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Load forecasting is crucial for electrical power system 
operations
• Generation: optimising production planning

• Trading: buy and sell electricity on the markets

• Grid management: transmission, distribution



COVID-19 pandemic is impacting our social 
and economical life

We will present and discuss:

• Problems: how does it impact electricity load in the world, in France in 
particular?

• Model design: how the forecasting model could be adapted to maintain good 
forecasting performances during (and after…) that period, what we did at EDF 
and other related works? Adaptativity vs interpretability?

• Data: what kind of data could be used to improve forecasts?

Electricity production and consumption are of course 
affected



Electricity Data





Impact on  electricity consumption in the world?
Electricity demand dropped quickly with confinement measures.

It steadily recovered as measures were gradually softened; it was still 10% below 2019 levels in EU 
countries in June.

In the last week of July, electricity demand was 5% below 2019 levels in EU countries except Italy. In India, 
recovery seems faster.

IEA, Year-on-year change in weekly electricity demand, weather corrected, in selected countries, January-December 2020, IEA, Paris https://
www.iea.org/data-and-statistics/charts/year-on-year-change-in-weekly-electricity-demand-weather-corrected-in-selected-countries-january-
december-2020



Government responses of different intensities

https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker



How does it impact electricity load in France?
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Comparison with Italy
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Government responses of different intensities evolving  with time:



Algorithms and models



Our forecasting model
We model the electricity consumption with GAM, a sum of linear and smooth additive effects (see Hastie & 
Tibshirani (1990) and Wood (2017))
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and minimum eigenvalue of M . Ergo the major hyperparame-
ter to tune is K the number of gradient iterations to perform.
Theoretical methods are currently being investigated in the
aforementioned paper and have been used to guide our choice
here, but it was also observed empirically that for K between
50 and 100 the results are often good, and thus a number
of iterations in that range is always considered. Note that
this choice usually coincides with the suggested theoretical
guidelines.

III. DATA AND MODEL PRESENTATION

In this section we detail the GAM model that has been used
to forecast the French electricity consumption, as well as the
data on which is has been applied.

A. Presentation of the data

The French electricity consumption is freely available on
the website of the system operator RTE (Réseau et Transport
d’Électricité)1. Our dataset ranges from the 1st of January 2012
to the 7th of June 2020 with a 30 minutes temporal resolution.

As explanatory variables we obtain national averaged tem-
perature on the website of the French weather forecaster
Météo-France2. We took observed temperatures instead of
forecast in order to use only open data and make the results
reproducible. As our goal is to compare different forecasting
strategies on the same data this choice is relevant and allows
a more precise comparison as we don’t include in the score
the uncertainty due to physical meteorological forecast.

We train the models on historical data from the beginning
of 2012 to the end of August 2019. In this paper we are
interested in predicting the load during and after the COVID-
19 lockdown period in France. Since the consumer behavior
changed abruptly during the first month and stabilized during
the second one, we divide the crisis test data in two periods.
The first one ranges from March 16th to April 15th and the
second one from April 16th to June 7th. Note that although the
lockdown officially begun Tuesday the 17th of March 2020
at midday in France, we consider March 16th as the first day
of our lockdown period as the behavior had already changed.
Finally, in order to assess the suitability of the offline methods
and of the ones that do not model the break we consider the
pre-lockdown period between September 1st 2019 and March
15th 2020.

B. The additive model

The time of day is crucial for load forecasting. It doesn’t
appear in the following definition of the additive model

1https://opendata.rte-france.com
2https://donneespubliques.meteofrance.fr/

because we build one model for each instant of day, i.e. we
treat the 48 half-hour time series independently:

yt =
7X

i=1

1X

j=0

↵i,j1DayTypet=i1DLSt=j

+
7X

i=1

�iLoad1Dt1DayTypet=i + �Load1Wt (1)

+ f1(t) + f2(ToYt) + f3(t,Tempt) + f4(Temp95t)
+ f5(Temp99t) + f6(TempMin99t,TempMax99t) + "t ,

where at each time t,
• yt is the electricity load for the considered instant,
• DayTypet is a categorical variable indicating the type of

the day of the week,
• DLSt is a binary variable indicating whether t is in

summer hour or winter hour,
• ToYt is the time of year whose value grows linearly from

0 the 1st of January 00h00 to 1 on the 31st of December
23h30,

• Tempt is the temperature,
• Temp95t and Temp99t are exponentially smoothed tem-

peratures of smoothing factor 0.95 and 0.99,
• TempMin99t and TempMax99t are exponentially

smoothed variables of factor 0.99 of the minimal and
maximal temperature of the day,

• Load1D and Load1W are the load of the day before and
the load of the week before.

The models are trained in R using the library mgcv [33].
As previously mentioned in Section II, we suppose that "t is

a Gaussian noise with 0 mean and constant variance. However
this hypothesis is rarely true in practice and we observe an
auto-correlation structure in the error. We thus propose to
model it with an ARIMA model by selecting the best model
with AIC criteria [34] in the family of ARIMA(p,d,q) where
p, q  100 and d  1 (we use the R function auto.arima of
R. Hyndman). In that case the forecast are performed adding
GAM forecasts and the short term correction of the ARIMA
models exploiting recent observations.

C. Knowledge transfer from Italy
Italy was the first country to be massively affected by the

novel coronavirus in Europe. The Italian government decreed
a total lockdown from the 9th of March 2020, hence 7 days
before the French one. Also it seems reasonable to make the
assumption that countries will respond to the same stay-at-
home order in similar ways, which is reasonable considering
Figure 1. Hence our idea is to use this one week head-start
and to adjust our GAM model for France accordingly to the
changes observed in Italy. We have at our disposal data from
the Italian system operator Terna3 and meteorological data
gathered through the R package Riem [35] available from
the 1st of January 2015 to the 28th of June 2020 with a 1
hour temporal resolution. For each instant, a model similar
to (1) is constructed, with the main differences being that

3https://www.terna.it

Each effect is obtained by penalised spline regression, minimising a GCV criteria to calibrate the amount of 
smoothness:



Covariate description:
• yt is the electricity load for day t.
• DayTypet is the electricity load for day t.
• DLSt is the electricity load for day t.
• Load1Dt is the electricity load for day t.
• ToYt is the time of year whose value grows linearly from 0 on the 1st of January 0h00 to 1 on the 31st of December 

23h30.
• Tempt is the national average temperature.
• Temp95t and Temp99t are exponentially smoothed temperatures of factor 0.95 and 0.99.
• TempMin95t and TempMax95t are daily min and max of the smoothed temperatures



Our forecasting models

French model

Italian model

gam_france <- Load ~ s(DateN, k=3) + DayType:DLS + s(ToY, k = 20, bs = 'cc') + 
s(DateN,Temp, k=c(3,5)) + s(Temp_s95, k=5) + s(Temp_s99, k=5) + s(Temp_s99_min, 
Temp_s99_max) + Load.48:DayType +Load.336

gam_france <- Load ~ s(DateN, k=3) + DayType:DLS  + s(ToY, k = 20, bs = ‘cc', by=DayType) 
+ s(Temp_s95,k=5) +s(Temp_s99,k=5) + Load.24:DayType +Load.168 

Implemented in R (mgcv package)



Of course achieve bad performances after the lockdown
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Online update

• We model the electricity consumption as a sum of time varying additive effects:

• For stability reasons and a good reactivity to changes we restricted to this special case:

• And the time varying coefficients are estimated solving an iterative least square problem with a 
forgetting factor
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a few papers have addressed this problem. [16] is among the
first to propose an efficient strategy to improve the predictions
during the COVID-19 lockdown period in France. Using an
adaptive functional state-space model and assimilating the
period to non-workable days, the author was able to achieve
significantly better performance compared to the french system
operator. In [17] the integration of mobility data is combined
with multi-task learning to improve the forecasting during the
lockdown. They show that mobility is indeed a relevant feature
that should be integrated in load demand models, and that
joint training of a neural network for multiple geographical
areas yields additional benefits and compensates for the lack
of data. However none of these papers are investigating how
GAM could be improved during the lockdown period.

