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Abstract

Siegel defined in 1929 two classes of power series, the E-functions and G-functions,
which generalize the Diophantine properties of the exponential and logarithmic func-
tions respectively. He asked whether any E-function can be represented as a poly-
nomial with algebraic coefficients in a finite number of E-functions of the form

pFq(λz
q−p+1), q ≥ p ≥ 1, with rational parameters. The case of E-functions of

differential order less than or equal to 2 was settled in the affirmative by Gorelov in
2004, but Siegel’s question is open for higher order. We prove here that if Siegel’s
question has a positive answer, then the ring G of values taken by analytic continu-
ations of G-functions at algebraic points must be a subring of the relatively “small”
ring H generated by algebraic numbers, 1/π and the values of the derivatives of
the Gamma function at rational points. Because that inclusion seems unlikely (and
contradicts standard conjectures), this points towards a negative answer to Siegel’s
question in general. As intermediate steps, we first prove that any element of G is
a coefficient of the asymptotic expansion of a suitable E-function, which completes
previous results of ours. We then prove (in two steps) that the coefficients of the
asymptotic expansion of a hypergeometric E-function with rational parameters are
in H. Finally, we prove a similar result for G-functions.
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1 Introduction

Siegel [25] introduced in 1929 the notion of E-function as a generalization of the exponential
and Bessel functions. We denote by Q ⊂ C the field of algebraic numbers.
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Definition 1. A power series F (z) =
∑∞

n=0
an
n!
zn ∈ Q[[z]] is an E-function if

(i) F (z) is solution of a non-zero linear differential equation with coefficients in Q(z).

(ii) There exists C > 0 such that for any σ ∈ Gal(Q/Q) and any n ≥ 0, |σ(an)| ≤ Cn+1.

(iii) There exists D > 0 and a sequence of integers dn, with 1 ≤ dn ≤ Dn+1, such that
dnam are algebraic integers for all m ≤ n.

Siegel’s original definition was in fact slightly more general than the above and we shall
make some remarks about this in §2.1. Note that (i) implies that the an’s all lie in a certain
number field K, so that in (ii) there are only finitely many Galois conjugates σ(an) of an
to consider, with σ ∈ Gal(K/Q) (assuming for simplicity that K is a Galois extension of
Q). E-functions are entire, and they form a ring stable under d

dz
and

∫ z
0

. A power series∑∞
n=0 anz

n ∈ Q[[z]] is said to be a G-function if
∑∞

n=0
an
n!
zn is an E-function. Examples

of G-functions include algebraic functions over Q(z) regular at 0 (this uses Eisenstein’s
Theorem) and polylogarithms (defined in §2.2).

The generalized hypergeometric series is defined as

pFq

[
a1, . . . , ap
b1, . . . , bq

; z

]
:=

∞∑
n=0

(a1)n · · · (ap)n
(1)n(b1)n · · · (bq)n

zn

where p, q ≥ 0 and (a)0 := 1, (a)n := a(a + 1) · · · (a + n− 1) if n ≥ 1. The parameters aj
and bj are in C, with the restriction that bj /∈ Z≤0 so that (bj)n 6= 0 for all n ≥ 0. We shall
also denote it by pFq[a1, . . . , ap; b1, . . . , bq; z].

Siegel proved in [25] and [26, §9] that, for any integers q ≥ p ≥ 0, the series

pFq

[
a1, . . . , ap
b1, . . . , bq

; zq−p+1

]
(1.1)

is an E-function (in the sense of this paper) when aj ∈ Q and bj ∈ Q \ Z≤0 for all j. He
called them hypergeometric E-functions. The simplest examples are exp(z) =

∑∞
n=0

zn

n!
=

1F1[1; 1; z] and the Bessel function J0(z) :=
∑∞

n=0
(iz/2)2n

n!2
= 1F2[1; 1, 1; (iz/2)2]. If aj ∈ Z≤0

for some j, then the series reduces to a polynomial. Any polynomial with coefficients
in Q of functions of the form pFq[a1, . . . , ap; b1, . . . , bq;λz

q−p+1], with parameters aj ∈ Q,
bj ∈ Q \ Z≤0 and λ ∈ Q, is an E-function.

The E-functions

L(z) :=
∞∑
n=0

( n∑
k=0

(
n

k

)(
n+ k

n

))
zn

n!
, H(z) :=

∞∑
n=0

( n∑
k=1

1

k

)
zn

n!

are not of the hypergeometric type (1.1) since the quotient an+1/an of two successive terms
is not a rational function of n, but we have

L(z) = e(3−2
√

2)z · 1F1

[
1/2; 1; 4

√
2z
]
,

H(z) = zez · 2F2

[
1, 1; 2, 2;−z

]
.
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These puzzling identities, amongst others, naturally suggest to study further the role played
by hypergeometric series in the theory of E-functions. In fact, Siegel had already stated
[25, p. 225] a problem that we reformulate as the following question.

Question 1 (Siegel). Is it possible to write any E-function as a polynomial with coefficients
in Q of E-functions of the form pFq[a1, . . . , ap; b1, . . . , bq;λz

q−p+1], with parameters aj ∈ Q,
bj ∈ Q \ Z≤0 and λ ∈ Q?

It must be understood that λ, p, q and q− p can take various values in the polynomial.
Siegel’s original statement is given in §2.1 along with some comments. Gorelov [14, p. 514,
Theorem 1] proved that the answer to Siegel’s question is positive if the E-function (in
Siegel’s original sense) satisfies a linear differential equation with coefficients in Q(z) of
order ≤ 2. He used some of the pioneering results of André [3] on E-operators. A version
of Gorelov’s theorem was reproved in [24] for E-functions as in Definition 1 with a method
also based on André’s results, but somewhat different in the details. It seems difficult to
generalize any one of these two approaches when the order is ≥ 3, though Gorelov [15]
also obtained further results in the case of E-functions solution of a linear inhomogeneous
differential equation of order 2 with coefficients in Q(z), like H(z) above.

In this paper, we adopt another point of view on Siegel’s question. To begin with, let
us define two subrings of C; the first one was introduced and studied in [9].

Definition 2. G denotes the ring of G-values, i.e. the values taken at algebraic points
by the analytic continuations of all G-functions.

H denotes the ring generated by Q, 1/π and the values Γ(n)(r), n ≥ 0, r ∈ Q \ Z≤0.

Here, Γ(s) :=
∫∞

0
ts−1e−tdt is the usual Gamma function for <(s) > 0, that can be

analytically continued to C \ Z≤0. We can now state our main result.

Theorem 1. At least one of the following statements is true:

(i) G ⊂ H;

(ii) Siegel’s question has a negative answer.

We provide in §2.2 another description of the ring H, and explain there why the inclu-
sion G ⊂ H (and therefore a positive answer to Siegel’s question) seems very unlikely; as
Y. André, F. Brown and J. Fresán pointed out to us, this inclusion contradicts standard
conjectures about (exponential) periods and motivic Galois groups.

The paper is organized as follows. In §2, we comment on Siegel’s original formulation
of his problem and make some remarks on the ring H. In §3, we prove that any element
of G is a coefficient of the asymptotic expansion of a suitable E-function (Theorem 3).
In §4, we prove that the coefficients of the asymptotic expansion of any hypergeometric
series pFp(z) with rational parameters are in H; then we generalize this result to any

pFq(z
q−p+1) in §5. We complete the proof of Theorem 1 in §6 by comparing the results

of the previous sections. Finally, we consider in §7 an analogous problem for G-functions
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and prove a similar result to Theorem 1. We emphasize that the proof of Theorem 1 uses,
in particular, various results obtained in [9] and [10], the proofs of which are crucially
based on a deep theorem due to André, Chudnovsky and Katz on the structure of non-zero
minimal differential equations satisfied by G-functions; see §7.1 and the references given
there.

Acknowledgements. We warmly thank Yves André, Francis Brown and Javier Fresán
for their comments on a previous version of this paper. We also thank Javier Fresán and
Peter Jossen for bringing to our attention that Siegel’s question was more general than we
had originally thought, and the referee for reading very carefully our paper.

2 Comments on Theorem 1

2.1 Siegel’s formulation of his problem

In [25] and [26, Chapter II, §9], Siegel proved that the series of the type (1.1) with rational
parameters are E-functions, and named them “hypergeometric E-functions”. He wrote
[26, p. 58]: Performing the substitution x 7→ λx for arbitrary algebraic λ and taking any
polynomial in x and finitely many hypergeometric E-functions, with algebraic coefficients,
we get again an E-function satisfying a homogeneous linear differential equation whose
coefficients are rational functions of x. It would be interesting to find out whether all such
E-functions can be constructed in the preceding manner.

Siegel obviously considered E-functions in his sense, which we recall here: in Defini-
tion 1, (i) is unchanged but (ii) and (iii) have to be replaced by

(ii′) For any ε > 0 and for any σ ∈ Gal(Q/Q), there exists N(ε, σ) ∈ N such that for any
n ≥ N(ε, σ), |σ(an)| ≤ n!ε.

(iii′) There exists a sequence of positive integers dn such that dnam are algebraic integers
for all m ≤ n and such that for any ε > 0 there exists N(ε) ∈ N such that for any
n ≥ N(ε), dn ≤ n!ε.

