
ML Project,

Destination prediction for taxis in Porto

Ziyad BENOMAR et William TIOULONG

Supervised by Yannig GOUDE

February 25, 2022

1 Introduction

In this project, we are interested in a problem of predicting taxi arrival points in Porto. This problem
was given in a Kaggle challenge in 2015. The winning teams of the latter proposed remarkable methods
to solve it, and some published papers explaining the details of their approaches. Unfortunately, the
winning approaches (proposed by teams from large companies) require in their majority a very strong
computational power (dedicated machines) and thus cannot be easily reproduced. We have tried to
implement some of these solutions and to propose some adaptations to have a reasonable computation
time. We have also proposed some methods based on ideas seen in the course and our own under-
standing of the problem and the data involved.

For our implementations, we used Python and some of its classical libraries (numpy, scipy, pandas,
seaboen, sklearn, pytorch, ...). In particular for the visualizations of the map of Porto, we used Folium
in some figures and matplotlib + Osmnx in others.

1.1 The Challenge

A full description of the challenge, the data and the rules can be found in [1].
The goal of this challenge is to build a supervised learning model to predict the arrival point of a taxi
trip given certain information about the latter. The training data describes a full year (01/07/2013
to 30/06/2014) of the trajectories of the 442 taxis circulating in Porto (Portugal). Each row of our
training set gives features about a specific trip:

• TRIP ID: (integer) unique identifier of the route

• CALL TYPE: char, indicate the nature of the cab request:

1. ’A’ if the cab is requested from a central cab office,

2. ’B’ if the cab is requested from a specific cab stand,

3. ’C’ otherwise.

1

• ORIGIN CALL: (integer) unique identifier of cab callers (recognized from their phone number)

• ORIGIN STAND: (integer) indicates the stand where the cab is taken if CALL TYPE == ’B’
and NULL otherwise,

• TAXI ID: (integer) unique identifier of the cab driver performing the trip,

• TIMESTAMP: (integer) Unix timestamp indicating the departure time of the trip,

• POLYLINE: (String) can be interpreted as a list containing the GPS coordinates -Longitude,
Latitude) of the cab along its route, taken every 15 seconds

• MISSING DATA: (boolean) indicating if a location is missing in POLYLINE

On the other hand, the testing set contains the same features except for POLYLINE. It contains
only a prefix of POLYLINE instead, that is a list of the first points of the trajectory. The given partial
trajectories do not have the same size, and we do not have any information about what they represent
for the complete trajectory (its half? a given proportion? some distribution? ...), therefore we can
only assume that the cut is random. Of course, we are also provided the arrival point of each trip that
is the objective feature.

1.2 The loss function

As we consider GPS coordinates, the natural loss function to consider is the Haversine distance defined
by, for any two GPS [Longitude, Latitude] coordinates (λ1, ϕ1) and (λ2, ϕ2) in radians

Dhav := 2R arcsin

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cosϕ1 · cosϕ2 · sin2

(
λ2 − λ1

2

))
Where R := 6371km is the earth radius.

1.3 First Insights

The problem is first atypical because of the nature of the features we are given. While we have some
categorical and numerical features, we also have the feature POLYLINE that is a list of variable size.
It is clear that it is the most important feature among all the ones we have, but there is a big difficulty
on how to deal with it and exploit it. A central question in our analysis and our methods will be to
quantify the ”similarity” between two trajectories given their prefixes.

The number of features we have is relatively small, therefore we do not need any dimension reduc-
tion techniques. However, the categorical features need to be vectorized, for example using one-hot
encoding or an embedding, but then we might need dimension reduction because some features might
take a lot of different values (ORIGIN CALL, ORIGIN STAND, TAXI ID).

An advantage we have is the very large number of rows in the training dataset (> 1.5×106 ROWS),
it is therefore easier to clean the training data by simply removing all the rows that are incomplete
or that present irregularities (and still keep > 106 rows). However, a hidden difficulty is to deal with
such amount of data using limited memory and computational power. For simple models this will not
be challenging, but for more advanced models (like neural network), we will need to do the training
through many mini-batches.

To facilitate the training, we can also extract some more meaningful features. For example, from
the TIMESTAMP, we can extract the day of the week, the hour, ..., which might be more significant
than just the timestamp. We can also extract the bearing of the trajectories (angle between the depar-
ture and arrival points), that indicates the average direction in which the taxi moved during the trip, ...

As mentioned in our introduction, this challenge have been studied by a lot of very competent
teams, and many articles give ideas of some approaches used to solve it. By diving into them, we
retained a key idea that came up very often, that is the discretization of the space. Instead of of
predicting the arrival point, many papers try to predict to which cluster the arrival point belongs, to
which cluster the trajectory belongs, ...

2

2 Data Prepossessing

2.1 Data Exploration

Frequent Routes and Concentration Points

The proposed challenge, as we have described it, is a very difficult problem: from the few features
we have, predicting the final destination of a cab cannot be done with a good accuracy. However,
additional information can be found by exploring the different lines of the training set.

