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Abstract

Machine learning has shown to be powerful in classification and regression problems.

One of the applications of machine learning is to predict outcomes of sports events

with historical data. This report aims to build mathematical models with machine

learning algorithms to predict different football match outcomes suck as the match

result and the number of goals by each team. In this report we have used the conven-

tional classification algorithms to predict the result of the matches and we evaluate

their performances using the bookmakers data of football betting market. Using these

models, we can make comparison between official odds and our calculated probabili-

ties of each outcome, and we have analysed the possibility of gaining a positive profit

from the market. Furthermore, we also used other algorithms such as artificial neural

networks and random forests in this context. For predicting the exact scoreline, we

have used Poisson regression methods, which could model the number goals scored

by each team. We have tested the performance of the different methods by calculat-

ing their accuracy and then we find the best method among our selection.

Keywords: machine learning, bivariate Poisson regression, classification
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1 Introduction

Several studies have been applied to the betting markets in order to scienti�cally

investigate the prices (odds) and also to �nd a con�dent way to invest the money (bet-

ting strategies). Considering the weak, semi-strong, and strong forms of ef�ciency of

the markets (Fama (1970)), one can see that due to a competitive nature of the book-

makers market, they will satisfy on the weak form ef�ciency criteria. After neutralizing

the bookmakers commissions from the odd prices, we can derive the probabilities of

the outcomes predicted by the bookmakers. Agreeing to the weak form ef�ciency,

Gross and Rebeggiani (2018) have recently performed the statistical tests in their

review to measure the ef�ciency of football betting markets.

The ef�ciency of sports betting markets have been a popular subject for the re-

searchers to work on. Before the emission of the online bookmakers, they used to

have a so called �xed-odd betting option, which starts and ends at certain times with

a �xed odd. This is the more traditional way of betting despite online markets who

change their odds during the process. Vlastakis, Dotsis and Markellos (2009) believe

the odds of �xed-odd betting markets contain less information and more risk compar-

ing the odds of online markets right before the match starts. They mention despite

�nding most of the online bookmakers ef�cient, there are still some evidences of in-

ef�ciency in the market, for example arbitrage opportunities mostly in the �xed odds.

This fact is con�rmed also by Angelini and De Angelis (2019) and later by Elaad,

Reade and Singleton (2020). They also mention that the ef�ciency of betting markets

has been improved signi�cantly in the recent years.

On the other hand, there are evidences supporting the existence of many inef�-

ciencies and biases. For example, Cain, Law and Peel (2000) and Dixon and Pope

(2004) discussed about the existence of favorite-longshot bias in football betting mar-

kets. This type of bias �rst introduced in horse riding betting market, and con�rmed

by Dowie (1976), Ali (1977), Quandt (1986) and Shin (1993). It states that the punters

tend to over-invest on the longshot odds, which means investing on favorite options

should have more pro�t. Vlastakis, Dotsis and Markellos (2009) and Angelini and

De Angelis (2019) claim to �nd a pro�table strategy using favorite-longshot bias and

also away-favorite bias.

Other than these works around testing of the weak (and semi-strong) ef�ciency of

the betting markets by analyzing some empirical frequently reported biases, we will

focus on the Machine Learning (ML) based approaches to measure the ef�ciency.

In this paper, we de�ne formal notations and indicators for ef�ciency in football bet-
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ting markets, and we will analyse the strengths of bookmakers probability estimation

by comparing their performances (measures) with each other and also with ML pre-

dictions. The ef�ciency in betting markets is related to having a good accuracy in

predicting the probabilities of the outcomes, we have multiple choices to measure ef-

�ciency, such as cross-entropy loss, and Brier score (Brier (1950)). There are more

details about this subject in section 4.

In our analysis we have used a large data of football matches and odds to reduce

the effect of variance as much as possible. We have applied the fundamental ML

algorithms on this data, to �t a model to estimate the probability of outcomes. For

each football match we create a set of features gathered from the last 5 games of

both teams to use it for training of our models. We use these features to predict the

probabilities of different match outcomes, such as the result (home, draw, away) or

number of goals of each team. The resources of the data is presented in section 3

and the details of our training processes have been provided more precisely in section

4, 5, and 6.
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2 Related Works

Using conventional scoring measures for empirically evaluating the quality of pre-

dicted probabilities, is a popular way to compare the ef�ciencies of different book-

makers. For instance, Štrumbelj and Šikonja (2010) uses the mean quadratic error

to compare the ef�ciency of the most popular bookmakers. And, Graham and Stott

(2008) and Forrest, Goddard and Simmons (2005) used both mean quadratic error

and maximum likelihood to evaluate their forecasting models.

Among the most common measures of probability predictions, there are two gen-

eral types used in literature. One type called sensitive to distance which are kind of

measure that depend on all predicted probabilities, therefore even the wrong predic-

tions that are close to the actual outcome should be rewarded more that the distant

predictions (e.g. Ranked Probability Score). The other type, are the ones who are cal-

culated only from the predicted probability of the actual outcome that happened (e.g.

cross-entropy loss). Constantinou and Fenton (2012) and Wheatcroft (2019) have

summarized and compared the effectiveness of different scoring rules in UK football

betting market. They argue that in a case of football results prediction, the scoring

rule is better to be sensitive to distance. Hence, they claim RPS (Ranked Probability

Score) is a robust measure in this context.

There are also a variety of works that examine the ef�ciency of betting markets by

trying to conduct a pro�table betting strategy using statistical models. These statisti-

cal models use the historical data to �t a prediction model on the match outcome, and

outperforming the bookmakers predicted probabilities means contradiction of the ef�-

ciency of market. Depending on the type of the model to forecast the real probabilities

of the outcomes, we can have different algorithms. For example, Buraimo, Peel and

Simmons (2013) claimed the inef�ciency of the UK �xed-odd betting market by show-

ing a pro�table betting strategy using Fink Tank predictions provided by University of

Warwick between 2006 to 2012.

Studies on predicting different football match outcomes have been very popular.

There are many approaches to train a forecasting model for a certain match outcome

using the historical data. Machine Learning suggests variety of algorithms that can be

applied to this �eld. On the other hand, one can evaluate the ef�ciency of bookmakers

by having a comparison between the score of their predicted probabilities (implied

from their odds) and the score of the probabilities predicted by regression models.

Therefore regression can either result in supporting the ef�ciency of the market (by
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being outperformed by the odds), or in other case, it can result in providing a pro�table

betting strategy (by outperforming bookmakers odds).

One of the most popular approaches to estimate match outcomes are ordered and

multinomial logit and probit models. The logit models, follow a logistic regression

criteria in their loss or pro�t function. Pope and Peel (1989) uses logit model to test

the ef�ciency of the betting market. Despite their conclusion on not being able to �nd

reasonable inef�ciencies in the market, Vlastakis, Dotsis and Markellos (2009) uses

the multinomial logit model to implement a pro�table betting strategy.

On the other hand, the probit model also can be used to capture the probabilities

of the match outcomes. Forrest, Goddard and Simmons (2005) used this algorithm

to test the ef�ciency of odds with a complete set of features for each match. Graham

and Stott (2008) assigned an objective quality measure � i to each team, and then

used � i � � j as an indicator for an ordered probit model to estimate the probability of

match results between teams i and j .

Kuypers (2000) was able to implement a pro�table strategy in �xed odds market

in England using an ordered probit model predictions. Goddard and Asimakopoulos

(2004) also uses an ordered probit model to predict match results and test the weak

form ef�ciency of bookmakers odds. They also showed that the ordered probit model

has almost similar performance whether it is based on the probabilities of the match

result or exact scoreline. Extending this idea for exact scoreline estimation leads us

towards Poisson regression models.