We consider here the framework of GAM and propose two
new adaptive versions of these models. The idea of adaptive
models is to take advantage of data observed in an online
fashion to update an initial model [18]. In every adaptive
forecasting method a trade-off has to be found between a
good reactivity to a change (whether it is a smooth drift
or a break) and a good behavior during stable periods. One
of the most popular algorithm for that is the Kalman filter
[19] already applied to electricity load forecasting in [20] and
[21]. We propose here to couple Kalman filter with GAM to
obtain a forecasting procedure which performs well before
the lockdown leveraging the nice properties of GAM but
also reacting quickly to the sudden change in the data at the
beginning of the lockdown. The second approach we present
leverages ideas from transfer learning to fine-tune a GAM
on the lockdown period. Transfer learning (also referred as
learning-to-learn or knowledge transfer) is a branch of machine
learning that aims at reusing knowledge from one source task
on another target one [22], [23]. It has shown great success,
particularly when the source data is plentily available and the
target one scarce. Recently it has even found applications for
electricity load forecasting to transfer information from one
set of customers to another one [24]. In our case our source
data will be the data before the lockdown and the target one
the data during the lockdown in the country of interest (France
in our study), or even a similar one where the lockdown came
before (e.g. Italy here). The contributions of our work are the
following:

1) Two mathematical approaches are proposed to efficiently
adjust a historical model to consumer behavior change
over time, even in the case where data is scarce. Fur-
thermore they do not require the integration of additional
features.

2) The two methodologies have been successfully applied
on the difficult period of the COVID-19 lockdown in
France, achieving forecast accuracy close to the one
observed before the pandemic.

3) An empirical strategy is suggested to anticipate the im-
pact of the lockdown on the load using another country’s
data, thus enabling satisfactory predictions from the very
first day of stay-at-home order.

The rest of the paper is organized as following. In Section
2 we introduce the two model adaptation methods relying on

Kalman filtering and fine-tuning. Section 3 presents the data
and the GAM model used for the French load and Section
4 summarizes the main results of our experiments. Finally
Section 5 concludes our study and suggests further work.

II. ADAPTATION OF ADDITIVE MODELS

We consider additive models whose assumption is that the
response variable yt is decomposed as

yt = �0 +
dX

j=1

fj(xt,j) + "t ,

where ("t) is an independent identically distributed (i.i.d.) ran-
dom noise, xt = (xt,1, ..., xt,d) are the explanatory variables
at time t, and each nonlinear effect fj is decomposed on a
spline basis (Bj,k) with coefficients �j :

fj(x) =

mjX

k=1

�j,kBj,k(x) .

where mj depends on the dimension of the spline basis. The
coefficients �0,�1, . . . ,�d then are estimated by penalized
least-squares. The penalty term involves the second derivatives
of the functions fj , forcing the effects to be smooth (see [25]).

The random residuals "t are supposed to be Gaussian i.i.d.
in the first place. We will introduce later in the numerical
experiments another variant of this model where the residuals
are supposed to be an ARIMA model optimised with classical
time series methods. We focus here on structural adaptation
of the GAM over time. We present two different levels of
adaptation. First, we consider the reduced problem of adapting
a linear combination of the frozen effects f1, ..., fd. Secondly
we try to adapt the whole model by fine-tuning.

A. Multiplicative correction of the effects

In order to reduce the dimension of the adaptation problem,
a strategy is to freeze the nonlinear effects, and to correct
these effects by a multiplicative factor. Precisely, we define
f(xt) = (1, f1(xt,1), ..., fd(xt,d))> where f j is a normalized
version of fj obtained by subtracting the mean on the train
set and dividing by the standard deviation. Then we adaptively
estimate ✓t such that

E[yt] = ✓>
t f(xt) .

Thus we reduce the number of coefficients from 1 +Pd
j=1 mj to 1 + d. This is a good trade-off to obtain a

simple model which will react quickly to a break in the data
generation process but also complex enough to fit well with
the nonlinear properties of the load.

1) Exponential Least-Squares: An empirical method con-
sists in solving at each step a least-squares problem where
we specify a weight decreasing exponentially with the time
difference. Precisely we define

✓̂t = arg min
✓2Rd

t�1X

s=1

e�µ(t�s)
⇣
ys � ✓>f(xs)

⌘2
,

E[yt] = ft(xt)
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ys � ✓>f(xs)

⌘2
,

Ba, A., Sinn, M., Goude, Y., & Pompey, P. (2012). 



Online update

De Vilmarest, J., & Wintenberger, O. (2020) 

Q diagonal
• set to 0: Kalman Static

• estimated using a greedy algorithm: Kalman Dynamic

• increasing Q  at the beginning of the lockdown Kalman Dynamic Break



Evolution of state coefficients in function of time for the different Kalman configuration
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TABLE I
NUMERICAL PERFORMANCE IN MAPE (%) AND RMSE (MW).

Method 2019/09/01 - 2020/03/15 2020/03/16 - 2020/04/15 2020/04/16 - 2020/06/07
ARIMA 4.10 %, 3341 MW 5.44 %, 3248 MW 5.59 %, 3135 MW
GAM 1.39 %, 1085 MW 4.83 %, 2961 MW 3.12 %, 1753 MW

GAM + ARIMA 1.34 %, 1050 MW 4.28 %, 2654 MW 2.65 %, 1464 MW
exp-LS 1.26 %, 982 MW 3.94 %, 2521 MW 1.97 %, 1029 MW

Kalman Static 1.38 %, 1077 MW 4.81 %, 2923 MW 2.85 %, 1588 MW
Kalman Static break - 2.79 %, 1954 MW 1.59 %, 855 MW

Kalman Dynamic 1.26 %, 979 MW 3.66 %, 2351 MW 1.89 %, 1002 MW
Kalman Dynamic break - 2.73 %, 1902 MW 1.62 %, 854 MW

Fine-tuned - 2.78 %, 1916 MW 1.80 %, 938 MW
GAM � - 4.11 %, 2364 MW 6.09 %, 2713 MW

GAM � - Fine-tuned - 2.81%, 1912 MW 1.72 %, 905 MW
GAM Saturday 8.33 %, 6425 MW 6.09 %, 3970 MW 8.40 %, 4616 MW

Aggregation without GAM Saturday 1.28 %, 1003 MW 3.01 %, 2016 MW 1.43 %, 743 MW
Aggregation with GAM Saturday 1.28 %, 1003 MW 2.56 %, 1643 MW 1.50 %, 769 MW

the effect of this exogenous variables will probably vary with
time.
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a few papers have addressed this problem. [16] is among the
first to propose an efficient strategy to improve the predictions
during the COVID-19 lockdown period in France. Using an
adaptive functional state-space model and assimilating the
period to non-workable days, the author was able to achieve
significantly better performance compared to the french system
operator. In [17] the integration of mobility data is combined
with multi-task learning to improve the forecasting during the
lockdown. They show that mobility is indeed a relevant feature
that should be integrated in load demand models, and that
joint training of a neural network for multiple geographical
areas yields additional benefits and compensates for the lack
of data. However none of these papers are investigating how
GAM could be improved during the lockdown period.