Figure 1: Visualization of all the trajectories in the training set. Trajectories with more intense red
color are the more frequented ones.

Starting with a visualization of all the routes in the training set in Figure 1 (the more red the
routes are, the busier they are), one can see that some routes are very busy: these are usually the
major routes leading from the outskirts of the city to the center, or from the center to specific points
outside the city. For example, in Figure 1 we can see a very busy road going to the northwest of the
city, its arrival point is in fact the airport of Porto. Finally, as can be seen from the figure, frequent
routes are not that numerous, and the models we are going to train should implicitly learn that a cab
that has started on a frequent route will probably continue its trajectory on that route.

Having known the most frequent routes, we would also like to know the points where cabs stop
most often, or even if the arrival points have a certain distribution on the map. For this purpose, we
represent on Figure 2 the arrival points of all the routes of the training set, we observe that they are
very concentrated towards the center of the city, but we observe that there are other concentration
points, again for example the airport in the north south of the city.

All of this gives us hope that implicit rules can be learned by our prediction models, and that the
destination prediction problem we have can be solved to some extent.

TIMESTAMP

One of the most important features is without a doubt TIMESTAMP. The time the journey is made
is very strongly correlated to the length of the journey, its direction and its destination. Typically,
mid-week trips around 8:00-9:00 am will be to the center of the city, where businesses and directions are

3

Figure 2: Concentration of the arrival points of the trajectories in the training set. The color varies
from none to blue to yellow when the concentration increases.

concentrated, while evening trips will be in the opposite direction; weekend trips will be more random,
and will generally be to places where restaurants and other entertainment centers are concentrated.

TIMESTAMP can be exploited to the fullest by correctly labeling holidays, public holidays, events
taking place on a certain day of the year and their location etc. We will only extract the week, day
and time of day (quarter hour). We will explain better how we use it in Section 2.2.

ORIGIN STAND

The Origin Stand corresponds to the taxi station from which the customer has called the cab. Thus,
the positions of the 63 different stands correspond to privileged starting point for the different trajec-
tories. For the whole 1 710 670 trajectories in the dataset, only 806 579 start at a cab station, i.e.
approximately 47 %.

The distribution is extremely unbalanced, with a lot of origin stands pretty unused. Two stands
can be enlighted, the stand number 15 and the stand n°57. They correspond respectively to the train
station of Campanha and the Downtown subway station which can explain the great traffic at these
positions.

ORIGIN CALL

The origin call corresponds to trips that have been demanded with a phone number. The ORIGIN
CALL value corresponds to an identifier corresponding to a unique telephone number. 364 770 trips
have been demanded with a telephone which corresponds to 21% of the dataset. The number of distinct
identifier is 57 105 which means that in average a telephone number is used for demanding 6 trips.
However, the distribution is very unbalanced as we can see in 1. In fact, a single telephone identifier
has been used for more than 50.000 trips which we cannot really explain.

4

Figure 3: Distribution of trajectories to the origin stand

count mean std min 25% 50% 75% max
57105 6.38 243.34 1.00 1.00 2.00 4.00 57571.00

Table 1: Repartition of the number of demanded trips by telephone identifiers

TAXI ID

The TAXI id is a unique identifier given to a cab for a total of 448 vehicles. Again, we can observe a
certain variance in the number of trips made by each cab as in 2 even if it is less outrageous than with
the origin call feature.

count mean std min 25% 50% 75% max
448 3813.45 1644.02 1.00 2694.00 3732.00 5023.00 10746.00

Table 2: Repartition of trips by taxi identifiers

It remains to check if this feature can influence the destination. Can we observe a certain tendency
in the destination by only taking a look at the taxi identifier.

In 4, we show the average departure point of the 30 most active taxis (The taxis that have made
the most trips). We can clearly see that all the cabs have not the same behaviour and start from
different points. We could think that each taxi driver leave in a certain area of the city and thus is
more frequently in certain areas. Thus, the TAXI ID could be a useful feature for our models.

2.2 Data Cleaning

We begin by removing all the rows where MISSING DATA = True. Next we remove all the rows
having trajectories that present irregularities: some trajectories have some missing points, or even
capture wrong GPS coordinates at some moment. To get rid of them we compute for each row the
speeds between all the successive GPS coordinates in POLYLINE, and we remove all the trajectories
where the speed exceeds 200km/h. By doing so we find ourselves with 1509203 ≈ 1.6× 106 rows.

A second easy step is to encode the the categorical data by counting the number of values of each
one and replacing each value by an index in that range. The mappings between the values and the in-
dices can be stored for example in a dictionary in order to apply the same transformation to the test set.

We also write a function to create from TIMESTAMP three features indicating the week of the year
∈ {0, . . . , 51}, the day of the week ∈ {0, . . . , 6} and the quarter hour of the day ∈ {0, . . . , 95}. These
features give better information than just the timestamp, because we expect some sort of periodicity
in the trajectories depending on the day, the hour, ...

