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Abstract Let G be a commutative algebraic group embedded in projective space and
� a finitely generated subgroup ofG. From these data we construct a chain of algebraic
subgroups of G which is intimately related to obstructions to multiplicity or interpola-
tion estimates used in transcendental number theory and algebraic independence. Let
γ1, . . . , γl denote a family of generators of � and, for any S > 1, let �(S) be the set
of elements n1γ1 + · · · + nlγl with integers n j such that |n j | < S. Then this chain of
subgroups controls, for large values of S, the distribution of �(S)with respect to alge-
braic subgroups ofG. As an application we essentially determine (up to multiplicative
constants) the locus of common zeros of all P ∈ H0(G,O(D)) which vanish to at
least some given order at all points of �(S). When D is very small this result reduces
to a multiplicity estimate; when D is very large it is a kind of interpolation estimate.

Mathematics Subject Classification 11J81 (Transcendence (general theory)) ·
14L10 (Group varieties) · 11J95 (Results involving abelian varieties) · 14L40 (Other
algebraic groups (geometric aspects))

1 Introduction

Let G be a positive dimensional connected commutative algebraic group, embedded
in P

N through the choice of a very ample line bundle on a compactification of G. In
most proofs of transcendence or algebraic independence involving G, an important
role is played by the evaluation map
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216 S. Fischler, M. Nakamaye

H0(G,O(D)) → H0(G,O(D) ⊗ ⊕ω∈�(S)OG/mT
ω); (1)

here G is the Zariski closure of G in P
N , D is a positive integer soO(D) is a multiple

of the hyperplane bundle, mω ⊂ OG is the maximal ideal sheaf corresponding to the
pointω, and for a positive real number S,�(S) is the set of all elements n1γ1+· · ·+nlγl
with integers n j such that |n j | < S. In this setting γ1, . . . , γl are fixed elements of G
and S is often chosen to be very large. We let � denote the Z-module generated by
γ1, . . . , γl . The set �(S) depends on γ1, . . . , γl ∈ G in addition to � and S, making
the notation �(S) rather unpleasant but it is the usual one in this setting. The integers
D, S, T are parameters which typically take very large values in transcendence or
algebraic independence proofs, except when no multiplicities are involved, that is
when T = 1.

A crucial step in most transcendence proofs is the multiplicity estimate, called a
zero estimate when T = 1. The simplest one in this setting is perhaps the following
(see [9] or [17]): if D < c1T Sμ then (1) is injective so that P = 0 as soon as
P ∈ H0(G,O(D)) vanishes to order at least T at each point ω ∈ �(S). Here c1 is
a positive constant depending on G, its embedding in P

N , and γ1, . . . , γl . The real
exponent μ ≥ 0 is defined by

μ = μ(�,G) = min
H�G

rk(�) − rk(� ∩ H)

dimG − dim H

where H ranges through the set of all proper connected algebraic subgroupsof G.
Instead of a multiplicity estimate and the construction of an auxiliary function, it is

possible to use an interpolation estimate and an auxiliary functional (see [12,14–16]).
Such a result was proved by Masser [5] when no multiplicities are involved, that is
when T = 1, and generalized by the first author [3]. It reads as follows: if D > c2T Sμ∗

then (1) is surjective, where c2 is a positive constant depending on G, its embedding
in P

N , and γ1, . . . , γl . The real exponent μ∗ ≥ 0 is defined by

μ∗ = μ∗(�,G) = max
H 
={0}

rk(� ∩ H)

dim H

where H ranges through the set of all non-zero connected algebraic subgroupsof G.
The exponents μ(�,G) and μ∗(�,G) measure the distribution of � (and that of

�(S), if S is sufficiently large) with respect to algebraic subgroups of G. The former
appears in early zero estimates [6] and already in [13] (§1.3). It is related to the density
coefficient of � if G = G

n
a and � ⊂ (Q ∩ R)n (see §1.3.d of [13]), and to Schwarz

lemmas (see Chapter 7 of [13] and [11]). The exponent μ∗(�,G) is a dual version
introduced in [5]. These exponents satisfy the inequalities

μ(�,G) ≤ rk �

dimG
≤ μ∗(�,G)

by definition. A finitely generated Z-module � ⊂ G is said to be well distributed in
G if μ(�,G) = rk �

dimG or, equivalently, if μ∗(�,G) = rk �
dimG (see [5]).
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Connecting interpolation and multiplicity estimates… 217

Elaborating upon ideas of [8], we construct in Sect. 4 a chain of algebraic subgroups
{0} = H0 � H1 � · · · � Hr = G, with r ≥ 1, associated to � and G. These
subgroups satisfy

μ(� ∩ Hj mod Hi , Hj/Hi ) = rk(� ∩ Hj ) − rk(� ∩ Hj−1)

dim Hj − dim Hj−1

and

μ∗(� ∩ Hj mod Hi , Hj/Hi ) =
rk

(
�∩Hi+1
�∩Hi

)

dim(Hi+1/Hi )

for any i , j such that 0 ≤ i < j ≤ r . Here and throughout this text, we let�mod H =
�+H
H for any subset � of G and any algebraic subroup H ⊂ G.
The following properties hold:

• μ(�,G) = rk(�)−rk(�∩Hr−1)
dimG−dim Hr−1

.

• μ∗(�,G) = rk(�∩H1)
dim H1

.
• � is well distributed in G if and only if r = 1 so that the chain is simply {0} =

H0 � H1 = G.
• For any i ∈ {0, . . . , r − 1}, � ∩ Hi+1 mod Hi is well distributed in Hi+1/Hi .

Moreover, if H is a non-zero connected algebraic subgroupofG such thatμ∗(�,G) =
rk(�∩H)
dim H , then H ⊂ H1 (see [8], §1.3). In the same way, if H is a proper connected

algebraic subgroupof G such that μ(�,G) = rk(�)−rk(�∩H)
dimG−dim H , then Hr−1 ⊂ H .

We think this chain of subgroups can be useful in many problems where the dis-
tribution of � with respect to algebraic subgroups of G is involved, for instance in
studying the points of �(S) in the spirit of §1.3.d of [13] for the case G = G

n
a and

� ⊂ (Q ∩ R)n . It may also provide a geometric interpretation closely related to the
Seshadri exceptional subvarieties studied in [4]. We use these subgroups here to study
the locus BG,�(S),T,D of common zeros of all P in the kernel of (1), that is the set of
x ∈ G such that P(x) = 0 for any P ∈ H0(G,O(D)) which vanishes to order at
least T at each point of �(S).

To state our result, we let

μi = μ(� ∩ Hi+1 mod Hi , Hi+1/Hi ) = rk(� ∩ Hi+1) − rk(� ∩ Hi )

dim Hi+1 − dim Hi

for any i ∈ {0, . . . , r − 1}. As stated previously, we have also μi = μ∗(� ∩
Hi+1 mod Hi , Hi+1/Hi ) since�∩Hi+1 mod Hi is well distributed in Hi+1/Hi .More-
over μ0 = μ∗(�,G) and μr−1 = μ(�,G); we shall prove that

μ0 > μ1 > · · · > μr−1. (2)

For convenience we write μ−1 = +∞ and μr = −∞. In loose terms, the series of
inequalities (2) can be understood as follows. The algebraic subgroup H1 contains the
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218 S. Fischler, M. Nakamaye

largest possible proportion of � (with respect to its dimension), so that the proportion
of �mod H1 contained in H2/H1 has to be smaller with respect to dim(H2/H1);
otherwise H2 would contradict the maximality of H1. This argument is made precise
in Proposition 4.4 below and the associated remarks.

Our main result reads as follows.

Theorem 1.1 For any ε > 0 with 0 < ε < 1 there exists a positive constant c3,
depending only on the embedding of G in P

N , ε, and γ1, . . . , γl , with the following
property. For any positive integers D and T , if S is a sufficiently large positive integer
(in terms of G ↪→ P

N , ε, γ1, . . . , γl ) and

c3S
μi T ≤ D ≤ c−1

3 Sμi−1T

for some i ∈ {0, . . . , r}, then we have

�((1 − ε)S) + Hi ⊂ BG,�(S),T,D ⊂ �(S) + Hi .

With i = r this is the above-mentionedmultiplicity estimate becauseBG,�(S),T,D =
G. With i = 0 it follows from an interpolation estimate since such an estimate gives
sections which separate jets at the points of �(S) ∪ {x} for any x /∈ �(S). This result
establishes a bridge between multiplicity and interpolation estimates. It is a partial
answer to a question asked by Michel Waldschmidt to the first author: what can be
said about the evaluation map (1) if D is too large to apply a multiplicity estimate but
too small to apply an interpolation estimate? Of course this question remains wide
open: for instance no non-trivial lower bound on the rank of this linear map is known
for these values of D. However we hope that Theorem 1.1 can be useful to produce
new transcendence proofs.

If X is a smooth projective variety, η ∈ X a very general point, and L an ample
line bundle on X then the analogue of (1) has been studied closely (see [1,7]):

H0(X, L⊗D) −→ H0(X, L⊗D ⊗ OX/mT
η ).