Generally, most scienti�c predictions of football outcomes are centered around the

match result probability prediction (Home, Draw, Away). However, there are also some

works that focus on the other outcomes, like the total number of goals, difference in

goals, and the exact scoreline. Reade, Singleton and Williams (2020) claim to �nd a

favorite-longshot bias in the exact scoreline odds, and they also provide a pro�table

betting strategy using it. Karlis and Tsiamyrtzis (2008) tries to �t a Bayesian model to

predict goal differences.

In the study of exact scoreline forecasting, there is a common idea that the number

of goals of each team in a match has a Poisson distribution and hence a Poisson

regression method to �t into the historical data can be applied. This idea is inspired by

assuming that the probability of scoring a goal for each team in each individual attack

is �xed value p. Therefore the total goals of a team should have a binomial distribution
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with parameters (n; p) where n is the number of attack opportunities of the team. And

by using Poisson approximation for binomial variables we can conclude our initial fact.

The �rst statistical approaches using this idea appeared in Moroney (1952) and Reep,

Pollard and Benjamin (1971).

However in the Poisson regression model, the dependencies of the two random

variables (the number of goals of each team) has been analysed. Maher (1982) pa-

rameterized the information of the match by assessing an attack and defence score to

each team. They assumed if � i and � i are indicators of attack and defence powers of

a team. Then in the match between team i and team j comes from a bivariate pois-

son distribution (X ij ; Yij ) where X ij and Yij are poisson with parameters (� i � j ; � j � i ).

Dixon and Coles (1997) further investigated this approach by strengthen their as-

sumptions and improving their results. They found evidence for the dependence of

X ij and Yij specially in low scoring games. Therefore they add a wight to the proba-

bilities of the match outcomes where max(X ij ; Yij ) � 1. They have used maximum

likelihood approach to estimate the real probabilities. This idea can be seen in the

later works such as Karlis and Ntzoufras (2003), Goddard and Asimakopoulos (2004)

and Herbinet (2018).

Poisson models also are used in order to obtain a rankings from the team strengths.

Ley, de Wiele and Eetvelde (2019) have compared the bivariate Poisson model to

the Independent Poisson model and other models from the literature, and found that

the bivariate Poisson model is the best one which assigns a strength ranking to the

teams. Herbinet (2018) is a more recent work on predicting the result and scoreline

of football matches. They use Dixon and Coles (1997) model as a benchmark to

evaluate their results. They implement a dynamical ELO ranking system Elo (1986)

for the both teams to use it for predicting the outcomes. This ranking system was

initially developed for assessing the strength of chess players. Herbinet (2018) have

applied more modern ML algorithms to this problem, such as Decision Trees, SVM

(Support Vector Machines), and ANN (Arti�cial Neural Networks).

Among the more frequent machine learning models and algorithms that have been

applied in this context, we can name random forests. There are some comparisions

between the performance of random forest and other conventional ML algorithms in

Schauberger and Groll (2018) and they claim that random forest approach outper-

forms other regression models in predicting match results and scorelines. Later, Groll

et al. (2019) extended random forest algorithm that have been used by Schauberger

and Groll (2018) in FIFA World Cup data. They introduced the hybrid random forests
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which somehow combines random forest with bivariate Poisson ranking method intro-

duced by Karlis and Ntzoufras (2003).

As a summary and review for the performances of ML algorithms in football predic-

tion, Joseph, Fenton and Neil (2006) have compared different methods such as KNN

(k-nearest neighbors), Decision tree, and different versions of Bayesian networks.

Later, Hucaljuk and Rakipović (2011) did the same think but they added a neural net-

works model to their comparision. They conclude that ANN has the best accuracy in

predicting match results.

With the growth of ANN usage in the classi�cation and regression problems, many

researchers have been trying to use neural networks and deep learning approaches

to model football match outcome. ANN have been applied to this context in several

ways. The most common way to achieve a prediction model for match result, is by

using multilayer perceptron. Arabzad et al. (2014) applied this method to Iran premier

league and An�lets et al. (2020) have also used multilayer perceptron with both L1

and L2 normalization. They have used a similar data to ours to predict English pre-

mier league result, they claimed to have a positive return on Bet365 odds using their

model.

There are also more complicated neural networks and deep learning models that

have been used in this context. For example Tsampazis and Tefas (2018) tried to

use a modi�ed version of autoencoders to construct a pro�table model on the English

premier league. Also the usage of recurrent neural networks is another way to model

the performance of the teams and sometimes the players through the time. Jain,

Tiwari and Sardar (2021) and Rahman (2020) used Long Short Term Memory (LSTM)

modules to predict the match results. Lastly Cheng et al. (2003) combined the ANNs

with the Learning Vector Quantization (LQV) method to estimate the general ratings

of the teams and consecutively classify the match result.
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3 Data and Resources

3.1 Datasets and Pre-processing

We have used the statistical information that is provided in https://www.football-

data.co.uk/. Speci�cally for the UK Premier League, we have used the historical data

for all of the matches from 2010 to 2020. Since there are a lot of missing values

in both match statistics and odds, we have restricted our attention only to the most

fundamental statistics. For match statistics we use Number of Goals (Full time and

Half time), Number of the Shots (On Target and Off Target), Number of Corners and

Number of Fouls, for both Home and Away teams. And for odds statistics, we only

use the odds of math results (Home, Draw, Away), and the odds for having more than

2.5 goals (>2.5 and <2.5). In this section, we are going to explain our methodology to

analyse each odd.

At �rst, we should de�ne and build our training data to be able to apply the ML

algorithms on it. For each match in the data, we can de�ne different types of features.

The �rst type, is just the features that are related to the Home and Away performances

in a recent window. For each team, we have put into our training data the averages of

the match statistics of that team from their previous 5 matches. Forrest, Goddard and

Simmons (2005) have also used the features gathered from recent matches in their

analysis. They also used the league standings information of the teams which we

haven't considered in our work. Another type of features, is the features that depend

on the match but not on the teams, like weather and time. For simplicity issues, we

also dismissed this kind of features in our data.

For each match between home (H ) and away (A) team, at the �rst step we extract

the recent 5 matches of both H and A, and then compute the average number of the

goals (FG), goals in the �rst half ( HG), shots (S), shots on target (ST), corners (C)

and Fouls (F ). All of this 6 features that we mentioned will be also computed for the

opponents of our teams in the recent matches, in this case we put an additional C

and the end of the feature name. For example, HFGC means the average number of

the goals (FG) that the home team (H ) conceded (C) in their recent 5 games.

We expect these features to have a Poisson distribution, also we expect the number

of goals to have a Poisson distribution. In (Figure 1) you can see the total frequencies

of each score for home and away and in (Figure 2) you can see the total distribution

of scorelines in the train data. The effect of playing in the home �eld is observed. you

can see the histograms, pairwise scatter plots, and correlations of these 6 features in

(Figure 3).
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After applying these steps, we can successfully split our data to training, validation

and test. For the training data we have 3104 samples, and for the validation and

test data we have 1035 samples, and the data consists of 24 features (normalization

applied).

Another idea that has been used for pre processing the features, is assessing a

weight for the performance features of the teams in the past matches which decays

exponentially with being more distant to the current match in time. (e.g. Dixon and

Coles (1997), Karlis and Ntzoufras (2010))

Figure 1: Histogram of the number of goals for home and away. Horizontal lines are
their corresponding mean value
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Figure 2: scoreline distribution

4 Football Betting Market Analysis

As mentioned in the previous sections, there seem to be too many works on ana-

lyzing the ef�ciency of the betting markets. In case of sports betting, we usually deal

with several types of odds by the bookmakers which provides a market for the gam-

blers to use various strategies for investment. In this section, we will try to analyse

the simplest type of odds where you can only gamble on an event, and depending the

outcome of the event, either the gambler wins or loses the bet.

