
1



Data Mining Project
Predicting Groundwater Fluctuations in France

Martin Mugnier, Tong Chen

February 20, 2019

Contents
1 Introduction 3

2 Data description 4
2.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Some descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 The data selection procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Analysis of individual series 9
3.1 Fourier Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 GAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 An attempt at global modelling for ground water fluctuations 14
4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Results from the training and optimization step (daily variations) . . . . . . . . . 15
4.3 Performances on new data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Results for next week normalized level and weekly variations . . . . . . . . . . . 19

5 Expert aggregation 20

6 Discussion of results and conclusion 22

2



1 Introduction
Groundwater is an essential resource for human life and the development of human activities.
Understanding the fluctuations in our reserves and the phenomena at work is therefore essential
to better manage and anticipate the quantities of water available. In this project, we aim to build
a forecasting model for predicting fluctuations of the water level in the main groundwater reserves
in France. Although most of these fluctuations are prone to be explained by specific location
factors and physics conditions that are not always approachable by data, we suspect that some
factors of influence should be common to every well conditional on some variables. For instance,
you may think of meteorological data (such as rainfall, snowfall), geological data (altitude, soil
composition) or even the uses made of each well (industrial, agricultural, animal husbandry,
supply). For instance, conditioning on altitude might reveal common responses and causal effect
of rainfalls on the water levels. Many papers have investigated the problem of predicting water
fluctuations : some using classic tools from physic simulation models (Van Asch and Buma,
1997) and other using similar data than our and drawing from basic statistics (Abiyea et al.,
2018) to very involved models including Artificial Neural Networks (ANNs) (Sujay Raghavendra
and Deka, 2015)(Shamsuddin et al., 2017)(Vetrivel and Elangovan, 2016) or wavelets augmented
models (Zare and Koch, 2018). See Shiri et al. (2013) for a comparison. While most of the
research comes from developing countries and most of articles focus on very precise wells with
many measurements, a few if none (to our knowledge) have tackled the issue globally for France,
where a lot of data is publicly available. The main goal of this study is thus double : i) to ratio-
nalize these possible non-linear interactions within a model which could help to understand which
factors play a role in groundwater fluctuations, ii) to investigate the extent to which machine
learning algorithms can yield good prediction using only public available data. More precisely,
we are interested in the best way to gives predictions about a water level metric (profondeur rel-
ative, in meters) at time t ∈ [T ] = {1, . . . , T} for site i ∈ [N ] = {1, . . . , N} given all information
available. The latter can be relative to that precise well but potentially to every other wells.

There are more than 4,000 water wells spread over the country and for which the Ministry of
Ecological and Solidarity Transition publishes very precise measurements on a daily basis. Our
methodology decomposes in :

i. collecting enough public data that can have a fairly strong predictive power on our explained
variable ;

ii. building the most relevant model in a context of bi-dimensional observations (sites and
time).

These tasks involve several very important intermediate steps, such as on the one hand to
define exactly the most relevant variable to be predicted and on the other hand to address the
issue of aggregating heterogenous time-dependent series in a context of panel data (several wells
are observed on a daily basis). For instance should we consider only several wells individually
leaving aside the huge amount of information brought by all the wells or should we aggregate
information to build a unique general model ? Note that maybe a proper combination of both
kind of models, in the spirit of expert aggregation techniques, could perform well. Throughout
the paper, we will describe all of our choices and results.

The remaining is organized as follows. In Section 2 we describe both the data collection
process and the data itself. Section 3 summarizes the main results of a first analysis on individ-
ual time-series which ignores the (possibly grouped) unobserved heterogeneity in the wells. In
Section 4, we overcome this limitation by proposing some method to aggregate data and formu-
late global predictions. We show that some wells, expert aggregation (Section 5), . Finally, we
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discuss the results and conclude in Section 6. Additional tables and figures can be found in the
Appendix section.

2 Data description
Before moving to the modelling strategy, we give a short description of the data at hand. This
is mainly to give intuition about the further choices to be made.

2.1 Data collection
ADES Data The measurement data for the 3,984 water wells located in France and DOM-
TOM was collected from the official government website ADES - Eaux de France. Since it comes
with a bunch of non relevant information and is not accessible directly in a suitable format
(the webpage is not suited for webscrapping either), we first manually collected all the folders
containing the data for each well, then we implemented an automatic procedure in Python
to unzip the files and retrieve automatically the relevant information. The R code starts by
transforming the raw information dispatched on .txt files into an aggregated global database.

Meteorological Data and Geological Measures This data comes from an online API of
an official U.S. website (power.larc.nasa.gov) that provides for free more than 140 measures of
Earth’s characteristics taken by NASA satellites and updated on a regular basis. They include,
among others, Earth physic conditions measures (such as surface pressure, earth skin tempera-
ture, humidity) as well as classic meteorological data (e.g. rainfalls, wind speed, temperature at
different altitude levels). In order to get the correct figures for each well and each day, we built
a function that take each well’s GPS coordinates × date of measure × parameters desired and
ask the Power Larc API for the data. We suffered from several shutdowns of the API due to the
U.S. shutdown of January 2019 and to technical maintenance but were finally able to recover all
the data needed.

2.2 Some descriptive statistics
For each well, the ADES data includes : daily relative depth (which can be understood as the
water level in meters) along with other water indicators (piezo, cote chronique) , GPS coordi-
nates, and meta-data such as the precise location (city, zip-code, altitude), the nature of use
(industrial, agriculture, preserved, etc.), the data provider, and the maximal investigated depth.
The time period varies from one well to another but is sometimes quite wide since measurements
take place from before 1900 to today. In total we have N = 14, 656, 644 punctual measures. A
few wells have very old first measures (25% of them start before 1984, 10% before 1970, they
start in 1994 on average) and most of the wells (71%) have observations until at least 2017 (the
ending year is 2015 on average). The average observation period is 20 years. See Figure 14 for
more details.