The main idea is that once T/D excedes the Seshadri constant of L at η, then the map
ceases to be surjective. This failure is estimated in [1,7], and it is this extra information
which allows a quantitative improvement for the lower bound of the Seshadri constant
of L at η. These techniques have been formalized in a broader setting in [2].

Another motivation for Theorem 1.1 is its relation to a conjecture of the second
author (see Sect. 2.2). In Conjecture 1.1.9 of [8] a sequence of subgroups analogous
to our (Hi )0≤i≤r is alluded to and it is conjectured that these subgroups appear as
the base locus of a linear series as in Theorem 1.1. Because the methods employed
in that paper are restricted to working on a compactification of G, with no auxiliary
constructions such as projections to quotient groups, it was not possible to bound from
above the size of the base loci in question as is done here.

When D lies between c−1
3 Sμi T and c3Sμi T , for some i ∈ {0, . . . , r − 1},

Theorem 1.1 applied with these bounds yields

�((1 − ε)S) + Hi ⊂ BG,�(S),T,D ⊂ �(S) + Hi+1

123

Author's personal copy



Connecting interpolation and multiplicity estimates… 219

sinceBG,�(S),T,D is a non-increasing function of Dwhen the subset�(S) and the order
of vanishing T are held constant. It would be interesting to have more information on
BG,�(S),T,D for these critical values of D, but new ideas are needed. Indeed the proof
of Theorem 1.1 is based on applying the special cases i = 0 and i = r to sub-quotients
ofG obtained from the chain of subgroups (Hi )0≤i≤r . This strategy, remniscent of that
used by Masser [5] to prove his interpolation estimate, is responsible for the constant
c3.

In this paper we shall prove Theorem 1.1 in a more general form: for any
S1, . . . , Sl ∈ R we consider the set �(S) of all points n1γ1 + · · · + nlγl with
integers n j such that |n j | < S j . Here S denotes the tuple (S1, . . . , Sl), and we let
λS = (λS1, . . . , λSl) for any λ > 0. Up to a permutation of γ1, . . . , γl , we may
assume that S1 ≥ · · · ≥ Sl . This assumption will be useful to define the subgroups
Hi which depend in this case on S1, . . . , Sl and γ1, . . . , γl (whereas they depend only
on � and G if S1 = · · · = Sl ). The distribution of �(S) with respect to algebraic
subgroups of G is no longer measured simply by exponents like μ, μ∗ and the μi (see
for instance §3 of [3]).

For any subset� ofG, we letBG,�,T,D denote the set of x ∈ G such that P(x) = 0
for any P ∈ R(G)D which vanishes to order at least T at each point of �; here and
throughout this text, we let R(G)D = H0(G,O(D)) as soon as G is a commutative
algebraic group embedded in a projective space, and we call homogeneous polynomial
of degree D any element ofR(G)D . The basefield isC, though any algebraically closed
field of characteristic zero could be considered, for instance its p-adic analog Cp; see
also [5], §1.

The structure of this text is as follows. We state in Sect. 2 our main result and
explain the connection with a conjecture of the second author. We gather in Sect. 3 the
main tools in the proof, namely the multiplicity and interpolation estimates we rely on,
and also a counting lemma which provides an asymptotic estimate for the cardinality
of the image of �(S) in sub-quotients of G. Then we construct in Sect. 4 the chain
of algebraic subgroups (Hi )0≤i≤r and study its properties. This section might be of
independent interest, and is logically independent from the previous ones. Finally in
Sect. 5 we prove our main result and gather in Sect. 6 some remarks and comments
on possible generalizations.

2 Statement of the results

Throughout this section we letG be a connected commutative algebraic group embed-
ded in projective space P

N . Suppose γ1, . . . , γl ∈ G and let � denote the subgroup
generated by γ1, . . . , γl . Let S1 ≥ · · · ≥ Sl ≥ 1 be real numbers, and recall that �(S)

is the set of all points n1γ1 + · · · + nlγl with integers n j such that |n j | < S j ; here S
denotes the tuple (S1, . . . , Sl).

Using this data we shall construct in Sect. 4 a chain of algebraic subgroups {0} =
H0 � H1 � · · · � Hr = G, with r ≥ 1.

We let � j denote the subgroup generated by γ1, . . . , γ j , setting �0 = {0}, and we
put
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220 S. Fischler, M. Nakamaye

Si =

⎛
⎜⎜⎜⎝

l∏
j=1

S

rk

(
� j∩Hi+1
� j∩Hi

)
−rk

(
� j−1∩Hi+1
� j−1∩Hi

)

j

⎞
⎟⎟⎟⎠

1/(dim Hi+1−dim Hi )

for any i ∈ {0, . . . , r − 1}. Then we shall prove that

1 ≤ Sr−1 ≤ Sr−2 ≤ · · · ≤ S1 ≤ S0, (3)

as an immediate consequence of Proposition 4.4 and Eq. (17) in Sect. 4.

2.1 The main result

Our main result is twofold. The first one is proved using interpolation estimates,
whereas the second one is based on multiplicity estimates.

Theorem 2.1 There exists a positive constant c4, depending only on G ↪→ P
N ,

γ1, . . . , γl but not on S1 ≥ · · · ≥ Sl , such that

BG,�(S),T,D ⊂ �(S) + Hi

for any positive integers D, T such that D > c4Si T with i ∈ {0, . . . , r − 1}.
Theorem 2.2 For any ε with 0 < ε < 1 there exists a positive constant c5, depending
only on G ↪→ P

N , ε, γ1, . . . , γl but not on S1 ≥ · · · ≥ Sl , such that

�((1 − ε)S) + Hi ⊂ BG,�(S),T,D

for any positive integers D, T such that D < c−1
5 Si−1T with i ∈ {1, . . . , r}.

Theorem 2.2 is closely related to Lemma 1.5.3 in [8]. This latter result assumes
that S1 = S2 = · · · = Sl and it only treats the case i = 1. It is stated for H1 alone
rather than�((1−ε)S)+H1 but it applies to these translates of H1. Subgroups closely
related to the sequence H2, . . . , Hr appear in Conjecture 1.1.9 of [8]. The techniques
of [8] are completely different from the present paper. In particular all constructions
take place on X : no embeddings or quotient maps are used. The end result is that the
results of [8] are quantitatively stronger (the constants are sharp in the same way as
those of Philippon’s multiplicity estimates) but they apply in very few cases.

The cases where D is very small or very large in comparison with T and the Si

will be dealt with in Sect. 3.1. If D < c−1
5 Sr−1T then Theorem 2.2 asserts that

BG,�(S),T,D = G; this is a multiplicity estimate, stated below as Proposition 3.1. In a
“dual” way, if D > c4S0T then Theorem 2.1 means that BG,�(S),T,D = �(S) since
the inclusion �(S) ⊂ BG,�(S),T,D holds trivially. We shall derive this result, stated as
Proposition 3.3, from an interpolation estimate, namely Proposition 3.2.

When r = 1, we do not prove anything more—we could probably refine our result
in this case, to make the constants c4 and c5 explicit, but we are not able to do it in
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general (see Sect. 6). When r ≥ 2, our proof procedes by applying these results in
sub-quotients of G coming from the algebraic subgroups Hi .

If r ≥ 2 and

c4Si T < D < c−1
5 Si−1T

for some i ∈ {1, . . . , r − 1}, which happens for some integers D provided Card�(S)

is sufficiently large in terms of G ↪→ P
N , ε, γ1, . . . , γl , then

�((1 − ε)S) + Hi ⊂ BG,�(S),T,D ⊂ �(S) + Hi .

Therefore Theorem 1.1 follows from Theorems 2.1 and 2.2, since when S1 = · · · =
Sl = S we have

Si = Sμi with μi = rk(� ∩ Hi+1) − rk(� ∩ Hi )

dim Hi+1 − dim Hi
.

Remark 2.3 We shall prove in Lemma 3.4 below (Sect. 3.2) that Sdim Hi+1−dim Hi
i

is equal to the cardinality of (�(S) ∩ Hi+1)mod Hi , up to a multiplicative constant
depending only on γ1, . . . , γl . Therefore Si might be replaced by the (dim Hi+1 −
dim Hi )-th root of this cardinality in Theorems 2.1 and 2.2 up to changing the values
of the constants c4 and c5. The assumption D < c5Si−1T in Theorem 2.2 is the
one needed to apply a multiplicity estimate in Hi/Hi−1 in order to guarantee that no
non-zero polynomial of degree D on Hi/Hi−1 vanishes to order at least T at each
point of (�(S)∩Hi )mod Hi−1. Of course c5 should take here a suitable value in terms
of a projective embedding of Hi/Hi−1. The same remarks apply to the assumption
D > c4Si T in Theorem 2.1 needed to apply an interpolation estimate (or Proposition
3.3 below) on (�(S) ∩ Hi+1)mod Hi in the algebraic group Hi+1/Hi (see Sect. 3.1).

