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Introduction

Time series forecasting is an important issue for EDF, particularly for electricity
markets :

Production/consumption planning : optimisation of the production fleet, demand
response

Trading : buy/sell on electricity markets

Grid management (Enedis, french DSO)
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Introduction

Energy Markets are changing : increase of renewable production
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Introduction

Unexpected events
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Introduction

EDF Forecasting tools
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Introduction
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Introduction
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Parametric regression

Consider a regression context, where y is a dependent variable with conditional
distribution p(y |x), x being a d-dimensional vector of covariates.
In distributional regression, we are typically interested in modelling p(y |x) via a
parametric model : p(y |θ, x) which is parametrized by the m-dimensional vector of
parameters θ.

the elements of θ control various characteristic of the response distribution, such
as location, scale and shape.

in a standard regression modelling context, we allow only one of the elements of θ
to depend on x .

in the following, we call such parameter µ = µ(x) and we use θ to refer to the
remaining parameters.
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Parametric regression

µ(x) is typically a location parameter, which controls the conditional mean of the
response, E(y |x).

Gaussian regression : assume that y ∼ N{µ(x), σ2} and parameter µ acts
exclusively on the conditional mean, while the scale is controlled by σ.

Poisson regression : assume that y ∼ Poi{µ(x)}, where E(y |x) = var(y |x),
hence modelling the rate µ(x) results in both the mean and the variance being
dependent on the covariates.
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GAMs
Introduction

In GAM models, µ has a semi-parametric additive structure, that is

g{µ(x)} = zTβ0 +
J∑

j=1

fj (x), (1)

where g is a known monotonic function, z = z(x) is d-dimensional vector whose value
depends on the covariates x and the fj ’s are smooth effects. Hence zTβ0 represents
the parametric part of the model, with unknown regression coefficients β0.
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GAM
Additive model

The fj ’s are built using spline bases expansions, so the j-th effect can be written

fj (x) = bT
j β

j =

Kj∑
k=1

bk
j (x)β

j
k ,

where

bj = {b1
j , . . . , b

Kj
j } are the spline basis functions used to built the j-th effect

βj = {β j
1, . . . , β

j
Kj
} are the corresponding regression coefficients.

The basis functions are known and fixed, while the regression coefficients must be
estimated. The dependence of µ on β is linear, in fact we can write

g{µ(x)} = xTβ,

where x = {z,b1, · · · ,bJ} and β = {β0,β1, . . . ,βJ}
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GAMs
Spline basis expansion

g{µ(x)} = zTβ0 +
J∑

j=1

fj (x), (1)

a GAM is a GLM where the linear predictor depends on smooth functions of
covariates.

the r.h.s. of (1) is generally called the “linear predictor”. While µ depends on both
x and β, here we refer to µ using either µ(x) or µ(β), depending on context.
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GAMs
History of GAM

Grace Wahba [Wah80] introduce penalized regression splines.

Trevor Hastie and Robert Tibshirani invented GAMs [HT86] and GAM were
originally fitted using the backfitting algorithm.

Paul Eilers [EM96] improved the work of Wahba and apply it to GAMs in 1998.

Simon Wood proposed thin plate regression splines [Woo03] and a
global/powerful implementation in the R package mgcv. His book [Woo17] is a
reference on the subject.
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Why do we need spline bases expansions?

Now we focus on a simple univariate problem :

y = f (x) + ε

where f is a smooth function.

A common approach to dealing with nonlinear relationship like that is to consider
polynomial(of a given order) transformation of x in a linear regression model. This
"global" parametric regression model is limited, too restrictive for f to be correctly
estimated, leading to systematic bias.

Thinking more locally, make more qualitative hypothesis on f (like "f is smooth")
without imposing a specific structure on f is the objective on non-parametric
regression.

These methods are more flexible and let the data speak themselves. They can
uncover some structure in the data that would be missed by parametric regression.
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Theoretical justification

For the regression problem :
y = f (x) + ε

we now precise the smoothness of f . We assume that x lies in [a, b] and
f ∈ W m

2 [a, b] the Sobolev space :

W m
2 [a, b] = {f : f , f ′, ..., f (m−1)are absolutely continuous,

∫ b

a
(f (m))2 dx < ∞}

then, for any x ∈ [a, b], the Taylor’s theorem states that :

f (x) =
m−1∑
k=0

f (k)(a)
k!

(x − a)k

︸ ︷︷ ︸
polynomial of order m

+

∫ x

a

(x − u)m−1

(m − 1)!
f (m)(u) du︸ ︷︷ ︸

remainder term : Rem(x)

We see here that the regression model only include the first term, neglecting the
Rem(x) term. The idea of regression spline is to let the data decide how large Rem(x)
should be (see [Wan11]).