Descriptive statistics and data exploration then show that there are mainly two type of wells :
some look stationary and show regular and continuous cycles while, conversely, a lot of other wells
have many discontinuity points and erratic behavior. These patterns are depicted in Figure 1.
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Figure 1: Different types of wells (profondeur relative)

Exploring all the data-set manually, one can see that many wells have an annual periodicity
such as the first two graphs on the top-left. This is good news for prediction. Conversely, some
of them exhibit more complex behaviors (see the top-right graph) or even do not seem to follow
any particular stationary stochastic process (see graphs of the second line). Figure 1 shows also
that there is a lot of heterogeneity in the depth and variation ranges of the water levels. The
deepest well of our data set reaches a profondeur relative 6048.00 meters. This value seems quite
high a priori with regards to the mean value of 128.53 meters (sd = +/ − 200.01), the 90%
percentile being at 244.16 meters and the the maximum depth explored (another variable) which
set up at 5730 meters. Notice that we do not know exactly the precise meaning of "profondeur
relative" which does not prevent to study its fluctuations. There must be something hidden
in the "relative" part since the deepest water well of the world ever hand-dug is claimed to be
at 392 meters (Woodingdean well). Another reason may come from natural wells, which can
generally be much deeper. The median profondeur relative is at 85.36 meters, which is a much
more plausible value for artificial wells. The well with the highest variations (max-min) has a
range of variation of 6002.48 meters (the well with the deepest profondeur relative recorded) and
the mean is at 12.06 meters (sd = +/− 200.21). Heterogeneity is also present in locations : the
lowest level well lies at 0 meters while the highest is located at 2150 meters above the sea level.
On average the wells studied are located 148.5 meters above the sea level (sd = 167.6) an cover
all the French territory and its DOM-TOM.

A detailed definition of the main explaining variables used and meteorological/geological data
used is given in Table 8.

One of the first ideas was also to take into account the type of use made of each well in
our models by including categorical dummies as explaining variables. Unfortunately, the data
exploration showed us that there was in fact too much missing values as one can see from Figure 2
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that plot the different recorded uses.
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Figure 2: Distribution of uses

2.3 The data selection procedure
A lot of factors may influence what happens and drives fluctuation for each specific well water
and of course we will likely not be able to collect data to capture all of them. Instead, our
aim is rather to investigate whether machine learning and involved forecasting models might be
able to say something about expected fluctuations given past information and a large range of
informational variables that we expect to affect all water wells the same way (e.g. pluviometry,
geographical environment, well depth, usages and past fluctuations). The big advantage of using
machine-learning algorithms in this case is that such algorithms detect non-linear relationships
between features and will be able to cluster similar individuals (showing similar trend in features
and related outputs) to make more accurate prediction. You can think it as a basic CART tree
algorithm which maximizes homogeneity among the leaves.

So after the individual analysis of each well separately, the objective will not be to choose
a single series to make prediction on it but rather to solve the aggregating problem and use all
the data at our disposition to say something about the future given a set of features. In some
sense growing a general model with enough features to discriminates among individual provides
one solution to the problem of aggregation. Another would be to construct the clusters manually.

Aggregating time series data is a very common issues in forecasting and machine learning
literature. Broadly speaking, it arises each time one has two dimension (time and individual at
disposition) : to says something about your population you do not want to take one individual
only and analyze her evolution over time as well as it would be of poor interest to select only
one period of time for several individuals (which one ?). The more efficient seems obviously to
use all the information available to make prediction. Our problem is in that sense close to a
very popular topic in machine learning : default prediction for banking clients. Basically, banks
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have financial data about all their clients (our water wells) on a daily basis. Under the mild
assumption that some variables should be key to explain default and they want to capture these
effects which, given other controls, might affect all individuals.

Now, the trick is to get a sample where the individuals are homogeneous enough conditional
on some characteristics to be considered as issued from the same global model. Particularly, we
also want to deal with "predictable" series that are series for which we have enough information
to make reasonable predictions. We translate this idea by looking at series which look sufficiently
stationary in a temporal analysis sense 1. In a nutshell, we will look at wells that are already
well characterized by temporal cycles and will try to improve the predicting performances by
introducing variable we think to be relevant. Note that starting from the stationary assumption
is not surprising : not much can be said in case the series is not stationary, simply because in
this case we cannot really estimate a unique and stable underlying process.

How to detect stationarity ? Our selection procedure relies on the fitting of ARIMA models
and a Phillips-Perron Unit Root Test for stationarity at the level 5%. Considering the following
autoregressive model with constant and trend :

Yt = πYt−1 + c+ bt+ ut

the PP-test tests (Perron, 1988) the null hypothesis of a unit root (the model is not station-
nary) by using a modified statistics inspired by the Dickey-Fuller statistics but which has been
made robust to serial correlation by using the Newey and West (1987) heteroskedasticity-and
autocorrelation-consistent covariance matrix estimator.

Figure 3 below gives the four wells retained for the region "Bretagne" based on the p-value
rejection threshold of 5%. Such a threshold allows to keep very stationary wells on average even
though a little remain questionable (see top-right graph) but it comes at the cost of making a
huge cut in our data. Indeed, from 4,500 wells we are now left with about 50. This automated
procedure could be further refined but we restrict the study to these wells from now on.

1I.e, issued from a process with constant moment functions (second order) or whose distribution law does not
change by translation of the time period investigated (frist order).
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Figure 3: Four wells selected by the auto-arima procedure & P-P test at 5%

In total, the procedures returns 48 wells for which we are going to make predictions (see
Table 7). We plot on a map (Figure 4) a sub-group of these wells that will be used to asses
the models on the data for years 2018-20192. It is interesting to notice that, although many
wells did not pass our threshold we obtain a quite heterogeneous distribution over the country
with some sub-groups. Indeed, three wells are located at high altitude in the Alps while there
are three clusters located along the Atlantic coast and some wells are in the North and the
center. Unfortunately, we do not have data for the Mediterranean cost and Pyrenees but we
cover Corsica and some of the Dom-Tom (Mayotte Island).

2We could not get new data for some of the selected wells at the end of the project
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Figure 4: Some of the selected testing wells

3 Analysis of individual series
In this section, we introduce several forecasting methods (Fourier method, random forest, GAM)
to predict future data for a certain time series using data for this same series only, then we
compare the efficiency of these different methods.