2.2 Connection to a conjecture of the second author

Following [8] we let

α j = sup{α ∈ Q, dimBG,�(S),kα,k < j for any k sufficiently large}

where j ∈ {1, . . . , n} and n = dimG. Theorems 2.1 and 2.2, applied with ε = 1/2,
yield

c−1
4 S−1

i ≤ α j ≤ c5S
−1
i

where i ∈ {0, . . . , r − 1} is chosen so that dim Hi < j ≤ dim Hi+1. Consequently

c−n
4

r−1∏
i=0

S
−(dim Hi+1−dim Hi )

i ≤
n∏
j=1

α j ≤ cn5

r−1∏
i=0

S
−(dim Hi+1−dim Hi )

i .
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222 S. Fischler, M. Nakamaye

Thus

c−n
4

⎡
⎣

l∏
j=1

S
rk � j−rk � j−1
j

⎤
⎦

−1

≤
n∏
j=1

α j ≤ cn5

⎡
⎣

l∏
j=1

S
rk � j−rk � j−1
j

⎤
⎦

−1

.

Using Lemma 3.4 below with H ′ = G and H ′′ = {0} we obtain a positive constant
c6, depending only on G ↪→ P

N and γ1, . . . , γl , such that

c−1
6 ≤ (Card�(S))

n∏
j=1

α j ≤ c6.

Of course the important point here is that c6 does not depend on S1, . . . , Sl . In parallel
to Conjecture 1.1.4 of [8], it seems natural to ask whether

degO(1)(G)

n! ≤ (Card�(S))

n∏
j=1

α j ≤ degO(1)(G),

where n = dimG and G is the Zariski closure of G ↪→ P
N . The upper bound can be

proved using intersection theory and the definition of the αi , as in §1.2 of [8].

3 Prerequisites

In this section we state the interpolation and multiplicity estimates we rely on, and
apply them to the extremal cases i = 0 (in Theorem 2.1) and i = r (in Theorem 2.2).
Then we state and prove in Sect. 3.2 a lemma that provides an asymptotic estimate for
the cardinality of the image of �(S) in sub-quotients of G.

3.1 Interpolation and multiplicity estimates

We shall use the following notation: given a finite subset� of a commutative algebraic
group G and a positive integer k, we let �[k] denote the set of all sums ω1 + · · · + ωk

where ω1, . . . , ωk are (not necessarily distinct) elements of �. We denote by �{k} the
set �[k] − �[k], that is the set of all elements x − y with x, y ∈ �[k].

The following is a weak form of the multiplicity estimate, Theorem 2.1, from [9].

Proposition 3.1 Let G be a connected commutative algebraic group, embedded in
projective space P

M. Then there is a positive constant c7, depending only on G and on
this embedding, with the following property. Let� be a finite subset of G, and suppose
D, T are positive integers such that, for every connected algebraic subgroup H � G,

Card(�mod H) T dim(G/H) > c7D
dim(G/H). (4)

123

Author's personal copy



Connecting interpolation and multiplicity estimates… 223

Then no non-zero P ∈ R(G)D vanishes to order at least T at every point of�[dimG].
In other words,

BG,�,T,D = G.

We shall deduce the statement “dual” to Proposition 3.1, namely Proposition 3.3,
from the following interpolation estimate (which is Corollary 1.2 of [4]).

Proposition 3.2 Let G be a connected commutative algebraic group, embedded in
projective space P

M. Then there is a positive constant c8, depending only on G and on
this embedding, with the following property. Let� be a finite subset of G, and suppose
D, T are positive integers such that, for any translate x + H of a non-zero connected
algebraic subgroup H of G,

Card((� ∩ (x + H))[dim(H)]) T dim(H) < c8D
dim(H).

Then the evaluation map

R(G)D = H0(G,O(D)) → H0(G,O(D) ⊗ ⊕ω∈�OG/mT
ω)

is surjective, where G is the Zariski closure of G in P
M and mω ⊂ OG is the maximal

ideal sheaf corresponding to the point ω.

This result is essentially as precise as Philippon’s multiplicity estimate (namely
Theorem 2.1 of [9]), and even slightly more. A less precise estimate (in the style of
[5] or [3]) would not be sufficient to deduce the following result, which we shall use
later in this text.

Proposition 3.3 Let G be a connected commutative algebraic group, embedded in
projective space P

M. Then there is a positive constant c9, depending only on G and
on this embedding, with the following property. Let � be a finite subset of G, and
suppose D, T are positive integers such that, for every non-zero connected algebraic
subgroup H of G,

Card(�{n} ∩ H) T dim H < c9D
dim H (5)

where n = dimG. Then

BG,�,T,D = �.

It should be noticed that only algebraic subgroups H appear in this result, whereas
translates are needed in Proposition 3.2. This is due to the fact that �{n} (i.e., the set
of all elements x − y with x, y ∈ �[n]) is used instead of �[n].
Proof of Proposition 3.3 The inclusion � ⊂ BG,�,T,D holds trivially. Let g ∈ G\�
and put �′ = � ∪ {g}. Let H ′ = x + H be any translate of a non-zero connected
algebraic subgroupH of G. Then (�′ ∩ H ′)[dim H ] ⊂ ∪dim H

i=0 Ei where
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224 S. Fischler, M. Nakamaye

Ei = {ig + γ, γ ∈ �[dim H − i]} ∩ H ′.

If Ei 
= ∅, substracting a fixed element of Ei yields an injective map

Ei → �{dim H − i} ∩ H ⊂ �{n} ∩ H,

so that Card Ei ≤ Card(�{n}∩ H), and this inequality holds also if Ei = ∅. Therefore
we have

Card((�′ ∩ H ′)[dim(H)]) T dim(H) ≤ (n + 1)Card(�{n} ∩ H) T dim(H)

< (n + 1)c9D
dim H .

Choosing c9 = c8/(n + 1), Proposition 3.2 provides P ∈ R(G)D which vanishes
to order at least T at each point of � and does not vanish at g. This proves that
g /∈ BG,�,T,D , and concludes the proof of Proposition 3.3.

3.2 A counting lemma

The following lemma is very useful for estimating the number of points of �(S)

in sub-quotients of G. The fundamental idea is that S1, . . . , Sl will be assumed to be
sufficiently large, in terms of γ1, . . . , γl , so that this number of points can be estimated
asymptotically in terms of ranks of Z-modules. Recall that � j denotes the Z-module
generated by γ1, . . . , γ j , with �0 = {0}.
Lemma 3.4 Let H ′, H ′′ be algebraic subgroups of a commutative algebraic group
G, such that H ′′ ⊂ H ′. Let γ1, . . . , γl ∈ G and let � be the subgroup generated by
γ1, . . . , γl . Then there exist positive constants c10 and c11with the followingproperties:

• c10 depends only on γ1, . . . , γl and on H ′ (but not on H ′′).
• c11 depends only on γ1, . . . , γl and on H ′′ (but not on H ′).
• For any real numbers S1 ≥ · · · ≥ Sl ≥ 1 we have

c10NH ′,H ′′(S) < Card(�(S) ∩ H ′ mod H ′′) < c11NH ′,H ′′(S)

where

NH ′,H ′′(S) =
l∏

j=1

S

rk

(
� j∩H ′
� j∩H ′′

)
−rk

(
� j−1∩H ′
� j−1∩H ′′

)

j .

In the special case H ′′ = {0}, Lemma 3.4 reduces to Lemma 1.5 of [3], except that
in [3] the constant c11 may depend on H ′.

We did not try to make the constants c10 and c11 explicit since it is not needed in
our application. However it is critical that c10 does not depend on H ′′ and that c11
does not depend on H ′.
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To illustrate this situation, let us consider the case where l = 1 and γ1 is not torsion
in G. Let H be a connected algebraic subgroupof G which contains Nγ1 for some
N ≥ 1, but no kγ1 with 1 ≤ k ≤ N − 1. Then Card(�(S1) ∩ H) = 2M + 1, where
M ≥ 0 is the largest integer such that MN < S1, and Card(�(S1)mod H) = N if
S1 > N . Taking H ′ = H and H ′′ = {0} we see that c10 has to depend on H ′, since
N may take arbitrarily large values in terms of γ1, . . . , γl . In the same way, taking
H ′ = G and H ′′ = H shows that c11 has to depend on H ′′.

Using Lemma 4.8 and the notation of Sect. 2, Lemma 3.4 proves that
S

dim Hi+1−dim Hi
i is equal to the cardinality of (�(S) ∩ Hi+1)mod Hi , up to a multi-

plicative constant depending only on γ1, . . . , γl .

Remark 3.5 An immediate consequence of Lemma 3.4 is that for any x ∈ G

Card(�(S) ∩ (x + H ′)mod H ′′) < c12NH ′,H ′′(S)

where c12 depends only on γ1, . . . , γl and on H ′′ but neither on H ′ nor on x . Indeed,
subtracting a fixed element of �(S) ∩ (x + H ′) yields an injective map �(S) ∩ (x +
H ′) → �(2S) ∩ H ′.

Remark 3.6 For any λ ≥ 1, applying Lemma 3.4 with λS = (λS1, . . . , λSl) yields

c10λ
rk

(
�∩H ′
�∩H ′′

)
NH ′,H ′′(S)<Card(�(λS) ∩ H ′ mod H ′′)<c11λ

rk

(
�∩H ′
�∩H ′′

)
NH ′,H ′′(S).