Again, by (i), there are only finitely many σ to consider for a given E-function. We have
chosen to formulate his problem for E-functions in the restricted sense of Definition 1
because the proof of Theorem 1 is based on results which are currently proven only in this
sense. However, a fortiori, Theorem 1 obviously holds verbatim if one considers E-functions
in Siegel’s sense. Note also that z = 1F1[0; 1; z] − 1F1[−1; 1; z] so that Siegel could have
formulated his problem in terms of hypergeometric series only, as we did. Note that the
E-function 1

z
(ez − e−z) = 1

z 1F1[1; 1; z]− 1
z 1F1[1; 1;−z] is not a counter-example to Siegel’s

problem because we also have 1
z
(ez − e−z) = 1F1[1; 2; z]− 1F1[1; 2;−z]; there is no unicity

of the representation of E-functions by polynomials in hypergeometric ones.
Furthermore, the series in (1.1) may be an E-function even if some of its parameters
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are not rational numbers. For instance, for every α ∈ Q \ Z≤0,

1F1

[
α + 1
α

; z

]
=
∞∑
n=0

(α + 1)n
(1)n(α)n

zn =
∞∑
n=0

α + n

α
· z

n

n!
=
(
1 +

z

α

)
ez

is an E-function. Thus, even though Siegel did not consider such examples, the notion
of “hypergeometric E-functions” could be interpreted in a broader way than he did in
his problem. Galochkin [12] proved the following non-trivial characterization, where E-
functions are understood in Siegel’s sense.

Theorem (Galochkin). Let p, q ≥ 1, q ≥ p, a1, . . . , ap, b1, . . . , bq ∈ (C \ Z≤0)p+q be such
that ai 6= bj for all i, j. Then, the series pFq[a1, . . . , ap; b1, . . . , bq; z

q−p+1] is an E-function
if and only if the following two conditions hold:

(i) The aj’s and bj’s are all in Q;

(ii) The aj’s and bj’s which are not rational (if any) can be grouped in k ≤ p pairs
(aj1 , bj1), . . . , (ajk , bjk) such that aj` − bj` ∈ N.

It follows that hypergeometric E-functions pFq(z
q−p+1) with arbitrary parameters are

in fact Q-linear combinations of hypergeometric E-functions p′Fq′(z
q′−p′+1) (with various

values of p′ and q′) with rational parameters. Hence, there is no loss of generality in
considering the latter instead of the former in Siegel’s problem.

2.2 The ring H

For x ∈ C \ Z≤0, we define the Digamma function

Ψ(x) :=
Γ′(x)

Γ(x)
= −γ +

∞∑
n=0

( 1

n+ 1
− 1

n+ x

)
,

where γ is Euler’s constant limn→+∞(
∑n

k=1 1/k − log(n)), and the Hurwitz zeta function

ζ(s, x) :=
(−1)s

(s− 1)!
Ψ(s−1)(x) =

∞∑
n=0

1

(n+ x)s
, s ∈ N, s ≥ 2.

The polylogarithms are defined by

Lis(z) :=
∞∑
n=1

zn

ns
, s ∈ N∗ = N \ {0},

where the series converges for |z| ≤ 1 (except at z = 1 if s = 1). The Beta function is
defined as

B(x, y) :=
Γ(x)Γ(y)

Γ(x+ y)

for x, y ∈ C which are not singularities of Beta coming from the poles of Γ at non-positive
integers.

In this section, we shall prove the following result.
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Proposition 1. The ring H is generated by Q, γ, 1/π, Lis(e
2iπr) (s ∈ N∗, r ∈ Q,

(s, e2iπr) 6= (1, 1)), log(q) (q ∈ N∗) and Γ(r) (r ∈ Q \ Z≤0).
For any r ∈ Q \ Z≤0, Γ(r) is a unit of H.

Proof. We first prove that for any r ∈ Q \ Z≤0, Γ(r) is a unit of H. Indeed, if r ∈ N∗,
then Γ(r) ∈ N∗ and 1/Γ(r) ∈ Q ⊂ H. If r ∈ Q \ Z, then by the reflection formula [5, p. 9,
Theorem 1.2.1], we have

1

Γ(r)
=

1

π
sin(πr)Γ(1− r) ∈ H

because 1/π ∈ H, sin(πr) ∈ Q ⊂ H and Γ(1− r) ∈ H.

From the identity Γ′(x) = Γ(x)Ψ(x) we obtain that, for any integer s ≥ 1 and any
r ∈ Q \ Z≤0,

Ψ(s)(r) =
Γ(s+1)(r)

Γ(r)
−

s−1∑
k=0

(
s

k

)
Γ(s−k)(r)

Γ(r)
Ψ(k)(r).

Since Γ(r) is a unit of H, we have ψ(r) ∈ H and it follows immediately by induction on

s that ζ(s, r) = (−1)s

(s−1)!
Ψ(s−1)(r) ∈ H for any s ≥ 2 and any r ∈ Q \ Z≤0. In particular

γ = −Ψ(1) and the values of the Riemann zeta function ζ(s) = ζ(s, 1) (s ≥ 2) are all in H.
Note that γ is not expected to be in G but that ζ(s) = Lis(1) ∈ G for all s ≥ 2 since
polylogarithms are G-functions.

Now the identity Γ′(x) = Γ(x)Ψ(x) implies by induction that, for any x ∈ C \ Z≤0, we
have

Γ(s)(x) = Γ(x)Ps
(
Ψ(x), ζ(2, x), . . . , ζ(s, x)

)
(2.1)

for some Ps ∈ Q[X1, . . . , Xs]; for instance P0 = 1, P1 = X1, and P2 = X2
1 + X2. Further-

more, set p, q ∈ N, 0 < p ≤ q, and µ := exp(2iπ/q). Then,

Ψ
(p
q

)
= −γ − log(q)−

q−1∑
n=1

µ−np Li1(µn), (2.2)

Li1(µp) = −1

q

q∑
n=1

µnp Ψ
(n
q

)
, p 6= q (2.3)

ζ
(
s,
p

q

)
= qs−1

q∑
n=1

µ−np Lis(µ
n), s ≥ 2 (2.4)

Lis(µ
p) =

1

qs

q∑
n=1

µnp ζ
(
s,
n

q

)
, s ≥ 2. (2.5)

We refer to [5, p. 13] for a proof of (2.2), and we observe that (2.4) can be proven in a
similar (and even simpler) fashion; then (2.3) follows from applying (2.2) q times, and (2.5)
from (2.4) in the same way. From (2.3) and (2.5), we deduce that Lis(µ

p) ∈ H for any
s ≥ 1 (with (s, µp) 6= (1, 1)); then (2.2) implies in turn that log(q) ∈ H. The numbers
log(q) and Lis(µ

p) are also in G.
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The set of Identities (2.1), (2.2) and (2.4) shows that H coincides with the ring generated
by Q, γ = −Ψ(1), 1/π, Lis(e

2iπr) (s ∈ N∗, r ∈ Q, (s, e2iπr) 6= (1, 1)), log(q) (q ∈ N∗) and
Γ(r) (r ∈ Q \ Z≤0).

Other units of H can be easily identified, which are also units of G (see [9, Proposition 1
and the remarks following it]): non-zero algebraic numbers and the values of the Beta
function B(x, y) at rational numbers x, y at which it is defined and non-zero. It follows
that π = Γ(1/2)2 = B(1/2, 1/2) and more generally Γ(a/b)b = (a − 1)!

∏b−1
j=1 B(a/b, ja/b),

a, b ∈ N∗, are units of H. By the Chowla-Selberg formula [16, Eq. (3)], periods of elliptic
curves with complex multiplication by Q(i) are also units of H.

If Siegel’s problem has a positive answer, Theorem 1 yields G ⊂ H: any element of
G can be written as a polynomial, with algebraic coefficients, in the numbers γ, 1/π,
Lis(e

2iπr), log(q) and Γ(r) of Proposition 1. This seems extremely doubtful: we recall that
G contains all the multiple zeta values

ζ(s1, s2, . . . , sn) :=
∑

k1>k2>···>kn≥1

1

ks11 k
s2
2 · · · ksnn

,

where the integers sj are such that s1 ≥ 2, s2 ≥ 1, . . . , sn ≥ 1, all values at algebraic points
of (multiple) polylogarithms, all elliptic and abelian integrals, etc. For now, we have
observed that G ∩H contains the ring generated by Q, 1/π and all the values Lis(e

2iπr),
log(q) and B(x, y), and it is in fact possible that both rings are equal.

It is interesting to know what can be deduced from the standard conjectures in the do-
main, such as the Bombieri-Dwork conjecture “G-functions come from geometry”, Grothen-
dieck’s period conjecture and its extension to exponential periods by Fresán-Jossen; see [4,
Partie III] and [11, p. 201, Conjecture 8.2.5]. In this respect we refer to [9, end of §2.2] for
a discussion about the conjectural equality of G and the algebra generated over periods by
1/π. In a private communication to the authors, Y. André wrote the following argument,
which he has autorised us to reproduce here. It shows that G ⊂ H cannot hold under
these standard conjectures:

Because of the presence of γ, the inclusion G ⊂ H does not contradict Grothendieck’s
period conjecture but it certainly contradicts its extension to exponential motives. More
precisely, in the description of H given in Proposition 1, we find γ (a period of an expo-
nential motive Eγ, which is a non-classical extension of Tate motives [11, §12.8]), 1

2iπ
(a

period of the Tate motive Q(1)), Lis(e
2iπr) (periods of a mixed Tate motive over Z[1/r]),

log(q) (a period of a 1-motive over Q), and Γ(r) whose suitable powers are periods of
Abelian varieties with complex multiplication by Q(e2iπr). On the one hand, let M be the
Tannakian category of mixed motives over Q generated by all these motives. On the other
hand, consider a non CM elliptic curve over Q and E its motive. The periods of E are
in G: indeed, it is enough to consider the Gauss hypergeometric solutions centered at 1/2,
and to observe that the periods of the fiber at 1/2 of the Legendre family can be expressed
using values of the Beta function at rational points by the Chowla-Selberg formula, and
in particular are algebraic in π and Γ(1/4). If G ⊂ H, the periods of E are in H. By
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the exponential period conjecture, E would be in M , which is impossible since the motivic
Galois group of M is pro-solvable, while that of E is GL2.