We choose Marcilly-En-Gault in the region Centre-Val de Loire for our analysis, where the
data varies from 2009 to 2017. We set the first eight years as the training set and the following
three month as the testing set.

3.1 Fourier Method
We first use Fourier method to forecast our data. A very useful method for visualization and
analysis of time series is STL decomposition. STL decomposition is based on Loess regression,
and it decomposes time series to three parts: seasonal, trend and remainder. Let Yt, St, Tt, Rt

denote the original, seasonal, trend and remainder part of our time series in terms of t, then we
have Yt = St + Tt +Rt.

We will use results from the STL decomposition to model our data as well. Below is the plot
of our time series and the STL decomposition.
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Figure 5: Original and decomposition of time series, Marcilly-En-Gault, Centre-Val de Loire

The main idea of Fourier method is to predict the data by parts: for each part, we have a
prediction Ŝt, T̂t, R̂t, and we predict the future data by Ŷt = Ŝt + T̂t + R̂t.

For the trend part, we see graphically that there is a increasing trend in the next three month,
hence we use ARIMA model to predict the tendency, which is denoted by T̂t. For the remainder
part, we do the same thing, and denote the prediction by R̂t.

For the seasonal part, we use Fourier method to fit it, where we set the number of terms N
in the coefficient to 20 for example:

Ŝt = 1
2a0 +

20∑
k=1

(ak cos(ωkt) + bk sin(ωkt))

where ω = 2π/360 since our time series is of period 360 days (1 year). Then with the relation
Ŷt = Ŝt + T̂t + R̂t we are able to recover our data. We can graphically see the fitted plot of the
train data and the plot of forecasting:

Figure 6: Fourier fitting and forecasting of the data

We define the mean absolute error by

Eabs(T ) = 1
T

T∑
i=1
|Yt − Ŷt|

10



where T = 90 in our test data. We get the mean absolute error of Fourier method of water well
Marcilly-En-Gault is 0.08663402. As we can see, the Fourier predictor draws the brief outline of
our test data but there’s still a gap between the real data and the prediction. That’s because we
use ARIMA model to predict the trend part and the remainder part while the remainder part is
difficult to predict accurately with a simple autoarima process.

3.2 Random Forest
The second method we will use is Random forest, and we apply a fast implementation of random
forest ranger function in R to fit the data. We consider the following related factors:

Yt ∼ Ỹt + P̃t + Jt +Mt +At

where Ỹt denotes the time series of last year’s level of underground water, P̃t denotes the time
series of last year’s precipitations, Jt,Mt, At denote date, month and year. We draw the fitting
plot and the forecast plot:

Figure 7: Ranger fitting and forecasting of the data

The mean absolute error of Random Forest method of poin d’eau Marcilly-En-Gault is
0.063399. We choose these factors because we think, a priori, that the level of groundwater
is determined by the time flows and the weather conditions. While we don’t choose the current
precipitation to train our model because we assume that our data is seasonal by year, so that
the last year’s precipitation will be more helpful for us to do the analysis. Therefore, in order to
explore the seasonality of the time series, we choose the last year’s data. The result shows that it
predict better than Fourier, this means that the choice of factors in our model is very successful.

3.3 GAM
Now we try GAM (Generalized Additive Model). The GAM can be formally written as

yi = β0 + f1(xi1) + · · ·+ fp(xip) + εi

where i = 1, · · ·N , yi follow some exponential family distribution, g is a link function (identical,
logarithmic or inverse), y is a response variable, x1, · · · , xp are independent variables, β0 is an
intercept, f1, · · · , fp are unknown smooth functions and ε is an i.i.d. random error.
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The smooth function f is composed by sum of basis functions b and their corresponding
regression coefficients β, which can be formally written as

f(x) =
q∑

i=1
bi(x) + βi

where q is basis dimension. Therefore, the model can be written in a linear way like

g(E(y)) = βX + ε

where X is a model matrix and β is a vector of regression coefficients.
For our forecasting, we emphasize that interactions are a very important part of the regression

model, while with GAMs there are four main possibilities: x1 × x2, f(x1) × x2, f(x1) × f(x2)
and f(x1) ⊗ f(x2). The fourth one is called tensor product interactions, which can be done by
te function in R. There are many possibility of combinations that we could try, in our real data,
we use three possible interactions of Ỹt, P̃t, Mt and At, that we defined earlier in Random Forest
model, to predict the future data:

GAM1: Yt ∼ f(Ỹt) + f(P̃t) + f(Mt)⊗ f(At)

GAM2: Yt ∼ f(Ỹt)× f(P̃t) + f(Mt)⊗ f(At)

GAM3: Yt ∼ f(Ỹt)⊗ f(P̃t) + f(Mt)⊗ f(At)

Since the month and year are obviously not independent, and the same for underground
water level and precipitations because they are both effected by the weather condition, it’s
very necessary to consider the product interaction and the tensor product interaction (terms of
f(x1, x2)). There are many possible combinations of these interactions, in the following picture
we will only show one possibility (GAM3), and later we will use expert aggregation to gather
these model together and train a better one.

We draw the fitting plot and the forecast plot (for GAM3):

Figure 8: GAM fitting and forecasting of the data

The mean absolute error of GAM of poin d’eau Marcilly-En-Gault is 0.1418075. We see that
this model performs not much better than Fourier and Ranger, this means that maybe the choice
of interactions in our GAM model is not very proper.
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3.4 Comparison
Now we can apply several different models on all the 48 places that we have selected and use
cross validation method to calculate the mean absolute error of each method on each place. For
the cross validation procedure, we do as follows: suppose our train data varies from year 1 to
N , we construct N − 1 subset of train data that vary from year N − 1 to N , from year N − 2
to N , and finally from year 1 to N (the whole train data). We train our model on each subset
and apply it on the test data, for each subset of train data we get a mean absolute error, then
we calculate the mean and get the final cross validation mean absolute error.

We predict original level, normalized day level, normalized week level, daily variation and
weekly variation (which will be defined in the next section) based on the models we introduced,
and we choose some remarkable point d’eau to compare the results, as shown in the following
tables.