We consider here the framework of GAM and propose two
new adaptive versions of these models. The idea of adaptive
models is to take advantage of data observed in an online
fashion to update an initial model [18]. In every adaptive
forecasting method a trade-off has to be found between a
good reactivity to a change (whether it is a smooth drift
or a break) and a good behavior during stable periods. One
of the most popular algorithm for that is the Kalman filter
[19] already applied to electricity load forecasting in [20] and
[21]. We propose here to couple Kalman filter with GAM to
obtain a forecasting procedure which performs well before
the lockdown leveraging the nice properties of GAM but
also reacting quickly to the sudden change in the data at the
beginning of the lockdown. The second approach we present
leverages ideas from transfer learning to fine-tune a GAM
on the lockdown period. Transfer learning (also referred as
learning-to-learn or knowledge transfer) is a branch of machine
learning that aims at reusing knowledge from one source task
on another target one [22], [23]. It has shown great success,
particularly when the source data is plentily available and the
target one scarce. Recently it has even found applications for
electricity load forecasting to transfer information from one
set of customers to another one [24]. In our case our source
data will be the data before the lockdown and the target one
the data during the lockdown in the country of interest (France
in our study), or even a similar one where the lockdown came
before (e.g. Italy here). The contributions of our work are the
following:

1) Two mathematical approaches are proposed to efficiently
adjust a historical model to consumer behavior change
over time, even in the case where data is scarce. Fur-
thermore they do not require the integration of additional
features.

2) The two methodologies have been successfully applied
on the difficult period of the COVID-19 lockdown in
France, achieving forecast accuracy close to the one
observed before the pandemic.

3) An empirical strategy is suggested to anticipate the im-
pact of the lockdown on the load using another country’s
data, thus enabling satisfactory predictions from the very
first day of stay-at-home order.

The rest of the paper is organized as following. In Section
2 we introduce the two model adaptation methods relying on

Kalman filtering and fine-tuning. Section 3 presents the data
and the GAM model used for the French load and Section
4 summarizes the main results of our experiments. Finally
Section 5 concludes our study and suggests further work.

II. ADAPTATION OF ADDITIVE MODELS

We consider additive models whose assumption is that the
response variable yt is decomposed as

yt = �0 +
dX

j=1

fj(xt,j) + "t ,

where ("t) is an independent identically distributed (i.i.d.) ran-
dom noise, xt = (xt,1, ..., xt,d) are the explanatory variables
at time t, and each nonlinear effect fj is decomposed on a
spline basis (Bj,k) with coefficients �j :

fj(x) =

mjX

k=1

�j,kBj,k(x) .

where mj depends on the dimension of the spline basis. The
coefficients �0,�1, . . . ,�d then are estimated by penalized
least-squares. The penalty term involves the second derivatives
of the functions fj , forcing the effects to be smooth (see [25]).

The random residuals "t are supposed to be Gaussian i.i.d.
in the first place. We will introduce later in the numerical
experiments another variant of this model where the residuals
are supposed to be an ARIMA model optimised with classical
time series methods. We focus here on structural adaptation
of the GAM over time. We present two different levels of
adaptation. First, we consider the reduced problem of adapting
a linear combination of the frozen effects f1, ..., fd. Secondly
we try to adapt the whole model by fine-tuning.

A. Multiplicative correction of the effects

In order to reduce the dimension of the adaptation problem,
a strategy is to freeze the nonlinear effects, and to correct
these effects by a multiplicative factor. Precisely, we define
f(xt) = (1, f1(xt,1), ..., fd(xt,d))> where f j is a normalized
version of fj obtained by subtracting the mean on the train
set and dividing by the standard deviation. Then we adaptively
estimate ✓t such that

E[yt] = ✓>
t f(xt) .

Thus we reduce the number of coefficients from 1 +Pd
j=1 mj to 1 + d. This is a good trade-off to obtain a

simple model which will react quickly to a break in the data
generation process but also complex enough to fit well with
the nonlinear properties of the load.

1) Exponential Least-Squares: An empirical method con-
sists in solving at each step a least-squares problem where
we specify a weight decreasing exponentially with the time
difference. Precisely we define

✓̂t = arg min
✓2Rd

t�1X

s=1

e�µ(t�s)
⇣
ys � ✓>f(xs)

⌘2
,
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in the first place. We will introduce later in the numerical
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time series methods. We focus here on structural adaptation
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adaptation. First, we consider the reduced problem of adapting
a linear combination of the frozen effects f1, ..., fd. Secondly
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In order to reduce the dimension of the adaptation problem,
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version of fj obtained by subtracting the mean on the train
set and dividing by the standard deviation. Then we adaptively
estimate ✓t such that
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Thus we reduce the number of coefficients from 1 +Pd
j=1 mj to 1 + d. This is a good trade-off to obtain a

simple model which will react quickly to a break in the data
generation process but also complex enough to fit well with
the nonlinear properties of the load.

1) Exponential Least-Squares: An empirical method con-
sists in solving at each step a least-squares problem where
we specify a weight decreasing exponentially with the time
difference. Precisely we define

✓̂t = arg min
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ys � ✓>f(xs)

⌘2
,
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Algorithm 1: Kalman Filter

Initialization: the prior ✓1 ⇠ N (✓̂1, P1) where
P1 2 Rd⇥d is positive definite and ✓̂1 2 Rd.

Recursion: at each time step t = 1, 2, . . .
1) Prediction:

E [yt | (xs, ys)s<t,xt] = ✓̂>
t f(xt) ,

V ar [yt | (xs, ys)s<t,xt] = �2 + f(xt)
>Ptf(xt) .

2) Estimation:

✓̂t+1 = ✓̂t +
Ptf(xt)

f(xt)>Ptf(xt) + �2
(yt � ✓̂>

t f(xt)) ,

Pt+1 = Pt �
Ptf(xt)f(xt)>Pt

f(xt)>Ptf(xt) + �2
+Q .

and we predict ŷt = ✓̂>
t f(xt). This formalisation leads to

a single parameter, the exponential forgetting factor µ. The
advantage of this type of adaptation is its simplicity. The
forgetting factor µ is determined by minimizing the RMSE
on a validation set composed of the last year of the train
set for a GAM trained on the beginning of the train set,
then we keep the same µ for the GAM trained on the
whole train set. Previous work has been done on estimating
this parameter online, but leads to computational issues and
potential instability of the model (see [26]).

2) Kalman Filter: We present also a state-space model
approach. We assume the following equations:

yt = ✓>
t f(xt) + "t ,

✓t+1 = ✓t + ⌘t ,

where ("t) and (⌘t) are gaussian white noises of respective
variance / covariance �2 and Q. This is the setting of Kalman
filtering [19], thus we use the recursive formulae of Kalman
providing the expectation and covariance of the state ✓t given
the past observations, and these estimators yield the mean and
variance of yt given the past. This is described in Algorithm 1.