5

Figure 4: Average departure point for the 30 most active taxis

For the training, we can therefore remove the columns TRIP ID, TIMESTAMP and MISSING DATA.

The functions for the cleaning are gathered in the file data cleaning.py in our code. The code cleans
the train set and creates a new file ”train clean.csv”. The function ”my encode()” must be called on
the test set before evaluating the models we present later, in order to encode the categorical data and
create the additional time features.

6

3 First Approaches

In order to evaluate our results, we present a table of some rankings and scores obtained by teams
who participated in the challenge (see Leaderboard in [1])

Ranking Score
#1 2.03489
#20 2.23584
#100 2.58857
#250 2.98068
#350 4.18867

3.1 Naive model

In this section we will look at a rather naive model, and we will see that by improving it a little bit
we get relatively very good results. We will explain how we built and improved this model step by
step, and we will see how we can achieve a loss of 2.562 using it, beating 78% of the submissions in
the Kaggle challenge.

We start with a rather naive idea, which is simply to give as prediction the last point available in
POLYLINE. No learning is necessary, and this strategy on the test set gives a loss of 2.962.

A second idea is to exploit the direction of movement of the taxi. It is true that if we have only
a small affix of POLYLINE it is difficult to assert the final direction where the taxi goes, but if the
affix is big enough we can have a good estimation of it. What we call direction is in fact the bearing
(angle) between the departure and arrival points of the trajectory, it is given by the formula

θ := atan2 (sin(λ2 − λ1) cosϕ2, sinϕ2 − sinϕ1 cosϕ1 cos(λ2 − λ1))

for any two GPS [Longitude, Latitude] coordinates (λ1, ϕ1) and (λ2, ϕ2) in radians, where atan is the
function defined for any x ∈ R and y > 0 by: with φ := tan

∣∣ y
x

∣∣
atan2(y, x) =


φ sgn(y) x > 0,
π
2 sgn(y) x = 0,

(π − φ) sgn(y) x < 0.

Roughly, what we want to say is that if the given affix of the trajectory given in POLYLINE is
sufficiently large, then we will predict an arrival point that points in the same direction as the bearing
between the departure point and the last point in POLYLINE. but still we need to suitably choose a
point in that direction. Our training set comes here: we extract the arrival points of all the trajectories
in the training set, and ideally we need to make a mean-shift clustering to get the points where the
density of their distribution is locally maximal, but it turns out that simply making a mini-batch k-
means clustering gives clusters good enough for this purpose, because the zones where points are very
concentrated will contain in the end more cluster centers. The advantage of the mini-batch clustering
is that it is very fast compared to other clustering algorithms.
We make the clustering on the arrival points with 1500 cluster centers, and we define the prediction
algorithm 1

The algorithm contains two hyperparameters m and δ, and a function bearing err to be defined.
What we do in this algorithm is that for a given row of the test set, we get the POLYLINE first, and
then if its length is smaller than m (the bearing cannot be estimated correctly) we simply return the
last point we have, and if its length is larger than m then we assume that the bearing between the first
and last point of POLYLINE estimates correctly the bearing between the first point and the arrival
point, and we take all the cluster centers that have a ”similar” bearing and we return their mean.
For the similarity between the bearings we should define an appropriate function bearing err(θ1, θ2)
that is 2π periodic with respect to θ2 − θ1 and maximal when θ2 − θ1 = π. We take therefore

bearing err(θ1, θ2) :=

∣∣∣∣sin(θ2 − θ1
2

)∣∣∣∣ ,
7

Algorithm 1: Naive Bearing Prediction

Input : a row R from the test set, the cluster centers C
Output: a prediction of the arrival point of the trajectory of R

1 traj ← R.POLYLINE;
2 Pi, Pf ← first and last point of traj;
3 if length(traj) < m then
4 return Pf ;
5 end if
6 E ← {};
7 θtraj ← bearing(Pi, Pf);
8 for M ∈ C do
9 θ ← bearing(Pi,M);

10 if bearing err(θtraj, θ) < δ then
11 E ← E ∪ {M}
12 end if

13 end for

14 return
1

#E
∑

M∈E
M ;

and delta is the error tolerated for this error: we accept to take a cluster center in E if bear-
ing err(θ, θPiM) < δ. Figure 5 shows how the algorithm works.

Figure 5: The orange point is the departure point of the trajectory, the green one is its arrival point,
and the red one the prediction given by algorithm 1. the points represented by × are all the 1500
cluster centers. the ones in yellow are those kept by the algorithm and the others are blue. This figure
was done with δ = 0.3.

By sampling a validation set of size 10000 from the training set and tuning the hyper-parameters
m and δ, we find that the values minimizing the loss are

δ⋆ = 0.86 and m⋆ = 370,

and we obtain a loss = 2.564.

