 2.5.
There exists T > 0 such that ®7(z,¢) € U. Let u be the threshold involved
in Proposition 4.6. Taking the order function g,, so that s > g, we know
that w € Hj;(M) C Hy°(M) microlocally near E}. We can thus use Corollary
4.7 to get @1 (z, &) ¢ WFy,(uyp) provided WF,(f) N p(U) = 0 (which will be
the case if WF(f,,) is close enough to (y,n)). Now take a neighborhood U
of (y,n) small enough so that ®~*(x,£) ¢ U for all t € [0,7T] ; we can then
apply Corollary 4.4 to obtain that (z,£) ¢ WF,(uy). This is also true for
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neighbors of (z,£) ; thus we found V' such that (4.15) is valid. Finally, assume
(z,€) € Ef with |¢] € [R,2R]. We first assume here that (y,n) ¢ ;. We can
apply propagation of singularities with the operator Qf(\) to obtain that

WE, (@) NV =10

uniformly in A for some small neighborhood V' of (z,¢), provided 4 is small
enough, and WF,,(f,) C U where U is a neighborhood of (y,n) small enough
so that U N{|¢] < R} = (). Indeed, QX(A) is elliptic on {|¢| < 0R} and there
is T'> 0 such that &7 (z,¢) lies in {|¢| < dR} so we can apply Proposition
4.1. To show that WFy,(uy) NV = () uniformly in A, it suffices thanks to (4.14)
to show that

Since (y,n) ¢ WF,(X) and QF()) is elliptic on {H # 0} U{|¢| < dR} (because
of the term —iX7 5X1,5), we only need to show that

WN{H=0}N{RS < || <3Rs/2} =0

uniformly in A. We have W N E* = () with what precedes ; doing exactly as
in the case (z,£) € {H = 0} \ E with QF(A) in place of Qs(\) (aX and @
have same regularity near p(E?) because X is supported far away from E¥), we
obtain

WE(ay) N ({H =0} \ Ey) =0

uniformly in A\. We thus obtained (4.16) provided (y,n
take I'y as close of Ef as desired, we obtain (4.15) for (
and (z,€) € E}.

) ¢ T'y. Since we can
y:n) € {H # 0} \ Ej

Case 2 : (y,n) € {H = 0} \ (Ef U E?). Since P is elliptic on {H # 0}
we get that for every (z,¢) € {H =0} N {|¢| € [R,2R]}, we can find a neigh-
borhood V' such that for U small enough : WFj(uy) NV = () uniformly in
A. Assume now (x,€) € {H = 0} \ EF with &~ *(x,&) # (y,n) for all t > 0.
Then as before, using propagation of singularities (Corollary 4.4) and control
of singularities near radial sources (Corollary 4.7) we obtain that there exists a
neighborhood V' of (z, ) such that WFy,(u;) NV = @) uniformly in A provided U
is small enough. Finally, assume that (z,§) lies in E¥. Taking a neighborhood
U of (y,n) small enough, one can easily show using 2.1 that there exists § > 0
such that

(z,Q) e {H =0} n{I¢{| <3Rd/2}, (2,() ¢ B, = Vt=0, (2,0 ¢ U.
We can thus apply exactly the same proof as in the case 1 to get
WFh<fL;L<> NV = (Z), WFh()Z&) N WFh(uf{h) = (Z),

for some small neighborhood V' of (z,&) uniformly in A which implies with
(4.14) that (4.15) is valid.
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Case 3 : (y,n) € E*. As before, the case (z,£) € {H # 0} is solved us-
ing ellipticity of P. If (x,¢) lies in {H = 0} \ E, then we can again apply
propagation of singularities and regularity near radial sources to obtain that
if @7 (x,&) # (y,n) for all ¢ > 0, we have a neighborhood V' near (z,£) such
that (4.15) is valid provided WF(f5,) is close enough to (y, 7).

Case 4 : (y,n) € Ef. If (x,€) does not lie in E, then dealing as in case
3 we can find V' a neighborhood of (z,¢) such that (4.15) is valid provided
WF,(fn) is close enough enough to (y,n). Now assume (z,€) € E¥ satisfies
Oz, &) # (y,m) for all £ > 0. Again, we can deal exactly as in the case 1
(using propagation of singularities with Q¥ (\)) to obtain V' such that (4.15) is
valid provided WF},(f5,) is close enough to (y,n). Compiling those four cases
and applying Lemma A.16, we obtain

WF/(Ry) C A(T"M \ 0) U Char(P), U (B! x E*) U (EX x E2).  (4.17)

Note that we made the arguments with C* (M) and not C*(M, ) ; but we
can do exactly same (with an adapted version of Lemma A.16), so that (4.17)
is also valid for the resolvent acting on forms.

To remove the term (E x Ef), we proceed as follows. Fix a volume form w on
M and identify C>®(M, QF) with D'(M, Qp~'~%) via the pairing

(o) = [ W(anBlw, a€C™(M,9f), BeC(M "),

where W : C®(M, Q) — C*®(M) is the map defined by
V() ixw=v, veCl>(MQu).
A computation and (3.5) give, for (A) large enough,
((Raga, B)) = ({0, ~R_5,_140)), a €C®(M, ), B €M),

where R, ; is the resolvent (—P — ,u)_llcoo(M al) of —P. This writes

R, =R 5,1 (4.18)

where the adjoint is taken with respect to the pairing ({ , )), and this is true
for every complex number A by analytic continuation. But now (4.17) applied
to —P imply (we reverse the time)

WF'(R,) C A(T*M \ 0) U Char(—P), U (E! x EX) U (E* x E}).
Therefore with (4.18) we finally obtain
WEF'(Ry) C A(T*M \ 0) U Char(P), U (E x E). (4.19)
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Now note that

1 R,
Y= ST AL (=A™, Am:f/ S DY
A mZZ:O ( 0) 271 Jop. (A — Ag)™H!

where D. = {\, |A — X| < ¢} and ¢ > 0 is small enough. Thus with
(4.19) we obtain the first part of (4.11). Therefore it remains to see that
WF/(IT) C Ef x E*. A simple verification gives the following

Lemma 4.10. Suppose A, X are operators such that A and B := A —ix are
invertible. Then

Al =B —iB7'yB7! — B7lyATIyB7L.
This lemma applied with A = Qs;, — hA and X, gives for h small enough
(Qsn —hA)™ = Q3N = Q3N Ko Q3 (N
— QN Ron(Qsn — BA) ' R5n Qi n(N)
This reads
R, = he %n (QN,(0) 7 = QYN Ran QL (A) 1) €%
- e_Gf”’hQf{h()\)_1>A(5,her"’hRxe_Gf"’hf(a,th{h(A)_leGE’“h~
Therefore we get for every § > 0 and h small enough
I = —e mn Q) (Ao) " RoneCmnTle Cmn g5, QY (Ag) teCmn. (4.20)
Now note that our proof of (4.17) actually shows that
WFEL(Qs,,) N (T*M \ 0) C A(T*M \ 0) U Char(P),..

Combining this with (4.20), we have using (A.4) that WF'(II) C Y for every
0 > 0, where

T5 = {<pl7p>7 Eltv s 2> 07 (I)t(p) € WFh()Z(s)? q)is(pl) € WFh(f(l;)}

We have Nyoo Vs C (EX x EX)U(Tg x Ty) U (B! xTy)U (T x E?), where Iy
is the cone in Proposition 3.5 and

I = {(z,6) e T*M\ 0, 3t >0, d*(2,¢) € T}.
As a consequence, we have using II = —%m Jop. RadA and (4.17) we obtain
WF'(I) C (B x E;)U (T x Tg) N (A(T*M))) .

This shows the second part of (4.11) since (P — \g)? I = 0 and P is elliptic
on {H # 0}. O
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5 Meromorphic continuation of the Ru-
elle zeta function

The purpose of this section is to prove the

Theorem 5.1 (] , ). The Ruelle zéta function of an Anosov flow
on a compact manifold with orientable stable bundle has a meromorphic con-
tinuation to the whole complex plane.

We first state some results that will help us take limits into flat traces ; as
a consequence we will obtain a formula (Lemma 5.5 below) that links the flat
trace of the resolvent and the logarithmic derivatives of the zeta function.