There is a wide literature concerning the setting of the
hyper-parameters ✓̂1, P1,�2, Q on which the Kalman Filter
crucially relies, see for instance [27], [28], [29]. We observe
that the iterates of ✓̂t depend only on ✓̂1, P ⇤

1 = P1/�2 and
Q⇤ = Q/�2, reducing the set of hyper-parameters as in [27].

An interesting degenerate covariance matrix is the static
setting Q⇤ = 0 (the state equation becomes ✓t+1 = ✓t).
Defining ✓̂1 = 0, P ⇤

1 = I , the estimate ✓̂t is a regularized
empirical risk minimizer:

✓̂t = arg min
✓2Rd

 
t�1X

s=1

(ys � ✓>f(xs))
2 + k✓k2

!
.

In order to obtain a dynamic setting the most natural is to
maximize the likelihood on the training set. The Expectation-
Maximization algorithm is a renowned algorithm allowing to
find a local optimum. However the lack of global guarantee
makes it inefficient in our case, and we chose to apply some
kind of grid search. Precisely we decided to set P ⇤

1 = I as

in the static setting, and for a given Q⇤ the optimal ✓̂1 for
the likelihood has a closed-form solution. Q⇤ is of dimension
10⇥10 and we chose to restrict ourselves to diagonal matrices
whose coefficients are in the set {2j ,�30  j  0}. This is
still a set of around 8 ·1014 elements, thus we used an iterative
greedy procedure: we start from Q⇤(0) = 0 and at each step,
having Q⇤(k) in hand, we compute the likelihood of each
matrix where only one coefficient differ from Q⇤(k), and we
define Q⇤(k+1) as the one maximizing the likelihood among
those tested. This algorithm yielded less than 104 evaluations
of the likelihood.

In order to take the lockdown into account in the state-space
representation, it is natural to consider a dynamic estimation
of the state noise covariance. Indeed, we expect the model
to change much faster during and after the lockdown than
before. However, adaptive methods to choose the covariance
matrix necessarily have some latency, and the amplitude of
the crisis motivates modelling a break in the data at the
lockdown beginning. We thus chose to change only the state
noise covariance at the break time T , and for t 6= T we use
Q⇤

t = 0 in the static setting or Q⇤
t = Q⇤ in the dynamic setting.

We don’t want to put any a priori on the break therefore we
defined Q⇤

T = P ⇤
1 = I � Q⇤.

B. Correction of the full model
In the previous methods the nonlinear effects fj(·) were

frozen and adjusted with a multiplicative factor. However it
may be insufficient on certain new types of behavior. Since
learning a new model from scratch is inadvisable considering
the few samples of new data available, we would like to start
from the previously learnt model and adapt it on the few
instances available. This is a particular case of the framework
of transfer learning, more specifically of model fine-tuning
(FT). It consists in reusing a part of the parameters learnt on
the source set (typically neural network layers) and adjust them
with a few gradient iterations on the target one for instance.
Model fine-tuning has been successful in different fields such
as computer vision [30] or even time series forecasting [31].

In our case we will fine-tune the parameters of our GAM.
Since it boils down to a penalized linear regression problem,
fine-tuning on it consists in fine-tuning a linear model. This
framework was elaborated in [32]. Starting from the coeffi-
cients �̂S learnt on the source data, for each time step we
perform K iterations of batch gradient descent with fixed step
size ↵ on following objective function to yield an adjusted
parameter vector �̂t:

Lt(�) =
t�1X

s=1

⇣
ys �

dX

j=1

mjX

k=1

�j,kBj,k(xs,j)
⌘2

Let B(xs) be the vector of the Bj,k(xs,j) and B(Xt) denote
the matrix made by the concatenation (by row) of the B(xs)
for s = 1, . . . , t�1. As discussed by the aforementioned paper,
the choice of the step size ↵ is not crucial, as long as it is
small enough. In practice a good step size is ↵ = ↵⇤/5 where
↵⇤ = 2/

⇣
�max(B(Xt)>B(Xt))+�min(B(Xt)>B(Xt))

⌘
and

�max(M) and �min(M) respectively designate the maximum

 for each time step we perform K  iterations of batch gradient descent with fixed step size  



Transfer Learning from Italian data
Italy was the first country to be massively affected by the COVID 19 in Europe. 
The Italian government decreed a total lockdown 7 days before the French one.
The idea is to use this one week head-start to adjust our GAM model for France accordingly to the changes 
observed in Italy. 
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Algorithm 2: Transfer learning at time step t

Inputs: Step size ↵, number of iterations K, French
and Italian source parameters �̂FR

S , �̂IT
S , scale

parameter ⇢.

If GAM Fine-Tuned:
• Initialize �̂t  �̂FR

S .
• Repeat K times:

�̂t  �̂t � ↵rLFR
t�1(�̂t).

• Predict ŷt = �̂>
t B(xt).

If GAM �:
• Initialize �̂IT

t  �̂IT
S .

• Repeat K times:
�̂IT
t  �̂IT

t � ↵rLIT
t�1(�̂

IT
t ).

• Set �̂t = �̂IT
t � �̂IT

S , �̃t = �̂FR
S + ⇢ �̂t.

• Predict ŷt = �̃>
t B(xt).

If GAM � Fine-Tuned:
• Do fine-tuning on Italian data: �̃t = �̂FR

S + ⇢ �̂t.
• Repeat K times:

�̃t  �̃t � ↵rLFR
t�1(�̃t).

• Predict ŷt = �̃>
t B(xt).

the effects f3(·) and f6(·) are removed, and that f2(·) is
replaced by a sum of 7 effects, one for each day of the
week. Then the same procedure as described in Section II-B
is applied. Let �̂t denote the adjustment of the estimated
coefficients obtained by performing the aforementioned fine-
tuning procedure on the Italian data ranging from the 28th

of February up to date t (typically t could correspond to
the 15th of March, the day before the stay-at-home order
begun in France). We then use �̃t = �̂FR

S + ⇢ �̂t to perform
the predictions for France, where �̂FR

S is the French source
parameters vector and ⇢ is a scale parameter accounting for the
difference of load levels between France and Italy. We refer
to this model as GAM-�. Since the ToY effect is modelized
differently for the Italian model (one function per day of the
week), we will not adjust the corresponding coefficients in
the French model. This is further justified by the fact that in
general the ToY effect is very specific to a country, and it
should be learnt on a whole year at least. Thus adjusting it,
especially on a few weeks, would make little sense. As for
the choice of ⇢, making the assumption that the consumption
in France and Italy are proportional with a factor ⇢ allows
us to use the simple estimate ⇢̂ =

P
t y

FR
t /

P
t y

IT
t summed

over a year for instance. The advantage of GAM-� is that it
can be applied to reduce the prediction error starting at the
very first day of lockdown. One can afterwards combine this
procedure with fine-tuning on the eventually available French
data. The procedures for both regular fine-tuning and GAM-�
are summarized in algorithm 2.

IV. EXPERIMENTS

The presented adaption methods are used for the French
electricity load forecasting problem. While accuracy metrics
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Fig. 3. Moving average of the error of the different models at 8-8:30 PM.

are of paramount importance, we also focus on the interpre-
tation of our results and model behavior.

