Séminaire: Problèmes Spectraux en Physique Mathématique


Année 2025-2026



Pour tout renseignement complémentaire, veuillez contacter les organisateurs, Hakim Boumaza, Mathieu Lewin ou Stéphane Nonnenmacher.

Prochain séminaire le lundi 20 octobre 2025 après-midi à l'Institut Henri Poincaré, en salle Pierre Grisvard (3e étage, ex-314)


14h - 15h Denis Périce (Constructor University Bremen)
Mean-field limit of the Bose-Hubbard model in high dimension

Abstract:

The Bose-Hubbard Hamiltonian effectively describes bosons on a lattice with on-site interactions and nearest-neighbour hopping, serving as a foundational framework for understanding strong particle interactions and the superfluid to Mott-insulator transition. In the physics literature, the mean field theory for this model is known to provide qualitatively accurate results in three or more dimensions. In this talk, I will present results that establishes the validity of the mean-field approximation for bosonic quantum systems in high dimensions. Unlike the standard many-body mean-field limit, the high-dimensional mean-field theory exhibits a phase transition and remains compatible with strongly interacting particles.


  15h15 - 16h15 Matthias Täufer (Valenciennes) Recent developments in shape optimization on quantum graphs: infinite graphs, heat content, torsional rigidity

Abstract:

In this talk, I discuss several recent developments in geometric analysis of metric graphs. Metric graphs are networks of intervals, joined at their endpoints to form a network-like space and self-adjoint differential operators on them are usually called quantum graphs. Shape optimization,that is the question which metric graphs will maximize or minimize particular quantities such as the n-th eigenvalue, has a long history and in the last decades, many analogues of classical results such as the Faber-Krahn inequality have been proved. I will give a brief overview of this history and then pass to more recent results. In particular, I will introduce infinite metric graphs (of finite diameter) where the spectral theory becomes much richer and also discuss questions of shape optimization for quantities such as the torsional rigidity and the heat content which have recently attracted interest.
Based on joint work with Partizio Bifulco, Marco Düfel, James Kennedy, Delio Mugnolo, Sedef Özcan and Marvin Plümer.


Prochaines séances :

17 novembre 2025
15 décembre 2025
5 janvier 2026
9 février 2026
13 avril 2026
11 mai 2026
15 juin 2026

Historique du séminaire:

Année 2024-2025
Année 2023-2024
Année 2022-2023
Année 2021-2022
Année 2020-2021
Année 2019-2020
Année 2018-2019
Année 2017-2018
Année 2016-2017
Année 2015-2016
Année 2014-2015
Année 2013-2014
Année 2012-2013
Année 2011-2012
Année 2010-2011
Année 2009-2010
Année 2008-2009
Année 2007-2008
Année 2006-2007
Année 2005-2006

Dernière mise à jour: 8 octobre 2025
Page maintenue par Stéphane Nonnenmacher