5.1 Limit of flat traces

Recall from section 2.3 the definition of the operator M, for x € C*(Ry).
We still denote its Schwartz kernel by K. Denote by M, ) the operator M, cix.
and K , its kernel. We have the following lemma :

Lemma 5.2. Let ty > 0. There exists I' C T*M x T*M a closed conic
set not intersecting the_conormal to the diagonal, such that for all N € N,
' CT*M x T*M withTNT =0, T is a subset of T*(U x U) for some open

set U C M,V e CP(mpuxm(l)) and () big enough (depending on N ), there
is Cn,x such that for all x € C*(ty,00) :

CN,A||X||CN(1R)
L+ (€] + n)N”

where Ky x is the kernel of Sm, ., (with the notations of subsection 2.3).

TEia&m)] < (€mel, 0<k<n-1.  (51)

Proof. Thanks to (2.9) we only need to prove the lemma for k£ = 0. Take U
some open of trivialization of T*M. We shall identify T*M |y with its image
V x R™ for some V' C R". Let ¥ € C*(V x V). For (§,n7) € R" x R", we have
by definition of K,  :

Va6 = [ [ ex(w(o™" (@), a)e” 57Ozt

We will assume that (—&,n) is near the diagonal, that is

|£+77 ceamd 1-c< &y e (5.2)
<l Il ]

for some parameter ¢ we will choose later. For simplicity we define g(¢,z) =
—i (=& ¢7"(x) +n-x). Let 0,v > 0 satisfying that for any ¢ > ¢, x € V and
¢ such that | - X, | < 2d|¢| we have

(7 =" de;") - €] > vigl. (5-3)
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The existence of such constants comes from (2.1). Up to shrinking V' one can
assume we are in the following two cases :

Case 1 : |- X,| > 0|¢| for any y € V. Then we get the estimate (5.1)
by integrating by part in the variable t. Indeed, we have 0ye9 = (0;g9)e? with
Org(t, v) = —i& - X4-1(z). Take L to be the operator —at ; then L(e?) = e and
integrating by parts we get for all NV :

TE(6m) = [ [ ("N {5 (0W(67 ). 2) et

where T'L is the operator defined by T L(p) = —; (p/0;g) . Now one can easily
show by induction on N that if p(t, z) = ey (t)¥ (¢! (), x) we have :

(L)) (1) = Al S

(—i€ - Xg—t())V
where |pna(t, 2, &) < Cnallxller and oy is homogeneous of degree 0 in £&. We
have, thanks to (5.2), | — i€+ Xy-i(| > 31€] > 242 (€] + [g]). This shows (5.1).

Case 2 : [£-X,| < 25\5! for any y € V. With the same ¢ as before,
one has L(e?) = e? where L= ”V ”2 and V is the usual gradient on R". Note

that L is well defined thanks to (5.3). Then once again we have for all N

\I’/Kx\»\(—fan) = /]R>o ei’\tX(t)/V(TE)N {\I’(gb_t(x),m)}eg(t’x)dtdx,

where 7L is the operator defined by "L(¢) = — X", 9; {¢(8:9)/|Vg|*} . Now
one can easily show by induction on N, because Vg(t, ) = —i(n+1 dp—t, - &),
that if (¢, x) = U(¢p*(z), z) we have :

TT\N _ WN(taxvén)
(L) () = G g o

where |@n (¢, 2, & n)| < One®! and ¢y, is homogeneous of degree 0 in (£, 7).

The term e“~! comes from the derivatives of ¢~ which cannot grow more

than exponentially fast. Now using (5.2) and (5.3) we have |n +7 d¢—t, - €| >
(1 ="d¢;") - €| = In+ & = vIg] —e(Inl + [€]) = 5(1€] + [n]) provided € is small
enough. We therefore get (5.1) for (\) big enough (depending on N) so that
the integral converges. O]

This fact combined with the following lemma will be useful to take the
limit into flat traces.

Lemma 5.3. Let I" be a closed conical subset of T*M x T*M not intersecting
the conormal to the diagonal. Assume (Kr)r is a family of distributions of
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order 0 in D(M x M) (not necessarily bounded) satisfying for allT and ¥ as
in the previous lemma :

C _

. (&n)el, 5.4

CEAREATZER o

for some C independant of T'. Assume also that Kr — K in D'(M x M) for
some K € Dp(M x M) as T — oo. Then

lim trbKT = tr'K.

T—o0

Proof. We first note that if i : M — M x M, x — (x, z), one has for any local
chart U of M, ¢ € C*(U) and ¢ € C*(U) such that supp ¢ & supp v,

<Z KT7 §0> - <Z KT?QOQ/» = W /U/”X]R" ‘IJKT(€77]>6 (£+n)dnd€dx7

(€ )| <

where ¥ = ¢ ® 1. Indeed, this formula is obviously true for smooth functions
thanks to the Fourier inversion formula. Thus it is also true for Kp since (5.4)
shows that the integral over R™ x R™ is well defined near {—¢ = n} ; away
from it |n + £| is big so we can use the non stationary phase method to get
enough decreasing in &, 7. Since the constant in (5.4) is independent of 7" and

—

UKy — UK pointwise, we get thanks to the dominated convergence theorem
(i*Kr,p) = (i*K, ). We conclude using a partition of unity. O

5.2 Proof of the meromorphic continuation of
the Ruelle zeta function

Take the notations of subsections 2.2 and 2.3. For a periodic orbit v and its
linearized Poincaré map P, we have det(] — P,) = 2725 (—1)*tr(A* P,). This
fact combined to exp (— Y1 %e'zz) = 1—e¢* for R(z) < 0 gives, thanks to (2.4),

C(S) _ H (1 —56(7 ) HeXp ( Z ; —sf(fy#))l)

>1

— ex eSO | — oxp [ — @e—sf(v)
= p< ZZ ) p( ;M ) (5.5)

N# 1>1

k+q
n—1 g(,.y#)e—sa'y)tr /\k P’y (-1)
~Tew(-% ,
o > ((y)| det(I — P,)|
where ¢ = dim E comes from (2.5). To show the meromorphic continuation of
(, it is thus sufficient to show that for £ =0,...,n — 1, the function

#)e=st Mgy AR
uls) = i)/ auts) = - e A,

5



THE RUELLE ZETA FUNCTION FOR ANOSOV FLOWS

et tr k .
where Ck,(g) = exp <_ Z";’ E(Vfi’iﬂdetzliénp’y), extends meromorphlcally to the

complex plane with simple poles and residues that are integer. Indeed, we have
the elementary

Lemma 5.4. Let h be a meromorphic function on a simply connected domain
D c C, with simple poles and residues that are integer. Then there exists a
meromorphic function g on D such that h = ¢'/g. Moreover if the residues are
nonnegative, then g can be chosen holomorphic.

Therefore, if f; extends meromorphically with the desired properties, we

have (/¢ = gi./9x on R(s) > 0 for some meromorphic function g, on C.

This gives ( = A\rgx for some \g, and (; extend meromorphically on C, so do

¢=TL, ¢

Fix some ty > 0 such that tq < £(~) for all periodic orbit 7. The following
lemma is central for the proof of the meromorphic continuation :

Lemma 5.5. For R(s) > 0, we have
fu(s) = —itr® (e_tose_itOPRiS|COO(M7Q15)) . (5.6)

Proof. For T' > 0, define xp € C®(to — 1/T,T + 1/T) such that xr = 1 on
[to, T]. Let xrs(t) = xr(t)e " for s € C. We have according to Theorem 2.10 :

((y#)e s Dtr \F P
T, x7s) = Y (0(7)).
< g, XT, > Z \det([ _ P7)| XT( (’Y))

y

Therefore, for R(s) > 0, one has <trka, XT,s> o fr(s). We have, according
—+oo

to (2.10), <trka, XT7$> = tr’ (M, .. ). Therefore, letting 7' — oo, we get thanks
to Lemma 5.2 and Lemma 5.3 that for R(s) > 0 :

i) =15 ([~ (67) dtle e ) (57)
to
Using (3.5), we conclude. O

We shall make the change of variable A = is and set
- d : : . :
RO = (560 /6 (-i2) = ~ifu(-iA)

which also writes f.(s) = i f,(is). Then f; has simple poles with integer residues

iff it is the case for fi (and in this case we have Res,, (f) = Resqs, (fx) for any
pole sq of fi). We use Proposition 4.8 and the continuity of the flat trace on