Yannig Goude , (EDF R&D) Adaptive) GAMs M2 MDA-StatML 2024 16 / 45



Forecasting at EDF Param. regression Intro. GAM Spline bases Fitting a GAM Implementation of GAM GAM for time series Application References

Penalized splines

Penalized splines aim at minimising the adjustment to the data while having a certain
smoothness (red curve).

Figure – Original splines idea, source : Simon Wood.
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An example : electricity consumption data

For now just assume that splines are piecewise polynomial of a fixed degree (usually 3)
with some constraints at some points called the knots.
An example :
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Figure – French load data.
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Truncated power functions

In the previous example, we used truncated power functions, a very simple spline
basis. Truncated power functions of order d with knots (a, b), for a covariate x are
obtained with the following formulas :

Polynomial part : b1(x) = 1, b2(x) = x ,..., bd (x) = xd

Piecewise polynomial part : bd+1(x) = (x − a)d
+, bd+2(x) = (x − b)d

+
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Figure – Truncated power functions regression.
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B-splines
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Figure – B-splines.

B-spline :

a commonly used spline
basis

local support : high numerical
stability

efficient computation
(recursive algorithm)
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Natural splines
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Figure – Natural splines.

Natural spline :

splines can be erratic at the
boundaries of the data

natural splines are cubic
splines + additional
constraints that they are
linear in the tails of the
boundary knots (f

′′
= 0)
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Cyclic splines
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Figure – Cyclic splines.

Cyclic spline :

penalized cubic regression
splines whose ends match,
up to second derivative

useful to model periodic
effects
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GAM

We consider now the simplified univariate Gaussian model :

yi = f (xi ) + εi

where ε ∼ N (0, σ2), and f is smooth (belong to the previous sobolev space W m
2 [a, b]).

We suppose that we observe a sample of observations (xi , yi )i=1,...,n.

The trade-off between a good fit of the data and the smoothness of f is achieved by
solving the following penalized least square pb :

min
f

1
n

n∑
i=1

(yi − f (xi ))
2

︸ ︷︷ ︸
goodness of fit

+λ

∫ b

a
f (m)(x)2dx︸ ︷︷ ︸

roughness

where λ > 0, the smoothing parameter, controls the trade off between goodness of fit
and roughness.

cubic spline is a special case with m = 2

no penalty for polynomials of order less than or equal to m

for a given λ this problem as a unique minimizer in the space of natural polynomial
spline of order m with knots (x1, ..., xn), see [Wan11].
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GAM

Practically, we choose a spline basis (and associated knots), then the pb reduces, for a
given λ to a ridge regression problem :

∥Y − Xβ∥2 + λβT Sβ

Y vector of observation

X the matrix with splines basis (columns), evaluate on xi (lines)

as f is linear in the parameters, βi ,
∫ b

a f (m)(x)2dx could be written βT Sβ

Thus leading to the following estimator of β :

β̂λ = (X T X + λS)−1X T Y
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GAM
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Figure – the smoothing parameter λ controls the trade off between goodness of fit and roughness.
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GAM

λ is a crucial parameter, our objective is to minimize a generalization error.

To do that we need to find a criteria that could be minimized in order to respect a
bias-variance trade-off :

AIC (Akaike Informattion Criteria) : RSS + 2df/n
BIC (Bayesian Information Criteria) : RSS + log(n)df/n
Mallows’ Cp : RSS + 2σ2df/n

CV (cross validation) : 1
n
∑n

i=1
(yi−f (xi ))

2

(1−Hi,i )
2

GCV (Generalized Cross Validation) : 1
n
∑n

i=1
(yi−f (xi ))

2

(1−tr(H)/n)2

where RSS = 1
n
∑n

i=1(yi − f (xi ))
2 (could be generalized using the deviance, 2

times the log-likelihood ratio of the full model compared to the reduced model) and
H = X(X T X + λS)−1X T .
For all these criteria, the notion of degrees of freedom (effective number of
parameter) is crucial as it allows to penalize complex model relative to simple
ones (Occam’s razor : the model that fits observations sufficiently well in the least
complex way should be prefered).
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Degrees of freedom

Let consider a linear Gaussian model :

Y = Xβ + ε, ε ∼ N (0, σ2I)

Using the least square method : Ŷ = HY and its ie component ŷi =
∑n

j=1 hi,j yj .