Table 1: Comparison of models, original level
Fourier Random Forest GAM3

Vizille 0.04784957 0.07746358 0.037255031
Contres 0.11161227 0.57345545 0.04553232
Sainte-Anne 0.017512226 0.073383598 0.008793767
Marcilly-En-Gault 0.21834851 0.37985995 0.067675616

Table 2: Comparison of models, normalized day level
Fourier Random Forest GAM3

Vizille 0.045102854 0.148652907 0.059233046
Contres 0.008920658 0.101272965 0.005897183
Sainte-Anne 0.017512226 0.073383598 0.015904798
Marcilly-En-Gault 0.025868904 0.07704011 0.00629492

Table 3: Comparison of models, normalized week level
Fourier Random Forest GAM3

Vizille 0.045063023 0.12841528 0.086638762
Contres 0.009473171 0.090776812 0.012852736
Sainte-Anne 0.01616033 0.214064289 0.05677534
Marcilly-En-Gault 0.028282732 0.080346376 0.018294002

Table 4: Comparison of models, daily variation
Random Forest GAM3

Vizille 0.017440761 0.012411115
Contres 0.042157904 0.044760385
Sainte-Anne 0.43201123 0.081746667
Marcilly-En-Gault 0.270276004 0.072867327
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Table 5: Comparison of models, weekly variation
Random Forest GAM3

Vizille 0.023769802 0.025419212
Contres 0.10186368 0.142490881
Sainte-Anne 0.139291564 0.567256951
Marcilly-En-Gault 0.180104143 0.151749724

We can see from these table that the performance of the three models really depend on the
time series we choose. For some series, for example, the daily variation in Sainte-Anne, maybe
the seasonality is not obvious and hence the Fourier method performs very bad while the GAM
model performs relatively well. But for those who are quite regular and easy to capture its
seasonality, Fourier will be a good model of prediction.

Therefore, building one model for each series can be appealing at a first sight because .
However it is costly (how to manually study each series in order to catch the discontinuity points
and train and evaluate the best suited model). Moreover, as we stated in introduction, it would
wasteful to not look at interactions between wells and the huge amount of information brought
by past behavior of different wells. The second part of our study, Section 4, deals with this
aspect and tries to suggest a global model building on the behavior of all wells at hand.

4 An attempt at global modelling for ground water fluc-
tuations

In this section, we investigate the performance of models that use past information of each wells
behaviors to make prediction for a given well.

Yit is relative depth of well i at time t, for all (i, t) ∈ [N ]× [T ] measured in meters. We look
at :

• Daily variations : Yi,t+1−Yi,t

Yi,t

• One week overall variation : Yi,t+7−Yi,t

Yi,t

• Next week normalized level : Yi,t+7−mint∈T Yit

maxt∈T Yit−mint∈T Yit
.

4.1 Methodology
Data and models We consider the stationary data that passed Phillips-Perron test of sta-
tionarity, so that N = 48. The time period is carefully chosen so that we have both recent and
large data (there is a trade-off as shown in Section 2). We choose to consider daily data from
years 2009 to 2017 which makes a total of T = 3287 days. We use the wide range of variables
described earlier in Table 8 that we combine to make different model specifications (see Table 9).
These variables are mostly built from meteorological data and past realizations and aim at an-
ticipating variations of the water level by looking both at climate and geological conditions and
deviations form past trends. Note that, in this section, we do not make use models that need the
breaking points to be known such as GAM models or splines but rather concentrate on classical
machine learning methods that learn patterns in an automated way alternatively for each well
(GradientBoosting, CART, Random Forest).
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Evaluation We consider different classes of models suited to this prevision problem and per-
form model selection by retaining the model with the lowest cross-validated error metric. Given
the fact that we work with differentiated data and for better interpretation we consider the
MAD3 metric but also the RMSE (the metric used in the optimization process of most of the
algorithms used hereafter) in order to compare the models :

MAD = 1
N

N∑
i=1
|yi − ŷi| , RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2

The cross-validation procedure is the following : for i in [1, . . . , N ], train the model on individuals
N−{i} for data such that x−2 < year < x and test it on the individual i for year = x. For each
individual, repeat the inner-loop for x in [2012, 2013, 2014, 2015, 2016, 2017]. For each model, we
report the cross-validation error and if necessary, the hyper-parameters that have been used and
optimized on a separate CV loop using Gridsearch techniques.

4.2 Results from the training and optimization step (daily variations)
To evaluate our models and covariate predicting power we proceed as follow : the linear model
serves as a baseline as such as models where only past realization is included (specification 1.).
We compare then the results obtained in term of RMSE once other covariates are added to the
models (spec. 2., 22., 3. and 33.) and/or more involved models are used.

Day variation. Table 6 presents the results. Mean variation from one day to the other
are really low on average but quite volatile (µ̂ = −0.011 and σ̂ = 8.99) and very less correlated
(ρ̂ = 0.03) so that the different error scores obtained in specification (1.) which seem already high
at a first sight are explained by these arguments. A further look at the minimum and maximum
values of the error rate reveals however that some series are getting very high error rates and
are prone to bias the result. We can deduce that some series are highly predictable while others
(which are the ones with the highest number of peaks) exhibit high deviations from the model
prediction. Another interesting pattern is that the inclusion of meteorological variables does not
seem to improve the CV MAD score (spe. 2. & 3.). Conversely, these variables explain well
the variations given that when we do not include past realized values (spe. 22., 33.), the error
score does not skyrocket. Again, this is due to low serial correlation in the variation rate of the
profondeur relative and mean that meteorological data does at least as best than predicting from
the past realization. This gives insights on the fact that our variables must have a predicting
power but that the linear model is probably not suited to the problem or that all this measure-
ments result in noise for this particular prediction task (see spe. 3). Daily variation is a very
local phenomenon. We expect these variable to play more role at predicting week variation or
week normalized levels.

A CART algorithm is not very satisfactory on this dataset because it yields always to a depth
of 1 when cross-validating which is of poor interest to model a complex phenomenon. Boosting
techniques, such as GBM (Adaboost), yield better results than the standard linear regression
model but which are not very sensitive to the addition of our meteorological data.