A. Model dynamics
The moving averages of the errors of the different models

are represented in Figure 3. At the beginning of the lockdown
all the models will tend to overpredict the load, which explains
their highly negative bias. However most of our adaptive
methods quickly accommodate to the lower demand, and
progressively reduce their bias, notably Kalman with dynamic
break and GAM-FT. On the contrary GAM alone does not
succeed in reducing the error (even with the help of an
ARIMA) as it keeps overpredicting the demand. GAM-� on
the other hand is very good during the first couple of days,
efficiently taking advantage of the change in patterns observed
in Italy. However it quickly drifts away over time because
the Italian consumption recovers faster than the French one
during the second month of lockdown (see fig. 1). However
since the objective of GAM-� is to provide an initial boost of
performance during the first couple of weeks while the other
models adjust, this is only a minor issue (see Section IV-B).

We test the Kalman Filter in a static setting and a dynamic
setting as described in Section II-A2. For both we test with
and without the break at lockdown. We display the evolution
of the state estimate ✓̂t in Figure 4 for different settings. In
the static setting the Kalman Filter optimizes a state which
is assumed to be constant, thus the evolution is very slow,
whereas in the dynamic setting we observe faster changes.
Moreover, we observe faster changes even in the static setting
during lockdown, because the model drifts faster. Introducing
a break covariance matrix at the lockdown beginning allows
the model to adapt much faster.

The only coefficients of �̂t with a significant evolution
after fine-tuning are the ones pertaining to the lagged load
(� for Load1W and �i, i = 1..7 for Load1D) and have been
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t B(xt).

If GAM �:
• Initialize �̂IT

t  �̂IT
S .

• Repeat K times:
�̂IT
t  �̂IT

t � ↵rLIT
t�1(�̂

IT
t ).

• Set �̂t = �̂IT
t � �̂IT

S , �̃t = �̂FR
S + ⇢ �̂t.

• Predict ŷt = �̃>
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the effects f3(·) and f6(·) are removed, and that f2(·) is
replaced by a sum of 7 effects, one for each day of the
week. Then the same procedure as described in Section II-B
is applied. Let �̂t denote the adjustment of the estimated
coefficients obtained by performing the aforementioned fine-
tuning procedure on the Italian data ranging from the 28th

of February up to date t (typically t could correspond to
the 15th of March, the day before the stay-at-home order
begun in France). We then use �̃t = �̂FR

S + ⇢ �̂t to perform
the predictions for France, where �̂FR

S is the French source
parameters vector and ⇢ is a scale parameter accounting for the
difference of load levels between France and Italy. We refer
to this model as GAM-�. Since the ToY effect is modelized
differently for the Italian model (one function per day of the
week), we will not adjust the corresponding coefficients in
the French model. This is further justified by the fact that in
general the ToY effect is very specific to a country, and it
should be learnt on a whole year at least. Thus adjusting it,
especially on a few weeks, would make little sense. As for
the choice of ⇢, making the assumption that the consumption
in France and Italy are proportional with a factor ⇢ allows
us to use the simple estimate ⇢̂ =

P
t y

FR
t /

P
t y

IT
t summed

over a year for instance. The advantage of GAM-� is that it
can be applied to reduce the prediction error starting at the
very first day of lockdown. One can afterwards combine this
procedure with fine-tuning on the eventually available French
data. The procedures for both regular fine-tuning and GAM-�
are summarized in algorithm 2.

IV. EXPERIMENTS

The presented adaption methods are used for the French
electricity load forecasting problem. While accuracy metrics

Nov Jan Mar May

−2
00

0
−1

00
0

0
10

00
20

00

Date

14
 d

ay
s 

m
ov

in
g 

av
er

ag
e 

of
 th

e 
er

ro
r (

M
W

)

DynamicBreak
StaticBreak
Dynamic
Static
exp−LS
ARIMA

GAM+ARIMA
GAM
GAM delta
GAM delta FT
GAM FT

Fig. 3. Moving average of the error of the different models at 8-8:30 PM.

are of paramount importance, we also focus on the interpre-
tation of our results and model behavior.

A. Model dynamics
The moving averages of the errors of the different models

are represented in Figure 3. At the beginning of the lockdown
all the models will tend to overpredict the load, which explains
their highly negative bias. However most of our adaptive
methods quickly accommodate to the lower demand, and
progressively reduce their bias, notably Kalman with dynamic
break and GAM-FT. On the contrary GAM alone does not
succeed in reducing the error (even with the help of an
ARIMA) as it keeps overpredicting the demand. GAM-� on
the other hand is very good during the first couple of days,
efficiently taking advantage of the change in patterns observed
in Italy. However it quickly drifts away over time because
the Italian consumption recovers faster than the French one
during the second month of lockdown (see fig. 1). However
since the objective of GAM-� is to provide an initial boost of
performance during the first couple of weeks while the other
models adjust, this is only a minor issue (see Section IV-B).

We test the Kalman Filter in a static setting and a dynamic
setting as described in Section II-A2. For both we test with
and without the break at lockdown. We display the evolution
of the state estimate ✓̂t in Figure 4 for different settings. In
the static setting the Kalman Filter optimizes a state which
is assumed to be constant, thus the evolution is very slow,
whereas in the dynamic setting we observe faster changes.
Moreover, we observe faster changes even in the static setting
during lockdown, because the model drifts faster. Introducing
a break covariance matrix at the lockdown beginning allows
the model to adapt much faster.

The only coefficients of �̂t with a significant evolution
after fine-tuning are the ones pertaining to the lagged load
(� for Load1W and �i, i = 1..7 for Load1D) and have been

We fit a similar GAM on Italian Data, we suppose the variation before/during the lockdown is similar 
in Italy and France:

Let      be the adjustment done on the Italian GAM coefficients when fine-tuned version on the 
beginning of march (before the 15th) and     a scaling factor between France and Italian data.
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Algorithm 2: Transfer learning at time step t

Inputs: Step size ↵, number of iterations K, French
and Italian source parameters �̂FR

S , �̂IT
S , scale

parameter ⇢.

If GAM Fine-Tuned:
• Initialize �̂t  �̂FR

S .
• Repeat K times:

�̂t  �̂t � ↵rLFR
t�1(�̂t).

• Predict ŷt = �̂>
t B(xt).

If GAM �:
• Initialize �̂IT

t  �̂IT
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• Repeat K times:
�̂IT
t  �̂IT

t � ↵rLIT
t�1(�̂

IT
t ).

• Set �̂t = �̂IT
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S , �̃t = �̂FR
S + ⇢ �̂t.

• Predict ŷt = �̃>
t B(xt).

If GAM � Fine-Tuned:
• Do fine-tuning on Italian data: �̃t = �̂FR

S + ⇢ �̂t.
• Repeat K times:

�̃t  �̃t � ↵rLFR
t�1(�̃t).

