|
. This document has been written using GNU TeXmacs; see www.texmacs.org.
Postdoc at Institut de Mathématique d'Orsay (Post-doctorant à l'Institut de Mathématique d'Orsay)
zhouhang DOT mao AT universite-paris-saclay DOT fr
Math 2O1
I am a postdoc at Institut de Mathématique d'Orsay, under Kęstutis
Detailed CV.
The interaction between topology and algebraic geometry: derived algebraic geometry (géométrie algébrique dérivée), algebraic topology (topologie algébrique), arithmetic geometry (géométrie arithmétique), algebraic -theory (-théorie algébrique), topological cyclic homology (homologie cyclique topologique).
Revisiting derived crystalline cohomology, arXiv:2107.02921, latest pdf
Perfectoid rings as Thom spectra, accepted by Selecta Mathematica, arXiv:2003.08697, latest pdf
Revisiting derived crystalline cohomology, Séminaire d'Arithmétique et de Géométrie Algébrique, Université Paris-Saclay, notes
Perfectoid rings as Thom spectra, Seminar of the algebraic topology group, Université Paris Nord, slides
Warning. There is a major mistake in these slides: the formulation of the deformation theory is incorrect. It should be formulated as the following: given an infinitesimal thickening , the derived base change induces an equivalence from the category of formally étale -algebras to the category of formally étale -algebras.
M2 Mémoire: Comparisons of different constructions in algebraic -theory, pdf
2020-2021
2019-2020
TD LU2MA250: Series and integrals (Séries et intégrales) {non math major}
TD LU2MA122: Linear and bilinear algebra (Algèbres linéaire et bilinéaire IIa)