An interesting result lies in the prediction from a Random Forest algorithm. It is clear from
the minimum error rates that, unlike the linear regression which remains an unflexible parametric
form (Yit = α+ β′Xit + εit), the random forest made of 600 different trees with spe. 2 has been

3"Mean Absolute Deviation", more suited to deal with decimal values.
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Table 6: Daily variations - main models’ results
The predicted variable unit is raw variation as defined earlier (Y = 0.02 means +2%). A Mean Absolute Deviation
(MAD) of 1 means that on average if the model predicts no variation, the latent variable can be multiplied by a factor
2. So such a result is a pretty bad result. The figures reported are the cross-validation error of the models with given
optimized parameters trained and tested alternatively on the N − 1 wells and periods between (2012-2017). The column
TEST indicates the mean error across wells of the final model trained on all the data set and tested on the period
(2018-2019). It is mechanically lower since it involved slightly less wells (36) and periods (about 1 year of data).

MAD RMSE TEST
Model Spec. Mean Min. Max. Mean Min. Max.
Linear model 1. 0.371 0.036 5.74 1.55 0.198 40.36 0.182

2. 0.401 0.090 5.74 1.57 0.239 40.36 0.231
22. 0.390 0.077 5.73 1.48 0.103 40.36 0.229
3. 0.408 0.100 5.74 1.58 0.247 40.36 0.250
33. 0.398 0.087 5.73 1.49 0.116 40.36 0.249

CART (depth=1) 1. 0.369 0.029 5.74 . 0.198 40.36 0.18
CART (depth=1) 2. 0.369 0.029 5.74 . 0.198 40.36 0.18
CART (depth=1) 22. 0.369 0.029 5.74 . 0.198 40.36 0.18
CART (depth=1) 3. 0.369 0.029 5.74 . 0.198 40.36 0.18
CART (depth=1) 33. 0.369 0.029 5.74 . 0.198 40.36 0.18

GBM (sk=0.0001, ntree=50) 1. 0.356 0.014 5.73 . . . 0.176
GBM (sk=0.0001, ntree=400) 2. 0.356 0.014 5.73 . . . 0.176

Random Forest (ntrees = 500) 1. 0.385 0.004 5.69 1.61 0.005 40.26 0.26
(ntrees = 600) 2. 0.345 0.019 5.67 1.45 0.033 40.28 0.23
(ntrees = 500) 22. 0.377 0.026 5.74 1.52 0.052 40.41 0.25
(ntrees = 600) 3. 0.367 0.019 5.56 1.50 0.050 40.28 0.40
(ntrees = 600) 33. 0.429 0.029 5.75 1.58 0.081 40.41 0.51
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able to detect strong correlation and partition the feature space much more efficiently, at least
for some series, and reaches the best cross-validated error rate on our train data set.

In a specification where we do not use the current values, minimum prediction errors are only
of . This result suggest that this algorithm should be retained for the final prediction, but not
using it for each well.

All the more interesting is the predictive power of our covariates and the fact that there
are typically non-linearities at stake. Our expectation that the past rain falls and altitude
should explain part of the groundwater evolution is indeed supported by clear evidences from
the importance plot of our Random Forest model 2. We clearly see from Figure 9 that both the
maximum level and the cumulative sum of precipitations over the last 7 days and the altitude are
the main contributor to the decrease in the MSE. Surprisingly, the lag variable comes behind.
This may be due by a lot of volatility in the variation across wells and different pattern, while,
as expected, rain falls and altitude should affect wells in the same way.

winter

autumn

y2010

Altitude

y2017

summer

y2015

y2016

DAY_variation_lag

y2011

prectot_CUMSUM7

prectot_MAX7

−4 −2 0 2 4

RF 2  : Variables importance

%IncMSE

Figure 9: Variable importance for RF 2

This result is also supported by our linear regression (see Table 10 in Appendix) which shows
that summer and Earth surface temperature have significant deterrent effects on groundwater
levels : being on summer decreases on average by 11,4 percentage points the variation level while
one supplementary degree in the Earth surface temperature decreases on average the variation
by 6,2 percentage points. Meteorological variables such as maximum precipitation over the past
seven day (resp. Wind speed) also play a role, the latter having a positive (resp.negative) signif-
icant effect on the predicted variable.

In addition, the column "TEST" of Figure 6 shows the mean MAD for the prediction on the
2018-2019 data. It is interesting to see that with this test data, the GBM with spe. 1 beats all
other models so that one should compete this model with the RF2.
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4.3 Performances on new data
A deepest exploration of prediction results for our testing data shows the following results for the
easier, harder and median series (taken as the min, max and closer to the mean of the average
performances across predictors) in Figure 10 :
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Figure 10: "Easy", "Intermediate" and "Hard" series

There are three main take away from these graphs :

• Looking at figure 10, one can see that even for the "easier" series to predict, very small
deviations are very hard to predict from our data and that the good performances (lowest
average MAD error across all predictors) are in fact due to very weak variations of the series
in general (see the scale of the y−axis). Nevertheless, some predictors do better than others
: while our linear models are not able to capture any relevant pattern, one of our Random
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Forest, RF2, fits rather accurately the fluctuations of the series. RF1 corresponds to a
forest where only the lag realization is included. We can see from the graph that including
some of our other covariates such as in RF2 tampers the wrong predicted peaks of RF1
and lead to a better model. This result could be expected from the performances obtained
in the training and evaluating step.

• For what we call a "hard" series (bottom), we observe a similar symmetric pattern that
is, some models perform well at predicting deviations that are sometimes significantly far
from zeros but high errors are here due to huge unexpected variations. We think that these
variations could be punctual decisions or new events that our model is not able to detect
from meteorological data or past behavior the series (exceptional events that are orthogonal
to our predictors). Interestingly, the naive RF1 models is once again very volatile so that
one should prefer RF2 or RF3 (the main difference between the two being their ability to
fit peaks and their predictions magnitude).