Dr(M x M, miQy @ m58) (see [ , Theorem 8.2.4] or §B.3) for any I' not
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intersecting the conormal of the diagonal in 7™M x T* M, to obtain thanks to
the Cauchy formula that fj is holomorphic in the region C\ Res(P). To show
that f5. is meromorphic, take \g € Res(P). Choose an order function m with
C — Cp < Y(Ng) so that P : D(P) — Hg,, (M, ) satisfies the conditions of
Theorem B.2 to get

LD (P — NI 1
Ry=Y,—- Y M= —— R,dA 5.8
A A ; (A= Xo)? owi Jop. (5:8)

where D. = {\ € C, |\ — \g| < e} for some 0 < ¢ < 1, Y is holomorphic near
Ao, [IL,P] =0, II2 = IT and (P — \g)??I = 0. Now adapting the proof of
Proposition 4.8 we show that the Schwartz kernel of e ’toPkRA|Coo( ok lies
in Dp(M x M, 7;QF @ m3Q8) uniformly in A near Ay for some I' not inter-
secting the conormal to the diagonal, and the formula (5.8) gives also that
the Schartz kernel of e*topkH|Cm(Myﬂ§) lies in DR(M x M, 7tQF @ m3Q8). We

then apply the continuity of the flat trace to get that ﬁ is meromorphic near A.

It remains to see that f, has simple poles with integer residues. Let
Il = Hleeo (ar,0p) and Py, = Plew(yy0p). We have according to (5.6) :

?];()\) = —tI‘b (eit‘))‘e_itOPkR,\|coo(M,Q§)>

— _trb elto)\e—ztopk Y o ( k 0 ' k
{ Ak ]; ()\ — )\0).7

_ _eito)\trb (e—itQPkY)\’k)

J(Xo) i—1
itoA —itoP (P, — Xo)? I,
+ Mg, () (e LT )

J=1

since the flat trace and the usual trace agree on operators of finite rank,
which Il is (note that Il also acts on Hg,, thanks to (5.8)). Let A =
Pka\ker(Pk_ 20)7 00 [, - The last term on the right hand side reads

. A by )] 1
ito\ —itn A 0
€ to trker(Pk_)‘O)J<)\0)|HGnl ( ito E )\ )\0> ) , (59)

where e is given by the power series extension of the exponential map
at A = )Xo (which is finite since (4 — \g)”*) = 0). But for [ > 1 one has
tr (A — Xg)' = 0. Therefore, the term (5.9) is just —e r (—apld/ (A — X)),
where e~0* = 7 a;(A — \)! near \g. Since tr (apld) = my(Ag)e 0 with
mi(Ag) = dim (ker(P;c — Xg) Qo ), we get (because e’oMr’ (e’“oPkY,\,k) is
holomorphic near Ag) :

—itgA

lim (A — Ao) fa(A) = mi(Xo), (5.10)

/\4))\0
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which concludes the proof of Theorem 5.1.

Remark 5.6. As a consequence of (5.10) together with Lemma 5.4, we have

n—1
(s) = [ Gl(s) =V,
k=0

where the (; are holomorphic functions. The order of ( at a resonance \y €
Res(P) is 74 (—1)F9my,(Ao) where my(Ao) = dim ker ((Pk - )\O)J(’\O)]Hgm(Myﬂg)) =
dim Ran(IIg).
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6 The Ruelle zeta function at zero for
surfaces

In this section, (X, g) will denote a negatively curved orientable closed surface.
Denote by ¢' the geodesic flow on the unitary cotangent bundle M = S*¥ =
{(x,6) € T*M, ||, = 1}. Recall that since ¥ is negatively curved, ¢ is an
Anosov contact flow on M. In fact, it is a contact flow associated to the contact
form a = j*p (see | ]) where j : S*3 — T*X is the inclusion and p is
the one form defined by p ¢ (v) = & (dﬂ(m) -v) where 7 : T*Y — ¥ is the
natural projection. We have

txa =1, txda =0. (6.1)

Also recall that the form vol = e Ada is a volume form on S*¥ with £x vol = 0.
The stable and unstable bundles of ¢' are orientable (see [ |, Lemma
B.1) and thus by Theorem 5.1 the associated Ruelle Zeta function ¢ has a
meromorphic continuation to the whole complex plane. The purpose of this
section is to prove the

Theorem 6.1 (| ). The Ruelle Zeta function ¢ of (X, g) is holomorphic
at zero and vanishes with order |x(3)| where x(X) = 2 — 2g is the Euler
characteristic of 3.

The starting point is Remark 5.6 which gives with (2.5), because dim E? = 1,

. Gls)
)= La®
The order of { at zero is thus
—mg(0) +mq(0) — m2(0), (6.2)

where my(0) = dim Ran(II;). To compute the numbers my(0), we show that
the spaces Ran(Il;) actually correspond to the space of generalized resonant
states (that is, there is no Jordan bloc) using Lemma 6.2 below ; on the other
hand, we can compute directly those spaces (Propositions 6.4 and 6.5) using the
fact that smoothness of Pu implies smoothness of u under a certain nonpositive
quantum flux condition (Lemma 6.3), which allows us to use hyperbolicity of
the flow to conclude.

6.1 Preliminaries

Let P = —iLx where X is the geodesic vector field and Ay € Res(P), and ®*
is the flow of X lifted to T* M. Define the space of the generalized resonant
states at Ag,

Sk(No) = {u € Djp, (M, Qf), Pu=Au}.
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The following lemma shows that under a semisimplicity condition, the geometric
multiplicity of A\g coincides with its algebraic one.

Lemma 6.2. Assume the following condition :
Vu € D (M,Qf), (P—X)°’u=0 = (P—X)u=0. (6.3)
Then dim Sg(Ao) = mr(No), where my(XNo) is defined in Remark 5.6.

Proof. We first show that we have Si(A\g) C Ran(Il). Indeed, take u € Si(\).
Take p > 0 so that u € H#(M,Qf). For an appropriate choice of order
function (namely, |u| > i), we have u € Hg, (M, QF) because m = u near E*.
Since u € Si(A\g) we have u € D(P) and we can write Ryu = (A — \g) 'u.
Using the Laurent series expansion (5.8) we obtain ITyu = u.

Now assume u € Ran(Il;). We have Ilyu = u and u € Dj. (M) thanks to
Theorem 4.8. Therefore, (P — \g)’/®u = 0 since (P — \g)’*1I = 0. Now
iterating (6.3), we conclude that u € Si(Ag). Thus Ran(Il;) C Sk(Xo), which
concludes. O

In what follows, we will consider the pairing (-, -) on L?(M) associated with
the volume form vol. Let P = Py = P|¢~() = —iX. The following lemma
shows that smoothness of Pu imply smoothness of u provided a sign condition
on the quantum flux of u is satisfied (see the discussion in | | preceding
Lemma 2.3).

Lemma 6.3. Assume that u € D, (M) satisfies Pu € C>*(M) and 3(Pu,u) >
0. Then u € C®(M).

Proof. Take u € D, (M) and N > 0 such that u € H=N(M). Thanks to (A.4),
it suffices to show that for every (x,£) € T*M \ 0 and all A € ) (M) microlo-
calized near (z,€), one has ||Aul[;2 = O(hOO)HuHH}:N. As in Lemma 4.5 (E}

is a radial source for ¢~), we can find an escape function g € C(T*M, [0, 1])
such that

(i) g =1 near 0,
(ii) X(g) <0 near EZ,
(iii) X(g) <0 on E: N WF,(A).

We then choose some symmetric operator G € W9 (M) such that o,(G) = g,
WF,(G) C supp g and G = I microlocally near 0. Because X(g) < 0 on
WF,(A)N Ef, we can find C' > 0 and a compactly microlocalized A, € U9 (M)
with WF,(A;) N EX = (0 such that

o (AP <~ X(g) + Clon(A)” (6.4
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Moreover, thanks to Proposition A.8 and the fact that o,(hP) = H where
H(z,§) =&+ X,, we have —0y ([P, G]) = +ihX(g) = iX(g) which reads

7 (51P.61) = ~3X(0). (6.5)

Combining this fact with (6.4) and (6.5) we get using sharp Garding’s inequality
(Theorem A.22) applied to the operator —S& [P, G] + CAjA; — A*A

C
((~51P.GI+ CA AL - 4°A) Ru, Ru) = ~ChllRullz
where ¥ lies in U9 (M) and satisfies WF, () C T*M \ 0 and

X = I microlocally near WF,, ([P, G]) UWF,(A;) UWF,(A).