Measuring the degree of ef�ciency in betting markets can be analysed in different

ways. The bookmakers ef�ciency can be measured by comparing their ef�ciency

indicators estimated from their empirical performances. Since providing the odds is

related to forecasting the probabilities of the outcomes, so in the context of forecast

veri�cation, we can evaluate the quality of the predicted probabilities by looking at

their scores. There are many ways to de�ne a score for probability forecasts that

satisfy in the strictly proper scoring rules criteria Murphy (1969).

There are many ways for the bookmakers to provide their odds. Of�ine bookmak-

ers odds (�xed odds) use a �xed value for their odd price to announce at the start

time of the market. Despite them, online bookmakers have a dynamical odd price
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Figure 3: Pairwise plot of team features

which can be changed during the market time. They can apply the new information to

their prices at any time, and using pari-mutuel system is very common among them.

Bookmakers using pari-mutuel system may provide inef�cient odds to increase their

expected pro�t.

An of�ine bookmaker �xes the odd price at some point, and then the punters who

think this odd has a positive expected pro�t, invest on their offer. Let o > 1 be the odd

price provided by a bookmaker, then if the desired outcome happens, the investors

money will be multiplied by o, otherwise they lose their money.

We can de�ne p� = o� 1 to be the bookmaker's predicted probability of an event.

If the event happens with probability p, then the expected pro�t of the bookmaker is

1 � p
p� (considering a unit amount of investments). Since the bookmakers probably

have a positive pro�t in average, it helps us to get an intuition that p� should be slightly

greater than p. But we should also note that, the higher values of p� (equally smaller

odd prices) results in having less demands from the punters because of the competi-

tiveness of the bookmakers market. On the other hand, smaller values of p� reduces
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the pro�t of the bookmakers. So p� can be interpreted as a forecast of p computed by

the bookmaker including commission.

Let � be the empirical expected pro�t of a bookmaker (with a unit amount of invest

in each provided bet) � = 1 � E[ yi
p� ], where y is our observations from the match

outcomes, in this case, it is a random variable which takes the values in f 0; 1g. If

we assume that this commission is linearly distributed among probabilities, We can

deduce that (1 � � )p� is the true probability of the bet predicted by the bookmaker.

Being less than this value means less pro�t for the bookmaker and being more than

this value means less demands in competitive market for the bookmaker. Angelini and

De Angelis (2019) also support the fact that the true probability is a linear function of

the bookmaker probability by applying Ramsey RESET tests and detecting signi�cant

non-linear dependencies.

Also in this context, � is related to the de�nition of reliability and calibration of prob-

abilistic predictions. The reliability diagram is a function that takes a value in [0; 1]

as input, and �lters the forecasts in which the predicted probability is near the input

value, then it assigns to it the frequency of the occurrences of target values in the

�ltered data. Let f (x) = P(yi = 1jp� = x) be the reliability diagram of p� (Hartmann

et al. 2002), then the expected pro�t of p� can be computed as � = Eq� D [1 � f (q)
q ]

where D is our historical observations of p� and its corresponding relative frequency

f (p� ). By supposing that the bookmakers adjust their commissions linearly through

the unit interval, then we can approximate f (x) = (1 � � )x.

In our �rst step, we empirically estimated the expected pro�t (commission) of book-

makers to compute their true implied predicted probabilities of the outcomes by sub-

tracting their commission from their pro�t through scaling their odds p̂� = (1 � � )p� .

(Figure 4) shows the reliability plots of p� and p̂� . Now we can compare their fore-

casting accuracy measures with each other and also with ML estimated probabili-

ties.

4.1 Classi�cation Analysis

In this section, we are going to train classi�cation models to predict the real probabil-

ities of the outcomes. One of the common ways to measure the probability forecasting

quality, is using the Brier score which in our case (uni dimensional), it's the same as

mean quadratic error between the observations and the predictions BS = E[(yi � p̂)2].

This score has been introduced by Brier (1950) for evaluating weather forecasting

models, but it became one of the popular ways to evaluate betting market predictive
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Figure 4: Reliability diagram of the probabilities implied from the bookmakers odds.
BbMx: probability implied from the maximum odd of the market. BbAv: probability
implied from the average odd of the market. CEP: Conditional Event Probability

performance. Murphy (1973) introduced a decomposition formula for the Brier score

to be the sum of calibration (reliability) and re�nement. BS = CAL + REF where

calibration is computed as CAL = Eq� D [(q � f (q))2] and re�nement is REF =

Eq� D [f (q)(1 � f (q))] . Since re�nement is invariant to the linear transformations of

our prior distribution of q, therefore converting p� to p̂� by multiplying (1 � � ) doesn't

change this term and only affects reliability. Re�nement is also related to the area

below the diagram of the ROC curve.

On the other hand, we can also use Maximum Likelihood method to measure the

predictions. It leads us towards a logistic regression model in this context (sometimes

referred to as the ignorance score). If p̂ is the probabilities estimated by the model

and y is the vector of the results coming from Bernouli variables with parameter vector

p then by �nding maxp̂ P(yjp = p̂) we will have an estimation of the real parameter p.
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The likelihood value for y and p̂ can be computed as follows:

L(y; p̂) = P(yjp = p̂) =
Y

i

(yi p̂i + (1 � yi )(1 � p̂i ))

Therefore, after taking the logarithm, maximizing the log-likelihood is equal to min-

imizing the cross-entropy loss between p̂ and y, which is linearly equivalent to mini-

mizing the Kullback–Leibler divergence of the predicted and real distribution.

Other than the mentioned measures, there are other measures that have been used

in evaluating the (probability) forecasting performances for example, AUC, F1 score,

and skill scores .

Now we are ready to train our models. We have used linear logistic regression,

random forests, and multilayer perceptron neural networks to train our probability es-

timation models on our training data to be able to challenge the ef�ciency of betting

market or �nd a pro�table model.

4.2 Fitting Models and Probabilistic Inferences

In this section we will examine the performances of different ML algorithms on pre-

dicting the match outcomes. After applying the different algorithms to achieve a pre-

diction function, we can compare them by their quality measures. We have focused

on the average and maximum odd of BetBrain for having more than 2.5 goals in to-

tal. The empirical expected pro�ts of the average and maximum odds are 6:12%and

1:25% respectively. You can see their reliability plot in (Figure 4). To measure the

quality, we can observe the Brier score (containing Calibration and Re�nement), and

the logistic regression loss (negative of likelihood).

For our models, we have used the validation set to tune our model hyperparameters.

For the random forest, we found the optimum number of trees and the maximum

nodes in each tree as our hyperparameters to using the validation data. Also for

neural network, the size of hidden layer is estimated from the performances on the

validation data.

After the training process, we can look at the posterior distributions of our models.

In probability estimation by random forests, there is a common step after training the

model which is changing the posterior distribution of the model by a speci�c map. It

is referred to as the calibration process for probability estimation. In other words, it
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means transforming classi�er scores into class probabilities. We have used the Iso-

tonic Regression method which estimates this transformation ma with partially linear

maps Zadrozny and Elkan (2002).