• Predict ŷt = �̃>
t B(xt).

the effects f3(·) and f6(·) are removed, and that f2(·) is
replaced by a sum of 7 effects, one for each day of the
week. Then the same procedure as described in Section II-B
is applied. Let �̂t denote the adjustment of the estimated
coefficients obtained by performing the aforementioned fine-
tuning procedure on the Italian data ranging from the 28th

of February up to date t (typically t could correspond to
the 15th of March, the day before the stay-at-home order
begun in France). We then use �̃t = �̂FR

S + ⇢ �̂t to perform
the predictions for France, where �̂FR

S is the French source
parameters vector and ⇢ is a scale parameter accounting for the
difference of load levels between France and Italy. We refer
to this model as GAM-�. Since the ToY effect is modelized
differently for the Italian model (one function per day of the
week), we will not adjust the corresponding coefficients in
the French model. This is further justified by the fact that in
general the ToY effect is very specific to a country, and it
should be learnt on a whole year at least. Thus adjusting it,
especially on a few weeks, would make little sense. As for
the choice of ⇢, making the assumption that the consumption
in France and Italy are proportional with a factor ⇢ allows
us to use the simple estimate ⇢̂ =

P
t y

FR
t /

P
t y

IT
t summed

over a year for instance. The advantage of GAM-� is that it
can be applied to reduce the prediction error starting at the
very first day of lockdown. One can afterwards combine this
procedure with fine-tuning on the eventually available French
data. The procedures for both regular fine-tuning and GAM-�
are summarized in algorithm 2.

IV. EXPERIMENTS

The presented adaption methods are used for the French
electricity load forecasting problem. While accuracy metrics
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are of paramount importance, we also focus on the interpre-
tation of our results and model behavior.

A. Model dynamics
The moving averages of the errors of the different models

are represented in Figure 3. At the beginning of the lockdown
all the models will tend to overpredict the load, which explains
their highly negative bias. However most of our adaptive
methods quickly accommodate to the lower demand, and
progressively reduce their bias, notably Kalman with dynamic
break and GAM-FT. On the contrary GAM alone does not
succeed in reducing the error (even with the help of an
ARIMA) as it keeps overpredicting the demand. GAM-� on
the other hand is very good during the first couple of days,
efficiently taking advantage of the change in patterns observed
in Italy. However it quickly drifts away over time because
the Italian consumption recovers faster than the French one
during the second month of lockdown (see fig. 1). However
since the objective of GAM-� is to provide an initial boost of
performance during the first couple of weeks while the other
models adjust, this is only a minor issue (see Section IV-B).

We test the Kalman Filter in a static setting and a dynamic
setting as described in Section II-A2. For both we test with
and without the break at lockdown. We display the evolution
of the state estimate ✓̂t in Figure 4 for different settings. In
the static setting the Kalman Filter optimizes a state which
is assumed to be constant, thus the evolution is very slow,
whereas in the dynamic setting we observe faster changes.
Moreover, we observe faster changes even in the static setting
during lockdown, because the model drifts faster. Introducing
a break covariance matrix at the lockdown beginning allows
the model to adapt much faster.

The only coefficients of �̂t with a significant evolution
after fine-tuning are the ones pertaining to the lagged load
(� for Load1W and �i, i = 1..7 for Load1D) and have been
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parameter ⇢.

If GAM Fine-Tuned:
• Initialize �̂t  �̂FR
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• Predict ŷt = �̃>
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If GAM � Fine-Tuned:
• Do fine-tuning on Italian data: �̃t = �̂FR

S + ⇢ �̂t.
• Repeat K times:

�̃t  �̃t � ↵rLFR
t�1(�̃t).

• Predict ŷt = �̃>
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the effects f3(·) and f6(·) are removed, and that f2(·) is
replaced by a sum of 7 effects, one for each day of the
week. Then the same procedure as described in Section II-B
is applied. Let �̂t denote the adjustment of the estimated
coefficients obtained by performing the aforementioned fine-
tuning procedure on the Italian data ranging from the 28th

of February up to date t (typically t could correspond to
the 15th of March, the day before the stay-at-home order
begun in France). We then use �̃t = �̂FR

S + ⇢ �̂t to perform
the predictions for France, where �̂FR

S is the French source
parameters vector and ⇢ is a scale parameter accounting for the
difference of load levels between France and Italy. We refer
to this model as GAM-�. Since the ToY effect is modelized
differently for the Italian model (one function per day of the
week), we will not adjust the corresponding coefficients in
the French model. This is further justified by the fact that in
general the ToY effect is very specific to a country, and it
should be learnt on a whole year at least. Thus adjusting it,
especially on a few weeks, would make little sense. As for
the choice of ⇢, making the assumption that the consumption
in France and Italy are proportional with a factor ⇢ allows
us to use the simple estimate ⇢̂ =

P
t y

FR
t /

P
t y

IT
t summed

over a year for instance. The advantage of GAM-� is that it
can be applied to reduce the prediction error starting at the
very first day of lockdown. One can afterwards combine this
procedure with fine-tuning on the eventually available French
data. The procedures for both regular fine-tuning and GAM-�
are summarized in algorithm 2.

IV. EXPERIMENTS

The presented adaption methods are used for the French
electricity load forecasting problem. While accuracy metrics
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are of paramount importance, we also focus on the interpre-
tation of our results and model behavior.

A. Model dynamics
The moving averages of the errors of the different models

are represented in Figure 3. At the beginning of the lockdown
all the models will tend to overpredict the load, which explains
their highly negative bias. However most of our adaptive
methods quickly accommodate to the lower demand, and
progressively reduce their bias, notably Kalman with dynamic
break and GAM-FT. On the contrary GAM alone does not
succeed in reducing the error (even with the help of an
ARIMA) as it keeps overpredicting the demand. GAM-� on
the other hand is very good during the first couple of days,
efficiently taking advantage of the change in patterns observed
in Italy. However it quickly drifts away over time because
the Italian consumption recovers faster than the French one
during the second month of lockdown (see fig. 1). However
since the objective of GAM-� is to provide an initial boost of
performance during the first couple of weeks while the other
models adjust, this is only a minor issue (see Section IV-B).

We test the Kalman Filter in a static setting and a dynamic
setting as described in Section II-A2. For both we test with
and without the break at lockdown. We display the evolution
of the state estimate ✓̂t in Figure 4 for different settings. In
the static setting the Kalman Filter optimizes a state which
is assumed to be constant, thus the evolution is very slow,
whereas in the dynamic setting we observe faster changes.
Moreover, we observe faster changes even in the static setting
during lockdown, because the model drifts faster. Introducing
a break covariance matrix at the lockdown beginning allows
the model to adapt much faster.

The only coefficients of �̂t with a significant evolution
after fine-tuning are the ones pertaining to the lagged load
(� for Load1W and �i, i = 1..7 for Load1D) and have been
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Transfer Learning from Italian data+fine-tuning

The advantage of GAM-δ is that it can be applied to reduce the prediction error starting at the very first day 
of lockdown. 

One can afterwards combine this procedure with fine-tuning on the eventually available French data. 
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assumption that countries will respond to the same stay-at-
home order in similar ways, which is reasonable considering
Figure 1. Hence our idea is to use this one week head-start
and to adjust our GAM model for France accordingly to
the changes observed in Italy. We have at our disposal data
from the Italian system operator Terna3 and meteorological
data gathered through the R package Riem available from
the 1st of January 2015 to the 28th of June 2020 with a 1
hour temporal resolution. For each instant, a model similar
to (1) is constructed on the data on the range 2015-2019,
with the main differences being that the effects f3(·) and
f6(·) are removed, and that f2(·) is replaced by a sum of
7 effects, one for each day of the week. Then the same
procedure as described in Section II-B is applied. Let �̂t
denote the adjustment of the estimated coefficients obtained
by performing the aforementioned fine-tuning procedure on
the Italian data ranging from the 28th of February up to date
t (typically t could correspond to the 15th of March, the day
before the stay-at-home order begun in France). We then use
�̃t = �̂FR

S +⇢ �̂t to perform the predictions for France, where
�̂FR
S is the French source parameters vector and ⇢ is a scale

parameter accounting for the difference of load levels between
France and Italy. We refer to this model as GAM-�. Since
the ToY effect is modelized differently for the Italian model
(one function per day of the week), we will not adjust the
corresponding coefficients in the French model. This is further
justified by the fact that in general the ToY effect is very
specific to a country, and it should be learned on a whole year
at least. As for the choice of ⇢, making the assumption that the
consumption in France and Italy are proportional with a factor
⇢ allows us to use the simple estimate ⇢̂ =

P
t y

FR
t /

P
t y

IT
t

summed over a year for instance. The advantage of GAM-� is
that it can be applied to reduce the prediction error starting at
the very first day of lockdown. One can afterwards combine
this procedure with fine-tuning on the eventually available
French data. The procedures for both regular fine-tuning and
GAM-� are summarized in Algorithm 2.