We therefore obtain
. . c . . .
| AxullZ: < ClARullZe + 5 (X [P, GlXu, w) + Chl[Xull 2. (6.6)

Note that since Ly vol = 0, P is symmetric on L*(M). Because G is also
symmetric,

$(GPu,u) = —21 (P, Glu, ) (6.7)

2i
and we know that WF,(Pu) N (T"M \ 0) = () thanks to Remark A.14. As a
consequence, since GP = (G — I)P + P and I = G microlocally near 0 we
obtain with (Pu,u) >0 :

S(GPu, u) < O(0™) ul| . (6.8)

Thanks to the restrictions of the wavefront set of Y, we obtain that A;yu =
Aju + O(h™)e (and idem for A) and X*[P,G|xu = [P,Glu + O(h™)c.
Moreover, WF;(A;) N E;; = ( which implies since u € Dp. that Aju =
O(h*)¢e. Those remarks together with (6.7), (6.8) and (6.6) leads to

1Aullz2 < ChY2|IRullze + O() |lull-».

Iterating this estimate we obtain ||Au|rz2 = O(h™)||u|| g-~, which concludes.
[

6.2 Calculus of the spaces of generalized reso-
nant states

In this subsection we prove Theorem 6.1. It suffices, thanks to the discussion
following the Theorem, to calculate the numbers my(0) for £ = 0,1,2. To do
so, we will calculate the dimensions of the spaces S;(0) and show that the
conditions of Lemma 6.2 are fulfilled. We first deal with the cases k = 0, 2.
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Proposition 6.4. We have
So(0) ={c, ce C}, 82(0) = {cda, c € C}.

Proof. We start by showing that Sy(0) is the space of constant function on
M. Take u € Sy(0). We have Pu = 0, and we can apply Lemma 6.3 to get
u € C®(M). Therefore, u o ®' = u for all ¢, which implies in particular that

duy - v = dug (e (dqb; : U) . (z,v) e TM.

Taking vy € E(x) and letting ¢ — 400, we obtain du, - vs = 0 thanks to (2.1).

Similarly (letting t — —o0) we have du, - v, = 0 for v, € E,(x). Therefore
du|g,ep, = 0. Recall that we are in the case where X is a geodesic flow, which
is a contact flow (see beginning of section 6). As a consequence, E, & E; = ker «
and we can write (two linear forms with same kernels are colinear)

du = pa
where ¢ € C>°(M). But now we have

du ANda = pa ANda =a Ad(pa) =0,

which implies that ¢ = 0 and thus du = 0 which concludes the case k = 0.

Now take u € S3(0). We have txyu = 0 which implies that we can write (since
txda = 0)
u = uda,

for some u € Di. (M). We have
0=Lxu=dixu+txdu=xd(uda) = (Xu)da,

so Xu = 0 and we can apply the case k = 0 to obtain that u is constant, which
concludes. O

We show in the next proposition that dim &;(0) = by(M) where by (M) =
dimg H'(M, C) is the first Betti number of M.

Proposition 6.5. There exists an isomorphism of vector spaces
S1(0) = HY (M, Q).

Proof. First note that if u € §;(0), then du = 0. Indeed, we have 0 = Lxu =
txdu, which implies that du € S;(0), because Lydu = dixdu = 0. Thanks to
Proposition 6.4, we have du = cda for some ¢ € C. Moreover, we have the
formula

uAda = (txu)vol. (6.9)
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To see this, write u = pa + txw for some w € D'(M, Q') ; then txu = ¢
which gives the formula. Since txu = 0, we have u A da = 0. But now

cvol(M) = ¢ /

M
thanks to Stokes’s theorem. Thus ¢ = 0 and du = 0. Take u € §;(0) ; since
du = 0 we have thanks to Lemma B.6 the existence of ¢ € Df. (M) such that
u — dy is smooth. If ¢ € D (M) also satisfies that u — d is smooth, then
d(p — ) is smooth and again by Lemma B.6, we obtain that ¢ — ¢ is smooth,
which implies that u — dy = u — dg + dy, where ) = ¢ — ¢ is smooth. As a
consequence, we have a well defined morphism

a/\da:/ Oz/\du:/ unda=0
M M

U:S(0) = H'(M,C), uwrs [u—dyl.

Let u € 8§;(0) such that W(u) = 0. Then there is ¢ € D}, and ¢ € C*(M)
such that u — dy = dv, which reads u = d¢ with ¢ = ¢ + 1. One has
0=Lxu=Lxdp =1xdp = X¢. By Proposition 6.4, ¢ is constant and u = 0,
which proves that ¥ is injective. Now take a smooth closed one form v. We
know thanks to Proposition 6.4 and (5.8) that

Iy

)\ Y

where Y, o is holomorphic near 0. Set f = —.xvand ¢ = —iYoof € Hg,,(M).
We know thanks to Theorem 4.8 that ¢ € Dj. (M). We have

Rio= Yo —

since (P — ARy o =1 on Hg,, (M) and PIlj = 0. Now note that thanks to
(3.5), we have : .
(R/\,O)* - _R—X,O

with respect to the vol-pairing on L?*(M), where f{,\o is the resolvent of —P,,.
Now Proposition 6.4 applied for —X instead of X gives that the range of IIj
also consists of constant functions. Therefore for g € C*(M), since IT3 = Il :

(Ilog, 1) = (g, 1151) = (g, 1).

As a consequence, using (6.1),

—Hof:—/ fvolz/ LXVV01:/ v/\vaolz/ V/\da:/ dvAa = 0.
M M M M M

Therefore, (6.10) gives —t.xv = X¢. Let u = v + dy. We have du = 0 and
txu=1xv+ixdp =ixv+Xp =0,

which proves that u € §;(0) and ¥(u) = [v] € H'(M, C). Thus ¥ is surjective.
[
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We are now in position to compute the vanishing order of { at zero.

Proof of Theorem 6.1. We first show that the condition of Lemma 6.3 is satis-
fied, that is for every u € D (M, Qf) such that P?u = 0, then Pu = 0. We

first deal with the case k = 0. Take u € Dj. (M) such that P?u = 0, that
is tydexdu = 0. We want to show that txdu = 0. Since txdu € Sy(0), we
have thanks to Proposition 6.4 that ¢ydu is constant. On the other hand,
integrating by parts,

cvol(M) :/ txdu = 0.
M

Thus ¢ = 0 and txdu = 0. The case k = 2 is similar ; if txydu € Sy(0), then
txdu = cda for some ¢ € C thanks to Proposition 6.4. Since £Lxa = 0 we have

cvol(M) = /Ma/\ txdu = —/M Lx(aAu)=0,

which concludes the case k = 2. Now we deal with the case k = 1, which is
more difficult. Take u € Dj.(M, ) such that txdu € S;(0). We want to
show that txdu = 0. Take u € Df,. such that a A du = uvol. We have thanks
to (6.9) :

(u,vol) = (a Adu, 1) = (da Au, 1) = (txu, vol) = 0.

Letting v = txdu, we have dv = 0 thanks to the proof of Proposition 6.5
because v € §1(0). Since Lx(a) =0 and Lx(da) = 0, we have

(Xu)vol = Lx(aAdu) =aAdv =0.

Thus Xu = 0 and Proposition 6.4 implies that u is a constant function, but
since (u,vol) = 0 we have v = 0. This implies &« A du = 0. Thus, one has
0=tx(aAdu) = (txa) ANdu — a A txdu, which reads since txya =1 :

du=aANixdu=aAv. (6.11)

Apply (the proof of) Proposition 6.5 to obtain ¢ € Dj. (M), w € C>(M, Q')
such that dw = 0 and
v =w +dep.