We conclude this section with a question of J. Fresán: at which differential order can
we expect to find a counter-example to Siegel’s problem? Based on the above remarks, it
seems unlikely that all the values Lis(α) are in H, for s ≥ 1 and α ∈ Q, |α| < 1. From
the proof of Theorem 3 below (see Remark 2), we deduce that if Lis(α) /∈ H, then the
E-function

∞∑
n=2

( n−1∑
k=1

αk

ks

)
zn

n!
(2.6)

is such a counter-example. It is of differential order at most s+3 because is it a solution of
the inhomogeous equation (P (θ)+zQ(θ)+z2R(θ))y(z) = αz2((α−1)z+1) where θ := z d

dz

and
P (x) := x(x− 1)s+1, Q(x) := −x(xs + α(x− 1)s), R(x) := αxs.

It is thus possible that a counter-example to Siegel’s problem already exists at order 4 or
even 3. However, the function H(z) :=

∑∞
n=0(

∑n
k=1

1
k
) z

n

n!
is an example of order 3 to the

problem (see the Introduction) and this shows that one must be careful and not draw hasty
conclusions here.

3 Elements of G as coefficients of asymptotic expan-

sions of E-functions

3.1 Definition of asymptotic expansions

As in [10, Definition 5], the asymptotic expansions used throughout this paper are defined
as follows, for a function f defined on a sector of the form (3.2).

Definition 3. Let θ ∈ R, and Σ ⊂ C, S ⊂ C, T ⊂ N be finite subsets. Given complex
numbers cρ,α,i,n, we write

f(x) ≈
∑
ρ∈Σ

eρx
∑
α∈S

∑
i∈T

∞∑
n=0

cρ,α,i,nx
−n−α log(1/x)i (3.1)

and say that the right-hand side is the asymptotic expansion of f(x) in a large sector
bisected by the direction θ if there exist ε, R,B,C > 0 and, for any ρ ∈ Σ, a function fρ(x)
holomorphic in the angular sector

U =
{
x ∈ C, |x| ≥ R, θ − π

2
− ε ≤ arg(x) ≤ θ +

π

2
+ ε
}
, (3.2)

such that
f(x) =

∑
ρ∈Σ

eρxfρ(x)
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and ∣∣∣fρ(x)−
∑
α∈S

∑
i∈T

N−1∑
n=0

cρ,α,i,nx
−n−α log(1/x)i

∣∣∣ ≤ CNN !|x|B−N (3.3)

for any x ∈ U and any N ≥ 1.

This means (see [22, §§2.1 and 2.3]) that for any ρ ∈ Σ,

∑
α∈S

∑
i∈T

∞∑
n=0

cρ,α,i,nx
−n−α log(1/x)i (3.4)

is 1-summable in the direction θ and its sum is fρ(x); notice the parameter B in Eq. (3.3),
which accounts for the fact that the last term in the expansion (3.3) does not involve
x−(N−1) as in the general setting, but x−(N−1+α) for some α ∈ S.

The sector U is a large sector, i.e. a set of the form {x ∈ C, |x| ≥ R, α ≤ arg(x) ≤ β}
with β − α > π. Using a result of Watson (see [22, §2.3]) on asymptotic expansions in
large sectors, the sum fρ(x) is determined by its asymptotic expansion (3.4). Therefore
the expansion on the right-hand side of (3.1) determines f(x) on U . The converse holds
too: [10, Lemma 1] asserts that a given function f(x) can have at most one asymptotic
expansion in the sense of Definition 3. Of course, to obtain this uniqueness property we
assume implicitly (throughout this paper) that Σ, S and T in (3.1) cannot trivially be
made smaller, and that for any α there exist ρ and i with cρ,α,i,0 6= 0. Moreover in what
follows, S will always be a subset of Q.

3.2 Computing asymptotic expansions of E-functions

In this section, we state [10, Theorem 5] which enables one to determine the asymptotic
expansion of an E-function. We refer to [10] for more details.

Let E(x) =
∑∞

n=1 anx
n be a non-polynomial E-function such that E(0) = 0; consider

g(z) =
∑∞

n=1
an
zn+1 . Denote by F : C[z, d

dz
] → C[x, d

dx
] the Fourier transform of differential

operators, i.e. the morphism of C-algebras defined by F(z) = d
dx

and F( d
dz

) = −x. Then

E is annihilated by an E-operator, which can be written as FD for some G-operator
D ∈ C[z, d

dz
]; and we have ( d

dz
)δDg = 0 where δ is the degree in z of D. We denote by Σ

the set of all finite singularities of D and let

S = R \ {arg(ρ− ρ′), ρ, ρ′ ∈ Σ, ρ 6= ρ′} (3.5)

where all the values modulo 2π of the argument of ρ−ρ′ are considered, so that S+π = S.
We fix θ ∈ R with −θ ∈ S (so that the direction θ is not anti-Stokes, i.e. not singular,

see for instance [20, p. 79]). For any ρ ∈ Σ we denote by ∆ρ = ρ − e−iθR+ the closed
half-line of angle −θ + π mod 2π starting at ρ. Since −θ ∈ S, no singularity ρ′ 6= ρ of D
lies on ∆ρ: these half-lines are pairwise disjoint. We shall work in the simply connected cut
plane obtained from C by removing the union of these half-lines. We agree that for ρ ∈ Σ
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and z in the cut plane, arg(z − ρ) will be chosen in the open interval (−θ − π,−θ + π).
This enables one to define log(z − ρ) and (z − ρ)α for any α ∈ Q.

Now let us fix ρ ∈ Σ. Combining theorems of André, Chudnovski and Katz (see [3,
§3] or [9, §4.1]), there exist (non necessarily distinct) rational numbers tρ1, . . . , t

ρ
J(ρ), with

J(ρ) ≥ 1, and G-functions gρj,k, for 1 ≤ j ≤ J(ρ) and 0 ≤ k ≤ K(ρ, j), such that a basis

of local solutions of ( d
dz

)δD around ρ (in the above-mentioned cut plane) is given by the
functions

fρj,k(z − ρ) = (z − ρ)t
ρ
j

k∑
k′=0

gρj,k−k′(z − ρ)
log(z − ρ)k

′

k′!
(3.6)

for 1 ≤ j ≤ J(ρ) and 0 ≤ k ≤ K(ρ, j). Since ( d
dz

)δDg = 0 we can expand g in this basis:

g(z) =

J(ρ)∑
j=1

K(ρ,j)∑
k=0

$ρ
j,kf

ρ
j,k(z − ρ) (3.7)

with connection constants $ρ
j,k; Theorem 2 of [9] yields $ρ

j,k ∈ G.
We denote by {u} ∈ [0, 1) the fractional part of a real number u, and agree that all

derivatives of this or related functions taken at integers will be right-derivatives. We let

yα,i(z) =
∞∑
n=0

1

i!

di

dti

(Γ(1− {t})
Γ(−t− n)

)
|t=α

zn ∈ Q[[z]] (3.8)

for α ∈ Q and i ∈ N. We also denote by ? the Hadamard (coefficientwise) product of
formal power series in z, and we consider

ηρj,k(1/x) =
k∑

m=0

(ytρj ,m ? g
ρ
j,k−m)(1/x) ∈ Q[[1/x]] (3.9)

for any 1 ≤ j ≤ J(ρ) and 0 ≤ k ≤ K(j, ρ). Then [10, Theorem 5] is the following result,

where Γ̂ := 1/Γ.

Theorem 2. In a large sector bisected by the direction θ we have the following asymptotic
expansion:

E(x) ≈∑
ρ∈Σ

eρx
J(ρ)∑
j=1

K(j,ρ)∑
k=0

$ρ
j,kx

−tρj−1
k∑
i=0

( k−i∑
`=0

(−1)`

`!
Γ̂(`)(1− {tρj})η

ρ
j,k−`−i(1/x)

) log(1/x)i

i!
. (3.10)

This theorem applies to any E-function of the form z · pFq[a1, . . . , ap; b1, . . . , bq; z
q−p+1]

with rational parameters and q ≥ p ≥ 1. Dividing by z, we then obtain an asymptotic ex-
pansion of the hypergeometric E-function pFq[a1, . . . , ap; b1, . . . , bq; z

q−p+1], which is unique
because it holds in a large sector bisected by the direction θ.

Remark 1. In the formula (3.10), the term corresponding to a triple (ρ, j, k) is zero whenever
fρj,k(z − ρ) is holomorphic at z = ρ. This observation will be very useful in the proof of
Theorem 4 in §5.2.
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3.3 G-values as coefficients of asymptotic expansions

We can now state and prove the main result of this section.