Now we are ready to compare the measures of our models with each other and

also with the bookmakers, in (Figure 8) you can see the pairwise plot of our model

predictions. Notice the high correlation between ANN and GLM. (Figure 7) is the

plot of train and validation loss during the ANN training. And (Table 1) shows the

performance of our models on predicting more than 2.5 goals in the match.

single class classi�cation
negative log-likelihood Brier reliability re�nement

BbMx 0.6833679 0.2453246 0.0005 0.2448382
BbAv 0.6852494 0.246221 0.0016 0.2446663
BbAvC 0.6833051 0.2452842 0.0003 0.2449532
LR 0.6894725 0.2481594 0.0004 0.2477197
RFC 0.6897751 0.2483468 0.0002 0.2481223
NN 0.6893291 0.2480245 0.0008 0.2472735

Table 1: Single Class Models Evaluation. BbMx: Probabilities implied from the max-
imum odd. BbAv: Probabilities implied from the average odd. BbAvC: Probabilities
implied from the average odd with calibration. LR: Linear Regression. RFC: Random
forest with Calibration. NN: Neural Network

4.3 Generalization to Multiple Classes

As we mentioned in section 2, there are two common measures of probability pre-

dictions: Ranked Probability Score(RPS) and cross-entropy loss. RPS was proposed

by Epstein (1969)as a scoring system for probability forecasts of weather states, which

is a useful proper scoring rule for ranked categories. The original RPS was formulated

with the framework of K possible states and vector r = ( r1; :::; rK ) be a probability

forecast of an ordered variable. The RPS when class j occurs, RPSj (r ) is

RPSj (r ) =
3
2

�
1

2(K � 1)

K � 1X

i =1

[(
iX

n=1

rn )2 + (
KX

n= i +1

rn )2] �
1

K � 1

KX

i =1

ji � j jr i ;

when K = 2 , RPS reduces to Probability Score(PS) or Brier Score(Brier (1950) ).

The RPS for overall forecasts is de�ned by

RPS =
1

K � 1

KX

i =1

 
iX

j =1

r j �
iX

j =1

ej

! 2

;
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Figure 5: Random Forest Feature Importance

Figure 6: Random Forest Hyperparameters
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Figure 7: Loss of ANN during training. Left: Single Class. Right: Multi Class.

Figure 8: Pairwise plot of the models predictions. BbMx: probability implied from
the maximum odd of the market. lr: Logistic Regression. rfc: Random Forest with
Calibration. nn: Neural Network

where r j is the forecasted probability of outcome j and ej is the actual probability of

outcome j . According to the de�nition of RPSj (r ), it is not hard to see such a scoring

system does not only depend on real outcome but also depend on predicted proba-

bilities. According to Epstein (1969), RPS can be viewed as a measure of 'distance'

between different categories. Murphy (1970) introduced two de�nitions of distance

based on RPS and PS respectively. Meteorologists have indicated the for the need
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for a scoring rule based upon considerations of distance that are particularly relevant

for forecasts of ordered variables such as ceiling height, temperature and football

scores. RPS is sensitive to distance, which implies that it can be robust in measuring

probability forecast.

Another useful measure of forecast is cross-entropy loss. It measures the perfor-

mance of a classi�cation model whose output is a probability value between 0 and 1.

Cross-entropy loss increases as the predicted probability diverges from the actual la-

bel. Suppose we have discrete real distribution p and predicted probability distribution

q with the same support X , the cross-entropy is de�ned by

H (p; q) =
X

x2X

p(x) log q(x):

Compared with RPS, cross-entropy loss depends only on the true outcome, it does not

concern about 'distance' between different prediction categories. In (Table 2) these

scoring measures have been shown for both bookmakers probabilities and the differ-

ent models that we trained on the data.

To evaluate the quality of the bookmakers predictions, we should �nd the true prob-

abilities implied from their odds. What we suggested in the previous section, was to

divide the inverse odds to the empirical expected pro�t of the bookmakers to have

their real predicted probabilities. But here we can use other algorithms because in

this case we are sure that one of the output classes is going to happen for sure. In

other words let s =
P

1=oi be the sum of inverse odds of the output classes. Then we

can conclude that s > 1 and here the expected empirical pro�t of the bookmakers can

be derived from s � 1. This provides a natural way to estimate the real predictions of

the bookmakers implied from their odds. This method supposes that the bookmakers

apply their commissions equally among the outputs. We call this method the basic

way of extracting the probabilities.

Forrest, Goddard and Simmons (2005) and Gross and Rebeggiani (2018) believe

commission is uniformly distributed among different outcome probabilities. Shin (1993)

on the other hand discusses about the effect of insider traders in betting markets and

bring a new formula for calculating the outcome probabilities implied by odds provided

by bookmakers. Štrumbelj (2014) claims that Shin's formula has the best performance

to predict the probabilities by comparing the Brier scores of basic uniformly scaled

probabilities and Shin's probabilities implied from the bookmakers odds.
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multiclass classi�cation score
negative log-likelihood Ranked Probability Score

B365B 1.011027 0.2065123
B365S 1.010823 0.2064822
WHB 1.010913 0.2065046
WHS 1.010818 0.206444
LR 1.038011 0.2149896
RFC 1.054481 0.2196784
NN 1.037853 0.214916

Table 2

4.4 Betting Strategy

One of the ways to testify the ef�ciency of the market is by trying to �nd a pro�table

betting strategy, because by achieving it, we can conclude the existence of informa-

tion that are not included in the prices. The �eld of providing and analysing trading

strategies in �nancial markets is vast. Similar to stock markets, betting markets also

provide several investment options for the punters, therefore there are many differ-

ent ways to implement a strategy for investment. In this section we will analyse the

effectiveness of our classi�cation models on �nding a betting strategy.

There have been many successful and unsuccessful attempts to �nd a pro�table

strategy in football betting market. On the other hand, like stock markets, we can

expect the behavior of market to vary over time which means the pro�tability of a cer-

tain strategy also depends on the different time periods. For example, we can �nd

evidences supporting the existence of positive pro�t betting strategies based on sta-

tistical biases in the bookmakers prices, such as favorite-longshot bias and etc.

Among the highly reported biases, there is also best-odd bias which uses the strat-

egy of investing on the best odd for each match whenever the variance of the odds

of different bookmakers is too much. Forrest, Goddard and Simmons (2005) claim

that the commission is virtually eliminated by using this strategy. Deschamps and

Gergaud (2007) also found evidence for best-odd bias. They also report a draw-bias

in the sense that betting at draw odds yields a higher return than betting at home or

away odds in football betting markets.

Over the time, more complicated approaches on �nding a pro�table betting strategy

are being tested. Using machine learning models, is a common way to �nd patterns

in historical data to help us have a more accurate prediction of the outcomes. The

power of this method highly relies on the quality and size of the historical data that we
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want to train our models on.

Note that the pro�tability of a prediction model is not necessarily related to having

more or less accuracy comparing to the bookmakers odds in the outcome prediction.

It means different probability prediction models, can capture different information from

the historical data to help them to estimate the probability of the outcomes. For exam-

ple in (Figure 8) you can notice that the correlation between RF and ANN predictions

are less than the correlation between GLM and ANN predictions, which means there

are more samples that RF and ANN prediction do not totally agree to each other. How-

ever we saw that the accuracy of ANN is better than RF in prediction, but it doesn't

mean that RF is not pro�table against ANN. We have analysed the cases for having

more than 2.5 goals when RF assigns 5% more probability comparing to ANN in the

validation and test data. In this case if the actual odd were set by the ANN probabili-

ties, then we could have 578bets with average pro�t of 2:57%per bet in the validation

data and 724bets with average 2:49%pro�t in test data. On the other side, if we the

odds were set by RF probabilities, and we invest on the bets where ANN predicts 5%

more chance comparing to RF, we will have 685bets with average 7:36%pro�t in the

validation data and 512bets with 4:15%average pro�t.

Using our models we can implement a betting strategy by a simple common algo-

rithm that whenever our predicted probability divided by the bookmakers probability

is more than a threshold for any bet, we invest a unit amount of money in that bet.

In (Figure 11) and (Figure 10) you can see our pro�t in the validation and test data

respectively, using this strategy for different values of the ratio.