8

In order to improve a little bit more this naive model, we can try to determine the distance between
the departure and arrival point of our trajectories. By doing so, we can make a We can push this
naive model even further by considering the other features. If we can estimate the Haversine distance
Lhav between the departure and arrival points of each trajectory, we can put put higher weights on
the cluster centers that are at the right distance from the departure point. Lhav naturally will depend
on many features, in particular on the time features (week, day, hour, ...). We can now try to draw
a dependency between those and Lhav: while we can think of some elaborate models, we can simply
compute compute its mean value for every triplet (week, day, quarter hour), and this will result in a
52 × 7 × 96 matrix, which can be easily stored and manipulated. It is normal to have a non-smooth
dependency with respect to the week and the day, however the dependency with respect to the quarter
hour should be smooth. For that, for each couple (week, day) we replace Lhav(week,day,quarter hour)
by the the average of the two neighboring values, we obtain a smooth dependency as shown in Figure
6. which also avoids overfitting the training set.

Figure 6: Smoothing the values of Lhav(week, day, ·)

Finally, in the output of Algorithm 1, we will return instead a weighted average of the elements of
E , where each cluster center M ∈ E will have a weight proportional to

exp (−α|Lhav(week,day,quarter hour)−Dhav(Pi,M)|)

where Pi is the departure point of the trajectory. Again, by tuning α using the validation set, we
obtain a minimal loss for α = 3.05.

Results

Using this algorithm on the test set gives a loss of 2.562, which is better than the team ranked 84th
in the competition, and beats ≈ 78% of the teams.
Although this is a naive model, the results obtained are pretty good. More importantly, it is a very
strong model in the sense that the training is very fast: all the steps we described earlier (clustering,
computing the Lhav matrix, ...) takes less than 20 minutes.

9

3.2 K-nn

Now, in the next two approaches, we try to tackle the problem by constructing a distance between the
paths of our dataset. The particular form of the problem leads us to use clustering or nearest neighbor
methods to predict the destination. In both cases, building a distance allows us to rely on classical
techniques. However, we do not have standard metrics to compute the distance between two paths in
R2.

Hence, we take up the idea of considering the direction of the path as calculated in the previous
section and then apply nearest neighbor methods. The intuition is the following: if two trajectories
have a similar direction angle and if the last available points in POLYLINE are close, then they should
have close end point.

We therefore rely on two parameters to build this metric: the direction and the last point available.
The chosen metric is therefore a balance between the two:

d(T 1, T 2) = ||pf1 − pf2 ||2 + α| sin
(
θ1 − θ2

2

)
|

where θi is the direction of the trajectory T i computed as in the previous section and α is a balance
parameter to trade off between the direction and the final point.

When computing the distance between our training dataset and the new trajectory, we have to
choose carefully the target points to compare to the last point available. We cannot choose the final
one of course, because the whole metric will be biased and near from the naive predictor that just
returns the last point available. Thus, our approach is to compare the last point available to the half
trip point of the dataset trajectories. As we do not know where the cut for the prediction has been
done (The last point could be as well at the very beginning of the true path and at the very end).

On 7, we see an example of the 5 nearest neighbours computed for the blue trajectory. Thus, we
see there is a balance between the distance with mid position (The blue markers are the half trip
point, we see that they are concentrated in a close area, because of the first term of our distance.)
and the global direction in which the trajectories are going (All the trajectories seem to go to the
North-West). Thus, the balance between those two parameters is very important and the parameter
α has to be fine-tuned carefully with a grid search.

Figure 7: Nearest neighbour method applied to the blue trajectory. In red, the five nearest neighbors
for the blue trajectory with the described distance. The green marker is the true destination of the
considered trajectory. The red markers are the arrival point of the red curves. The blue ones are
the half trip points for the red curves. In purple, the average of all the nearest desination points.
Computed with K = 5 and α = 10

Then, we can simply take the average arrival point of the nearest neighbours to predict the desti-

10

nation of the target path. We could have chosen to weight this average according to the distance of
each of the closest trajectories but we did not make this choice as we did not notice any significant
improvement during our tests. Because it was part of the first approaches, we do not manage to
explore and finetune more deeply the model. We could have for example fine tune more carefully the
K parameter or find a way to add the addtional features into the model.

3.3 Results

Like most nearest neighbor techniques, this technique has the drawback of being difficult to scale for
large volumes of data. Indeed, nearest neighbor methods do not require a training phase. On the
other hand, for each prediction, the model calculates the distance from the target trajectory to all the
trajectories in the dataset, and then has to order them to select the five nearest. We had at our disposal
a very large dataset (more than one million paths). It was then difficult to scale our approach to this
scale with our means and our knowledge, so we restricted ourselves to a smaller dataset composed of
20,000 trajectories (15,000 for the training, 5,000 for the test).

α 1 5 10 15 20
Mean Haversine Error 2.8651 2.6432 2.6046 2.6293 2.7562

Table 3: Test error for the K-NN model with different values of α, with K = 10

Here we achieved the best performance with α = 10. For smaller values of α, the model is reduced
to simply predicting the average destination of the closest trajectories to the last point without taking
into account the direction. Conversely, if α is too big, only the global direction is considered. With
α = 10, we found a kind of balance between both, achieving 2.6046 for the loss, which is less well than
the previous the model.