Theorem 3. For any ξ ∈ G, there exists an E-function E(x) such that for any θ ∈ [−π, π)
outside a finite set, ξ is a coefficient of the asymptotic expansion of E(x) in a large sector
bisected by θ.

Proof. Let ξ ∈ G; we may assume ξ 6= 0. Using [9, Theorem 1], there exists a G-function

h(z) holomorphic at z = 1 such that h(1) = ξ. Let g(z) = h(1/z)
z(z−1)

. This function has a Taylor

expansion at ∞ of the form
∑∞

n=1
an
zn+1 , and E(x) =

∑∞
n=1

an
n!
xn is an E-function. Using

the results of [10] recalled in §3.2 we shall compute (partially) its asymptotic expansion at
infinity in a large sector bisected by the direction θ, for any θ ∈ [−π, π) outside a finite
set; we shall prove that the coefficient of ex in this expansion is equal to ξ. With this aim
in mind, we keep the notation of §3.2, including D and θ.

We let ρ = 1 (eventhough we still write ρ for better readability), and consider a basis
of local solutions of ( d

dz
)δD around ρ with functions fρj,k and gρj,k as in §3.2. By Frobenius’

method, upon shifting tρj by an integer we may assume that gρj,0(0) 6= 0. Moreover, upon

performing Q-linear combinations of the basis elements and a permutation of the indices,
we may assume that tρ1 < . . . < tρJ(ρ) so that the solutions fρj,k have pairwise distinct

asymptotic behaviours at 0, namely fρj,k(s) ∼
gρj,0(0)

k!
st
ρ
j log(s)k. At last, dividing each fρj,k

with gρj,0(0) we may assume that gρj,0(0) = 1 for any j.
Now consider the expansion

g(z) =

J(ρ)∑
j=1

K(ρ,j)∑
k=0

$ρ
j,kf

ρ
j,k(z − ρ). (3.11)

Let T = {(j, k), $ρ
j,k 6= 0}. Since g is not identically zero, T is not empty. Let j0 ∈

{1, . . . , J(ρ)} be the minimal value such that (j0, k) ∈ T for some k, and let k0 be the
maximal value such that (j0, k0) ∈ T . Then on the right-hand side of Eq. (3.11), the
leading term as z → ρ is given by (j, k) = (j0, k0), so that

g(z) ∼
$ρ
j0,k0

k0!
(z − ρ)t

ρ
j0 log(z − ρ)k0 (3.12)

since gρj0,0(0) = 1. Now recall that g(z) = h(1/z)
z(z−1)

with h(1) = ξ 6= 0 and ρ = 1; therefore

g(z) ∼ ξ
z−1

. Comparing this with Eq. (3.12) yields tρj0 = −1, k0 = 0, and $ρ
j0,0

= ξ.
Let us consider the asymptotic expansion given by Theorem 2, and especially the coeffi-

cient of ex that we denote by α. This coefficient comes from the multiple sum in Eq. (3.10).
In this sum, we have $ρ

j,k = 0 for any j < j0 and any k (by definition of j0), so that these
terms do not contribute to the value of α. For any j > j0 we have tρj > tρj0 = −1 so that
−tρj − 1 < 0 and the corresponding terms do not contribute either. Therefore the value of
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α is given only by the terms corresponding to j = j0 (with tρj0 = −1):

α =

K(ρ,j0)∑
k=0

$ρ
j0,k

k∑
`=0

(−1)`

`!
Γ̂(`)(1)ηρj0,k−`(0).

Now recall that by definition, k0 = 0 is the maximal value of k such that $ρ
j0,k
6= 0.

Therefore the previous sum has (at most) one non-zero term: the one corresponding to

k = 0. Since Γ̂(1) = 1 and $ρ
j0,0

= ξ we have α = ξηρj0,0(0) = ξy−1,0(0)gρj0,0(0) = ξ using
Eqs. (3.8) and (3.9). This concludes the proof that the coefficient of ex in the asymptotic
expansion of E(x) is equal to ξ.

Remark 2. Let us follow the proof of Theorem 3 with ξ = Lis(α), α ∈ Q?
, |α| < 1. We

may choose h(z) = Lis(αz) so that

g(z) =
Lis(α/z)

z(z − 1)
=
∞∑
n=2

( n−1∑
k=1

αk

ks

)
z−n−1 as z →∞, and E(x) =

∞∑
n=2

( n−1∑
k=1

αk

ks

)
xn

n!
.

Therefore ξ is a coefficient of an asymptotic expansion of the function (2.6).

4 Asymptotic expansion of the hypergeometric series

pFp(z)

In this section, we prove the following result (recall that asymptotic expansions have been
defined in §3.1). It will be generalized in §5 but it is important to prove it first.

Proposition 2. Let θ ∈ (−π, π) \ {0}, and f(z) := pFp[a1, . . . , ap; b1, . . . , bp; z] be a hyper-
geometric function with parameters aj ∈ Q and bj ∈ Q\Z≤0. Then f(z) has an asymptotic
expansion

f(z) ≈
∑
ρ∈Σ

eρz
∑
α∈S

∑
i∈T

∞∑
n=0

cρ,α,i,nz
−n−α log(1/z)i

in a large sector bisected by θ, with Σ ⊂ {0, 1}, S ⊂ Q and T ⊂ N both finite, and
coefficients cρ,α,i,n in H.

Proof. If one of the aj’s is in Z≤0, the hypergeometric series is in C[z] and the conclusion
clearly holds with cρ,α,i,n in Q. From now on, as for the bj’s, we assume that none of the
aj’s is in Z≤0. In the beginning of the proof we do not need to assume that aj, bj ∈ Q.

Let

R(s) = R(a, b; s) :=

∏p
j=1 Γ(aj + s)∏p
j=1 Γ(bj + s)

Γ(−s).

The poles of R(s) are located at −aj − k, k ∈ Z≥0, j = 1, . . . , p, and at Z≥0. We define
the series

Lp(a, b; z) :=

p∑
j=1

∞∑
k=0

Residue
(
R(s)zs, s = −aj − k

)
.
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Set ν :=
∑p

j=1 aj −
∑p

j=1 bj,

Ck(a, b) =
∑

k1≥0,...,kp≥0,Np=k

(1− ap)kp
∏p−1

j=1(bj+1 − aj)kj
∏p

j=1(Bj +Nj−1)kj∏p
j=1 kj!

,

where for every j, Bj =
∑j

m=1(bm − am) and Nj =
∑j

m=1 km. We define the formal series

Kp(a, b; z) := ez
∞∑
k=0

Ck(a, b)z
ν−k ∈ ezzνQ[a, b][[1/z]].

Combining [21, p. 212] and [17, p. 283, Theorem] (partially reproved in [27, p. 113,
Theorem 4.1, Eq. (4.4)]), as z →∞ in the sector−3π

2
< arg(z) < π

2
, we have the asymptotic

expansion

pFp

[
a1, . . . , ap
b1, . . . , bp

; z

]
≈
∏p

j=1 Γ(bj)∏p
j=1 Γ(aj)

(
Lp(a, b; e

iπz) +Kp(a, b; z)
)
,

while if z →∞ in the sector −π
2
< arg(z) < 3π

2
, we have

pFp

[
a1, . . . , ap
b1, . . . , bp

; z

]
≈
∏p

j=1 Γ(bj)∏p
j=1 Γ(aj)

(
Lp(a, b; e

−iπz) +Kp(a, b; z)
)
.

These two expansions satisfy Definition 3 above: they hold in a large sector bisected by
any θ ∈ (−π, 0), respectively any θ ∈ (0, π), and the holonomic formal series Lp(a, b; e

±iπz)
and e−zKp(a, b; z) are both 1-summable in the direction θ because of the growth of their
coefficients.

These asymptotic expansions are refined versions of Barnes and Wright’s fundamental
works [6, 28] and are consequences of the general expansion of the Meijer G-function [21,
Chapter V]. Note that the Meijer G-function is not related to Siegel’s G-functions, though
by specialization of its parameters the former provides examples of the latter. In the next
two subsections, we provide more explicit expressions for the function Lp(a, b; z) under the
assumption that the aj’s and bj’s are in Q \ Z≤0 (whereas up to now this assumption was
not used), in order to prove that all coefficients of its asymptotic expansion belong to H.

4.1 R has simple poles

If the aj’s are pairwise distinct modulo Z, then the poles of R(s) are simple, and we have

Lp(a, b; z) =

p∑
j=1

∞∑
k=0

(−1)k
Γ(aj + k)

∏p
i=1,i 6=j Γ(ai − aj − k)

k!
∏p

i=1 Γ(bi − aj − k)
z−aj−k.

When the aj’s and bj’s are in Q \ Z≤0,
∏p
j=1 Γ(bj)∏p
j=1 Γ(aj)

Lp(a, b; z) is thus equal to a finite sum∑
j

z−ajfj(z)

with fj(z) ∈ H[[1/z]]. Note that the element 1/π ∈ H appears through the use of the
reflection formula 1

Γ(s)
= 1

π
sin(πs)Γ(1− s) for rational values of s.
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4.2 R has multiple poles

We assume that the aj’s and bj’s are in Q \ Z≤0. Up to reordering the aj’s, we can group
them in ` groups as follows: for m = 0, . . . , `− 1, we have

ajm+1, ajm+2, . . . , ajm+1 equal modZ, ajm+1 the smallest one in the group,

where the ajm are pairwise distinct mod Z for m = 1, . . . , `, and 0 = j0 < j1 < j2 < · · · <
j` = p.