• Finally, the median case (top-right) is maybe the more interesting plot to look at. Here,
the deviations from zero are of moderated size as expected and we see that, in line with
our regression results, a simple linear model (AR) augmented with our climate variables
already achieve to capture some variability of the series. LM3 is not included because
it yields to spurious predictions which may be due to the curse of dimensionnality and
omitted variables bias. It is worth to notice that again, one should prefer a parsimonious
model since RF3 and RF1 are much less precise than RF2.

These results are thus in line with the ones obtained in the training and evaluating step of
previous Section 4.2. Particularly, they tell us that when looking at a global model for many se-
ries, including only individual-specific variables such as lag and trends is not sufficient to capture
non-linearities and peculiarities for each series. At the opposite, when the number of individual
is limited (recall that we switch from 4000 to 48), including too much variables can lead to
overfitting and erratic predictions. The model which lead to best predictions is the parsimonious
one that include both specific variables and common variables (such as rain, meteorological data,
altitude etc.).

4.4 Results for next week normalized level and weekly variations
We try in this section to give some results for other variables to predict (next week normalized
level and weekly variation). Due to time shortage, we do not provide an extended analysis such
as for daily variation. Nevertheless we have the following results :

1) It is much harder to make prediction at a week interval of time for level variation. The
best aggregated linear model for the easiest series obtains a CV MAD score of 0.5 : on
average, we miss the variation by 50 percentages point which is much bigger than what we
previously obtained for daily variations. High errors are likely to be due to fast unantici-
pated variations and so the length of these variation is mechanically higher than from one
day to another.

2) Past realization of the predicted variable explain well future evolution in case of normalized
levels to be predicted. In fact, conversely to evolution rates, water levels are strongly
correlated over time.

3) The best model for next week water level seems to include
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Some cross-validated errors for these targets on which are based these results are available in
the following tables : Tables 11 and Table 12 (in Appendix). They are to be further completed
but already show basically that those prediction tasks are significantly "harder" to deal with.

5 Expert aggregation
Now we do a naive try on expert aggregation, the main idea is due to Pierre Gaillard and the
R package opera. Remember in section 3 that we have already trained one random forest model
and three GAM, now we will gather the four models together and do expert aggregation. First
let’s look at the oracle of these models:

Figure 11: Loss of the models

Then we initialize the algorithm by defining the type of algorithm (Ridge regression, expo-
nentially weighted average forecaster, etc.), the possible parameters, and the evaluation criterion.
Here we define the ML-Poly algorithm, which is evaluated by square loss. Now we perform on-
line predictions using the predict method. At each time, step the aggregation rule form a new
prediction and update the procedure. Here is the result:
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Figure 12: Online aggregation

And we plot the prediction after online aggregation:

Figure 13: Expert prediction

The mean absolute error of expert prediction is 0.06365038, we see that it performs relatively
well as we expected.
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6 Discussion of results and conclusion
The goal of this project was to answer the following questions : Can we predict groundwater
fluctuations using only public available data ? If yes, which modelling choices are performing
better ? Does including information from other wells behaviors matter when predicting for a
given well ? After having dealt with the aggregation problem we wanted to answer the following
questions : for which series do the aggregate predictor is better than the individual ones ? For
which series are they similar ? Finally we wondered whether drawing from convex combination
of our predictors, both at the individual and aggregate level would lead to better prediction such
as it could be the case by naively compute mean of predictions or use more involved methods
such as EWA aggregation of expert.

Finally, our report suggests the following key results :

• Best models for individual predictions on some series are : Fourier method (for those who
have a good seasonality) and Random Forest (for some general series), anyway, for each
time series we can apply expert aggregation and do a better prediction.

• Rain falls, altitude, Earth surface temperature, Wind and lag variables are the best pre-
dicting features at the aggregated level.

• Parsimonious specifications should be preferred including mostly lag indicators of rainfalls
and Temperature of the Earth Surface (as revealed by our linear regression).

• The global models achieving the best cross-validated and testing performances are ensemble
and Boosted methods such as GBM and Random Forest.

• Predicting week normalized level of groundwater is more difficult than forecasting overnight
variation within a global model.
Further research should finish the covering of other measures of fluctuations and look for
more predicting variables in order to improve models accuracy and the global understanding
of groundwater fluctuations.
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Appendix

Table 7: Distribution of selected water wells across region
Region Cnt.
Nouvelle Aquitaine 20
Normandie 2
Auvergne 5
Bretagne 4
Centre Val de Loire 4
PACA 3
Occitanie 3
Mayotte 1
Pays de la Loire 1
Martinique 1
La Reunion 1
Ile de France 1
Haut de France 1
Guyanne 1
Guadeloupe 1
Grand-Est 1
Bourgogne Franche-Comte 0
Corse 1
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Figure 14: Dates distribution
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Table 8: Main covariates
Type Variable Label Unit
Trend

Summer, autumn, winter Dummies for seasons 0/1
yx, mx Dummies for years and months 0/1
t Time
Y_lag Lag predicted variable raw var/norm. lvl

Altitude Well’s altitude m

Meteo
PRECTOT Precipitations mm
PS Surface Pressure kPa
QV2M Specific Humidity at 2 Meters kg
RH2M Relative Humidity at 2 Meters %
T10M_MAX Maximum Temperature at 10 Meters C◦
T10M_MIN Minimum Temperature at 10 Meters C◦
T2M_MAX Maximum Temperature at 2 Meters C◦
T2M_MIN Minimum Temperature at 2 Meters C◦
TS_MAX Maximum Earth Skin Temperatur C◦
TS_MIN Minimum Earth Skin Temperature C◦
WS2M_MAX Maximum Wind Speed at 2 Meters m/s
WS2M_MIN Minimum Wind Speed at 2 Meters m/s
WS50M Wind Speed at 50 Meters m/s

Combinations
x_CUMSUM7 Cumulative sum over last 7 days
x_CUMSUM31 Cumulative sum over the last 31 days
x_MEAN7 Mean over the last 7 days
x_MEAN31 Mean over the last 31 days
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Table 9: Model specifications
Specification Variables included in the model
1. DAY_variation_lag

2. DAY_variation_lag + summer + autumn + winter + y2010 + y2011 + y2015 + y2016
+ y2017 + PRECTOT_CUMSUM7 + PRECTOT_MAX7 + Altitude