11

4 GMM+Clustering

Let’s now describe a more complex method that takes into account the entire trajectory to predict
taxi destinations. Inspired by the methods developed in [2], we will proceed in two steps:

• Firs, we classify the trajectories in different clusters in order to enlight some typical trajectories.

• Second, for each of the clusters, a Gaussian mixture model is used to model the set of points in
the different trajectories of the cluster.

With these two steps, we can then proceed to destination prediction as follows: With a target tra-
jectory, we can compute the likelihood associated with the Gaussian models in each cluster. We can
then compute the weighted average of the destinations of each each cluster to be able to predict the
destination.

Then, the final destination is computed by taking the average destination of the K Nearest neigh-
bors.

4.1 The clustering method

In order to get back to the standard clustering methods (hierarchical clustering for example), we need
to define a metric between two trajectories. In order to simplify the problem, we first avoid taking into
account the directional aspect of the path. Thus, a path going from point A to point B will have to be
very similar to a path from point B to point A. The problem is therefore reduced to finding a metric
between two curves in R2, knowing that we have for each of them a discretization at different points.
Roughly speaking, the SSPD distance between two trajectories can be understood as follows: for each
point of curve 1, we calculate its distance to the second curve, then we average all these quantities.
Then, to obtain a distance, we symmetrize the process by doing the same thing with curve 2.

Let’s describe this in detail:

Definition 1 A trajectory T i is defined as a succession of points T i = [pi1, . . . , p
i
ni
] where pik ∈ R2

corresponds to the longitude and the latitude of the vehicle at time i with ni the length of the trajectory
T i

In order to transform this succession of discrete points of trajectory T i into a curve in R2, we use
linear completion between each successive points. In fact, the curve C(T i) associated to the trajectory
T i is a piecewise linear curve in R2 composed by segment [s1, . . . , sni−1] where sk = [pk; pk+1]. For
the sake of brevity, we will assimilate T i and C(T i).

Definition 2 (Segment Path Distance) For two trajectories T 1 and T 2, we define the Segment
Path Distance by:

DSPD(T 1, T 2) =
1

n1

n1∑
i1=1

D(p1i1 , T
2)

where D(x, T) = min
y∈T
||x− y||2

Because this distance is not symmetric in T 1 and T 2, we define the Symmetrized Segment Path
Distance (SSPD) by:

DSSPD(T 1, T 2) =
DSPD(T 1, T 2) +DSPD(T 2, T 1)

2

Given such a metric we can compute clusters using the distance matrix and hierarchical clustering
algorithms. For memory purposes, we have restrained our study to only 15000 trajectories. Indeed,
because we compute the distance matrix for the clustering, storing in memory a matrix of size N ×N
with N = 106 is not feasible.

Then for the clustering part, as in [2] we used a hierarchical clustering with complete linkage and
200 clusters.

12

Figure 8: Hierarchical clustering with SSPD distance (200 clusters, 7 most frequent represented)

4.2 Gaussian Mixture Models

After having identified different types of paths within the dataset, we now need to find a way to
associate to a path the clusters that correspond the most to it. More precisely, we want to elaborate
a statistical model that would give us a score for each cluster. For this, we only consider the set of all
the points that compose the cluster. Then, we model each of these set of points by using a Gaussian
mixture model. Thus, we can compute the compatibility between a path and a cluster by simply using
the likelihood score.

To be more precise, for the cluster K, we consider the set of points DK = {p|p ∈ T with T ∈ K} on
which we will compute a Gaussian mixture model in R2 on this set. For a parameter m ∈ N, we will
try to optimize the parameters Θ = {λ1, µ1,Σ1, . . . , λm, µm,Σm} in order to maximize the following
likelihood:

L(Θ|DK) =
∏

p∈DK

m∑
i=1

λkϕk(p) (1)

where ϕk is a Gaussian distribution on R2 of parameters µk,Σk and
∑m

i=1 λi = 1.
We can now obtain the parameters of our Gaussian Mixture Model on cluster K:

ΘML = argmax
Θ
L(Θ|DK) (2)

Thus, doing that for every cluster we have at our disposal a GMM for each cluster of trajectories.
We select the optimal m parameter by using the BIC criterion. For the sake of computational issues,
we have decided to do the model selection procedure only on a few clusters to select m and generalize
the value to other clusters.

We found that in average choosing 20 components for every GMM give the best performance.
Now, in order to associate a trajectory to the different clusters, we can simply use the log-likelihood

associated to each Gaussian mixture model. For a trajectory T = [p1, . . . , pn], we can compute for a
cluster K:

lK(T) =

N∑
i=1

m∑
k=1

λkϕk(pi) (3)

After doing this with all the clusters, we normalize the scores to make them sum up to 1.
Now, we can also come back to our clustering model and present one of the method we used to

evaluate the quality of the obtained clusters.