Then, for every j ∈ {jm + 1, . . . , jm+1}, we have

Γ(aj + s) = (ajm+1 + s)aj−ajm+1
Γ(ajm+1 + s).

Set dm := jm − jm−1 ≥ 1, cm := ajm−1+1 and

P (s) :=
`−1∏
m=0

(
jm+1∏

j=jm+1

(ajm+1 + s)aj−ajm+1

)
∈ Q[s].

Hence,

R(s) = P (s)Γ(−s)
∏`

m=1 Γ(cm + s)dm∏p
m=1 Γ(bm + s)

.

To compute the residue of R(s)z−s at s = −cn − k for given n ∈ {1, . . . , `} and k ∈ Z≥0,
we write

Γ(cn + s) =
Γ(cn + s+ k + 1)

(cn + s)k(cn + s+ k)

and define

Φcn,k(s) := z−sP (s)Γ(−s)
∏`

m=1,m 6=n Γ(cm + s)dm∏p
m=1 Γ(bm + s)

· Γ(cn + s+ k + 1)dn

(cn + s)dnk

which is holomorphic at s = −cn − k. We thus deduce from

R(s)z−s =
Φcn,k(s)

(cn + s+ k)dn

that

Residue
(
R(s)z−s, s = −cn − k

)
=

1

(dn − 1)!
Φ

(dn−1)
cn,k

(−cn − k).

It follows that
∏p
j=1 Γ(bj)∏p
j=1 Γ(aj)

Lp(a, b; z) is equal to a finite sum∑
j,t

z−aj log(1/z)tfj,t(z)

with fj,t(z) ∈ H[[1/z]]. (The powers of log(1/z) come from the differentiation of z−s with
respect to s.) This concludes the proof of Proposition 2.
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5 Asymptotic expansion of the hypergeometric E-func-

tion pFq(z
q−p+1)

The goal of this section is to prove the following result, which generalizes Proposition 2.
We have chosen to present and prove this proposition in an independent part because the
case p = q is one of the steps in the proof of Proposition 3 below, towards the proof of the
general case q ≥ p ≥ 1. Moreover Proposition 2 is slightly more precise than Theorem 4 in
the sense that the non-explicited “finite set” below is {0} in Proposition 2; however, this
precision is not important for us.

Theorem 4. Let θ ∈ (−π, π), and F (z) := pFq[a1, . . . , ap; b1, . . . , bq; z
q−p+1] be a hypergeo-

metric E-function with q ≥ p ≥ 1 and parameters aj ∈ Q and bj ∈ Q \ Z≤0. Assume that
θ does not belong to some finite set that depends only on F . Then F (z) has an asymptotic
expansion

F (z) ≈
∑
ρ∈Σ

eρz
∑
α∈S

∑
i∈T

∞∑
n=0

cρ,α,i,nz
−n−α log(1/z)i (5.1)

in a large sector bisected by θ, with Σ ⊂ {0, 1}, S ⊂ Q and T ⊂ N both finite, and
coefficients cρ,α,i,n in H.

Remark 3. There exist well-known results in the literature from which follows the existence
of an asymptotic expansion of a given pFq[a1, . . . , ap; b1, . . . , bq; z] in any sector of opening
< 2π. See the references [6, 21, 28] already cited in §4. However, when z is changed to
zq−p+1, these expansions hold only in sectors of opening < 2π/(q − p + 1), so that when
q > p, these openings are < π. Unicity in a large sector, which is crucial for us, is thus not
guaranteed anymore. The existence and unicity of the expansion (5.1) is a consequence
of Theorem 2 applied to z · pFq(zq−p+1) because such a series is an E-function when its
parameters are rational and it vanishes at z = 0. We don’t know explicit expressions for
the coefficients cρ,α,i,n such as those obtained in §4 when p = q, but the result is enough
for our purposes.

5.1 Connections constants of the G-function (1/z) · p+1Fp(1/z)

We use the same notation as in §3.3 and §4. Using unicity in large sectors of the asymptotic
expansion of a p+1Fp+1(z) series with rational parameters, we shall study the connection
constants of its Laplace transform, which is a (1/z) · p+1Fp(1/z) series.

More precisely, consider the hypergeometric E-function

f(z) := p+1Fp+1

[
a1, . . . , ap+1

1, b1, . . . , bp
; z

]
where p ≥ 0 and aj ∈ Q, bj ∈ Q \ Z≤0. The Laplace transform of f(z) is the G-function

g(z) :=

∫ ∞
0

f(t)e−ztdt =
∞∑
n=0

(a1)n · · · (ap+1)nn!

(1)n(1)n(b1)n · · · (bp)n
1

zn+1
=

1

z
· p+1Fp

[
a1, . . . , ap+1

b1, . . . , bp
;
1

z

]
.

(5.2)
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The finite singularities of the differential equation satisfied by g(z) are 0 and 1. Locally
around ρ ∈ {0, 1}, this equation has a basis of solutions (fρj,k(z− ρ))j,k of the form (3.6) to
which we connect to g(z) as in (3.7):

g(z) =

J(ρ)∑
j=1

K(ρ,j)∑
k=0

$ρ
j,kf

ρ
j,k(z − ρ).

As observed in the proof of Theorem 3, we may assume in the expansions given by (3.6)
and (3.7) that for any ρ the rational numbers tρ1, . . . , tρJ(ρ) are pairwise distinct, and that

gρj,0(0) 6= 0 for any ρ and any j. Then we have the following result.

Proposition 3. For any ρ, any j and any k such that fρj,k(z − ρ) is not holomorphic at
z = ρ, we have $ρ

j,k ∈ H.

We believe that $ρ
j,k ∈ H also when fρj,k(z − ρ) is holomorphic at z = ρ, but the proof

of this result would require a new idea. However, the case where fρj,k(z− ρ) is holomorphic
at z = ρ is useless for proving Theorem 4 (see Remark 1 after Theorem 2).

Proof. We first recall that Γ̂(x) := 1/Γ(x). We shall in fact prove Proposition 3 for any
G-function g(z) which is the Laplace transform of an E-function f(x) with an asymptotic
expansion of the form (3.1) in a large sector bisected by any θ (except finitely many values
mod 2π), with coefficients cρ,α,i,n ∈ H. Then Proposition 2 shows that the function g(z)
defined in (5.2) has this property.

Let ρ, j0 and k0 be fixed. We shall prove that $ρ
j0,k0
∈ H; to begin with, we consider

the case where tρj0 6∈ N. By induction we may assume that for any j such that tρj0 − t
ρ
j is a

positive integer and for any k, we have $ρ
j,k ∈ H. The initial step of this inductive proof

corresponds to the case where there is no such j, so that this assumption holds trivially.

Let us denote by κ the coefficient of eρxx−t
ρ
j0
−1 log(1/x)k0 in the asymptotic expansion of

f(x) in a large sector bisected by a given θ; by assumption we have κ ∈ H. Now this
asymptotic expansion is unique, and (except for finitely many values of θ mod 2π) the
following expression of κ follows from Theorem 2:

κ =
∑

1≤j≤J(ρ)
t
ρ
j0
−tρ
j
∈N

K(j,ρ)∑
k=k0

$ρ
j,k

k−k0∑
`=0

(−1)`

`!k0!
Γ̂(`)(1− {tρj0}) [xt

ρ
j0
−tρj ](ηρj,k−k0−`(x))

where [xn](ηρj,i(x)) is the coefficient of xn in the power series ηρj,i(x) ∈ Q[[x]]. It follows from

the reflection formula Γ̂(1−x) = 1
π

sin(πx)Γ(x) that Γ̂(`)(1−{tρj0}) ∈ H for any ` ∈ N, since
tρj0 ∈ Q. We have assumed that $ρ

j,k ∈ H for any pair (j, k) such that tρj0 − t
ρ
j is a positive

integer, so that in the expression of κ the total contribution of these terms belongs to H.
We recall that for any j 6= j0 we have assumed that tj 6= tj0 , so that all terms with j 6= j0

are included here. Proceeding by decreasing induction on k0 we may also assume that
$ρ
j0,k
∈ H for any k such that k0 + 1 ≤ k ≤ K(j0, ρ), or that there is no such k. Then the
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term corresponding to each such k in the expression of κ belongs also to H. Since κ ∈ H
we deduce that the only remaining term, namely the one with (j, k) = (j0, k0), belongs to

H: we have $ρ
j0,k0

λ ∈ H with λ = 1
k0!

Γ̂(1− {tρj0}) η
ρ
j0,0

(0). Now with the notation of §3.2

we have ηρj0,0(0) = ytρj0 ,0
(0)gρj0,0(0) =

Γ(1−{tρj0})
Γ(−tρj0 )

gρj0,0(0) so that λ 6= 0 and 1
λ

=
k0!Γ(−tρj0 )

gρj0,0
(0)
∈ H.

Therefore we have proved that $ρ
j0,k0

= 1
λ
·$ρ

j0,k0
λ belongs to H.

