Matthieu JOSEPH

EN

Publications :

  • Products of snowflaked Euclidean lines are not minimal for looking down
    avec T.Rajala, Anal. Geom. Metr. Spaces, 5 (2017), no. 1, 78-97.
    Article publié suite à un stage de recherches en master à Jyväskylä (Finlande), sous la direction de T. Rajala.
    On étudie dans cet article une notion d'auto-similarité dans les espaces métriques, appelée BPI (Big Pieces of Itself). Pour classifier les différentes géométries BPI, David et Semmes ont introduit la notion de "looking down". Dans cet article, on démontre que le produit d'un nombre fini de droites réelles munies chacune de la distance (x,y)→|x-y|p avec p<1 n'est pas minimal pour cette notion de "looking down".

Prépublications :

  • Continuum of allosteric actions for non-amenable surface groups
    Soit Σ une surface fermée autre que la sphère, le tore, le plan projectif ou la bouteille de Klein. Nous construisons un continuum d'actions profinies ergodique minimales du groupe fondamental de Σ, qui sont topologiquement libres mais pas essentiellement libres. Cette propriété est nommée allostérie. Par ailleurs, les IRS obtenus grâce à ces actions sont deux à deux distincts.
  • Belinskaya's Theorem is optimal
    avec A. Carderi, F. Le Maître et R. Tessera
    Étant donnée une transformation ergodique T, le théorème de Belinskaya affirme que n'importe quelle autre transformation ergodique qui définit la même partition en orbite que celle de T, avec un cocycle L1, est en fait flip-conjugué à T. Notre résultat principal montre que ce théorème est optimal : pour tout p<1, la condition d'intégrabilité du cocycle ne peut pas être remplacée par la condition Lp. Cela nous permet de répondre à une question de Kerr et Li : pour les transformations ergodiques, l'équivalence orbitale Shannon ne se réduit pas à la flip-conjugaison.
  • Isometric orbit equivalence for probability-measure preserving actions
    Dans cet article, on introduit la notion d'équivalence orbitale isométrique pour les actions de groupes qui préservent une mesure de probabilité (pmp). Deux actions pmp de groupes sont OE isométriques si les graphages de Schreier des actions sont isomorphes. On démontre dans un premier temps que si le groupe d'automorphismes du graphe de Cayley d'un groupe est discret, alors toute action pmp libre de ce groupe est rigide du point de vue de l'équivalence orbitale isométrique. Dans un second temps, on introduit une méthode pour démontrer qu'un certain nombre de groupes admettent des actions pmp libres OE isométriques mais non conjuguées. C'est par exemple le cas pour le groupe libre de rang fini, muni d'un système de générateurs libre.
  • Amenable wreath products with non almost finite actions of mean dimension zero

    Une première version de l'article était intitulée "Wreath products, allostery and amenability".

    La notion de "presque finitude a été introduite par Kerr comme un analogue dynamique de la notion de Z-stabilité dans la conjecture de Toms-Winter. Dans cet article, nous fournissons les premiers examples d'actions minimales de groupes moyennables, qui ont une dimension moyenne nulle et qui ne sont pas presque finies. Plus précisément, on démontre qu'il existe une famille infinie de produits en couronne moyennables qui admettent des actions topologiquement libres, minimales, profinies sur l'espace de Cantor qui ne sont pas presque finie. Ces actions vérifient par ailleurs la propriété de comparaison dynamique. Cet intriguant phénomène montre que l'analogue dynamique de la conjecture de Toms-Winter du à Kerr est faux pour les actions minimales, topologiquement libre de groupes moyennables. La notion de groupes allostériques est le principal outil dans cet article. Un groupe est allostérique s'il admet une action minimale sur un espace compact, avec une mesure de probabilité invariante ergodique, qui est topologiquement libre mais pas essentiellement libre. On étudie l'allostérie des produits en couronne et l'on donne les premiers examples de groupes allostériques moyennables.

Thèse de doctorat :

  • Dynamique topologique et mesurée : allostérie, équivalence orbitale quantitative
    Effectuée sous la direction de Damien Gaboriau.
    Cette thèse se situe à l’interface entre dynamique topologique et dynamique mesurée. Premièrement, j’y étudie la notion d’action allostérique. Ce sont des actions génériquement libres au sens topologique mais pas génériquement libres au sens de la mesure. Ce comportement étonnant met en valeur les nuances entre sous-groupes aléatoires invariants et sous-groupes uniformément récurrents. Un second sujet d’étude est l’équivalence orbitale quantitative, qui renforce l’équivalence orbitale. Il s’agit de comprendre comment les structures métriques sur les orbites des actions peuvent être distordues par équivalence orbitale. Une grande partie des travaux de cette thèse gravite autour d’un des théorèmes fondateurs de cette théorie : le théorème de Belinskaya.