22. summer + autumn + winter + y2010 + y2011 + y2015 + y2016 + y2017
+ PRECTOT_CUMSUM7 + prectot_MAX7 + Altitude

3. DAY_variation_lag + summer + autumn + winter + y2010 + y2011 + y2015 + y2016
+ y2017 + PRECTOT_CUMSUM7 + PRECTOT_MAX7 + PRECTOT_CUMSUM31
QV2M_MEAN7 + T2M_MAX_MEAN7 + RH2M_MEAN7 + T2M_MIN_MEAN7
+ WS2M_MIN_MEAN7 + T10M_MAX_MEAN7 + TS_MAX_MEAN7
+ WS50M_MEAN7 + PS_MEAN7 + PS_MEAN31 + T10M_MIN_MEAN7
+ TS_MIN_MEAN7

33. summer + autumn + winter + y2010 + y2011 + y2015 + y2016
+ y2017 + PRECTOT_CUMSUM7 + PRECTOT_MAX7 + PRECTOT_CUMSUM31
QV2M_MEAN7 + T2M_MAX_MEAN7 + RH2M_MEAN7 + T2M_MIN_MEAN7
+ WS2M_MIN_MEAN7 + T10M_MAX_MEAN7 + TS_MAX_MEAN7
+ WS50M_MEAN7 + PS_MEAN7 + PS_MEAN31 + T10M_MIN_MEAN7
+ TS_MIN_MEAN7

4. WEEK_level_lag

44. WEEK_level_lag + normalized_Y_mean7days + normalized_Y_mean2days
dev_Y_lastyear + summer + autumn + winter + PRECTOT_CUMSUM7
PRECTOT_CUMSUM31 + PRECTOT_MAX7 + Altitude

5. normalized_Y_mean7days + normalized_Y_mean2days + dev_Y_lastyear
+ summer + autumn + winter + prectot_CUMSUM7+ PRECTOT_CUMSUM31 +
PRECTOT_MAX7 + Altitude)

6. WEEK_level_lag + normalized_Y_mean7days + normalized_Y_mean2days +
normalized_Y_last_year + dev_Y_lastyear + summer + autumn + winter +
Altitude + PRECTOT_CUMSUM7 + PRECTOT_CUMSUM31 + PRECTOT_MAX7 + Altitude
+ y2010 + y2011 + y2015 + y2016 + y2017 + PS_MEAN7 + PS_MEAN31 + QV2M_MEAN7
+ RH2M_MEAN7 + T10M_MAX_MEAN7 + T10M_MIN_MEAN7 + T2M_MAX_MEAN7
+ T2M_MIN_MEAN7 + TS_MAX_MEAN7 + TS_MIN_MEAN7 + WS50M_MEAN7 +
WS2M_MIN_MEAN7

66. WEEK_level_lag + normalized_Y_mean7days + normalized_Y_mean2days +
normalized_Y_last_year + dev_Y_lastyear + summer + autumn + winter + Altitude
+ PRECTOT_CUMSUM7 + PRECTOT_CUMSUM31 + PRECTOT_MAX7 + Altitude + y2010
+ y2011 + y2015 + y2016 + y2017 + PS_MEAN7 + PS_MEAN31 + QV2M_MEAN7 +
RH2M_MEAN7 + T10M_MAX_MEAN7 + T10M_MIN_MEAN7 + T2M_MAX_MEAN7 +
T2M_MIN_MEAN7 + TS_MAX_MEAN7 + TS_MIN_MEAN7 + WS50M_MEAN7 +
WS2M_MIN_MEAN7

7. WEEK_level_lag

8. WEEK_level_lag + normalized_Y_mean7days + normalized_Y_mean2days
dev_Y_lastyear + summer + autumn + winter + PRECTOT_CUMSUM7
PRECTOT_CUMSUM31 + PRECTOT_MAX7 + Altitude

88. normalized_Y_mean7days + normalized_Y_mean2days + dev_Y_lastyear
+ summer + autumn + winter + prectot_CUMSUM7+ PRECTOT_CUMSUM31 +
PRECTOT_MAX7 + Altitude)

9. WEEK_level_lag + normalized_Y_mean7days + normalized_Y_mean2days +
normalized_Y_last_year + dev_Y_lastyear + summer + autumn + winter +
Altitude + PRECTOT_CUMSUM7 + PRECTOT_CUMSUM31 + PRECTOT_MAX7 + Altitude
+ y2010 + y2011 + y2015 + y2016 + y2017 + PSM EAN7 + P S_MEAN31 +
QV2M_MEAN7 + RH2M_MEAN7 + T10M_MAX_MEAN7 + T10M_MIN_MEAN7 +
T2M_MAX_MEAN7 + T2M_MIN_MEAN7 + TS_MAX_MEAN7 + TS_MIN_MEAN7 +
WS50M_MEAN7 + WS2M_MIN_MEAN7

99. WEEK_level_lag + normalized_Y_mean7days + normalized_Y_mean2days
+ normalized_Y_last_year + dev_Y_lastyear + summer + autumn + winter +
Altitude + PRECTOT_CUMSUM7 + PRECTOT_CUMSUM31 + PRECTOT_MAX7 + Altitude +
y2010 + y2011 + y2015 + y2016 + y2017 + PSM EAN7 + P S_MEAN31
+ QV2M_MEAN7 + RH2M_MEAN7 + T10M_MAX_MEAN7 + T10M_MIN_MEAN7 +
T2M_MAX_MEAN7 + T2M_MIN_MEAN7 + TS_MAX_MEAN7 + TS_MIN_MEAN7 +
WS50M_MEAN7 + WS2M_MIN_MEAN7

The double digit specifications indicate that the lagged predicted variable is not included to the model.