To conclude the proof, let us prove that $ρ
j0,k0
∈ H in the case where tρj0 ∈ N; assuming

that fρj0,k0(z − ρ) is not holomorphic at z = ρ, we have k0 ≥ 1 in this case. We denote by

κ the coefficient of eρxx−t
ρ
j0
−1 log(1/x)k0−1 in the asymptotic expansion of f(x) in a large

sector; note that the exponent of log(1/x) has changed with respect to the first case. Using
Theorem 2 we obtain:

κ =
∑

1≤j≤J(ρ)
t
ρ
j0
−tρ
j
∈N

K(j,ρ)∑
k=k0−1

$ρ
j,k

k−k0+1∑
`=0

(−1)`

`!(k0 − 1)!
Γ̂(`)(1− {tρj0}) [xt

ρ
j0
−tρj ](ηρj,k−k0+1−`(x)).

As above we may assume that for any j such that tρj0 − t
ρ
j is a positive integer and for any

k, we have $ρ
j,k ∈ H. By decreasing induction on k we may also assume, in the same way,

that $ρ
j0,k
∈ H for any k such that k0 + 1 ≤ k ≤ K(j0, ρ), or that there is no such k. Then

as above, all terms with j 6= j0 or k ≤ k0 + 1 belong to H. Since κ ∈ H we deduce that

k0∑
k=k0−1

$ρ
j0,k

k−k0+1∑
`=0

(−1)`

`!(k0 − 1)!
Γ̂(`)(1− {tρj0}) η

ρ
j0,k−k0+1−`(0) ∈ H.

Now with the notation of §3.2, tρj0 ∈ N implies that ytρj0 ,0
(x) is identically zero (as noticed in

[10, p. 44]), so that ηρj0,0(x) is identically zero too. Therefore the terms with ` = k− k0 + 1
vanish in the above sum. The only term that remains is the one with k = k0 and ` = 0, so
that we have

$ρ
j0,k0

1

(k0 − 1)!
Γ̂(1− {tρj0}) η

ρ
j0,1

(0) ∈ H.

Letting λ = 1
(k0−1)!

Γ̂(1−{tρj0}) η
ρ
j0,1

(0), it is sufficient to prove that λ 6= 0 and 1
λ
∈ H. We

have (k0−1)!Γ(1−{tρj0}) ∈ H, and ηρj0,1(0) = ytρj0 ,1
(0)gρj0,0(0) using the fact that ytρj0 ,0

(0) = 0

since tρj0 ∈ N. We have assumed that gρj0,0(0) is a non-zero algebraic number; at last we
have (see [10, Eq. (4.6)] for more details):

ytρj0 ,1
(0) =

d

dt

(Γ(1− {t})
Γ(−t)

)
|t=tρj0

=
d

dt

(
(−t)tρj0+1

)
|t=tρj0

= (−1)t
ρ
j0

+1(tρj0)! ∈ Q?
.

This concludes the proof that λ 6= 0 and 1
λ
∈ H, and that of Proposition 3.
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5.2 Proof of Theorem 4

Proof. We shall now transfer the result obtained in §5.1 to pFq(z
q−p+1) series.

Consider the hypergeometric E-function

F (z) := pFq

[
a1, . . . , ap
b1, . . . , bq

; zr
]

where q ≥ p ≥ 1, r := q − p + 1 ≥ 1, and aj ∈ Q, bj ∈ Q \ Z≤0. Consider also the
hypergeometric G-function

g(z) :=
1

z
· q+1Fq

[
a1, . . . , ap, 1/r, 2/r, . . . , r/r

b1, . . . , bq
;
1

z

]
.

The Laplace transform of F (z) is

G(z) :=

∫ ∞
0

F (t)e−ztdt =
∞∑
n=0

(a1)n · · · (ap)n(rn)!

(1)n(b1)n · · · (bq)n
1

zrn+1
= zr−1g

(zr
rr

)
.

The finite singularities of the (essentially hypergeometric) differential equation satisfied by
g(z) are 0 and 1. As in the previous sections (see §3.2), we connect g(z) on a local basis
(fρj,k(z − ρ))j,k around z = ρ ∈ {0, 1}:

g(z) =

J(ρ)∑
j=1

K(j,ρ)∑
k=0

$ρ
j,kf

ρ
j,k(z − ρ)

where

fρj,k(z − ρ) = (z − ρ)t
ρ
j

k∑
`=0

gρj,k−`(z − ρ)
log(z − ρ)`

`!

with tρj ∈ Q and gρj,k−`(z − ρ) ∈ Q[[z − ρ]] holomorphic at z = ρ; moreover, the gρj,k−` are
G-functions. Here, θ is chosen such that log(z) is defined with −π − θ < arg(z) < π − θ
and log(z − 1) is defined with −π − θ < arg(z − 1) < π − θ. For later use, we also
impose that θ is such that the following property holds: the half-lines L0 := −e−iθR+ and
Lk := re2iπk/r − e−iθR+ (k = 1, 2, . . . , r) are such that Lj ∩ Lk = ∅ for j 6= k.

We may assume that for any ρ the rational numbers tρ1, . . . , tρJ(ρ) are pairwise distinct,

and that gρj,0(0) 6= 0 for any ρ and any j. Then Proposition 3 proved in §5.1 shows that
$ρ
j,k ∈ H for any j, k, ρ, except maybe when fρj,k(z−ρ) is holomorphic at z = ρ (i.e., when

k = 0 and tρj ∈ N).

The set of finite singularities of the differential equation E satisfied by G(z) is

{0, e2iπ/rr, e4iπ/rr, . . . , e2riπ/rr}.

The function G(z) can be continued to the simply connected cut plane L := C \ ∪rk=0Lk.
Since the minimal differential equations satisfied by G(z) and g(z) have the same order,
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(zr−1f 0
j,k(z

r/rr))j,k is a basis of solutions of E at z = 0 while (zr−1f 1
j,k(z

r/rr − 1))j,k is a

basis of solutions of E at any one of the points z = re2i`π/r, ` = 1, . . . , r. These bases are
not necessarily of the form (3.6) but this is not essential for our purpose.

Let us first consider the connection of G(z) with the basis of solutions at z = 0. Below,
log(z) is defined by −π − θ < arg(z) < π − θ, and we have log(zr/rr) = r log(z)− r log(r)
for all z ∈ C such that c1(r) < arg(z) < c2(r), for some well chosen constants c1(r) < c2(r).
Note that r log(r) ∈ H. We then have, for all z ∈ L such that c1(r) < arg(z) < c2(r),

G(z) =

J(0)∑
j=1

K(j,0)∑
k=0

$0
j,kz

r−1f 0
j,k(z

r/rr)

=

J(0)∑
j=1

K(j,0)∑
k=0

$0
j,kr
−rt0jzrt

0
j+r−1

k∑
`=0

g0
j,k−`(z

r/rr)
log(zr/rr)`

`!

=

J(0)∑
j=1

K(j,0)∑
k=0

$0
j,kr
−rt0jzrt

0
j+r−1

k∑
`=0

g0
j,k−`(z

r/rr)S`(log(z)),

where S`[x] ∈ H[x] is of degree `. Note that r−rt
0
j ∈ Q and g0

j,k−`(z
r/rr) ∈ Q[[z]]. Recall

that, by Proposition 3, we have $0
j,k ∈ H except maybe when k = 0 and t0j ∈ N. We

observe that in this special case, $0
j,0 appears in the formula above as the coefficient of

a function holomorphic at 0, because t0j ∈ N implies rt0j + r − 1 ∈ N and g0
j,0(zr/rr) is

holomorphic at 0. Hence, for all z ∈ L such that c1(r) < arg(z) < c2(r), we have

G(z) =

J(0)∑
j=1

K(j,0)∑
k=0

Ω0
j,kz

rt0j+r−1
k∑
`=0

G0
j,k−`(z)

log(z)`

`!
(5.3)

with Ω0
j,k ∈ C, G0

j,k−`(z) ∈ H[[z]] are holomorphic at z = 0, and Ω0
j,k ∈ H for any pair (j, k)

such that k ≥ 1 or rt0j +r−1 6∈ N. Now, Eq. (5.3) extends to L by analytic contination, i.e.
the assumption c1(r) < arg(z) < c2(r) can be dropped. For our application, it is enough to
know that the functions G0

j,k−`(z) are in H[[z]] and not necessarily G-functions. Moreover,
we need no information on the nature of the constants Ω0

j,0 for j such that rt0j + r− 1 ∈ N
because they are factors of terms in (5.3) that are holomorphic at 0, and therefore do
not contribute to the asymptotic expansion of F (z). Note that it may happen that some
tj0 /∈ N is such that rt0j0 + r − 1 ∈ N, in which case we know that Ω0

j0,0
is indeed in H but

this information will not be useful to complete the proof of Theorem 4.

Let us now consider the connection of G(z) with the basis of solutions at z = e2`iπ/rr.
For simplicity, we shall assume that ` = 0 but the general case can be obtained similarily.
Below, log(z − r) is defined with −π − θ < arg(z − r) < π − θ. We have log(zr/rr − 1)−
log(z−r) = Q(z−r) ∈ H[[z−r]] for z ∈ C such that |z−r| < κ and d1(r) < arg(z) < d2(r),
for some well chosen constants κ and d1(r) < d2(r). (The series Q(z − r) may change if
the angular sector d1(r) < arg(z) < d2(r) is changed to another one.) Hence, for z ∈ L
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such that |z − r| < κ and d1(r) < arg(z) < d2(r), we have

G(z) =

J(1)∑
j=1

K(j,1)∑
k=0

$1
j,kz

r−1f 1
j,k(z

r/rr)

=

J(1)∑
j=1

K(j,1)∑
k=0

$1
j,k(z

r/rr − 1)t
1
jzr−1

k∑
`=0

g1
j,k−`(z

r/rr − 1)
log(zr/rr − 1)`

`!