IV. EXPERIMENTS

The presented adaption methods are used for the French
electricity load forecasting problem. While accuracy metrics
are of paramount importance, we also focus on the interpre-
tation of our results and on model behavior.

A. Model dynamics
The moving average of the error of the different models are

represented in Figure 3. At the beginning of the lockdown all
the models will tend to overpredict the load. However most
of our adaptive methods quickly accommodate to the lower
demand and progressively reduce their bias, notably Kalman
with dynamic break and GAM fine-tuned. On the contrary
regular GAM does not succeed in reducing the error (even
with the help of an ARIMA) as it keeps overpredicting the
demand. GAM-� on the other hand is very good during the
first couple of days, efficiently taking advantage of the change

3https://www.terna.it

Algorithm 2: Transfer learning at time step t

Inputs: Step size ↵, number of iterations K, French
and Italian source parameters �̂FR

S , �̂IT
S , scale

parameter ⇢.

If GAM fine-tuned:

• Initialize �̂t  �̂FR
S .

• Repeat K times:
�̂t  �̂t � ↵rLFR

t�1(�̂t).
• Predict ŷt = �̂>

t B(xt).

If GAM-�:

• Initialize �̂IT
t  �̂IT

S .
• Repeat K times:

�̂IT
t  �̂IT

t � ↵rLIT
t�1(�̂

IT
t ).

• Set �̂t = �̂IT
t � �̂IT

S , �̃t = �̂FR
S + ⇢ �̂t.

• Predict ŷt = �̃>
t B(xt).

If GAM-� fine-tuned:

• Do fine-tuning on Italian data: �̃t = �̂FR
S + ⇢ �̂t.

• Repeat K times:
�̃t  �̃t � ↵rLFR

t�1(�̃t).
• Predict ŷt = �̃>

t B(xt).
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in patterns observed in Italy. However it quickly drifts away
over time because the Italian consumption recovers faster than
the French one during the second month of lockdown (see fig.
1). However since the objective of GAM-� is to provide an
initial boost of performance during the first couple of weeks
while the other models adjust, this is only a minor issue (see
Section IV-B).

We test the Kalman filter in a static and a dynamic setting as
described in Section II-A2. For both we assess the introduction
of a break at lockdown. The evolution of the state estimate ✓̂t
is displayed in Figure 4 for different settings. In the static
setting the Kalman filter optimizes a state which is assumed
to be constant, hence explaining a slow evolution compared to



Cesa-Bianchi, N., & Lugosi, G. (2006)

• We sequentially observe a bounded sequence of observations 

• We forecast it step by step and have access at each time t to a set of experts, 
this experts could be any ML/physical model, human forecasts…

• We then build an aggregation forecast :

x1,t, ..., xK,t 2 [0, B]K

y1, ..., yT 2 [0, B]

byt =
KX

j=1

pj,txj,t

• Evaluation of the performances of the individual forecasts and the aggregation is measured with 
any convex loss e.g. 

• The experts and the aggregation are then updated

lt(x) = (yt � x)2

Online expert aggregation



Online expert aggregation

• To fix the mind let’s consider the EWA algorithm (Exponentially Weighted Aggregation)

• It depends on a single parameter (learning rate)      and the weights are updated this way:   ⌘

• Oracle bounds of this form can then be obtained (loss  in [0,B])

Vovk, V. G. (1990)
Warmuth & Littlestone (1994)

• A priori information can be added by using sleeping experts: activation or not of an expert at time t

Wintenberger(2017)
Gaillard, Stoltz & Van Erven (2014)
Devaine, M., Gaillard, P., Goude, Y., & Stoltz, G. (2013)



How to choose the experts?

Trade-off between diversity among the experts / performance of each expert

In practice diversity can be obtained by different ways:

• DATA: using  different data sets,  manipulating  data distribution (bagging, boosting…), feature 
set manipulation (RF), spatial/temporal resolution, time subsets.

• METHODS: linear models, additive models, non-parametric models, functional data regression, 
time series, RF, boosting,… Among a single method playing with parameters/objective functions.

Here we consider:

• DATA: french data, Italian data, time split according to different lockdown periods

• METHODS: GAM, ARIMA, Kalman (different Q), transfer, an « expert » correction of GAM: GAM 
saturday



5

assumption that countries will respond to the same stay-at-
home order in similar ways, which is reasonable considering
Figure 1. Hence our idea is to use this one week head-start
and to adjust our GAM model for France accordingly to
the changes observed in Italy. We have at our disposal data
from the Italian system operator Terna3 and meteorological
data gathered through the R package Riem available from
the 1st of January 2015 to the 28th of June 2020 with a 1
hour temporal resolution. For each instant, a model similar
to (1) is constructed on the data on the range 2015-2019,
with the main differences being that the effects f3(·) and
f6(·) are removed, and that f2(·) is replaced by a sum of
7 effects, one for each day of the week. Then the same
procedure as described in Section II-B is applied. Let �̂t
denote the adjustment of the estimated coefficients obtained
by performing the aforementioned fine-tuning procedure on
the Italian data ranging from the 28th of February up to date
t (typically t could correspond to the 15th of March, the day
before the stay-at-home order begun in France). We then use
�̃t = �̂FR

S +⇢ �̂t to perform the predictions for France, where
�̂FR
S is the French source parameters vector and ⇢ is a scale

parameter accounting for the difference of load levels between
France and Italy. We refer to this model as GAM-�. Since
the ToY effect is modelized differently for the Italian model
(one function per day of the week), we will not adjust the
corresponding coefficients in the French model. This is further
justified by the fact that in general the ToY effect is very
specific to a country, and it should be learned on a whole year
at least. As for the choice of ⇢, making the assumption that the
consumption in France and Italy are proportional with a factor
⇢ allows us to use the simple estimate ⇢̂ =

P
t y

FR
t /
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t y
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t

summed over a year for instance. The advantage of GAM-� is
that it can be applied to reduce the prediction error starting at
the very first day of lockdown. One can afterwards combine
this procedure with fine-tuning on the eventually available
French data. The procedures for both regular fine-tuning and
GAM-� are summarized in Algorithm 2.

IV. EXPERIMENTS

The presented adaption methods are used for the French
electricity load forecasting problem. While accuracy metrics
are of paramount importance, we also focus on the interpre-
tation of our results and on model behavior.