13

Figure 9: BIC criterion for the biggest cluster (200 clusters)

To ensure the quality of the clustering, we make sure that our cluster scoring method is consistent.
Indeed, in our prediction task, we will consider only a prefix of the real trajectory. We want to be sure
that the clustering is capturing some kind of path typology. One sound check could be to see if the
half path give similar likelihood results than the whole one. It would be a sign of robustness of our
clustering. To do so, we used the @K metric, very well known in recommendation system to evaluate
this.

First, we compute the K top clusters for the whole trajectory. Then, we compute the K top clusters
for the half-trajectory. The precision @K consists in looking at the percentage of common top clusters
returned by both computations on the top K clusters.

For example the precision@1 corresponds to the percentage of trajectories where both for the half
and the whole trip the top likelihood cluster is the same.

K 1 2 3 5
Precision @K 0.57 0.77 0.87 0.91

Table 4: Precision@K for clustering on 1000 trajectories from the training set with 200 clusters

The Precision@K score are relatively good. For K = 1, the model predict the good cluster on the
training set more than half time. It could sound bad at first sight. In fact, it can be explained by
the fact that with 200 clusters, with only half of the trajectory, a few clusters are very likely to be
associated to it. It is shown by the fact that the Precision@K metric increases fastly when K increases.

4.3 Destination prediction

After describing the clustering and trajectory scoring method, we now describe how we proceed to
predict the destination. First, we associate to each cluster an average destination as follows for a
cluster K:

sK =
1

#K

∑
T=[p1,...,pn]∈K

pn (4)

The final destination is then calculated by taking the average of the sK weighted by the log-
likelihood of the trajectory associated with each cluster.

pdestination =
∑
K

wKsK

14

where wK = lK(T)∑
C Cluster lC(T)

4.4 Adding additional features

The model presented so far does not take into account at all the other features we have at our disposal
like the day of the week, or the time of the day. In order to do so, we do the following:

• For the day of the week, we simply separate this feature between the working week (Monday
to Friday) and the week-end (Saturday and Sunday) to avoid to much categories that do not
capture much information.

• For the hour of the day, we separate the 24 hours into 4 periods of time: 0 pm to 6 pm, 6 to 12,
12 to 18 and 18 to 24.

Instead of generating a new GMM model taking into account those additional features, we will
focus on correcting the weighting of the different clusters using these new features. Clearly, if the
trajectory to be studied takes place between 6pm and midnight, we will give more importance to
clusters containing many trajectories that take place between 6pm and midnight. This technique
makes it possible to take this new information into account with little effort. To ensure its feasibility,
it is necessary to make sure that the clusters do not have a uniform distribution of the variables
considered. In other words, if all the clusters have as many trajectories of each category, the weight
correction will have no effect.

To be more precise, we proceede as following. We define for a cluster K

αday
K (d) =

#{Trajectories in cluster K happening at day d }
#{Trajectories in the dataset happening at day d}

and similarly for the hour of the day:

αhour
K (h) =

#{Trajectories in cluster K happening at hour h }
#{Trajectories in the dataset happening at hour h}

We then modify our computation of the cluster weights for a given trajectory T:

wK(T) =
lK(T)∑

C Cluster lC(T)
αhour
K (h(T))αday

K (d(T))

où d(T) correspond au jour où s’est produit T et h(T) l’heure.

4.4.1 Weakness of the model

Let’s enlight some drawbacks of our process:
First for the clustering part, the choosen metric being very simple, it has the drawback of erasing

some important characteristics of the trajectories we enlight here:

• The temporal component is completely erased. The points are considered independently of their
temporal position in the path. The temporal aspect is only considered to find the points that
follow each other in the path in order to complete the curve linearly. The fact that a car took
twice as long to make the same trip will have very little influence on the final metric. Intuitively,
this simplification seems reasonable. It reduces the noise that could be generated by the vagaries
of urban traffic such as traffic jams for example.

• Secondly, the direction in which the vehicle is travelling is not taken into account. Indeed, for a
trajectory T , if we define T− =by replacing a trajectory T = [p1, . . . , pn] by T− = [pn, . . . p1], we
obtain the same object from the SSPD metric’s perspective. This is explained by the fact that
C(T) = C(−T). Thus, our model treat the same way a trajectory going from A to B and the
inverse trajectory moving from B to A. Thus, when predicting the destination, the model could
easily predict the destination in the wrong way extending the path from the beginning instead
of the end. In order to avoid that, we rely on the fact that typical trajectories are more likely to
go in one direction than another (downtown to outside against the reverse).

15

The first simplification seems to be rather reasonable. For the second, one can try to temper it by
adding an additional weighting on the different points of the trajectory. Indeed, intuitively, the points
at the end of the path are more important than the points at the beginning of the path to classify it
as a typical trajectory.

We therefore introduce a new way to calculate the score of a trajectory with a cluster using the
weighting:

l′K(T) =

N∑
i=1

ωi(N)

m∑
j=1

λj(K)ϕj(pi)

where we have chosen logarithmic weights for ωi(N).