(6)

This will be used several times in the proof of Lemma 3.4, without explicit reference.
Moreover the first inequality in Eq. (6) holds for any λ > 0.

Proof of Lemma 3.4 Since the result is trivial when l = 0, we may assume by induc-
tion that it holds for �l−1. Notice that the value of NH ′,H ′′(S) relative to �(S) is the

same as the one relative to �l−1(S1, . . . , Sl−1) if rk
(

�∩H ′
�∩H ′′

)
= rk

(
�l−1∩H ′
�l−1∩H ′′

)
, and it

is Sl times bigger otherwise.
The lower bound on Card(�(S) ∩ H ′ mod H ′′) follows at once from the inclusion

�l−1(S1, . . . , Sl−1) ⊂ �(S) if rk
(

�∩H ′
�∩H ′′

)
= rk

(
�l−1∩H ′
�l−1∩H ′′

)
. Otherwise we have rk(�∩

H ′) = 1+ rk(�l−1 ∩ H ′) and rk(� ∩ H ′′) = rk(�l−1 ∩ H ′′). In this case, there exist
m1, . . . ,ml ∈ Z, with ml ≥ 1, such that γ̃ = m1γ1 + · · · + mlγl belongs to � ∩ H ′
and has infinite order in �∩H ′

�l−1∩H ′ . Letting M = max(|m1|, . . . , |ml |), the elements
γ0 + nγ̃ , where |n| < Sl/2M and γ0 ranges through a system of representatives of
�l−1(S1/2, . . . , Sl−1/2) ∩ H ′ mod H ′′, belong to �(S) ∩ H ′ since Sl ≤ Si for any
i ∈ {1, . . . , l−1}. If two of them are equal modulo H ′′, say γ0 +nγ̃ ∈ γ ′

0 +n′γ̃ +H ′′
with (γ0, n) 
= (γ ′

0, n
′), then (n − n′)γ̃ + (γ0 − γ ′

0) ∈ � ∩ H ′′. Now �l−1 ∩ H ′′ has
finite index, say N , in � ∩ H ′′ so that N (n − n′)γ̃ + N (γ0 − γ ′

0) ∈ �l−1 ∩ H ′′ ⊂
�l−1 ∩ H ′ and N (n − n′)γ̃ ∈ �l−1 ∩ H ′. Since the image of γ̃ in �∩H ′

�l−1∩H ′ has infinite

order, we have n = n′ and γ0 ∈ γ ′
0 + H ′′ which is a contradiction. Therefore the
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elements given above are pairwise distinct, concluding the proof of the lower bound
on Card(�(S) ∩ H ′ mod H ′′).

To prove the upper bound, we distinguish between three cases.
(a) If rk(� ∩ H ′) = rk(�l−1 ∩ H ′), the upper bound holds trivially if we also have

�(S) ∩ H ′ = �l−1(S1, . . . , Sl−1) ∩ H ′. Otherwise there exist m1, . . . ,ml ∈ Z, with
ml ≥ 1, such that γ̃ = m1γ1 + · · · + mlγl belongs to � ∩ H ′. Letting N denote the
index of �l−1 ∩ H ′ in � ∩ H ′, we have N γ̃ = Nm1γ1 + · · · + Nmlγl ∈ �l−1 ∩ H ′
so that Nmlγl ∈ �l−1. Therefore the image of γl in �/�l−1 has finite order: let ω

denote this order, which depends only on γ1, . . . , γl . There exist r1, . . . , rl ∈ Z such
that r1γ1 + · · · + rlγl = 0 and rl = ω ≥ 1. Letting R = max(|r1|, . . . , |rl |), we have

�(S) ⊂
rl−1⋃
n=0

nγl + �l−1((R + 1)S1, . . . , (R + 1)Sl−1)

since Sl ≤ Si for any i ∈ {1, . . . , l − 1}. The upper bound follows at once.
(b) If rk(�∩H ′) = 1+rk(�l−1∩H ′) and rk(�∩H ′′) = rk(�l−1∩H ′′), there exist

m1, . . . ,ml ∈ Z such that γ̃ = m1γ1 + · · · + mlγl ∈ � ∩ H ′ and ml ≥ 1; we choose
these integers with the least possible value ofml . Then for any γ = n1γ1+· · ·+nlγl ∈
�(S) ∩ H ′, nl is a multiple of ml and we have γ − r γ̃ ∈ �l−1 ∩ H ′ where r = nl/ml

is such that |r | < Sl . Letting γ ′ = γ̃ − mlγl = m1γ1 + · · · + ml−1γl−1 we obtain

�(S) ⊂
Sl⋃

r=−Sl

rmlγl + [�l−1(S1, . . . , Sl−1) ∩ (rγ ′ + H ′)].

Using Remark 3.5 this concludes the proof of the upper bound in this case.
(c) If rk(� ∩ H ′) = 1 + rk(�l−1 ∩ H ′) and rk(� ∩ H ′′) = 1 + rk(�l−1 ∩ H ′′),

there exist m1, . . . ,ml ∈ Z such that γ̃ = m1γ1 + · · · + mlγl ∈ � ∩ H ′′ and ml ≥ 1.
Let γ = n1γ1 + · · · + nlγl ∈ �(S) ∩ H ′, and let q, r ∈ Z be such that nl = qml + r
with |rl | < ml and |q| ≤ |nl |

ml
< Sl . Then we have γ − qγ̃ = (n1 − qm1)γ1 + · · · +

(nl−1 − qml−1)γl−1 + rγl so that, letting M = max(|m1|, . . . , |ml |),

�(S) ∩ H ′ mod H ′′

⊂
M⋃

r=−M

rγl + [�l−1((M + 1)S1, . . . , (M + 1)Sl−1) ∩ (−rγl + H ′)]mod H ′′.

Using Remark 3.5 this concludes the proof of Lemma 3.4.

4 A chain of algebraic subgroups

Throughout this section we fix a connected commutative algebraic groupG, real num-
bers S1, . . . , Sl and elements γ1, . . . , γl ∈ G; we assume that S1 ≥ · · · ≥ Sl ≥ 1.With
this data we associate in Sect. 4.1 a chain of connected algebraic subgroups (Hi )0≤i≤r

of G. We study its properties throughout this section, with a special emphasis on
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its connection to the distribution of �(S) with respect to algebraic subgroups of G
(Sect. 4.4), and on the case where S1 = · · · = Sl as in the introduction (Sect. 4.5).
Examples are given in Sect. 4.2 to illustrate this construction.

4.1 Construction and first properties

For any connected algebraic subgroupK of G we let

ϕS(K ) =
l∑

j=1

(rk(� j ∩ K ) − rk(� j−1 ∩ K )) log S j ,

where � j is the subgroup of � generated by γ1, . . . , γ j , �0 = {0}, and S =
(S1, . . . , Sl). With this definition, Card(�(S) ∩ K ) is essentially equal to expϕS(K )

by Lemma 3.4 above, with H ′′ = {0}, so thatNK ,{0}(S) = expϕS(K ). We refer to §3
of [3] for a related construction.

In the special case where S1 = · · · = Sl = S > 1, we have ϕS(K ) = rk(� ∩
K ) log S and the chain (Hi ) we construct here does not depend on S nor on the
choice of γ1, . . . , γl (see Lemma 4.7 and Sect. 4.5) so one may actually assume that
S = e = exp(1) and ϕS(K ) = rk(� ∩ K ). The starting point of our construction
is the existence [8], in this case, of a maximal element H1 with respect to inclusion
among the non-zero connected algebraic subgroupsH such thatμ∗(�,G) = rk(�∩H)

dim H .
Applying this construction again in G/H1 with �mod H1 = (� + H1)/H1 yields a
maximal connected algebraic subgroupH2/H1 of G/H1, with H1 � H2. Repeating
this argument leads to a chain of algebraic subgroups of G, which we construct now
in the general case where S1, . . . , Sl are not assumed to be equal.

Proposition 4.1 There exists a unique chain {0} = H0 � H1 � · · · � Hr = G of
connected algebraic subgroupsof G, with r ≥ 1, such that:

• For any i ∈ {0, . . . , r − 1} and any connected algebraic subgroup K such that
dim K > dim Hi , we have

ϕS(K ) − ϕS(Hi )

dim K − dim Hi
≤ ϕS(Hi+1) − ϕS(Hi )

dim Hi+1 − dim Hi
. (7)

• If equality holds in Eq. (7) then Hi ⊂ K ⊂ Hi+1.