From these �gures we can conclude that it is not possible to conduct a betting

strategy with a reliable positive return using our models. It was expected to be like this

since we only consider limited amount of features to estimate our probability, and in

reality there are too many conditions that may have effect on the posterior probability

distributions of the match outcomes.
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Figure 9: Reliability plots of our models. LR: Logistic Regression. RFC: Random
Forest with Calibration. NN: Neural Network

Figure 10: Average pro�t of the models in the Test set

5 Score Prediction and Poisson Regression

In this section we are focusing on the exact scoreline prediction using our covariates

(features) of each match. It is intuitive to consider that the number of goals has a

Poisson distribution. As we mentioned earlier, a way to model the probabilities of
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Figure 11: Average pro�t of the models in the Validation set

scoring is assuming that there is a �xed probability for each team to score in a time

interval with �xed lengths. It implies that the Y1 � Poisson(� 1) and consecutively

Y2 � Poisson(� 2). The simplest way is to predict � 1 and � 2 by generalized linear

model. Since we know they are positive, we can use the logarithm as the link function.

In the following section we will further investigate this method.

On the contrary, the dependence of Y1 and Y2 has always been discussed in the

literature. The previous setting that we introduced, supposes that they are indepen-

dent. However, by observing that the marginal distributions are poisson, the natural

way to model Y1 and Y2 is by using bivariate poisson variables. Together with � 1 and

� 2 that we introduces, there is another parameter � 3 in bivariate poisson model which

somehow controls the correlation between the target variables. Karlis and Ntzoufras

(2003) used bivariate poisson regression to model the number of goals. They used

the same generalized linear method to estimate � 1 and � 2, but for � 3 they used sev-

eral cases to model it. In the �rst and second case they analyzed � 3 = 0 and � 3 > 0,

where in the third case they used generalized linear estimation � 3 = log( X � 3). Also

a natural way to model � 3 is by using the general match day features instead of home

and away features.
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Karlis and Ntzoufras (2003) also introduced another method for robust modeling

of the number of goals. Originally, Dixon and Coles (1997) observed that the pure

Poisson distribution may not be the most accurate way to model the number of goals.

They used the Poisson regression method introduced by Maher (1982) to statistically

show that the match result tend to be �nished with a draw more than what the model

predict. Especially in low scoring games, hey showed that the double Poisson model

underpredict 0-0 and 1-1 scores and overpredict 0-1 and 1-0 scores. Therefore, they

used a method called In�ation to force the posterior distribution to be slightly different.

Karlis and Ntzoufras (2003) extended their idea and introduced another in�ation meth-

ods in this context. They used an additional Poisson and Geometric distributions on

the diagonal of the joint distribution to �x the underestimation of draw outcomes.

5.1 Generalized Linear Model

A generalized linear model is a generation of ordinary linear model. The ordinary

linear regression has following form:

Y = X� + � (1)

, where

Y =

2

6
6
4

Y1
...

Yn

3

7
7
5 ; X =

2

6
6
4

X T
1

...

X T
n

3

7
7
5 =
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6
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4

x11 � � � x1p
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. . .
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3

7
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It is assumed that Yi has normal distribution. The error terms � i � N (0; � 2) and � i

and � j are independent for i 6= j . The most common estimator for standard linear

regression model is the least square estimator which is

�̂ = ( X T X )� 1X T Y (2)

For the generalized linear model, the dependent variable Yi does not have to be

normally distributed but allow it to be a member of exponential family. The GLM is

developed by Nelder and Wedderburn (1972) as a way generalized some statistical

models relating to four distributions: normal, binomial, Poisson and gamma. A GLM

consists of 3 elements: an exponential family of probability distributions with proba-

bility density function f (Y ; � ), a linear predictor � = X� and a link function g such

that E(Y jX ) = � = g� 1(� ), where the general form of f (Y ; � ) can be expressed as

f (Y ; � ) = h(Y ) exp(b(� ) � T (Y) � A (Y )) (3)
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where h; b; T and A are known functions.

In the previous section, we used the logistic version of the generalized linear model

to predict the match result and the probability for having more than 2.5 goals. Using

the cross entropy loss function we and setting the link function g = log( x
1� x ) = � � 1,

where � is the softmax function. Using the fact that @�j =@xi = � i (1i = j � � j ) we can

calculate the derivatives of the loss function.

p̂ = � (X � ) =)
@̂p
@�

=
@̂p
@�

� 0(X � ) (4)

Now we can use gradient based methods to optimize the parameters. Note that

minimizing this loss value in this case is the same as maximizing the likelihood of our

observed data with our parameters. For a probability regression, the logistic loss func-

tion seems to have the best performance for training models. We can alternatively use

a quadratic loss function but it has worse accuracy in multiclass classi�cation.

5.2 Poisson Regression Model

The Poisson regression model assumes that dependent variable Yi follows Poisson

distribution. Recall that if a random variable X follows Poisson distribution, then its

probability mass function is given by

f (X = k; � ) = P(X = k) =
� ke� �

k!

Compared with equation 4, we know that Poisson distribution belongs to the expo-

nential family

f (X = k; � ) = exp( k log(� ) � � � log(k!))

and we can derive a generalized linear model for Poisson regression. The link function

for Poisson regression is g(x) = log( x), thus the model can be expressed as

E(Y jX ) = � = exp(X� )

5.3 Parameters Estimation

In this section, we discuss how to estimate � in the Poisson regression model.

Consider Y = [ Y1; � � � ; Yn ]T , where Yi are independent random variables with

E[Yi ] = � i , we can estimate � by maximum likelihood. With the probability mass
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function f (X = k; � ), our log-likelihood function for for each Yi is

l i (� i ; yi ) = yi log(� i ) � � i � log(yi !):

In a compact form,

l (� ; y ) =
NX

i =1

yi log(� i ) �
NX

i =1

� i �
NX

i =1

log(yi !):

The method of scoring provides a way to obtain the maximum likelihood estimates for

� j , at the �rst step, the score function is de�ned by

sj =
@l

@�j
=

NX

i =1

(
@li
@�i

@�i
@�j

);

where
@li
@�i

=
yi

� i
� 1

and
@�i
@�j

=
@�i
@�i

@�i
@�j

=
@�i
@�i

x ij

with � = X� .

We denote the observed information matrix w.r.t. � as J ( � ) , which is the covariance

matrix of score function s

J ( � ) jk = E(sj sk)

=
NX

i =1

E ((yi � � i )2) x ij x jk

� 2
i

(
@�i
@�i

)2:

Let W be an N � N diagonal matrix with elements wii = 1
� i

( @�i
@�i

)2, the information

matrix can be written as

J ( � ) = X > W X

Then the m + 1 -th iteration of � is given by

� m+1 = � m + J � 1( � m )s(� m )

5.4 Kolmogorov-Smirnov Test

Before applying Poisson regression to our data set, we use Kolmogorov-Smirnov

(KS) test (Massey Jr (1951)) to select features that are from Poisson distributions.

K-S test is a non-parametric test that can be used to compare a sample with a known
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probability distribution. In this case, we evaluate the goodness of �t between a sample

and the Poisson distribution. We de�ne the empirical distribution function Fn of n i.i.d.

observations X i as

Fn (x) =
1
n

nX

i =1

1[�1 ;x ](X i );

where 1[�1 ;x ] is the indicator function. Fn (x) gives the fraction of sample points less

than x. Suppose we have some cumulative function F0(x), then the K-S statistic for

F0(x) is given by

Dn = sup
x

jFn (x) � F0(x)j

By the fundamental theorem of statistics, if X i follows Poisson distribution with cumu-

lative function F0, then Dn converges to 0 almost surely.