Moreover, since v € Sy(1), one has ¢txv = 0 which leads to
txw~+ Xp=0. (6.12)
We have du A w = d(u A w) ; thus with (6.11) we have
0= (duAw,1)=(aANdp AW, 1)+ {(a AWAW,I1)

We have (o« Aw Aw,1) € iR. Therefore, taking real part and using (6.9) and
(6.12):
0= R(pw Ada, 1) = R(ptxw,vol) = —R(Xp, p).
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Noting that P = —iX, we can use Lemma 6.3 to obtain that ¢ is smooth,
and thus v is also smooth. Since Lxv = 0, we have (¢')" v = v for all ¢. In
particular,

<V¢t(x),d¢tx : v> = (vg,v) (x,v)€eTM, teR.

Letting ¢t — 400, we obtain (v,,vs) = 0 for v, € Ey(z). Letting t — —o0, we
obtain (v,,v,) = 0 for v, € E,(z). Therefore v|g.qp, = 0 ; since txv = 0,
we obtain v = 0, which concludes the case k = 1. We have thus proved that
the order at zero of ¢ is m1(0) — my(0) — ma(0) = b1 (M) — 2. To conclude it
thus suffices to show that b; (M) = b;(X). Let 7 : S*Y — X be the natural
projection. Recall that we have the Gysin exact sequence (] , p- 438]):

0 — HY(2,C) =5 HY(S*S,C) — H(2,C) =% g2(2,0),  (6.13)

where — is the cup product and e(X) € H?(X,C) is the Euler class of %,
characterized by

{e(X), [X]) = x(%),
where [X] € Ho(2, €) is the fundamental class of ¥. Here we have y(X) =
2—2g < 0 thanks to Gauss-Bonnet theorem. As a consequence, the last arrow in
(6.13) is an isomorphism because e(X) # 0 and H°(X, C) = H?*(%, C) = C, and
thus #* : H'(3,C) — H'(S*%, C) is also an isomorphism. Thus by (M) = b;(X),
which concludes. O
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A Microlocal and semiclassical calcu-
lus

A.1 Pseudo-differential operators on R"
We refer to | ] or | | for a complete description of pseudo-differential
operators.

Definition A.1. Let m € Rand p € (0, 1]. We will say that a smooth function
a € C*(R" x R") lies in S} if for all multi-indices «, 3 € N", there exists Cyp
such that

Vr,§ € R, |0g0]a(, €)| < Caplg)m— ot =A,
where (§) = 1/1 4+ |£|2. We will denote S7* by S™, and a € S™ will be called a
symbol of order m, and 57 = NerS,"

Remark A.2. One can also define the class S)" it m € S is an order function,
replacing (&)™ lel+(1=)I8l by (¢ym@&=rlal+(1=p)IBl i the previous estimate.

A symbol a € S™ induces a pseudo-differential operator A = a = Op(a) =
a(x,D): S — S, where S is the Schwarz space on R", by

(Au)(z) = /?a%qxgm@mg wes, zeR" (A1)

(2m)" Jr
One can extend A to the Sobolev spaces H® so that A : H®* — H* ™™ is

continuous for all s € R. Here is a little summary of the properties of pseudo-
differential operators.

Proposition A.3 (Basic properties of ¥DO’s). Let m,m' € R, p € (1/2,1],
a€S, and b € Sgl/. We have the following properties:
o abe S™™ and Op(a)Op(b) = Op(aoh) with ach = ab mod Sym =1,
e Op(a)* = Op(a*) where a* € ST and a* =a mod S;~2~1,
e aob—boa=1{a,b} mod S;”*m'*Q(prl), where {-,-} denotes the usual
Poisson bracket on R™.

Remark A.4. These properties also works for classes with variable order
m e S°.

The following result | , Theorem 8.6] allows us to (almost) invert
microlocally the ¥DO’s.

Theorem A.5 (Microlocal inversion). Let x € S° and a € S™ such that a is
elliptic on supp x, namely inf , ¢)esupp  |a(z,)[(€)™™ > 0. Let ¢ € S° such
that supp ¢ C int{x = 1}. Then there exists b € S™™ such that

boa=1+1,

where | lies in S™°.
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A.2 Pseudo-differential operators on Manifolds

In the following, M will denote a smooth compact manifold of dimension n,
and N another compact manifold.

Definition A.6. Let A : C*°(M) — C>*(M) be an operator. We'll say that
A is a pseudo-differential operator or order m if for any coordinate chart
k:UCM—V CR" one has for any ¢, ¢ € C*(U) and u € C>*°(M) :

VAU = K" a.(z, D)k (Pu),
for some a,, € S™. We'll denote by W™ (M) the set of such operators.

We also define S}*(M) the class of symbols a € C>°(T* M) such that there
exists Ckqap such that

V(z.€) € K xR", |0£0] (r.a)(x,€)| < Cras(€)™ AP (A2)

for any trivialization chart x : U — V and any compact subset K C V. For
a € S"(M), we can quantize a by the following process. Let (Us, k) be some
atlas of M and 1, be a subordinate partition of unity. For u € C>(M), let

Op(a)u =" Xuk" AuXnbinlt,

where A, = (k.«a)(z, D). This quantization depends of the coordinate charts.
However, one can show that using a different atlas, we obtain the same operator
modulo U™~ (M). Thus, we have a well defined bijection

(M) /9" (M) = S™(M)/S™H(M);

the image of an operator A under this map is called its principal symbol and
will be denoted by o(A). It carries a geometrical meaning. Note that every
point of A.3 also works for pseudo-differential operators on manifolds, with
principal symbols.

One can define pseudo-differential operators acting on a vector bundle F
as follows : we say that A : C*(M, FE) — D'(M, E) lies in *(M,Hom(FE)) if
in every local frame ey, ---e, of E over an open set U C M one has

r

A(fer) =D (Aufle;, [feCrU), le{l,--,r},

J=1

where A;; € U*(U). In this case the principal symbol o(A) of A lies in the
class S*(M,Hom(E))/S*1(M,Hom(E)).
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A.3 Semiclassical calculus

Let us now introduce semiclassical pseudodifferential operators. We refer here
to | | or | | for more details.

Definition A.7. Let A = (Ap)nc0,1), An : C°(M) — C®(M) be a family
of operators. We’ll say that A is a semiclassical DO of order m if for any
coordinate chart x : U C M — V C R", one has for any ¢, ¢ € C°(U) and
u€eC>®(M):

YARdu = YL a, p (2, hD) kK (Pu),
for some a,, € S™. We will use the notation Opj,(a) := a(z, hD) for a in S™

and we demand that the semi norms of a, j in S™ are bounded uniformly in h.

The dependance of h of the symbols will not usually be explicit. We’ll denote
by W*(M) the set of such operators.

Note that every A € WK(M) define an operator (A,) € WF(M) with
A, = Opp(A). The semiclassical principal symbol of a semiclassical operator A
will be denoted by o, (A) and lies in S7*(M)/hS; (M), where S;*(M) is the
set of families a = (ay,) with a, € S™(M) uniformly in h. Quantizing a symbol
a € S} as in the previous subsection gives us a bijection (with (k.a)(z, D)
replaced by (k.ap)(z, hD)):

W (M) /W (M) =2 S™ (M) /RS (M).

We have the following version of A.3 for semiclassical ¥DO’s (we removed the
p’s for simplicity):

Proposition A.8 (Basic properties of semiclassical ¥DO’s). Let A € W}'(M)
and B € U (M). Then

o AB € U™ (M) and 0,(AB) = o,(A)on(B) mod hSI+H™—1(M),
e 0,(A*) = a4 (A) mod hS; (M),
e 0,([A, B]) = 2{on(A),on(B)} mod h2S7+™=2(M), where {-,-} is the

i

canonical Poisson bracket on T*M.

The semiclassical norms ||-|| g are defined locally as follows: for u supported
in a coordinate patch let |[u||gx = (2m) " [[(RE)*A(E)|[r2 = (2mh) (| Fn(w)|] rn,

where Fy, is the semiclassical Fourier transform, namely Fp,(u)(§) = @(£/h).

Semiclassical UDO’s act between semiclassical Sobolev spaces H}', which means
that if A € U}, one has ||Apul| gurr < Cllullgs for u € H" and C independent
h

of h. The norms on H} (M) are defined globally using partitions of unity,
mainly let (Uy, x: U, — R") is a finite atlas on M and (¢,) is a partition of
unity subordinated to (U,), then

el = 3 Nl () 3
K

For a different choice of atlas the norm will be equivalent.
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Definition A.9. We will call a family of distributions u = (up)ne(0,1) to be
h-tempered if there is € R, N > 0 such that

||unl|gp = O(h™Y)

as h — 0. We will denote by D, (M) the set of h-tempered distributions (or
D, (M, E) for those with values in a vector bundle E).