Remark 4.2 In the proof of Proposition 4.1 we shall prove actually a stronger property
of these subgroups, namely that for any i ∈ {0, . . . , r−1} and any connected algebraic
subgroupK we have

[dim Hi+1 − dim Hi ]ϕS(K ) − [ϕS(Hi+1) − ϕS(Hi )] dim K

+ϕS(Hi+1) dim Hi − ϕS(Hi ) dim Hi+1 ≤ 0, (8)

and if equality holds then Hi ⊂ K ⊂ Hi+1. This inequality can be also be written as

[ϕS(K ) − ϕS(Hi )][dim Hi+1 − dim Hi ] ≤ [dim K − dim Hi ][ϕS(Hi+1) − ϕS(Hi )].
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If dim K > dim Hi it is equivalent to Eq. (7). If dim K < dim Hi it yields

ϕS(Hi ) − ϕS(K )

dim Hi − dim K
>

ϕS(Hi+1) − ϕS(Hi )

dim Hi+1 − dim Hi
. (9)

In the case where S1 = · · · = Sl , reasoning as in [8] one can prove the existence
of a minimal element Hr−1 with respect to inclusion among the connected algebraic
subgroupsH � G such that μ(�,G) = rk(�)−rk(�∩H)

dimG−dim H . Applying this property again
in Hr−1 with�∩Hr−1 provides Hr−2 � Hr−1. The following immediate consequence
of Eq. (8) asserts that the chain of connected algebraic subgroupsof G constructed by
iterating this process (and generalizing it to allow S1, . . . , Sl not to be equal) is the
same as above.

Proposition 4.3 For any i ∈ {0, . . . , r −1} and any connected algebraic subgroup K
such that dim K < dim Hi+1 we have

ϕS(Hi+1) − ϕS(K )

dim Hi+1 − dim K
≥ ϕS(Hi+1) − ϕS(Hi )

dim Hi+1 − dim Hi
. (10)

Moreover if equality holds then Hi ⊂ K ⊂ Hi+1.

Assuming again S1 = · · · = Sl , H1 is maximal such that rk(�∩H1)
dim H1

= μ∗(�,G) =
maxH 
=0

rk(�∩H)
dim H . In particular we have rk(�∩H1)

dim H1
>

rk(�∩H2)
dim H2

since H1 � H2. Now
rk(�∩H2)
dim H2

lies between rk(�∩H1)
dim H1

and rk(�∩H2)−rk(�∩H1)
dim H2−dim H1

because its numerator is the
sum of both numerators and the same property holds for the denominators, so that
rk(�∩H2)−rk(�∩H1)

dim H2−dim H1
<

rk(�∩H1)
dim H1

. Generalizing this result to all subgroups Hi and remov-
ing the assumption S1 = · · · = Sl , we obtain the following.

Proposition 4.4 For any i ∈ {1, . . . , r − 1} we have
ϕS(Hi+1) − ϕS(Hi )

dim Hi+1 − dim Hi
<

ϕS(Hi ) − ϕS(Hi−1)

dim Hi − dim Hi−1
.

This proposition follows immediately from Eq. (9) by taking K = Hi−1. It is the
key point in the proof of Eqs. (2) and (3) above.

Remark 4.5 With each connected algebraic subgroupK of G we may associate the
point MK = (dim K , ϕS(K )) ∈ R

2. Then our construction yields a convex polygon
MH0MH1 . . . MHr N , where N = (dimG, 0); in particular MH0 = M{0} = (0, 0)
and MHr = MG = (dimG, ϕS(G)). For any K the point MK is either inside this
polygon or on an edge; if it lies on the segment [MHi MHi+1] with 0 ≤ i ≤ r − 1
then Hi ⊂ K ⊂ Hi+1. Indeed Eq. (7) means that the line (MHi MK ) has slope less
than or equal to that of (MHi MHi+1), if dim K > dim Hi . This means that MK is
below the line (MHi MHi+1), which is expressed by Eq. (8). A similar statement, if
dim K < dim Hi+1, is provided by Proposition 4.3. Namely, the slope of (MKMHi+1)

is less than or equal to that of (MHi MHi+1). Lastly the slope of (MHi MHi+1) is a
decreasing function of i , as Proposition 4.4 states.
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Remark 4.6 As the proof below shows, the algebraic subgroups Hi are constructed
in terms of the function ϕS only; accordingly they depend only on �1, . . . , �l instead
of the specific choice of γ1, . . . , γl . Multiplying the function ϕS with a fixed positive
real number does not change the construction either (since this number cancels out
everywhere): see Lemma 4.7 below.

Proof of Proposition 4.1 and Remark 4.2 To begin with, we notice hat

ϕS(K ) =
l∑

j=1

rk(� j ∩ K ) log(S j/S j+1)

for any connected algebraic subgroupK of G; here we let Sl+1 = 1. For any j and
any connected algebraic subgroupsK , K ′ of G we have (� j ∩ K ) + (� j ∩ K ′) ⊂
� j ∩ (K + K ′) so that

rk(� j ∩ (K ∩ K ′)) + rk(� j ∩ (K + K ′)) ≥ rk(� j ∩ K ) + rk(� j ∩ K ′)

and

ϕS(K ∩ K ′) + ϕS(K + K ′) ≥ ϕS(K ) + ϕS(K
′) (11)

since log(S j/S j+1) ≥ 0 for any j . We shall also use the fact that

dim(K ∩ K ′) + dim(K + K ′) = dim(K ) + dim(K ′). (12)

Now let us construct Hi and prove the results at the same time, by induction on i . If the
algebraic subgroups H0, . . . , Hi satisfy the desired properties with i ≥ 0 and Hi 
= G,
we define Hi+1 to be a connected algebraic subgroupof G of dimension greater than

dim Hi for which
ϕS(Hi+1)−ϕS(Hi )

dim Hi+1−dim Hi
is maximal. If there are several connected algebraic

subgroupsK of G with dim K > dim Hi for which
ϕS(K )−ϕS(Hi )

dim(K )−dim Hi
is equal to this

maximal value, then we choose Hi+1 with maximal dimension among them. If there
are several such subgroups K with thismaximal dimension,we choose Hi+1 arbitrarily
among them (but it will follow from Proposition 4.1 that this situation can not happen).

In this way Eq. (7) holds for any K such that dim K > dim Hi . Now let χi (K )

denote the left handside of Eq. (8); notice that

χi (Hi ) = χi (Hi+1) = 0. (13)

Actually if we associate with each connected algebraic subgroupK of G the point
MK = (dim K , ϕS(K )) as in Remark 4.5 above, then χi (K ) = 0 means that MK lies
on the line (MHi MHi+1).

By definition of Hi+1 we have

{
χi (K ) ≤ 0 if dim K > dim Hi

if equality holds then dim K ≤ dim Hi+1.
(14)
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To conclude the proof of Eq. (8) for any K , let us prove also that

{
χi (K ) ≤ 0 if dim K ≤ dim Hi

if equality holds then K = Hi .
(15)

If i = 0 this is a triviality. If i ≥ 1, dim K = dim Hi and K 
= Hi then χi (K ) =
(dim Hi+1 − dim Hi )(ϕS(K ) − ϕS(Hi )) < 0 using Eq. (7) with i − 1. If i ≥ 1 and
dim K < dim Hi , notice that Eq. (8) with i − 1 reads

ϕS(Hi ) − ϕS(K )

dim Hi − dim K
≥ ϕS(Hi ) − ϕS(Hi−1)

dim Hi − dim Hi−1
.

Combining this inequality with Proposition 4.4 (which holds for i , since it follows
from Eq. (9) by taking K = Hi−1), we obtain χi (K ) < 0; this completes the proof of
(15) and that of Eq. (8) for any K .

Now let K be a connected algebraic subgroupof G such that dim K > dim Hi and
χi (K ) = 0. Let us prove that Hi ⊂ K and K ⊂ Hi+1; this will conclude the proofs
of the equality cases in Eqs. (7) and (8), and will also prove that Hi ⊂ Hi+1 since one
may take K = Hi+1.

With this aim in view, we notice, using (14), that dim K ≤ dim Hi+1 and that for
any K ′ we have

χi (K ∩ K ′) + χi (K + K ′) ≥ χi (K ) + χi (K
′) (16)

using Eqs. (11) and (12). Recall that χi (Hi ) = χi (Hi+1) = χi (K ) = 0 thanks to Eq.
(13) and our assumption on K , and that χi (K ′′) ≤ 0 for any K ′′ using (14) and (15).
With K ′ = Hi we obtain in this way χi (K ∩ Hi ) = χi (K + Hi ) = 0, so that (15)
yields K ∩ Hi = Hi and finally Hi ⊂ K . In a similar way, with K ′ = Hi+1 we get
χi (K ∩ Hi+1) = χi (K + Hi+1) = 0, so that (14) yields dim(K + Hi+1) = dim Hi+1
and thus K ⊂ Hi+1. This concludes the proof that Hi ⊂ K ⊂ Hi+1.

It remains to check that only one chain (Hi ) satisfies the conclusions of Propo-
sition 4.1. Indeed given two chains (Hi ) and (H ′

i ), let i be the least index such that
H ′
i+1 
= Hi+1. Applying Eq. (7) twice yields

ϕS(H ′
i+1) − ϕS(Hi )

dim H ′
i+1 − dim Hi

= ϕS(Hi+1) − ϕS(Hi )

dim Hi+1 − dim Hi
;

then using twice the equality case in this inequality we obtain H ′
i+1 = Hi+1. This con-

tradicts the definition of i , and concludes the proof of Proposition 4.1 and Remark 4.2.