However, in practice, the parameter of cumulative function is unknown. In this case,

we have to estimate the unknown parameter which is the mean for Poisson distribu-

tion from the sample. By Campbell and Oprian (1979), we have a table obtained from

a Monte-Carlo calculation to verify whether a set of observation follows Poisson distri-

bution. The rate parameter of the Poisson distribution is estimated by the mean value

of the sample. If D is larger than the critical value provided in (Campbell and Oprian

(1979)), we reject the hypothesis that the sample follows Poisson distribution.

5.5 Bivariate Poisson Models and In�ations

We have seen in the previous section that the marginal distributions of number of

the goals scored by the teams, can be approximated by two Poisson distributions. In

other words, for a certain match, if we denote the number of goals of home and away

by Y1 and Y2 respectively, then we know they have distributions Poi(� 1) and Poi(� 2),

therefore, we can estimate � 1 and � 2 using linear functions from our features.

In previous setting, we assume that the target variables Y1 and Y2 are independent.

However, the independence assumption may not hold. For example, When the differ-

ence jY1 � Y1j is large, one of the teams may have a lower willingness to attack or

defense. In this case, it is natural to consider a bivariate Poisson model which drops

the independence assumption. It is suggested by Karlis and Ntzoufras (2003) that

a bivariate Poisson model improves the prediction of the number of goals in football

games.
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Figure 12: Difference of actual scoreline distribution and cumulative distribution of the
predicted probabilities of the scorelines using Poisson regression

Figure 13: Difference of actual scoreline distribution and cumulative distribution of the
predicted probabilities of the scorelines using Poisson regression

5.5.1 The bivariate Poisson distribution

There are different approaches to construct bivariate Poisson distribution discussed

by Kocherlakota and Kocherlakota (2017). A common way discussed by Johnson

(1997) is the trivariate reduction method. Consider random variables X k ; k = 1; 2; 3

which are independent Poisson random variables with non-negative parameters � i ; i =

1; 2; 3. Then we de�ne random variables Y1 = X 1 + X 3 and Y2 = X 2 + X 3, which

follow a bivariate Poisson distribution with parameters � i denoted by BP (� 1; � 2; � 3).
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Figure 14: Difference of actual scoreline distribution and cumulative distribution of the
predicted probabilities of the scorelines using Poisson regression

The joint probability mass function is

f JBP (y1; y2; � 1; � 2; � 3) = e� (� 1+ � 2+ � 3 ) � y1
1

y1!
� y2

2

y2!

min( y1 ;y2 )X

r =0

 
y1

r

!  
y2

r

!

r !
�

� 3

� 1� 2

� r

:

Y1 and Y2 follows Poisson distribution marginally with expectations E(Y1) = � 1 + � 3

and E(Y2) = � 2+ � 3. The covariance of Y1 and Y3 is � 3. If � 3 = 0 , then the two random

variables are independent which is the case of double-Poisson distribution.

5.5.2 Parameters Estimation

In the joint bivariate Poisson regression model, we assume that the parameters

� i ; i = 1; 2; 3 depend on explanatory variables. Using the exponential link function,

the joint bivariate Poisson regression can written as

log� k;i = X i � k ; k = 1; 2; 3;

where i denotes the observation number, X i denotes the vector of explanatory vari-

ables for the i � th observation and � k is the vector of coef�cients related to the k� th

parameter.

Jung and Winkelmann (1993) and Kocherlakota and Kocherlakota (2001) use Newton-

Raphson method to estimate the parameter. Karlis and Ntzoufras (2005) developed

an EM algorithm to deal with convergence problem with Newton-Raphson method.

Karlis and Tsiamyrtzis (2008) present a Bayesian estimation approach for the param-
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eters of the bivariate Poisson model and provide the posterior distributions in closed

forms.

Since for canonical exponential families the method of scoring and the method of

Newton–Raphson coincide, we can still use method of scoring to maximize likeli-

hood. In this case, for each observation (y1i; y2i ), the joint biavariate Poisson dis-

tribution

f (y1i ; y2i ) = e� (� 1 ;� 2 ;� 3 )g(y1i ; y2i );

where

g(y1i ; y2i ) =
min( y1i ;y2i )X

r =0

� r
3i �

y1i � r
1i � y2i � r

2i

r !(y1i � r )!(y2i � r )!
:

The corresponding score functions are Uk;j = @l
@� kj

; k = 1; 2; 3. More explicitly, they

can be written as

U1;j =
nX

i =1

� 1i X ji

�
g(y1i � 1; y2i )

g(y1i ; y2i )
� 1

�
;

U2;j =
nX

i =1

� 2i X ji

�
g(y1i ; y2i � 1)

g(y1i ; y2i )
� 1

�
;

U3;j =
nX

i =1

� 3i X ji

�
g(y1i � 1; y2i � 1)

g(y1i ; y2i )
� 1

�
:

The whole process is exactly the same as the case of calculation in independent

Poisson regression model. A better estimation is using EM algorithm. To construct EM

algorithm, we de�ne 3 latent variables Z1; Z2; Z3 which is of Poisson distribution with

parameters � 1; � 2 and � 3 respectively. We assume that Y1 = Z1+ Z3 and Y2 = Z2+ Z3.

Now the complete data is (Z1; Z2; Z3) but only (Y1 = Z1 + Z3; Y2 = Z2 + Z3) are

observed. The complete data log-likelihood is l (� i ) and marginal log-likelihood lYi ; i =

1; 2 is based on observations only. The EM algorithm estimates � 3 via the conditional

expectation at E-step. At M-step, we maximize the complete-date likelihood by �tting

three Poisson regression models. More precisely, the E-step calculates the expected

complete data log-likelihood ratio q(� i j� �
i )

q(� i j� �
i ) = E� �

i
[l (� i ) � l (� �

i )jY1; Y2] ;

where � �
i be and arbitrary but �xed value, typically the value of � i at the current itera-

tion. The M-step maximizes q(� i j� �
i ) in � i for for �xed � �

i , i.e.

� ��
i = arg max

� i

q(� i j� �
i ):
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5.5.3 In�ated Bivariate Poisson model

A major drawback of the bivariate Poisson model is the restriction of positive cor-

relation only. Since its marginal distributions are Poisson, they cannot model over-

dispersion or under-dispersion. It has been found that the number of draws in a game

is larger than those predicted by a simple bivariate Poisson model (Karlis and Nt-

zoufras (2003)).

We can consider mixtures of bivariate Poisson distributions but such models suffer

from complicated structure. A more applicable approach is in�ating the probabilities of

certain values of variable under consideration. Dixon and Coles (1997) have proposed

a zero-in�ated model which considered in�ation only for the (y1 = 0; y2 = 0) cell. In

this report, we extend the zero-in�ated model by adding an in�ation component on the

diagonal of joint probability function. A diagonal in�ated model is speci�ed by

f IBP (y1; y2)=

(
(1 � � )f JBP (y1; y2j� 1; � 2; � 3) y1 6= y2;

(1 � � )f JBP (y1; y2j� 1; � 2; � 3) + �D (y1j� ); y1 = y2
;

where D(y1j� ) is a discrete distribution with parameter vector � . When � = 0 , we

have the simple bivariate Poisson model. Diagonal in�ated models can be �tted us-

ing the EM algorithms provided in Karlis and Ntzoufras (2005). A proper choice of

D(y1j� ) is geometric distribution. P(y1 = j ) = � j for j=0,1,2,...,J, where
JP

j =0
� j = 1 .

If J = 0 , then we have a zero-in�ated model. One important property of in�ated

models is the marginal distributions are not Poisson distributions, which means they

can be either under-dispersed or over-dispersed depending on the choice of D(y1j� ).

In the simplest case of zero-in�ated models, the marginal distributions are also over-

dispersed relative to the simple Poisson distribution. Another important characteristic

is that, even if � 3 = 0 (double Poisson distribution), the resulting in�ated distribution

introduces a degree of dependence between the two variables under consideration.