The degrees of freedom in regression = the number of parameters in the model, but
can also be expressed as :

p = tr(H) =
∑

i

hi,i =
∑

i

∂ŷi

∂yi

the degrees of freedom are the sum of sensitivities of the fitted values ŷi with
respect to observation yi .
Generalizing to any linear smoothing estimation strategy where
H = X (X T X + λS)−1X T depends on λ.
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Degrees of freedom :

Another way to explain it Intuitively :

estimate of fwithout penalization (λ = 0) : f̂ (0) = X (X T X )−1X T

estimate of f with penalization (λ > 0) :̂f (λ) = X(X T X + λS)−1X T f̂ (0)

entails that
f̂ (λ) = H f̂ (0)

df is thus the dimension of the subspace spanned by H (linear operator of the
penalized regression).
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2 dimensional smoothing

Suppose now that x = (x1, x2) is 2-dimensional, penalised spline regression can be
performed :

min
f

n∑
i=1

(yi − f (x)2 + λpen(f )

where f can be represented using a tensor product basis :

αj,k (x) = aj (x1)bk (x2), j = 1, ..., J, k = 1, ...,K

and, for cubic splines :

pen(f ) =
∫ ∫

∂2f (x)
∂x2

1

2

+ 2(
∂2f (x)
∂x1∂x2

)2 +
∂2f (x)
∂x2

2

2

dx1dx2
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GAM

Now we have the tools to consider a Gaussian GAM :

yi = Xiβ + f1(x1,i ) + f2(x2,i ) + f3(x3,i , x4,i ) + ...+ εi

Xiβ linear part of the model

fj are smooth functions

εi are iid N (0, σ2)

identifiability constraint has to be imposed otherwise each functional effects are
estimable up to an additive constant.
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mgcv basics

In mgcv, GAMs can be built and fitted using the gam function, an example call being

fit <- gam(formula = y ~ x1 + s(x2, k = 15, bs = "cr") + s(x3, x4, k=50),
family = Poisson(link = log), data = SomeData)

first argument : model formula, where we are using a linear effect for covariate x1,
a smooth effect for x2 and a bivariate smooth effect for the interaction(x2, x3) .

arguments bs and k of the smooth effect specifier (default is thin plate), s,
determine the type and number of basis functions used.

last argument determines the response distribution to be used, here a Poisson
distribution where the linear predictor is modelling log µ(x1, x2) = logE(y |x1, x2).
Under such model, one reason for using the log-link, g = log, is to ensure the
positivity of µ(x1, x2).

an alternative to gam is bam for big additive models (multicore optimization of GAM)
[WGS15].
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mgcv basics

The function s has different arguments

fit <- gam( y ~ s(x, k = 15, bs = "cr")

k : dimension of the basis used to represent the smooth term, more preciselly the
maximum number of df
bs indicated the smoothing basis

bs="tp", thin platte regression splines
bs="ds", Duchon splines
bs="cr", cubic regression splines
bs="cc", cyclic cubic regression splines
bs="ps", P-splines (B-spline with a discrete penalty on the basis coefficient)
bs="ad" adaptive smooth (λ depends on x)

fit1 <- gam( y ~ s(x3, x4, k=50))

fit2 <- gam( y ~ te(x3, x4, k=c(5, 10)))

bivariate effects can be entered either with the syntax s (one smoothness
parameter, one df) or te (two smoothness parameters and dfs)
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mgcv basics

Setting the position of knots (by defaut a regular partition of the quantiles) :

knots <- c(20, 40, 50, 70, 80, 90)
g <- gam(y ~ s(x, k = 15, bs = "cr"), knots=list(x=knot), sp=0)
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mgcv basics

The by option :

interaction with qualitative variable, a smooth effect per level is fitted :

g <- gam(y ~ s(x, by=u)+u)

functional GLM model of the form : yi =
∫

vi (t)f (t)dt + εt can be estimated by :

g <- gam(y ~ s(T, by=V))

where T and V are matrices , discretized observations of vi (t) at (t1, ..., tK ) is the
i th row of V. Each row of T is a replicate of the (time) observations vector
(t1, ..., tK ).
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mgcv basics

Model summary

g <- gam(y ~ s(x, k = 10, bs = "cr") + s(z, k=10, bs=’cr’), ...)
summary(g)
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mgcv basics

g <- gam(y ~ s(x, k = 10, bs = "cr") + s(z, k=10, bs=’cr’), ...)
plot(g, residuals=T, rug=T, se=F, pch=20)
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mgcv basics

Forecasting :

global forecast

g <- gam(...)
g.forecast <- predict(g, newdata=data1)

per effect :

g.forecastt <- predict(g, newdata=data1, type=’terms’)
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Auto-correlated data

For time series data the assumption of εi being iid is not satisfied.
Different options are then possible :

weighted least square to fit a GAM with an AR(1) structure of the residuals

lags as covariate : yt = f (yt−1) + εt (use with care if you want to keep things
interpretable)

a two-step procedure : fit a GAM, than an ARIMA (or other time series models)
model on the residuals
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Time varying GAM

In practice, data often evolves with time : distribution shiftt, structural breaks...
Adaptation of the GAM over time is driven by a trade-off reactivity to a
change/complexity of the model.
Re-estimated a full GAM often involves too much df to perform well (necessitate a too
long history of data). To reduce the dimension of the adaptation problem, a strategy is
to freeze the nonlinear effects, and to correct these effects by a multiplicative factor :

we define f (xt ) = (1, f 1(xt,1), ..., f d (xt,d ))
⊤ where f j is a normalized version of fj

obtained by subtracting the mean on the train set and dividing by the standard
deviation.

then we adaptively estimate a vector θt such that

E[yt | xt ] = θ⊤
t f (xt ) .