4.2 Examples in powers of Gm

In this section we illustrate the construction of Sect. 4.1 with two examples. Let G =
G

3
m and let x1, . . . , x6, y5, y6, z7 be multiplicatively independent non-zero complex

numbers. Let
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γi = (xi , 1, 1) ∈ G(C) = C

3 for 1 ≤ i ≤ 4,

γ5 = (x5, y5, 1),

γ6 = (x6, y6, 1),

γ7 = (1, 1, z7).

Then γ1, . . . , γ7 are Z-linearly independent in G so that rk � = 7, where � is the
Z-module spanned by these seven elements. We let

H0 = {(1, 1, 1)}, H1 = Gm × {1}2, H2 = G
2
m × {1}, H3 = G

3
m = G.

We consider the case where S1 = · · · = S7 = S > 1: since the value of S is not
relevant here (see Lemma 4.7 and Sect. 4.5), we assume for simplicity S = e so that
ϕS(K ) = rk(� ∩ K ) for any connected algebraic subgroupK of G. Then it is not
difficult to check that {0} = H0 � H1 � H2 � H3 = G is the chain constructed in
Sect. 4.1. With the notation of Remark 4.5, we have

MH0 = (0, 0), MH1 = (1, 4), MH2 = (2, 6), MH3 = (3, 7).

Together with N = (3, 0), these points make up a convex polygon inside which lie all
points MK = (dim K , rk(� ∩K )) corresponding to connected algebraic subgroupsK
of G. The rational numbers μi = rk(�∩Hi+1)−rk(�∩Hi )

dim Hi+1−dim Hi
, defined in the introduction and

used in the statement of Theorem 1.1, are the slopes of the edges [MHi MHi+1]: we
have

μ0 = 4, μ1 = 2, μ2 = 1.

As noticed in the introduction, μ(�,G) = μ2 = 1 and μ∗(�,G) = μ0 = 4.
Finally let H ′ = Gm × {1} × Gm : we have dim H ′ = 2 and rk(� ∩ H ′) = 5, so

that rk(�∩H ′)
dim H ′ = 5/2 > 7/3 = rk �

dimG : the Z-module � is “more densely distributed”
in H ′ than in G. Howerer H ′ does not belong to the chain (Hi ).

Let usmove now to a second example. LetG = G
4
m and let t1, . . . , t13 bemultiplica-

tively independent non-zero complex numbers. Suppose � is the Z-module spanned
by the following 13 elements:

γi = (ti , 1, 1, 1) for 1 ≤ i ≤ 7,

γi = (1, ti , 1, 1) for 8 ≤ i ≤ 10,

γi = (1, 1, ti , 1) for 11 ≤ i ≤ 12,

γi = (1, 1, 1, ti ) for i = 13.

Setting S1 = · · · = S13 = e, the chain of algebraic subgroups constructed in Sect. 4.1
is the following:

H0 = {1}4, H1 = Gm × {1}3, H2 = G
2
m × {1}2,

H3 = G
3
m × {1}, H4 = G

4
m = G.
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The hexagon of Remark 4.5 has vertices

MH0 = (0, 0), MH1 = (1, 7), MH2 = (2, 10), MH3 = (3, 12), MH4 = (4, 13)

and N = (4, 0). The slopes of its edges are 0, ∞, and the rational numbers μi given
by

μ0 = μ∗(�,G) = 7, μ1 = 3, μ2 = 2, μ3 = μ(�,G) = 1.

Letting H ′ = Gm×{1}2×Gm , we have
rk(�∩H ′)
dim H ′ = 8/2 = 12/3 = rk(�∩H3)

dim H3
. However

H ′ is not contained in H3 despite what is announced in [8], p. 479, l. 11. Indeed in
§1.3 of this paper, the argument producing the chain of obstruction subgroups does not
show unicity except for the first subgroup, H1, in the chain. The example here shows
that these subgroups H with specific critical values of rk(�∩H)

dim H are not in general
unique.

4.3 Independence and finiteness results

Let us come back to the general setting of Sect. 4.1. It is clear from the construction
that the subgroups H0, . . . , Hr and the integer r depend on S1, . . . , Sl . However there
is a transformation under which they are invariant:

Lemma 4.7 The subgroups H0, . . . , Hr and the integer r remain the same if
S1, . . . , Sl are replaced with Sα

1 , . . . , Sα
l for some α > 0.

An important consequence of this lemma is that if S1 = · · · = Sl = S > 1 as in
the introduction, then H0, . . . , Hr do not depend on S (see Sect. 4.5).

Proof of Lemma 4.7 Upon replacing S1, . . . , Sl with Sα
1 , . . . , Sα

l , the function ϕS is
multiplied by α > 0 so that Eq. (7) is still valid: since the chain of subgroups con-
structed above is unique (see Proposition 4.1 and Remark 4.6), it remains the same.

Throughout the proof of Theorems 2.1 and 2.2, many constants will appear that
depend on the subgroups (Hi )0≤i≤r . The following lemma shows that such a constant
can be made independent from these subgroups, by increasing it if necessary.

Lemma 4.8 There exists a finite set E , which depends on γ1, . . . , γl but not on
S1, . . . , Sl , such that all subgroups H0, . . . , Hr belong to E .

The idea behind this lemma is simply that the construction of Hi involves only
dim Hi and the ranks of� j ∩Hi , which take only finitelymany values (see §3.1.1 of [3]
for an analogous situation). Moreover there is no connected algebraic subgroupH ′ 
=
Hi such that dim H ′ = dim Hi and rk(� j ∩ H ′) = rk(� j ∩ Hi ) for any j , so that Hi

can take only finitely many values. In the notation of Remark 4.5, there is no H ′ 
= Hi

such that MH ′ = MHi , even though in general there may exist connected algebraic
subgroupsH ′ 
= H ′′ such that MH ′ = MH ′′ : the connected algebraic subgroupsHi

are uniquely determined by the vertices of the polygon MH0MH1 . . . MHr N . Let us
make these ideas more precise now.
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Proof of Lemma 4.8 Let us denote byS the set of all connected algebraic subgroupsof
G, and for K ∈ S let ψ(K ) = (dim K , rk(�1 ∩ K ), . . . , rk(�l ∩ K )) ∈ Z

l+1. Let E
denote the set of all H ∈ S such thatψ−1(ψ(H)) = {H}. ThenE is a finite set, because
ψ(S) clearly is and ψ|E : E → ψ(S) is an injective map. Now for any subgroup Hi+1
in a chain corresponding to some S1, . . . , Sl , we have ψ−1(ψ(Hi+1)) = {Hi+1}
because equality holds in Eq. (7) for any K ∈ ψ−1(ψ(Hi+1)); therefore Hi+1 ∈ E .
Since H0 = {0} ∈ E , this concludes the proof of Lemma 4.8.

4.4 Applications to the distribution of �

The chain of algebraic subgroups (Hi )0≤i≤r constructed in Sect. 4.1 is useful to study
the distribution of �(S) with respect to algebraic subgroups of G. Several results of
this kind have been stated in the introduction when S1 = · · · = Sl , and will be proved
in Sect. 4.5. In the general case where S1, . . . , Sl are not assumed to be equal, the same
results hold except that they have to be stated differently: exponents like μ(�,G) and
μ∗(�,G) are no longer available. We shall neither state nor prove the corresponding
generalizations of all results stated in the introduction, but only the ones that will be
used in the proof of Theorems 2.1 and 2.2.

To begin with, let us generalize the fact that�(S)∩Hi+1 mod Hi is well-distributed
in Hi+1/Hi . Recall that Si has been defined at the beginning of Sect. 2.

Lemma 4.9 There exists a positive constant c13, which depends only on G, γ1, . . . , γl
but not on S1, . . . , Sl , with the following property: for any i ∈ {0, . . . , r − 1} and any
connected algebraic subgroup H such that Hi � H, we have

Card(�(2nS) ∩ H mod Hi ) < c13S
dim(H/Hi )
i

where n = dimG.

This lemma asserts that in applying Proposition 3.3 to�(2nS)∩Hi+1 mod Hi in the
algebraic group Hi+1/Hi , it is enough to check assumption (5) with H = Hi+1/Hi

(with a smaller value of c9, though), so that this proposition applies as soon as D >

c14Si T for some constant c14. Indeed Si is given by

Si = exp

[
ϕS(Hi+1) − ϕS(Hi )

dim Hi+1 − dim Hi

]
, (17)

and Lemma 3.4 shows thatSdim Hi+1−dim Hi
i is equal, up to amultiplicative constant, to

the cardinality of (�(S) ∩ Hi+1)mod Hi : the conclusion of Lemma 4.9 is an equality
for H = Hi+1, except for the value of the constant c13.

We prove Lemma 4.9 for �(2nS) because it will be applied in this way in the proof
of Theorem 2.2. The value 2n could be replaced with any other constant c15 and then
c13 would depend on c15. Notice also that the chain of algebraic subgroups associated
(as in Sect. 4.1) with the parameters 2nS1, . . . , 2nSl might be distinct from the chain
(Hi )0≤i≤r associated with S1, . . . , Sl (which appears in Lemma 4.9).