Moreover, diagonal in�ation can possibly correct both over or under-dispersion and

correlation problems encountered in modeling count data.

In (Figure 15) you can see the best hyperparameter for Dixon-Cole in�ation, and

in (Figure 16) you can see the hyperparameter table for diagonal Poisson in�ation.

(Table 3) shows the effect of different types of in�ation on validation and test data

using double Poisson model.
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Figure 15: Finding best � for Dixon-Cole in�ation

Figure 16: Finding best p and � for diagonal Poisson in�ation

different ways for in�ation for double Poisson models
Negative Log-Likelihood

valid test value (�tted on train)
no in�ation 2.902616 2.887559 -
Dixon-Cole 2.90176 2.887176 � = -0.027
diagonal Poisson 2.901885 2.887013 p = 0.01325, � = 0.96
diagonal geometric 2.901915 2.887198 p = 0.01129, � = 0.66

Table 3: Effect of Different Types of In�ation

30



6 Neural Networks and Rating Systems

The work of Maher (1982) for predicting the exact scorelines using Poisson regres-

sion was a breakthrough in this context. As we mentioned earlier, they used a rating

method to predict the number of goals. There are many rating algorithms in football

which is used by the researches, specially Bayesian networks bene�t from this rat-

ings systems. The basic way to have a rating, is to assign a strength rating for each

team. It means if we have n teams and we assign r i ; i 2 f 1; :::; ng for each team to

represent their strengths, we can use them to model match outcomes. For example

in match result prediction (home win, draw, away win) between team i and team j we

can use r i � r j to estimate the outcome. ELO rating system Elo (1986) is one of the

most common strength indicators of football teams that is used in the literature. It was

originally designed for rating chess players for it became also popular in other sports

like football. Herbinet (2018) used ELO ratings together with a attack and defence

rating system to predict the number of goals.

Maher (1982) assigned attack (� i ) and defence (� i ) ratings for each team i 2 0; :::; n

and used � i � j and � j � i to estimate � i and � j in a Poisson regression context. How-

ever, this idea has been completed by many works afterwards, but it is still one of the

main ideas to build a prediction model for the number of goals based on it. In our

case, since we want to testify the power of prediction of the outcomes only by using

the performance features of the teams in the recent games, so we will not consider

the rating of teams as a parameter in our estimation. In other words, we are not going

to add the team name to our features data. Therefore, using the conventional attack

and defence rating system is not applied in this cases because they are assigned to

the teams.

Alternatively, there are some method that we can use to predict the attack and

defence rating of home and away teams using their features. The �rst method that

we analyse, is to use a clustering algorithm on the features space, and then assign

an attack and defence rating for each cluster instead of each team. Note that an

speci�c team may be in different clusters over the time depending on their previous

performances. Another method is to estimate � i , � j , � i , and � j directly through our

features. Instead of using generalized linear model, to have a more effective approx-

imation, we have used neural networks to estimate the attack and defence ratings

of the teams using their features that represents their performances in the recent

matches. To train our neural network, we can use the Poisson regression method and

Poisson negative log likelihood as our loss function. We will discuss it more at the end

of this chapter.
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6.1 Estimating Team Attributes

Many statistical and Bayesian approaches in predicting match outcome comes from

the popular algorithms to estimate the different attributes of the teams. For example,

let Ri represents the total strength of team i 2 f 1; :::; ng, then after a game between

team i and team j , we change the rating from Ri to Ri + � R where � R � � Y:� P

and � Y = Yi � Yj is the difference of goals and � P = P � P̂ is the difference

of the predicted match result and the actual match result. A generalization of this

process gives us a rating system which called ELO, which is widely used in probability

estimations and Bayesian inferences. This indicator which is also used in FIFA ratings,

is included in the features for predicting match outcomes in many works.

Similar to using the strength rating to predict the scorelines, by using Poisson re-

gression we can provide a way to model the strength rating. In this case, we can again

estimate the number of goals of home and away by a bivariate Poisson distribution

using the difference of the ratings of two teams as our indicator. Suppose team H

and team A have ratings RH and RA respectively and � R = RH � RA , then one way

to estimate the average goals of home and away is

8
>>><

>>>:

log(� H ) = f (� R) + h

log(� A ) = f (� � R)

log(� C ) = c(X )

; (5)

where h is the home effect (around 0:26 in our data) and c(X ) is a function to estimate

the correlation between the number of goals where X is our match features. These

equations imply log(� H =� A ) � h = g(� R) where g(� R) = f (� R) � f (� � R).

Now, we can linearly model our rating system together with c, f and consecutively

g. Since we have already modeled log(� H ), log(� A ) and therefore log(� H =� A ) to

have a linear distribution, so it is fair that we approximate g with linear functions, we

can set g(� R) = � 0� R (the intercepts of f cancel each other). We know that our

data consists of the features of both home and away teams. It means, if we split

our features for home and away teams X = ( X H ; X A ) that represent the features

of teams H and A respectively, and if we linearly model our rating system to be

RH = � � X H , then we can have

log(� H =� A ) � h = g(� R) = � 0� R = � � X H � � � X A (6)
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where � � = � 0 � � . The coef�cients of � can be interpreted as the effect of each feature

in the team strength. (Figure 17)

In the previous chapter, we used generalized linear model with Poisson regression

to estimate � H and � A . For a match between teams H and A we assumed that

8
>>><

>>>:

log(� H ) = X� H + h

log(� A ) = X� A

log(� C ) = X� c

; (7)

where � H ; � A ; � c are the corresponding linear coef�cients estimated in Poisson re-

gression model. Here we can split X to (X H ; X A ), We can also split � H = ( � HH ; � HA )

and � A = ( � AH ; � AA ) to represent attack and defence ability of home and away

teams. Then we can deduce that log(� H ) = X� c + � HH X H + � HA xA + h and

log(� A ) = X� c + � AH X H + � AA X A . In this case

log(� H =� A ) � h = ( � HH � � AH )X H � (� AH � � AA )X A (8)

This equation is similar to the previous equation where we used the strength ratings

RH and RA to estimate log(� H =� A ). In the previous case, we calculated the rating of

the teams by multiplying their features to � . But in this case we computed the rating

of the teams by multiplying their features to � H and � A depending that the team is

playing in home or away, where � H = � HH � � AH and � A = � AA � � HA . In (Figure

17) you can see the values of � H and � A that we derived in the previous chapter using

bivariate Poisson regression, you can see that they are similar.

Another way to estimate the attributes of the team is by using the independent

Poisson regression method introduced in Maher (1982). They assigned attacking and

defending ratings to each team. So for each match between H and A we have 4

parameters, � H , � , 
 H , and 
 A representing their attack and defense ratings. Then

they modeled � H = � H 
 A eh and � A = � A 
 H where h is the home factor. A simple

bivariate Poisson approach using their idea to assign attack and defense rating, is to

linearly model � and 
 . Then we will have the following model

8
>>><

>>>:

log(� H ) = X H � + X A 
 + h

log(� A ) = X A � + X H 


log(� C ) = X� c

(9)
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Figure 17: Coef�cients of team rating linear mappings

It is good to note that in this situation, 
 is actually the inverse of defense rating

because here having more 
 means having worse defense. Similar to what we did

for strength rating, we can interpret our generalized bivariate Poisson regression to

extract these attack and defense rating factors. We can split X = ( X H ; X A ) to rewrite

equation (7). Recall the de�nition of � H H , � H A, � A H , and � A A from equation (8),

then

8
>>><

>>>:

log(� H ) = X H � HH + X A � HA + h

log(� A ) = X A � AA + X H � AH

log(� C ) = X� c

(10)

Like what we saw in coef�cients of strength rating estimation. Here we can observe

that � H H and � A A play the role of assessing the attacking ratings, and on the other

hand, � H A and � A H compute defense rating. In (Figure 18) we can see they are

similar to each other and also to the solution of optimization (9)

Originally, Maher (1982) assigned the attack and defense parameters to each team

instead of estimating it from the match features. In their work, each team could have a

separate attack and defense rating whether they play in home or away, but later Dixon

and Coles (1997) did not consider this separation to reduce the number of parameters

as well. Instead, they applied an in�ation effect which increases the likelihood and we

analysed it in the previous chapter. By assigning a �xed rating for each team, one

could think that it's not actually very realistic because the team performances could

be variant through the time. To model this inef�ciency, Dixon and Coles (1997) used
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a time exponential weight decay to compute the likelihood.