=

J(1)∑
j=1

K(j,1)∑
k=0

$1
j,k(z − r)t

1
jPj(z − r)

k∑
`=0

1

`!
g1
j,k−`(z

r/rr − 1)
(

log(z − r) +Q(z − r)
)`

where Pj(z − r) ∈ Q[[z − r]]. As above, Proposition 3 yields $1
j,k ∈ H for any j, k,

except maybe when k = 0 and t1j ∈ N. Hence, for all z ∈ L such that |z − r| < κ and
d1(r) < arg(z) < d2(r), we have

G(z) =

J(1)∑
j=1

K(j,1)∑
k=0

Ωr
j,k · (z − r)t

1
j

k∑
`=0

Gr
j,k−`(z − r)

log(z − r)`

`!
(5.4)

with Ωr
j,k ∈ C, Gr

j,k−`(z− r) ∈ H[[z− r]] are holomorphic at z = r, and Ωr
j,k ∈ H for any j,

k such that k ≥ 1 or t1j 6∈ N. Now, Eq. (5.4) extends to L by analytic continuation, i.e. the
conditions that |z−r| < κ and d1(r) < arg(z) < d2(r) can be dropped. For our application,
it is enough to know that Gr

j,k−`(z) are in H[[z]] and not necessarily G-functions. Moreover,
we need no information on the nature of the constants Ωr

j,0 for j such that t1j ∈ N because
they are factors of terms in (5.3) that are holomorphic at z = r, and therefore do not
contribute to the asymptotic expansion of F (z) (using Remark 1 stated after Theorem 2).
Eq. (5.4) can be generalized to the other singularities e2i`π/rr with obvious changes.

Now, we use the analytic continuation to L of Eqs. (5.3), (5.4) and analogues at
z = e2`iπ/rr for other values of ` in the formula of Theorem 2, and we deduce Theorem 4.

6 Application to Siegel’s problem: proof of Theo-

rem 1

Proof. Assume that Siegel’s question has an affirmative answer, and let ξ ∈ G. Theorem 3
provides an E-function E(z) and a finite set S ⊂ (−π, π) such that for any θ ∈ (−π, π)\S,
ξ is a coefficient of the asymptotic expansion of E(z) in a large sector bisected by θ.
Now an affirmative answer to Siegel’s question yields n hypergeometric series f1, . . . , fn
of the type pFq(z

q−p+1) (for various values of q − p, p and q such that q ≥ p ≥ 1) with
rational parameters, n algebraic numbers λ1, . . . , λn, and a polynomial P ∈ Q[X1, . . . , Xn],
such that E(z) = P (f1(λ1z), . . . , fn(λnz)). Choose θ ∈ (−π, π) outside a suitable finite set.
Then Theorem 4 implies that for any i, the asymptotic expansion of fi(λiz) in a large sector
bisected by θ has coefficients in H. The same holds for E(z) = P (f1(λ1z), . . . , fn(λnz))
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because H is a Q-algebra. Since such an asymptotic expansion is unique (see §3.1), the
coefficient ξ belongs to H. This concludes the proof of Theorem 1.

7 A Siegel type problem for G-functions

We recall that
∑∞

n=0 anz
n is a G-function if

∑∞
n=0 anz

n/n! is an E-function (in the sense of
this paper). G-functions form a ring stable under d

dz
and

∫ z
0

; they are not entire (unless they
are polynomials), they have a finite number of singularities and they can be analytically
continued in a cut plane with cuts at these singularities. Moreover, given any algebraic
function α(z) over Q(z) holomorphic at 0 and any G-function f(z), the functions α(z) and
f(zα(z)) are G-functions.

For any integer p ≥ 0, the hypergeometric series

p+1Fp

[
a1, . . . , ap+1

b1, . . . , bp
; z

]
:=

∞∑
n=0

(a1)n · · · (ap+1)n
(1)n(b1)n · · · (bp)n

zn (7.1)

is a G-function when aj ∈ Q and bj ∈ Q \ Z≤0 for all j; Galochkin’s classification can
be adapted to describe all the hypergeometric G-functions of type p+1Fp. The simplest
examples are 1F0[a; ·; z] = (1−z)−a (a ∈ Q) and 2F1[1, 1; 2; z] = − log(1−z)/z. If aj ∈ Z≤0

for some j, then the series reduces to a polynomial. Any polynomial with coefficients in
Q of functions of the form µ(z) p+1Fp[a1, . . . , ap+1; b1, . . . , bp;λ(z)] is a G-function, where
aj ∈ Q, bj ∈ Q \ Z≤0, and µ(z), λ(z) are algebraic over Q(z) and holomorphic at z = 0,
with λ(0) = 0.

In the spirit of Siegel’s problem for E-functions, it is natural to ask the following
question.

Question 2. Is it possible to write any G-function as a polynomial with coefficients in Q
of G-functions of the form µ(z) · p+1Fp[a1, . . . , ap+1; b1, . . . , bp;λ(z)], with p ≥ 0, aj ∈ Q,
bj ∈ Q \ Z≤0, µ(z), λ(z) algebraic over Q(z) and holomorphic at z = 0, and λ(0) = 0?

We prove in this section a result similar to that for E-functions (recall that the inclusion
G ⊂ H is very unlikely: see §2.2).

Theorem 5. At least one of the following statements is true:

(i) G ⊂ H;

(ii) Question 2 has a negative answer under the further assumption that the algebraic
functions λ have a common singularity in Q∗ ∪ {∞} at which they all tend to ∞.

Our method seems inoperant if this further assumption on the λ’s is dropped. Ques-
tion 2 is related to a conjecture of Dwork [8, p. 784] concerning the classification of certain
operators in Q(z)[ d

dz
] of order 2, which was disproved by Krammer [19]; later on, Bouw-

Möller [7] gave other counter-examples of a different nature. Dwork’s conjecture said that a
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globally nilpotent operator of order 2 either has a basis of algebraic solutions over Q(z) or is
an algebraic pullback of the hypergeometric equation for the 2F1 with rational parameters.
We will not define here globally nilpotent operators (see the references), but they are con-
jectured to coincide with G-operators in Q(z)[ d

dz
] (which in particular include operators in

Q(z)[ d
dz

]\{0} which are minimal for some non-zero G-function). It is known that operators
“coming from geometry” are G-operators and globally nilpotent, by results of André [2,
p. 111] and Katz [18, Theorem 10.0] respectively. The Krammer and Bouw-Möller opera-
tors “come from geometry” and in [7, §9], the authors even produced explicit G-functions
solutions of their operators which are neither algebraic functions nor algebraic pullbacks of
a 2F1 with rational parameters. However, this does not rule out the possibility that these
G-functions could be polynomials in more variables in p+1Fp hypergeometric functions with
various values of p ≥ 1. It is known that G-operators of order 1 are exactly those operators
in Q(z)[ d

dz
] of order 1 with a solution of the form

∏m
j=1(1−λjz)sj(=

∏m
j=1 1F0[−sj; ·;λjz]),

for some m ≥ 1, λj ∈ Q and sj ∈ Q; this is already a non-trivial result based on the
André-Chudnovsky-Katz Theorem. It is possible that a classification of inhomogeneous
linear differential equations of order 1 with coefficients in Q(z) and admitting a G-function
for solution could be obtained as well but this is currently unknown. (The analogous classi-
fication problem for E-functions was solved by Gorelov in [13], and reproved by a different
method as a consequence of a more general result in [23]; in both cases, the proof is not
easy.) After Dwork’s unsuccessful attempt, a classification of G-operators of order 2 –or
more simply of operators of order 2 minimal for some non-zero G-function– seems elusive,
in clear contrast with Gorelov’s classification of E-functions of order ≤ 2.

Finally, if there exist α ∈ Q, |α| < 1, and s ∈ N such that Lis(α) /∈ H, then the proof
given below shows that Lis(

αz
z−α) provides a counter-example, of differential order s+ 1, to

Question 2 with the restriction in Theorem 5.

7.1 G-values as connection constants of G-functions

Given a non-zero G-function f(z), let L denote a non-zero operator in Q(z)[ d
dz

] such that
Lf(z) = 0 and of minimal order for f . By standard results of André, Chudnovsky and
Katz recalled in [3, §3] or [9, §4.1] (and already used in §3.2), L is fuchsian with rational
exponents and, at any α ∈ Q ∪ {∞}, L admits a C-basis of solutions of the form

F (z − α) :=
∑
e∈E

∑
k∈K

(z − α)e log(z − α)kfe,k(z − α)

where E ⊂ Q and K ⊂ N are finite sets, and the fe,k(z) are G-functions; if α =∞, z−α has
to be replaced by 1/z. We call such a basis an ACK basis of L at α. The determination
of log(z − α) is fixed but somewhat irrelevant to our purpose; monodromy around the
singularities and ∞ of any solution of L produces further coefficients in Q[π] ⊂ G for the
local expansions of this solution at these points.