We can then use different online linear strategies to update θt optimally.
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exp-LS

Exponential weighted Least-Squares (exp-LS) :

we solve at each step a least-squares problem with weight decreasing
exponentially with the time difference :

θ̂t ∈ arg min
θ∈Rd

t−1∑
s=1

e−µ(t−s)
(

ys − θ⊤f (xs)
)2

,

we predict ŷt = θ̂⊤
t f (xt ).

This formalisation leads to a single parameter, the exponential forgetting factor µ.
The forgetting factor µ is determined by minimizing the RMSE on a validation set (e.g.
the last year of the train set) then we keep the same µ for the GAM trained on the
whole train set.
Previous work has been done on estimating this parameter online, but leads to
computational issues and potential instability of the model (see [Ba+12]).
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Kalman Filter

We consider a state-space model approach, the setting of Kalman filtering [KO60]
developped in [Vil22]

yt = θ⊤
t f (xt ) + εt , Observation

θt+1 = θt + ηt , State

where

(εt ) and (ηt ) are gaussian white noises of respective variance / covariance σ2 and
Q.

the recursive formulae of Kalman provides the expectation and covariance of the
state θt given the past observations.

these estimators yield the mean and variance of yt given the past.

unknown parameters to calibrate on the data : σ2 and Q.

rq :
the exp-LS method has a very similar recursive form. Its simplicity stands in a
single scalar parameter eµ as multiplicative factor for the update of Pt , whereas
Kalman Filter needs a matrix parameter Q added in the recursion.

degenerated case Q = 0 corresponds to θt = θt−1 thus an incremental least
square.
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Kalman Filter

If the initial distribution of the state is Gaussian, then the conditional distribution of the
θt given the observations is Gaussian, we can thus focus its conditional mean and
variance :

θ̂t = E [θt | x1, y1, ..., xt−1, yt−1, xt ]

Pt = E
[
(θ − θ̂t )(θ − θ̂t )

⊤ | x1, y1, ..., xt−1, yt−1, xt ]
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Kalman Filter

initialization : the prior θ1 ∼ N (θ̂1,P1) where P1 ∈ Rd×d is positive definite and
θ̂1 ∈ Rd ;

Recursion : at each time step t = 1, 2, . . .
1 Prediction :

E [yt | (xs, ys)s<t , xt ] = θ̂⊤
t f (xt ) ,

Var [yt | (xs, ys)s<t , xt ] = σ2 + f (xt )
⊤Pt f (xt ) .

2 Estimation :

θ̂t+1 = θ̂t +
Pt f (xt )

f (xt )⊤Pt f (xt ) + σ2
(yt − θ̂⊤

t f (xt )) ,

Pt+1 = Pt −
Pt f (xt )f (xt )

⊤Pt

f (xt )⊤Pt f (xt ) + σ2
+ Q .
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GAM for load consumption

GAM is currenttly in use in operation at EDF for load consumption forecasting.
Operational models are of the form :

Loadt =
7∑

i=1

1∑
j=0

αi,j1DayTypet=i1DLSt=j + f1(t) + f2(ToYt )

+
7∑

i=1

βi Load1Dt1DayTypet=i + γLoad1Wt

+ f3(t ,Tempt ) + f4(Temp95t )f5(Temp99t ) + f6(TempMin99t ,TempMax99t ) + εt

where at each day t :
DayTypet is a categorical variable indicating the type of the day of the week,

DLSt is a binary variable indicating whether t is in summer hour or winter hour,

Load1D and Load1W are the load of the day before and the load of the week before,

ToYt is the time of year whose value grows linearly from 0 on the 1st of January 00h00 to 1 on the 31st of
December 23h30,

Tempt is the national average temperature,

Temp95t and Temp99t are exponentially smoothed temperatures of factor α = 0.95 and 0.99. E.g. for
α = 0.95 at a given instant i ,
Temp95i = αTemp95i−1 + (1 − α)Tempi ,

TempMin99t and TempMax99t are the minimal and maximal value of Temp99t at the current day.
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