4.4.2 Results

We present here the several results we obtain for the different variants we mentionned.

Model GMM GMM + features GMM + punderation GMM + punderation + features
Mean Haversine Error 2.5146 2.4863 2.5021 2.4690

Table 5: Test error for the different variants of SSPD-GMM models (200 clusters with 20 components
for every GMM trained on 15000 trajectories

We see that adding the additional features: the day of the week and the hour of the day indeed
improve the standard model as we might have guessed with the data exploration. Similarly, adding
the logarithmic punderation to the different points of the target trip slightly improve the model. The
model has been computed only on a dataset of 15000 trajectories. The fact that we had to compute
the distance matrix for all the trajectories severely limit the size of the dataset on which we can work
in a reasonable amount of time and space. Thus, it already takes several hours to compute the SSPD
distance on all pairs of the 15000 trajectories which show the weak scability of this approach.

We also could have improved the model by computing the BIC criterion on each cluster to find
the optimal number of gaussian components. Moreover, here we do not take into account the afore-
mentioned features TAXI ID, ORIGIN STAND and CALL ID even though we mentioned in the data
exploration section that those features could capture some information.

16

5 Neural Network

The solution we explore in this section is the one proposed by the winning team of the challenge, and
it is explained in [3].
The neural network structure used is not very complicated. It can roughly be sumarized as follows

• We use the mean-shift algorithm to cluster the set of all the arrival points of the training set, we
denote (Mi)i≤C the obtained cluster centers,

• The categorical and time features are encoded using an embedding,

• POLYLINE is reshaped and adapted to have a same format for all the rows,

• all these features are fed to a MLP with one hidden layer with the activation function ReLU,

• the output of the MLP is a vector with C coordinates,

• it is transformed to a vector (pi)i≤C with non negative coordinates adding up to 1 using Softmax,

• the predicted destination point is the average of the C cluster centers with weights (pi)i≤C :∑
i≤C

piMi.

Embedding for the Categorical and Time Features

As we saw in the Data Prepossessing section, we extract from the timestamp three features: week,
day and quarter hour. Since these and the categorical features all take a finite number of values, we
make an embedding to simplify their manipulation later. The following table, taken from [3] shows
the number of values taken by each of them and the embedding we associate to it.

Metadata Number of possible values Embedding size
Client ID 57106 10
Taxi ID 448 10
Stand ID 64 10
Quarter hour of the day 96 10
Day of the week 7 10
Week of the year 52 10

The embedding is included in the neural network, and thus it is learned at the same time as the weights
of the MLP.

Dealing with POLYLINE

With no surprise, POLYLINE is again the central feature and the most difficult one to exploit. In
order to implement a neural network, and to run it on the test set, we need training features to be
the same as the test features, and we can only have numerical features. This is obviously not true for
POLYLINE since on one hand the training set provides the whole trajectory while the test set gives
only an affix, and on the other hand POLYLINE is a list with a length that differs from a row to another.

To make POLYLINE in the training set of the same nature as the one in the test set, the authors
of [3] propose to split each trajectory in all the possible ways, and create a new row for each split. A
row where the trajectory contains N points {X1, . . . , XN} will thus generate N each having an affix
{X1, . . . , Xj} with 1 ≤ j ≤ N , and all of them having the same values for the other features. With
our big training set, this makes an even bigger one (≈ 45 times bigger), and training a neural network
using it will require very important computation resources.
To get around this limitation, we have split each trajectory in 5 random positions, which will result in
a training set 5 times bigger, but that we could handle.

Then, to solve the problem of the variable size of POLYLINE, we retain from each trajectory
{X1, . . . , XN} 20 numerical entries:

17

• if N > 10, we keep {X1, . . . , X5, XN−4, . . . , XN}

• otherwise, we keep {X1, . . . , XN , XN , . . . , XN︸ ︷︷ ︸
10−N times

}.

This way we guarantee having 10 points, each containing 2 numerical values. We could also repeat the
first point instead of the last in the case where N < 10.

The Hidden Layer and the Output of the Neural network

The authors of the article propose doing a meanshift clustering of the arrival points of all the trajectories
in the training set, this gave ≈ 3000 clusters. In our case, we will limit ourselves to 1500 clusters,
and we will simply use a K-means clustering instead (much faster) since all that matters in the end is
having centroids concentrated where the points are more concentrated.

As we explained before, the feature POLYLINE gives 20 numerical entries, and the other features
give 60 entries after the embedding. the MLP in the neural network suggested in [3] contains one
hidden layer with 500 neurons, we restrict ours to only 300 neurons with ReLU activation functions,
each taking 80 entries and returning 1500 values. the resulting vector of size 1500 is turned into
a stochastic vector using Softmax, and the final prediction is the average of the centroids with the
weights given by Softmax. Figure 10 shows the structure of the neural network.