Given an element F (z − β) of an ACK basis of L at some point β ∈ Q ∪ {∞} and an
ACK basis F1(z − α), . . . , Fµ(z − α) of L at α ∈ Q ∪ {∞}, we can connect locally around
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α an analytic continuation of F (z − β) (in a suitable cut plane) to this ACK basis:

F (z − β) =

µ∑
j=1

ωjFj(z − α), (7.2)

where, following a general terminology, the complex numbers ω1, . . . , ωµ are called connec-
tion constants. In [9, Theorem 2], we proved that ω1, . . . , ωµ are in fact in G. We prove
here a converse result.

Theorem 6. Let ξ ∈ G \ {0} and α ∈ Q∗ ∪{∞}. There exist a non-zero G-function F (z)
solution of a differential operator L ∈ Q(z)[ d

dz
]\{0}, of minimal order for F , and an ACK

basis F1(z − α), . . . , Fµ(z − α) of L at α such that the analytic continuation of F (z) in a
suitable cut plane is given by

µ∑
j=1

ωjFj(z − α),

where ω1 = F (α) = ξ.

Proof. Let ξ ∈ G \ {0}. We first assume that α 6= ∞. By [9, Theorem 1], there exists
a non-zero G-function G(z) of radius of convergence > |α| such that G(α) = ξ. Let
L ∈ Q(z)[ d

dz
] \ {0} be of minimal order for G. Let F1(z − α), . . . , Fµ(z − α) be an ACK

basis of L at α. Up to relabeling the basis, we can assume without loss of generality that
there exists λ ≤ µ such that

G(z) =
λ∑
j=1

ωjFj(z − α) (7.3)

in a cut plane locally around z = α, where the ωj ∈ G are all non-zero. Up to performing
Q-linear combinations of the Fj’s, we can assume without loss of generality that for all
j ≥ 2, Fj(z−α) = o(F1(z−α)) locally around z = α. (Doing so, (F1(z−α), . . . , Fµ(z−α))
remains an ACK basis of L at α.) Hence, G(z) ∼ ω1F1(z − α) as z → α in the cut plane.
Because G(α) = ξ 6= 0 and ω1 6= 0, this implies that κ := F1(0) is non-zero; therefore
κ ∈ Q∗ (see [9, Lemma 5] with A = Q). Upon replacing F1 with κ−1F1, we may assume
that κ = 1; then we have ξ = G(α) = ω1.

To work around ∞, we fix α ∈ Q∗ and keep the same notation; we consider now
H(z) := G( αz

z−α) and Hj(
1
z
) := Fj(

αz
z−α −α). Then H is a non-zero G-function solution of a

differential operator M ∈ Q(z)[ d
dz

] \ {0} minimal for H (trivially deduced from L). Now,
H1(1

z
), . . . , Hµ(1

z
) is an ACK basis of M at ∞ and, by (7.3), we have

H(z) =
λ∑
j=1

ωjHj

(1

z

)
still with ω1 = ξ and H(z)→ ξ as z →∞ in a suitable cut plane.
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7.2 Analytic continuation of the hypergeometric series p+1Fp(z)

In this section, we prove the following result.

Theorem 7. Let f(z) = p+1Fp[a1, . . . , ap+1; b1, . . . , bp; z] be a hypergeometric series with
parameters aj ∈ Q and bj ∈ Q \ Z≤0. Then, the analytic continuation of f(z) to the
domain defined by | arg(−z)| < π and |z| > 1 is given by

p+1∑
j=1

∑
`

z−aj log(1/z)`fj,`(1/z)

where the sum over the integer ` is finite and each fj,`(z) ∈ H[[z]] converges for |z| < 1.

Proof. Let

R(s) = R(a, b; s) :=

∏p+1
j=1 Γ(aj + s)∏p
j=1 Γ(bj + s)

Γ(−s).

The poles of R(s) are located at −aj − k, k ∈ Z≥0, j = 1, . . . , p+ 1, and at Z≥0. We define
the series

Mp(a, b; z) :=

p+1∑
j=1

∞∑
k=0

Residue
(
R(s)(−z)s, s = −aj − k

)
,

which converges for any z such that | arg(−z)| < π and |z| > 1.
Then the analytic continuation of f to the domain defined by | arg(−z)| < π and |z| > 1

is given by

f(z) =

∏p
j=1 Γ(bj)∏p+1
j=1 Γ(aj)

Mp(a, b; z).

See the discussion on the Meijer G-function, of which Mp(a, b; z) is a special case, in [21,
§5.3.1], and in particular Eqs. (5) and (17) there. The same method as in §4.1 and §4.2
shows that

Mp(a, b; z) =

p+1∑
j=1

∑
`

z−aj log(1/z)`fj,`(1/z)

where the sum over the integer ` ≥ 0 is finite and each fj,`(z) ∈ H[[z]] converges for |z| < 1.
This completes the proof.

Note that when the aj’s are pairwise distinct mod Z, the poles of R(s) at −aj − k,
k ∈ Z≥0 are all distinct and we simply have

f(z) =

p+1∑
j=1

(−z)−aj
∏p+1

k=1,k 6=j Γ(ak − aj)∏p+1
k=1,k 6=j Γ(ak)

×
∏p

k=1 Γ(bk)∏p
k=1 Γ(bk − aj)

p+1Fp

[
aj, 1− b1 + aj, . . . , 1− bp + aj

1− a1 + aj, . . . ∗ . . . , 1− ap+1 + aj
;−1

z

]
where ∗ means that the term 1− aj + aj is omitted.
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7.3 Proof of Theorem 5

Proof. We start with some general considerations. Let F (z) be a G-function and L ∈
Q(z)[ d

dz
]\{0} be a minimal operator annihilating F . Given a cut plane and α ∈ Q∗∪{∞},

the local behaviour around α of the analytic continuation of F is described by an ACK
basis of L at α. In particular, if |z| is large enough, the analytic continuation of F is of
the form ∑

e∈E

∑
k∈K

∑
n≥0

ce,k,nz
−e−n log(1/z)k (7.4)

where ce,k,n ∈ G, E ⊂ Q and K ⊂ N are finite sets (recall that the connection constants ωj
in Eq. (7.2) belong to G, by [9, Theorem 2]). Monodromy around ∞ and the singularities
of F produces further coefficients in Q[π] ⊂ G for the local expansions of F at these points.
Hence any analytic continuation of F is in fact of the form (7.4) at ∞.

Let now f(z) = p+1Fp[a1, . . . , ap+1; b1, . . . , bp; z] be a hypergeometric series with param-

eters aj ∈ Q and bj ∈ Q \ Z≤0. Let µ(z), λ(z) ∈ Q(z) be holomorphic at z = 0, with
λ(0) = 0 and λ(z) → ∞ as z → ∞. A more precise result than (7.4) can be obtained for
the G-function g(z) := µ(z)f(λ(z)). We first recall that the analytic continuations of µ(z)
and λ(z) in suitable cut planes admit convergent Puiseux expansions at ∞ of the form∑

n≥−m

anz
−n/d ∈ Q[[1/z1/d]]

for some integers m ≥ 0 and d ≥ 1. Moreover, there exists n ≤ −1 such that an 6= 0 for
λ because λ(z) → ∞ as z → ∞. Using Theorem 7, we then deduce that g(z) admits an
analytic continuation at ∞ of the form (7.4) with ce,k,n ∈ H. Again, because Q[π] ⊂ H,
any analytic continuation of g is of the form (7.4) at ∞ with ce,k,n ∈ H.

For j = 1, . . . , N , consider gj(z) := µj(z)fj(λj(z)) where fj(z) is a p+1Fp hypergeo-

metric series with rational parameters and µj(z), λj(z) ∈ Q(z) are holomorphic at z = 0,
with λj(0) = 0 and λj(z) → ∞ as z → ∞. For any polynomial P ∈ Q[X1, . . . , XN ],
it follows from the above discussion that any analytic continuation of the G-function
P (g1(z), . . . , gN(z)) is also of the form (7.4) at ∞ with ce,k,n ∈ H.

Let us now assume that Question 2 has a positive answer when all the λ’s tend to∞ as
z →∞. Given ξ ∈ G\{0}, consider the non-zero G-function F (z) given by Theorem 6 for
α =∞: in a suitable cut plane, its analytic continuation is of the form (7.4) with c0,0,0 = ξ.
On the other hand, we have

F (z) = P
(
g1(z), . . . , gN(z)

)
in a neighborhood of z = 0, where the polynomial P and the gj’s are as above. The
properties of this specific analytic continuation of F (z) and of those of the right-hand side
imply that ξ ∈ H. Hence G ⊂ H in this case.

If the λ’s all tend to∞ as z → β ∈ Q∗, then the above argument can be adapted using
Puiseux expansions of the µ’s and λ’s of the form

∑
n≥−m an(z − β)n/d ∈ Q[[(z − β)1/d]], a

G-function F given by Theorem 6 with α = β and an ACK basis at β.
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Remark 4. We emphasize the fact that in the above proof we need to make the λ’s all
tend to∞ in a neighborhood of a common point in Q∗∪{0} because we can then compare
various expansions at infinity of the form (7.4) with the help of Theorem 7. It is indeed
not known if a version of Theorem 7 holds at a finite point α instead of∞. More precisely
f(z) can still be locally written as

p+1∑
j=1

∑
`

(z − α)aj log(z − α)`fj,`(z − α)

with fj,`(z − α) ∈ C[[z − α]], but it is not known if the fj,`(z − α) are in H[[z]].
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