Similarly, we introduce h-tempered families of operators which are families
B = (Bp)n, By : C°(M) — D'(M) such that there is N > 0 satisfying

||BhHHs—>H;:’N =O0(h™)

as h — 0.

Distributions independent of h are h-tempered. We allow hA-tempered dis-
tributions to become singular as h — 0, but if so it is at a controlled rate. As
we have seen before, if A € U¥ and u is h-tempered, then Au = (Apuy), is
also h-tempered.

One can define semiclassical pseudo-differential operators acting on a vec-
tor bundle E as follows : we say that A = (Ay), : C*(M,E) — D'(M,E)
lies in WX (M, Hom(E)) if in every local frame ey, - - - e, of E over an open set
U C M one has

A(fe) =S (Auf)e;. feC®(U), e {l,--.r},

j=1

where A;; € W5 (U). In this case the semiclassical principal symbol o;,(A) of A
lies in the class SE(M, Hom(E))/SF~ (M, Hom(E)).

A.4 Exponentiation of pseudo-differential op-
erators

Adapting the proof of | , Theorem 8.6] for classes of symbols S™ we have
the following

Theorem A.10. Let g be an escape function for an order function m as in
section 3, and G € WYT (M) such that 0,(G) = g. Then there is a unique
family of pseudo differential operators B(t) : C*°(M) — C>*(M) such that

8,B(t) = GB(t), B(0)=1I.

B(t) is a WDO with symbol o,(B(t)) = b, € Si™". We will denote B(t) by
exp (tG).
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This exponentiation will be useful to construct anisotropic Sobolev spaces
and to conjugate operators. We have the following

Lemma A.11. Let P € U} (M), and G € W) (M) as in the previous theorem.
Let P, = exp(tG) P exp(—tG).

P = P+t[G, P+ {G,/Ot(Ps —P)ds} el

Proof. Note that e'“ and G commute. Therefore,

d
&Pt — GetGPe—tG . etG’PGe—tG
=[G, A}
= |G, P]+ |G, P, — PJ.
Integrating between 0 and ¢, we get the lemma. O

A.5 Classical and semiclassical wavefront set

The wavefront set of a distribution is a very useful tool to describe its singular-
ities in the phase space. Let m: T*M — M denote the canonical projection.

Definition A.12. For v € D'(R"), we define its wavefront set WF(u) as
follows : (z,£) € T*R™ \ 0 does not lie in WF(u) if there exists a conical
neighborhood U x I' € T*R™ \ 0 of (z,¢) and x € C*(R") supported in U
with x(x) # 0 such that for all N > 0 there exists Cy > 0 satisfying

xu(n) < Cy(n)~™, nel. (A.3)

The wavefront set is a closed conical subset of T*R™\ 0. If w is a distribution
on M instead, we define WF(u) C T*M \ 0 as follows : let (U, k) be an atlas
of trivialization of T*M, with y. a subordinate partition of unity and set
WF(u) := U, #*WF(k«(xxu)). More generally, if u € D'(M, E) is distribution
with values in a vector bundle E, we say that (z,£) € WF(u) if for some local
basis ey, ..., e, of E near x, writing u|y = Y_; u;e;, one has (z,§) € WF(u;)
for some j. For a closed conical subset I' of T*M, we define as in |
Definition 8.2.2] :

Y

DL(M) = {u € D/(M), WF(u) C I'}.

Recall that the topology of Df is defined as follows : we say u,, — u in Dy if
u; — u in D’ and the constants in (A.3) are uniform in m.

For a DO A € U*(M), we define the wavefront set WF(A) as follows :
(x,&) € T*M\0 does not lie in WF(A) iff one can find a conical neighborhood T
of (z,€) such that a(z, &) = O(E')~>°) in ', where A = Op(a) with a € S¥(M).
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If A € U*(M,Hom(FE)) acts on sections of a vector bundle E, we say that
(x,€) ¢ WF(A) iff a(z, &) = O((¢')) for ¢ in some conical neighborhood of
(2,€), where Op(a) = A and a € S*(M, Hom(E)).

For an operator B : C*(M) — D'(N), fixing a non-vanishing density
@ on M, one gets the Schwartz Kernel K € D'(N x M) of B with re-
spect to p defined by the relation (Kpg, (o) ® vy = (Bo,v) for ¢ € C*(M)
and v € C*(N, D), where D is the line bundle of densities. We show that
WF(Kp) does not depend of the choice of the density p and we can thus
define WF'(B) = {(y,n,z,—9)|(y,n,z,&) € WF(Kg)}. More generally, if
B :C*(M,E) — D'(N, F) works with vector bundles F and F' over M and
N (that is, in a local frame, B (3, u;e;) = >, Bjju;f; for some operators Bj;),
its Schwartz kernel Kg lies in D'(N x M, 7y F ® 73, E*) and we can define its

wavefront set WF(Kg); as before we get WF'(B).

To introduce the semiclassical wavefront set, let us consider the fiber-
radially compactified cotangent bundle "M modeled by the ball B*M =
{(z,§) € T*M s.t. |£] <1} for some smooth norm on T*M. Then we have an
embedding ¢ : T*M — int(T M) defined by «(z,€) = (z, %), so that T" M is
a manifold with boundary S*M = (T*M \ 0)/R~( and with interior 7M.

Definition A.13. The semiclassical wavefront set WF;(u) of an h-tempered
family of distributions (u;,) C D'(M) is defined as follows : we'll say that
(z,€6) € T"M does not lie in WF},(u) if there exists x € C*(M) supported in
a trivialization chart, y(x) # 0, and a neighborhood U of (z,&) in T M, and
ho > 0 such that for all N > 0, there is Cy > 0 satisfying

xu(n/h) < OB ()™, neUnT*M, 0<h< hg,

where we identified U with its image in R™ x R™.

Remark A.14. The semiclassical wavefront set away from the fibers infinity
does not tell any information about the smoothness of the distributions; how-
ever, it captures oscillations in h. For an h-independent distribution u, we
have

WF(u) = WFy(u) NT*M \ 0. (A.4)

Moreover, if u is smooth, then WFy(u) N (T M \ 0) = 0.
We define as before the wavefront set of a semiclassical ¥DO A € W5 (M),
replacing O((¢)~>) by O(h>(")™>).

Definition A.15. If A € WF(M) satisfies WF,(A) N 0T M = §, we'll say
that A is compactly microlocalized. Note that every compactly microlocalized
semiclassical pseudodifferential operator lies in MWk (M).
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Using Schwartz kernels, we can similarly define the wave front set of h-
tempered family of operators By, : C**(M) — D'(N), which is a subset of
T"(N x M).

We have the following useful characterization of the classical wavefront set :

Lemma A.16. Let (K)) be a bounded family in D'(M x M), and ICy its
operator associated on M. Let I' is a closed conic set in T*M xT*M and R > 0.
Assume that for each (y,n,x,—§) € T*(M x M)\ T with |n|, || € [R,2R] we
can find relatively compact neighborhoods U of (z,€) and V' of (y,n) in T*M
such that for all h-tempered family of functions fy, € C(mp(U)),

uniformly in X\, that is, for every N and x € C*(mp(V')), there exists C . r
independant of X such that |F,(xKxfn)(C)| < Cny Y for all ¢ €V and .
Then (K))x is a bounded family in Dp(M x M).

Proof. Take (y,n,z,—&) ¢ I' with [¢],|n| € [R,2R]. Take neighborhoods U
and V of (x,€) and (y, —n) such that (A.5) is valid. Up to shrinking a little
bit U and V we may assume that 7,,(U) and (V) are supported in a
trivialization patch and identifying their image under the trivialization we
have U,V C R" x R". Take x, € C>®(my(U)) and x, € C®(my(V)). Put
fu(2', &) = xa(2)e™ €/ for (2/,€") € Ty (U) x R™. One has

XXy B (0 1, =€ [B) = X, Ko /).