123

Author's personal copy



234 S. Fischler, M. Nakamaye

Proof of Lemma 4.9 Lemma 3.4 applied to �(2nS), H ′ = H and H ′′ = Hi yields

Card(�(2nS) ∩ H mod Hi ) < c16 exp(ϕS(H) − ϕS(Hi ))

where c16 depends only on γ1, . . . , γl and n, using Remark 3.6 and Lemma 4.8. Since

S
dim(H/Hi )
i = exp

[
dim H − dim Hi

dim Hi+1 − dim Hi
(ϕS(Hi+1) − ϕS(Hi ))

]
,

Lemma 4.9 follows using Eq. (7) of Proposition 4.1.
The next lemma corresponds, when S1 = · · · = Sl , to the result μ(� ∩ Hi , Hi ) =

rk(�∩Hi )−rk(�∩Hi−1)
dim Hi−dim Hi−1

.

Lemma 4.10 For any ε > 0 there exists a positive constant c17, which depends
only on ε, G, γ1, . . . , γl but not on S1, . . . , Sl , with the following property: for any
i ∈ {1, . . . , r} and any connected algebraic subgroup H such that H � Hi , we have

Card

(
�

(
ε

dim Hi
S

)
∩ Hi mod H

)
> c17S

dim(Hi /H)
i−1 .

This lemma asserts that in applying Proposition 3.1 to � = �( ε
dim Hi

S) ∩ Hi in
the algebraic group Hi , it is enough to check assumption (4) with H = Hi−1 (with a
larger value of c7, though), so that this proposition applies as soon as D < c18Si−1T

for some constant c18. Indeed S
dim(Hi /Hi−1)

i−1 is equal, up to a multiplicative constant,
to the cardinality of (�( ε

dim Hi
S) ∩ Hi )mod Hi−1: the conclusion of Lemma 4.10 is

an equality for H = Hi−1, up to the value of c17.
As for Lemma 4.9 above, we prove Lemma 4.10 for �( ε

dim Hi
S) because it will be

applied in this way in the proof of Theorem 2.1. The value ε
dim Hi

could be replaced
with another constant.

Proof of Lemma 4.10 ApplyingLemma3.4 to�( ε
dim Hi

S)with H ′ = Hi and H ′′ = H
yields, using Remark 3.6 and Lemma 4.8:

Card

(
�

(
ε

dim Hi
S

)
∩ Hi mod H

)
> c19 exp(ϕS(Hi ) − ϕS(H))

where c19 depends only on γ1, . . . , γl and ε. Since

S
dim(Hi /H)
i−1 = exp

[
dim Hi − dim H

dim Hi − dim Hi−1
(ϕS(Hi ) − ϕS(Hi−1))

]
,

Equation (10) in Proposition 4.3 enables one to conclude the proof of Lemma 4.9.
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4.5 The case S1 = · · · = Sl

In this subsection we assume that S1 = · · · = Sl = S > 1 as in the introduction. We
shall deduce the results announced there from those proved previously in the general
setting.

To begin with, we have ϕS(K ) = rk(� ∩ K ) log S for any connected algebraic
subgroupK of G. In particular ϕS(K ) does not depend on γ1, . . . , γl , but only on �,
S and K . It is easily seen that the factor log S cancels out in all inequalities like Eq.
(7), so that the chain of algebraic subgroups (Hi )0≤i≤r depends only on � but neither
on γ1, . . . , γl nor on S (the latter point is also a consequence of Lemma 4.7).

On the other hand Eq. (7) is equivalent to

rk(� ∩ K ) − rk(� ∩ Hi )

dim K − dim Hi
≤ rk(� ∩ Hi+1) − rk(� ∩ Hi )

dim Hi+1 − dim Hi
.

Since H0 = {0}, Proposition 4.1 asserts that rk(�∩K )
dim K ≤ rk(�∩H1)

dim H1
, and if equality holds

then K ⊂ H1. This implies μ∗(�,G) = rk(�∩H1)
dim H1

. In the same way, Hr = G so that

Proposition 4.3 yields rk(�)−rk(�∩K )
dimG−dim K ≥ rk(�)−rk(�∩Hr−1)

dimG−dim Hr−1
, and if equality holds then

Hr−1 ⊂ K . In particular we have μ(�,G) = rk(�)−rk(�∩Hr−1)
dimG−dim Hr−1

.

Letting μi = rk(�∩Hi+1)−rk(�∩Hi )
dim Hi+1−dim Hi

as in the introduction, with i ∈ {0, . . . , r − 1},
Proposition 4.4 asserts thatμr−1 < . . . < μ1 < μ0; in the notation of Remark 4.5 this
is clear because μi log S is the slope of the line (MHi MHi+1). Lemma 3.4 proves that
Card((�(S)∩ Hi+1)mod Hi ) is equal, up to a multiplicative constant depending only
on γ1, . . . , γl , to Srk(�∩Hi+1)−rk(�∩Hi ) = Sμi (dim Hi+1−dim Hi ); the quantity denoted by
Si in this paper equals Sμi in this case.

Let us fix i , j such that 0 ≤ i < j ≤ r . Then the chain of algebraic subgroups
associated with � ∩ Hj mod Hi in the algebraic group Hj/Hi is {0} = Hi

Hi
�

Hi+1
Hi

�

· · · �
Hj−1
Hi

�
Hj
Hi
. This proves the equalities

μ(� ∩ Hj mod Hi , Hj/Hi ) = rk(� ∩ Hj ) − rk(� ∩ Hj−1)

dim Hj − dim Hj−1

and

μ∗(� ∩ Hj mod Hi , Hj/Hi ) =
rk

(
�∩Hi+1
�∩Hi

)

dim(Hi+1/Hi )
.

5 Proof of the main result

In this section we prove Theorems 2.1 and 2.2. The strategy is to apply the special
cases where D is very large or very small, proved in Sect. 3.1, to sub-quotients of
G. We deduce Theorem 2.2 from a multiplicity estimate in the algebraic group Hi .
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The proof of Theorem 2.1 is more complicated: it involves interpolation estimates in
Hi+1/Hi and in G/Hi+1.

The addition law and the translations on G play a key role in the proof and we
begin by establishing our notation to represent these. Let a and b be integers such
that there exists a complete system of addition laws on G of bi-degree (a, b). This
means that the addition law on G (embedded in P

N ) is represented, on every element
of a suitable open cover, by a family of bi-homogeneous polynomials of bi-degree
(a, b). We may assume (see [6], p. 493) that some open set U in this cover contains
� and the point γ introduced below at the beginning of the proof of Theorem 2.1. Of
course U depends on γ , but this is not important in the proof. There exists a family
E0(X,Y ), . . . , EN (X,Y ) of bi-homogeneous polynomials of bi-degree (a, b) which
represents the addition law on U ×U ; we let X = (X0, . . . , XN ), Y = (Y0, . . . ,YN )

and E = (E0, . . . , EN ).
For any y ∈ U , after choosing a system (y0, . . . , yN ) ∈ C

N+1 of projective coor-
dinates of y in P

N we may consider for any P ∈ R(G)D the polynomial

ty P(X) = P(E(X, y)) ∈ R(G)aD.

The linear map ty : R(G)D → R(G)aD represents the translation by y. Moreover if
P vanishes to order at least T (resp. does not vanish) at a given point z and if z− y ∈ U
then ty P vanishes to order at least T (resp. does not vanish) at the point z − y. Of
course the map ty depends on D, E and on the choice of (y0, . . . , yN ), but we omit
this dependence in the notation ty .

In the proof we shall use repeatedly the following fact: since Hi may take only
finitely many values (see Lemma 4.8), a constant that depends on Hi can actually be
chosen in terms of G, γ1, . . . , γl . Given a constant N (depending on γ1, . . . , γl ), we
may also assume that D is a multiple of N . Indeed BG,�(S),T,D is a non-increasing
function of D when the subset �(S) and the order of vanishing T are held constant,
so it is enough to prove Theorem 2.1 for a slightly smaller value of D (resp. to prove
Theorem 2.2 for a slightly larger value of D).

We first prove Theorem 2.2. Let γ ∈ �((1 − ε)S) and assume that P ∈ R(G)D
vanishes to order at least T at any point of �(S). Consider Q = tγ P ∈ R(G)aD: then
Q vanishes to order at least T at any point of �(εS). We let �1 = �( ε

dim Hi
S) ∩ Hi

and denote by Q1 ∈ R(Hi )aD the restriction of Q to Hi . Then Q1 vanishes to
order at least T at any point of �1[dim Hi ]. Moreover, for any connected algebraic
subgroupH � Hi Lemma 4.10 yields

Card(�1 mod H) > c17S
dim(Hi /H)
i−1

where c17 depends only on γ1, . . . , γl . Since D < c−1
5 Si−1T this implies (provided

that c5 is large enough) that

Card(�1 mod H)T dim(Hi /H) > c7D
dim(Hi /H)

where c7 is the constant in Proposition 3.1 applied in the algebraic group Hi . This
Proposition yields Q1 = 0 ∈ R(Hi )aD so that P vanishes identically on γ +(Hi ∩U ).
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Now the zero element of G belongs to Hi ∩U (because we have assumed � ⊂ U ), so
that Hi ∩ U is non-empty. Since U is an open subset of G, we obtain that Hi ∩ U is
Zariski dense in Hi . This density does not change by translation, so that P vanishes
identically on γ + Hi because it vanishes on γ + (Hi ∩U ). This concludes the proof
of Theorem 2.2.