Figure 10: Structure of the neural network

The Loss Function

The authors of [3] claim that the training is done more efficiently using the equirectangular distance
defined for any two GPS points [Longitude, Latitude] (λ1, ϕ1) and (λ2, ϕ2) by

Dequirec := R

√(
(λ2 − λ1) cos

(
ϕ2 − ϕ1

2

))2

+ (ϕ2 − ϕ1)
2

We will use for the training this same function. We can easily verify that when λ2 − λ1 and ϕ2 − ϕ1

are small, Dequirec is a good approximation of Dhav. Of course, for the evaluation of the model, we
will use the the Haversine distance.

Implementation

We implemented this neural network using Pytorch. We faced many challenges due to the large amount
of training data we have. While Pytorch is a powerful tool because it enables

18

Results

The neural network we implemented is more simplified than the one in [3]: it contains less neurons
in the hidden layer and the number of clusters we considered is less than in the article, moreover, we
only ran the training on 100 epochs, while [3] does not mention how many epochs were taken. We
could not run it for more epochs because it takes a long time, not only for the training, but also for
just shuffling the data after each epoch (takes up to 10 minutes on our laptops because of the huge
training set).
We did the training with mini-batches of size 256, and for the optimization algorithm we used a
stochastic gradient descent (SGD) with a momentum = 0.9 and a learning rate = 0.01.

It is normal to expect having a more important loss than the winner team. Figure 11 shows the
evolution of the loss over 100 epochs when predicting the destinations of the test set with our neural
network.

Figure 11: The evolution of the loss evaluated on the test set during 100 epochs

It seems like the loss will decrease even more if we run the training for more epochs, but it not
clear if the neural network will converge soon or not.

The final loss we obtain is 2.4968, that would get the ranking 67 in the Kaggle competition.

19

6 Conclusion

To conclude, we present a brief summary of the obtained results with the best performances obtained
with each model.

Model Naive Model KNN GMM NN
Mean Haversine error 2.562 2.6046 2.4690 2.4968

Table 6: Summary of the results

We have presented two naive approaches and two more subtle models. GMM et NN models have
better performance with a slight advantage to GMM. However, we can hope to reach higher perfor-
mances with neural networks by training on a larger number of epochs. We may also underline the fact
that the GMM model has been trained only on a small portion of the dataset (only 15 000 trajectories)
and only using the day of the week and the hour of the day as additional features. Thus, the neural
network model is more scalable and may also be more adapted to other practical settings like online
learning.

Moreover, we can underline the fact that all our work seem to identify two main approaches: the
neural network model uses the arrival point of all the trajectories to partition the space into big zones of
arrival. Then, the neural network is used to train a function to associate trajectories to these clusters.
In some way, it looks like we have divided the city of Porto into a few zones adapted to the problem
and the problem is to to assign a trajectory to these different zones. The approach of the GMM model
is the opposite one. Instead of clustering the points, we cluster the trajectories themselves. The goal
is to enlight some typical paths used by the taxis and then use this typology to make the prediction.

We found on the literature a few variations on those approaches. For example, [4] adopts an
approach similar the neural network model. However, instead of using the mean shift or K-means
clustering, he uses a KD-Tree partition of the space into discrete regions and then try to predict the
right zones with a neural network.

Similarly, [5] use another metric to build a clustering on the trajectories. This method is based on
formalizing a Haussdorf distance between two trajectories.

It could thus be interesting to compare these two paradigms more precisely, highlighting the ad-
vantages and disadvantages of each.

20

References

[1] Kaggle comper. https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/
overview.

[2] Philippe C Besse, Brendan Guillouet, Jean-Michel Loubes, and François Royer. Destination pre-
diction by trajectory distribution-based model. IEEE Transactions on Intelligent Transportation
Systems, 19(8):2470–2481, 2017.

[3] Alexandre De Brébisson, Étienne Simon, Alex Auvolat, Pascal Vincent, and Yoshua Bengio. Ar-
tificial neural networks applied to taxi destination prediction. In Proceedings of the 2015th Inter-
national Conference on ECML PKDD Discovery Challenge - Volume 1526, ECMLPKDDDC’15,
page 40–51, Aachen, DEU, 2015. CEUR-WS.org.

[4] Patrick Ebel, Ibrahim Emre Göl, Christoph Lingenfelder, and Andreas Vogelsang. Destination
prediction based on partial trajectory data. In 2020 IEEE Intelligent Vehicles Symposium (IV),
pages 1149–1155. IEEE, 2020.

[5] Jinyang Chen, Rangding Wang, Liangxu Liu, and Jiatao Song. Clustering of trajectories based on
hausdorff distance. In 2011 international conference on electronics, communications and control
(icecc), pages 1940–1944. IEEE, 2011.

21

https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/overview
https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/overview

	Introduction
	The Challenge
	The loss function
	First Insights

	Data Prepossessing
	Data Exploration
	Data Cleaning

	First Approaches
	Naive model
	K-nn
	Results

	GMM+Clustering
	The clustering method
	Gaussian Mixture Models
	Destination prediction
	Adding additional features
	Weakness of the model
	Results

	Neural Network
	Conclusion