A. Model dynamics
The moving average of the error of the different models are

represented in Figure 3. At the beginning of the lockdown all
the models will tend to overpredict the load. However most
of our adaptive methods quickly accommodate to the lower
demand and progressively reduce their bias, notably Kalman
with dynamic break and GAM fine-tuned. On the contrary
regular GAM does not succeed in reducing the error (even
with the help of an ARIMA) as it keeps overpredicting the
demand. GAM-� on the other hand is very good during the
first couple of days, efficiently taking advantage of the change
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Inputs: Step size ↵, number of iterations K, French
and Italian source parameters �̂FR
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parameter ⇢.

If GAM fine-tuned:

• Initialize �̂t  �̂FR
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• Repeat K times:
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• Predict ŷt = �̂>
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• Predict ŷt = �̃>
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If GAM-� fine-tuned:

• Do fine-tuning on Italian data: �̃t = �̂FR
S + ⇢ �̂t.

• Repeat K times:
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• Predict ŷt = �̃>
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in patterns observed in Italy. However it quickly drifts away
over time because the Italian consumption recovers faster than
the French one during the second month of lockdown (see fig.
1). However since the objective of GAM-� is to provide an
initial boost of performance during the first couple of weeks
while the other models adjust, this is only a minor issue (see
Section IV-B).

We test the Kalman filter in a static and a dynamic setting as
described in Section II-A2. For both we assess the introduction
of a break at lockdown. The evolution of the state estimate ✓̂t
is displayed in Figure 4 for different settings. In the static
setting the Kalman filter optimizes a state which is assumed
to be constant, hence explaining a slow evolution compared to
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TABLE I
NUMERICAL PERFORMANCE IN MAPE (%) AND RMSE (MW).

Method 2019/09/01 - 2020/03/15 2020/03/16 - 2020/04/15 2020/04/16 - 2020/06/07
ARIMA 4.10 %, 3341 MW 5.44 %, 3248 MW 5.59 %, 3135 MW

GAM 1.39 %, 1085 MW 4.83 %, 2961 MW 3.12 %, 1753 MW
GAM + ARIMA 1.34 %, 1050 MW 4.28 %, 2654 MW 2.65 %, 1464 MW

exp-LS 1.26 %, 982 MW 3.94 %, 2521 MW 1.97 %, 1029 MW
Kalman Static 1.38 %, 1077 MW 4.81 %, 2923 MW 2.85 %, 1588 MW

Kalman StaticBreak - 2.79 %, 1954 MW 1.59 %, 855 MW
Kalman Dynamic 1.26 %, 979 MW 3.66 %, 2351 MW 1.89 %, 1002 MW

Kalman DynamicBreak - 2.73 %, 1902 MW 1.62 %, 854 MW

Fine-tuned - 2.78 %, 1917 MW 1.80 %, 938 MW
GAM � - 4.11 %, 2364 MW 6.09 %, 2713 MW

GAM � - Fine-tuned - 2.81%, 1912 MW 1.72 %, 905 MW
GAM Saturday 8.33 %, 6425 MW 6.09 %, 3970 MW 8.40 %, 4616 MW

Aggregation without GAM Saturday 1.28 %, 1005 MW 3.01 %, 2014 MW 1.44 %, 745 MW

Aggregation with GAM Saturday 1.28 %, 1005 MW 2.54 %, 1636 MW 1.49 %, 766 MW
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significant improvement (Diebold-Mariano test) between exp-LS and kalman/fine-tuning approaches
also for aggregation over kalman/fine-tuning approaches



Interpretability



• GAM and adaptive GAMS are  interpetable  by design but can suffer from identifiability issues, 
specially locally in time

• Aggregation of experts  can be seen as a forecasting (semi) blackbox  that can be interpreted

• using the time varying weights and the associated  contribution to  the forecasts

• see  it as a time varying blackbox and use marginal and/or ALE plots to interpretative it

byt =
KX

j=1

pj,txj,t



Opera outputs



ALE plot  Apley, D. W. and J. Zhu (2016) and adaptive ALE plots, exemple of  a simple 
aggregation of 2 models (RF  +  GAM):

Winter  2019-2020 T° effects



Time evolution of winter  2019-2020 T° effects



Complementary Data 
Ongoing work



Traffic Data: https://dataviz.cerema.fr/trafic-routier/

Mobility Data

GAM with smoothed traffic data improves by 1% (online update) error during lockdown
after lockdown the effect of traffic is not consistent.
See also the work of Chen, Y., Yang, W., & Zhang, B. (2020) using mobility data from location 
app: 
https://www.google.com/covid19/mobility/
https://www.apple.com/covid19/mobility

Charansonney, L. (2018)
Chen, Y., Yang, W., & Zhang, B. (2020) 

• Occupancy rate
• Traffic flow

https://dataviz.cerema.fr/trafic-routier/
https://dataviz.cerema.fr/trafic-routier/
https://www.google.com/covid19/mobility/
https://www.apple.com/covid19/mobility
https://www.google.com/covid19/mobility/
https://www.apple.com/covid19/mobility


 

High frequency activity data
High frequency activity data is currently used by INSEE in his « note de conjoncture » 
to measure  socio-economical impact of the COVID in France:
-traffic data
-google mobility data  
-google trend  (keywords: Train, Vol, Hôtel, Restaurant, Cinéma, Théâtre…)
-electricity load data  

NOTE DE CONJONCTURE Décembre 2020 © Insee 2020

https://www.enedis.fr/coefficients-des-profils
https://www.enedis.fr/coefficients-des-profils


Dynamic Panel from Smart Meters
https://www.enedis.fr/coefficients-des-profilsData published by Enedis (French DSO) since June 2018
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Conclusions/Perspectives
We exhibit the consequences of the lockdown on electricity time series forecasting in France

• Sudden change in level and shape of electricity load. 

• Similarities in Italy/France, time shifted

Related statistical methodes/pbs:

• Online update: Kalman, aggregation of experts

• Transfer learning

Open problems/perspectives

• Enrich with new data from mobility, local/panel data, socio-economic data

• Spatio-temporal models to reflect local impact of the pandemic (regional level)

• Kalman and transfer learning with more black box models: RF, deep learning (see IEEE post-coved 
competition win)

• VIKING: Variational Bayesian Tracking to automatize the Kalman updates

• Other  data: 1st place at IEEE competition  https://ieee-dataport.org/competitions/day-ahead-electricity-
demand-forecasting-post-covid-paradigm with similar methods

Open problems/perspectives regarding Interpretbility

• Error propagation among the different times updates (lag effects,  kalman, aggregation)

https://ieee-dataport.org/competitions/day-ahead-electricity-demand-forecasting-post-covid-paradigm
https://ieee-dataport.org/competitions/day-ahead-electricity-demand-forecasting-post-covid-paradigm
https://ieee-dataport.org/competitions/day-ahead-electricity-demand-forecasting-post-covid-paradigm
https://ieee-dataport.org/competitions/day-ahead-electricity-demand-forecasting-post-covid-paradigm
https://ieee-dataport.org/competitions/day-ahead-electricity-demand-forecasting-post-covid-paradigm
https://ieee-dataport.org/competitions/day-ahead-electricity-demand-forecasting-post-covid-paradigm
https://ieee-dataport.org/competitions/day-ahead-electricity-demand-forecasting-post-covid-paradigm
https://ieee-dataport.org/competitions/day-ahead-electricity-demand-forecasting-post-covid-paradigm
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