27



Table 10: Results from linear regressions (Daily variation)
Dependent variable:
DAY_variation

(1) (2) (3) (4) (5)

DAY_variation_lag 0.033∗∗∗ 0.032∗∗∗ 0.032∗∗∗
(0.003) (0.003) (0.003)

summer -0.114∗ -0.118∗ -0.091 -0.094
(0.066) (0.066) (0.084) (0.084)

autumn 0.043 0.044 0.022 0.023
(0.067) (0.067) (0.072) (0.072)

winter 0.036 0.037 -0.046 -0.047
(0.067) (0.067) (0.079) (0.079)

y2010 -0.011 -0.011 -0.001 -0.001
(0.079) (0.079) (0.080) (0.080)

y2011 -0.024 -0.025 -0.009 -0.009
(0.079) (0.079) (0.080) (0.080)

y2015 -0.010 -0.011 -0.005 -0.005
(0.079) (0.079) (0.079) (0.079)

y2016 -0.011 -0.011 -0.006 -0.006
(0.079) (0.079) (0.079) (0.079)

y2017 -0.205∗∗∗ -0.212∗∗∗ -0.226∗∗∗ -0.233∗∗∗
(0.079) (0.079) (0.086) (0.086)

prectot_CUMSUM7 0.0001 0.0001 0.0003 0.0003
(0.0005) (0.0005) (0.001) (0.001)

prectot_MAX7 0.009∗∗∗ 0.010∗∗∗ 0.005 0.005
(0.003) (0.003) (0.004) (0.004)

Altitude -0.00000 -0.00000
(0.0001) (0.0001)

PRECTOT_CUMSUM31 -0.0003 -0.0003
(0.0003) (0.0003)

QV2M_MEAN7 -0.490 -0.658
(40.579) (40.600)

T2M_MAX_MEAN7 0.032 0.034
(0.044) (0.044)

RH2M_MEAN7 -0.005 -0.005
(0.007) (0.007)

T2M_MIN_MEAN7 0.050 0.051
(0.166) (0.167)

WS2M_MIN_MEAN7 -0.108 -0.110
(0.067) (0.067)

T10M_MAX_MEAN7 -0.0002 -0.0002
(0.0003) (0.0003)

TS_MAX_MEAN7 -0.062∗ -0.064∗
(0.035) (0.035)

WS50M_MEAN7 0.059∗ 0.060∗
(0.034) (0.034)

PS_MEAN7 -0.004 -0.004
(0.059) (0.059)

PS_MEAN31 -0.005 -0.006
(0.060) (0.060)

T10M_MIN_MEAN7 -0.011 -0.011
(0.124) (0.124)

TS_MIN_MEAN7 -0.005 -0.005
(0.051) (0.051)

Constant -0.011 -0.050 -0.051 1.501 1.544
(0.023) (0.061) (0.061) (0.962) (0.962)

Observations 147,717 146,367 146,367 146,367 146,367
R2 0.001 0.001 0.0002 0.001 0.0003
Adjusted R2 0.001 0.001 0.0001 0.001 0.0001
Residual Std. Error 8.989 (df = 147715) 9.023 (df = 146354) 9.028 (df = 146355) 9.023 (df = 146342) 9.028 (df = 146343)
F Statistic 156.885∗∗∗ (df = 1; 147715) 14.527∗∗∗ (df = 12; 146354) 2.366∗∗∗ (df = 11; 146355) 7.834∗∗∗ (df = 24; 146342) 1.762∗∗ (df = 23; 146343)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 11: Week variations - main models’ results
The predicted variable unit is raw variation as defined earlier (Y = 0.02 means +2%). A Mean Absolute Deviation
(MAD) of 1 means that on average if the model predicts no variation, the latent variable can be multiplied by a factor
2. So such a result is a pretty bad result. The figures reported are the cross-validation error of the models with given
optimized parameters trained and tested alternatively on the N − 1 wells and periods between (2012-2017). The column
TEST indicates the mean error accross wells of the final model trained on all the data set and tested on the period
(2018-2019). It is mechanically lower since it involved slightly less wells (36) and periods (about 1 year of data).

MAD RMSE TEST
Model Spec. Mean Min. Max. Mean Min. Max.
Linear model 7. 3.81 0.757 26.69 19.51 3.16 174.8 .

8. 3.91 0.922 26.71 19.52 3.18 174.8 .
88. 3.55 0.54 26.53 17.89 0.72 173.4 .
9. 3.93 0.95 26.71 19.53 3.20 174.8 .
99. 3.91 0.93 26.70 19.52 3.18 174.8 .

GBM (sk=0.0001, ntree=50) 7. 3.29 0.10 26.49 17.61 0.13 173.3 .
GBM (sk=0.0001, ntree=50) 8. 3.29 0.10 26.49 17.61 0.13 173.3 .

Random Forest (ntrees = 500) 7. . . . . . . .
(ntrees = 600) 8. . . . . . . .
(ntrees = 500) 88. . . . . . . .
(ntrees = 600) 9. . . . . . . .
(ntrees = 600) 99. . . . . . . .

Table 12: Next week normalized - main models’ results
The predicted variable unit is week normalized level as defined earlier (Y = 0.5 means that the level is at the center
of the segment (min, max)). A Mean Absolute Deviation (MAD) of 1 means that on average if the model predicts no
variation, the latent variable can reach its maximum value. So such a result is a pretty bad result. The figures reported
are the cross-validation error of the models with given optimized parameters trained and tested alternatively on the
N −1 wells and periods between (2012-2017). The column TEST indicates the mean error across wells of the final model
trained on all the data set and tested on the period (2018-2019). It is mechanically lower since it involved slightly less
wells (36) and periods (about 1 year of data).

MAD RMSE TEST
Model Spec. Mean Min. Max. Mean Min. Max.
Linear model 4. 0.30 0.23 0.44 0.36 0.29 0.51 .

5. 0.29 0.23 0.44 0.35 0.28 0.50 .
55. 0.30 0.23 0.44 0.36 0.29 0.51 .
6. 0.30 0.23 0.44 0.36 0.29 0.51 .
66. 0.29 0.23 0.44 0.35 0.28 0.50 .

GBM (sk=0.0001, ntree=50) 4. . . . . . . .
GBM (sk=0.0001, ntree=50) 5. . . . . . . .

Random Forest (ntrees = 500) 4. . . . . . . .
(ntrees = 600) 5. . . . . . . .
(ntrees = 500) 55. . . . . . . .
(ntrees = 600) 6. . . . . . . .
(ntrees = 600) 66. . . . . . . .
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