By clustering the data, we can think of each cluster as a team. We applied K-Means

algorithms to devide our data into 20 clusters. And then using the conventional meth-

ods we can assign ratings to the clusters. In (Figure 19) you can see that the attack

and defense rating can be calculated for each cluster using Dixon and Coles (1997) al-

gorithm, which is similar to the attack and defense ratings of cluster centers computed

by the weights of the generalized linear bivariate Poisson regression model.

Figure 18: Coef�cients of attack and defence linear mappings

Figure 19: Attack and defense rating of the different clusters
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6.2 Neural Networks

With the advances of technology, the usage of ANNs (Arti�cial Neural Networks)

has become more frequent due to their high capability to �t on the high dimensional

spaces. There are many gradient based optimization methods which have helped

Deep Learning model to be applied to the classi�cation and regression problems and

perform better than the previous models specially in high dimensional spaces thanks

to more calculation power that we have recently achieved.

By using neutral networks we can reconstruct the models for predicting the match

result and scoreline. However we believe that the degree of complexity of our data is

not high enough to have a major improvement by using neural networks, but as we

saw in chapter 3, we expect a better result from neural networks comparing to the

linear models.

Neural networks give us the advantage of being able to have more complicated mod-

els by changing the architecture of the model and the loss function. In this chapter

we are going to analyse the performance of ANNs in scoreline prediction and we will

compare it with the models that we introduced in the previous chapters.

As we already mentioned, to model a bivariate poisson distribution we should have

the estimations of � H , � A , and � C . Similar to the generalized linear models, we can

estimate these values from the match features, but here we can add hidden layers to

capture the nonlinear behavior of the data. Therefore we have implemented a simple

multilayer perceptron with one hidden layer and 3 outputs representing � H , � A , and

� C . Since the natural logarithm function is an appropriate link function for estimating

our outputs, we have used the exponential function as the activation for the output

layer. For the hidden layer we used tanh activation, which implies that if X is the input

data and h = tanh(XW ) is the hidden layer (here W represents its weights), then we

can have � H = exp(h� H ), � A = exp(h� A ), and � C = exp(h� C ) where � H , � A and � C

are the weights of the output nodes � H , � A , and � C . And then we can use � H + � C ,

and � H + � C to estimate the average goals of each team by assuming that they have

a bivariate Poisson distribution. In (Table 4) we can see that the loss of this multilayer

ANN bivariate Poisson is slightly less than the linear bivariate Poisson model.

Another way to use ANN in this context is by modeling the rating methods introduced

in the previuos section. We have seen the the general rating method and the attack

defense method can provide us the indicators to predict the scoreline using them (Fig-

ure 20 and 21). With ANNs we are able to modify the estimation models for computing

these ratings, we have implemented the ANN versions of these methods.

The simplest case for estimating the ratings with neural networks is to use multilayer
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perceptron. But we also can generalize this idea to have a more effective model.

Instead of a single value for the rating, we can extend these ratings to have more

dimensions. It means we can use the match features to estimate the team ratings but

we will a have vector that represents these ratings.

To model the general strength rating of each team using their features, we have used

a multilayer perceptron with one hidden layer. Therefore the team ratings RH and

RA , can be seen as two vectors that we can get by applying the mentioned multilayer

perceptron on the home team and away team features respectively. And then similar

to the original case, the scoreline can be predicted from RH � RA which is a vector

now. Again, we have used a multilayer perceptron to derive � H and � A from RH � RA ,

and we have used the initial match features to estimate � C . In (Figure 22) you can

see a visual representation of this model.

We can have a similar approach to use attack and defense ratings of the teams using

ANNs. Again, we extend the ratings to be a vector instead of a single value, and we

use multilayer perceptron to model them. Note that, since in the original model � H

depends only on the attack rating of the home team and the defense rating of the

away team, here we model � H from the vectors that represent the home attack and

away defense. In other words, we have another multilayer perceptron to predict the

average number of goals of a team using their attack vector and the defense vector of

their opponent.

Therefore, after estimating the ratings, we concatenate home attack and away de-

fense vectors and we use it to estimate � H . Similarly, � A can be model by concate-

nating away attack and home defense and applied the mentiond multilayer perceptron.

Lastly, � C is modeled similar to the last case by uaing the match features. In (Figure

23) you can see the visual representation.

In all of our models, we had to use some speci�c con�gurations to help our neural

networks in the training process. Since the usage of in�ation is independent to the

choice of model, like the other models, we can also apply different in�ation methods

that we introduced in the previous chapter to the neural network models. We have

used tanh function as the activation function of our hidden layers and. To avoid over-

�tting, we have included L1 and L2 regularizations in our hidden layers and use early

stopping to capture the best performance of the models on the validation data, then

we test them on the test data. We also used a stochastic gradient descent algorithm

and batch size equal to 128. The trainings take 5 minutes on GPU: Nvidia Geforce

GTX 1060. In (Figure 24) you can see the loss plot during the training of last two men-

tioned neural network models respectively. In (Table 4) you can see the performances

of these models comparing to the other models on the test set.
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Scoreline Prediction Evaluation
Negative Log-Likelihood

No In�ation Dixon-Coles Diagonal Poisson
GLM 2.888148 2.887778 2.887611
BVP 2.887559 2.887176 2.887009
GR 2.891967 2.891552 2.891261
AD 2.887924 2.887541 2.887415
NNBP 2.887202 2.886817 2.885813
NNGR 2.886271 2.88588 2.886719
NNAD 2.885894 2.885505 2.885377

Table 4: Performances of the scoreline prediction models. GLM: Generalized Linear
Model. BVP: Bivariate Poisson Model. GR: Prediction using difference of rating. AD:
Prediction Using Attack and Defense Ratings. NNBP: Neural Network Bivariate Pois-
son Model. NNGR: Neural Network General Rating Model. NNAD: Neural Network
Attack Defense Rating Model

H R A

RH RA

� R = RH � RA

log(� H ) = f (� R) + h
log(� A ) = f (� � R)

Figure 20: real valued general strength rating system

H R A

� H � H � A � A

log(� H ) = � H + � A + h
log(� A ) = � A + � H

Figure 21: real valued attack defense rating system
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H R RH RA R A

P

� H � A

Figure 22: neural networks general strength rating system

H R � H

� H

� A

� A

R A

P

P

� H

� A

Figure 23: neural networks attack defense rating system

7 Conclusion and Future Works

We can split our work into two general parts. In the �rst part we have analysed the

quality of bookmaker odds, and the performances of the conventional classi�cation

models on predicting the match result. We observed that the probabilities implied

from the bookmakers odds, are more accurate than the models that we trained on

the historical data. Note that we haven't used a powerful data in the sense that there

are a lot of other parameters and conditions that have a direct impact on the match

outcomes, but we haven't considered them. Therefore it wasn't possible to have a reli-

able positive return in match result betting, however, we found a slightly positive return

in betting on having more than 2.5 goals from the maximum odds of the bookmakers.

In the future works, we are intersted in using a more complete data to improve our

result.
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