We now prove Theorem 2.1.We argue by decreasing induction on i . LettingSr = 1
this result is meaningful for i = r , and trivially true since Hr = G. From now on, we
let i ∈ {0, . . . , r − 1} and assume that Theorem 2.1 holds for i + 1.

Assume there exists γ ∈ BG,�(S),T,D with γ /∈ �(S) + Hi . Since Theorem 2.1
holds for i + 1 and Si+1 ≤ Si , we have γ ∈ �(S) + Hi+1. Let β ∈ �(S) and
h ∈ Hi+1 be such that γ = β + h. Consider �2 = (−β + �(S)) ∩ Hi+1, and notice
that h /∈ �2 + Hi since γ /∈ �(S) + Hi .

Now Hi+1/Hi is a commutative algebraic group, so we can choose (arbitrarily) a
projective embedding Hi+1/Hi ↪→ P

Mi . With respect to this embedding (and that of
Hi+1 in P

N ), the projection Hi+1 → Hi+1/Hi is given, on an open subset of Hi+1
which contains �2 ∪ {h}, by homogeneous polynomials Ri,0, . . . , Ri,Mi of the same
degree, say ai . It is possible to ensure that ai depends only on the embeddings of
Hi+1/Hi and Hi+1, and not on �2 or h. We put Ri = (Ri,0, . . . , Ri,Mi ).

Let h̄ = hmod Hi and �2 = �2 mod Hi , so that h̄ /∈ �2. Then (�2\{h̄})
{dim(Hi+1/Hi )} is a subset of �(2nS) ∩ Hi+1 mod Hi since dim(Hi+1/Hi ) ≤
dimG = n, so that Lemma 4.9 yields

Card ((�2\{h̄}){dim(Hi+1/Hi )} ∩ H) < c13S
dim H
i

for any connected algebraic subgroupH of G such that Hi � H ⊂ Hi+1, where
H = H/Hi . Since D > c4Si T , Proposition 3.3 applies in the algebraic group
Hi+1/Hi if c4 is sufficiently large: it provides P1 ∈ R(Hi+1/Hi )D/2aai which vanishes
to order at least T at any point of �2 and does not vanish at h̄ (because h̄ /∈ �2).
Then P1 ◦ Ri ∈ R(Hi+1)D/2a vanishes to order at least T at any point of �2 =
(−β + �(S)) ∩ Hi+1, and does not vanish at the point h. Choose P2 ∈ R(G)D/2a
such that P1 ◦ Ri is the restriction of P2 to Hi+1 so that the same vanishing and non-
vanishing properties hold for P2. Then P3 = t−β P2 ∈ R(G)D/2 vanishes to order at
least T at any point of �(S)∩ (β + Hi+1), and does not vanish at the point β + h = γ

(because U contains � and γ ).
On the other hand,we can choose an embedding of the commutative algebraic group

G/Hi+1 in projective space P
M ′

i . On an open subset of G which contains � ∪ {γ } the
projection G → G/Hi+1 is given as above by a family R′

i = (R′
i,0, . . . , R

′
i,M ′

i
)

of homogeneous polynomials of the same degree a′
i and this degree can be made

independent from γ .
Now let �3 = �(S)\{β}, where �(S) and β are the images of �(S) and β in

G/Hi+1. Then �3{dim(G/Hi+1)} ⊂ �(2nS)mod Hi+1 since dim(G/Hi+1) ≤ n, so
that Lemma 4.9 (with i + 1 instead of i) yields

Card(�3{dim(G/Hi+1)} ∩ H) < c13S
dim H
i+1
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for any connected algebraic subgroupH such that Hi+1 � H ⊂ G, with H =
H/Hi+1. Now we have D > c4Si T ≥ c4Si+1T ; if c4 is sufficiently large then
Proposition 3.3 (applied inG/Hi+1) provides Q1 ∈ R(G/Hi+1)D/2a′

i
which vanishes

to order at least T at any point of �3 = �(S)\{β}, and does not vanish at the point
β. Then Q2 = Q1 ◦ R′

i ∈ R(G)D/2 vanishes to order at least T at any point of
�(S)\(β + Hi+1), and does not vanish at γ = β + h.

We consider now P = P3Q2 ∈ R(G)D . We have P(γ ) 
= 0 because P3(γ ) 
= 0
and Q2(γ ) 
= 0. For γ ′ ∈ �(S), if γ ′ ∈ β + Hi+1 then P3 vanishes to order at least
T at γ ′; otherwise Q2 does. Therefore P vanishes to order at least T at any point of
�(S). Since P(γ ) 
= 0 and γ ∈ BG,�(S),T,D , this is a contradiction.

6 Possible generalizations

It would be interesting to generalize Theorems 2.1 and 2.2 in at least two directions.
The first one would be to replace�(S)with a fixed finite set�. A first step would be

to find constants c4 and c5 in Theorems 2.1 and 2.2 which do not depend on γ1, . . . , γl .
Interpolation and multiplicity estimates are known in this setting (see Sect. 3.1), but
the proof leaves no hope to obtain this result unless new ideas are used. For instance,
the chain of subgroups (Hi )0≤i≤r constructed in Sect. 4 does not depend on the torsion
part of �: it is trivial as soon as � has rank 0. For an analogous reason, in Masser’s
interpolation estimate [5] (and in the first author’s generalization [3]), the constant
depends also on γ1, . . . , γl . The case of an arbitrary finite set � was dealt with in [4]
using a more geometric approach in terms of Seshadri constants.

The second way to generalize Theorems 2.1 and 2.2 would be to consider vanishing
along analytic subgroups of G. The only problem is that the interpolation estimate of
[4] (stated above as Proposition 3.2) is not known in this setting. The only available
interpolation estimate is the one proved by the first author [3], but it is not sufficiently
precise to deduce the corresponding generalization of Proposition 3.3 (even with � =
�(S)).

Let us introduce this setting more precisely, and mention how the other tools used
in this paper generalize to it. Let T0(G) denote the tangent space to G at 0, seen as the
space of translation-invariant vector fields on G. Let W be a subspace of T0(G), of
dimension d ≥ 0, and ∂ = (∂1, . . . , ∂d) be a basis ofW . For a family T = (T1, . . . , Td)
of d positive real numbers, we let N

d
T be the set of all σ = (σ1, . . . , σd) such that

0 ≤ σ j < Tj for any j ∈ {1, . . . , d}.
We denote byOpW the set of all polynomials in ∂1, . . . , ∂d , i.e. the space of differen-

tial operators alongW , and by Op∂,T the subspace of OpW spanned by the monomials

∂σ = ∂
σ1
1 . . . ∂

σd
d for σ ∈ N

d
T . We assume (without loss of generality: see [6], p. 492)

that � ⊂ {X0 
= 0} ⊂ P
N , and we say that a polynomial P ∈ R(G)D vanishes up

to order T along W at a point γ ∈ � if ∂σ (P/XD
0 )(γ ) = 0 for any σ ∈ N

d
T . If

T1 = · · · = Td = T and W = T0(G), this means that P vanishes to order at least T
at γ .

With this notation, one would replace everywhere “vanishing to order at least T ”
with “vanishing up to order T along W”, and T dim H with dim(OpW∩T0(H) ∩Op∂,T ).
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The corresponding multiplicity estimate (Proposition 3.1) has been proved by Philip-
pon [10]. For any j ∈ {0, . . . , d} letWj = Span(∂1, . . . , ∂ j ). Then dim(Wj ∩T0(H))

plays a role analogous to the one of rk(� j ∩ H). Given S1 ≥ · · · ≥ Sl ≥ 1 and
T1 ≥ · · · ≥ Td ≥ 1, let us define

ϕS,T (K ) =
l∑

j=1

rk

(
� j ∩ K

� j−1 ∩ K

)
log S j +

d∑
j=1

dim

(
Wj ∩ T0(K )

Wj−1 ∩ T0(K )

)
log Tj

for any connected algebraic subgroupK ofG. Then in Sect. 4.1 it is possible to replace
ϕS with ϕS,T . The chain of subgroups constructed in this way depends on γ1, . . . , γl ,
∂1, . . . , ∂d , S1, . . . , Sl , T1, . . . , Td . In Lemmas 4.9 and 4.10, the left hand side of the

inequalities has to bemultiplied by dim
( OpW∩T0(H ′)∩Op∂,T

OpW∩T0(H ′′)∩Op∂,T

)
with {H ′, H ′′} = {H, Hi }.

Moreover in the definition ofSi , ϕS should also be replacedwith ϕS,T (see Eq. (17)). It
seems reasonable to conjecture that Theorems 2.1 and 2.2 hold in this setting, provided
Si T is replaced with this new value of Si .
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