Now we have WF,,(f) C U (this is an exercise) and it follows from (A.5) that
WF(K,f) NV = 0. Therefore for all N there is C'y such that m(n’/h) <
CyhY for all (f/h,€'/h) € V x U, which implies that x.x,Kx (7, —&") <
Cn (€)Y N ()N for every (1, €') in some conical neighborhood of (1, €). This
concludes. O]

A.6 Microlocal and semiclassical inversion

We recall here some facts about ellipticity and microlocal inversion that will
be helpful. See | , Appendix E] for more details.

Definition A.17. Let A € U*(M) and (z,£) € T*M. We'll say that (z,€) €
ell(A) if there exists a conical neighborhood U of (x,&) in T*M and ¢ > 0 such
that |o(A)|(y,n) > c(n)* for all (y,n) € U. If A € U¥(M,Hom(F)) acts on
vector bundles, we ask that |det o(A)|(y,n) > c(n)* instead.

Theorem A.18. Let A € V*(M Hom(E)) and X € V°(M,Hom(E)) such
that WF(Y) C ell(A). Then there exists B € V=%(M Hom(E)) such that
AB = X + L where L lies in ¥V~>°(M,Hom(E)).
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Definition A.19. Let A € U¥(M) and (z,£) € T"M. We'll say that (z,€) €
ell, (A) if there exists a neighborhood U of (z,€) in T M and ¢ > 0 independant
of h such that |0, (A)|(y,n) > c(n)* for all (y,n) € UNT*M and h small enough.
If A € U"(M,Hom(FE)) acts on vector bundles, we ask that | det o7, (A)|(y,n) >
c(n)* instead.

Remark A.20. Note that as in the definition of the wavefront set, the semi-
classical set of elliptic points need not be conical, contrarily of the classical
one.

Theorem A.21. Let A € W}(M,Hom(E)) and ¥ € V9 (M,Hom(E)) such
that WF(Y) C ell,(A). Then there exists B € \IJ,’L (M,Hom(E)) such that
AB = Y\ + L where L lies in h*V, *°(M,Hom(FE)).

A.7 Garding’s inequality

The Garding’s inequality is a result of positivity which will be crucial in the
developements of certains of our estimates.

Theorem A.22 (Sharp Garding’s inequality, | | Theorem 9.11). Let
A € UK(M) such that R (o,(A)) > 0 everywhere. Then there is C' such that

R(Au,u)y > =Ch|lul]| =1 , uelC®(M).
Hy? (M)
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B A few results in operator theory

B.1 Fredholm theory

Theorem B.1 (Fredholm analytic continuation). Let X and Y be Banach
spaces, 2 C C a connected open set, and P : Q — L(X,Y), A — Py be a
holomorphic family of Fredholm operators. Suppose that there exists p € €
such that Py is invertible. Then there exists a discrete subset S C ) such that
Py is invertible for all A ¢ S, and A\ — P! extends to a meromorphic function
on §2, that is, for every pole A\g € S, there exists k > 0 and a neighborhood U
of zo such that for all z € U, we have

)\0) A
YA+Z PEwY

where Yy is holomorphic near \g. Moreover, the A; are of finite rank.
In fact, if P, is of the form P — A, we have a more precise statement :

Theorem B.2. Suppose X =Y and P satisfies the conditions of the previous
theorem. Assume P is of the form Py = P — \. Then near a pole )y, the
resolvent satisfies

J(Xo) (P Y )j—lH
P-\N'=Y,— —0.,

where
1

n=— [ (-pyld
0D

27

with D. = {\ € C,|\ — X\o| < &} for small enough . Moreover, 11> = 1I,
[P, I1] = 0 and (P — X)) = 0.

Proof. We set Ry = (P — X\)~!. We write thanks to the previous theorem

R, — Y, + zjﬁo) 557 near a pole Ag of P. The equation Ry(P — ) = Idx

shows that if \, u e U\ S,

Ry— R,

A

Therefore, if v;(t) = X\ + rje™, ¢ € [0,27], j = 1,2, are two circles with
0 <ri <ry<eg,one has

12 =

/ / R. R.,dz1dz
2 m

Z
2 d21d22
Mmoo Rl T2

2
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Now, since r; < rp, we have [ R.,/(z1 — z9)dz; = 0 thanks to Cauchy’s
theorem. Therefore,

H2:1,2/ RZ1</ 4z )dzlzﬂ.
(27”) 7 Y2 Z1 — 2

Writing A,, = % 7(>\ — Xo)" 'Ryd\ and noting that PRy = Id + AR we get
(P - A)An — An+17

which concludes. 0

B.2 On closed operators

Let H be an Hilbert space and suppose T': H — H is an unbounded closed
operator with domain D(T') dense in H.

Lemma B.3. Assume Ran(T') = H and there exists € > 0 such that
[Tull = ellull, v e DT).
Then T : D(T) — H is surjective.

Proof. Take v € H. Since Ran(T") = H, we can take a sequence u,, in D(T)
such that Tu, — v as n — oco. Then ||T(u, — u,)|| > €|lu, — ugl| so u, is also
a Cauchy sequence in H, and there is © € H such that u, — v as n — oco. But
now 7' is closed so u € D(T) and v = T'u, which concludes. 0

B.3 The flat trace

Given two compact manifolds M and an operator B : C*(M) — D'(M)
satisfying

WF' (B)NA(T*M) = 0, (B.1)
where A(T*M) is the diagonal in T*M x T*M, we define its flat trace tr’B
as follows. First, fix a density vol on M and let Kz € D'(M x M) be the
Schwartz kernel of B with respect to vol. The condition on the wavefront
set of B means that WF(Kg) does not intersect the conormal bundle to the
diagonal in M x M. Let ¢: M — M x M,z — (x,z) be the inclusion in the
diagonal. According to [ , Theorem 8.2.4], one can define the pullback
'Kp € D'(M). In fact, if ' € T*M x T*M is a closed conical subset not
intersecting the conormal to the diagonal, then (* is continuous Df. — D..p.

Definition B.4. The quantity
tr’B := (1" Kp, vol)

does not depend of the density vol and is called the flat trace of B.
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Now, let T': C*°(M) — D'(Rs¢ x M) be an operator satisfying that its
Schwartz kernel K € D'(Rso x M x M) with respect to a density vol satisfies

WE(Kp) 1 {(t,0,2.6.2, )]t > 0, (1.6) e M\ 0} =0, (B2)
Then again one can define its pullback j* K7 € D'(Rs¢ x M) where j : (t,x) —
(t,z,x).
Definition B.5. The distribution tr’T € D’(Rs¢) defined by
<trbT7 X> = <j*KT7 (T‘-TX) V01>7 X € COO(R>0>7

where m : Rog X M — R+ is the projection over the first factor, does not
depend of the choice of the density vol and is called the flat trace of T

More generally if T : C*°(M, E) — D'(M, E) acts on sections of a vector
bundle E, then we can define an operator St defined locally as St = >, T},
where the operators Ty, are defined in a local frame (e;) by T (Zj ujej) =

> 11 Triure;. The definition of St does not depend of the local frame, and we
write tr’T := tr’St.

B.4 Cohomology with distributions

Let M be a smooth manifold. Recall the definition of the cohomology groups
(M, QF =
HY(M, C) {u e C>(M,Q"),du 0}.
{dv,v € C>(M,Qk-1)}
The following lemma shows that the classes Dy are also useful to deal with

cohomology.

Lemma B.6. Let T C T*M \ 0 a closed conic set. Take u € Dp(M,QF) such
that du is smooth. Then there exists v € C°(M, Q%) and w € DR(M, Q1)
such that

u=v-+dw.
Proof. Take a Riemannian metric g on M ; Hodge theory gives us the Hodge
Laplacian A = dd* + d*d : C>®°(M, Q) — C>®(M,Q), A € ¥?(M,Q), with a
Green operator G : C*°(M, Q) — C®(M,Q), G € ¥~(M, ), such that GA—T
and AG — I are smoothing. Set w = d*Gu € DH(M, QF~1). We have
dw = dd*Gu = AGu — d*dGu =u+ (AG — [)u — d*"dGu.

Since AG — I is smoothing, it suffices to show that d*dGu is smooth. But
one has A(dGu) = dAGu = d (AG — I)u + du, which implies that A(dGu)
is smooth because du is, and thus dGu is smooth thanks to elliptic regularity
because the principal symbol of A

o(A)(z,€) = [§]glde

is elliptic. Therefore d*dGu is also smooth, which concludes. O
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C Recurrence estimates

We shall prove in this section Lemma 2.2. To do so, we will first need the
following lemma which will guarantee that two different closed trajectories of
nearby periods cannot be too close. In the following, X is an Anosov flow on a
compact manifold M, and we denote by ¢! its flow. We fix some metric on M.

Lemma C.1. Fix tg > 0. There exists C,L,d,e9 > 0 such that for every
t,s >ty and x,y € M with

it —s| <6 and d(z,y) < de ™,
we have for every € < gq
d(z,¢'(z)) < e,d(y,¢"(y)) < e => [t—s| < Ce, 37 € (—1,1),d(z,¢"(y)) < Ce.

Proof. First note that since ¢! is a one-parameter group, one has for some
C,L>0
L
16" | ig2cary < Ce™, ¢ € R, (C.1)

where || - ||pig2 (5 is some norm on the space of diffeomorphisms on M with C?
regularity. In particular, one has

d(¢'(x),¢'(y)) < CoeMd(x,y), =,ye M, teR. (C2)

Take z in M and 6 > 0 small enough so that there is a coordinate chart U
near x with {z € M, d(z,z) < 2Cy0} C U. Now note that thanks to (C.2),
d(¢'(z), ¢'(2)) < Cod whenever d(z, z) < de It with ¢ > ty. As a consequence,
if ¢ < Cyd/2, then d(z,¢'(x)) < e implies ¢'(z) € U for every z such that
d(x,z) < de” ™. We identify U with its image in R", and take y € B(z, de™ ).
The constants C appearing in the following considerations might evolve. We
have thanks to (C.1) and the preceding remarks :

00, 05,0' (2) < Ce™, 2 € B(w, e ™).
This implies with the Taylor expansion of z — ¢'(z) :
6" (y) = ¢'(x) = (dd"), - (y — )| < CeHly — x*.

On the other hand, 92¢!(y) is bounded in ¢, y (this is the direction of the flow)
which implies with the Taylor expansion of t — ¢'(y) :

[6°(y) = ¢'(y) — (s = ) X ()| < Cls =t
We therefore obtain

6°(y) = ¢'(@) = (dd")a - (y = x) = (5 = )X < O (M]y — 2 + |s — 1),
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which gives

(46, = 1) - (g = ) + Xor(s = 0] < C (Hly = o + |s — 1)

+10°(y) — yl + 0" (x) — =|.
(C.3)

Now we will use the following

Lemma C.2. If 0 is small enough there exists a continuous family of invertible
linear transformations T, . : T,M — T.M, z € B(x,2Cy0), such that T, , = 1
and

Ty (Ee(z)) = Eo(2), ®=u,s,0.

Moreover, one has C,ey > 0 such that
((A¢")e = Togrw) 0| = C Mol d(z,6'(2)) <o, t>to. (C.4)

Admitting the lemma, one obtains since y — T, is continuous :

(I =Ty - (v — )| < Clo (@) — ally — 2.

Moreover ‘X(bt(y) — Xty < C|o'(y) — ¢'(x)|. Those remarks together with

(C.3) give :

((d6")a = Togry) - (5 = 2) + (5 = ) X

<C (eLt\y — a4+ |s— ﬂ2> + [¢°*(y) — ¥

+16'(z) — 2| + Cle'(x) — &' (y)lls — 1
+ o' (x) — 2lly — 2.

Moreover d(z,y) < de '* thus we have if ¢ < &g, d(x,¢'(r)) < € and
d(y,¢'(y)) <e:

]((dgf)ﬁ)w — W(x)) (Y —2)+ (s =) Xpr)| L CO(ly — x| + |s = t]) + Ce.
(C.5)
Now since E,(z) @ E,(z) is transverse to X, we have (if § is small enough)
7 € (—1,1) such that ¢7(y) —z € Es(z) ® E,(x). As a consequence, using that
X is non vanishing and the fact that 7, , preserves the distribution £;® E, @ Ej,

we have with (C.4) :

(A6 = Togrey) - (67 () = 2) + (s = 1) Xy

Combining this with (C.5) applied to ¢ (y) instead of y this gives the desired
result.

It remains to prove Lemma C.2. If 2Cyd is smaller than the injectivity
radius of the exponential map at x, we can define

Ty = (Is(2) 0z o s(x)) @ (ILy(2) 0 7. o [y () @ (Ig(2) 0 . o Ho(x))

> C7H (Is =t +1¢7(y) — =)
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where Il4(z) are the projections on E,(z) with respect to the distribution
Ey(2) ® E,(2) ® Ep(z), and 7, is the parallel transport from = to z. Since
T,. = I we have that T, , is invertible if z is close enough to . Now for
sufficiently large ¢, one has by the Anosov property :

1 1
|(d¢t)xU8| < §|Us|7 vy | < §|(d¢t)zvu|a vs € Eg(z), vy € Ey(1).

We have 2|v,| < [(d¢")ovu—Ty.pt (2)Vul +| Tt () 0u| and thus |v,| < C|(d¢"),v,—
Ty 6t (2)Vul if €0 is small enough so that [|T; 4| and || Ty et || " are close to
1. Similarly |v,| < C|(d¢"),vs — Ty pt(2)Vs|. This implies

[0 < fou] + [vs] < Cl(d@")wvu = Togt(ayvul + Cl(d@")avs = Trgr(ayvs]

if € is small enough. Since T}, 4t(,) sends F4(x) on E,(¢'(z)) for @ = s, u, we
obtain (C.4) for ¢ big enoug, say for ¢ > Nty. Now let ¢ > to. Then for &, small
enough, we have d(z, ¢'(z)) < &y = d(x, o' (x)) < 9. Moreover, we have

| ((dngt)z - I) v < C|((d¢"), — I)v]|, for v € E, ® E,. As a consequence, we
have with (C.4) applied to ¢™* :

o] < € |(d), = Do| + C (|(Tugmvey = Do| + [(Tagriw) = Do) -

This shows (C.4) for all ¢t > t¢, provided & is small enough so that we have
C <||(Txy¢t(x) — D[ + | Ty pnt(z) — ]||> < 1/2. This completes the proof. O

We are now in position to prove the bound on the number of closed orbits.

Proof of Lemma 2.2. Let p be the Riemannian volume on M and define a
measure on M X R by v = p® dt. Let ty > 0 and set

A® ={(x,t) € M x Ry, d(z, 8" (z)) <&, t >t}

Take 0 > 0 be the constant of Lemma C.1 and fix T > 0. Let x1,--- ,xy be a
maximal set of points in M (with N depending on T') such that d(z;,z;) >
de~LT /2, that is for every z € M, one has d(x,z;) < de LT /2 for some j. We
have

C=
Cx

A C Ay, A5y = A0 (Bxy, 0e M /2) x 1 — 6/2, 7+ 6/2]),

1 k=1

J

where 71 < --- < 7y are such that [to, T] C U[rx — §/2, 7% + /2], with M
depending on T"and M < CT. If A5, is nonempty, fix (v,t) € A5,. Then for
all (y,s) € A5, one has [t — s| < ¢ and d(z,y) < de”"". Then Lemma C.1
gives that for £ small enough :

A;,k C VCE <{(¢T<x)7t)7 |T| < 1})7
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where V*(B) = {p, d(p, B) < €} is the ¢ tubular neighborhood of a set B. As
a consequence, we obtain v(A5;) < Ce™. Now note that N < Ce™ T because

N N
vol(M) > vol (U B(z;, 5e—LT/4)> = vol (B(xj, 5e—LT/4)) > Cle "N,
j=1 j=1
We finally obtain for ¢ small enough

v(A%) < CTe™ e < CeTen, (C.6)

Now take (t) = ¢'(z0) a closed trajectory of period 7 no more that 7. We
know by (C.2) that for e > 0 :

it —7| <e, Is: d(y(s),x) <ee ™ = d(x,¢'(z)) < Ce.

Now for € small enough depending on 7', the tubular neighborhood defined in
the left hand side do not intersect any such tubular neighborhood of a different
closed orbit of period less than T. Moreover, this tubular neighborhood has a
volume in (z,t) bounded from below by C~te"e~(~DL7 Ag a consequence, for
e small enough, we get with (C.6) :

N(T)C tete™ (DT < yol(A%) < Ce"iT(Ce)",

which concludes. O
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